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A graph matching approach to optimal assignment of task modules with varying lengths and 
precedence relationship in a distributed computing system is proposed. Inclusion of module 
precedence into the optimal solution is made possible by the use of topological module orderings. 
Two graphs are defined to represent the processor structure and the module precedence relationship, 
respectively. Assignment of the task modules to the system processors is transformed into a type of 
graph matching. The search of optimal graph matching corresponding to optimal task assignment 
is formulated as a state-space search problem which is then solved by the A* algorithm in artificial 
intelligence. Illustrative examples and experimental results are included to show the effectiveness 
of the proposed approach. 

C.R. Cate#ories: D.4.1, 1.2.8. 

Index Terms." Task assignment, distributed processing, graph matching, topological tree, minimax 
criterion, task turnaround time, state-space search, A* algorithm. 

1. Introduction. 

A distributed computing system consists of two or more arbitrarily and 
incompletely interconnected processors. A concern in the research of distributed 
processing is how to utilize the processors evenly in a distributed computing 
system. This is the so-called task assignment problem [1, 9]. In such a problem, 
a task consisting of several modules is to be solved on a set of processors with 
the aim to reduce task turnaround time and to increase system throughput. 

The purpose of reducing task turnaround time and increasing system through- 
put can be achieved by maximizing (or balancing) the utilization of resources 
and minimizing the communication between processors [2]. While minimizing 
interprocessor communication tends to assign the whole task to a single 
processor, load balancing tries to distribute the task modules evenly among the 

Received October 22, 1986. Revised February 1987 and December 1987. 



O P T I M A L  A S S I G N M E N T  OF T A S K  M O D U L E S  . . .  55 

processors. Therefore, there exists a conflict between these two criteria and a 
compromise must be made to find an optimum policy for task assignment. 

Several approaches [1-16] have been suggested, including the graph-theoretic 
approach, the integer 0-1 programming approach, the heuristic approach, the 
simulated annealing method, and approaches used in the construction of parallel 
computing elements in VLSI. In most of the approaches, module precedence 
is neglected. Some have considered this problem but only allow unit-length 
modules in a task [t0]. In this paper, we remove these constraints and consider 
optimal assignment of task modules with varying lengths and precedence 
relationship. 

Each graph match corresponds to a task assignment. Cost values are defined 
in terms of a single unit, time, and a state-space search method [19] is used for 
finding the minimal-cost graph match corresponding to the optimal task 
assignment. 

Inclusion of module precedence into the optimal solution is made possible 
by the use of topological module orderings constructed from the precedence 
relationship. The proposed model allows most constraints encountered in 
practice to be easily incorporated. On the other hand, the proposed approach 
guarantees to find an optimal solution. This is especially important for those 
applications where the resulting assignment will be run on a distributed system 
repeatedly. 

In the remainder of this paper, we describe the system assumptions in Sec. 2, 
and the graph matching model in Sec. 3. In Sec. 4, we describe the minimax 
criterion and in Sec. 5, we derive the cost function, namely, the task turnaround 
time. In Sec. 6, the state-space search method is reviewed and applied to finding 
the optimal solution. Some illustrative examples are given in Sec. 7. Conclusions 
appear in the last section. 

2. System assumptions. 

Various assumptions made of the task and the distributed computing system 
are described in the following. 

(1) The processors in the system are heterogeneous, and the modules may 
have different degrees of preference of the processors. 

(2) Nonidentical communication links are used by the processors for message 
transmission, and module communication processes may have different degrees 
of preference of the links. 

(3) The link between any two processors is symmetric. Therefore, the time to 
transmit messages from one processor to another is identical to that to transmit 
the same messages in the reverse direction. 

(4) There exists a precedence relationship among the task modules. This means 
that if module ml is a predecessor of module m2, m2 cannot be executed before 
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the result of ml is transmitted to m2. This in turn means that processor idleness 
may occur in the system. 

(5) To transmit messages from one processor to another, the latter must be 
free from module execution. This means that either of two processors in 
communation spends an identical amount of time for the communication. 

3. Graph matching model. 

Based on the purpose or the criterion of matching, there are various types of 
graph matching [17]. The type we consider is defined as follows. 

Let G1 = (I/1, El) and G2 = (I/2, E2) be two graphs where I/1 and V2 are the 
vertex sets, E~ and E2 are the corresponding edge sets. In this paper G1 is said 
to match G2 if there exists a mapping (possibly many-to-one) M : V1 :~ V2 such 
that if (a, b) is in El,  then there exists an edge in E2 connecting M(a) and 

M(b). 
A task submitted to a distributed computing system is first partitioned into 

suitable modules and then assigned to, the processors. Each task can be 
represented as a directed acyclic graph T = (VT, ET), which we call the task 
graph, where (1) VT is a set of vertices, each of which represents a module of the 
task; (2) ET c VT * VT is a set of directed edges, each of which represents the 
precedence relationship of the two modules at the two ends of the edge. The 
module at the head of the edge must be executed before the module at the tail. 
The execution result is then transmitted from the former to the latter. 

If there exists a path from x to y, then x is called a predecessor of y, and y a 
successor of x. In case the path from a vertex x to a vertex y is just the edge 
(x, y), x is called an immediate predecessor of y, and y an immediate successor of x. 

The processors in a distributed computing system can be represented by an 
undirected graph P = (lie, Ep), which we call the processor yraph, where (1) Ve 
is a set of vertices, each representing a processor in the system; (2) Ee c lip • Ve 
is a set of edges, each representing a communication link between two processors. 

Because two related modules, may be assigned to a single processor, we add 
a self-looping edge to each vertex in the processor graph. For example, shown in 
Figure 1 is a task graph and in Figure 2 a processor graph. 

~ ~ ~  VT={1 , 2, 3, 4, 5} 
ET={(I ,3 )  , ( 2 , 3 ) ,  ( 3 , 4 ) ,  

(3,5)} 

Fig. 1. A task graph. 
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P=(Vp,Ep) 
Vp={A,B,C} 
Ep={(A,A),(B,B),(C,C) 

(A,B),(A,£)} 

Fig., 2. A p r o c e s s o r  g r a p h .  

Now, considering the assignment of a module m to a processor p as a mapping 
from m to p, we see that task assignment is equivalent to matching the task 
graph with the processor graph. Thus, the task assignment problem can be 
formulated as a graph matching problem which will be solved by the state-space 
search method described in Sec. 6. 

For each task graph, we can generate a linear ordering of the modules such 
that if mi is a predecessor of mj in the task graph, then mi precedes m r in the 
ordering. This ordering is called a topological orderin9 [18]. 

Considering each topological ordering as a tree path consisting of all the 
modules as nodes, we may build a topological tree to include all the topological 
orderings of the task graph. Topological trees will serve as the basis for generating 
state-space search trees, which we discuss in Sec. 6. 

4. Optimization by minimax criterion. 

Suppose that a task is partitioned into suitable modules. Let t~(A) denote 
the total time spent for module execution, t~(A) the total time for interprocessor 
communication delay, and t~(A) the total idle time, all in a certain processor p 
according to a certain task assignement A. Let tp(A)= t~(A)+t~(A)+t~(A) 
which, called the processor turnaround time of p, is the total time spent in 
processor p for task assingment A. This turnaround time is different for each 
distinct processor. Let t(A) = maxptp(A) which, called the task turnaround time 
of A, is the total time required to compute the whole task according to 
assignment A. The smaller t(A) is, the better A is. Therefore, t(A) may be con- 
sidered as a cost function for task assignment. An optimal task assignment may 
then be defined as the one Ao which minimizes the task turnaround time, i.e., 

t(Ao) = min t(A) = min m a x  to(A ). 
A A p 

This is the so-called minimax criterion [1];  t(Ao) will be called the minimum 
task turnaround time. 
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Note that in order to obtain the.minimum cost function t(Ao), each component 
of the function must be converted to a uniform unit that is rational and related 
to a realistic practical application. 

5. Derivation of task turnaround time. 

If M is a mapping defined by the task assignment A, then we use a ~ M(a) 
to denote the assignment of module a to processor M(a) and Cp(a -~ M(a)) to 
denote the execution time of module a on processor M(a). Similarly, we use 
(a,b) ~ (M(a),M(b)) to denote the assignment of module communication 
between a and b to the communication link between M(a) and M(b), and 
Cc((a,b) ~ (M(a), m(b))) to denote the communication time between a and b 
using the link (M(a),M(b)). If M(a) is equal to M(b), then the time 
Cc((a, b) --* (re(a), M(b))) is defined to be zero. 

The first factor which influences the values of the task turnaround time 
is obviously the mapping from the modules to the processors defined by the 
assignment. The assignments of a module to different processors will result in 
different execution time values, and so different task turnaround time values. 

Next, since there exists a precedence relationship in the task modules, 
processor idleness may occur in the execution process of the task. Such idleness 
is found in the processors which are waiting to communicate with other 
processors for sending or receiving messages. Different orderings of module 
execution may result in different sequences of processor idleness, and so different 
task turnaround time values. 

Additionally, each module m may have multiple immediate predecessors 
which will transmit messages to module m in a certain order before rn is 
executed. The ordering of message transmission from the immediate Predecessors 
to the module will also influence the final task turnaround time value. 

All three factors above can be fully considered if we first obtain all the 
topological orderings of the modules according to the precedence relationship, 
and then consider all possible ways to assign the modules to the processors 
according to each topological module ordering. In the following we consider how 
to compute the task turnaround time value t(A), given a fixed topological 
ordering and a fixed assignment A of the modules to the processors. The 
variation of topological orderings and module mappings will be handled in the 
next section by state-space search. 

First, we have to compute the processor turnaround time tp(A) for each 
system processor p because t (A)= maxpt~(A). Assume that in the beginning 
tp(A) values are set zero for all processors p, and that module ml is assigned 
to processor p~ in assignment A. Then 

tp, (A) = time for processing module mx at processor Pl = Cp(ml ~ Pl). 
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Next, suppose that m 2 is assigned to processor P2 in A. If m 2 has an immediate 
predecessor, which is just rot, then m2 cannot be executed on P2 until P2 receives 
the execution result of rnl from pl. In this case we have 

tp,(A) = idle time for waiting messages from ml at Pl 
+ time for receiving messages from m. 1 at pl 

+ time for processing m 2 at P2 

= o ld  tp, ( A ) +  Cc((ml, m2) --* (P l ,  p 2 ) ) +  Cp(m2 --* P2);  

tpl(A) = time for processing mt at Pl 
+ time for transmitting the result of mt to m 2 at P2 

= old tp , (A)+Cc((ml ,m2)  ~ (Pl,P2)). 

Note that when P2 begins to process me, p1 is just free for another job. Also 
note that if p~ = P2, then the communication time C~((ml, me) ~ (pl, P2)) is zero 

. l  
as defined previously and 

tp~(A) = tp:(A) = Cp(ml --* p l )+Cp(m2 ~ P2). 

If rnz has no predecessor, then rn~ and m2 can be processed in p~ and Pz, 
respectively, in parallel. So we have 

tp,(A) = Cp(ml ~ Px); tp2(A) = Cp(m2 "* P2)" 

Similarly, if p~ = P2, then we have 

tpl(A) = tp2(A) --- C~(ml ~ p t )+Cp(m2 ~ P2). 

A similar analysis can be performed for more general cases. The following 
algorithm is a summary which can be used to update processor turnaround 
time values when module m is additionally assigned to processor p in the 
process of developing a partial task assignment into a complete one A. 

Step 1 

Step 2 

Step 3 

Step 4 

ALGORITHM 1. Processor turnaround time updating. 

If module m has no predecessor, then set tp(A) :=  tp(A)+Cp(m ~ p) 
and stop. 
Suppose that module m has H immediate predecessors ml, m2 . . . .  , ran, 
where mi transmits messages to m before mJ if i < j for all 1 _< i, j < H, 
and that mh is assigned to Ph in A for all 1 < h < H. Set h :=  1. 
While h < H do  

set both tp~(A) and tp(A) to be 

max{tptA),  tp,(A)} + Cot(m,, m) ~ (Ph, P)), 
and set h :=  h + l .  

end. 

Set tp(A) := tp(A)+Cp(m ~ p) and stop. 
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6. State-space search for optimal graph matching. 

A. Basic ideas. 

Briefly speaking, we use state-space search to consider all possible topological 
module orderings and module mappings. The result of the search is an optimal 
task assignment. 

In order to maintain the precedence relationship, node expansion in the state- 
space is guided by traversing the topological tree which includes all the 
topological module orderings. Actually, we can consider the topological tree as a 
basic structure for generating state-space nodes to form a larger state-space 
search tree. The traversing starts from the root of the topological tree, which 
corresponds to the root (i.e., the start node) of the state-space search tree. To 
expand this tree root, all the sons of the root of the topological tree are 
collected. Each son m represents a first-executable module in the task. All system 
processors p are then attached to each son to form a set of candidate pairs 
(m, p). Each pair represents the possible assignment of module m to processor p. 
Next all the pairs are checked for their validity (i.e., checked if m is really 
executable on p based on processor and link characteristics, etc.). Valid pairs 
are finally kept in the state-space as the generated nodes. This completes the 
expansion of the root of the state-space search tree. 

To expand a non-root tree node (re, p) in the state space, we first identify 
the corresponding node with label m in the topological tree. Similarly to the 
expansion of the root as described above, all the sons of m in the topological 
tree are then collected, and appropriate processors attached to form valid module- 
processor pairs as the generated nodes. 

B. State-space problem formulation. 

(1) State description : 
Let two-tupleK = (MPPAIR, PTIME)  denote the partially-developed 

mapping corresponding to a node n = (k, z) in the state-space search tree, where 
MPPAIR  = {(i, x)l(i, x) is the module-processor pair associated with a node in the 
path from the start node to node n} and PTIME = {tpltp is the current processor 
turnaround time of system processor p updated at node n}. K can be considered 
as the state description of the current search space at node n. But for simplicity, 
only the module-processor pair (k, z) is associated with each node n in the state- 
space search tree diagram (denoted as k ~ z ) .  Let Mr = { i I ( i ,x )~MPPAIR} 
which denotes the set of all the already-assigned modules in the partially- 
developed mapping. Note that Mr  includes k which is the module just assigned 
at node n. 

(2) Initial state: 
The initial state is K = (MPPAIR, PTIME) with MPPAIR being empty and 

all tp in PTIME being set zero. 
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(3) Operators : 
An operator applied to a state-space node n = (k,z) adds new module- 

processor pairs (j, y) to MPPAIR and updates PTIME in K. The procedure is 
as follows. First, find the node k' in the topological tree which corresponds to k, 
and form a set of candidate ordered module-processor pairs D = {(J,Y)IJ is a 
son of k' in the topological tree, y is a system processor}. All j included in D 
are the next-executable modules according to the topological ordering. Next, 
check all candiate pairs one by one for validity. A candidate pair ( j ,y )eD is 
said to be valid if for each (i,x)e MPPAIR, it is true that if directed edge (i,j) 
exists in the task graph, then either there exists an edge connecting x and y, 
or x = y. This means that if module j has to communicate with an already- 
assigned module i which was assigned to processor x, then j has to be 
assigned either to a processor y which has a communication link to x, or to 
processor x itself. Let D' be the set of all valid pairs in D. Each pair (j, y)  in D' 
forms a generated node of node n. The operator finally updates K for 
each generated node n' =- (j,y) as K' = (MPPAIR',  PTIME')  where 
MPPAIR'  = MPPAIR u {(j,y)} and PTIME'  = PTIME updated by 
Algorithm 1. 

Note that the operator is defined in such a way that it always expands 
the partially-developed mapping by assigning each of the next-executable modules 
found in the topological tree to all the system processors. It is in this way 
that developing of the partial mapping can be kept in a proper order until all 
possible module assignments are exhaustively considered with the precedence 
relationship correctly maintained. 

(4) Goal state: 
Any state denoted by K with M K --- V T (the set of all task modules) is a 

goal state; that is, the search stops when all modules are completely assigned. 

C. Search of optimal task assignment. 

The formulation above just offers a search scheme for finding a mapping 
corresponding to a task assignment. Based on the search scheme, the A* 
algorithm described in Nilsson [19] now can be used to find the optimal 
mapping. In the A* algorithm, the cost evaluation function at node n in the 
state-space is usually defined as f (n)  = g(n)+h(n), where the value of g(n) is the 
minimum path cost from the start node to node n and the value of the 
heuristic function h(n) is a lower-bounded estimate of the value of h*(n) which 
is the minimum path cost from node n to a goal node. 

For  our case here, since each state-space node n corresponds to a partially- 
developed mapping as described by K = (MPPAIR, PTIME),  we can let g(n) be, 
according to the minimax criterion, defined as 

g ( n ) =  max t r 
tp ~ P T I M E  
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which is the time required to process all the modules already assigned (i.e., to 
process all i ~ Mr).  

On the other hand, nonzero h(n) values should be used for the search to be 
more efficient. The heuristic function h(n) we use is defined as follows. Let 
processor Pr be the one with the maximum processor turnaround time found so 
far, i.e., let PK be such that 

tp = m a x  tp. 
• tp e PTI ME 

Let A K be the set of all the modules assigned to Pr in the partially-developed 
mapping, and M~ be the set of all the modules not assigned yet (i.e., M~: and 
Mr so defined together form the set VT of all task modules). Also, define RK 
to be the set of all those modules in M)  which have to communicate with the 
modules in AK, i.e., RK = {bib ~ M'~, (a, b)~ Er (the edge set of the task graph) 
with a ~ Arl ,  and define L r to be the set of all those modules in Ar which have 
communication with the modules in Rr, i.e., LK = {ala ~ A~, (a,b) E Er with 
b ERr}. In fact, Lr ~= Ar denotes part of the modules already assigned to Pr, 
whose unassigned immediate successors form the set Rr ~ M).  A diagram 
indicating all the relationships between all the module sets defined above is 
shown in Figure 3. 

V T MK, /~.I--~" in pr oce ~o r" 

. . . . . . . . . . . . . . .  

Fig. 3, A diagram showing the relationships between the module sets useful for extracting heuristic 
information. 

Now each module b in Rr in further state-space search will have to be 
assigned either to processor Px or to a processor p connected through a commu- 
nication link to Pr in order that the communication from the predecessors of b 
in L r to b can be accomplished. But these two types of assignment will result 
in two different amounts of partial processor turnaround time being increased at 
Pr. If b is assigned to PK, then Pr will have to spend time both to receive 
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messages from each predecessor of b already assigned to a processor other than 
p~ and to process module b. If b is assigned to a processor p with a link to pr, 
each predecessor of b already assigned to pr  will have to send messages to b. 
So pr  will have to spend time in communication with p. To keep h(n) as a lower 
bound of h*(n) for the A* algorithm to be optimum, it is necessary to find for 
each module b ~ RK the smaller of the above-mentioned two different amounts 
of time increased at PK. We can then let h(n) be the sum of these amounts of 
time required for all the modules in Rr, as is calculated in Algorithm 2 below. 

ALGORITHM 2. Computation of h(n). 

Step 1 
Step 2 

Find PK and all the sets shown in Figure 3. 
For each beR~,  find SK = {ml(m,b)EEr, m~(Mr-AK)}  (which is the 
set of the predecessors of b already assigned to a processor other than 
PK) and S ~ =  {rnl(rn, b)~Er, meAr}  (which is the set of the pre- 
decessors of b already assigned to PK), and compute 

t = C,(b ~ pr)+~C¢((m,b) ~ (p, pr)) 

with summation over m ~ SK, m --* p ~ Pr, and 

Step 3 

t' = min ~ C~((m,b)-~ (PK, P))- 
peV~ rneS'r 

Set H b := min(t, t'). 

Set h(n) := ~ Hb. 
beRt 

The following algorithm follows that in [1] and is used to find an optimal 
mapping between two graphs, a task graph and a processor graph. 

A L G O R I T H M  3. Find the optimal task assignment. 

Step 1 Put the initial node n on a list called OPEN, and set the evaluation 
function value f(n) = O. 

Step 2 Remove from O P E N  the node n with the smallest f value and put it 
on a list called CLOSED. 

Step 3 If n satisfies the goal state, then backtrack to the start node to find the 
corresponding graph matching as the desired task assignment and exit. 
Otherwise, continue. 

Step 4 Expand node n, using operators applicable to n, and update the set 
PTIME by Algorithm 1 for each generated son n' of n to get g(n'). 
Also compute h(n') according to Algorithm 2. Set f (n ' )=  g(n')+h(n') 
for each n'. Insert the nodes generateA to the O P E N  list. 

Step 5 Go to Step 2. 
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In Step 4, if h(n') is always set 00 then Algorithm 3 is a uniform-cost search 
[19]. Otherwise, it is an A* algorithm. 

7. Illustrative examples.  

First, we give an example to illustrate the search of the optimal mapping 
from a task graph to a processor graph using Algorithm 3. The effectiveness 
of the proposed heuristic function to reduce the number  of generated state-space 
nodes will also be shown. The task graph T and the processor graph P are shown 
in Figure 4 and Figure 5, respectively. 

( 

( ) 
Fig. 4. Task graph T~ Fig. 5. Processor graph P. 

The intermodule communication time and the module processing time are 
listed in Table 1 and Table 2, respectively. 

module 

Table 1. lntermodule communication time. 

module 
1 2 3 4 

0 10 20 0 
0 0 0 15 
0 0 0 0 
0 0 0 0 

module 

Table 2. Module processiny time. 

processor 
A B C 

70 20 85 
10 60 50 
20 100 130 

120 90 35 
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We show in Figure 6 a topological  module tree to specify all possible module 

expansion orderings. 

t 
/ \  

3 4 2 

1 
4 3 4 

Fig. 6. Topological module tree. 

Then, using Algor i thm 3 as an ordered-search algorithm, we can find an 
optimal task assignment and compute  the min imum task tu rna round  time. 

Figure 7, shows the resulting search tree. The optimal mapping  as shown is 
1 -* B, 2 ~ A, 4 ~ C, 3 ~ A, and the min imum task tu rnaround  time is 95. 

(start node) 

(F)(3-> A) (3-> ~3) ( ~ - > c )  t~ ->A)  ( -> ) 

(4->'/~A) (4~->B)'~(4-> C) ( - - ) (a-> A) (4-> B) (4-) C) 
~ FYoq IZEEI FT~ 

(goal node) 

Fig. 7. State-space search tree of the illustrative example with h(n) ~ 0 (circled numbers indicate 
node expansion order, and squared numbers indicate f(n) values). 
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As shown in Figure 7, totally only 7 state-space nodes are expanded and 
23 nodes generated before the goal node is found. To prove that this result comes 
from the use of the heuristics proposed previously, we further reuse Algorithm 3 
as a uniform-cost algorithm (setting h(n) zero for all nodes) to find the optimal 
assignment again. Totally 12 state-space nodes are expanded in this case with 
46 nodes being generated. Note that the following assignment also found in the 
search tree of Figure 7 is similar to the above optimal assignment: 
1 ~ B, 2 ~ A, 3 ~ A, 4 ~ C. The only difference between them is the topological 
module ordering (or the order of module processing and communication). But 
the task turnaround time of this assignment is 130. This shows that the topological 
module ordering influences the task turnaround time value. Finally, we show in 
Table 3 the running process of each processor for the optimal task assignment. 

Table 3. Running process of the optimal task assignment. 

time 

2O 

10 

10 

15 

20 

20 

processor A processor B processor C 

idle run m t 

receive massage transmit result 
from m~ form2 ofm~ to m2 

run m 2 

t ransmit  result 

of  m2 to m4 

receive message 

from m~ for  m3 

run m 3 

idle 

transmit  result 

of  ml to m 3 

idle 

idle 

receive message 
from m2form4 

run m4 

idle 

More examples with different task graphs, processor graphs, intermodule 
communication times and module processing times have been tested to check 
the effectiveness of the heuristic function h(n) used in Algorithm 3. The optimal 
solutions of these examples are listed in Table 4. It is observed that the heuristics 
we use in general cut the number of generated nodes down to about a half. 

8. Conclusions. 

As a nontrivial extension of Shen and Tsai [1], module precedence 
consideration has been successfully incorporated in this study into the state- 
space search of optimal task assignment. This is made possible by transforming 
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Table 4. Results of  some more examples. 

67 

Example 
Number 

of 
modules 

Number 
of 

)rocessors 

# of nodes generated 

h(n) = 0 h(n) ~ 0 

163 60 

427 199 

325 233 

1025 517 

Optimal 
assignment 

2-~C 
1---~ B 
3---> C 
4---> A 

1---~ B 
2---~ A 
6---~ C 
4--*A 
5---~ A 
3---~ A 

1 ---~ A 
3--*C 
4--~D 
2---~ B 
5---~ A 
6---~ A 

1---~ A 
2---~ D 
5 ~ C  
3---~ B 
6---~ A 
7---~ B 
4----~ D 

cost 

310 

378 

682 

297 

the precedence relationship into a topological  tree which is used for module  

execution and message transmission ordering. The ordering of  message trans- 
mission f rom the immediate predecessors of a module  to the module  itself is 

taken care of  when processor turnaround time values are updated by Algor i thm 1. 
Module  execution ordering is taken care of when the topological  tree is used as 
the basic structure for search tree expansion. 

In addition, heuristics for speeding up the search are also proposed (computed 

by Algor i thm 2). The heuristic information is collected from the predecessor and 
successor relationship created by module  precedence. Experimental  results show 
the effectiveness of  the proposed heuristics. Note  that  speedup in solution search 
is useful for real-time applications. 

R E F E R E N C E S  

I. C. C. Shen and W. H. Tsai, A graph matching approach to optimal task assignment in distributed 
computing systems using a minimax criterion, IEEE Trans. Computers, Vol. C-34, No. 3, 
pp. 197-203, Mar. 1985. 



68 LING-LING WANG AND WEN-HSIANG TSAI 

2. K. Ere, Heuristic models of task assignment scheduling in distributed systems, Computer, VoL 15, 
No. 6, pp. 5t~56, June 1982. 

3. W. W. Chu, L. J. Holloway, M. T. Lan and K. Efe, Task allocation in distributed data processing, 
Computer, Vol. 13, No. 11, pp. 57--69, Nov~ 1980. 

4. H. S. Stone and S. H. Bokhari, Control of distributed processes, Computer, Vol. 11, No. 7, 
pp. 97-106, July 1978. 

5. H. S. Stone, Multiprocessor schedulin 9 with the aid of network )qow aloorithms, IEEE Trans. 
Software Eng., Vol. SE-3, No. 1, pp. 85-93, Jan. 1977. 

6. T. C. K. Chow and J. A. Abraham, Load balancing in distributed systems, IEEE Trans. Software 
Eng., Vol. SE-8, No. 4, pp. 401-412, July 1982. 

7. S. H. Bokhari, On the mapping problem, IEEE Trans. Computers, Vol. C-30, No. 3, pp. 207--214, 
March 1981. 

8. Y. C. Chow and W. Kohler, Models for dynamic" load balancing in a heterogeneous multiple 
processor system, IEEE Trans. Computers, VoL C-28, No. 5, pp. 354 361, May 1979. 

9. Shyue B. Wu and Ming T. Liu, Assignment of tasks and resources for distributed processing, Proc. 
Distributed Processing (IEEE COMPCON), pp. 655-662, Washington D.C., Sept., 1980. 

10. Danny Dolev and M. K. Warmuth, Scheduling preeedence graphs of bounded height, Journal of 
Algorithms, Vol. 5, pp. 48 59, 1984. 

11. P. R. Ma, E. Y. S. Lee, and M. Tsuchiya, A task allocation model for distributed computing 
systems, IEEE Trans. Computers, Vol. C-31, No. 1, pp. 41-47, Jan. 1982. 

12. S. Kirkpatrick, Optimization by simulated annealing, Science, Vol. 220, No. 4598, pp. 671 680, 
May 1983. 

13. S. Kirkpatrick, C. D. Getatt, and M. P. Vecchi, Optimization by simulated annealing, IBM 
Research Report RC9355 (41093), April 1982. 

t4. S. M. Jacobs, L. V. Johnson, and O. Khedr, A technique for systems architecture analysis and 
design applied to the satellite ground systems ( SGS), Proc. 4th Int. Conf. Distributed Computing 
Systems, San Francisco, CA, 14-t8, May 1984. 

15. M. J. Chung, E. J. Toy, and A. A. Lobo, A parallel computer based on cube connected cycles 
(an abstract), Proc. Army Research Office Workshop on Future Directions in Computer 
Architecture and Software, Charleston, SC, 5-7, May 1986. 

16. M. J. Chung, et aL, A parallel computer based on cube connected cycles, RPI CIE Report, 
Rensselaer Polytechnic Institutes Center for Integrated Electronics, Troy, NY, Mar. 1986. 

17. W. H. Tsai, Graph matching problems: a survey and a tutorial Proc. 1st Conf. Computer 
Algorithms, Hsinchu Taiwan 300, Republic of China, pp. 16.1-16.2, July 1982. 

18. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures, Computer Science, Woodland 
and Hills, California, 1982. 

I9. N.J.  Nilsson, Problem Solvin 9 Methods in Artificial Intelligence, McGraw-Hill, New York, 1971. 
20. E. M. Reingold, Jurg Nievergelt, and Narsingh Deo, Combinatorial Algorithms: Theory and 

Practice, Prentice-Hall, Englewood Cliffs, New Jersey, 1977. 
21. R. C. Read and D. G. Corneil, The graph isomorphism disease, J. Graph Theory, Vo L 1, 

pp. 339-363, 1977. 
22. L. Babai, P. Erd6s, and S. M. Selkow, Random graph isomorphism, SIAM J. Computing, Vol. 9, 

No. 3, pp. 628-635, Aug. 1980. 
23. W. H. Tsai and K. S. Fu, Subgraph error-correcting isomorphisms for syntactic pattern 

recoynition, IEEE Trans. Syst., Man, Cybern., Vol. SMC-13, No. 1, pp. 48-62, Jan./Feb. 1983. 
24. R. M. Haralick and J. S. Kartus, Arrangements, homomorphisms, and discrete relaxation, Proc. 

IEEE Conf.Pattern Recog. and Image Processing, Chicago, IL, U.S.A., May 1978. 


