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智慧車側影像駕駛人輔助安全系統 

 

研究生：范剛維                      指導教授：林進燈 

國立交通大學電機與控制工程研究所 
 

摘要 

最近幾年，車輛安全是個非常重要的社會、經濟問題。一般來說，很多交通

意外都來自於駕駛者精神狀態不佳、注意力不集中、未保持安全距離或甚至打瞌

睡，在很多情形是駕駛者打瞌睡偏離車道而造成交通意外。而高速公路上，也很

多意外是車輛側邊或是後方的直接碰撞。因為這些原因造成許多的意外，所以車

道偵測與車側碰撞預防系統在智慧型交通傳輸計畫內扮演著相當重要的地位。以

價格與效果為考量，本論文以裝置於車輛照後鏡的車側攝影機為感應器，且此攝

影機搭配魚眼鏡頭，廣角的鏡頭，可能得到更多車輛附近的相關資訊。 

因為攝影機位於車輛上，所以在車輛行進中，攝影機所取得的影像是晃動

的，故在進行分析之前，必須先做影像穩定的修正，雖然只是前處理，但是可以

簡化後續之演算法。本論文提出了車道偏移與車側碰撞警告系統，此系統不僅可

以提醒駕駛人在偏移車道的時候是否會發生危險，透過車側碰撞警告系統更幫助

駕駛者監看盲點區域是否有車輛進入，此外，我們亦借助交大腦科學中心對駕駛

者的分析資料來推測駕駛者是否有打瞌睡或其他異常狀態。因為本論文只用車側

攝影機，所以比較容易整合 車道偵測 與 車側碰撞警告系統，一般拍攝車前的

影像式車道偵測系統，主要目的是提醒駕駛者不要偏離目前車道。而車側碰撞警

告為了當有車輛進入盲點區而發出警告，但其整合比較麻煩且必須要兩套系統。

故本論文的架構能更有效的提供駕駛者在變換車道時，是否會發生危險，且這個

架構是非常特別且有用的，進而達到輔助駕駛人安全的目的。 
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ABSTRACT 

In recent years, an important social and economic problem is traffic safety. In 

general, a considerable fraction of these accidents is due to driver’s fatigue, 

inattentive driving and driving without keeping proper distance. In many cases, the 

driver falls asleep will make the vehicle to leave its designated lane and possibly 

cause an accident. On the highway, the most important cause of traffic accidents is the 

lateral and same direction collision.  

Due to the inattentive driving, the driver may deviate from the correct lane 

orientation, which induces the traffic accidents. As a result, the lane detection system 

and vehicle lateral collision warning system play a significant role in improving the 

driver’s safety in a moving vehicle. For cost and performance consideration, a lateral 

fish-eye camera mounted under the rear-view mirror is chosen as our sensing device. 

The robust in-car DIS technique offers all major algorithms a stable image source. It 

is a minor pre-processing, but the following processing can be simplified massively. 

We propose an integrated system for lane departure warning and lateral collision 
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warning. The lateral collision warning system aims at detecting the image in driver’s 

blind spot region and exporting signal to remind driver in the realistic driving 

environment. In addition, driver’s drowsiness will also be estimated by integrating the 

EEG-based analysis approach developed by the Brain Research Center, NCTU, into 

our lane departure warning system.  

In this thesis, for the lane detection, we develop a method for automatic region of 

interesting extraction only by analyzing the image contents captured by the lateral 

fish-eye camera without knowing the related camera parameters in advance. The 

lane-based stable system is integrated into the blind-spot lateral collision warning 

system to increase the better detection rate and provide more adaptive performance. 

Besides, by constructing the mechanism for drowsiness estimation in the dynamic 

driving environments, we can collect more data to further analyze other inattentive 

behavior of drivers so that the safety driving system can consider all possible risks 

caused by the internal or external factors of drivers as much as possible. 

Achieving these algorithms simultaneously by lateral camera is very novel and 

useful. Warning from this kind of system reflects real hazard and is really worth 

noticing, it does achieve the goal of “assisting in driving”. 
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Chapter 1 Introduction 

In recent years, the traffic accidents cause very serious social and economic 

problems. In 1999, about 800,000 people died globally in road related accidents, and 

these accidents caused losses of around US$ 518 billion [1]. According to the United 

Nations, there were more than 23,000 vehicle drivers died in traffic accidents in 2004. 

In Taiwan, the number of traffic accidents was increasing from 64,264 in 2001 to 

155,814 in 2005 as shown in Table 1[2]. In general, a considerable fraction of these 

accidents is due to driver’s fatigue, drowsiness, inattentive driving or driving without 

keeping distance with frontal vehicle and leaving its proper lane. The related factors 

are as listed in Table 2[3]. On the highway, the most important cause of traffic 

accidents is the lateral and frontal collision. In order to improve the driving safety, a 

lot of researches about the Intelligent Transportation Systems (ITS) have been 

proposed in recent years. For example, the Advanced Vehicle Control and Safety 

System (AVCSS) not only prevents the driver from danger, but controls the traffic 

flow efficiently. 

According to Table 2, we can group those accident factors as three types: type I 

lane departure (factor 1), type II side vehicles collision (factor 5), and type III drivers’ 

exceptionally driving (factors 3, 4, 6). 

According to the type I, lane departure, the lateral position and velocity of the 

lane boundary are the key factors to predict departing action immediately. It can be 

very useful if there is a lane departure warning system providing the warning signal to 

the driver by monitoring the distance from the vehicle to the both sides of the lane 

markers. 

For the type II, side vehicles collision, it happens a lot even the driver can get the 

surrounding information by wing mirrors and a rear-view mirror. The major reason to 
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cause type II traffic accidents is the existence of the blind spot region and driver’s 

negligence. If there is a lateral vehicle collision warning system detecting the distance 

of the later vehicle, it can prevent from the side vehicle collision happening.  

According the above discovery, a new system is expecting that can provide the 

driver real-time warning signal to prevent the traffic accidents and decrease the social 

and economic problems. In order to reach this goal, this thesis proposes such a new 

system meanwhile considering the future commercial possibility. On account of our 

proposed system, it can support the driver to notice about 60% factors of traffic 

accidents by giving the driver an actual warning signal. Within our proposed system, 

the abundant information collecting the real-time road images road is necessary, 

therefore, a lateral camera with the vision-based system is chosen as the sensing 

device in this thesis to capture and process it. More details of algorithms will be 

introduced in the following chapters. 

 

Table 1: Road traffic accidents and violations in Taiwan from 2001 to 2005. 

Year 2001 2002 2003 2004 2005 

Numbers of Event 64,264 86,259 120,223 137,221 155,814 

Fatalities 3,344 2,861 2,718 2,634 2,894 

Injuries 80,612 109,594 156,303 179,108 203,087 

 

Table 2: Related factors for drivers involved in fatal crashes. 

Factors Description Percent 

1 Failure to keep in proper lane or running off road 24.0% 

2 Driving too fast for conditions or in excess of posted speed limit 20.3% 

3 Under the influence of alcohol, drugs, or medication 12.2% 

4 Inattentive (talking, eating, etc.)/ Drowsy, asleep, fatigued, or ill 9.1% 

5 Failure to yield right of way 7.9% 

6 Operating vehicle in erratic, reckless, careless, or negligent manner 6.7% 

7 Others 19.8% 
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1.1 Thesis Overview 

This thesis is organized as follows. In Chapter 2, at the beginning it will be 

introduced the different categories of Intelligent Transportation Systems. These 

categories will be used to explain the relationship and problems that this thesis wants 

to solve. Then the following section will introduce various current techniques about 

Land Departure Warning and Lateral Collision Warning. At last the advantages and 

disadvantages of these current techniques will be discussed by their functions. 

In chapter 3, because all techniques in this thesis are based on cameras mounted a 

car all image information must be stabilized before further processed through Digital 

Image Stabilizer (DIS). Thus the following processing stages can acquire stable image 

source and the following algorithm can be simplified. In this chapter, current DIS 

techniques will be discussed and the modified PI controller for DIS will be proposed. 

At last there will be the related experimental results.  

Later Collision Warning will be discussed in the forth chapter. In this chapter 

lateral collision is discussed and Blind Spot is defined. The rear mirror for drivers to 

observe cars is not enough because rear mirror has its blind spot which cars cannot be 

seen. This chapter also introduces the definition and processing of Region of 

Interesting (ROI). After defining ROI, vehicles begin to be detected. If any car enters 

ROI, the system will issue alarm. The related computer simulation and experiments 

on embedded system will be explained in the later part of this chapter。 

In chapter 5, Lane Departure Warning will be discussed. Here Lane Detection 

will be mentioned and there are some special techniques which can successfully 

detect lane line under different environments. By using this information about lane 

line detection, the relationship between a vehicle and a lane are analyzed, such as the 

deviating velocity, the distance measurement between a vehicle and the center of the 
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lane as well as the decision of changing lanes.  

From the chapter 4 and 5, the lane departure warning and the lateral collision 

warning algorithms can come out a lot of useful information which will be used to 

analyze the behavior of drivers in chapter 6. In this part, data from Brain Science 

Center are used to determine whether a driver may doze off. Drivers’ driving habits 

also can be analyzed and the result can be used to determine if it is safe for the driver 

to continue driving. After integrating Lane Departure Warning and Lateral Collision 

Warning, the system can give the driver warning when changing lane is dangerous. 

This function will increase the driver’s safety. 

In chapter 7, the hardware environment of this thesis will be discussed. Because 

all algorithms are based on embedded system, the hardware platform and its 

characteristics will be introduced. Optimization of the algorithm and coding 

notification is also included. In chapter 8, there will be conclusion and future work. 

 

1.2 Contributions 

There have been a lot of researches and products in lane departure lateral 

collision warning, but the major function of them is to keep the driver/car in the lane 

without noticing the approach of the later vehicle. In addition, those lateral collision 

warning systems will provide the warning signal whenever the vehicle is approaching. 

The warning systems without considering the deviation easily cause false alarm. Once 

the false alarm frequently increases, the driver’s attention will unconsciously decrease 

and the possibility of the traffic accident will rise. 

 Of course, these two systems can be set up and combined in a car 

simultaneously, but it would not be very economic: firstly it requires both frontal and 

lateral cameras. Secondly it needs two Engine Control Units (ECU) processing two 
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set data separately. Thirdly it will increase the car production cost and utility 

consumption. In addition, using lateral camera to deal with lane detection can reduce 

the problem of the ray radiation of lights. 

For the drowsiness analysis utilized in the proposed system, there is not any 

annoying probe attached to the driver, nor an internal camera monitoring the driver’s 

eyes. Because the latter easily misinterprets the driver’s eye movement especially the 

driver has small eyes or wears the sun glasses. In fact, the brain signal and the lane 

change reaction time of the driver are two major factors to measure the driver’s 

concentration level of the proposed system. As a result, the higher the concentration 

level is, the safer the driver is.  

Using a single lateral camera to perform the significant functions of the lane 

departure warning system, the lateral collision detection system and the driver’s 

drowsiness analysis system is very novel and useful, such as the proposed system in 

this thesis. This kind warning signal truly reflects real hazard and is really worth 

noticing and it does achieve the goal of “assisting in driving”. 
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Chapter 2 Background 

In this chapter, section 2.1 will discuss the structure of Intelligent Transportation 

Systems (ITS) and its topics which this thesis concerns with. In section 2.2, current 

products in this area will be discussed, and section 2.3 will illustrate the location 

where we set up lateral camera. At last the advantage and disadvantage of lateral 

camera and frontal camera will be compared.  

 

2.1 Taxonomy for Classification of ITS Applications 

Interest in ITS comes from the problems caused by traffic congestion worldwide 

and a synergy of new information technologies for simulation, real-time control and 

communications networks. Traffic congestion has been increasing world-wide as a 

result of increasing motorization, urbanization, population growth and changes in 

population density. Congestion reduces efficiency of transportation infrastructure and 

increases travel time, air pollution and fuel consumption. 

Intelligent transportation systems have various levels based on the technologies 

they apply, from basic management systems such as car navigation, traffic light 

control systems, container management systems, variable message signs or speed 

cameras to monitoring applications such as security CCTV systems, and then to more 

advanced applications which integrate live data and feedback from a number of other 

sources, such as Parking Guidance, Information systems, weather information, and 

bridge de-icing systems. 

Sensor technologies have greatly enhanced the technical capabilities and safety 

benefits awaiting intelligent transportation systems around the world. Sensing systems 

of ITS can be either infrastructure based or vehicle based systems, for example, 
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Intelligent vehicle technologies. Vehicle sensors are those devices installed on the 

road or in the vehicle. 

In Table 3 a full view of ITS will be seen. From this table we can find that all ITS 

structure needs a huge amount of sensors in the roads of vehicles. It means that 

sensors play an important role in ITS. All these sensors are set up for providing more 

information for drivers, and in this thesis we focus on driver assistance and collision 

avoidance system which are the application of sensors on vehicles. In collision 

avoidance systems section, this thesis will deal with obstacle detection, lane change 

assistance and lane departure warning. In driver assistance systems section, the 

problem of lane keeping assistance and drowsy driver warning will be solved by 

lateral cameras as the only sensor. 

 

2.2 Related Products and Functions 

2.2.1 Lane Departure Warning 

LDW technology is currently divided into 2 categories: one of them is using 

camera as its sensor and the other is using laser as its sensor. The previous one will be 

discussed first. 

 

Delphi: [11] 

The Delphi Lane Departure Warning system is a lane tracking system that helps 

alert drivers when they unintentionally drift out of their intended lane. Using a camera 

and image processing to detect painted lane markers up to 25 meters ahead of the 

equipped vehicle, the system determines the vehicle's heading and lateral position in 

the lane to provide the appropriate warning.  Helps drivers become aware of lane 

drifting quickly. This system would not report stopped objects along the roadside, 
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Table 3: Classification of ITS Applications 
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reducing false alarms. Flexible alert configuration is based upon OEM requirements, 

including audible, tactile and/or visual driver warnings. Camera mounted behind the 

wiped area of the windshield allows driver to maintain a clear line of sight. Camera 

can be shared with Delphi Active Night Vision system. 
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Fig. 1: Delphi Lane Departure Warning System 

 

Siemens: [12] 

Lane Departure Warning makes driving more relaxed by protecting from 

unintentional lane changes through warning messages and discrete steering 

corrections. A good song on the radio, a stimulating conversation with a passenger or 

the sun, which suddenly blinds the driver – there are many reasons to drift off the lane. 

Especially longer highway trips with little traffic or drives on monotonous country 

roads present the danger of briefly drifting off the lane unintentionally. In most of 

these cases of inattentiveness can be corrected through counter steering and the drive 

can be continued. 

ITRI: [14] 

For drive safety, it is necessary for a vehicle to perform the ability to detect the 

environmental condition. The lane departure warning system is to detect the lane 

marks accurately, robustly, and reliable and warn the driver according to the 

decision-marking algorithm processed by vehicle computer. 

Systems that based on image sensor have some characteristics: 1.Active safety 

warning system which is integrated in the main rear mirror. 2. By using technologies 

such as computer vision and pattern recognition algorithm, real vehicle integration 
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and safety warning, these systems can accurately and real-time detect lane and give 

alarm if the vehicle deviates the safe lane. This system has been tested on shuttles 

which run on the highway. This system also integrate itinerary recorder which can 

monitor long term driving behavior to prevent drivers form changing lane improperly. 

This system is mainly applied in public transportation industry to decrease severe car 

accidents. 

Another sensor which is based on laser is ibeo, the laser scanner detects the lane 

markings and carriageway limits in front of the vehicle, as well as potential obstacles. 

The position of the vehicle on the road is calculated at the same time. If the car is 

about to stray from its lane, a pre-emptive warning is issued immediately in the form 

of a seat or steering wheel vibration. This system provides an effective weapon 

against any lack of attention behind the wheel. Because of the high price of ibeo, this 

kind of sensor only can be found in high-class cars of BMW.  

 

2.2.2 Lateral Collision Warning 

Lateral Collision Warning is called Blind Spot Information System (BLIS) or 

Blind Spot Detection System in market. Most of these systems are based on camera 

because laser or IR sensor may sensitive to irrelative objects such as traffic islands 

and wire poles. However, sensors based on image information can filter out irrelative 

objects by image processing. 

Volvo: 

Volvo is first to offer car drivers a high-tech solution to help avoid the risk of 

accidents caused by blind spots with its new safety system – BLIS. Volvo's latest 

safety innovation uses an intelligent digital camera system incorporated into both door 

mirrors that constantly monitor the area alongside the car for cars or motorbikes, then 

alerts the driver via an orange light housed in the car's A-pillar by the door mirror. 
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BLIS also works after dark when it will react to the headlamps of any surrounding 

vehicles. 

As Britain's roads get ever busier, Volvo believes the additional visual 

information BLIS relays to the driver before changing lanes or overtaking in busy 

urban environments or on multi-lane highways, will prove particularly useful. 

The BLIS system does not relieve the driver of his or her obligation and 

responsibility to do the usual visual checks before attempting any maneuvering, but 

does afford frequent motorway users or city drivers an added level of protection 

against vehicles hovering in the periphery of the driver’s field of vision. 

While a dash mounted button can be used to temporarily switch the safety aid off, 

if required, BLIS is capable of making the distinction between mobile and immobile 

objects such as parked cars, road barriers, lampposts and other static objects, ensuring 

all alerts are limited to potentially hazardous moving obstacles. 

 

Fig. 2: Volvo Blind Spot Information System 
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Siemens: 

Blind Spot Detection helps to expand the rear viewing angle and thus relieve the 

driver. If there is a car in the blind spot, the Blind Spot Detection informs early on 

using a visual warning.  

A passing maneuver on the highway: looking in the side mirror confirmed that 

the lane is free – but a car comes into the visual field from behind, just when the 

driver is about to change lanes. Critical situations, such as these can arise in urban 

traffic if vehicles in the blind spot are overlooked. Blind Spot Detection provides 

information on whether there are any vehicles in this area that are not visible to the 

driver. 

 

2.3 Camera Configuration 

In this section, the geometric relationship and transformation between the image 

coordinate and the realistic vehicle coordinate are explained in detail. 

To extract the image information of road plane on the side of the vehicle, a single 

camera is mounted near the rearview mirror. In the vision-based configuration, each 

objects captured by the image sensor in the camera coordinate system can be 

projected onto the image pane in the image coordinate system. This geometric 

relationship can be described as the perspective projection, and the camera 

configuration for the proposed system is shown in Fig. 3 with the height of the camera 

H and the tilt angleα . 
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Fig. 3: Camera configuration. 

Before computing the transformation between the image coordinate and the 

vehicle coordinate, some assumption must be established. At first, the condition in 

this section is only considered that the ground plane is almost flat. In general, we 

ignore the specific environment when the vehicle drives on the mountain road or other 

rugged surface. Second, the optical distortion of the camera lens can not be 

considered in this deduced process of the geometric transformation.  

 The spatial relationship between the vehicle coordinate and image coordinate 

system are shown in Fig. 4. For practicality, the pan and tilt angle of the camera must 

be taken into account for this systematic configuration. The tilt angle α  is an 

included angle from road plane to the optical axis. On the other hand, the pan angle 

β  is an included angle from the moving direction of the vehicle (Y-axis) to the 

projection of the optical axis onto the road plane. In general, the camera can be 

modeled as the pin-hole model. The distance between the optical center (OC) and the 

central point of the image plane ( 0u , 0v ) can be used to the focal length. Moreover, 

according to the known camera height H and the information of pan-tilt angle, we can 

deduce where the object is contained by projecting road surface onto the image plane 

from the perspective geometry. 

For further analysis, we discuss the spatial relation between the vehicle 

α
H 
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coordinate and the image coordinate system through two different points of view. Fig. 

5 and Fig. 6 are the side view and bird’s eye view of the geometric chart between the 

vehicle coordinate and the image coordinate system. 

 

Fig. 4: Vehicle and image coordinate systems. 

 
Fig. 5: Side view of the geometric relation between the vehicle coordinate and the image coordinate 

system. 
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Fig. 6: Bird’s eye view of the geometric relation between the vehicle coordinate and the image coordinate 

system. 

 

Before explaining the formulation of the transformation between the two 

coordinate systems, some annotations about Fig. 5 and Fig. 6 must be introduced in 

advance. 

f: Focal length of the camera 

uf 、 vf  : The scaling factors of the image plane in the horizontal and vertical axis 

H: The distance from the road plane to the camera 

α : Tilt angle of the camera 

β : Pan angle of the camera 

( u , v ): The corresponding point in the image plane is projected from the road 

surface 

0 0( , )u v : The central point of the image plane 

 In Fig. 5, CPRΔ  and ' 'CP RΔ  are similar triangles. With this property, the 

spatial relation between two coordinate systems can be derived as follows. 
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Similar to the above process, the deducing details about Fig. 6 will be described 

in the following. 
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  Equations (1) and (2) are the transformation from the point (u , v ) in the 

image plane to that (x, y, 0) within the road surface in the vehicle coordinate system. 

However, parts of the parameters in this formulation are unknown. We must make use 
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of some probability approaches to estimate those values if the precision of the 

perspective phenomenon is adequate. 

 

2.4 Discussion and Summary 

For several years, many researchers worked on driving assistance problem by 

using the concept of artificial vision. Among those applications in intelligent 

transportation, automatic navigation has been taken seriously in recent years. For 

accomplishing this objective with efficient performance, most vision-based methods 

are to extract the road information by mounting the image sensor on the windshield of 

the vehicle, such as the human eye and forward-looking camera. These sensors can 

extract the widest field of view than other mounting position around the car body. In 

general, by detecting the contrast between the white lines and the road, the lane 

boundary in front of the vehicle can detected. The variation of the lane’s curvature 

also can be predicted in time without resulting in the erroneous following of the 

vehicle. Besides, some obstacles captured by the camera can be recognized with 2D 

or 3D techniques of computer vision. Other related works such as keeping the secure 

distance ahead of the car are based on this system configuration. 

Some risks of road traffic which occur on highway during the lane-changed 

maneuver happen easily if another vehicle besides the own one has been overlooked. 

In other words, drivers have not assured accurately if there is no other vehicle 

alongside in the blind spot of the lateral view. During the general driving procedure, 

drivers must keep notifying the frontal field of view so that they forget to check the 

information of the lateral blind-spot at the same time. In order to overcome this kind 

of traffic hazard with efficiency, a camera is mounted at the driver’s outside rear-view 

mirror to monitor the blind spot and the alongside lane. Approaching vehicles should 
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be detected in time and tracked until they leave the blind spot by this configuration. In 

addition, this system can restrain the intended lane-changed maneuver and maintain 

the distance from the lane boundary in the blind spot for the car body. This system can 

prevent vehicles from a significant amount of the potential collisions. 

In addition to the distinct effect of the geometric projection onto the image plane, 

there are still other different factors and applications in the frontal-view and 

lateral-view configurations. The four reasons are listed as follows. 

(1) The initial purpose has influenced on the place where the camera is 

mounted: 

As explained above, road images extracted from the forward sight of the vehicle 

can yield more driving information to track the real-time road curvature by the 

lane-marking modeling. Furthermore, the related data of them has effectively 

contributed to the system with respect to the assistant navigation. On the other word, 

the major objective about mounting the camera on the side of the car is to adjust how 

much the detecting range of the blind-spot region is. This configuration only puts 

emphasis on judging whether the approaching car or the lane trajectory is near the 

vehicle, and the variation of the forward road information cannot be considered. 

(2) The diverse sensation of the driver with respect to two mounting position: 

In general, to extract the forward visual information as far as possible, the camera 

was almost fixed to the windshield. This setting location could easily reduce the 

eyesight of the driver, no matter how small the camera is. The disadvantage resulting 

from the driver’s unfamiliar looking will be concerned in the research about driver 

analysis. Nevertheless, because of the position of the camera which is near the 

rear-view mirror, drivers should not be confused in this experimental environment 

when focusing on extracting the lateral-view content of the vehicle. In other words, 

the camera added to the vehicle can not affect the original driving habit of the driver, 
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and the data collected by driver analysis system will still be higher accuracy. 

(3) The different extrinsic factors of two locations of the sensing device: 

Compared with the initial purpose of two configurations, the camera mounted in 

front of the vehicle must have farther distance from its optical center to the specified 

lane portion on the road plane than that on the side of the car because of the 

perspective geometry. In addition, the overtaking cars which cross the lane are almost 

captured by the frontal-view image sequences. Therefore, the information of the lane 

trajectory extracted by the sideward camera can be more complete than the forward 

one throughout the driving experiment on highway. However, with the headlight 

switching in the gloomy driving situation, the video collected by the frontal camera 

still holds more acceptable luminance information in night vision. 
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Chapter 3 Digital Image Stabilizer 

3.1 Introduction 

Machine vision is a key technology used in any intelligent transportation system 

(ITS) to augment or replace human drivers’ visual capabilities. ITS research involves 

four major issues: increasing the capacity of highways, improving safety, reducing 

fuel consumption, and reducing pollution. ITS can use some intelligent control 

strategies, such as agent-based control concepts [4], [5], to manage the transportation 

and traffic problems. In machine vision aspect, it can be used to detect land markings, 

vehicles, pedestrians, road signs, traffic conditions, traffic incidents, and even driver 

drowsiness or to assist the driver to get more information and reduce driving accidents. 

These applications are almost included in the first two issues of ITS researches. Four 

typical applications that involve machine vision are: 1) cruise assistance; 2) urban 

driving assistance; 3) driver monitoring; and 4) traffic and road monitoring. From the 

site of image acquisition, it can be divided into in-car or off-car applications. The 

former three items belong to in-car applications, and the common concern in most 

applications is reliability. The reliability is related to the image acquisition process 

and image interpretation process, i.e., the contrast and the resolution of the images, 

the stability of the image sequence, and the reliability of image interpretation, etc. The 

better image-acquisition process will increase the feasibility and reliability of the 

process and analysis afterward. The increase in the contrast and the resolution of 

images are pure hardware issues. It has been designed by a wide-dynamic-range 

approach to improve the success rate of lane detection under high-intensity contrast 

[6]. Most image interpretation processes need to detect the motion field (motion 

vector) in the image. In an ideal environment, the motion field is easy to interpret. 
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However, practical motion fields deviate from the simple description. Additional 

motion components are induced by disturbances like the bumpy ride of the vehicle or 

the steering effect. To enable the efficient image interpretation process, these 

disturbances have to be compensated in advance. In this thesis, a method to acquire 

the stable image sequence by in-car cameras which can be used for driver assistance 

or subsequent processes is proposed. 

Digital image sequences acquired by in-car video cameras are usually affected by 

undesired motions produced by a bumpy ride or by steering. The unwanted positional 

fluctuations of the image sequence will affect the visual quality and impede the 

subsequent processes for various applications. Although undesired motions are 

usually irregular and uneven compared to intentional global motions such as car 

movement or camera panning, the challenge of image stabilization systems is how to 

compensate the unwanted shaking of the camera without the influence caused by the 

moving object in the image or the intentional motion of the car. 

 

3.2 Previous Algorithms 

The image stabilization systems can be classified into three major types: the 

electronic, the optical, and the digital stabilizers. The electronic image stabilizer (EIS) 

stabilizes the image sequence by employing motion sensors to detect the camera 

movement for compensation. The optical image stabilizer (OIS) employs a prism 

assembly that moves opposite the shaking of camera for stabilization [7], [8]. Because 

both EIS and OIS are hardware dependent, the applications are restricted to device 

built-in online processes. Digital image stabilization (DIS) is the process of removing 

the undesired motion effects to generate a compensated image sequence by using 

digital image processing techniques without any mechanical devices such as gyro sen-
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sors or a fluid prism [13]. The major advantages of DIS are: 1) machine independence 

and 2) suitability for miniature hardware implementation (since the mechanical device is 

not required for compensation) [9]. 

The DIS system is generally composed of two processing units: the motion 

estimation unit and the motion compensation unit. The purpose of the motion 

estimation unit is to estimate the reliable global camera movement through three 

processing steps on the acquired image sequence: 1) evaluation of local motion vectors 

(LMVs); 2) detection of unreliable motion vector components; and 3) determination of 

the global motion vector (GMV). Following the motion estimation, the motion 

compensation unit generates the compensating motion vector (CMV) and shifts the 

current picking window according to the CMV to obtain a smoother image sequence. 

Fig. 7 shows the motion compensation schematics. The window of frame (t - 1) is the 

previous compensated image. The compensating motion vector v is generated by the 

DIS according to the GMV between two consecutive images. The window of frame (t) 

is the picking window according to the compensating motion vector v to minimize the 

shaking effect. 

 
Fig. 7: Motion compensation schematics. 
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Various algorithms have been developed to estimate the LMVs in DIS applications 

such as representative point matching (RPM) [14], [15], edge pattern matching (EPM) 

[16], [17], bit-plane matching (BPM) [13], [18], and others [19]–[23]. It has also been 

demonstrated that the DIS can reduce the bit rate for video communication [24]. The 

major objective of these algorithms is to reduce the computational complexity, in 

comparison with a full-search block-matching method, without losing too much 

accuracy. In general, the RPM can greatly reduce the complexity of computation in 

comparison with the other methods. However, it is sensitive to irregular conditions such as 

moving objects and intentional panning, etc. [18]. Therefore, the reliability evaluation 

is necessary to screen the undesired motion vectors for the RPM method. In [15], a 

fuzzy-logic-based approach was proposed to discriminate the reliable motion vector 

from the LMVs. This method produced two discriminating signals based on some 

image information such as contrast, moving object, and scene changing to determine 

the GMV. However, these two signals cannot widely cover various irregular conditions 

such as the lack of features or containing large moving objects in the images, and it is 

also hard to determine an optimum threshold for discrimination in various conditions. 

Some researchers estimate LMV using feature-based techniques that track a small 

number of image features (points, lines, and contours or certain objects, etc.) to 

evaluate the motion vector. This makes it efficient and available for real-time 

implementation. But the difficulty is that, especially for outdoor applications, it cannot 

stably and accurately find available features in the image [25]. Based on the optical 

flow technique, a fundamental approach in computer vision, many methods have been 

proposed in the literature to solve different types of problems. The estimation of 

optical flow is based on the assumption that the intensity of the object (or specified 

pixel) in the image sequence is constant. The difficulty is that most consumer video 

camcorders have an auto shutter function to adjust average intensity dynamically such 
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that maintaining constant intensity of the object becomes impossible in real 

applications. In this thesis, a reliable LMV extraction method is proposed to determine 

the GMVs for practical applications. 

In the motion compensation of DIS, accumulated motion vector estimation [16] 

and frame position smoothing (FPS) [26]–[28] are the two most popular approaches. The 

accumulated motion vector estimation needs to compromise stabilization and inten-

tional panning (constant motion) preservation since the panning condition causes a 

steady-state lag in the motion trajectory [26]. The FPS accomplished the smooth 

reconstruction of an actual long-term camera motion by filtering out jitter components 

based on the concept of designing the filter with an appropriated cutoff frequency. The 

disadvantage of FPS is that it does not guarantee the availability of the determined CMV 

when the specified bound is restricted for preserving the effective image area in the DIS 

applications. 

In this chapter, a novel robust in-car DIS technique is proposed. An adaptive 

background evaluation model for deriving GMV is developed to deal with irregular 

images that contain large moving objects or low-contrast area. The accumulated motion 

vector estimation combined with an integrator in the inner feedback loop is also applied 

to remove the shaking effect without losing the effective area of the images with 

constant motion. Video sequences with various irregular conditions, such as the lack of 

features, large low-contrast area, moving objects, or repeated patterns, etc., are used for 

testing, and the experimental results demonstrate that the proposed algorithm can 

perform very well in such conditions. A smoothness index (SI) is also proposed in this 

thesis to quantitatively evaluate the performances of different image stabilization 

methods. 
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3.3 System Architecture of the DIS and Motion Estimation 

The system architecture of the proposed DIS technique is shown in Fig. 8, which 

includes two processing units: the motion estimation unit and the motion 

compensation unit. The motion estimation unit consists of two estimators: the LMVs, 

and the GMV estimators. The motion compensation unit consists of the CMV 

estimation and image compensation. The two incoming consecutive images frame (t-1) 

and frame (t) will be first divided into four regions as shown in Fig. 9. An LMV will be 

derived in each region by the RPM algorithm [14], [15]. The motion estimation unit 

also contains a reliability detection function that will generate an ill-conditioned motion 

vector for the irregular image conditions such as the lack of features or containing a 

large low-contrast area, etc. The GMV estimation determines a GMV among LMVs, 

another preselected motion vectors through the adaptive background-based evaluation 

function. Finally, the CMV is generated according to the resultant GMV, and the image 

sequences will be compensated based on the CMV in the motion compensation unit. The 

rest of this section will focus on the details of the motion estimation unit of the proposed 

DIS technique. 

 

 
Fig. 8: System architecture of the proposed digital image stabilization technique. 
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Fig. 9: Division of image for LMV estimation. 

 

3.3.1 Motion Estimation 

The motion estimation unit shown in Fig. 8 contains the LMV, and GMV estimators. 

As shown in Fig. 9, LMV estimation is to generate the LMVs for GMV estimation. The 

LMVs can be obtained from the correlation between two consecutive images by the 

RPM algorithm. 

 

 RPM and Local Motion Estimation 

It has been demonstrated that a local approach using a regional matching process 

is more robust and stable than a direct global matching process [29]. That means using 

the LMVs estimated by the divided regions to determine the GMV is more robust and 

stable than a direct approach. There is also a tradeoff for the size of divided region. 

Reducing the size of the divided region increases the robustness, but the size of the 

divided region should be sufficiently large to hold the average distribution [29]. If we 

want to divide the image such that the horizontal and vertical components have the 

same partitions, it should be divided into n2 regions. More divided regions will 

increase the computational cost to estimate the LMV for each region. Therefore, we 

only divide the image into four regions as shown in Fig. 9 for the RPM method, and it 

can cover various situations in the in-car DIS applications by combining the proposed 
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inverse triangle method and the adaptive background evaluation model. 

Each region is further divided into 30 sub-regions (with each side of 5 rows × 6 

columns), and the central pixel of each sub-region is selected as the representative point 

to represent the pattern of this sub-region. This layout is based on the size of images 

captured by the regular imaging devices such as 640 × 480 or 320 × 240. In order to 

make the representative points equally distributed in spatial, the ratio of row and 

column should be maintained by as close to 0.75 as possible. It is the averaged testing 

result for four experimental video sequences. It can be found that if the number of the 

representative points is larger than 30, the cost level will go down to the threshold and 

almost all the motion vectors calculated by the RPM method are reliable. In other words, 

in this case, the cost level will be good enough as the lower cost level indicates high 

reliability. In order to keep low computation time complexity, 30 representative points 

are used in our system. 

Then the correlation calculation of RPM with respect to representative point (Xr, 

Yr) is performed as 
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where N is the number of representative points in one region, I (t - 1, Xr, Yr) is the 

intensity of the representative point (Xr, Yr) at frame (t - 1), and Ri (p, q) is the 

correlation measure for a shift (p, q) between the representative points in region i at 

frame (t - 1) and the relative shifting points at frame (t). Assuming RiMin is the 

minimum correlation value in region I, the shift vector vi that produces the minimum 

correlation value for region i represents the LMV of this region. 

 

3.3.2 GMV Estimation 

The objective of GMV estimation is to determine a motion vector from existing 

data what we have evaluated from a motion estimation process. In a practical in-car 
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video sequence, it always suffers from moving objects, repeated patterns, motion 

effects of cars, etc. The LMV in each region may represent GMV, moving-object 

motion vector, or even error vector, respectively. The error vector may be caused by 

the ill condition, repeated pattern, or the mixture of global and moving-object motion. 

Although the reliable GMV is essentially selected from LMVs, however, in the worst 

case, when the LMVs are all fault, it will induce a worse result after compensation 

compared with the original images. Therefore, if the evaluation includes the zero 

motion vector (ZMV), it can prevent the occurrence of this case. Similarly, for an 

image sequence with constant motion in the scene, it will induce a worse result if it is 

compensated by ZMV or the error motion vector rather than by the average motion 

vector (AMV). In the proposed DIS technique, the seven motion vectors including 

four LMVs, the ZMV, and the AMV, referred as preselected motion vectors (pre MV), 

are employed to estimate the GMV of the current frame. In general, one of the LMVs is 

the highly probable GMV for the regular image; the ZMV can prevent a worse 

compensation result caused by the unreliable MVs; and the AMV is useful for constant 

motion of the car. In addition, if the image sequence contains a large moving object, 

the determination of global motion is troublesome because the determined motion 

vector probably switches between the background and large moving object or is totally 

dominated by the large moving object. In this case, it will lead to artificial shaking and 

cause a major challenge in DIS. 

The estimation of the GMV is calculated by the summation of absolute 

difference (SAD) 
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where I(t - 1, X, Y ) is the intensity of the point (X, Y ) at frame(t - 1), Bi is the ith 

background region in the image, Xc, Yc are the components of the six preselect motion 



 

30 

vectors (pre_MVc) in x and y directions. 

Different (pre_MVc) will have their SADBi ,c in each region. The smaller SADBi ,c 

represents the higher probability of the desired motion vector among theses preselected 

motion vectors. The score for each (pre_MVc) in region i is denoted as Si,c, which is the 

order of the SADBi ,c value, and the higher SADBi ,c indicates the higher score. The total 

score for each pre_MVc can be obtained by 
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                               (5) 

Five-region peer-to-peer evaluation can prevent the situation that some partial 

high-contrast image regions dominate the evaluation result. In this algorithm, each 

region has an equal priority to determine the result. In (5), Sc is the index to determine 

the GMV. The pre_MVc with the smallest Sc is the desired GMV, and it can be 

expressed as 
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According to these sophisticated evaluation areas, the evaluation function can 

detect attributed background motion vector precisely in most circumstances. 

3.4 Motion Compensation and Evaluation 

 CMV Estimation 

The first step of motion compensation is to generate the CMVs for removing the 

undesired shaking motion and still keeping the steady motion in the image sequence. 

The conventional CMV estimation was given by [16], and will yield where t 

represents the frame number. 
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The increase in k causes the decrease in unwanted shaking effect but the increase in 

the value of CMV, which means the effective area of images is reduced if we want to 

maintain the consistent image size for the whole image sequence. To illustrate this 

phenomenon, the motion trajectories can be calculated to analyze the problem. The 

motion trajectories can be obtained by 

∑
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where MTrajo(t) and MTrajc(t) are the original and the compensated motion trajectories 

of the image sequence at frame(t). Fig. 10 shows the performance comparison of three 

different CMV generation methods applied to a video sequence with constant motion 

and jitter in the image. There are two trajectories in each subfigure; one is the original 

trajectory calculated by (8), and the other one is the compensated trajectory calculated 

by (9). The CMVs in Fig. 10(a) are generated by the conventional method shown in (7). 

Obviously, MTrajc(t) has tremendous lag compared to MTrajo(t) due to the constant 

motion effect. 

The CMV probably exceeds the window shifting allowance such that the available 

effective image area during the compensation process is reduced. The CMVs in Fig. 

10(b) are generated by (7) a with clipper function as 
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2
1))(()( ltCMVltCMVtCMVclippertCMV −−+==

        (10) 

where l is boundary limitation, i.e., the maximum window shift allowance. In this case, 

the lag can be reduced to a certain range. However, it will also decrease the performance 

of shaking compensation due to the picking window operating near the boundary area. 

In order to deal with the above problem, Vella et al. used the passive method of 
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ceasing for correction in this condition [19]. That implied that the undesired shaking 

effect cannot be eliminated in the constant motion condition. To overcome this draw-

back, we combine the inner feedback-loop integrator with a clipper function to reduce 

the steady-state lag for steady motion as well as to keep the CMV to operate in the 

appropriate range. That means, by employing the integrator, shaking components of the 

images with constant motion effect as well as those in regular images can be stabilized. 

It is noted that the CMV computation procedure is applied to x and y components 

separately. That is, parameters corresponding to x and y directions can be set as 

different values. In general, the constant-motion condition usually occurs in horizontal 

direction such that the shaking patterns are different in both directions. The proposed 

CMV computation procedure is presented by 
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The symbol ⋅  denotes array multiplication, and clipper( ) is defined in (10). Fig. 

10(c) shows the compensated motion trajectory generated by the proposed method. 

Compared with Fig. 10(a) and (b), the proposed method can reduce the steady-state lag 

of the compensated motion trajectory in the constant-motion condition and keep the 

CMVs in an appropriate range. 
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Fig. 10: Performance comparison of three different CMV generation methods applied to a video 

sequence with panning and hand shaking. (a) CMV generation method in (7). (b) CMV generation 

method in (7) with clipper in (10). (c) Proposed method in (11). 
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Fig. 11: Block diagram of the proposed CMV generation method. 

 

 Quantitative Evaluation 

The shaking effect of images can be evaluated by the summation of absolute 

differences of momentums within every two consecutive frames. The mass of an image 

can be set as a constant such as one for simplicity or a value from zero to one 

according to the degree of shaking in the images measured by human visual perception. 

The SI is proposed to quantitatively evaluate the performance of different DIS 

algorithms, and it is defined as 
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where t is the frame number, N is the number of total frames, m is the mass of the 

image, and m(t) is the rate of change of the absolute value of momentum. The lower 

SI means less shaking components in the image sequence, and it represents the effect 

of better smoothness. 

 

3.4 Experimental Results 

In this section, the performance of the proposed DIS technique is evaluated and 

compared to other existing DIS methods based on the performance indices of motion 

estimation and motion smoothing, respectively. To do this, four real video sequences 
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captured by an in-car camera with various irregular conditions are used for testing. Each 

video sequence has resolution of 640 × 480. The VS#1 is a video of a door gate taken 

with constant camera motion and jitter. It lacks for features in the horizontal direction. 

The VS#2 is a video taken of a community road with bumpy conditions. The VS#3 is a 

video of highway taken with jitter. The VS#4 is a video taken of a parking lot when the 

car is turning. The motion estimation performance is evaluated based on the root mean 

square error (RMSE) between the algorithmically estimated motion vectors and the 

desired motion vectors evaluated by human visual perception as well as considering the 

background factor frame by frame. The RMSE is given by 
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where (xdn, ydn) is the desired motion vector and (xn, yn) is the motion vector generated 

from the evaluated DIS algorithms. 

The proposed method is compared to a RPM approach with fuzzy set theory 

(RPM FUZZY) [15]. The motion estimation results of these two methods are 

summarized in Table 4. The proposed method applies the minimum projection 

approach to detect the irregular components of LMVs. This approach can sufficiently 

use the existing information to estimate the GMV. The testing result with respect to 

VS#1 shows that the RMSE reduces from 5.8348 to 2.5269 by using our method since 

the RPM FUZZY did not consider the condition of lack of feature. The results with 

respect to VS#2–4 also show that RMSEs of our method are superior to RPM FUZZY. 

The motion smoothing performance is evaluated by the SI proposed in Section 

3.4. Fig. 10(c) shows the original motion trajectory versus the compensated motion 

trajectory generated by the proposed method. Compared with Fig. 10 (a) and (b), the 

proposed method can reduce the steady-state lag of the compensated motion trajectory 
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in constant motion condition and keep the CMVs in an appropriate range. 

 

Table 4: RMSE Comparisons of RPM Fuzzy and the Proposed Method with Respect to Four Real Video 

Sequences 

Method 
Real video sequences 

VS#1 VS#2 VS#3 VS#4 

RPMFUZZY 5.8348 0.8031 2.6618 2.2749 
The proposed 

 method 2.5269 0.3536 1.6837 0.5701 

 

Table 5: Comparisons of Three CMV Generation Methods 

Methods SI Max. CMV value (pels)
Eq. (7) 0.7990 134 

Eq. (7) with clipper 5.6482 47 

The proposed CMV  
generation method (Eq. (11)) 0.9346 47 

Note: The original SI is 7.4372. The clipper is bounded within ±47 pels. 

 

Table 6: Parameters Applied to CMV Generation with Different Equations 

Method (Equation) Parameters 
 k P Clipper Limit 
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Table 5 shows the SI comparisons of three CMV generation methods presented in 

Fig. 10. The generation of CMV without clipper is impractical since it lost too much 

effective image area, i.e., the maximum of the CMVs does not guarantee to fit the 

practical compensation range. The proposed CMV generation method dramatically 

reduces the SI value from 5.6482 to 0.9346 compared with the CMV generation 
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without integrator. The reason is that the effect of the inner feedback-loop integrator 

greatly reduces the steady-state lag in the image sequence with constant motion. We 

also evaluate the CMV generation methods by four GMV sets generated from real 

video sequences (GMV sets #1–4). 

 

3.5 Summary 

How to derive reliable GMVs from the video sequence captured by in-car video 

cameras and how to derive appropriate CMVs to smoothen the shaking effect without 

reducing the effective image area are two challenges for an in-car DIS system. This 

chapter focuses on the analysis and design of motion compensation algorithm for the 

real-time DIS system. It is a challenge to generate proper compensated motion vectors 

(CMVs) which smooth the shaking effect without reducing the effective compensated 

area. Hence, we take the motion compensation as a control problem and propose a 

modified PI controller which can both remove the unwanted jitter and preserve the 

deliberate, panning motion of camera. According to the experimental results, the 

proposed technique demonstrates the remarkable performance in both quantitative and 

qualitative (human vision) evaluations compared to the existing approaches. It can be 

implemented as software and hardware solutions for both online and offline video 

stabilization applications.  
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Chapter 4 Lateral Collision Warning System 

4.1 Introduction 

Car electronics researches are getting more popular, divers are not only consider 

comfortable car interior environment but also respect safety equipment. In our country, 

there are at least 80,000 traffic accidents in a year and more than 2,500 people lose 

their life. Most reasons are due to the driver is inattentive or neglect the driving 

circumstances. On the highway, the most important cause of the traffic accidents is 

lateral and same direction collision. Obviously, the traffic accident occurs when the 

driver changes the lane. Although the driver can get the information around the car by 

rear-view mirror, the lateral collision still happen because of the existence of the blind 

spot region and the negligence of the driver. Hence, we develop a real-time 

auto-detect vehicle lateral collision warning system to assist the driver to change lane 

more safely. 

 

4.1.1 Definition of Vehicle Blind Spot 

Blind spots, in the context of driving an automobile, are the areas of the road that 

cannot be seen while looking forward or through either the rear-view or side mirrors. 

The detection of vehicles or other objects in blind spots may also be aided by systems 

such as video cameras or distance sensors. Throughout the notation in this thesis, the 

area of blind spot is only regarded as the rear of the vehicle on both sides. The 

introduction in this section not only describes the causes of traffic accidents resulted 

from the blind spot, but discuss how to reasonably establish the region of blind spot 

by the inherent limitation of the human vision and rear-view mirror. 

In Taiwan, the types of traffic accidents between two cars on highway are listed 
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in Table 7 from [34].  

 

Table 7: Causes of traffic accidents between two cars on highway. 

Year 
Collision by the 

Backward Car 

Rubbed Collision in 

the Same Direction 

Lateral 

Collision 

Colliding 

Collision 
Others 

2001 59.74% 28.57% 2.86% 1.56% 7.27% 

2002 62.39% 28.04% 3.04% 1.74% 4.78% 

2003 60.82% 27.88% 3.70% 2.34% 5.26% 

 

As shown in foregoing statistics, we can conclude that the lateral and rubbed 

collisions are both the principal causes of the traffic accidents between the cars. There 

have been numerous topics focused on how to avoid the forward or backward 

collision for the vehicle, but the related research for lateral collision is little. While 

vehicles in the adjacent lanes of the road fall into the range of lateral blind spots, the 

driver will be unable to see them with only the car’s mirrors. Due to the above reason, 

drivers must actively rotate their head to extract more information within the region of 

blind spot. However, the probability of car accident can be raised simultaneously. 

Therefore, vision-based system can be developed to assist the drivers in keeping away 

from the lateral danger of vehicles by the image sensor alongside the rear-view mirror. 

The eyesight of people has obvious difference between the static and dynamic 

environment due to the variation of the vehicle velocity. In general, the view-angle of 

the single eyeshot is about 160 degrees when people lie in the stationary scene; the 

maximum view-angle of the double field of view is enlarged about 180 degrees. 

Flannagan [35] proposed that the people’s double eyesight should reach to 320 

degrees by adding the rotating motion for the head and body of human. According to 

the statistics from [36], the realistically clear field of view contained two eyes is only 
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about 70 degrees when a normal person situates in the static environment. 

Nevertheless, the human’s eyesight could frequently vary when people are in the 

dynamic conditions such as the internal part of the moving vehicle thanks to the 

tunnel-vision effect. The relationship between the range of human eyesight and the 

variation of the vehicle velocity is in Table 8; the range of field of view between the 

static or dynamic environment is shown in Fig. 12. 

 

Table 8: The relationship between the field of view and the vehicle velocity. 

Speed (km/hr) 40 70 100 

Field of View (degrees) 100o  65o  40o  

 

 

Fig. 12: The diagram of the driver’s field of view. 

 

 As the information shown in Fig. 12, the eyesight becomes greatly narrow when 

the vehicle is driven at high speed. In other words, the driver can not judge whether 

there are other vehicles moving on the adjacent road surface or not only by his/her 

remaining eyeshot on highway as the car velocity raises to 100 km/hr. In this way, the 

drivers induced by the blind-spot hazard will be easily in danger. 

In general, the side mirrors of the vehicle are almost used by the planar type. 

210o

40km/hr  100o  

70km/hr  65o  
100km/hr  40o  
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Therefore, the formation of image about the normal rearview mirror is still followed 

by the principle which describes that the angle of incidence ( iθ ) is the same as that of 

reflection ( rθ ). In other words, the field of image produced by the rearview mirror is 

stretched to 2θ  (θ= iθ = rθ ) view-angle projecting into the road surface.  

 The relationship between the field of view of the side mirror and that of the 

driver is shown in Fig. 13. 

 

 
Fig. 13: The relation about field of view between the side mirror and the driver. 

 

 By the geometric relation from Fig. 13, when driving at high speed, in order to 

make the eyesight overlap the reflected field of the rearview mirror, the driver must 

rotate his/her head so as to extract the lateral information as much as possible. 

However, due to this unnatural motion, the driver’s inattention will not keep his/her 

eye for the forward state of the vehicle for a long time with the occurrence of traffic 

accident. 

 There are two general approaches to extend the range of field of the rearview 

mirror. The first approach is to increase the distance between the side mirror and the 

100km/hr  40o

70km/hr  65o  

40km/hr  100o  
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driver. Due to the fixed car-body, this improving effect will be restricted. The second 

approach is to replace the traditional planar mirror with the curved one. Nevertheless, 

the distortion effect of the reflected image will be serious due to the curvature of the 

lens. Through the above discussion, the blind-spot region between the side mirror and 

the driver cannot be easily resolved. For this reason, adding the camera on the side of 

the car with intelligent vision-based algorithm will still be regarded as the important 

device of the assistant system for the driver’s safety. 

 

4.1.2 Previous Work 

The topics of car safety are respected during recent years and there are many 

studies on developing Blind Spot Information System (BLIS). But it still has some 

challenges need to research. For example, the accuracy of detection algorithm should 

be more precise and should decrease the false alarm. And the system should adapt to 

all kinds of the weather situation either daytime or nighttime. It can be divided into 

two kinds of methods to detect the objects in the blind spot area. 

 

Radar, Radio Frequency or other wireless reaction 

When object comes in the ROI, the system sends a wireless signal and gets the 

distance information between self and the object by the difference in time between 

send signal and received signal. But this method can’t recognize the size, length and 

contour of the object. The system will be effected more easily by other not vehicle 

object, therefore the false alarm of this system is more than other algorithm. For this 

reason, some researches adopt the method including radar and vision in [37]-[39]. 

 

Vision-based analysis 

When object comes in the ROI, the system captures the images. By the way of 
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image processing and analysis, the system can detect the object position. There are 

three kinds of methods to detect the vehicle in [40].  

(1) Using the single image to analysis and detect vehicle. In this method, we can 

establish object mode by the single image and effective decrease the computation. But 

it is easy to lose the depth of the environment and is also affected by the contour of 

the car in [41] and [42].  

(2) Using optical flow method to detect vehicle. In this method, we can get the 

movement relation between self and object. But the operation of this method is more 

complex, and it’s easy to false alarm when both are at low speed in [43] and [44].  

(3) Using the image sequence to detect vehicle. In this method, we can rebuild the 

3D position and detect vehicle with the geometric figure. Besides image processing, 

this method also considers temporal variation, and the computation is less than 

method (2) in [45]. 

 
Blind Spot Region Setting 

Although blind spot regions of the driver is fixed region, it still is a very 

important cause of the BLIS research. Lane-based Transform is a method to project 

the region on the vertical view, and distinguish the vehicle and shadow by the moving 

contour in [46]-[58]. It is an effective method to improve the BLIS result by setting 

the suitable blind spot region. Therefore, we will design a 3D ROI in next paragraph 

to improve the BLIS result precise and reduce the image process computation. 

 

4.1.3 Lateral Collision Warning System Structure 

Our system is based on the method (3).  

Fig. 14 is the system structure. The system contains five parts. The first part is 

ROI definition. We define the driver’s blind spot area and design a suitable 3D ROI. 
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The second part is image preprocessing. According the first stage, we can get the 

information about the time of the day. Therefore, we can divide into two kinds of 

image preprocessing for each detection feature. The third part is vehicle detection. We 

design daytime and nighttime detection algorithm and export the result to the next 

stage. The fourth part confirms vehicle. We use the temporal static method to compute 

the result of the third stage. The last part is the DSP output. We will present each part 

in the next paragraph. 

 

 

Fig. 14: BLIS side collision warning system structure 

 

4.2 ROI Definition and Image Processing 

Fig. 15 is the ROI definition flow chart. When we receive an image from the 

camera, we will convert the YUV image into gray level Y image. In order to realize 

on the DSP image development kit, we do down-sample and keep the pixel value 

inside the ROI.  

 

Fig. 15: ROI definition flow chart 
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We calculate the gray level distribution of each frame ( ), ,I x y t . First of all, we 

assume ( )ROI
disg t  is the summation of the dark pixels and ( )ROI

thg t is the threshold to 

separate the daytime from the nighttime. If ( )ROI
disg t is less than ( )ROI

thg t , it means the 

frame maybe captured in the nighttime. Then we consider the result of continuous 

frames during a space 1t , we will judge the frame is in the daytime or in the nighttime 

and is shown in equation (14). 
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4.2.1 ROI definition 

Fig. 16 is an image about the field of the driver’s view. In general, the driver can 

see around 180  with both eyes and maybe see around 320 with rolling head. The 

remainder is the red region denoted blind spot region, and it will be larger when the 

speed of car is faster. In Table 9, we show the relation between the speed and the field 

of view, it is caused by the tunnel effect.  

According to the Fig. 16, we know where the blind spot region is, and we can 

easily define a simple ROI with a common camera to cover the whole region. Hence 

we can get an image such as Fig. 17 captured by the common camera with traditional 

ROI. As the result, it is hard to differentiate cars between near and far lane because 

the angle of the camera lens is so quite small that makes the projection of the objects 

either in outside lane or in ROI on the same position in image. Hence this result will 
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confuse us and be difficult to make out moving vehicle.  

 

 

Fig. 16: Field of driver’s view 

 
Table 9:The relation between speed and field of view 

Speed(km/hr) 40 km/hr 70 km/hr 100 km/hr 

Field of view(degree) 100° 65° 40° 

 

 
Fig. 17: Image captured by common camera 

 

In order to deal with the upper problems, we choose the fish-eye camera to be our 

image input. In Fig. 18, the right image is a car approaching in the outside lane and 
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the left image is a car approaching in the near lane. Both head light are distorted by 

the fish-eye camera lens. Compare Fig. 17 and Fig. 18, when the car is in the outside 

lane, the image will become smaller because of the distortion turns in the direction of 

right. Oppositely, when the car is in the near lane, the image will become far away 

from the left lane because of the distortion turns in the direction of left. Hence, we can 

more easily compute the information from the fish-eye image to recognize the moving 

object inside the driver’s blind spot region.  

 

 
Fig. 18: Image captured by fish-eye camera 

 

In order to exploit the information from the fish-eye image, we design a suitable 

3D ROI. It is aimed at finding out the relation between moving objects and self car. 

First, we set up the position and angle of fish-eye camera to contain the driver’s blind 

spot region and face it to the road surface. Second, we define the 3D ROI is a 

rectangular solid and we segment it into three parts. Third, we figure out the moving 

object distribution in the each part and eliminate the image without cars in the ROI.  

Our 3D ROI design helps us to raise accuracy of detecting vehicle and decrease 

non-car false alarm. In this stage, 3D ROI definition only retain the image which may 

contain moving vehicle inside the blind spot area to get into next stage. For this 

reason, we effectively reduce computation and make system keep 30fps real-time 
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operation. 

 

Fig. 19: 3D ROI definition 

 

4.2.2 Image Preprocessing 

Image pre-processing is aimed at acquiring the feature of the vehicle in the 

daytime and nighttime. From Fig. 20 we can sort two categories daytime and 

nighttime. 

In the daytime, the feature is the contour of the vehicle. First, we assume that the 

input image is [ ]Day
preI n and use the edge detection to obtain the edge part [ ]Day

pre sobelI n−  and 

the method of edge detection will be discussed in section 4.2.3. Second, we get 

moving objects by the difference frame [ ]Day
pre diffI n−  from [ ]1Day

preI n −  and [ ]Day
preI n , then we 

use a low-pass filter and a high-pass filter to remove the slight variation part and 

enhance the strong variation part. Finally, we compare edge image  

 
Fig. 20: Image preprocessing flow chart 

 

[ ]Day
preI n with difference image [ ]Day

pre diffI n− to segment the image of objects. In order to 

ensure the integrity of the object image, we do twice dilation of the image. Therefore 

we can get an intact objects image [ ]Day
pre charI n− . 
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In the nighttime, the feature is the head light. First, we assume that the input 

image is [ ]Night
preI n  and normalize whole gray value to obtain an image [ ]Night

pre normalI n− . This 

step can reduce the effect from other illuminant, such as streetlamp, light reflection 

and other’s head lamp etc. Second, we estimate the gray level in [ ]Night
pre normalI n−  and get a 

threshold value Night
thg and use the value to filter the high illumination object and its 

equation is shown in (14). Among equation (14), Night
avgg is the average of the whole 

image and Night
thw is an adaptive weight which is between 0~1. Obviously, when in the 

brighter environment, the value of Night
avgg is larger and the addition is smaller. It makes 

the Night
thg more effortlessly to segment the head lamp [ ]Night

pre brightI n− . Third, we separately 

do erosion and dilation with the image [ ]Night
pre brightI n− because the brighter head lamp has 

scattering situation and the darker or farther head lamp will be neglected more easily. 

Finally, we obtain the image [ ]Night
pre charI n− containing head lamp by comparing the 

erosion and dilation image.  

(255 )*Night Night Night Night
th avg avg thg g g w= + −

              (15) 

 

4.2.3 HVS-Directed Object Edge Detection 

Much research has been done over the years on discovering the characteristics 

of the human visual system (HVS). It was found that the perception of HVS is more 

sensitive to luminance contrast rather than uniform brightness. The ability of human 

eyes to tell the magnitude difference between an object and its background depends on 

the average value of background luminance. According to Fig. 22, we find that the 

visibility threshold is lower when the background luminance is within the interval 70 

to 150, and the visibility threshold will increase if the background luminance becomes 

darker or brighter away from this interval. In addition, high visibility threshold will 

occur when the background luminance is in a very dark region. 
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In addition to the magnitude difference between an object and the background, 

different structures of images also cause different visual perceptions for HVS. Human 

eyes are more sensitive to high contrast regions such as texture or edge regions than 

the smooth regions. A novel fuzzy decision system inspired by HVS is proposed to 

classify the input image into human perception non-sensitive regions and sensitive 

regions.  

In the proposed fuzzy decision system, there are three input variables, visibility 

degree (VD), structural degree (SD), complexity degree (CD), and one output variable 

(Mo). In order to obtain the input variables corresponding to each sliding block shown 

in Fig. 21, two index parameters called background luminance (BL) and difference (D) 

are defined and should be calculated first. Parameter BL is the average luminance of 

the sliding block and can be calculated by 
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Parameter D is the difference between the maximum pixel value and the 

minimum pixel value in the sliding block and can be calculated by 

)),(min()),(max( jiOjiOD −=
     (18) 

A nonlinear function V(BL) is also designed to approximate the relation 

between the visibility threshold and background luminance. It is the approximation of 

Fig. 22 obtained by using the nonlinearly recursive approach and can be represented 

as 
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BLBL eeBLV 008.003.066.20)( += −

     (19) 

 

 
Fig. 21: A 4 x 4 sliding block in the original image 

 

 
Fig. 22: Visibility thresholds corresponding to different back- ground luminance. 

 

After BL, D and V(BL) are obtained, we can calculate the input variables (VD, 
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SD, and CD) of the fuzzy decision system. Parameter VD is defined as the difference 

between D and V(BL) and can be represented as 

)(BLVDVD −=
       (20) 

In Eq. (20), ‘D’ value defined in Eq. (18) is used to approximate the magnitude 

difference between the object and its background. Therefore, if VD > 0, it means the 

magnitude difference between the object and its background exceeds the visibility 

threshold and the object is sensible. Otherwise, this object is not sensible. SD and CD 

are used to indicate whether the pixels in the sliding block perform edge structure. SD 

shows if the sliding block is a high contrast region and the pixels in the block can be 

obviously separated into two clusters. It is calculated by (21), as shown at the bottom 

of the page, where 

)),(min()),(max(
))),(min()),((())),(()),((max(
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An illustration of Eq. (21) is shown in Fig. 23. According to Fig. 23, Eq. (21) 

can be expressed as )( 2121 σσσσ −− . So the SD has been normalized to [0, 1] 

and this rule can also be applied to images with a different intensity range. If SD is 

small (close to 0), and <σ2 andσ1 are close (see Fig. 23(a)), it means the pixels in the 

block can be separated into two even clusters. The block may contain edge or texture 

structure. On the contrary, if SD is a large value, 021 >>−σσ  (Fig. 4(b)), it means 

the pixel number of one cluster and that of the other cluster are not even, thus, the 

block may contain noise or thin line edge. 
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Fig. 23: An illustration of the relation between SD parameter and the distribution of pixels in a sliding 

block. 

 

 

Fig. 24: Portions of (a) the sliding block including texture structure, (b) the sliding block including edge 

structure. 

 

Fig. 24(a) and (b) show a texture structure and a delineated edge structure in a 

sliding block, respectively. In these two plots, pixel numbers of the two clusters are 

the same. Therefore, the SD values corresponding to these two structures are close. 

CD input variable based on the local gradient process is proposed to tell the delineated 

edge structure from texture structure. It is calculated by (22), where 0(i,j) is the binary 

version of 0(7,7) to eliminate the influence of image intensity. In Eq. (22), each pixel 

in the 4x4 sliding block takes the 4-directional local gradient operation and the CD is 

the summation of the 16 local gradient values. If the CD is a large value, it means the 



 

54 

block may contain texture structure. On the contrary, if the CD is a small value, the 

block may contain delineated edge structure. 

The input variable VD has two fuzzy sets, N (negative) and P (positive). The 

input variable SD has three fuzzy sets S (small), M (medium), and B (Big). The input 

variable CD has three fuzzy sets, S (small), M (medium), and B (Big). The 

membership functions corresponding to the VD, SD, and CD are shown in Fig. 

25(a)-(c), respectively. In order to determine the fuzzy membership functions, seven 

nature images were used to generate the model. The images were separated into 

smooth, texture and edge regions by the admission of the majority (seven of ten 

subjects). Then the ranges of VD, SD and CD proposed in Eqs. (20), (21) and (22) 

corresponding to these regions were evaluated. Finally, the membership functions of 

the VD, SD and CD could be designed according to the distribution ranges of the 

parameters in four regions, respectively. The membership functions corresponding to 

Mo are shown in Fig. 25(d). Originally there are thirty-six fuzzy rules in the proposed 

fuzzy system (2x3x3x2  = 36 rules). These fuzzy rules can be combined and reduced 

in accordance with the following three rules: 

1. The fuzzy decision rules have exactly the same consequence. 

2. Some preconditions are common to all the rule nodes in this set. 

3. The union of other preconditions of these rules nodes composes the whole term 

set of some input linguistic variables. 

Therefore, we can combine these thirty-six fuzzy decision rules into seven rules as 

follows: 

1. If VD is N then Mo is BL 

2. If SD is B then Mo is BL 

3. If CD is B then Mo is BL 
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4. If VD is P and SD is S and CD is S then Mo is NN 

5. If VD is P and SD is S and CD is M then Mo is BL 

6. If VD is P and SD is M and CD is S then Mo is NN 

7. If VD is P and SD is M and CD is M then Mo is BL. 

The numerical value of Mo after defuzzification by center of area (COA) is 

compared with a threshold value, Th, where Th is preferably set as the value 5 by 

experiments. The COA strategy generates the center of gravity of the possibility 

distribution for the decision action. In the case of discrete universe, assuming n is the 

number of quantization levels of the output, zh is the amount of system output at the 

quantization level h, and μMO(zh) represents its membership value in the output fuzzy 

se, MO can be calculated by 
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Fig. 25: (a)-(d) Membership functions of fuzzy sets on input variables VD, SD, CD, and output variable 

Mo, respectively. 
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4.2.4 Angle Evaluation 

When MO>Th, the angle evaluation is performed to determine the dominant 

orientation of the sliding block. The flow diagram of angle evaluation is shown in Fig. 

26. When angle evaluation is operating, the orientation angle of each neighborhood 

original image pixel is computed. According to Fig. 21 when the orientation angle of 

0(i,j) denoted as A(i,j) is computed, the luminance values of the original pixels nearby 

0(i, j) are used for the following computations: 

 
Fig. 26: Flow diagram of the angle evaluation. 
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jiDx
jiDy−=

π       (27) 

where 30  and  3i0 ≤≤≤≤ j . 
 

The obtained orientation angle of each pixel in the sliding block (as shown in 

Fig. 21) is quantized into eight quantization sectors such as θ= 22.5*k degrees, where 

k = 0, 1... 7. θ is the quantized angle for most pixels oriented in the sliding block, and 

regarded as the dominant orientation of the reference image pixel. 

Fig. 27 shows four different image structures extracted from “home” to illustrate 

the operations of the proposed fuzzy decision system. Fig. 27 (a), (b), (c), and (d) 

represent smooth, texture, edge and noise regions, respectively. The VD, SD, and CD 

values of these regions calculated by Eqs. (20)-(22) are shown in Table 10. 

According to the VD values in Table 10, only the Fig. 27 (a) (smooth region) is 

negative which activates fuzzy rule 1 and follows the assumption that “if VD > 0, it 

contains visible objects.” The SD value of Fig. 27 (d) (noise) is large (B) which 

activates fuzzy rule 2 and follows the assumption that “If SD is a large value, the block 

may contain noise.” The SD values of Fig. 27 (b) (texture region) and Fig. 27 (c) (edge 

region) are small (S) which follows our assumption that “if SD is small, the block may 

contain edge or texture structure. The CD value of Fig. 27 (b) is medium (M) which 

activates fuzzy rules 5 and it follows the assumption that “If CD is a large value, the 

block may contain texture structure.” And the CD value of Fig. 27 (c) is small (S) 

which activates fuzzy rule 4 and follows the assumption that “If CD is a small value, the 

block may contain edge structure.” 

After defuzzification, their MO values are 2.2, 3.4, 7.3 and 2.2, respectively. 

Since the threshold value is 5, only the edge region shown in Fig. 27 (c). The 

threshold value can be adjusted to meet the speed and quality requirements of 
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different applications. 

 

Table 10: Processing results of the proposed FUZZY decision system corresponding to four different 

structures shown in Fig. 14 

 Smooth region Texture region Edge region Noise 
VD -1.42 47 182 111.78 
SD 0.42 0.11 0.24 0.6 
CD 12 12 10 11 
Mo 2.2 3.4 7.3 2.2 

 

 
Fig. 27: Portions of (a) smooth region, (b) texture region, (c) edge region, and (d) noise region. 
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4.3 Vehicle Detection and Alarm 

This paragraph will present vehicle detection, alarm and system stability. We 

choose the method 3 in II using the image sequence to detect vehicle and utilize the 

property of 3D ROI and image preprocessing to label the possible objects. According 

to the feature, we estimate the information given by image. If the statistics is stratified 

with our conditions, we will decide there is a car inside the blind spot area. 

 

4.3.1 Vehicle Detection 

Similarly, we sort two categories daytime and nighttime. In the daytime, we 

consider the 3D ROI and divide into three areas and each of them owns its weight. In 

Fig. 28, the yellow area means there is an object gradually approaching the blind spot 

area and we set the weight Day
nearw  is 0.5. The weight Day

outsidew  of red area is 0.8, and we 

calculate the distribution Day
outsided of red area. The blue area is the most important area 

on detecting vehicle on the lateral lane and we set the weight equal to 1. First, we 

observe the object whether it connects to in red area. Second, we estimate the length, 

width and height of the object with position and distribution. Third, we calculate the 

distribution Day
sided of blue area and compare with Day

outsided . In equation (28), we define two 

thresholds Day
th sided − and Day

th outsided − . According to the result of equation (28), it can assist in 

segregating the vehicle on outside lane and the effect from other non-car object. 

Finally, if statistic Day
statisticV  that we amount the result of each area is satisfied with our 

condition, we decide there is certainly a car inside the blind spot area. In the nighttime, 

we change the thresholds in the red area and the condition in the blue area to suit 

nighttime feature. The other steps are the same as in the daytime. 
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Fig. 28: Three areas of ROI 

 

4.3.2 BLIS Alarm and Stability of System 

When the system detects a moving car approaching, we use a temporal filter to let 

it more robust and improve the stability of the alarm signal more smooth. Here, we 

decide the vehicle comes inside the blind spot area in two ways. First, the vehicle 

comes from the rear area. The relation between alarm and time is close to be a 

trapezoid as shown in Fig. 29. We assume that the statistic is [ ]BLIS
statisticA n  which 

contains n as the result from last paragraph. When [ ]BLIS
statisticA n is getting large, we 

determine that there is a vehicle approaching the blind spot area. Oppositely, when 

[ ]BLIS
statisticA n  is getting small, we determine that there is a vehicle leaving the blind spot 

area. 

 
Fig. 29: Relation between time and alarm (rear) 
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Second, the vehicle comes from the front area. The relation between alarm and 

time is close to be a trapezoid with a right angle as shown in Fig. 30. When [ ]BLIS
statisticA n is 

suddenly getting large, we determine that there is a vehicle coming into the blind spot 

area from the front side. Oppositely, when [ ]BLIS
statisticA n  is getting small, we determine 

that there is a vehicle leaving the blind spot area. 

 
Fig. 30: Relation between time and alarm (front) 

 

The method of dealing with the leaving blind spot area is the same. Whether it 

leaves from front or rear side, it will continue a while and provide the safety message 

to the driver. We must extend the time for the driver and it will make the driver to 

keep a distance with the moving vehicle along his car. It will reduce false alarm cause 

of the input image with noise and the inaccurate analysis of the image processing. 

 

4.4 Experimental Results 

We choose the Borland C++ builder 6.0 to be the development kit and run the 

whole system on the Intel Centrino Duo 1.66GHz, 1.67GHz, with 1GB DDRII RAM. 

Finally, we realize the whole system on DSP BF561 image development kit. The 

Fish-eye camera is set up on the sport utility vehicle and the experiment environment 

is on the highway. 
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4.4.1 Simulation on Personal Computer 

Fig. 31 is the PC-based side collision warning system. We develop the functions 

and analyze the variable for optimizing the system. In order to narrate more 

particularly, we similarly show the result in the daytime and nighttime as following. 

The yellow region is our design 3D ROI and Fig. 32 is the system in the daytime. For 

porting function on DSP, we only use the field1 of the input image and use the gray 

level Y value of the YUV standard. The left-top shows the edge frame and the 

left-middle shows the difference frame. We compare these two frames to get the 

left-down frame and put it into our vehicle detection function as showing the 

right-down frame. In the image, the system will decide that there is a vehicle inside 

the blind spot area with the red part and the system will show the result on the top 

circle light. Fig. 33 is the system working in the nighttime. The left-top shows the 

binary frame after normalizing and the left-middle shows the dilation frame. The 

left-down shows the erosion frame and the right-down frame is the result decided by 

the vehicle detection. From upper two figures, our system operates successfully in 

both daytime and nighttime. 

 
Fig. 31: PC-based lateral collision warning system 
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Fig. 32: System operates in the daytime 

 

 
Fig. 33: System operates in the nighttime 

 

4.4.2 DSP-based Lateral Collision Warning System 

Fig. 34 and Fig. 35 are the results from the DSP image output. We show the result 
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of the lateral collision warning system with a square on the right-top. When there is 

no vehicle inside the blind spot area, it becomes green light, otherwise it becomes red 

light to remind the driver of the vehicle approaching.  

 

 

Fig. 34: Daytime DSP-based lateral collision warning system 

 

 

Fig. 35: Nighttime DSP-based lateral collision warning system 

 

There are two kinds of common false alarms in the daytime listed as following, 

but both of them are correctly distinguished from the image in our lateral collision 

warning system. First, it is hardly to present all kinds of traffic islands, hence we only 

show two kinds of normal traffic islands in Fig. 36. Second, when the car passes 

through in the tunnel, the light variation is different from that of outside in Fig. 37. 
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Fig. 36: System operates on normal traffic islands 

 

 
Fig. 37: System operates in the tunnel 

 

There are also two kinds of common false alarms in the nighttime listed as 

following. First, the vehicle in the nighttime is difficultly to recognize the vehicle on 

the outside lane or on the side lane in Fig. 38. Second, when the car passes through 

the greatly dark road, it’s hard to catch the contour of the car. When the car passes 

though the road with street lamps, the feature of head light will be influenced by the 

other illuminant. But we improve this problem with our adaptive threshold and use 

temporal filter to let it more smoothly in Fig. 39. 
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Fig. 38: System recognizes the vehicle on the outside lane. 

 

  
Fig. 39: System won’t be affected by the street lamp in the nighttime. 

 

4.5 Summary 

Our vehicle lateral collision warning system aims at detecting the image in 

driver’s blind spot region and exporting the warning signal to remind driver. In order 

to deal with the vehicle in the different lane projecting on the same place, we choose 

the camera to be image input and the distortion image contains more information of 

right and left lateral. 

We separate our system into two modules. The first module is 3D ROI design and 

auto-adjust parameters according the variation of weather. Although the measure of 

3D ROI is bigger than the driver’s blind spot area, but the region that needs to be 

computed is smaller than that of other algorithms. It also is divided into three areas to 
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analyze the moving objects and improve the accuracy of our algorithm result. 

 The second module is the vehicle detection. The features which we chose are 

different between daytime and nighttime. Our algorithm focus on the length, width, 

height, position and distribution of the moving object and each threshold are different 

from each other feature. As the result, our lateral collision warning system 

successfully operates in both daytime and nighttime. 

The system operates on the highway where is filled with high-speed vehicles. We 

also realize a DSP-based lateral collision warning system and real time operates with 

30fps. 
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Chapter 5 Lane Departure Warning System 

5.1 Introduction 

In order to improve the driving safety, a lot of researches about the intelligent 

transportation systems (ITS) have been proposed in recent years. The Advanced 

vehicle control and safety system (AVCSS), one part of the ITS, contributes to 

prevent the driver in danger, and efficiently controls the traffic flow combining the 

distinct fields of technology, such as sensor, computer, and electrical engineering. 

Within this chapter, we focus on concerning the applications of the smart vehicles. In 

general, it is so necessary to acquire the information about the lane tendency while 

driving on the way. 

 Due to the inattentive driving, the driver may deviate from the correct lane 

orientation, which induces the traffic accidents. As a result, the lane detection system 

plays a significant role about improving the driver’s safety in a moving vehicle. For 

cost and performance consideration, a camera is chosen as our sensing device for 

providing the abundant information. The vision-based system with cameras can be 

captured and processed the real-time images of road. Many approaches have been 

proposed about the lane detection algorithm by developing the image processing. 

More explanation of their techniques will be introduced in the next section. 

 

5.1.1 Previous Work 

The ARGO system [49] proposed at the University in Parma, Italy is aimed to 

develop the autonomous vehicle that could drive on highways and rural roads. In the 

GOLD system [50], the IPM (inverse perspective mapping) architecture is constructed 

to remove the perspective effect by mapping the road image into the top view. 
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Moreover, this algorithm can detect the lane markings depending on the feature of the 

contrast and lane-width with the road plane, which may fail when the assumption of a 

flat road is not valid. Based on the GOLD system, Jiang et al. [51] models the lane as 

two straight lines to estimate the inclined angel on the degree of non-flat roads. 

However, the road shape is not usually straight in realistic conditions. Based on the 

lane geometry, some geometric model-based lane detection techniques such as 

polynomials and splines can fit the lane trajectory more than the model of straight 

lines. Wang and Teoh [52] [53] have proposed the deformable road models to track 

the lane curvature without any camera’s parameters. But the searching speed of those 

correlated methods is slower while finding the new control-point in each frame. Jung 

[54] has developed the parabolic lane boundary model to approximate the lane 

boundaries by the combination of the edge function. This technique only demands the 

low computational power but has the difficulty in porting on other platform except for 

the PC due to the fitting process. To extract the lane shape in the nighttime, Fu [55] 

used the vision-based driver assistance system to enhance the driver’s safety at night 

with the preprocessing of camera calibration. 

 

5.1.2 Principles of Lane Detection and Lane Departure Warning 

The objective of lane detection method we expected in this thesis is to extract 

the lane-marking without knowing the internal or external parameters of the camera 

alongside the vehicle in advance. Besides, the sensitivity of the image sensor easily 

disturbed by the light condition must be suppressed as much as possible. Therefore, 

developing an adaptive lane-finding system is essential to satisfy the previous 

demands. First, our system can automatically extract the ROI contained by the road 

surface only by the image content despite the unknown environmental information of 

camera. Second, the preprocessing tasks will be able to effectively restrain the noise 
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when driving in the nighttime. Through the property for the view-angle of blind spot, 

the improving edge operator will be added to acquire the clear lane boundary. Not 

depending on the distortion of the camera lens which results in the obviously curved 

lane trajectory even if people drive on the straight road, a piece-wise edge linking 

model will be developed to mark all information of lanes shown in the image 

sequence. 

The part for lane departure warning is to provide some triggers for caution with 

respect to the driving-off-road behavior through the lateral information of the lane 

extracted by the lane detection algorithm. After measuring the lateral velocity from 

the consecutive frames, the warning system will determine when the departure driving 

occurs based on the lateral displacement and TLC (time to lane crossing.) 

 

5.2 Lane Detection 

Fig. 40 shows the flow chart of lane detection. At the beginning of this 

architecture, because we merely aim at the monochromatic information of each frame 

to process, the RGB coordinate will be transformed into the YCbCr one so that the 

illumination component will be totally retained. Then, the automatic mechanism about 

searching the ROI (region of interest) of the image content and de-noising will be 

described in Section 5.2.1. 

Next to the processing step, the flow will enter the principal detection parts. Due 

to the mounting position of camera on the side of the car, the image captured by that 

device will contain most of the lateral-view information next to the wheels. In other 

words, only one lane trajectory which is the most closed to the vehicle can be 

apparently seen. An edge detection operator will be developed to adapt to the 

geometry relationship of the camera based on the property of view-angle in section 
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5.2.2. In addition, the binarization step we proposed in this section will depend on the 

spatial relation with respect to the perspective effect. To eliminate the blind-spot 

region as much as possible, we choose the fish-eye camera for enlarging the field of 

view with some obvious distortion result. Therefore, the adaptive edge-linking model 

demonstrated in section 5.2.3 will overcome the serious problem whether the lane 

boundary in the image sequences is straight or not. 

 

5.2.1 Preprocessing 

Automatic ROI Extraction 

Before discussing how to search for the lane-marking, the step of color 

transformation must be executed. In general, most of the algorithms shown in the past 

theses with respect to lane detection are only considered the grey-level component. 

This reason is that the contrast between the lane boundary and the normal road plane 

can be easily seen by normal people as usual even if the colors of lanes are not 

necessarily the same. As a result, the information of luminance for each frame must be 

stored in our system by the RGB-to-YCbCr transformation. On the other hand, the 

remaining chrominance components such as Cb and Cr are not taken seriously due to 

the insensitive perception about human eyes. The formulation of transformation can 

be described by 
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Fig. 40: The flow chart of lane detection 

 

As shown in Section 2.3, equation (1) and (2) tell us the relationship of 

geometric transformation which demands the known information of camera, such as 

the height, pan-tilt angle, and the internal focal-length of the camera, between the 

image coordinate and the vehicle coordinate systems. Some methods proposed in the 

previous works have to compute the curvature of the realistic road plane or to estimate 

the lane shape effectively by these intrinsic or extrinsic parameters. However, an 
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adaptive system can not be sensitive to the variation of the camera mounting position 

for the aspect of application and commerce. For instance, the systematic performance 

should be not influenced by the distance between from the rear-view mirror and the 

road surface about various vehicles. 

To take this target, we hope that our detection algorithm can automatically 

determine the ROI (region of interest) contained the whole lane trajectory on the road 

surface only by the image content with lateral view-angle. The chosen range of ROI 

should be unchanged by the later information of image sequences whether some new 

moving objects are captured or not. Fig. 41(a) demonstrates the realistic frame 

acquired by the camera alongside the side mirror. Through being concerned about the 

image content, the fixed parts within it might be regarded as the evidence for ROI 

extraction. In our opinion, the sideward car body with constant area throughout the 

image sequences and the horizon relative to the road plane both correspond to the 

fixed condition. Therefore, the approximately location of ROI will be determined by 

the edge information of them. 

The definition of ROI is that a rectangle region which extends its width to the 

location next to wheels contains all the lane shapes in the image. In general, the height 

of ROI is below the vanishing point situated in the horizon closed to the border of the 

vehicle’s window. This 2D geometry with respect to the above characteristics can not 

depend on the light condition or view-angle of the camera. 

Fig. 41(b) shows the location of the upper left point of ROI between the 

boundary of the window and the vanishing point. In this figure, the portion of the 

green rectangle is shown as ROI, and the intersection of the marking cross stands for 

the key point to determine where the range of ROI has covered. In this case, the 2-D 

gradient operator will be used to extract the position of key point by considering the  
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(a)               (b) 
Fig. 41: (a) The image acquired by the camera alongside the rearview mirror. (b) The upper left point of 

ROI next to the boundary of the vehicle window. 

 

boundary information of the vehicle window. Hence, we use edge detection in section 

4.2.3 due to the obvious edge of the window in the horizontal and vertical aspects.  

Fig. 42 displays the results of edge detection with Gx and Gy. After extracting 

the border of the window from Fig. 42 (b) to Fig. 42(d) with the threshold, the 

coordinate values of the key point in the x- and y- axis will be founded to determine 

the range of ROI by computing which row and column retain the most edge pixels 

along the horizontal and vertical direction individually. This process can be expressed 

as: 

(30) 

 
 

(31) 

 

The ratio of w to the image width is closed to 0.5, and that is the same case as 

the ratio of h to the image height. Due to the more edge pixels naturally existed along 

the horizon in the horizontal axis and the perpendicular border of the vehicle in the 
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vertical axis, an intersection point of the car window can be found out by searching in 

the x-y direction respectively. The detecting results with different light conditions and 

view-angles are shown in Fig. 43.  

Although the horizontal border of the vehicle window may be unclear in the 

worst conditions which the illumination from the car and street light has not adequate 

at night, the extracting result is still steady since the edge information of horizon can 

be replaced to obtain the similar position in the x-axis, as shown in Fig. 43(c) and (d). 

 

   

(a)        (b) 

 
(c)        (d) 

Fig. 42: (a) Original image. (b) Edge detection by Gy. (c) Edge detection by Gx. (d) Edge detection by 

Gx+Gy. 
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(a)                              (b) 

 

(c)                           (d) 
Fig. 43: (a) Day light. (b) ROI extraction of (a). (c) ROI extraction at night. (d) ROI extraction with 

different view-angle in the nighttime. 

 

De-noise Processing in Spatial and Temporal Domain 

The quality of image sequences collected by the vision-based sensing device 

will be almost subjected to this challenge of the variance of the light conditions, such 

as day or night situation. Because the problems about high-frequency noise will be 

serious for some driving environment due to the photosensitivity of cameras, 

especially on night vision. Therefore, the preprocessing step for eliminating the noise 

effect must be considered in the detecting architecture if the system is expected to 

work robustly all day long. 

In general, a low-pass filter can be implemented before the process which is 

used to extract the information about the boundary, texture, or shape of the interesting 

objects within the frame. Since the frame is stored as a collection of discrete pixels, 
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we need to produce a discrete approximation to the chosen filter-type before the 

convolution step. Hence, the Gaussian smoothing operator which is a 2-D 

point-spread function achieved by convolution is used for this de-noising task in our 

system. The isotropic form of Gaussian is shown as below: 

(32) 

where σ is the standard deviation of this function. 

The diagram of this distribution is shown in Fig. 44(a). Moreover, this function 

has been assumed with a zero mean. In principle, the Gaussian distribution is 

non-zero everywhere, but its value is closed to zero more than about three standard 

deviations from the mean centered at the distribution. Therefore, we can truncate it as 

the mask-type at the specific pixel of each frame. Fig. 44(b) shows a suitable integer 

valued convolution mask of Gaussian where σ =1. The Gaussian filter outputs a 

weighted average of the neighborhood of each pixel. It can provide gentler smoothing 

and preserves edges better than the normal-sized mean filter due to the distinct size 

between 5x5 and 3x3. On the other hand, by choosing an appropriately size of 

Gaussian filter determined by the standard deviation, more range of spatial 

frequencies is still preserved in the image after filtering because its Fourier form is 

itself a Gaussian. However, over-wide region contained in the filter will result in the 

serious blur effect of the image content. Therefore, the 5x5 principal type of Gaussian 

mask is still adopted in this part. 
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     (a)                                 (b) 

Fig. 44: (a) 2-D Gaussian Distribution with mean(0,0) and σ =1. (b) Suitable 5x5 mask of Gaussian 

filter with σ =1. 

 

Some results of edge detection which describes the details in the next section is 

preprocessed by Gaussian and Mean filter as shown in Fig. 45. Compared with (c) and 

(d), the extracting method of the lane boundary will be easily disturbed by the 

remaining noise if the smoothing filter can not effectively remove the high-frequency 

perturbation.  

  

 
(a)        (b) 

 
(c)        (d) 

Fig. 45: (a) Mean filter. (b) Gaussian filter. (c) Edge detection after (a). (d) Edge detection after (b). 

 



 

79 

Salt and pepper noise which exist in spatial and time domain is more 

challenging for the preprocessing tasks, especially the night environment. To achieve 

the objective that the effect of the proposed lane detection method in this thesis must 

be independent on the variation of external light conditions, the time-averaging 

process focused on the current and previous frames will be added behind the Gaussian 

smoothing work. The integrated de-noising procedure is demonstrated in Fig. 46. 

 

 
Fig. 46: Flow chart of the complete preprocessing steps. 

 

5.2.2 Lane Boundary Detection 

 Edge Detection 

The objective in this section is to find the features of lane marker from the 

information of image. Through the observation, lanes must have some apparent 

properties about its boundary. The most obvious reason of them is that the lane 

markers must be brighter than the neighborhood road surface even if they are with 

various color information. Then, the lane shapes in the image are almost presented as 

slender types. In other words, extracting the lane boundary is an important step to 

locate the realistic lane position throughout the video by the foregoing two factors. 

The determination of the edge detection operators needs to be considered the 

suitable and effective performance for the image contents, so we use the 

HVS-Directed object edge detection discussed in sector 4.2.3. 

The preprocessing 

work 
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By further observing the property of blind-spot view image from the camera 

alongside the rear-view mirror, the included angle from the edge of lane to the vertical 

Y-axis of the image plane must be within the range of degree 0  to 90o o , and therefore 

we can use the angle evaluation method in sector 4.2.4 to sort out the data wanted. 

According to the result from Fig. 47(d), only the intra-boundary of the lane can 

be extracted, and this property will contribute to link the lane trajectory described in 

the later section.  

  

 
(a)                               (b) 

  

 
                (c)                               (d) 

Fig. 47: (a) The original image. (b) Gaussian smoothing within the ROI of (a).(c) Result of LoG mask. (d) 

Result of the new combined mask.  

 

The morphological post-procedure is to thin out the lane-marking after the edge 

extraction. There are two conditions determining which the pixel can be retained in 

the image: 
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if         I(k)=255   AND   I(k+1)=255
            I(k+N)=0      where N is a little larger than 2
else if  I(k)=255   AND    k>P(i)
            I(k)=0           where P(i) is the point corresponed to 

⇒

⇒ the lane boundary of the row
else
            I(k)=255⇒  
 

The edge-finding approach to determine the location of P(i) will be introduced 

in section 5.2.3. 

 

 Adaptive Threshold Determination by Distinct Spatial Region 

The pixels within the ROI can be extracted for the image processing tasks in our 

system. According to the perspective geometry, the length or the width of the lane 

markers within ROI is not the same with each different position. In other words, the 

lane boundary in the bottom part of ROI is always wider and longer than that in the up 

part. By considering the transformation effect, the adaptive mechanism is developed 

to adjust the threshold for different sub-regions, and the size of them depends on ROI. 

After processed by edge extraction, the image needs to be decided the threshold 

for more obvious detecting result. Due to the evidently contrast between the lane 

markers and the neighborhood road surface, the gradient magnitude of lane boundary 

caused by the edge operator is usually larger than other locations. Therefore, in this 

section the values of mean and standard deviation computed by each row within the 

ROI will be selected as the threshold for different region. 

Take the normal distribution for example, the range which contained the 

distance for one standard deviation from the mean will account for about 68% of the 

whole set. Besides, the range will account for about 95% if it contains the distance for 

two standard deviations from the mean. For each row within ROI in the image, the 
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threshold value is still selected by referencing above scattered property since the 

gradient magnitude of lane markers is certainly higher than that of the normal road 

surface. That is, 

 

(33) 

 

The performance of the binarizing approach may be dependent on the edge 

information of the adjacent moving vehicles close to the lane or the car-light of them, 

especially the upper part of ROI which can not contain adequate component of the 

magnitude of lane. Hence, the ROI will be divided into seven sub-regions when it is 

automatically extracted in the first frame of video, as illustrated in Fig. 48. 

 
Fig. 48: The division of ROI into seven sub-regions. 

 

height of ROIWhere size= , N: number of segments (we choose 7 in this system)
N-1

 

In this way, the values of thresholds situated in different location are selected by 

i (0, width of ROI) i (0, width of ROI)
( ) Mean ( , ) Standard deviation ( , )

where
           k=2
           j : j-th row of ROI
           ( , ) : the value of each pixel within ROI after th
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tuning the mean value of each-row pixels and the arrangement of magnitude for them 

are from the bottom to the top sub-region, as described in the following: 

 

 

(34) 

 

 

 

                   (a)                         (b) 

 

(c) 

Fig. 49: (a) The image is photographed in a tunnel. (b) Lane-marker extraction without considering the 

sub-region threshold. (c) Lane-marker extraction with considering the sub-region threshold. 

Fig. 49(a) shows an imaging environment about driving in a tunnel. The original 

lane boundary in the upper region is not easily seen due to the disturbance of the 

car-light from the backward vehicle, as shown in Fig. 49(b). This overexposure effect 
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will be improved by considering the tuning parameter (α ) in Fig. 49(c). 

 

5.2.3 Lane-Finding Algorithm 

Since the edge information of lane markers has been acquired by the foregoing 

demonstration, marking and tracking the lane trajectory within ROI can be succeed by 

such pixels lying on the sides of lane boundary in the image. There have been some 

researches for lane-model construction. Y. U. Yim and S. Y. Oh [57] use the starting 

position, direction, and saturation of the lanes regarded as the three features to 

initialize the lane vector and find the most probable lane trajectory by Hough 

Transform. Roland Chapuis [58] uses the statistical model to specify the detection 

ROI in order to narrow the searching area of lane markings. Different from the 

method merely about the image processing, the lane geometry is taken into the fitting 

of the lane model provided by A. Lopez [59]. D. J. Kang [60] combines the vanishing 

point of the road from the frontal camera with Hough Transform for lane tracking. 

Based on the objectives for real-time tracking and low-cost computation, a 

piece-wise edge linking model we proposed in this chapter is effective for lane-shape 

marking whether the lens-distortion of camera is serious or not. 

 

 Hough Transform 

The classical type of Hough transform is to identify the edge or boundary of 

lines in the image. This principle is to transform the X-Y coordinate system into the 

r-θ parameter space, where r represents the small distance between the line and the 

origin of the image, and θ is the angle of the locus vector from the origin to this 

closest point. The relationship of the transformation about two coordinate systems is 

shown in Fig. 50. According to equation (39) from this figure, they can determine if 

the point A and B are collinear with the same r and θ. Besides, equation (40) is to 
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determine if the line segment formed by A and B is collinear with that formed by C 

and D by judging the condition that the parameter d is smaller than a threshold. 

1 1 2 2cos sin cos sinr x y x yθ θ θ θ= ⋅ + ⋅ = ⋅ + ⋅
                   (35) 

( cos sin )d r x yθ θ= − ⋅ + ⋅
                                  (36) 

 
 Fig. 50: The diagram of relationship between the x-y and r-θ coordinate systems. 

 

 Piece-Wise Edge Linking Model 

Li [61] and Yeh [62] still apply the Hough transform to track the lane markers 

which can not be deformed in the image captured by the normal camera. However, 

due to the distinct curvature with the fish-eye lens, it is impossible to take Hough 

transform into our system. Hence, the novel approach for lane modeling needs to be 

considered the geometric effect of ROI and the connectivity of the lane markers with 

robustness and adaptation. 

The flow chart of the piece-wise edge linking model is shown in Fig. 51(b).  

Θ
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                 (a)                               (b) 

Fig. 51: (a) Seven sub-regions automatically segmented within ROI. (b) the flow chart of the piece-wise 

edge linking model. 

 

 

                 (a)                               (b) 

Fig. 52: (a) Seven sub-regions segmented within ROI. (b) the flow chart of the piece-wise edge linking 

model. 

Fig. 52 shows the two different size of ROI is caused by the variation of the 

intrinsic and extrinsic setting of camera. In general, the width of ROI depends on the 

yaw angle of camera, and the height of that depends on the pitch angle or the distance 

from the mounting position near the rearview mirror to the road plane. Although those 

parameters can not be taken in our system, we still find the property that the lane 

boundary in the image must extend to the upper-left part of ROI even if the lateral 

position estimated from the lane marker is not the same through the image sequences. 
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By using the perspective effect that lane markers almost converge near the 

region of vanishing point, the included angle from the diagonal of the ROI to the 

vertical boundary of that can be determined the maximum searching range of angles 

for Hough transform. This mechanism will be regarded as the initial step in the 

piece-wise linking model as shown in Fig. 51(b). To overcome the irregular curvature 

of lane trajectory from the fish-eye lens distortion, the seven sub-regions 

automatically segmented in Fig. 51(a) contribute to fit the edge pixels of lane since its 

boundary information contained in it can be regarded as the line-shape. Therefore, the 

principle of Hough transform described in section 3.4.2 is directly used for the bottom 

sub-region (A) as demonstrated in Fig. 53. The details of parameters in Fig. 53 and 

Fig. 54 are explained as follows: 

 

St_X, Ed_X:  

The coordinate values of x-axis in the bottom and top border of the sub-region 

are determined by Hough transform. Ed_X situated in the bottom border of the next 

sub-region, such as the same location as the bottom border of sub-region (B) and the 

top border of sub-region (A), can become the fixed point for searching the line edge 

pixels only by the angle θ as the flow chart in Fig. 54. 

SkipTh: 

Its size depends on the vertical pixel-width of the sub-region (A) in Fig. 53. For 

some circumstances like the rapidly lane changing maneuver, the lane marker may  
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Fig. 53: The flow chart for finding the line-shape in the bottom sub-region (A). 

 

 
Fig. 54: The flow chart for finding the line-shape in sub-regions from (B) to (G). 
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be discontinuous for each sub-region in the image. The threshold is to control when 

the lane modeling procedure is performed and observe if the edge pixels in the bottom 

sub-region (A) have adequate amounts to composite the lane trajectory. 

KeyAngle, RegAngle, THq , 2THq , δ, Δθ, Lw: 

KeyAngle and RegAngle are the angles about appropriate orientation of line 

boundary in sub-regions induced by the current and previous frame. Based on the 

connectivity and continuity of lane markers on the road surface, THq  and 2THq  are 

the thresholds to limit if the difference between KeyAngle and RegAngle is small 

enough. In addition, 2THq  must be smaller than THq  since the searching angles 

with sub-region (B) to (G) is restricted by the previous detecting results from the 

bottom sub-region (A). δ and Δθ are the slight range for detection with Hough 

Transform from sub-region (B) to (G) where the computation power can be reduced. 

At last, Lw is a revised parameter to restart the seeking area in the x-axis when the 

number of line pixels is zero in Fig. 54. 

To simply the geometric circumstance that the distance between the vehicle and 

lane trajectory with some curvature in the image is much different, especially the 

effect of fish-eye lens distortion, we use LSR (least square regression) to make the 

curved a lane boundary approximate a straight line. The LSR can be induced as 

below: 
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Equations (37), (38) can be simplified as 
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                     (a)                                (b) 

Fig. 55: LSR approximation. 

  

According to the parameter information showed in Fig. 55(a), the linear model 

can be constructed by the equations (39), (40). The approximating straight lane 

boundary is displayed in Fig. 55(b), which is directly reflected since the image 

contents acquired by the camera mounted on the opposite side of the vehicle are 
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almost the same except for the reflective property. 

 

5.3  Lane Departure Warning 

Some algorithm has been developed to predict when the driver is in danger of 

departing the road but not annoy the driver sensitively. In other words, extending the 

interval of warning time can receive the more correct driving maneuver, but the 

number of nuisance alarms will increase apparently. Lee [63] and Ruder [64] 

considered that LDW does not necessarily need the precise offset and position 

information from each frame to add the computing load since it only assists the 

human driver and passively responds to the circumstance such as when the 

lane-departure occurs. In order to balance the systematic efficiency and acceptable 

detection rate in our LDW system, only two representative measures are selected to 

trigger the warning message. The two judging conditions are discussed as follows: 

 

(1) Lateral displacement: 

If the lane boundary is excessively close to the vertical borders of ROI, the 

driver will be in danger with higher possibility. We will regard this as a dangerous 

departing behavior even if it may be only someone’s habit of driving. There, the safe 

region which contains the normal lateral offset of lanes is defined as follows. 

⎭
⎬
⎫

⎩
⎨
⎧ ROIROI

5
4,

4
1 :Region Safe

 
 

(2) TLC (time to lane crossing): 

TLC which was first proposed by Godthelp [65], is a measure of the time 

remaining before a vehicle on a given trajectory will depart the road. It can provide 
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more reliable information than the lateral position merely due to the factor for lateral 

velocity can be considered. In our system, the definition of TLC is a ratio of lateral 

offset smaller than the width of ROI to the lateral velocity at the moment.  

The classification for the dangerous degree of warning alarms and the deducing 

process of TLC are explained in details in the next section. 

To prevent the noisy effect such as high frequency variances of the lateral offset 

of lane markers in each frame from measuring error, we take five frames processed by 

lane detection to estimate only one weighted average result for departure judgment 

such like a causal temporal filter. (In practice, there is always one frame only for 

Gaussian smoothing between the two frames used for lane detection in our system. In 

other words, consecutive five numbers of lateral positions occupy about 0.33 seconds 

for 30fps.) The values of weights are {0.22, 0.21, 0.20, 0.19, 0.18} from the present 

and the last four processed frames. The flow chart for TLC computation is shown in 

Fig. 56. 

By the two obvious measures, the degree of departure warning can be classified 

with the color of alarms as the following: 

 

light red : typeAlarm      
else

light yellow : typeAlarm               
else       

lightgreen  :  typeAlarm                
0 Vel &  sec 2.5  TLC if       

5
4,

4
 1 :region safe  theinside isoffset  lateralcurrent   theif

≠≥
⎭
⎬
⎫

⎩
⎨
⎧ ROIROI
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Fig. 56: The flow chart for TLC estimation. 

 

5.4 Experimental Results 

Fig. 57 shows that a fish-eye camera is mounted under the rear-view mirror on 

the side of the vehicle to acquire blind-spot view image sequences. In addition, the 

driver can immediately obtain the sideward information of road surface by the CRT 

which displays the real-time image sequences from the outside camera. 
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Fig. 57: The experimental architecture. 

 

Table 11: Specification of platform information 

CPU Intel T5600 1.83GHz 

Memory 1GB DDR2 RAM 

Compiler Borland C++ Builder 6.0 

OS  Microsoft Windows XP 

Resolution 320x240 

Frame rate 30 FPS 

 

Fig. 58 shows the realistic programming interface in the PC platform. Block (A) 

contains the input frame which is added the approximating straight lane boundary by 

LSR, as explained in Chapter 3, in the left part; the center part of (A) shows the result 

of lane detection method with ROI extraction; the right part of (A) which shows the 
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binarizing lane boundary only includes the image contents within ROI. 

 

 
Fig. 58: The programming interface in the PC platform. 

 

Block (B) contains the display of the related lateral information computed by 

LDW system. The warning alarms with different colors of lane of LDW and 

drowsiness estimation systems is contained by Block (C), where the coordinate values 

about the border of ROI are also included. Block (D) shows the searching range of 

angles about the piece-wise edge linking model, and the output frame rate which 

responds to the systematic performance. At last, Block (E) records the lateral offset 

and the maximum and minimum range of the reconstructed stable-driving distribution 

with real-time update. 

 

 Explanation of Experimental Conditions 

The driving environment is focused on highway with different light conditions. 
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The image sequences captured by the camera with unknown two pan- or tilt-angles 

are tested with the same lane detection algorithm in Fig. 59. At the same time, in order 

to observe if the lane-based warning system can maintain robust performance and 

tolerate the light variation, we select the video segments with three different periods, 

daytime, evening, and night of one day for experiment in the next section. 

 

Fig. 59: The testing image with different mounting angles. 

 

 Results of Lane Detection 

In Fig. 60, the testing environment considers the two properties with respect to 

the view-angles and light conditions simultaneously. The detection results of daytime 

(a), evening (b), and night (c) are processed by the same programming setting. 

In Fig. 60 (c), the lane boundary can be clearly extracted in the nighttime 

driving environment even if the side-view of vehicle usually has more chances to 

subject to the perturbation from the exterior light-sources.  

 

 Results of Lane Departure Warning 

If the lane boundary is locked precisely by the lane detection mechanism, the 

lane departing maneuver can be tracked and recorded its position whether the lateral 

speed is faster or not. Fig. 61, Fig. 62, and Fig. 63 show the tracking results of the 

lane departure with different variations of light and moving direction of the vehicle. 
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(a) 

 

(b) 
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(c) 

Fig. 60: The results of lane detection. 

 

 

# Frame 3293               # Frame 3299 
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# Frame 3305               # Frame 3310 

 

# Frame 3316               # Frame 3334 

 

# Frame 3385               # Frame 3388 

Fig. 61: The results of lane departure caused by cutting into the inside lane. 
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# Frame 693                  # Frame 718 

 

# Frame 733                  # Frame 746 

 

# Frame 787                  # Frame 818 

Fig. 62: The results of lane departure in the night time. 
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# Frame 3689             # Frame 3701 

 

# Frame 3740             # Frame 3776 

Fig. 63: The results of lane departure caused by moving into the outside lane. 

 

5.5  Summary 

In order to increase detection rate of LDW and drowsiness estimation system, 

the lane detecting error must be low as much as possible even if this algorithm is 

always subjected to the disturbance resulted from external factors. In Fig. 64, the lane 

markers can be still extracted by our developing method although they are unclear. 

However, the lane detection method we proposed in this thesis can not resolved some 

cases such as driving in a tunnel so that the contrast between lane markers and road 

surface is not enough, as shown in Fig. 65(a).  
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Fig. 64: Results of lane detection for the unclear lane markers. 

 

 

(a) (b) 

 

(c) 

 Fig. 65: Some examples of detecting error in our lane detection system. 
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In addition, as explained in section 5.2.1, the range of ROI can be detected by 

the boundary information of the car window and that of the horizon in the image. But 

this property may be not suited to the environment which does not only contain the 

above clues for ROI extraction but be affected by the light conditions, such as the 

example shown in Fig. 65 (B). On the other hand, the external light in the nighttime 

has chance to produce a “light ring” effect on the camera lens which may cause the 

deviated parting position of the detected lane markers in the image instantaneously, as 

shown in Fig. 65(c). 
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Chapter 6  Driver Assistance Alarm System 

The lane departure warning system is to provide some triggers for caution with 

respect to the driving-off-road behavior through the lateral information of the lane 

extracted by the lane detection algorithm. After measuring the lateral velocity from 

the consecutive frames, the warning system will determine when the departure driving 

occurs based on the lateral displacement and TLC (time to lane crossing.)  

On the other hand, the part for drowsiness prediction will try to combine the 

experimental results of BRC (Brain Research Center) from NCTU with the realistic 

driving video. In order to estimate the lateral location of lane where the driver gets 

used to navigate on the straight road, we construct the single Gaussian model to 

simulate the stable-state range about the lane position. Then, the additional updating 

mechanism will contribute to the systematic adaptation even if the driver changes 

his/her driving habits. At last, the proportional gauge of the drowsy degree we 

proposed will show if the driver has higher or lower probability in the drowsy state at 

that moment with the amount of reflection time measured by the lane position over 

the stable-state region. 

 

6.1 Drowsiness Estimation 

In recent years, preventing accidents caused by drowsiness has become a major 

focus of active safety driving. The major challenges in developing a real-time system 

for drowsiness prediction include: 1) the lack of significant index for detecting 

drowsiness and 2) complicated and pervasive noise interferences in a realistic driving 

environment. Therefore, the BRC (Brain Research Center) in National Chiao Tung 

University has developed a drowsiness-estimation system based on 
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electroencephalogram (EEG) to estimate a driver’s cognitive state when he/she drives 

in a virtual reality (VR)-based dynamic simulator. The definition of the driving error 

in this experimental environment is the deviations between the center of the vehicle 

and the center of the cruising lane in the lane-keeping driving task.  

In this section, the system architecture of BRC will be introduced in section 

6.1.1. The relationship between the reaction time and driver’s drowsiness will be 

explained in section 6.1.2. Before trying to reasonably and effectively integrate the 

measuring result from the VR-based driving environment into the lane detection 

system in this thesis, some changeful factors of the realistic image-based system must 

be discussed. In section 6.2.1, a stable-state range can be constructed to determine the 

lane’s lateral position where someone gets used to driving in a straight road-path for a 

long time. Then, a gauge of the drowsy degree successfully combine the experimental 

result evaluated by the EEG-based analysis [66] with the realistic and dynamic LDW 

system successfully is proposed in this thesis, as described in section 6.2.2. Finally, in 

order to adaptively extend the experimental framework to the practical driving 

environment, we estimate the average velocity within the interval of reaction time by 

deducing the ratio of the lane-width on the realistic road plane to that in the video, as 

explained in section 6.2.2. 

 

6.1.1 Experimental Architecture of BRC 

In general, measuring the precise data for human consciousness in dynamic 

driving environment is not easy. There may be some perturbations from the external 

noise or suddenly interference caused by the traffic variations affecting the data 

accuracy. In other words, strict training of human operators by the actual machines or 

vehicles in real sites not only has high demands in space, time, and money to perform 

such a training job, but also leads to another phase of the measuring problem. To 
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overcome the above dilemma, the worldwide trend is to use the virtual-reality (VR) 

technology to meet the requirements of public security in training and censoring of 

human operators. It can provide a realistic safety environment, which allows subjects 

to make on-line decisions by directly interacting with a virtual object rather than 

monotonic auditory and visual signals. Besides, VR is also an excellent candidate for 

brain research on real-time tasks because of its low cost, saving time, less space, and 

condition control to avoid the risk of operating on the actual machines, and thus 

extends the applications of possible brain computer interfaces to general populations. 

 

 
Fig. 66: The VR-based dynamic driving simulation laboratory. 

 

 
Fig. 67: The details about the width information of each lane, road, and car. 

The experimental environment constructed by BRC is shown in Fig. 66. The 
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VR-based four lane highway scene is projected on a 120 degree-surround screen 

(304.1-cm wide and 228.1-cm high), which is 350 cm away from the driving cabin. 

The four lanes from left to right are separated by a median stripe. The distance from 

the left side to the right side of the road is equally divided into 256 points (digitized 

into values 0-255), where the width of each lane and the car is 60 and 32 units, 

respectively. The frame rate of highway scene is 60 fps. All the descriptions are 

depicted in Fig. 67. 

 

6.1.2 Predictive Mechanism for Drowsiness Effect 

Before executing the experimental step, we have to find the relationship 

between the measured EEG signal and the subject’s behavior performance. One point 

should be taken as a quantified index as the deviation between the center of the 

vehicle and that of the cruising lane [67]. By examining the video recordings, the pilot 

experimental studies show that when the subject is drowsy, the driving performance 

will decrease and vice versa. In this experiment, the subjects participated in the 

highway-driving simulation after lunch in the early afternoon when the alertness may 

easily diminish within one-hour monotonous working [68].  

All the subjects were instructed to keep the car at the center of cruising lane by 

controlling a steering wheel. In all sessions, the subjects drive the car continuously for 

60 minutes and are asked to try their best to stay alert. Participants then return on 

different days to complete a second 60-minute driving session or more if necessary. 

To mimic the consequences of a non-ideal road surface, the car is randomly drifted 

away from the center of the cruising lane every 5 or 10 minutes. So the driver must 

maintain high attention to immediately correct the direction of vehicle in the cruising 

lane due to the 60 pixels per second for the deviating velocity. When the driver is 

drowsy, the reaction time between the onset of deviation and steering wheel is 
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increased. This event can be used for ERP analysis of different drowsiness states 

using 30-channel EEG signals [66].  

In general, the reaction behavior should be increasingly slower when people 

start to enter the drowsy state. In other words, the higher possibility for the 

measurement shows that the subject is drowsy when his/her average reaction time is 

gradually longer in a section of time interval. To avoid the fluctuation of drowsiness 

signal, the measured data for reaction time must be smoothed by a causal 90-second 

square moving average filter advancing at 2-seconds steps. The experimental trials are 

sorted according to the length of reaction time and equally divided into five groups as 

the index for drowsiness estimation in Fig. 68, where each group has 20 percentages 

of trials in order. This statistics evaluated by the EEG analysis [66] can be regarded as 

the reference implemented into our vision based lane departure warning system. 

 
Fig. 68: The trials collected from the VR-based experiment are sorted according to the degree of reaction 

time. 
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6.2 Driving in Danger Analysis 

6.2.1 Construct the Stable-Driving Region with Different Driver’s Habit 

According to the above experimental condition, the definition of reaction time is 

the duration between the onset of deviation and the occurrence for steering-wheel. 

Subjects have to move the vehicle’s center back to the cruising lane to wait for the 

next testing deviation produced by the computer when they have been informed in 

advance. However, the restarting action is not easy to be determined due to the 

variation of different driving habits, especially the loose drivers which have a larger 

spread in lateral position so that the distance between the wheel and lane marker can 

not exactly fixed in the straight-road driving [69]. Therefore, the algorithm to extract 

the stable-state driving region must be developed before constructing the drowsiness 

estimation mechanism.  

The standard for stable-state range determination is described as below: (1) the 

lateral position of lane markers within this region should be close to each other; (2) 

the TLC is larger; (3) The lateral offsets found by the LDW system in section 5.3 must 

be situated in this region for a long period. 

According to the above properties, first of all, we take the lateral offsets with 

larger TLC about consecutive N frames processed by the LDW system. Second, by 

the previous statistics, the mean and standard deviation estimated by them with the 

clustering method are used to model the stable-state region as a normal distribution. 

At last, the updating method is developed to adjust the size and location of the range 

to the changed driving habit for a driver. The flow chart for stable-state region 

determination is demonstrated in Fig. 69. 

To rapidly and precisely find out the optimal parameters of each normal 

distribution, we choose k-means to initially classify the statistics of N lateral offsets.  
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Fig. 69: The flow chart for stable-state region determination. 

 

The error function which determines the clustering center point of each group is 

shown as follows: 
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In Fig. 69, μ is the mean value of each distribution; δ is the standard deviation 

of each distribution; w is the weight determined by the probability of each group. 

After initializing for each distribution model, we find that the N lateral offsets can be 

approximately modeled by only three normal distributions, which are respectively 

located on the points nearby the mean value and 1.5 standard deviations with high 

probably, as shown in Fig. 70. Therefore, we choose K=3 as the initial clustering 

numbers. 

Not the same as the adaptive background model [70], the human habit can last 

within a steady behavior style for a long time. Based on this psychological property, 

we only use a single normal distribution with some update mechanism to model the 

adaptive stable-state driving region to avoid its unreasonable fluctuation. Updating  
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Fig. 70: The distribution of N lateral offsets and three approximately Gaussian model (N=200 in this 

Figure.) 

 

the parameters of the stable-state model can adapt to the changed driving habit if the 

lateral offset is within 2.25 standard deviations of this distribution. The parameters of 

the distribution which matches the new observation for human habit are updated as 

follows: 
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By observing equation (49), the influence for this stable-driving distribution will 
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be unapparent when the distance between the current lateral offset and the mean value 

of the model is so far. This property can effectively maintain the stability of this 

region. 

 

6.2.2 Data Collection and Adjustment for the Realistic Environment 

After selecting the suitable driving region for the driver, the experimental 

statistics evaluated by EEG analysis from BRC can be integrated into our lane 

departure system. Not the same as experimental condition which stipulated that the 

reaction behavior can be increasingly slower when the subject starts to enter the 

drowsy state by observing the trend of reaction time for a long period (about 90 sec), 

the demand for drowsy estimation mechanism in our system should provide a 

real-time prediction if the driver is still on the alert. Therefore, we design a gauge 

chart to estimate and display the current driver’s drowsy degree as much as possible, 

as shown in Fig. 71 (b). 

In Fig. 71 (a), the difference in lateral offset between (B) and (C) is 52.45 pixels, 

the mean value (A) of stable-driving region is located at pixel value of 123.23, and the 

reaction time counted from (D) and (E) is 1.65sec, as shown in Fig. 71 (c). 

As described in section 6.1.2, the definition of reaction time is the time interval 

of deviation between the center of the vehicle and that of the cruising lane in the 

VR-based experimental environment. In other words, the value of deviation can be the 

same as the lateral offset between the car-body and the lane marker in our 

vision-based system. By the known stable-driving region determined in section 6.2.1, 

the drowsiness estimation system can apply to drivers with different driving habits 

without directly selecting the unchanged center part of ROI, such as the restarting 

mechanism of BRC. Therefore, the count of reaction time starts when the lateral offset 

of lane marker deviates outside the stable region, and stops when the driver turns back 
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the steering wheel exactly in our system. However, since we judge the reactive 

behavior only by the image contents, the backward motion must be confirmed by the 

criterion that the direction of the lateral velocity keeps identical until the lateral offset 

is within the stable region again, as the points (D) and (E) in Fig. 71 (d) separately. 

 
Fig. 71: The mechanism for drowsiness estimation in our LDW system. (a) The relationship between the 

stable-state region and the lateral deviations. (b) A drowsy-degree gauge chart. (c) A stable-driving 

group box, (d) The start and stop points of reaction time. 

 

The flow chart for drowsy degree estimation by the reaction time is shown in Fig. 72. 

The discussions about Fig. 72 are described as follows: 

(1) The drowsy degree may be subtracted by 10% if the reaction time is never 

up to 1.5sec for 10sec. This automatic mechanism is based on the VR-based 

experiment of BRC that the computer will automatically produce the deviation 

behavior about 5~10sec. After all, the reactive behavior in drowsy state must be 
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increasingly slower without reducing the alert abruptly.  

(2) The variation of drowsy degree displayed in the gauge chart, as 

demonstrated in Fig. 71 (b), depends on the estimated reaction time of the driver in 

the realistic environment. To avoid the variances in drowsy degree violating the 

nature of human operation, the changeful region for each estimation result is limited 

within plus and minus 20%. 

(3) Use the classified alert and drowsy state in Fig. 68 analyzed by EEG-based 

algorithm as the evidence to determine the cognitive property of the driver in realistic 

environment. 

(4) If the drowsy degree is exceeded 70%, the alarm light with red color will be 

displayed in our system. On the other words, the alarm light with yellow color will be 

turned on if the drowsy degree is exceeded 35% but not up to 70%. Otherwise, the 

green light is showed that the driver is still situated in the safety-state with higher 

alert. 

(5) In general, the lane change maneuver can be not certainly judged as an 

intentional action for driving or an unintentional behavior with the drowsy 

consciousness only by the information of deviations. Therefore, the warning 

mechanism focused on this departing behavior is described as below: 
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Fig. 72 : The flow chart of drowsy degree estimation by the average reaction time evaluated from BRC. 

 

6.3 Summary 

As described in section 6.2.1, the straight-road driving distance between the 

lane marker and wheels can be modeled by the clustered distribution with higher 

weight and smaller standard deviation. For further adaptation, we develop an update 

mechanism to make the stable region adaptive to the changeful driving habits of 

people. Fig. 73 shows the updating process of stable-region described as a statistical 

chart which contains the information of lateral offsets at the same time. From Fig. 73 
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(a) to (d), the mean value of the stable-region will increase obviously due to the 

accumulated lateral offsets which are almost situated over the region and can be 

regarded as the new driving habit of the driver adequately. 

 

 

(a)                          (b)  

 

(c)                       (d) 

Fig. 73: Results of update for the stable-driving region. 

 

 

(a)                            (b) 



 

117 

 

(c)                            (d) 

Fig. 74: Results of the variation of drivers’ drowsy degree by the reaction time. 

 

The relationship between the gauge chart of drowsy degree and the reaction 

time of drivers is demonstrated in Fig. 74. From Fig. 74 (a) to (b), the reaction time 

will start to be counted since the lateral offset is outside the stable-region at that 

moment. Therefore, the drowsy degree can be raised with a specific ratio of the 

measured reaction time to the threshold which has been evaluated by the EGG-based 

analysis from BRC. On the other hand, from Fig. 74 (c) to (d), the drowsy degree 

keeps increasing because the time interval between the current and previous reaction 

time which are both greater than the threshold is not for 10 sec. 
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Chapter 7 Realization on Embedded Real-Time System 

7.1 Introduction 

In the early years of computers, computers were always dedicated to specific 

single function, and it was hard to call computers “embedded” due to the size of 

computers, cost of computers, performance of computers, and power consumption of 

computers. For the ideal to perform high performance, low cost, portability, and long 

battery life with a single function computer, the computer structure of embedded 

systems are designed differently from general-purpose computers. Hence, 

cross-platform development and programming techniques are used for developing 

embedded applications. The cross-platform development framework is shown as Fig. 

75. 

In this chapter, the development environment is divided into three parts. First of 

all, the overall development framework which is cross-platform development 

technique will be described in section 7.2. Second, the hardware specification will be 

described in section 7.3. Finally, the software optimization will be described in 

section 7.4. 

 
Fig. 75: Cross-platform development framework 
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7.2 Cross-Platform Development Framework 

Owing to the lack of available resources on embedded systems, the 

cross-compilation, code editing, code linking, and source debugging are performed on 

powerful host PC. The system software, operating system, and application programs 

are first compiled as object codes. Then the linker on the host links up object codes 

and forms an executable image. Thus we have to understand thoroughly how 

executable images are downloaded to the target embedded systems. Executable image 

can be downloaded via internet, UART (Universal Asynchronous Receiver 

Transmitter), and ICE (In- Circuit Emulator).  

 

7.3 Hardware Environment 

In this thesis, the selected core processor is ADSP-BF561. The evaluation board 

is developed by Analog Devices Inc. The detailed hardware structure will be 

described below. 

 

7.3.1 Introduction to Black-Fin 561 Processor 

The Blackfin Processor family pushes the performance envelope with the 

ADSP-BF561. With two high performance Blackfin Processor cores, flexible cache 

architecture, enhanced DMA subsystem, and Dynamic Power Management (DPM) 

functionality, the ADSP-BF561 can support complex control and signal processing 

tasks while maintaining extremely high data throughput. The ADSP-BF561 is a 

functional extension of the popular Blackfin Processor family and is ideally suited for 

a broad range of industrial, instrumentation, medical, and consumer appliance 

applications—allowing for scalability based upon the required data bandwidth and 
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mix of control, plus signal processing needed in the end product. 

The ADSP-BF561 has two identical Blackfin cores and each core contains two 

16-bit multipliers, two 40-bit accumulators, two 40-bit arithmetic logic units (ALUs), 

four 8-bit video ALUs, and a 40-bit shifter, along with the functional units of each 

core as shown in Fig. 76. The computational units process 8-, 16-, or 32-bit data from 

the register file. All the functional units of each core are described below. 

 

 
Fig. 76: Core Architecture of each ADSP-BF561 Core 

 

The compute register file contains eight 32-bit registers. When performing 

compute operations on 16-bit operand data, the register file operates as 16 

independent 16-bit registers. All operands for compute operations come from the 

multi-ported register file and instruction constant fields. 

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumulation to 

a 40-bit result. Signed and unsigned formats, rounding, and saturation are supported.  
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The ALUs perform a traditional set of arithmetic and logical operations on 16-bit 

or 32-bit data. Many special instructions are included to accelerate various signal 

processing tasks. These include bit operations such as field extract and population 

count, modulo 232 multiply, divide primitives, saturation and rounding, and 

sign/exponent detection. The set of video instructions includes byte alignment and 

packing operations, 16-bit and 8-bit adds with clipping, 8-bit average operations, and 

8-bit subtract/absolute value/accumulate (SAA) operations. Also provided are the 

compare/select and vector search instructions. For some instructions, two 16-bit ALU 

operations can be performed simultaneously on register pairs (a 16-bit high half and 

16-bit low half of a compute register). By also using the second ALU, quad 16-bit 

operations are possible.  

The 40-bit shifter can deposit data and perform shifting, rotating, normalization, 

and extraction operations.  

A program sequencer controls the instruction execution flow, including 

instruction alignment and decoding. For the program flow control, the sequencer 

supports PC-relative and indirect conditional jumps (with static branch prediction), 

and subroutine calls. Hardware is provided to support zero-overhead looping. The 

architecture is fully interlocked, meaning that there are no visible pipeline effects 

when executing instructions with data dependencies.  

The address arithmetic unit provides two addresses for simultaneous dual fetches 

from memory. It contains a multi-ported register file consisting of four sets of 32-bit 

Index, Modify, Length, and Base registers (for circular buffering), and eight 

additional 32-bit pointer registers (for C-style indexed stack manipulation).  

Blackfin products support a modified Harvard architecture in combination with a 

hierarchical memory structure. Level 1 (L1) memories typically operate at the full 

processor speed with little or no latency. At the L1 level, the instruction memory 
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holds instructions, the data memories hold data, and a dedicated scratchpad data 

memory stores stack and local variable information.  

Multiple L1 memory blocks are provided, which may be configured as a mix of 

SRAM and cache. The Memory Management Unit (MMU) provides memory 

protection for individual tasks that may be operating on the core and can protect 

system registers from unintended access.  

The ADSP-BF561 dual cores share an on-chip L2 memory system, which 

provides high speed SRAM access with somewhat longer latency than the L1 memory 

banks. The L2 memory is a unified instruction and data memory and can hold any 

mixture of code and data required by the system design.  

The architecture provides three modes of operation: User, Supervisor, and 

Emulation. The User mode has restricted access to a subset of system resources, thus 

providing a protected software environment. The Supervisor and the Emulation 

modes have unrestricted access to the system and core resources.  

The Blackfin instruction set is optimized so that 16-bit op-codes represent the 

most frequently used instructions. Complex DSP instructions are encoded into 32-bit 

op-codes as multifunction instructions. Blackfin products support a limited 

multi-issue capability, where a 32-bit instruction can be issued in parallel with two 

16-bit instructions. This allows the programmer to use many of the core resources in a 

single instruction cycle.  

The ADSP-BF561 assembly language uses an algebraic syntax. The architecture 

is also optimized for use with a C compiler.  

 

7.3.2 Black-Fin 561 Hardware Structure 

The ADSP-BF561 processor integrates two high performance parallel 

peripheral interfaces (PPIs) and powerful DMA subsystems to stream data directly to 
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and from video encoders/decoders, display drivers, and general-purpose converters. 

The DMA controllers support one- and two-dimensional DMA transfers 

between on-chip memory, off-chip memory, and system peripherals with a 

programmable number of data elements and array stride values. 

 

 

Fig. 77: ADSP-BF561 Block Diagram 

 

7.3.3 Black-Fin 561 Evaluation Board 

The ADSP-BF561 EZ-KIT Lite provides developers with a cost-effective 

method for initial evaluation of the ADSP-BF561 Blackfin Processor for audio and 

video applications via a USB-based PC-hosted tool set. Evaluation of analog audio 

applications is achieved through the use of the AD1836 multichannel 96 kHz audio 

codec. By utilizing the ADV7183A advanced 10-bit video decoder and ADV7179 

chip scale NTSC/PAL video encode, the user is able to evaluate video applications 

such as simultaneous input and output video processing enabled by the dual core 
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architecture of the ADSP-BF561 Processor. With this EZ-KIT Lite, users can learn 

more about Analog Devices’ ADSP-BF561 hardware and software development and 

quickly prototype applications.  

The EZ-KIT Lite includes an ADSP-BF561 Processor desktop evaluation board 

along with an evaluation suite of the VisualDSP++ development and debugging 

environment with the C/C++ compiler, assembler, and linker. It also includes sample 

processor application programs, CE-approved power supply, and a USB cable. 

The VisualDSP++ development and debugging environment, along with the 

USB-based debugger interface that operates up to 12 Mbits/second, enables users to 

perform standard debugging functions (such as read and write memory, read and write 

registers, load and execute executables, set and clear breakpoints, and single-step 

assembly, C, and C++ source code). The evaluation versions of the included software 

tools are limited to use with the EZ-KIT Lite. For faster and unrestricted debugging, a 

family of JTAG emulators and full versions of VisualDSP++ are available separately 

from Analog Devices. [71] 

 
Fig. 78: Black-Fin 561 Evaluation Board 
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7.4 Optimization 

In order to achieve high performance processing capability, we must understand 

the core processor structures that can help optimize performance. In this section, we 

will discuss the optimization, and it can be separated into two parts: system and 

coding. The system optimization is described in section 7.4.1. Section 7.4.2 discusses 

how to tune the C code for BG-561. 

 

7.4.1 System Optimization 

 Memory 

Efficient system resource utilization is critical for developing applications that 

demand high bandwidth on an embedded platform. Systems can often run out of 

bandwidth, even if the throughput requirements are within the limits of the system. 

The critical factors that result in lower than expected throughput, more often than not, 

are external memory access latencies and inefficient utilization of system resources. 

In order to fully exploit the capabilities of an embedded processor, it is important to 

understand its system architecture and the available system optimization techniques. 

This EE-Note serves as a quick reference to Blackfin processor memory hierarchy and 

its system architecture. It also provides guidelines for using several optimization 

techniques to efficiently utilize the available system resources and discusses 

benchmark studies to evaluate and quantify the suggested optimization techniques. 

The Blackfin processor’s memory hierarchy is shown in Fig. 79 and the relative 

tradeoffs between on-chip (L1 and L2) memory and off-chip (external) memory. 

Guidelines are also provided to efficiently map code and data into the memory 

hierarchy to achieve minimal memory access latencies. 
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Fig. 79: Blackfin processor memory hierarchy 

 

Cached memory can provide significant benefits for execution of code and data 

mapped to L2 or external memory. Cache performance depends on the temporal and 

spatial characteristics of the application. The disadvantage of cache memory is that it 

suffers from cache miss penalties, which increases memory access latencies, thus 

increasing external memory bandwidth requirements. Also, for streaming data, cache 

lines must be invalidated when new data is transferred in external memory. 

Invalidating cache lines is expensive and can significantly decrease performance. 

 

 System Architecture 

The Blackfin processor’s system architecture includes the system buses, DMA 

controllers, peripherals, and external bus arbiter. 

The system throughput can be greatly increased by using the maximum bus 

width for every transfer. Using 32-bit DMA access for ADSP-BF561 processors 

combined with packing can free up the system buses for other activities, thereby 

greatly increasing the throughput of the system. For example, the PPI provides 32-bit 

packing for ADSP-BF561 processors. 
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Blackfin processors provide traffic control on all the system buses. If the traffic 

on the bus is switching directions too often, the result will be increased latencies due 

to bank turnaround times. Using the traffic control registers is one of the best ways to 

optimize the system bus traffic, consequently improving bandwidth utilization. The 

traffic period for each of the DMA buses can be specified to group transfers in one 

direction, thereby minimizing bank turnaround times. Fig. 80 illustrates an optimized 

traffic pattern over the DAB bus. [71] 

 
Fig. 80: Optimizing DMA traffic over the system buses 

 

7.4.2 Tuning C Code for Black-Fin 561 

There is a vast difference in the performance of C code that has been compiled 

optimized and non-optimized. In some cases optimized code can run ten or twenty 

times faster. Note that the default setting is for non-optimized compilation, the 

non-optimized default being there to assist programmers in diagnosing problems with 

their initial coding. 

 

 Avoid Float/Double Arithmetic 

Floating-point arithmetic operations are implemented by library routines and, 
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consequently, are far slower than integer operations. An arithmetic floating-point 

operation inside a loop will prevent the optimizer from using a hardware loop. 

 

 Avoid Integer Division in Loops 

The hardware does not provide direct support for 32-bit integer division, so the 

division and modulus operations on int variables are multi-cycle operations. The 

compiler will convert an integer division by a power of two to a right-shift operation 

if the value of the divisor is known. If the compiler has to issue a full division 

operation, it will issue a call to a library function. In addition to being a multi-cycle 

operation, this will prevent the optimizer from using a hardware loop for any loops 

around the division. Whenever possible, do not use divide or modulus operators inside 

a loop. 

 

 Indexed Arrays versus Pointers 

C language allows you to program data accesses from an array in two ways: 

either by indexing from an invariant base pointer or by incrementing a pointer. The 

pointer style introduces additional variables that compete with the surrounding code 

for resources during the optimizer’s analysis. Array accesses, on the other hand, must 

be transformed to pointers by the compiler, and sometimes it does not do the job as 

well as you could do by hand. 

The best strategy is to start with array notation. If this looks unsatisfactory try 

using pointers. Outside the important loops use the indexed style because it is easier 

to understand. 

 

 Initialize Constants Statically 

Inter-procedural analysis will also identify variables that only have one value 
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and replace them with constants, which can enable better optimization. 

 

 Word-align Your Data 

To make most efficient use of the hardware, it must be kept fed with data. In 

many algorithms, the balance of data accesses to computations is such that, to keep 

the hardware fully utilized, data must be fetched with 32-bit loads. 

 Although the Blackfin architecture supports byte addressing, the hardware 

requires that references to memory be naturally aligned. Thus, 16-bit references must 

be at even address locations, and 32-bit at word-aligned addresses. So, for the most 

efficient code to be generated, we should ensure that data are word-aligned. 

 

7.5 Summary 

The memory and system optimization techniques discussed in this chapter will 

help produce efficient code/data layouts and optimize system performance. Tuning C 

code gets maximal code performance from the compiler. All content in this chapter 

are our precious experiments for coding on BF-561. 
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Chapter 8  Conclusions and Future Work 

8.1 Conclusions 

We propose an integrated system for lane departure warning and lateral collision 

warning. Driver’s drowsiness was estimated by integrating the vehicle statistics 

evaluated by the EEG-based analysis approach developed from BRC into our lane 

departure warning system and lateral collision warning system. The lateral collision 

warning system aims at analyzing the image of the driver’s blind spot region and 

exporting warning signal to remind the driver in the realistic driving environment. 

The robust in-car DIS technique offers all major algorithms a stable image 

source. It requires a minor pre-processing, but following processing can be simplified 

massively. 

For the lane detection, we develop a method for automatic ROI extraction only 

by analyzing the image contents captured by the fish-eye camera mounted under the 

rear-view mirror without knowing the related camera parameters in advance. To 

overcome the light variations, the de-noising architecture which considers the spatial 

and temporal domain at the same time can restrain the noise effectively. Focusing on 

the geometric property of the blind-spot view, the adaptive edge operator and 

threshold selection can exactly detect the lane boundary. At last, an improved edge 

linking model proposed in this thesis not only increases the searching speed for lane 

trajectory but resolves the effect of fish-eye lens distortion. 

In the topics of lane departure warning and drowsiness estimation, we construct 

a warning mechanism with lateral offsets and TLC computed by the lateral velocity 

and the border of ROI. Because of the different driving habits of people, we construct 

a stable-driving region for modeling by the information of previous lateral positions 



 

131 

of lane markers with an updating mechanism. Then, we use the deviation as the index 

for drowsiness estimation which has been analyzed and evaluated by EEG-analysis 

approach. By considering the human’s behavioral style, the reactive behavior will be 

slower when the subjects enter the drowsy state gradually. We design a gauge of 

drowsy degree to estimate the driver’s psychological state according to the reaction 

time of the driver. 

The lane-based stable system is integrated into the blind-spot lateral collision 

warning system to increase the better detection rate and provide more robust 

performance. Besides, by constructing mechanism for drowsiness estimation in the 

dynamic driving environments, we can collect more data to further analyze other 

inattentive behavior of the driver so that the safety driving system can consider all 

possible risks caused by the internal or external factors of drivers as much as possible. 

8.2 Future Work 

First of all, although among all algorithms proposed in this thesis, only the 

lateral collision warning system has been coded on the embedded system, the whole 

algorithm is still designed under the consideration of being transplantable on 

embedded system. In addition, except the algorithm of lateral collision algorithm, 

70% of the computing power is still free. Transplanting the whole system on 

embedded system is the next step.  

Second, the lateral collision algorithm in this thesis uses different methods when 

working in the daytime and evening. It works well in normal situation, but it may 

make mistakes at the moment of entering and exiting the tunnel. This problem is due 

to the switching process of two methods used in the algorithm. This problem would 

be solved in the future.   
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