

國 立 交 通 大 學

電 機 與 控 制 工 程 研 究 所

博 士 論 文

有效利用資源之低功率數位訊號處理設計

On Resource-Efficient Low-Power VLSI Signal

Processing Design

研 究 生：楊學之

指導教授：董蘭榮 博士

中 華 民 國 九十六 年 七 月

有效利用資源之低功率數位訊號處理設計

On Resource-Efficient Low-Power VLSI Signal

Processing Design

研 究 生：楊學之 Student: Hsueh-Chih Yang

指導教授：董蘭榮 Advisor: Lan-Rong Dung

國立交通大學

電機與控制工程學系

博士論文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of The Requirements

for The Degree of

Doctor of Philosophy

in

Electrical and Control Engineering

July 2007

Hsinchu, Taiwan, Republic of China

中 華 民 國 九十六 年 七 月

Copyright

by

Hsueh-Chih Yang

2007

To my family and Ame

Acknowledgments

First, I would like to thank my advisor, Professor Lan-Rong Dung, for his

guidance and support throughout my graduate studies at National Chiao-Tung Uni-

versity. This work would not have been possible without the most inspiring discus-

sions we have had in the past five years.

Also, I would like to thank the Committee members: Professor Youn-Long

Steven Lin, Professor Chin-Teng Lin, Professor Jwu-Sheng Hu, and Professor Ching-

Wei Yeh for helpful suggestions and comments helping to improve the presentation

of this work.

I would like to gratefully acknowledge precedent contributions from Chih-

Kai Chang, Shu-Der Lan, and Ming-Feng Yang. I have furthermore to thank all

SoCLAB members for sharing with me in distress and joy in the past five years.

Especially, my deepest gratitude goes to my parents and I-I whose patient

love enabled me to complete this work. Their love, care and patience words cannot

express.

Hsueh-Chih Yang

National Chiao-Tung University

July 2007

iv

On Resource-Efficient Low-Power VLSI Signal

Processing Design

Hsueh-Chih Yang, Ph.D.

National Chiao-Tung University, 2007

Advisor: Lan-Rong Dung

Abstract

The primary design objective of computing and communication systems has

been targeting on the following performance metrics: the speed of signal process-

ing, the rate of communications, and the optimization of quality of service. For

portable embedded computing systems and wireless systems deployed on a large

scale and untethered to power sources, practical considerations dictate a different

design regime, one that should be dominated by energy and cost constraints. Batter-

ies are serving as a dedicated energy resource. The requirement of portability places

severe restrictions on size and weight, which in turn limits the amount of energy

that is continuously available to maintain system operability. For these reasons, a

fundamental shift in design paradigm is necessary: from focusing on performance

v

to focusing on constraints, from maximizing data rate to maximizing resource effi-

ciency. This dissertation illuminates the impact of resource constraints on the design

methodologies of VLSI signal processing and communication applications, proposes

several design methodologies in the resource-constrained low-power high-level syn-

thesis (HLS), the limited-resource folding techniques, and the power efficient turbo

decoder, and tries to stimulate interests in the VLSI signal processing in reformulat-

ing and revisiting classic VLSI signal processing problems under new constraints and

exploring the role of signal processing in exciting new applications. Based on the

proposed techniques, we have designed and implemented two power-efficient chips,

a pulse shaping FIR filter for WCDMA and a limited-resource DWT processor.

vi

有效利用資源之低功率數位訊號處理設計

中文摘要

隨著可攜式電子產品需求的增加，例如筆記型電腦、數位通訊設備、數位視

訊設備和音訊播放器等，能量與成本的考量變得非常重要。可攜式電子產品有尺

寸上的限制，進而限制了電池電量與使用時間。這些原因讓數位電路設計的目標

有了改變，從追求效能到專注在限制上；從追求最大的處理速度到追求更有效地

使用資源。此論文闡述在有限的資源情況下，如何有效地去最佳化電路設計的面

積與達到低功率的設計，我們提出了一個有限資源情況下之低功率高階合成方法

之外，並且提出了在有限資源情況下之硬體折疊架構與一個低功率的渦輪碼解碼

方法。本論文中提出之有限資源低功率高階合成方法與有限資源之硬體折疊架構

在與相關國際期刊文獻比較之後發現在功率消耗上確實有較佳的表現。有限資源

低功率高階合成方法的相關文獻中，極少有使用到演算法轉換去最佳化排程結果

的文獻，使用此演算法轉換的效果非常顯著。所提出之有限資源之硬體折疊架構

也是目前文獻中最節省暫存器與最少暫存器切換的最佳設計。

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

Chapter 2 Background Review 7

2.1 Low-Power ASIC Design . 7

2.1.1 Fundamental Design Decisions 8

2.1.2 System and Algorithmic Level 9

2.1.3 Architectural Optimization 14

2.1.4 Logic Level . 19

2.1.5 Transistor Level . 24

2.1.6 Summary . 27

Chapter 3 Resource-Constrained Low-Power Scheduling in HLS 30

3.1 Introduction . 30

vii

3.2 Overview of Basic Scheduling Technique and Algorithmic Transfor-

mations . 31

3.2.1 Basic Scheduling Techniques 31

3.2.2 Fully-Specified Flow Graph 32

3.3 Proposed Approach . 34

3.3.1 Shrink(graph) . 36

3.3.2 Minimize MASP (graph) . 37

3.3.3 MV S(graph,Ru,Tu,L) . 37

3.3.4 LC refine(S) . 39

3.4 Experimental Results . 42

3.5 Summary . 43

Chapter 4 Limited-Resource Folding Techniques 48

4.1 Limited-Resource DWT Processor 50

4.1.1 Introduction . 50

4.1.2 Conventional DWT VLSI architecture 51

4.1.3 Limited-resource FIR filtering 53

4.1.4 Scheduling Algorithm of DWT IP 57

4.1.5 Limited-Resource DWT Architecture 68

4.1.6 Implementation of DWT IP 71

4.1.7 Summary . 72

4.2 Folding Technique for High-Order FIR Filter Implementation 73

4.2.1 Introduction . 73

4.2.2 Candidates of Folding Techniques 75

4.2.3 Existing Folding Techniques 75

4.2.4 Comparison Results . 81

4.2.5 Summary . 87

viii

Chapter 5 Power Efficient Turbo Decoding 90

5.1 Introduction . 90

5.2 Early Give-Up Decision . 91

5.3 State Reuse Mechanism . 93

5.4 Proposed Turbo Decoding Flow . 94

5.5 Simulation Results . 95

Chapter 6 Conclusion 98

Bibliography 102

ix

List of Tables

3.1 Comparison results of third-order IIR filter with resource constraint

RC1 and a timing constraint of 16 control steps. 43

3.2 Power consumption and reduction of benchmarks by applying retim-

ing transformations only. 46

3.3 Power consumption and reduction of benchmarks by the proposed

scheduling algorithm. 47

4.1 IS-95 WCDMA pulse shaping FIR filter specification. 88

4.2 Area and power consumption comparisons.(An IS-95 WCDMA pulse

shaping 33-tap FIR) . 89

4.3 Features of the IS-95 WCDMA pulse shaping FIR filter chip. 89

5.1 Iteration reduction rate of the proposed turbo decoding (comparing

with conventional turbo decoding with the Magic Genie Rule). . . . 97

x

List of Figures

3.1 FSFG of second-order IIR filter. 33

3.2 Loop shrinking of second-order IIR. (a) The original FSFG. (b) The

equivalent FSFG. 34

3.3 Unfolding result. (a) An example of FSFG that cannot achieve IPB.

(b) A rate-optimal FSFG using unfolding. 34

3.4 Schedules of second-order IIR before retiming. 37

3.5 Schedules of second-order IIR after retiming. 37

3.6 Schedules of second-order IIR after unfolding. 38

3.7 Flowchart of multiple voltage scheduling. (1In the class c, is the re-

source with v(j)-voltage available, is the cycle power consumption

under the peak power bound, and Ts + Tc(v(j)) ≤ TL?) 40

3.8 Examples of level converters. 41

3.9 Scheduling results of second-order IIR filter with resource constraint

RC2. (a)Without peak power bound. (b)With peak power bound. . 44

3.10 Scheduling results of fifth-order EW filter with resource constraint

RC2. (a)Without peak power bound. (b)With peak power bound. . 44

3.11 Cycle power consumption of different benchmarks with resource con-

straint RC2. 45

4.1 A waterfall-like algorithm containing 6 processing nodes. 49

xi

4.2 Resource sharing of grouping. 49

4.3 Resource sharing of segmentation. 49

4.4 The design flow of DWT SIP synthesizer. 52

4.5 A typical filter-based DWT architecture. 52

4.6 The flow graph of FIR filtering. 54

4.7 The retimed flow graph of FIR filtering. 55

4.8 The folded scheduling of FIR filtering. 55

4.9 The 2-split FSFG of 5-tap FIR filtering. 57

4.10 The scheduling of FIR filtering. 58

4.11 The DWT block diagram. 59

4.12 DM scheduling algorithm. 61

4.13 The block diagram of IDWT. 65

4.14 Four scheduling Matrices. 67

4.15 The data flow in DM. 67

4.16 The data with rearranged indexing. 68

4.17 The limited-resource DWT architecture. 69

4.18 The output register bank. 69

4.19 The coefficient and input register banks 70

4.20 The feedback and Data register banks 70

4.21 The Layout of DWT processor . 73

4.22 A folding example of FIR filter. (a) A 6-tap FIR filter in the trans-

posed form. (b) The folded architecture of Fig. 4.22(a) by using the

technique presented in [87]. 76

4.23 The diagram of the folded bit-plane FIR architecture. 77

4.24 (a) The SFG of the reformulated K -tap FIR filter. (b) The serial-in

folded architecture. 78

4.25 The r-split FIR filtering. 80

xii

4.26 The scheduling of FIR coefficients for the parallel-in folded technique. 80

4.27 (a) The architecture of the parallel-in folded FIR filter, and (b) the

timing diagram. 81

4.28 The scheduling of FIR filtering. 82

4.29 Number of DFFs of folded architectures (in log scale) 86

4.30 Access number of DFFs per iteration (in log scale) 87

4.31 Number of 1-bit 2-to-1 multiplexers of folded architectures (in log scale) 88

4.32 Photomicrograph of IS-95 WCDMA pulse shaping FIR filter chip. . 89

5.1 Turbo decoder scheme. 92

5.2 The trends of the mean of the absolute extrinsic information for solv-

able and unsolvable packets. 93

5.3 The average of the required iterations for turbo decoding process with

and without state reuse mechanism. 94

5.4 The proposed turbo decoding flowchart. 95

5.5 Simulation results of the proposed turbo decoding. 97

xiii

Chapter 1

Introduction

A great deal of current research is motivated by the need for decreased

power dissipation while satisfying requirement for increased computing capacity.

The portable consumer electronics market is constantly demanding more power-

ful capabilities, smaller and lighter products, and longer battery service lifetime.

The battery service lifetime of a mobile embedded system is a major concern for

hardware/software designers. Attempts for extending the battery lifetime have tra-

ditionally focused on minimizing the power consumption of the circuits. However,

even in non-portable systems such as scientific workstations, power is still a serious

constraint due to limits on heat dissipation. Another important reason to develop

low power techniques is the environmental concerns. According to a U.S. Environ-

mental Protection Agency (EPA) report, 80% of the total office equipment electricity

consumption is due to computing equipment, a large part of which is due to such

equipment consuming power even when unused [1]. This led to the launching of

efforts such as the EPA’s Energy Star program [2], which outlines requirements for

power-efficient PCs. Therefore, the viewpoint of resource efficient implementation,

such as limited-resource issue, low-power issue, and power optimization issue, should

be certainly added in modern VLSI signal processing methodologies.

1

With increasing demand of portable devices, the reduction of power con-

sumption has become the essential issue in VLSI design. [45] and [46] described that

decisions during high-level synthesis (HLS) have a profound impact on the power

consumption of the final design. Hence, [46], [47], [48], and [49] have addressed on

power saving techniques, such as voltage scaling, capacitance reduction and switch-

ing minimization for HLS. However, these papers are based on a single voltage supply

for power minimization and cannot take full advantage of available schedule slacks to

reduce the voltage. Therefore, the use of multiple supply voltages becomes very at-

tractive to low power design recently, such as [50], [51], [52], [53], [54], [55], [57], [58],

and [59]. The idea is to assign non-critical tasks to low-voltage components and ex-

ecute time-critical tasks at higher supply voltage. In [46], [52], [53], [57], and [58],

the multiple-voltage scheduling method for power optimization of HLS using either

integer linear programming (ILP) or dynamic programming were presented. How-

ever, both approaches have pseudo-polynomial or even exponential time complexity.

In [55], Shiue and Chakrabarti present a list-based multiple-voltage scheduling al-

gorithm with polynomial-time complexity. The algorithm is driven by three param-

eters: depth, mobility, and switching capacitance. With considering the level con-

verters, [55] provides effective resource-constrained and latency-constrained schemes

for multiple-voltage HLS. From Chakrabarti’s group, later on, [59] uses the Lagrange

multiplier method to find the optimal solution of multiple-voltage scheduling under

both resource and latency constraints.

The papers mentioned above have presented efficient scheduling for multiple-

voltage HLS. Yet, few papers have considered the effect of algorithmic transfor-

mations on multiple-voltage power minimization. We present a multiple-voltage

high-level synthesis methodology that minimizes power dissipation of VLSI signal

processing. By applying algorithmic transformations, the proposed approach opti-

mizes the power saving, in terms of the average power and peak power, for DSP

2

applications when the resources and the latency are constrained. Our approach is

motivated by the maximization of task mobilities. The mobility is defined as the

distance between its as-late-as-possible (ALAP) schedule time and its as-soon-as-

possible (ASAP) schedule time. The increase of mobilities may raise the possibility

of assigning tasks to low-voltage components. To earn task mobilities, we use loop

shrinking, retiming and unfolding techniques. The loop shrinking can reduce the

iteration period bound (IPB), while the others are employed for shortening the min-

imum achieved sample period (MASP) as much as possible. The minimization of

MASP implies high task mobilities. Thereafter, we can assign tasks with high mo-

bilities to low-voltage components and minimize energy dissipation under resource

and latency constraints. With considering the overhead of level conversion and the

minimization of peak power, the proposed methodology has low complexity and can

achieve significant power reduction.

Moreover, this dissertation presents the limited-resource problem which arises

when the number of atomic units is constrained. The limited-resource problem has

been becoming on of the most important issues in system-on-chip (SOC) design [60].

Roughly speaking, operation scheduling determines the cost-speed tradeoffs of the

design. If the design is subject to a speed constraint, the scheduling algorithm will

attempt to parallelize the operations to meet the timing constraint. Conversely, if

there is a limited on the cost (area or energy), the scheduler will serialize operations

to meet the resource constraint. Once the operations are scheduled and the archi-

tectures are determined, the number and types of function units, the lifetimes of

variables, and the timing constraints are fixed. Thus a good scheduler is very impor-

tant to an automated datapath synthesis system [3, 4]. A limited-resource discrete

wavelet transformation (DWT) architecture has been proposed as a case of dealing

with the limited-resource implementation. Furthermore, because FIR filtering is an

essential function in most DSP applications, such as telecommunication and mul-

3

timedia systems. Its guaranteed stability and simple structure make FIR itself a

popular technique for removing unwanted parts of signal. For quality-sensitive ap-

plications, the number of FIR taps is normally large, ranges from tens to hundreds.

Therefore, long-length (or high-order) FIR filters may result in costly hardware and

hence severe power consumption problem. Besides these reasons, FIR filtering is

also one of waterfall-like processing procedures which means all processing tasks in

the FIR filtering are in a linear progression. Therefore, two proposed folding tech-

niques, demonstrated by a high-order FIR filter, have been presented to illustrate,

compare, and conclude the tradeoffs between the limited number of processing el-

ements and performance. Two systematic folding techniques are derived from the

idea of resource sharing. One of them involves the resource sharing of grouping, and

the other involves the resource sharing of segmentation.

Finally, to achieve power resource efficiency, a power efficient turbo decoder

has been designed to reduce redundant iterations in noisy channel and minimize the

iteration when the channel becomes better by monitoring the extrinsic information

and reuses the a-prior LLR of previous decoding process as the initial condition for

the resend packet. To efficiently save the notoriously high power dissipation of turbo

decoder, literature has presented numbers of early stopping mechanisms. The early

stopping mechanisms can be done by early termination or early give-up steps. The

early termination ends the search of turbo decoder for solvable packets beforehand,

while the early give-up ceases the turbo decoding for unsolvable packets. Many pa-

pers have proposed early termination approaches which can be categorized into three

classes: soft-bit decision [93, 94], hard-bit decision [95, 96], and extra-checking pol-

icy [97, 98]. However, very few papers target on early give-up techniques. The early

give-up is particularly important for channels with low signal-to-noise ratio (SNR),

in that the early give-up allows the decoder to stop the decoding process for un-

solvable packets as early as possible and hence minimizing the number of redundant

4

iterations. The reduction of MAP iterations implies to save the power dissipation of

turbo decoding. It is worth noting that, without early give-up techniques, the ARQ

or HARQ protocols will not enable the resend request mechanism for an unsolvable

packet until the turbo decoding process reaches the maximum number of iterations.

The paper [99] by Buckley and Wicker presents an early give-up technique using a

neural network to predict turbo decoding errors. Their technique can improve re-

liability and throughput performance at a lower average decoding complexity than

turbo decoding with CRC-based early termination.

The object of this chapter is to design a channel-aware turbo decoder. The

turbo decoder can reduce redundant iterations in noisy channel and minimize the

iterations when the channel becomes better. We present an early give-up technique

with a state reuse mechanism. The proposed technique detects turbo decoding

errors by monitoring the extrinsic information and reuses the a-priori LLR of pre-

vious decoding process as the initial condition for the resend packet. First, when

the extrinsic information oscillates without significant increases as the number of

iterations increases, the decoded packet is most likely an unsolvable packet. So,

once the oscillation of extrinsic information is detected, the early give-up will stop

the decoding process and register the a-priori LLR from wasting further power con-

sumption. The ARQ or HARQ protocols will thereafter trigger the resend request.

When the turbo decoder starts decoding the resend packet, the registered a-priori

LLR will be reused as the initial condition. The reuse of the a-priori information

is called the state reuse mechanism. When the channel status recovers to better

situation with higher SNR in a fading environment, the state reuse mechanism can

further reduce the required iterations and the computational load.

The rest of this dissertation is organized as follows. In Chapter 2, we briefly

review the related work in low-power ASIC design. A resource-constrained low-

power scheduling algorithm in HLS has been introduced in Chapter 3. Two limited-

5

resource folding techniques have been discussed in Chapter 4. Chapter 5 outlines

a power efficient turbo decoder. Chapter 6 summarizes the contribution of this

dissertation.

6

Chapter 2

Background Review

2.1 Low-Power ASIC Design

The development of low power integrated systems requires several fundamen-

tal design decisions to be taken and a combination of different power optimization

techniques to be applied to the system or to parts thereof. Throughout the last

ten years, numerous approaches to low power design have been proposed. These

include software as well as hardware optimization strategies. Regarding hardware

optimization, further distinction can be made between techniques that are intended

for the design of logic circuits and techniques that are specific to memory. There

are a large number of low power design techniques frequently discussed in the liter-

ature. It is evident that, in a hierarchical design flow of ASIC, power reduction can

be achieved at all levels of abstraction. Although high-level power optimization is

believed to be most effective, the improvements that can be achieved at the lower

levels are none the less significant [8]. Thus, any low power design methodology

should include a set of high- and low-level optimization techniques that complement

one another. Very few low power design techniques have been established as stan-

dard (state-of-the-art) techniques in the development of real applications. Others

7

have proven to be feasible in experimental designs. Many techniques, however, still

are of purely academic importance. For the implementation and evaluation of a new

optimization technique, it is important to identify those state-of-the-art techniques

(at the same or at a different level of abstraction) that may come into conflict with

the new method or may have an impact on the effectiveness of the novel technique.

2.1.1 Fundamental Design Decisions

The development of electronic systems usually starts with the specification.

At this early stage in the design process, all the information required for developing

a working product that fits into a specific market segment is gathered. This in-

cludes the functionality, the performance, and the type of power supply. From this

information, conclusions regarding the power consumption can be drawn and appro-

priate constraints can be derived. For instance, if a battery was chosen for power

supply, the power consumption must be minimized in order to allow for a reasonable

system running time. In the case of very high performance ICs, the power consump-

tion must also be constrained in order to prevent thermal failure. Clearly, the more

demanding the specification, the more design and optimization effort is required for

meeting the power constraints. Therefore, the specification should always strictly

reflect the actual requirements of the application. The fabrication technology also

has to be chosen at this stage, i.e. before entering the actual design process. A

suitable choice can usually be determined on the basis of the specification and any

derived constraints. Mainstream bulk CMOS technologies enable high integration

density and high performance at low cost and, at the same time, keep the power

consumption at a moderate level. Also,many power optimization techniques can be

applied to bulk CMOS designs. For these reasons, bulk CMOS is and will remain

to be the technology of choice in the development of most digital electronic systems

[9]. Some low power design techniques, however, require enhanced CMOS technolo-

8

gies. For dual threshold voltage scaling, for instance, low and high threshold voltage

transistors must be available, as in so-called multiple threshold voltage CMOS tech-

nologies. If the power consumption is extremely critical, silicon on insulator (SOI)

technologies can be used instead of bulk CMOS. The expensive SOI wafers and the

low yield, however, significantly increase the cost [10]. Once the type of technology

has been chosen, the technology level is out of reach for the designer, and all design

optimization has to be carried out at the higher levels of abstraction from the tran-

sistor level up to the system level. All design and optimization techniques used in

this work are compatible with mainstream bulk CMOS fabrication processes.

2.1.2 System and Algorithmic Level

Partitioning

At the highest levels of abstraction, i.e. the system level and the algorithmic

level, the most important task is partitioning. First of all, most systems can be

split into logic and memory. The size, the type, the detailed organization, and the

management of the memory must then be chosen such that the specified functionality

and performance are assured. These choices also have an impact on the power

consumption of the system. For further information on low power memory design

see the literature [11] [12] [13]. Regarding the logic, which is in the focus of this

work, a common approach is to start with functional partitioning, i.e. splitting

the specified functionality into less complex subfunctions that can be separately

realized by means of different algorithms. The functional partitioning is followed by

the actual physical partitioning, where a suitable form of hardware implementation

is chosen for each functional partition.

9

Implementation Alternatives

Typical hardware implementation alternatives are general purpose micro-

processors, DSPs, application specific microprocessors and microcontrollers, config-

urable logic, and dedicated hardware modules. Each implementation alternative

has its own strengths and weaknesses regarding performance, power consumption,

flexibility, time to market, and cost. A general purpose microprocessor provides

maximum flexibility and sufficient performance for many applications. Since such

processors are readily available as separately packaged chips for board-level system

development or as intellectual property (IP) blocks for SoC design, even the imple-

mentation of complex functionalities takes fairly short time. However, the efficiency

of general purpose microprocessors in terms of area and power in proportion to per-

formance is usually low. Digital signal processors (DSP) and application specific

processors or controllers are less flexible and, thus, less complex than general pur-

pose processors. If a maximum of flexibility is not absolutely needed, these types

of processors lead to more power and area efficient implementations. Configurable

logic is a good choice if time to market is critical, the number of pieces to be fabri-

cated is low and the requirements regarding performance and hardware complexity

are moderate. Rapid prototyping is another typical field of application. Unfor-

tunately, hardly any power optimization techniques are applicable to configurable

logic. Maximum performance and minimum power consumption can be achieved

only with dedicated hardware. This comes at the expense of increased time to

market and cost. The above statements indicate that the best choice of hardware

implementation alternative depends on the specified functionality and performance,

the power constraints, and other aspects such as time to market and cost. In mod-

ern SoC design, typically some or all components of the system are bought from IP

vendors. If the power consumption is critical, it is particularly important to chose

IP blocks that have already been designed with the power consumption in mind

10

or that can at least be further optimized, for instance during logic synthesis. This

study is focused on those types of hardware that can be designed and optimized

by means of typical ASIC design flows. These are dedicated hardware, application

specific processors/controllers and any type of synthesizable IP block (soft macro).

Algorithms and Algorithmic Optimization

A specific functionality can often be realized through several alternative al-

gorithms. Different algorithms usually exhibit different characteristics regarding the

performance, the accuracy, and the power consumption. This should be taken into

account in system design. On the other hand, the characteristics of the algorithms

are often affected by the choice of hardware implementation alternative and vice

versa. Thus, a thorough evaluation of algorithms is a complex and time-consuming

task for which standard recipes cannot be formulated and that is, therefore, impos-

sible to be automated. System designers often bypass the investigation of different

combinations of algorithms and hardware implementation alternatives. Instead,

previously published research results are adopted, if available and applicable, which

usually results in suboptimal solutions. Once a particular algorithm has been cho-

sen, it can be further optimized with regard to performance or power consumption

or both. However, algorithmic optimization techniques are also specific to the type

of target hardware. If, for instance, the target is some kind of processor, algorithmic

power optimization is a question of software development rather than a hardware

design problem. If, on the other hand, the algorithm is to be implemented in ded-

icated hardware, algorithmic speed-up transformations or multiple supply voltage

scheduling can be applied in order to minimize the dynamic power consumption.

11

Power Management

Power management reduces the amount of energy wasted whenever parts

of a system are not needed at all or not at full speed. With power management

schemes the functionality and the performance of a system or circuit are adjusted to

time-variant requirements. Examples of such methods are power supply shutdown,

dynamic power management, clock gating, and adaptive supply voltage scaling. In

a simple embodiment of power management, a system component, e.g. a particular

chip, is completely separated from the power supply via an external controllable reg-

ulator during idle periods [14]. This is an effective way of avoiding unnecessary static

and dynamic power dissipation in inactive components that does not complicate the

design of the component to be shut down. The power manager unit (PMU) that

controls the regulator is completely external and the power supply pins are the only

required interface to the power-managed component. Thus, the component can be

designed in the traditional way without the need for any special power management

support to be implemented. Major drawbacks of this power supply shutdown ap-

proach are the following. Firstly, there is a large power-on delay, which is the time it

takes for the supply voltage to stabilize after being switched on again. Secondly, the

registers and other non-permanent memory cells lose their content. Power supply

shutdown can, in principle, be applied to blocks within an integrated circuit instead

of to the entire chip. This, however, requires the power supply infrastructure on

the chip to be modified such that the power supply nets of the different blocks are

separated from each other and made accessible from the exterior via separate pins.

As a consequence, power supply shutdown is restricted to chips in their entirety

or to a small number of large blocks on a chip. Complex electronic systems such

as personal computers may include advanced dynamic power management (DPM)

schemes. Such systems contain various power-manageable components (PMC) con-

trolled by a PMU [15]. Each PMC provides a number of high performance, low

12

power, and sleep modes/states. The PMU, which may be implemented in hardware

or in software, continuously observes the system and puts the PMCs in appropri-

ate states according to the actual requirements at certain points in time. Dynamic

power management is widely used in modern notebook computers and, hence, spe-

cial notebook processors are designed as PMCs. This requires the instruction set,

the clock network, the interrupts, etc. to be adapted to the requirements of dynamic

power management. Most processors support different low power and sleep modes.

In some modes, idle modules within the processors are not separated from the power

supply as in the power supply shutdown approach. Instead, the respective parts of

the clock network are switched off [15]. If all inputs of the modules to be switched

off are registered, there is absolutely no switching activity and, hence no dynamic

power dissipation in the idle modules. This technique is called global clock gating.

In other modes, certain modules are actually separated from the power supply via

internal switches in the power supply nets [15]. Finally, for modules which are not

completely idle but also not fully utilized, the clock frequency or the supply voltage

or both may be momentarily reduced. Although designing a PMC requires a signifi-

cant amount of additional design effort, the most challenging task is the development

of an effective power management policy (PMP) and its implementation as PMU

firm- or software [15]. This software should know about the power characteristics

of all modules and be aware of the inevitable performance degradation and power

overhead associated with going to and returning from the different low power and

sleep modes. An effective PMP should reliably predict the idle time of a module

and accurately calculate the net power reduction. The Advanced Power Manage-

ment (APM) specification was the first industry standard in the field of DPM and

has only recently been replaced by the more powerful Advanced Configuration and

Power Interface (ACPI) [14], [15], and [16]. Local clock gating is another popular

power management technique that requires only moderate additional design effort.

13

It is frequently used in simple processors such as DSPs, application specific proces-

sors, embedded processors and the like, but can be applied to practically any type

of circuit. With local clock gating, the control signals that are used to deactivate

certain parts of the clock network are locally generated in hardware. In principle,

arbitrarily small subcircuits can be deactivated in this way. Since power manage-

ment based on local clock gating is rather an architectural-level than a high-level

technique. A relatively new power management approach is adaptive supply voltage

scaling. This is a very attractive technique for dynamic power optimization if the

requirements on the performance of a chip vary continuously over time. Instead of

just switching off idle components of a system or idle modules on a chip, the clock

frequency and the supply voltage are continuously adjusted to the instantaneous

performance demand.

2.1.3 Architectural Optimization

The two most important methods for power optimization at the architec-

tural level (RTL) are clock gating and architecture-driven supply voltage scaling.

Besides clock gating, this subsection covers bus and state encoding and the power

characteristics of arithmetic units.

Clock Gating

The clock network of a synchronous digital IC normally contains clock buffers

and clock nets. The entire clock network, which is frequently called clock tree, is

driven by a primary buffer, and subordinate buffers are distributed across the chip.

The branches of the clock tree all end at clock input pins of sequential cells such

as flip-flops. The large number of driven cells and the large total wire length bring

about a large capacitive load on the clock network. Moreover, the switching activity

in the clock network is usually the highest of all nets. These are the primary reasons

14

for the large contribution of the clock tree to the total dynamic power consumption

of many chips. In [17], the contribution of the entire clock network including the

primary and subordinate clock buffers is quoted at 20% to 45% for different design

examples. Thus, clock networks are important targets of low power design.

An effective means of reducing the power consumption in clock networks is

clock gating. The concept of clock gating is that logic gates are inserted in the clock

tree in a hierarchical manner, either as replacements for or in addition to existing

clock buffers. Each of these clock gating cells receives at its input pins a clock signal,

which is derived from the primary clock signal CLK, and an enable signal EN, which

is generated by global or local control logic, so as to activate or deactivate certain

portions of the clock tree. If large portions of the clock tree are deactivated for long

periods of time, the power consumption in the clock tree is significantly reduced.

Local clock gating is often used in processors, where functional units in the data-

path can be deactivated when they are not needed for the execution of a particular

instruction [18], [19], [20], [21], and [22]. In this case, the clock enable signals are

generated by the instruction decoder. If registers are placed at all inputs of the

functional units, clock gating not only affects the power consumption in the clock

network itself but suppresses all switching activity within the deactivated data-path

units as well. The implementation of gated clocks increases the complexity of the

control logic and, hence, creates some power overhead. The overhead is acceptable

if it is compensated by the power savings. The correct timing of the enable signals

is the most serious issue in the design of clock gating circuitry; glitches at the

clock inputs of sequential cells must be avoided in order to assure proper operation

of the circuit [22]. Clock gating is often modeled in the HDL code. However,

commercial synthesis tools such as BUILDGATES EXTREME (CADENCE) and

POWER COMPILER (SYNOPSYS) are also capable of automatic implementation

of clock gating.

15

Bus Encoding

Low power bus encoding aims at reducing the switching activity and, hence,

the dynamic power consumption on long multi-bit interconnects. Bus encoding

schemes generally require additional circuitry for the encoding and decoding at the

transmitter and receiver side, respectively. This detracts from the overall power

reduction. The effectiveness of low power bus encoding also depends on the signal

statistics and the knowledge thereof. Particularly important in this respect is the

correlation between consecutive data words to be transmitted. Gray coding is often

discussed in the context of instruction address encoding in microprocessor systems

[12]. Normally, consecutive instructions are stored at consecutive positions in the

memory, so that mostly a fixed increment is added to the program counter. If this

increment is one, as for byte-addressable memory and a fixed instruction length of

one byte, the Gray code may be used instead of the ordinary binary code. The

advantage of the Gray code is that an increment of one changes only one bit. Since

the Gray code is just a re-ordered binary code, the idea of Gray encoding can be

adapted even if the standard increment is different from one. For instance, if the

increment is two, as for byte-addressable memory and a fixed instruction length of

two byte, the code can simply be re-ordered such that an increment of two changes

only one bit. This concept works only for the strictly sequential parts of a program;

branch and jump instructions reduce the optimization potential. Also, data memory

accesses detract from the optimization potential if the same address bus is used for

the instruction and the data addresses. In the case of variable instruction lengths,

the advantage of the Gray code vanishes because the increment is not fixed and the

signal statistics are no longer predictable. The overhead of Gray address encoding is

small. If the program counter and the memory address decoder are already adapted

to the optimized coding style, no extra circuitry for the encoding and decoding is

needed. If no correlation between data words exists or if the signal statistics are

16

unknown, redundant codes may be used for reducing the switching activity. The

advantages and disadvantages of redundant codes can be illustrated using one-hot

coding as an example [23]. In the one-hot code of a decimal value M only the M-th

bit is set to one while all other bits are zero. Consequently, regardless of the signal

statistics, the number of switching bits per cycle is two when the data changes, and

zero otherwise. The drawback is that representing 2N numbers requires K = 2N

bits as opposed to N bits required for the ordinary binary coding. The result is an

unacceptable overhead for routing, encoding, and decoding. Bus inversion coding

(BIC) is an example of redundant bus encoding with low overhead [22], [23], and [24].

In a first embodiment, BIC requires only one additional signal line. The basic idea is

to invert a data word prior to transmission if this reduces the number of switching

bus lines. The additional line (polarity line) is used for signaling to the receiver

whether the data word has been inverted or not. Switching events on this line must,

of course, be taken into account when deciding on the polarity of transmissions.

The effectiveness of BIC degrades with increasing bus width. Therefore,

broad busses should be split into narrow slices with separate en-/decoders and a

separate polarity line for each slice. A maximum switching activity reduction of 25%

can be achieved by splitting an N-bit bus into 2-bit slices at the cost of N = 2 extra

wires [22]. This overhead is small compared with one-hot coding. Nevertheless, it is

often unacceptable. Thus, four or eight bit are more realistic choices for the width of

the slices. The overhead caused by the decoder is small. The encoder, however, can

be quite complex and must be taken into account when weighing up advantages and

disadvantages of BIC [23] and [25]. Another way of dealing with a lack of knowledge

of the signal statistics is adaptive bus encoding, where the incoming data stream

is continuously observed and the en-/decoding rules are adapted to the varying

statistical properties of the data stream. Recently, an adaptive bus encoding scheme,

which is based on the probability based mapping (PBM) technique, was presented

17

[26]. With PBM, the switching activity on the bus is minimized by minimizing the

number of ones to be transmitted. Frequently occurring data words are mapped

to code words that contain a small number of ones. A one is transmitted over the

bus by inverting the state of the respective bus line. For transmitting a zero, the

state of the bus line is maintained. The PBM technique uses a non-redundant data

representation and, thus, requires no additional bus lines. The code computation

circuitry implemented at both ends of the bus continuously determines a probability

of occurrence for each data word in the data stream, computes a new mapping rule

in certain intervals, and writes the rule to look-up tables. The PBM scheme can

effectively reduce the switching activity if certain data words occur much more

frequently in the data stream than others. If, on the other hand, all data words are

uniformly distributed, the benefit of PBM vanishes. While a static PBM scheme,

where the code mapping rule is optimized for a specific data stream, often yields

bad results when used on other data streams, the adaptive PBM scheme can be

successfully applied to different data streams or to data streams that exhibit varying

statistical properties. Adaptive bus encoding schemes require complex en-/decoding

circuitry. The resulting power and area overheads may predominate the possible

power savings. Another problem with adaptive bus encoding, which has not been

completely solved yet, is the synchronization of the adaption mechanisms at the

transmitter and receiver sides of the bus.

Low Power Arithmetic Units

Arithmetic units such as adders and multipliers are critical building blocks

in processors and many data-path-dominated ASICs. A variety of concepts for the

implementation of such modules can be found in the literature [27]. While, in the

past, the design of arithmetic units was driven by the need for sufficient performance

at minimum area, their power consumption can now no longer be ignored. [28]has

18

investigated and compared different types of parallel 16- bit adders and multipliers.

Evidently, faster implementations mostly require larger area. For the adder circuits

with shorter delay and larger area also translate to higher dynamic power consump-

tion. This is different for the multipliers; the second fastest circuit (Wallace tree)

consumes the least dynamic power, while the slowest implementation (array) results

in the highest power consumption. The power-delay product (PDP) given in the

tables is a possible measure of the trade-off between performance and power. In

this respect, the minimum PDP values mark the most efficient implementations of

adders and multipliers (variable block width carry skip adder andWallace tree mul-

tiplier). On the basis of this perception, Wallace tree multipliers were, for instance,

built into certain StrongARM low power processor derivates [37]. For a detailed

discussion of the structure and the functioning of the different types of adders and

multipliers considered in this comparison see the literature [28], [29], and [27].

2.1.4 Logic Level

Standard-cell-based design at the logic level includes logic synthesis, place-

ment, and routing. Logic synthesis can be further divided into technology indepen-

dent and technology dependent optimization steps.

Technology Independent Optimization

Technology independent optimization requires the combinational part of the

original design to be separated from the sequential elements. The combinational

logic is described in the form of Boolean equations, and the optimization methods

operate on these equations. Traditionally, the goal is to find an area efficient, multi-

level representation of the combinational logic under timing constraints [30]. A

common measure of the area of Boolean networks is the total number of literals6 in

the factored form of the equations [31]. Therefore, the traditional objective of tech-

19

nology independent optimization is the minimization of the total number of literals.

This is usually done with algebraic logic restructuring techniques, e.g. extraction,

substitution, factorization, and Boolean minimization. Extraction is the process of

identifying a common sub-function of several Boolean equations, introducing a new

equation that assigns the common sub-function to a new internal variable, and sub-

stituting the common sub-function in the original equations with the new variable

[30]. Substitution means substituting a sub-function of a Boolean equation with an

existing internal variable [30]. Substitution is applicable if internal variables exist

that represent sub-functions of other equations. Another important technique is

factorization [30]. The Boolean expression a · c + a · d + b · c + b · d for instance,

can be transformed to (a + b) · (c + d). In this example, factorization reduces the

number of literals, which is one purpose of the technique. The other purpose is the

computation of the cost which is often based on the factored form of the equations,

as mentioned above. The same methods can be used for technology independent

dynamic power optimization, if the cost function is modified [31]. The cost may be

computed as the total sum of the switching activities associated with all literals.

This requires the switching activities of the primary inputs to be specified. The

switching activities associated with internal variables and primary outputs are then

computed by propagating the switching activities at the inputs through the Boolean

network using zero delay models for the Boolean operations. Boolean minimization

is the process of minimizing Boolean equations using the rules of Boolean algebra,

e.g. a + ā = 1, and taking into account any dont care conditions [30]. ESPRESSO

is a de-facto-standard algorithm for computer aided Boolean minimization of two-

level Boolean networks targeting the area of the resulting circuit [30], [32], and [33].

Similar methods can be applied to the set of equations that describes a multi-level

Boolean network taking into account additional dont care conditions [34]. Power-

aware Boolean minimization, however, requires modification of these methods, as

20

discussed in [31]. Finally, the optimized Boolean network is prepared for technology

mapping in a step called technology decomposition [30] and [31]. A set of primitive

Boolean functions such as two-input NAND and NOT is chosen. The Boolean equa-

tions are then converted to a graph where each node in the graph is restricted to one

of the primitive functions. This process is called technology decomposition and the

result is called the subject graph. This graph is the input to technology mapping,

the first step in the technology dependent phase of logic synthesis. The quality of

the mapping solution depends on the structure of the subject graph. According to

[31], a subject graph that minimizes the sum of the switching activities associated

with its internal nodes is a good starting point for low power technology mapping.

Technology Dependent Optimization

The technology dependent phase of logic synthesis starts with a step called

technology mapping or cell binding [30] and [31]. In this step, the functionality

of each library gate is represented by a graph where each node is restricted to the

primitive Boolean functions considered in technology decomposition. These graphs

are called pattern graphs. Technology mapping is the process of finding a minimum

cost covering of the subject graph by choosing from the collection of pattern graphs

that represents the standard cell library. Again, switching activities should be con-

sidered when computing the cost in order to obtain a low dynamic power mapping

solution [31]. The technology mapping is followed by a post-mapping optimization

phase. An important technique applied at this stage is gate sizing. In addition to

gate sizing, local transformations are used for altering the structure of the circuit

without changing its functionality. Typical examples of local transformations are

buffer insertion, complex gate composition and equivalent pin swapping. Gate sizing

can affect the dynamic power consumption Pdyn in different ways. Down-sizing, i.e.

replacing a cell with a functionally equivalent cell composed of smaller transistors

21

that have smaller gate input capacitances CG, primarily aims at reducing Cnode and,

thus, Pcap at the input nodes of the sized cell [31] and [22]. In addition, smaller

transistor dimensions reduce the short-circuit and the subthreshold currents in the

sized cell, thus reducing Psc and Psub. On the other hand, down-sizing increases

the signal transition time tT at the sized cells output, which in turn increases Psc

of the cells driven by the sized cell. For this reason, minimizing the size of cells

in non-timing-critical paths does not always result in the lowest dynamic power

consumption. At heavily loaded nodes that exhibit very large tT , up-sizing may

lead to an overall lower Pdyn [35]. Alternatively, extra buffers can be inserted at

heavily loaded nodes in order to shorten tT , this reduces Psc at the gates driven by

the inserted cell. However, the extra cell introduces extra capacitances and extra

short-circuit currents. These overheads must of course be small in comparison with

the reduction in short-circuit power at the driven gates in order to make this buffer

insertion technique feasible. Standard cell libraries contain so-called complex gates

which combine several simple gates in one cell. Complex gate composition replaces

a group of simple gates in a gate-level netlist with an equivalent complex gate. [37]

and [36]. As a result, some nets no longer connect separate cells. Instead, these nets

connect devices within a complex cell which can be accomplished with shorter wires

that have less capacitance. This reduces Pcap, especially if many high activity nets

can be hidden in complex cells. Another optimization technique, which is called

equivalent pin swapping or pin ordering, exploits the different power characteristics

of functionally equivalent input pins of the same library cell. These differences in

the power characteristics can be due to different input pin capacitances, which leads

to different Pcap at the different input nodes. Another possible reason is the exact

position of the devices connected to a particular input pin, i.e. the cell-internal cir-

cuit structure, which affects the total cell-internal capacitance charged or discharged

during a transition of the input node. With pin swapping, high activity nets are

22

connected to power-efficient input pins with priority [37] and [36].

Placement and Routing

The traditional objective of placement is to arrange all cells on the chip in

such a way that the total wire-length after routing is minimized and, thus, the

area is minimal. Since the actual wire-lengths are unknown at this stage, estimates

are used for computing the cost function. For power-driven placement, the esti-

mated wire-lengths should be weighted with the switching activities, so that high

activity nets are given priority. This way, the total switched capacitance, which de-

termines Pcap, is minimized instead of the total wire-length, which affects the area.

In principle, power-driven placement can be carried out with the same algorithms as

conventional placement if the cost function is modified appropriately [38]. Routing

is the process of making electrical connections between pins of placed cells. In con-

ventional routing, the objective is to minimize the total wire-length. The limitations

on the routing resources, i.e. the routing area, the number of metal layers, and the

number of feed-throughs between these layers, frequently lead to region congestion.

Therefore, it is usually not possible to minimize the length of every single wire. At

the beginning of the routing process many resources are available and most wires

can be realized with minimum length. As the routing process progresses, congestion

problems become more likely and wire-lengths increase. For this reason, critical nets

should be routed first. Again, for power-driven routing, the priorities of nets can be

determined from the switching activities, so that high activity wires are kept short

[38]. The coupling capacitances between neighboring wires are significant sources of

power consumption. Therefore, power-driven routing should not only address the

wire-length but also reduce the coupling capacitances between high activity wires

by increasing their spacing [38].

23

2.1.5 Transistor Level

The standard cell ASIC design style is based on the concept of reusing pre-

designed logic gates, 1-bit adders, flip-flops, etc. that are available in so-called

standard cell libraries. The following paragraphs cover various aspects related to

the development of low power standard cell libraries.

Logic Styles

Logic gates can be dynamic or static, i.e. with or without clock control.

Dynamic logic is generally faster and, hence, well suited to highest performance

circuits. However, the power consumption of dynamic logic is larger than that of

static logic because of the additional capacitive load at the clock network(s) and be-

cause of unnecessary precharging and discharging of nodes [39]. Moreover, standard

tools used for logic and layout synthesis do not support dynamic logic design. The

conventional static CMOS logic gates built from n-channel pull-down and p-channel

pull-up networks are easy to design, have good driving capabilities which allows high

performance, and have good noise margins which makes the circuits robust even at

low supply voltages. Static logic gates exploiting cross-coupled p-channel transis-

tors, e.g. cascode voltage switch logic gates, have larger delays and may consume

equal or larger amounts of power [61, 106]. Moreover, such gates are difficult to

design. Particularly, the design of cells with larger driving strengths is impractical

in such logic styles. A third class of static logic, namely the pass transistor logic

(PTL), appears to have little or no advantage over the conventional static CMOS

gates regarding the power consumption. Moreover, the performance and the ro-

bustness of PTL at low supply voltages are insufficient [40], [41], and [39]. For the

reasons stated above, only the conventional static logic style can be found in stan-

dard cell libraries, except for some pass transistor or transmission gate structures

used in XOR gates, multiplexers, flip-flops or full adders.

24

Combinational Cells

Standard cell libraries typically contain cells having up to eight inputs.

Larger numbers of inputs result in unfeasibly large numbers of transistors connected

in series and in parallel. Many transistors connected in series limit the low voltage

operation and have either a large total series resistance or large gate capacitances.

Many transistors connected in parallel introduce a large total drain diffusion ca-

pacitance at the output. Finally, the body effect increases the threshold voltage of

transistors connected in series. These effects lead to poor performance [22]. An-

other important aspect regarding the low power library development is the selection

of Boolean functions to be implemented. The number of different Boolean functions

of N input variables is M =22N . For three inputs, for instance, M is 256 and for

four inputs M is 65536. It is obvious that only a small collection of all these possible

functions can actually be included in a standard cell library. Unfortunately, there is

a lack of theoretical analysis of the problem of which functions to implement. There-

fore, the actual selection of functions and, hence, types of cells is usually based on

human intuition and experience. Typical industrial libraries contain non-inverting

buffers, inverters, (N)AND gates, (N)OR gates, X(N)OR gates, (N)AND-(N)OR

complex gates, multiplexer, 1-bit half and full adders and similar cells [22]. Low

power libraries should provide a sufficient number of complex gates, i.e. (N)AND

gates, (N)OR gates, and cells with integrated input inverters. This enables effective

complex gate composition for power and area reduction. Also, every type of cell

should be provided in sufficiently many different sizes (driving strengths), includ-

ing minimum sized cells and cells with asymmetrical timing characteristics due to

reduced p-channel widths, in order to enable effective gate sizing for timing, power

and area optimization. Particularly, non-inverting buffers and inverters, which are

frequently used to form optimized cascaded buffers for driving large loads, should

be available in a large number of different sizes [42].

25

Flip-Flop Cells

Other than dynamic logic gates, dynamic flip-flops may be more power effi-

cient than their static counterparts. This is because dynamic flip-flops can be real-

ized with less transistors and the load presented to the clock network is smaller [43].

However, logic states stored in dynamic circuits need to be periodically refreshed,

which prevents dynamic flip-flops from being disabled using clock gating or other

means. Moreover, dynamic circuit design is not supported in standard-cell based

ASIC design methodologies, as mentioned above. Therefore, only static flip-flops

exist in standard cell libraries. The transmission gates are sometimes replaced with

tristate buffers, but with this exception, most flip-flop cells in commercial standard

cell libraries have this basic structure in common. A disadvantage of this circuit is

the large effective load presented to the clock network. This load includes the ca-

pacitances that are charged and discharged by the internal clock buffer. Low power

flip-flop designs aim primarily at reducing the load presented to the clock network.

For instance, has only two transistors driven by the clock input pin. For low to

medium switching activity at the data input, this flip-flop consumes less power than

the standard flip-flop [42]. At the same time, its delay is significantly shorter. A

similar flip-flop comprising a modified master latch is described in [44]. This circuit

consumes less power even for high switching activity at the data input.

Cell Layout Optimization

The means of optimizing the standard cell layouts for low power are limited.

Merely optimizing the intra-cell interconnects and the gate structure of very wide

transistors can be worthwhile. Large transistors have large drain/source diffusion

capacitances if they are realized with a longitudinal gate structure. As explained

in [23], the drain capacitance is reduced if the gate is laid out with a finger or

ring structure. This technique can be applied, for instance, to large buffer and

26

inverter cells or to logic cells with large output buffers. For long interconnects

within large cells, such as complex flip-flop cells, it is worth considering the area-

specific capacitance of different interconnect materials such as polysilicon and metal

in order to minimize the wire capacitance.

2.1.6 Summary

As mentioned at the beginning of this chapter, low power ASIC design

methodologies should include power optimization at all levels of abstraction. Which

particular techniques to include in a real-world methodology is determined by their

effectiveness, stage of development, versatility, and suitability for automation. These

criteria lead to the following assessment of the low power design methods discussed

in this chapter. The implementation of power management for static or dynamic

power reduction or both is a must, unless it is not applicable to the target applica-

tion. Dynamic power management can be very effective but requires a tremendous

design effort. Therefore, DPM is restricted to the design of complex systems such

as personal computers and parts thereof. Clock gating has also proven to be effec-

tive and, fortunately, its implementation is simple compared with DPM. Local clock

gating is even supported by commercial tools. This technique is state-of- the-art

in ASIC design and should be used whenever possible. Regarding the focus of this

study, it is important to investigate the impact of clock gating on the effectiveness

of voltage scaling in the clock network. Low power bus encoding is a very difficult

and conflicting problem. Simple schemes like Gray and one-hot coding are either

lacking versatility or are too expensive because of tremendous overheads. Static

PBM works well only for the data stream it was designed for and is, thus, only

slightly more versatile than Gray coding. Adaptive PBM creates large overhead

and suffers from unsolved technical problems. At present, only BIC appears to be

useful for a broader range of applications. Low power state encoding is complex, not

27

well understood and only partially supported by tools. However, if a small subset of

transitions can be identified as main contributor to the dynamic power consumption

of a particular ASIC, it can be worth encoding the respective states manually while

leaving the encoding of the majority of states to a synthesis tool. An impact of bus

and state encoding on the effectiveness of the methodology proposed in this study is

not expected. The design of optimized arithmetic units from scratch is carried out

only in the full-custom design of high performance components such as general pur-

pose microprocessors. For the design of ASICs, technology-independent macro block

libraries are available, that contain a variety of pre-designed arithmetic units. Logic

synthesis tools revert to these library elements when processing RTL design descrip-

tions subject to timing, power and area constraints. If the constraints cannot be

met this way, optimized HDL modeling of arithmetic units can be applied instead of

using arithmetic operators in the HDL code. The latter approach is particularly suit-

able for the design of critical units in the data-path of application specific processor

cores; the arithmetic units can be adapted to the target application while preserving

synthesizability and, thus, independency of the target fabrication technology. Just

as for the aforementioned encoding schemes, an impact on the effectiveness of the

methodology proposed in this study is not expected. Logic synthesis is fully auto-

mated and relies on standard tools. These tools do not support power optimization

in the technology independent phase of logic synthesis. Technology dependent op-

timization using gate sizing, buffer insertion, complex gate composition, equivalent

pin swapping, phase assignment, etc. is state-of-the-art and should be used in any

case. About 10% to 20% dynamic power reduction can be expected. These tech-

niques directly compete with the logic-level voltage scaling approach that is in the

focus of this study. Therefore, the proposed methodology assures that the effect

of state-of-the-art power-driven logic synthesis is taken into account in all investi-

gations. Placement and routing are also automated and are also carried out using

28

standard tools. In existing design methodologies, the area is usually the only opti-

mization criterion. Timing-driven placement and routing are possible but are not

yet standard. Power-driven placement and routing are still under development and

cannot be carried out with existing tools. Regarding the library development, many

semiconductor vendors avoid the effort to develop completely new libraries. Instead,

existing libraries are adapted to newer technology generations with minimum effort.

Some companies, e.g. ARTISAN COMPONENTS9 , claim that their libraries are

optimized for low power design. However, neither is there any evidence, nor is any

information available on how this was achieved. The techniques discussed in this

chapter aim at power optimization through power supply shut-down and through

optimization of circuit and device parameters such as the switching activity, the

device and interconnect capacitances, the signal transition times, and the effective

transconductance. Other important parameters are the supply and threshold volt-

ages. However, the simple concept of global supply voltage minimization driven by

pipelining or parallelization is usually the only available voltage scaling option.

29

Chapter 3

Resource-Constrained

Low-Power Scheduling in HLS

3.1 Introduction

Paper [56] exploited on algorithmic transformations for multiple-voltage HLS

and present an efficient approach to minimize power consumption under resource and

latency constraints. The main concept is to change the computational structures by

transformations and make mobility of each task in fully-specified flow graph (FSFG)

as high as possible. The mobility means the ability to schedule the starting time of

a task. It is defined as the distance between its as-late-as-possible (ALAP) schedule

time and its as-soon-as-possible (ASAP) schedule time. Obviously, the increase of

mobilities may raise the possibility of assigning tasks to low-voltage components.

To earn task mobilities, we use loop shrinking, retiming and unfolding techniques.

Furthermore, this chapter provides thorough analysis on different combinations of

algorithmic transformations.

In low-power designs for battery-driven portable applications, the peak power

drives the transient characteristic of the CMOS circuit. Therefore, in this work, the

30

minimization of the peak power is another important consideration. Following the

optimization of average power dissipation, we suppress the peak power dissipation

by the barrier-driven approach. The barrier-driven approach gradually compresses

the task schedulability until no further legal scheduling can be found.

As the results, our approach can achieve significant power reduction. In the

case of the third-order IIR filter, the proposed methodology can save up to 54.77%

of power consumption while the resources running at 5V and 3.3V under the latency

constraint of 1.5Tc and resource constraints of {1, 1, 1, 1}(one 3.3V multiplier, one

5V multiplier, one 3.3V adder, and one 5V adder).

The rest of the chapter is organized as follows. In Section 3.2, we introduce

algorithmic transformations. Section 3.3 presents the proposed approaches in de-

tails. Section 3.4 shows the experimental results and Section 3.5 is the summary of

this work.

3.2 Overview of Basic Scheduling Technique and Algo-

rithmic Transformations

3.2.1 Basic Scheduling Techniques

In this section, some of the basic scheduling techniques are discussed. The

simplest scheduling technique is as-soon-as-possible (ASAP) scheduling [5], where

the operations (tasks) in the Fully-Specified Flow Graph (FSFG) are scheduled step

by step from the first control step to the last. An operation is called ready operation

if all of its predecessors are scheduled. This procedure schedules ready operations

to the next control step until all the operations are scheduled. As-late-as possible

(ALAP) scheduling [6] performs a similar procedure as ASAP scheduling. ALAP

scheduling schedules the operations from the last control step toward the first control

step. An operation is scheduled to the next control step as all of its successors are

31

scheduled. Fig. 3.4 shows the ASAP and ALAP scheduling examples.

Due to the constraints of the number of function units, it is not possible to

assign too many operations of the same type into one control step. A modified ASAP

scheduling involves arbitrarily delaying the ready operations when their number

exceeds resource constraints [6].

The list-based scheduling [7], which was originally used in microcode com-

paction, has been adopted by many high-level synthesis systems. It assigns opera-

tions in the FSFG to control steps from the first control step to the last one. The

ready operations are given a priority according to heuristic rules and are scheduled

into the next control step according to this predefined priority. When the number

of scheduled operations exceeds the resource constraints, the remaining operations

are delayed [64].

3.2.2 Fully-Specified Flow Graph

A deterministic DSP algorithm can be represented by an FSFG. The FSFG

describes the relationship between a set of input and output sequences [60]. Fig. 3.1

shows an FSFG for a second-order IIR filter. In FSFG, the IPB is determined by

loops [61] and has been used to measure the performance bound of the implemen-

tation of FSFG [61, 62, 63]. The iteration period (IP) for a loop is defined as the

total computational latency in the loop divided by the total number of delays. The

IPB is the maximum value of IPs and represents the lower bound of MASP. For

instance, if a multiplication takes 2 time-units and an addition takes one time-unit,

the FSFG shown in Fig. 3.1 has an IPB of 4 time-units. However, the IPB is not

always achieved without using algorithmic transformations. In Fig. 3.1, for example,

the MASP is limited by the critical path G−C−A−B and so equals to 5 time-units.

Thus, to obtain the rate-optimal implementation of FSFG, this chapter introduces

three techniques for the IPB reduction and the minimization of MASP. These algo-

32

A
x[n]

+

+

D

D

+

+

y[n]
B

C

D
 E

F

G
 H

IPB = 4

Figure 3.1: FSFG of second-order IIR filter.

rithmic transformation techniques will be explained in the following subsections.

Loop Shrinking

Loop shrinking can reconstruct the FSFG to obtain the optimal IPB for

loops. Fig. 3.2 is an example of loop shrinking. Fig. 3.2(a) has a chain of two

additions within the loop. According to the associativity of addition, the function

a + (b + c) in Fig. 3.2(a) is equivalent to the function (a + b) + c in Fig. 3.2(b).

Obviously, the critical loop, L1, has been shrunk in Fig. 3.2(b) and IP is reduced

as well. Therefore, we can perform loop shrinking on critical loop, which has the

maximum IP, to reduce the IPB while the functionality of FSFG keeps the same.

In case each task takes one time-unit to execute, the IPB can be reduced from 3

time-units to 2 time-units.

Retiming and Unfolding

The optimal IPB does not guarantee the optimal rate. Retiming is a process

that may help making MASP equal to IPB. With the delay transfer or nodal transfer,

it is possible to make MASP optimized. Unfortunately, the retiming technique might

not guarantee the optimal MASP. Fig. 3.3(a), for example, the MASP can not be

achieved by retiming since node A requires 20 time-units to execute. To achieve

33

+

+

a
 a+(b+c)

c

b

D

D

IPB = 3

+

+
a

(a+b)+c

c

b

D

D

IPB = 2

(a)
 (b)

L
1
 L
1

Figure 3.2: Loop shrinking of second-order IIR. (a) The original FSFG. (b) The
equivalent FSFG.

A

C
B

D
 D

(20)

(2)
 (10)

B
1
A
1
 C
1

B
2

A
2
 C
2

D

D

(20)

(20)

(2)

(2)

(10)

(10)

(a)
 (b)

Figure 3.3: Unfolding result. (a) An example of FSFG that cannot achieve IPB. (b)
A rate-optimal FSFG using unfolding.

the optimal rate, [63] presents the unfolding technique. Instead of describing one

iteration of the computation in the form of a recursive loop, unfolding by a factor P

implies P consecutive iterations. If the original FSFG has N tasks, the P-unfolded

FSFG has P×N tasks, and the IPB is P times larger than that of the original FSFG.

Fig. 3.3(b) illustrates the result of 2-unfolded FSFG in Fig. 3.3(a). In Fig. 3.3(b),

the total number of delays, however, remains unchanged and precedence constraints

are also not violated. The unfolding technique can obtain the rate-optimal static

schedules.

3.3 Proposed Approach

We proposed a multiple-voltage HLS for the low-power DSP realization. The

HLS algorithm first applies the loop shrinking technique for IPB reduction, and then

34

minimize the MASP using the retiming and unfolding. Once the MASP is optimized,

the mobilities can be enlarged and the scheduler will have more room to schedule

low-voltage components.

Multi-Voltage HLS Algorithm

SCHEDULE(FSFG, Ru, Tu, L,EnergyTb, LCTb)

{
g = Read(FSFG,Ru, Tu, L, EnergyTb, LCTb);

g1 = Shrink(graph);

if (MASP = IPB)

S = MV S(g1,Ru,Tu,L);

else{
g2 = Minimize MASP (g1);

S = MV S(g2,Ru,Tu,L);

}
S = LC refine(S);

Report(S);

}

The inputs to our methodology are an FSFG, a resource constraint Ru, a latency

constraint Tu, a number of voltage levels L, an energy table of multiple voltages

EnergyTb, an energy table of level converters LCTb, and the outputs are the

voltage assignment, start time, and end time of each node and the total power

consumption of the scheduling if the legal scheduling exists. In a nutshell, the

proposed resource and latency constrained algorithm operates in four passes. In

the first pass, the input file specifies Ru, Tu, and the operations within the FSFG.

Once having the input information, we use loop shrinking technique to reduce the

IPB. In the second pass, we compute the MASP to check whether it matches the

35

IPB or not. If the MASP matches the IPB, the graph will be sent to the third

pass. If the MASP is not equal to the IPB yet, the minimization of MASP can be

achieved by Minimize MASP (graph) to obtain optimal mobilities under the given

resource constraint. In the third pass, MV S(graph, Ru, Tu, L), is used to schedule

and assign tasks to the proper scheduling time and components such that the total

power/energy consumption is minimum. In the last pass, LC refine(S) refines the

schedule of the third pass by considering level converters.

3.3.1 Shrink(graph)

The follows list the loop shrinking steps.

Step1 : Calculate initial IPB;

Step2 : Search for the critical loop;

Step3 : Rearrange edges having relation to the adjacent

addition nodes in the critical loop;

Step4 : Calculate new IPB; If new IPB < initial IPB,

save the rearranged FSFG and let initial IPB

equals to new IPB; Otherwise go to Step6;

Step5 : Go to Step2;

Step6 : Loop shrinking ends;

Shrink(graph) searches two adjacent addition operations in the critical loop

first and then rearrange the associated edges to reduce the number of nodes in the

critical loop. The procedure Shrink(graph) will repeat Step2 to Step4 until the

IPB cannot be improved.

36

1

2

3

4

5

6

7

8

D G

E H

C

FA

B

D G E H

C F

A

B

ASAP ALAP

Figure 3.4: Schedules of second-order IIR before retiming.

1

2

3

4

5

6

7

8

ASAP ALAP

H G

C

A

D E

B

F

H

G

C

A

D E

B

F

Figure 3.5: Schedules of second-order IIR after retiming.

3.3.2 Minimize MASP (graph)

This subroutine uses retiming or unfolding techniques to obtain MASP and

hence optimize mobilities under given timing constraints. The retiming transfor-

mation has been implemented by the integer linear programming (ILP) formulation

[64]. If the MASP of the retimed FSFG can not achieve the IPB obtained from the

Shrink(graph) stage, then we apply the unfolding technique to the retimed FSFG

to guarantee that MASP matches the IPB. Fig. 3.4 shows the ASAP and ALAP

scheduling result of the original FSFG of the second-order IIR filter. By applying

Minimize MASP (graph) subroutine, Fig. 3.5 and Fig. 3.6 illustrate the scheduling

results obtained by the retiming and the unfolding techniques, respectively.

3.3.3 MV S(graph,Ru,Tu,L)

Fig. 3.7 shows the flowchart of MV S(graph,Ru, Tu, L), where the index i and

j represent the number of classes among all tasks and voltage levels, respectively.

37

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

9

D1 G1 E1 H1

D2 G2 H2 E2

B1 C1

A1

B2

C2 F1 F2

A2

D1

G1E1

H1

G2 H2

D2

E2

B1

C1

A1

B2

C2F1

F2

A2

ASAP ALAP

Figure 3.6: Schedules of second-order IIR after unfolding.

The index k represents the number of tasks in the class c. In the beginning, all tasks

in the FSFG are set to be ”unmarked” to represent the un-scheduled status of each

node. Then the program will choose a class of operations, c, such as multiplications,

according to the effectiveness among all tasks. To obtain maximally power saving,

we determine the number M , which represents how many number of tasks with the

highest effectiveness will be assigned to the lowest voltage resources under the given

constraint. The number M is defined by b Tu
Tc(v(j))c, where Tc(v(j)) represents the

execution time of the task with the highest effectiveness operating at v(j) voltage.

Then we can assign tasks by a proposed task-assignment scheme. The scheme is

priority-based in that the task with higher priority will have higher opportunity to

be assigned to lower voltage resource. So we recursively compute the parameter-

list including the value of ALAP and ASAP, depth, and the mobility for each task

and assign tasks with higher priority to lower voltage resources. Note that the

scheduling order of all tasks does not always follow the data precedence, which

means we might deal with all the multiplications before all additions, therefore, we

use Ts + Tc(v(j)) ≤ TL to check the legal scheduling result of each task, where Ts

is the scheduling time and TL is the end time in the ALAP scheduling result. Once

the timing constraint is illegal, the higher voltage resource will be utilized by the

38

increment of the number j to make sure the scheduling result is feasible. In addition,

the peak power is bounded between the PPL and the PPU , where the PPL and

the PPU present the lower bound and the upper bound of peak power, respectively.

These two bounds are defined by the average power consumption of using the lowest

and the highest voltages without latency constraints. We explore the bounded

space from the middle point to find the minimum peak power solution. Moreover,

we can reduce the number M if necessary. For instance, according to the energy

chart in [65], the multiplications have higher effectiveness than that of additions. If

Tu = 10 and Ru = {1, 1, 1, 1}, we will try to assign (b10
4 c) multiplications to 3.3V

resources because one 3.3V multiplier takes 4 time-units for the execution. In case

this constraint can not be achieved, we must relieve it by resetting the number with

M = M − 1.

3.3.4 LC refine(S)

After optimizing power consumption using multiple-voltages on data path

scheduling, the proposed approach then takes the power consumption of level con-

verters into account and refines the use of level converter. The reason why the

optimization of level converters is considered after resource assignment is because

the multiple voltage assignment can gain more amount of power saving than does

the reduction of level converters. From the power models in [65, 54], obviously, the

power difference between high-voltage and low-voltage components is larger than

power consumption of level converters. One can optimize the power consumption

of multiple voltage scheduling by treating level converters and resource assignment

simultaneously. [57], for instance, uses ILP to find the power-optimal solution for

multiple voltage levels. Their algorithm exhaustively explores all design space and

has O(N3) time complexity. The exponential complexity makes the multiple voltage

scheduling time-consuming. Instead of considering level converters within resource

39

START

Set all tasks
u
nmarked
;

i=0; j=1;

Choose class c according to the effectiveness;

Calculate
 M
;

i=i+1; k=1; x=0;

Calculate parameters for
 unmarked

tasks, N(k), in class c;

j = L ?

M = M - 1

M < 0 ?

x = x + 1;

j = x ;

j = L ?

FAILED

i = 0;

Calculate M;

Assign task N(k) to v(j)-resource;

Mark N(k) as
 processed
;

k = k + 1; j = 1;

k = K + 1 ?

i = C ?

END

j = j + 1;

YES

NO

NO
 YES

YES

NO

NO

YES

NO

YES

YES

NO

Definition:

i: 0~C-1, index of effectiveness

j: 1~L, index of voltage level

k: 1~K, number of tasks in class c

Are resources

available?
1

Figure 3.7: Flowchart of multiple voltage scheduling. (1In the class c, is the resource
with v(j)-voltage available, is the cycle power consumption under the peak power
bound, and Ts + Tc(v(j)) ≤ TL?)

40

H

H

H

L

L

L

H

H

H

L

L

L

(a)
 (b)

Level

converter

Figure 3.8: Examples of level converters.

assignment, we separate the reduction of level converters from multiple voltage

scheduling to produce comparable results with only polynomial complexity O(N).

Paper [55] gives the level converter introduction the lowest priority in the list-based

algorithm and has polynomial complexity. However, they may not be able to re-

fine inefficient resource assignment by removing level converters. Differently from

list-based algorithm, our approach is to remove level converters when their associ-

ated resource assignments are inefficient. A resource assignment is called inefficient

when the power consumption difference between its high voltage and low voltage

components is smaller than the power consumption of level converter. For exam-

ple, in Fig.3.8(a), H and L indicate higher-voltage and lower-voltage components,

respectively, there are five level converters are required and the power difference

between high-voltage and low-voltage components is smaller than low-to-high level

converter. We can switch highlighted high-voltage task with highlighted low-voltage

task which has been shown in Fig.3.8(b) to remove requirements of level converters

to avoid the power consumption overhead as much as possible.

41

3.4 Experimental Results

The proposed algorithm was implemented in C++ and tested with selected

benchmark circuits. We tested the scheduling algorithm using the following sets of

resource constraints (RC1, RC2, and RC3):

1) number of multipliers: 1 at 5V and 1 at 3.3V; number of adders: 1 at 5V and 1

at 3.3V;

2) number of multipliers: 1 at 5V and 2 at 3.3V; number of adders: 1 at 5V and 2

at 3.3V;

3) number of multipliers: 1 at 5V, 1 at 3.3V, and 1 at 2.4V; number of adders: 1 at

5V, 1 at 3.3V, and 1 at 2.4V;

Our algorithm has high degree of flexibility and can be applied for other com-

positions of supply voltages. We also assume that multiple power lines are available,

and level converters are needed between resources if they operate at different volt-

ages. The number of level converters is not user defined. Moreover, the proposed

algorithm tries to reduce the number of level converters to save the power consump-

tion. The energy consumption and the worst case delays of the different function

units have been adopted from [65] and the energy dissipation of level converters

adopted from [54]. The delay costs of the level converters are absorbed in the worst

case delay values. Because we address the problem under timing constraint, energy

consumption can be referred as power consumption. We assume the clock period is

20ns. So the clock cycle of each different function unit can be computed.

The comparison with AR filter (3rd-order IIR filter) has been listed in Ta-

ble 3.1. In this example, it has been found that our algorithm yielded a greater

reduction in power consumption. For instance, for the 3rd order IIR filter with

the resource constraint RC1, and a timing constraint of 16, we achieve a 40.20%

reduction with the unfolding factor P = 3 compared to the 26.00% reduction by

42

Table 3.1: Comparison results of third-order IIR filter with resource constraint RC1
and a timing constraint of 16 control steps.

Scheduling algorithm Power (pJ) % Reduction
E5 13554 —
[55] 10092 26.00

Retiming applied only 8516 37.16
Proposed 8092 40.20

using the algorithm in [55]. The power reduction from the proposed algorithm com-

pared with E5 has been tabulated in Table 3.3, where E5 is the power dissipation

corresponding to the supply voltage of 5V. Ealg is the average power dissipation

obtained by our algorithm. Table 3.2 lists the power consumption and reduction

of benchmarks by applying retiming transformations only. Timing constraints are

given for two different values: 1.5Tc and 2Tc, where Tc is the optimal minimum-

computation time (critical-path delay) under the given resource constraint. We also

plotted the power consumption per cycle, over all the given number of control steps

(clock steps) for different benchmarks in Fig. 3.11. The solid curves correspond to

the profile when the scheduling is operated without setting the peak power bound.

The profiles with dotted lines correspond to the case when the peak power bound

scheme is used. Fig. 3.9 and Fig. 3.10 shows the effect of the peak power bound

upon on the scheduling results of the second-order IIR and the fifth-order EW filter,

respectively.

3.5 Summary

This chapter presents a new HLS methodology under resource and latency

constraints. The proposed scheme minimizes the power and the peak power con-

sumption by assigning as many nodes to lower voltage components as possible by

applying algorithmic transformations. The loop shrinking transformation can reduce

the IPB and the unfolding and retiming techniques guarantee the MASP. Doing so,

43

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

D1

E1

H1

D2

E2

C1

F2

x

x

x

x

x

+

+

17

18

19

20

G2

x

C2

+

G1

x

F1

+

B2

+

A1

+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

D1

E1

H1

D2

E2

A1

C1

F2

x

x

x

x

x

+

+

+

17

18

19

20

G2

x

C2

+

G1

x

F1

+

B2

+

(a)
 (b)

B1

+

A2

+

H2

x

B1

+

A2

+
H2

x

Figure 3.9: Scheduling results of second-order IIR filter with resource constraint
RC2. (a)Without peak power bound. (b)With peak power bound.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

+1

+3

+2

+4

+5

x6
 x7

+8
 +9

+10
 +11

+12
x13

+14

+16

+18

+19

x22

26

27

28

29

30

31

+28

+30

32

33

34

35

36

37

38

39

40

+23

x26

+31

+33

x15

+17

+20

+21

x25

+24

x27

+29

+32

+34

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

+1

+3

+2

+4

+5

x6
 x7

+8
 +9

+10
 +11

+12
x13

+14

+16

+18

+19

x22

26

27

28

29

30

31

+28

+30

32

33

34

35

36

37

38

39

40

+23

x26

+31

+33

x15

+17

+20

+21

x25

+24

x27

+29

+32

+34

(a)
 (b)

Figure 3.10: Scheduling results of fifth-order EW filter with resource constraint RC2.
(a)Without peak power bound. (b)With peak power bound.

44

0
 5
 10
 15
 20

0

5

10

15

20

25

30

control steps

po
w

er
 (

pJ
/n

s)

second order IIR filter T=20

0
 5
 10
 15
 20
 25

0

10

20

30

40

50

60

70

control steps

po
w

er
 (

pJ
/n

s)

third order IIR filter T=24

0
 5
 10
 15
 20
 25
 30

0

5

10

15

20

25

30

control steps

po
w

er
 (

pJ
/n

s)

third order IIR filter T=30

0
 10
 20
 30
 40

0

5

10

15

20

25

30

control steps

po
w

er
 (

pJ
/n

s)

fifth order EW filter T=40

Figure 3.11: Cycle power consumption of different benchmarks with resource con-
straint RC2.

45

Table 3.2: Power consumption and reduction of benchmarks by applying retiming
transformations only.

Resource constraint RC1 RC3
Benchmark Latency Ealg Reduction Ealg Reduction

second-order IIR filter 1.5Tc 6238 30.99% 6096 32.55%
E5=9039pJ 2Tc 5153 44.10% 4900 45.79%

third-order IIR filter 1.5Tc 8803 35.05% 8425 37.84%
E5=13554pJ 2Tc 8017 40.85% 8017 40.85%

fifth-order IIR filter 1.5Tc 17711 18.36% 17329 20.12%
E5=21694pJ 2Tc 17208 20.68% 16362 24.58%

LMS adaptive filter 1.5Tc 12165 22.79% 11918 24.36%
E5=15756pJ 2Tc 10752 31.76% 10240 35.00%

fifth-order EW filter 1.5Tc 1330 10.20% 1330 10.20%
E5=1482pJ 2Tc 1188 19.82% 1188 19.82%

2-D fast DCT 1.5Tc 23184 26.16% 22543 28.20%
E5=31398pJ 2Tc 21979 30.00% 21693 30.90%

high task mobilities arise the possibility of the assignment of low-voltage resources.

As the experimental results, under the timing constraint of 1.5Tc, the power re-

duction obtained by the proposed methodology is up to 54.77% with two voltage

levels and 59.13% with three voltage levels, respectively. The integration of such a

scheduler into a low-power datapath synthesis tool will significantly benefit resource

efficient low-power DSP applications.

46

Table 3.3: Power consumption and reduction of benchmarks by the proposed
scheduling algorithm.

Resource constraint RC1 RC3
Benchmark Latency Ealg Reduction Ealg Reduction

second-order IIR filter 1.5Tc 5035 44.28% 5035 44.28%
E5=9039pJ 2Tc 3484 61.44% 2767 69.39%

third-order IIR filter 1.5Tc 6130 54.77% 5540 59.13%
E5=13554pJ 2Tc 5164 61.90% 3226 76.20%

fifth-order IIR filter 1.5Tc 14583 32.78% 14285 34.15%
E5=21694pJ 2Tc 13537 37.60% 9311 57.08%

LMS adaptive filter 1.5Tc 10698 32.10% 10197 35.28%
E5=15756pJ 2Tc 8902 43.50% 7651 51.44%

fifth-order EW filter 1.5Tc 1330 10.20% 1330 10.20%
E5=1482pJ 2Tc 1188 19.82% 1188 19.82%

2-D fast DCT 1.5Tc 18955 39.63% 17978 42.74%
E5=31398pJ 2Tc 17649 43.79% 16917 46.12%

47

Chapter 4

Limited-Resource Folding

Techniques

Two folding techniques have been proposed in this chapter. Some preliminary

ideas of folding technique have been introduced first.

Fig. 4.1 illustrates a waterfall-like algorithm, in which there are six identical

processing nodes in a linear progression. We could fold the waterfall-like algorithm

into a resource-constrained architecture by performing resource sharing technique.

Fig. 4.2 and Fig. 4.3 show two different resource sharing methods. The color repre-

sents the assignment rules. The processing nodes will be processed by the processing

element (PE) with the same color. For example, the processing nodes, P1, P2, and

P3, will be processed by PE1 time-multiplexedly in Fig. 4.2, and the processing

nodes, P1 and P4, will be processed by PE1 in Fig. 4.3.

With the decision of resource sharing method, we can try to design the

proper folded architecture with specified registers and control unit to perform the

algorithm with high resource utilization when the throughput rate is lower than the

maximum speed at which a full-length datapath can operate. The design detail and

the performance analysis will be addressed in the following sections.

48

P1
 P2
 P3
 P4
 P5
 P6

Figure 4.1: A waterfall-like algorithm containing 6 processing nodes.

P1
 P2
 P3

P4
 P5
 P6

PE

1

PE

2

Figure 4.2: Resource sharing of grouping.

PE

1

PE

2

PE

3

P1
 P2
 P3

P4
 P5
 P6

Figure 4.3: Resource sharing of segmentation.

49

4.1 Limited-Resource DWT Processor

4.1.1 Introduction

The discrete wavelet transformation (DWT) has been broadly employed in

DSP applications in the last decade, particularly in the field of multimedia signal

processing, such as video coding, noise analysis, image compression, and so on.

Generally, DWT has two major tasks: FIR filtering and 2-folded decimator. FIR

filtering is realized by using processing elements(PE), such as Multiply/Accumulate

units(MACs), and 2-folded decimator is performed by controlling switching ele-

ments. Much research on DWT implementation assumes that the processing and

switching elements are not strictly restricted and pays much attention on decreas-

ing the storage size and increasing hardware utilization [66, 67, 68, 69, 70]; how-

ever, very few papers deal with the limited-resource implementation. The limited-

resource problem arises when the number of atomic units is constrained. It has

been becoming one of the most important issues in system-on-chip (SOC) design

[60]. Consequently, this section focuses on the scheduling of I/O data streams for

limited number of function units (MAC) instead of applying dedicated design for

FIR filtering and 2-folded decimator and presented and takes the scheduling is for

the MAC-level DWT signal processing.

A number of DWT scheduling algorithms founded on folded architecture have

been proposed [71, 72, 73]. Most papers realize DWT processors based on filter-level

architecture. In general, they apply unconstrained MACs for the implementation

of FIR filtering. We consider these architecture as a filter-level DWT processor.

The filter-level DWT processors generate scheduling for intermediate data streams

between octaves and require additional inter-octave control units. The extra control

units increase hardware overhead and implementation complexity. Besides, most

papers focus on the reduction of memory size between octaves, but they did not

deal with the memory requirement within a FIR filter. Instead of implementing

50

DWT processor at filter-level, this section develops the DWT architecture at the

MAC-level and the number of MACs is limited. We propose a limited-resource

scheduling algorithm that zooms our scope into octaves and flatten the DWT tree

into a data flow graph. By doing so, we are at a better position to fully control the

timing of data streams and thoroughly consider both inter-octave and inter-MAC

communication to decide the all demanded memory. Accordingly, we propose a

novel VLSI synthesis for MAC-level DWT architecture and its matched scheduling

algorithm, called the limited-resource scheduling algorithm(LRS).

Fig. 4.4 is the design flow of the DWT IP synthesizer that combines DWT SIP

generator with the limited-resource scheduler. First, a highly scalable architecture,

that consists of an input FIFO, a control unit, embedded memory, registers, and

limited number of MACs, is constructed as per the architecture constraints and

DWT parameters. The architecture constraints are the data width, the number of

MACs, the size of embedded RAM, and the input data volume. The parameters are

the number of stages, the number of dimensions, and the type of DWT base. Then,

the LRS algorithm produces four scheduling matrices for the control unit synthesis.

Since the design process is rather systematic, we have developed an automated

generator to synthesize silicon intelligent property (SIP) for DWT processor. The

synthesized SIP core can be embedded into a SOC for complete signal processing

applications, such as image compression and audio signal restoration, or converted

to program codes for commercial off-the-shelf DSP processors with programmable

devices such as FPGA and CPLD.

4.1.2 Conventional DWT VLSI architecture

For DWT implementation, several filter-based architectures have been pro-

posed [74, 75, 72, 67] because the basic DWT computation is filtering. Fig. 4.5

illustrates a typical filter-based DWT architecture. The conventional architecture

51

Architecture constraints

The data width, b

 The number of MACs, r

 The size of embedded RAM, ram_size

 The input data volume, data_vol

DWT parameters

The number of stages, S

The number of dimensions, dim

The type of DWT base, (m-tape

HPF, n-type LPF)

Limited-Resource

Scheduler

DWT Processor Generator

Scheduling Matrices

(CM, DM, FbM, AccM)

DWT

SIP

Figure 4.4: The design flow of DWT SIP synthesizer.

High-Pass FIR

Low-Pass FIR

Routing

Network

x(n)

ControllerMemory

IU
y(n)

Figure 4.5: A typical filter-based DWT architecture.

is driven by pyramid algorithm. The pyramid algorithm was proposed by Mallat

[76]. In the conventional DWT architecture, the lowpass and highpass filters are

used to recursively compute each DWT stage, called octave, while the data volume

halves after each octave computation. Given the data volume N and the number of

stages S, the reuse of filters requires a storage unit to hold N data for each octave.

Without parallelizing octave computation, the architecture obviously requires a long

latency to finish the DWT computation, because new octave cannot start until the

previous octave is completely done. Therefore, paper [77] presents recursive pyramid

algorithm (RPA) for scheduling octave computations in parallel.

Traditionally, filter-based architectures address on two challenges: optimiz-

ing memory size for intermediate data streams between octaves and increasing the

52

degree of parallelism in octave scheduling. To deal with these two challenges, re-

searchers spend much effort on design control units and routing network. Paper

[72] uses systolic architecture to optimize the computation throughput of filtering.

However, the systolic architecture requires extra switching units between filters to

orchestrate and synchronize the lowpass and highpass filtering operations. Paper

[71] presents the folded wavelet architecture to minimize the interfiltering memory

size while carefully designing the routing network. Since the routing network is

irregular, the control of routing network becomes complex and the area of routing

network is significantly enlarged. Although published literatures have done great job

on memory size minimization and parallel scheduling, their works fail to explore op-

timization possibility on resources within filters in that we believe there is more room

for optimization when zooming our scope into octaves and flattening the DWT tree

into a data flow graph with fine granularity, such as MAC-level graphes. In addition,

the exploration of MAC-level DWT architectures enables us to develop a system-

atic approach for synthesizing DWT processors with limited-resource constraints.

To start with, we initially paid our attention on intrinsic DWT computation: FIR

filtering.

4.1.3 Limited-resource FIR filtering

FIR filtering is the basic operation for the computation of DWT. Therefore,

In this section, the FIR filtering is discussed first and is performed within the limited

resources hardware environment. For an input sequence x(n) and filter coefficients

h(n), the output sequence y(n) is given by Equation 4.1.

y(n) =
∑

k

x(k)h(n− k) (4.1)

According to the Equation 4.1, the data path of FIR filtering can be presented

53

..., x(3), x(2), x(1)

y(1), y(2), y(3), ...
D D D D

h(1) h(2) h(3) h(N)

...

...

...

Figure 4.6: The flow graph of FIR filtering.

by a Fully-specified Signal Flow Graph (FSFG) shown in the Fig. 4.6 where D is

the delay element. Because there are now only r MACs available, the FIR filtering

executes parallelly r MAC-nodes at the maximum within a signal cycle. Due to the

degree of parallelism, we retime an N-tap FIR to the r-split FSFG shown in the

Fig. 4.25. The r-split FSFG can be obtain by the following retiming steps:(1)Scaling

by a scale factor F determined by Theorem 1, (2)Doing the cut-set retiming[61] at

the output edges of the (r · i)th MAC node, i = 1, 2, ..., q̄− 1, where q̄ is determined

by Equation 4.2. Therefore, our FIR filtering is rate-optimal for the limited number

of MACs. Because the r MACs can operate parallelly, the computation of FIR

filtering can be done in each q̄ cycles called the scheduling period. The scheduling

of the FIR filter coefficients in MACs nodes can be folded as shown in the Fig. 4.26

and is called folded scheduling.

q̄ =
⌈

N

r

⌉
(4.2)

Theorem 1 The scale factor has to satisfy Equation 4.3 for the limited-resource

FIR filtering with r MACs when the folded scheduling is applied.

F ≥ q̄ =
⌈

N

r

⌉
(4.3)

54

h(1)

h1

A MAC node

h

FDFDFD

...
1 h2 hN

Scaling by F

hr r+1h

(F-1)D

D

FD FD

2r+1h

(F-1)D

D

FD FD

2rh...... ...

Cut-set Cut-set

Figure 4.7: The retimed flow graph of FIR filtering.

cycle MAC1 MAC2

1

2

h1 h2

hr+1 hr+2

q

h(n-1)r+1

MACr

hr

h2r

hnrn h(n-1)r+1

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

...

...

...

...

...

...

...

Figure 4.8: The folded scheduling of FIR filtering.

55

Proof : Assume the scale factor F ′ is less than F at the first. The relationship

given by Equation 4.4 is hold, and the FIR filtering can be expanded as shown in

Equation 4.5.

F ′ < q̄ (4.4)

y(n) = x(1)h(n) + x(2)h(n− 1) + ... + x(N)h(1) (4.5)

According to the r-split FSFG in the Fig. 4.25, the output sequence y(n) is

generated as shown in the Equation 4.6 where we define the notation ·iD or [·]iD

presents the sample that pass through the i delay elements.

y(1) = x(1)h(1)

y(2) = [x(1)h(2)]F
′D + xq̄D(2)h(1)

...

(4.6)

Owing to the limitation number of MACs, each input sample x(n) should be

delayed by the factor of q̄D such that the previous input sample x(n−1) can multiply

with the all FIR filter coefficients as shown in the Fig. 4.25. By the Equation 4.6,

the output sample y(2) will be wrong because that scale factor F ′ is smaller than

the scheduling period q̄. The term [x(1)h(2)] is produced and should be delayed q̄

cycles at least for the later term [x(2)h(1)] to execute the right addition. The same

ill situation will be met in the other output samples. So, in this thesis, the scale

factor is chosen to be equal to the scheduling period q̄.

According to the r-split FSFG of FIR filtering, the scheduling for the limited-

56

h

2D3D

1 h2 h3

3D

h4 h5

2D

D D

cut-set cut-set

Figure 4.9: The 2-split FSFG of 5-tap FIR filtering.

MAC FIR filtering can be determined and is introduced by an example. Fig. 4.9

shows an example of 5-tap FIR with limited two MACs. The scale factor F is equal

to three and the cut-sets have be done at the output edge of second and fourth

MAC nodes to perform 2-split FSFG of FIR filtering. By the 2-split FSFG, the

delay elements are replaced by registers to be the output register and input register

of each MAC. Therefore, the MAC node can execute the function of Equation 4.7.

Ri = x(n)hi + Ri+1 i = 1, 2, 3, 4 (4.7)

The register can be scheduled following the number of delay elements shown

in the r-split FSFG such that we can get the scheduling of FIR filtering is shown

in the Fig. 4.28 where the Coefficients Matrix, Data Matrix, Feedback Matrix, and

Accumulated Matrix are called scheduling matrices. The scheduling matrices indi-

cate the r MACs execute the Equation 4.7 in each cycle respectively and the output

sample y(n) in R1 will be produced for every three delay.

4.1.4 Scheduling Algorithm of DWT IP

Discrete wavelet transform is a multiresolution analysis tool. It decomposes

the signal into detailed and approximation version in each octave and the version

of approximation can be decomposed by the same procedure in the next octave

57

h1 h2

D D

R1 R2

h3 h4
R3 R4

h5
R5

cycle MAC1 MAC2

1

2

3

h1 h2

h3 h4

h5

4

5

6

h1 h2

h3 h4

h5

Coefficient Matrix

cycle MAC1 MAC2

1

2

3

R2 R3

R4 R5

4

5

6

R2 R3

R4 R5

cycle MAC1 MAC2

1

2

3

R1 R2

R3 R4

R5

4

5

6

R1 R2

R3 R4

R5

3D

3D

2D

2D

Feedback Matrix
Accumulated

Matrix

cycle MAC1 MAC2

1

2

3

x1 x1

x1 x1

x1

4

5

6

x2 x2

x2 x2

x2

Data Matrix

Figure 4.10: The scheduling of FIR filtering.

to perform the multiresolution analysis. Fig. 4.11 shows the part of DWT block

diagram where LD and HD are the lowpass and highpass FIR filter of DWT and

the following operation is the two -folded decimator. According to the scheduling of

the limited-MAC FIR filtering mentioned in the last section, the filtering operation

of the limited-MAC DWT processor can be realized but the 2-folded decimator. The

2-folded decimator could be implemented by the timing of the input samples and

the filter coefficients in our r-split FSFG of FIR filtering. Therefore our goal is to

find the scheduling matrixces of the DWT signal processing. The algorithm that

determined the scheduling matrices of the limited-MAC DWT signal processing is

presented by r-split FSFG of limited-MAC FIR and It considers the highpass and

lowpass FIR filter at the same time.

58

HD

LD

2

2

HD

LD

2

2

xi-2,j

xi-1,j

yi-1,j

xi,j

yi,j

Figure 4.11: The DWT block diagram.

Four Scheduling Matrices

The coefficient matrix (CM), presents the input schedule of coefficients to

the multipliers of the MACs. CM is a 2-D q× r array, where q is scheduling period

that consider the highpass and lowpass FIR filter at the same time and r is the

number of MACs. Assume that the order of wavelet subband filters is (m, n) where

m is the order of lowpass filter and n is the order of highpass filter. Given r, m,

and n, the value of scheduling period, q, can be obtained from Equation 4.8.

q = ceil(
m + n

r
) (4.8)

It should consider the 2-folded decimator to determine the value of elements

in CM The scheduling algorithm first finds out the CM for the single-MAC DWT

processor, named as CM1, and then fold the CM1 r times for the DWT processor

with r MACs. CM1 is a q × 1 matrix that consists of both lowpass and highpass

FIR coefficients. The value of CM1(p) is calculated by Equation 4.9, where fm =

floor(m
2), fn = floor(n

2), f = fm + fn, and Li and Hi are the (i − 1)th order

coefficients of lowpass and highpass FIR.

59

CM1(p) =



L2p + H2(p−fm) for p ≤ f

L2(p−f)−1

+H2(p−f+fm−m)−1 for f < p ≤ m + n

0 otherwise

(4.9)

To obtain CM for r-MAC DWT processor, we first duplicate CM1 r times

to get rq × 1 matrix CMr and then fold CMr to the CM . To fold the CMr to

the CM for r-MAC DWT processor, the scheduling algorithm performs the linear

transformation of Equation 4.9 by the index mapping shown in Equation 4.10.

CM(i, j) = CM1(p) where p = j + r(i− 1) (4.10)

The data matrix(DM) decides the schedule of input data to the multipliers

of MACs. It should still considers the 2-folded decimator for the timing of the input

data. Therefore, the calculation of every pair of the output data will consume two

input data. Thus, each multiplier will needs two input data within a scheduling

period, and the DM for the single-MAC DWT, named DM1, needs provide two

addresses for the input data within a scheduling period. The equation 4.11 shows

the value of input data indexed by b(k) and a(k) during the kth scheduling period,

where DM<k>
1 is the matrix DM1 in the kth scheduling period, p is ranged from 1 to

q, xi,j means the jth input sample of the ith stage, and a(k) and b(k) are calculated by

the DM scheduling algorithm. Fig. 4.12 is the DM algorithm based on the manner

of As-Soon-As-Possible (ASAP), where S is the stage count of the DWT, and Q is

the integer number.The ASAP scheduling makes the MAC execution priority of the

next octave is always higher than that of the previous octave when the input data

for the next octave is prepared. The ASAP scheduling will optimize the performance

60

if [a(k-1)==S-1]

a(k)=0, b(k)=b(k-1) 2a(k-1)+2;

else {

if [b(k-1)==4Q]

a(k)=a(k-1)+1, b(k)=b(k-1)/2;

else

a(k)=0, b(k)=b(k-1) 2a(k-1)+2;}

Initial Conditions: a(1)=0, b(1)=2

Figure 4.12: DM scheduling algorithm.

of DWT processor in terms of latency and throughput. Upon calculating DM1, the

DM for the multi-MAC DWT can be obtained in the same way as the CM .

DM<k>
1 (p) =





(xa(k),b(k)−1)k for p ≤ f

(xa(k),b(k))k for p > f
(4.11)

The iteration of DM scheduling algorithm will perform the periodic control

strategy for the multi-stage DWT and the control period (CP) is 2S − 1 scheduling

periods. It means that the processor will costs 2S − 1 × q clock cycles to produce

the outputs of the Sth stage. In order to perform the periodic timing of the control

strategy, the index of the data shown in the DM scheduling algorithm for k =

1, ..., 2S − 1 is rearranged as (a(k), u(i)w + b(k)) by Equation 4.12.

u(i) = max
a(k)=i

b(k)

w = k mod 2S − 1
(4.12)

The controller implementation of the DWT processor, therefore, will have S

states, and each state represents the source of the data. For example, a(k) = 0 means

the data sequence comes from the original input data. When a(k) is larger than

61

zero, the data sequence is the output feedback from the a(k)th stage. Here a(k) is

finite. The output feedback can be either detail or approximation coefficients. Both

are allowed to perform the different subband analysis.

The 3rd and 4th matrices of the scheduling presented here are the feedback

matrix (FbM) and the accumulated matrix (AccM). FbM shows the location where

the MAC should load from and AccM indicates the location where stores the output

data of MACs. Both matrices access the same set of output registers, Ra(k),i, in the

output register file and their elements are addresses of associated source registers

and destination registers. The a(k) defined in DM algorithm represents the output

register bank is used at the (a(k) + 1)th stage. The address calculation is shown in

Equation 4.13 and Equation 4.14, where a1 = 2p, a2 = 2(p− fm), a3 = 2(p− f)− 1,

a4 = 2(p− f + fm −m)− 1, û1(l) = u(l− 1)− u(l−m), û2(l) = u(l− 1)− u(l− n),

p = j + r(i− 1), and the function u(.) is the unit step sequence..

FbM(i, j) =



AccM(i, j) + 1 for AccM(i, j) 6= m + n

or m + n + 1

0 otherwise

(4.13)

AccM(i, j) =



a1 × û1(a1)

+(a2 + m)× û2(a2) for p ≤ f

a3 × û1(a3)

+(a4 + m)× û2(a4) for f < p ≤ m + n

0 otherwise

(4.14)

After determining the four scheduling matrices, the DWT operation will start

62

at the first row of the first scheduling period. Equation 4.15 shows the computation

in the first scheduling period, k = 1, a(k) = 0.

for i = 1 to q {
R0,AccM(i,1) =CM(i, 1)×DM(i, 1)+R0,F bM(i,1)

R0,AccM(i,2) =CM(i, 2)×DM(i, 2)+R0,F bM(i,2)

...

R0,AccM(i,r) =CM(i, r)×DM(i, r)+R0,F bM(i,r)

}

(4.15)

Then the DWT operation will do the same process for the other scheduling

period, k. After finishing one scheduling period, a detail coefficient and an approxi-

mation coefficient of the (a(k) + 1)th stage will be produced at the output registers

labeled Ra(k),1 and Ra(k),m+1.

Performance

The performance of the proposed DWT processor based on the limited re-

source scheduling is dependent on the number of the MACs. There are four perfor-

mance metrics we concern in the DWT processor design: latency, the throughput

rate, the maximum sampling rate, and the number of registers.

According to the ASAP scheduling, the first output data at the sth stage

needs 2s original signal samples to generate the first output data. The latency, L, of

the DWT processor is equal to
[
q(2S − 2) + (q

2)
]

clock cycles, and the throughput

rate, TH, of the DWT processor is equal to TH = 2
(2S−1)×q

in that two input data

at the Sth stage can be obtained every 2S − 1 iterations.

Now let us consider the maximum sampling rate. To avoid overflowing of the

input buffer, the minimum sample period is equal to (2S−1)×q
2S clock cycles. Thus,

63

the sampling rate is bounded at 2S

(2S−1)×q
samples per clock cycle.

Regarding the number of registers, we need determine the register require-

ment for each stage. For each stage, an iteration requires m + n registers, R1 ∼
Rm+n. Since the number of MACs is limited, data in registers cannot be cleared

until finishing the following consecutive stages. Thus, the total number of registers

is equal to S × (m + n) words.

The size of memory

According to the MAC-level architecture, the ASAP principle can be realized

and conclude that the sequence of inter-octave will not need to save for the compu-

tation of the next octave. It introduces that there are only 2-word size of memory

between the octaves in our proposed algorithm. Therefore, the memory will include

the coefficients register file of (m + n)-word size, MAC input data register file of r-

word size, output register file of S× (m + n)-word size and the inter-octave register

of 2-word size . The total size of memory will need (m + n) + r + S × (m + n) + 2

words. The coefficients register file, MAC input data register file and output reg-

ister file are needed for iteration operation of filtering. They can be regards as the

registers for the iteration operation of filtering instead of the operation of DWT.

Scheduling Algorithm of IDWT

The inverse discrete wavelet transformation can be performed in the same

MAC-level architecture based on the same limited-resource architecture. Its schedul-

ing algorithm is still developed from our r-split FSFG of FIR filter. For the hardware

implementation, all we need to change are the controller and two extra adders.

Fig. 4.13 shows the part of the block diagram of IDWT. The reconstruction

signal of the ith stage, x̃i,j and the wavelet coefficients, yi,j are upsampling by two

and filtering by lowpass filter, L’, and highpass filter, H’. The reconstruction signal

64

HI

LI

2

2

HI

LI

2

2

yi-1,j

yi,j

ji
x ,
~

ji
x ,1
~

ji
x ,2
~

Figure 4.13: The block diagram of IDWT.

of the (i − 1)th stage, x̃i−1,j , will be the summation of the both filtering signals.

Notice that the x̃S,j = xS,j , and the S is the stage count of DWT.

To perform the computation of IDWT based on the same architecture of

DWT, a little modification of the scheduling algorithm for DWT is needed. The

four scheduling matrices, CM , DM , FbM , and AccM are still used here. Both

of the CM and AccM are the same, but DM and AccM are modified for the

computation of IDWT. Equation 4.16 shows the DM scheduling algorithm. Notice

that each data here should multiply with every filter coefficients. Therefore, the

location of wavelet coefficients xi,k and yi,k in DM is corresponding to the position

of lowpass and highpass filter coefficients in CM . The term in the Equation 4.17 to

plus two will ignore the zero input data to perform the interpolation.

DM<k>(p) =



xi,k p ≤ fm , f < p ≤ f + m− fm

yi,k fm <p≤f , f+m−fm < p≤m+n

0 otherwise

(4.16)

65

FbM(i, j) =



AccM(i, j) + 2

for AccM(i,j) 6= m+1,

m+2,

m+n+1 or

m+n+2

0 otherwise

(4.17)

Example of DWT scheduling

Now we use DWT with Daubechies(9,7) as an example. Given the number

of MACs is three, The parameters can be determined as follows:

r = 3, q = 6, fm = 4, fn = 3, f = 7

According to the proposed scheduling algorithm, the scheduler produces four

scheduling matrices as shown in the Fig. 4.14. The CM and DM are produced to

proceed the multiplication process as like LiBj . The FbM and AccM will address

the output registers for each scheduling period to perform the summation equation.

The B1 and B2 in DM are the FIFO registers that buffer two new samples

whose timing are determined by the DM algorithm for each scheduling period.

Fig. 4.15 shows the data that is buffured into the B1 and B2 at the first and kth

stage. The periodic control strategy is shown in Fig. 4.16 after rearranging the index

of the buffered data.

Both outputs of the 3rd stage will be produced at each w. For the first

scheduling period, k = 1, The samples in B1 and B2 are x0,1 and x0,2. The first

approximation output sample at the first stage, yL(1) = L2x0,1 + L1x0,2, will be

produced at t = 3 in R(0,1), and the first detail sample at the first stage will be

66

2 4 6

8 2 4

6 1 3

5 7 9

1 3 5

7

1 1 1

1 1 1

1 2 2

2 2 2

2 2 2

2

s,2 s,4 s,6

s,8 s,11 s,13

s,15 s,1 s,3

s,5 s,7 s,9

s,10 s,12 s,14

s,16

s,3 s,5 s,7

s,9 s,12 s,14

s,16 s,2 s,4

s,11 s,13 s,15

s,6 s,8

Figure 4.14: Four scheduling Matrices.

DM p
(1)

p=j+ i

m , n , r q

p rq

a(k),b(k)-1

a(k),b(k)-1

j
i

xa(k),b(k)-1

x

x

x

x

x

k

k

k

k

k

k

a(k),b(k)-1

a(k),b(k)

a(k),b(k)

a(k),b(k)

x

x

x

x

x

x

x

x

x

x

a(k),b(k)-1

a(k),b(k)-1

a(k),b(k)-1

a(k),b(k)

a(k),b(k)

a(k),b(k)

a(k),b(k)

a(k),b(k)

a(k),b(k)

DM p
(k)

a(k),b(k)-1

a(k),b(k)-1

j
i

x0,1 x0,1 x0,1

x0,1 x0,1 x0,1

x0,1 x0,2 x0,2

x0,2 x0,2 x0,2

x0,2 x0,2 x0,2

x0,2

Figure 4.15: The data flow in DM.

67

w

Buffer#1Scheduling

Period (k)

w

w

w

w

w

x 0,8w+1

x 0,8w+3 x0,8w+4

w

Buffer#2

x 0,8w+2

x 1,4w+1 x 1,4w+2

x0,8w+5 x0,8w+6

x0,8w+7 x0,8w+8

x 1,4w+3 x 1,4w+4

x 2,2w+1 x 2,2w+2

Stage count : 3

Output period : 2 -1 = 7
3

w = k mod 7

Figure 4.16: The data with rearranged indexing.

produced at t = 5 in R0,10. The first scheduling period is performed until t = 6,

and then the dataflow shown in the Fig. 4.16 will be buffered into the B1 and B2

in k order. After executing the 7th scheduling period, k = 7, the first output of

3rd stage, x3,1 will be generated. Therefore, the DWT with Daubechies(9,7) and 3

MACs can be performed by the results of the scheduling algorithm.

4.1.5 Limited-Resource DWT Architecture

Fig. 4.17 shows the proposed architecture based on the scheduling algorithm

mentioned above. The architecture is composed of r MACs,a scheduler and regis-

ter banks. The MACs are fed data from the coefficient bus, MAC data bus, and

internal feedback bus. As shown in Fig. 4.18, the access of output register banks

is controlled by the write enable bus, Wr en, and output enable bus, O en. The

signals of Wr en bus are produced based on the AccM to decide the destination

registers for storing the output data. The signals of O en bus are used to enable

output registers according to the FbM and select outputs of Ra(k),1 and Ra(k),m+1

to deliver the coefficients for each stage.

Fig. 4.19 illustrates register banks connecting to the coefficient bus and data

68

X

+

X

+

X

+

data bus

coeff. bus

feedback bus

accum. bus

Scheduler
control word

Scheduling period, q LUT

T
o

 r
eg

is
te

r
b

an
k

s

Figure 4.17: The limited-resource DWT architecture.

Accum. Bus

Output

Register File

#1

nm
RR ,01,0 ~

Output

Register File

#2

nm
RR ,11,1 ~

Output

Register File

#S

nmSS
RR ,11,1 ~

…

Wr_en

O_en

Feedback Bus

1,0R 1,0 m
R

1,1R 1,1 m
R 1,1S

R 1,1 mS
R

Data Feedback Bus

Figure 4.18: The output register bank.

bus. In the coefficient register bank, the Wr en is asserted when setting up wavelet

function and the signals of O en bus enable r coefficient registers based on the CM .

In the input register bank, the signals of Wr en bus decide which input register needs

to be updated based on the DM and the signals of O en bus enable the input of

MACs based on the DM . Fig. 4.20 shows the feedback register banks and the data

register bank. The former loads the data from the data feedback bus and the later

fetches the input data. The data in both of them are loaded into the input data

bus by the O en signals based on the periodic control strategy of DM algorithm

to perform the multi-stage DWT. All of the signals of write and output enable

buses are produced by controller according to the proposed scheduling algorithm.

The controller design is an important part for implementation of DWT processor.

69

Wr_en

Coefficient Bus

MAC Data Bus

Input Register File

X1, X2, … ,Xr

Coefficient Register File

Wr_en O_en

nm
HHLL ~,~ 11

Input Data BusO_en RAM

Figure 4.19: The coefficient and input register banks

O_en
Feedback

Register File

#1

Feedback

Register File

#2

Feedback

Register File

#S-1
…

Input Data Bus

Data Register

File

1)(,0 kb
x)(,0 kb

x

Data Feedback Bus

)(,21)(,2 ,
kbkb

xx)(,11)(,1 ,
kbkb

xx)(,11)(,1 ,
kbSkbS

xx

Input Data

Figure 4.20: The feedback and Data register banks

Because the proposed scheduling algorithm performs the regular behavior for each

step, such as periodic feature, it leads to a statistical scheduling. Therefore, the

controller can be implemented by look-up-table intuitively. Furthermore, if we want

to compute another wavelet function, the work will be just to update the look-up-

table (or re-synthesize the controller) and to fetch new coefficients from memory.

Comparing to conventional DWT architectures, the proposed MAC-level ar-

chitecture can further reduce the overall memory requirement and increasing hard-

ware utilization over filter-based architectures by exploring the redundancy between

the lowpass and highpass filters. First, the proposed architecture outperforms con-

ventional architectures in terms of memory requirement because we flatten the DWT

computation with fine granularity. The conventional architectures deal with the

memory size at filter level, so they have a storage unit to hold N data for each

70

octave and the overall memory size is proportional to N . Second, the proposed

architecture has high degree of scalability. Paper [72] has the highest hardware uti-

lization for its systolic implementation, but the irregular memory access makes it

lose scalability. Paper [67] has regular implementation, but the hardware utilization

is lower than the proposed architecture and their architecture can only apply for

certain DWT applications, e.g. the order of FIR has to be less than 8.

4.1.6 Implementation of DWT IP

IP Synthesizer

As shown in Fig. 4.4, the IP synthesizer generates DWT IP based on the

architecture constraints and DWT parameters. The architecture constraints are

conditions for implementation of target IP. b declares the bit-width of input data

and determines the precision of function units. r is the constraint for MAC compo-

nents. The synthesis will generate r MACs in the data path. ram size and data vol

are parameters for input buffer generator and I/O address generator. Given the

architecture constraints, the synthesizer accordingly produces synthesizable VHDL

codes for MAC array, input buffer, I/O address generator and interfaces in between.

Then, the IP synthesizer calculates four scheduling matrices according to the DWT

parameters.

There are four DWT parameters for DWT configuration: S, dim, m and n.

S is the number of octaves which will determine CP for scheduler. The scheduler

will use the value of CP to determine when to produce the outputs of the last stage.

dim indicates the dimension of DWT, where 1 for one-dimensional DWT and 2

for two-dimensional DWT. The two-dimensional DWT synthesis requires one more

step than one-dimensional DWT synthesis. When synthesizing two-dimensional, the

synthesizer will produce transpose memory for row-column DWT computations. m

and n determine the order of highpass FIR and lowpass FIR, respectively. Given m

71

and n, the IP synthesizer calculates four scheduling matrices and then convert the

matrices into a look-up table. The look-up table then becomes part of scheduler.

Synthesis result

The DWT processor with four MACs using the Daubechies (9,7) wavelet basis

has been implemented at 50 MHz of the operation frequency. In this section, we

use TSMC 0.35um 1P4M process to synthesize the DWT processor. Fig. 4.21 shows

the chip layout of the DWT processor. The processor contains eleven components

as labeled in Fig. 4.21. The components are: (1) the row stream interface unit that

provides the external memory addresses and control signals for 1-D DWT input data

or 2-D DWT row data, (2) the ping-pong buffer that stores the two samples of DM

for each scheduling period, (3) the arithmetic unit that contains 4 MACs and one-of-

two downsampling operation, (4) the memory manage unit that allocates memory

space for the output data, (5)-(6) column stream interface unit that provides the

external memory addresses and control signals for 2-D DWT column data, (7) the

control unit that controls the operation of data path, (8) the output latches that

synchronizes the output data stream with the control signal, (9) glue logic, and (10)-

(11) two 16-bit on-chip memory blocks. With four MACs and 16Kbytes SRAM, the

core size is 4238× 4238µm2. According to the measurement, the total size of parts

(7) and (8) is 269410µm2 and hence the overhead of scheduler is as small as 1.5%.

4.1.7 Summary

A highly scalable VLSI architecture and a limited-resource scheduling algo-

rithm for MAC-level DWT processor has been presented. The scheduling algorithm

has been successfully proven that a variety of DWT processors can be efficiently

realized by tuning the parameters. Given the architecture constraints and DWT

parameters, the scheduling algorithm can generate four schedule matrices and en-

72

Figure 4.21: The Layout of DWT processor

able the data path to perform the DWT computation. Owing to high degree of

scalability and flexibility, an automated DWT processor generator has been devel-

oped based on the limited-resource scheduling algorithm. The generated DWT SIP

can be embedded into a SOC or mapped to program codes for commercial off-the-

shelf DSP processors with programmable devices such as FPGA and CPLD.

4.2 Folding Technique for High-Order FIR Filter Im-

plementation

4.2.1 Introduction

FIR filtering is an essential function in most DSP applications, such as

telecommunication and multimedia systems. Its guaranteed stability and simple

structure make FIR itself a popular technique for removing unwanted parts of signal.

For quality-sensitive applications, the number of FIR taps is normally large, ranges

from tens to hundreds. However, long-length (or high-order) FIR filters may result

in costly hardware and hence severe power consumption problem. Furthermore, a

long-length FIR architecture may suffer from the clock-skew problem. Besides these

73

reasons, FIR filtering is also one of waterfall-like processing procedures which means

all processing tasks in the FIR filtering are in a linear progression. The simple struc-

ture could help to explain two proposed folding techniques. Therefore, two proposed

folding techniques, demonstrated by a high-order FIR filter, have been presented to

illustrate, compare, and conclude the tradeoffs between the limited number of pro-

cessing elements and performance. Two systematic folding techniques are derived

from the idea of resource sharing. One of them involves the resource sharing of

grouping, and the other involves the resource sharing of segmentation.

Many approaches have been proposed to reduce the hardware complexity of

FIR filtering [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. They can be

classified into three categories: multiplier reduction [86, 81, 82, 89, 85, 88], multipli-

erless realization [90, 83, 78], and resource sharing (or folding) [87, 79, 84, 91, 92].

The first category can reduce the number of multiplications at the expense of in-

creased number of additions or pre-/post-processing units. The second category

mainly uses the distributed arithmetic(DA) technique to dismiss multipliers. Both

categories are able to significantly reduce computational complexity but lack flex-

ibility for cost-optimal FIR implementation. The third category is proposed for

reducing the datapath cost when the throughput rate is lower than the maximum

speed at which a full-length datapath can operate. That is, the folding techniques

intend to trade excessive speed for datapath cost with high degree of flexibility.

[87] and [79] present the first systematic transformation technique to fold

DSP algorithms. The folding technique was proposed for efficient resource sharing to

meet both throughput and resource constraints, while it allows identical operations

to be time-multiplexed by the same circuit unit. The technique is attractive not only

for its area saving but also for the alleviation of the clock-skew problem. Following

[87] and [79], [84] and [91] present folded FIR architectures for variable folding

factor and bit-level pipelined implementations, respectively. Both of them take

74

the advantage of folding technique to meet their objectives. The existed folded

architectures mainly focus on the utilization of processing elements or data path;

however, few emphasize the cost of registers and control units. Note that when

the processing elements have been carefully allocated for performance constraints

registers and control units will become the main issues to the efficiency of folding

techniques. Thus, this chapter presents two folding techniques based on algebraic

and structural transformations. As shown in the estimation results, the proposed

techniques can outperform the others in terms of cost and power dissipation.

4.2.2 Candidates of Folding Techniques

There are five folding techniques being targeted as candidates. Three of them

are published in [84], [87], and [92] while the others are proposed in this dissertation

at the first time. Later, we will use the following notations to explain the techniques.

m = the bitwidth of input sample

b = the bitwidth of coefficient

K = the number of filter taps

r = the number of multiplier-adders (MAs)

f = the folding factor (f = dK
r e)

TMA = the execution time of MA unit

xputspec = the specified throughput

4.2.3 Existing Folding Techniques

Article [87] presents a systematic transformation technique to fold DSP al-

gorithms. At first, it maps the nodes of the signal flow graph (SFG) into folding

elements; each of them is composed of one or more identical operations. Given the

folding factor f and a K -tap FIR, there exist dK/fe (or r) processing elements

75

MA1
 MA2
 MA3
 MA4
 MA5
 MA6
D
 D
 D
 D
 D

x[n]

y[n]

0

MA

MA
0

h[0]

h[1]

h[2]

3D

D

MA

3D

D

2D

h[3]

h[4]

h[5]

D

3D

2D

x[n]

y[n]

(a)

(b)

{S
1
|0}
 {S
1
|1}
 {S
1
|2}
 {S
2
|0}
 {S
2
|1}
 {S
2
|2}

S
1
 S
2

h[0]
 h[1]
 h[2]
 h[3]
 h[4]
 h[5]

Figure 4.22: A folding example of FIR filter. (a) A 6-tap FIR filter in the transposed
form. (b) The folded architecture of Fig. 4.22(a) by using the technique presented
in [87].

(PEs) (or MA) in the target architecture, and up to f equally structured folding

elements will be assigned to the same PE. The executing order of folding elements,

being assigned to the same PE, is determined by the folding-order number; the

folding-order number is set by the task scheduling of folding elements. Finally, the

technique requires delay-insertion to synchronize the input of coefficients. The syn-

chronization is realized by registers clocked at the sampling rate, a multiplexer, and

a MOD f counter. Fig. 4.22 illustrates an example with K=6 and r=2. The paper

[92] presents a low power synthesis approach by using the unfolding technique with

coefficient reordering. However, it uses the same hardware mapping strategy as

[87]. Unfolding a filter, by a factor F will result in a F -parallel filter topology. The

memory requirement is approximatively proportional to the unfolding factor F.

Following the systematic folding technique, article [84] presents the folded

bit-plane FIR architecture and folds the FIR filter algorithm bitwisely. The folded

76

Input Shift Registers

Vector Merging

Adder

Controller

C

o

e
f

f
i

c
i

e
n

t

M

e
m

o

r
y

M

u

l
t

i
p

l
e

x

e
r

s

Input word x[n] in bit-level

Output word y[n] in bit-level

Processor Array

Figure 4.23: The diagram of the folded bit-plane FIR architecture.

bit-plane FIR architecture enables the implementation of changeable folding factor

onto a fixed-size systolic array. The systolic array reads the input word x[n] in

the manner of bit-serial, and generates the partial products bit-by-bit with the

coefficients. The partial products will then be accumulated for the calculation of

the result y[n]. In the folded bit-plane architecture, the folding factor f is equal

to the programmable bit-width of coefficients and the throughput of the folded

architecture can be increased by reducing the bit-width of coefficients. Fig. 4.23 is

the diagram of the folded bit-plane FIR presented in [84].

The architecture of the serial-in folded FIR filter

The transfer function of the K -tap FIR filter can be reformulated as Eq. 4.18

by recursively calculating f -tap FIR filtering.

K−1∑

k=0

hk · z−k =
r−1∑

i=0

z−fi ·
f−1∑

j=0

hfi+j · z−j (4.18)

77

h0+h1z
-1+h2z

-2+ +hf-1z
-(f-1) +

+hf+hf+1z
-(f+1)+ +h2f-1z

-(2f-1) z-f

z-f+hK-f+hK-f+1z
-(K-f+1) +hK-1z

-(K-1)

(a) (b)

X(z) Y(z)

a

b
f

fD

f

fD

x(n) y(n)

f

f

D

D

D

h(n)

h(n)

h(n)

RST

RST

RST

(1,0)
projection

x(3) x(2) x(1) x(0)

f-cycle

1 sample cycle
RST

x(n)

Figure 4.24: (a) The SFG of the reformulated K -tap FIR filter. (b) The serial-in
folded architecture.

where f = K
r . From Eq. 4.18, the K-tap FIR filter is composed of r short-length

FIRs (
∑f−1

j=0 hfi+j · z−j), and can be realized by the SFG as shown in Fig. 4.24(a).

Given the folding factor f , the SFG can be then mapped onto r PEs by (1,0)

projection. The folded architecture in Fig. 4.24(b) is called the serial-in folded FIR.

In the architecture, each PE serially executes the short-length FIR on input samples

and the coefficients hfi+j are circular in cyclic shift registers of PEs. As shown in

Fig. 4.24(b), the clock rate is f times of the sampling rate and the the signal “RST”

is asserted every f clock cycles. The signal “RST” is used to clear the accumulator

before the new sample comes. Finally, the f -stage shift registers fD are used to

buffer the results of short-length FIRs and realize the function of z−fi.

78

The architecture of the parallel-in folded FIR filter

For an input sequence x(n) and filter coefficients h(n), the output sequence

y(n) is given by Eq. 4.1.

According to the Eq. 4.1, the data path of FIR filtering can be presented by

an SFG shown in the Fig. 4.6 where D is the delay element. Because there are only

r MAs available for the folding factor f , the FIR filtering can execute r MA-nodes

in parallel at the maximum within a signal cycle and requires dK
r e (or f) cycles

to finish an iteration. Hence, given r MAs, the iteration period is bounded by f

cycles and f is the folding factor. To fold the execution of the K-tap FIR by f ,

we reconstructed a K -tap FIR to the r -split SFG as shown in the Fig. 4.25. At

first, the delay elements of the original SFG are scaled by the folding factor f so

each iteration of the K-tap requires f cycles. Then, we performed the retiming

transforms on the edges in the cut-sets as shown in Fig. 4.25. The cut-set is used

to segment the retimed graph into f subgraphs(r -split graph). (f = dK
r e). Each

subgraph has r or less than r MA operations. Afterward those f subgraphs would

be executed in the same r MAs by turns. The terms r and f are defined as the

number of hardware resource of MAs and how many equally structured operations

will be assigned to the same hardware, respectively. To execute the subgraphs in

order, the FIR coefficients are scheduled as illustrated in the Fig. 4.26. Because the

input samples are read into the MA array in parallel, the folding technique is called

the parallel-in folded FIR.

Fig. 4.27 illustrates the parallel-in folded FIR architecture, where w is the

bitwidth of data bus. Given r MAs, the folding factor becomes f and the K-tap

FIR requires f cycles for an iteration. There are K b-bit registers in coefficient

register bank. The configuration is composed of r groups. (f = dK
r e). Each

group contains f filter coefficients and simultaneously provides them one by one to

the corresponding MA unit according to the scheduled order shown in Fig.6. The

79

h[
1]

h
1

A MA node

h
1

f
D
f
D
f
D

...
h
2
 h
K

Scaling by
f

h
r
 h
r
+1

(
f
-1)
D

D

f
D
 f
D

h
2
r
+1

(
f
-1)
D

D

f
D
 f
D

h
2
r

...
...
 ...

Cut-set
 Cut-set

x[n]

y[n]

Figure 4.25: The r-split FIR filtering.

cycle MA1 MA2

1

2

h0 h1

h r hr+1

h (f-1)r

MAr

hr-1

h2r-1

h fr-1f h (f-1)r+1

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

...

...

...

...

...

...

...
..
.

Figure 4.26: The scheduling of FIR coefficients for the parallel-in folded technique.

register file is used to buffer the output of MAs so that the subgraphs of r-split FIR

can be executed recursively. The counter is used to schedule the inputs and outputs

of MA array for the FIR working correctly. Fig. 4.9 and Fig. 4.28 demonstrate the

scheduling for an example of 5-tap FIR with two MAs. Given r = 2, the folding

factor f is equal to three and we can obtain the 2-split SFG of Fig. 4.9. To map the

SFG to the parallel-in architecture, we replaced the delay elements with registers

and generated the scheduling as shown in Fig. 4.28. Note that each delay element

is not necessary to be realized as a register if one can properly schedule the data

storage. Following the scheduling, the MA units can perform the function of Eq. 4.7

in each cycle and produce the output y(n) in R1 every three cycles.

80

MA 1
 MA 2
 MA
r

x[n]

Coefficient registers

Register file

MOD
f

Counter

W

 r
i
t
e

d
 e
 c
 o
 d
 e
 r

R
1

R
2

R
r

R
2
r

R
fr

y[n]

R

 e
 a
 d

d
 e
 c
 o
 d
 e
 r

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

r
w

r
w

r
w

r
w

r
w

r
w

r
w
 r
w

From counter

w

w

w

w

w

w

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

w

w

w

.

.

.

w

w

w

.

.

.

y[n]

w

w

(a)

w

x(0)
 x(1)
 x(
f
)
x[n]

y(
0
)

f
 clock cycles

f
 computation

cycles
y[n]

(b)

Figure 4.27: (a) The architecture of the parallel-in folded FIR filter, and (b) the
timing diagram.

4.2.4 Comparison Results

Given the folding factor f for K-tap FIR, all the folding techniques require

the same number of MAs and has the same throughput rate and, hence, the efficiency

of folding techniques is determined by size and power consumption of memory. At

the stage of high-level synthesis, we consider the number of D-type flip-flops (DFFs)

as the size of memory and the access number of DFFs per iteration as the power

dissipation of memory. When making the comparison, we set the bitwidth of data

bus w as m + b + dlog2 Ke for full-precision FIR calculation.

Eq. 4.19 formulates the number of DFFs required by [87]. In [87], there are r MAs

located on the accumulated loop. In Eq. 4.19, we use the term α0 to express the

number of DFFs for coefficient storage. Because each MA has (f + 1) registers with

full precision to hold the accumulating results, the term α1 means the total number

81

h
1
 h
2

D
 D

R
1
 R
2

h
3
 h
4

R
3
 R
4

h
5

R
5

cycle
 MA1
 MA2

1

2

3

h
1
 h
2

h
3
 h
4

h
5

4

5

6

h
1
 h
2

h
3
 h
4

h
5

Coefficient

cycle
 MA1
 MA2

1

2

3

R
2
 R
3

R
4
 R
5

4

5

6

R
2
 R
3

R
4
 R
5

cycle
 MA1
 MA2

1

2

3

R
1
 R
2

R
3
 R
4

R
5

4

5

6

R
1
 R
2

R
3
 R
4

R
5

3
D

3
D

2
D

2
D

Input Register
 Output Register

cycle
 MA1
 MA2

1

2

3

x
1
 x
1

x
1
 x
1

x
1

4

5

6

x
2
 x
2

x
2
 x
2

x
2

Input Sample

.

.
.
 .

.
.

.

.
.
 .

.
.

Figure 4.28: The scheduling of FIR filtering.

of DFFs for r MAs. The term α2 represents the number of DFFs for multiplexing

the input samples to MAs. Because the coefficients are cyclically read by MAs, the

number of registers for multiplexing coefficients (in each PE) increasingly varying

with the MA changes. Hence the total number of registers for multiplexing coeffi-

cients can be calculated by q and the term α3 represent the number of DFFs for

multiplexing coefficients. Finally, the controller can be implemented as a counter

and the term α4 counts the number of DFFs required in the controller. Eq. 4.20

shows the number of DFFs required by [92]. The unfolding factor, F, will result in a

F -parallel filter topology. The memory requirement is approximatively proportional

to the unfolding factor F.

82

#DFF[87] = Kb︸︷︷︸
α0

+ r(m + b + dlog2 Ke)(f + 1)︸ ︷︷ ︸
α1

+ (K − f)m︸ ︷︷ ︸
α2

+ bq︸︷︷︸
α3

+ dlog2 fe︸ ︷︷ ︸
α4

,where q =
K−f∑

i=1

i

(4.19)

#DFF[92] = Kb + F (r(m + b + dlog2 Ke)(f + 1)

+(K − f)m + bq + dlog2 fe),where q =
K−f∑

i=1

i
(4.20)

Eq. 4.21 formulates the number of DFFs required by the folded bit-plane

FIR architecture [84]. The folded bit-plane FIR architecture requires K× (m +

b + dlog2 Ke) PEs. Each PE performs 1-bit addition and needs two DFFs for the

carry-out and sum signals. In addition, the length of the input shift register is

(m + b + dlog2 Ke). Thus, the total number of DFFs for PEs can be expressed by

the term α5. The term α6 is the total number of DFFs for coefficient registers.

Finally, the term α7 represents the number of DFFs in the controller.

#DFF[84] = (m + b + dlog2 Ke)(2K + 1)︸ ︷︷ ︸
α5

+ Kb︸︷︷︸
α6

+ dlog2 be︸ ︷︷ ︸
α7

(4.21)

The formulations of our proposed folded FIR techniques are shown in Eq. 4.22

and Eq. 4.23. The details are as follows. The term α8 represents the number of DFFs

of the coefficient registers. The term α9 counts the number of DFFs in accumulators

and latches of the serial-in folded FIR. The term α10 is the number of DFFs for the

83

out-loop delays, fD, as shown in Fig. 4.24. Because there is a counter to generate

the signal “RST”, the term α11 expresses the number of DFFs of the counter. For

the parallel-in folded FIR, the term α12 gives the number of DFFs in the register

file, α13 represents the number of DFFs of the coefficient registers, and α14 expresses

the number of DFFs for the MOD-f counter.

#DFFserial−in = bfr︸︷︷︸
α8

+2r(m + b + dlog2 fe)︸ ︷︷ ︸
α9

+ f(r − 1)(m + b + dlog2 Ke)︸ ︷︷ ︸
α10

+ dlog2 fe︸ ︷︷ ︸
α11

(4.22)

#DFFparallel−in = K(m + b + dlog2 Ke)︸ ︷︷ ︸
α12

+ Kb︸︷︷︸
α13

+ dlog2 fe︸ ︷︷ ︸
α14

(4.23)

We estimated the power consumption of memory by counting the access num-

ber of registers of each computation iteration [80]. The following equations list the

estimation results for five candidates.

#reg access[87] = f(r(m + b + dlog2 Ke)

(f + 1) + (K − f)m) (4.24)

#reg access[92] = F (f(r(m + b + dlog2 Ke)

(f + 1) + (K − f)m)) (4.25)

84

#reg access[84] = m((m + b + dlog2 Ke)(2K + 1) + K) (4.26)

#reg accessserial−in = f(m + (m + b + dlog2 fe)

(r(f + 1)− f)) (4.27)

#reg accessparallel−in = 2rf(m + b + dlog2 Ke) + bfr (4.28)

Additionally, we formulated the occupancy of multiplexers for five folded architec-

tures by the number of the 1-bit 2-to-1 multiplexer as follows:

#MUX[84] = 2Kw + Kb (4.29)

#MUX[87] = r(w(f − 2) + b(f − 1)) + w (4.30)

#MUX[92] = F (r(w(f − 2) + b(f − 1)) + w) (4.31)

#MUXserial−in = rw (4.32)

#MUXparallel−in = 2rwf (4.33)

85

10

0

10

1

10

2

10

3

10

3

10

4

10

5

10

6

folding factor f

nu
m

be
r

of
 F

.F
.s

K=256, m=8

parallel-in

serial-in

[7]

[10]

[15]

[84]

[87]

[92]

Figure 4.29: Number of DFFs of folded architectures (in log scale)

To graphically compare the candidates, we sketched the results for K=255

and m=8 (in log scale), as shown in Fig. 4.29, Fig. 4.30, and Fig. 4.31. As shown

in Fig. 4.29, the serial-in folded FIR has the lowest memory requirement for large f

while the parallel-in folded FIR has the edge for small f . With regard to the power

consumption, the folded FIR of [87] and the serial-in folded FIR exponentially grows

with the increasing value of folding factor.

According to Fig. 4.30, the parallel-in folded FIR consumes the least power

than others. Taking the IS-95 WCDMA pulse shaping FIR filter, whose specifica-

tion is tabulated in Table 4.1, as an example, we have implemented five architectures

and estimated area requirements and power consumption by the Synopsys Design

Analyzer and PrimePower. VLSI design exists a trade-off between operational speed

and silicon area occupation. The main argument in this chapter is to save silicon

area and power consumption based on the same speed. Basically, each architec-

ture’s critical-path delay is the latency between one MA and one multiplexer. We

specified the clock constraint of each architecture in the synthesizing stage to let

the comparisons make sense. The target report of each architecture is summarized

86

10

0

10

1

10

2

10

3

10

4

10

5

10

6

10

7

folding factor f

ac
ce

ss
 n

um
be

r
of

 F
.F

.s
 p

er
 it

er
at

io
n

K=256, m=8

parallel-in

serial-in

[7]

[10]

[15]

[84]

[87]

[92]

Figure 4.30: Access number of DFFs per iteration (in log scale)

in Table 4.2. As we can see that the folding technique can save the area require-

ment but maximal resource sharing can lead to an increase in power consumption.

However, our proposed folded architectures consume less power among all folded

ones. The parallel-in folded FIR filter with the folding factor f = 11 was fabricated

using a 0.18µm CMOS technology, packaged in 68-pin LCC, and successfully passed

functional testing. The features of the implementation and the chip micrograph are

given in Table 4.3 and Fig. 4.32, respectively.

4.2.5 Summary

Two novel systematic hardware-efficient folding techniques for high-order

FIR filtering have been presented. The parallel-in folded design methodology was

applied to the design of an IS-95 WCDMA pulse shaping FIR filter. It features

a sample rate of 168.96 MSPS at a power dissipation of 16.66 mW in a 0.18µm

CMOS technology. Under the same throughput rate, the proposed techniques enable

the validation of the architecture of the folded FIR filter with minimal storage

requirement and less power dissipation when comparing with that of the previous

87

10

0

10

1

10

2

10

3

10

2

10

3

10

4

10

5

10

6

folding factor f

nu
m

be
r

of
 1

-b
it

2-
to

-1
 m

ux

K=256, m=8

parallel-in

serial-in

[7]

[10]

[15]

[84]

[87]

[92]

Figure 4.31: Number of 1-bit 2-to-1 multiplexers of folded architectures (in log scale)

filter length 33 tap
throughtput 15.36 MSPS

passband edge 0.1πω

stopband edge 0.28πω

passband ripple 1.5 dB
stopband ripple 40 dB

input sample word-length 8 bit
coefficient word-length 16 bit

Table 4.1: IS-95 WCDMA pulse shaping FIR filter specification.

works in the literatures.

88

FIR Architecture unfolded [84] [87] [92] (F = 2) serial-in parallel-in
Area (µm2) 2311048 2231788 865477 1627096 578116 758781
Power (mW) 6.79 49.9 34.8 70.2 25.45 16.66

Critical-path (ns) 65.1 4.07 5.92 5.92 5.92 5.92

Table 4.2: Area and power consumption comparisons.(An IS-95 WCDMA pulse
shaping 33-tap FIR)

throughput 168.96 MSPS
power dissipation 16.66 mW

chip size 1.411× 1.411mm2

supply voltage(core/ring) 1.8 V/3.3 V

Table 4.3: Features of the IS-95 WCDMA pulse shaping FIR filter chip.

Figure 4.32: Photomicrograph of IS-95 WCDMA pulse shaping FIR filter chip.

89

Chapter 5

Power Efficient Turbo Decoding

5.1 Introduction

Turbo codes have been widely used in many telecommunication applications.

To efficiently save the notoriously high power dissipation of turbo decoder, liter-

ature has presented numbers of early stopping mechanisms. The early stopping

mechanisms can be done by early termination or early give-up steps. The early

termination ends the search of turbo decoder for solvable packets beforehand, while

the early give-up ceases the turbo decoding for unsolvable packets. Many papers

have proposed early termination approaches which can be categorized into three

classes: soft-bit decision [93, 94], hard-bit decision [95, 96], and extra-checking pol-

icy [97, 98]. However, very few papers target on early give-up techniques. The early

give-up is particularly important for channels with low signal-to-noise ratio (SNR),

in that the early give-up allows the decoder to stop the decoding process for unsolv-

able packets as early as possible and hence minimizing the number of ”redundant”

iterations. The reduction of MAP iterations implies to save the power dissipation of

turbo decoding. It is worth noting that, without early give-up techniques, the ARQ

or HARQ protocols will not enable the resend request mechanism for an unsolvable

90

packet until the turbo decoding process reaches the maximum number of iterations.

The paper [99] by Buckley and Wicker presents an early give-up technique using a

neural network to predict turbo decoding errors. Their technique can improve re-

liability and throughput performance at a lower average decoding complexity than

turbo decoding with CRC-based early termination.

The object of this letter is to design a channel-aware turbo decoder. The

turbo decoder can reduce redundant iterations in noisy channel and minimize the

iterations when the channel becomes better. We present an early give-up technique

with a state reuse mechanism. The proposed technique detects turbo decoding

errors by monitoring the extrinsic information and reuses the a-priori LLR of pre-

vious decoding process as the initial condition for the resend packet. First, when

the extrinsic information oscillates without significant increases as the number of

iterations increases, the decoded packet is most likely an unsolvable packet. So,

once the oscillation of extrinsic information is detected, the early give-up will stop

the decoding process and register the a-priori LLR from wasting further power con-

sumption. The ARQ or HARQ protocols will thereafter trigger the resend request.

When the turbo decoder starts decoding the resend packet, the registered a-priori

LLR will be reused as the initial condition. The reuse of the a-priori information

is called the state reuse mechanism. When the channel status recovers to better

situation with higher SNR in a fading environment, the state reuse mechanism can

further reduce the required iterations and the computational load.

5.2 Early Give-Up Decision

We use the extrinsic information to detect the syndrome of unsolvable pack-

ets and decide when to give error packets up. The unsolvable packets are the re-

ceived packets which cannot be correctly decoded after the turbo decoder reaches

the maximum number of iterations. As shown in Fig. 5.1, for the SISO decoder n,

91

Interleaver

SISO

Decoder 1

Interleaver
+

-

-

SISO

Decoder 2

De-

interleaver

+

-

-

Systematic

Parity 1

Parity 2

Soft

Channel

Inputs

L
e

<1>
(u
k
)

L
<1>
(u
k
)

L
<1>
(u
k
|y
)

Figure 5.1: Turbo decoder scheme.

the extrinsic information L<n>
e (uk) is generated by subtracting the a-priori LLR

L<n>(uk) and the channel value from the a-posteriori LLR L<n>(uk|y). In log-

MAP algorithm, for each decoded bit uk ∈ {−1,+1}, the Eq.(5.1) and Eq.(5.2)

expresses the relation of the a-posteriori LLR and the extrinsic information where α

and β represent state metrics and γ stands for branch metrics, and y is the received

symbol sequence [100]:

L(uk|y) = ln




∑
(s′,s)⇒
uk=+1

αk−1(s′) · γk(s′, s) · βk(s)
∑

(s′,s)⇒
uk=−1

αk−1(s′) · γk(s′, s) · βk(s)




= L(uk) + Lcyks + Le(uk)

(5.1)

where

Le(uk) = ln




∑
(s′,s)⇒
uk=+1

αk−1(s′) · χk(s′, s) · βk(s)
∑

(s′,s)⇒
uk=−1

αk−1(s′) · χk(s′, s) · βk(s)


 (5.2)

Fig. 5.2 illustrates the simulation results with solvable and unsolvable pack-

ets. Obviously, when the decoder is iteratively decoding an unsolvable packet, the

mean of the absolute values of extrinsic information of decoded bits, a.k.a. the mean

92

0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

0

2

4

6

8

10

12

14

16

18

Iterations

M
ea

n
of

 |L

 e
<

1>

 (
u

 k
)
|

x unsolvable packets

+ solvable packets

Figure 5.2: The trends of the mean of the absolute extrinsic information for solvable
and unsolvable packets.

of |L<1>
e (uk)|, oscillates within a bounded range. The proposed early give-up uses

the oscillation as the syndrome of an unsolvable packet.

5.3 State Reuse Mechanism

Traditionally, the initial a-priori LLR for log-MAP decoding algorithm is

set to be zero, which is based on the assumption of each decoded bit having equal

probability to be decoded as -1 or +1. However, when the same packet is being

resent, the last a-priori LLR of previous decoding process could be a better guess

for initial a-priori LLR than zero in that the resent packet should have correlation

with the preceding one. If we reuse the last a-priori LLR of previous decoding

process, it is possible to reduce the number of iterations in the following decoding,

and hence save the power consumption. In the proposed approach, the state reuse

mechanism is used to further save the power dissipation of the decoding process for

resent packets. When the proposed early give-up procedure detects the syndrome of

93

0.5
 1
 1.5
 2

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

SNR

R

 (dB)

A
ve

ra
ge

 It
er

at
io

ns

With reuse mechanism

Without reuse mechanism

Figure 5.3: The average of the required iterations for turbo decoding process with
and without state reuse mechanism.

unsolvable packets, the turbo decoder will register the last a-priori LLR value and

use it as the initial a-priori LLR in the decoding process of the resend packet.

Fig. 5.3 illustrates the iteration reductions of the state reuse mechanism, where

SNRR is the SNR when the packet is being retransmitted. Initially, the given-

up packet is transmitted at 0.5 dB SNR. With the reuse mechanism, when the

channel status is unchanged, the decoding process of the resent packet requires

3.6 iterations in average, while the one without the reuse mechanism requires 5.6

iterations in average. The efficiency of applying reuse mechanism is even better

when the packet is being resent at higher SNR.

5.4 Proposed Turbo Decoding Flow

The proposed early give-up is feasible to be embedded into the conventional

turbo decoding process. Fig. 5.4 shows the flowchart of turbo decoding with the

proposed early give-up technique. The technique starts with the initialization of

the a-priori LLR (step 4-0). If the received packet is a resent packet, the last a-

priori LLR will be used as the initial condition in the SISO decoding; otherwise, the

94

START

END

SISO DECODER 1

SISO DECODER 2

CAN BE E.T.?

YES
NO

NO
 YES

YES
NO

4-1

4-2

4-3

INITIALIZATION

OF THE
A-PRIORI

4-0

SISO DECODER 1
4-4

SISO DECODER 2

4-6

CAN BE E.G.?

4-5

MAX

ITERATIONS REA-

CHED?

4-7

Figure 5.4: The proposed turbo decoding flowchart.

initial a-priori LLR will be set to zero. Then, the decoding process performs the

SISO decoding of the first constituent code (step 4-1), followed by SISO decoding

of the second constituent code (step 4-2). Next, if the decoding result of the second

SISO decoding (step 4-2) agrees with the early termination condition (YES path

of step 4-3), then the valid decoded packet outputs; otherwise (NO path step 4-3),

the iterative decoding continues to the SISO DECODER 1 (step 4-4) followed by

the decision of early give-up (step 4-5). If the mean of |L<1>
e (uk)| oscillates within

a bounded range (YES path of step 4-5), the iterative decoding will halt further

activity; otherwise (NO path of step 4-5), the iterative decoding continues to the

SISO DECODER 2 (step 4-6). Upon finishing the step 4-6, the decoding process

will repeat steps from (step 4-3) to (step 4-7) until one of YES paths of (step 4-3),

(step 4-5), or (step 4-7) is enabled.

5.5 Simulation Results

Fig. 5.5 shows the simulation results with the proposed early give-up tech-

nique in which the average number of iterations required by the proposed decoding

process is less than by the decoding with the Magic Genie Rule. Table 5.1 concludes

the simulation results for various channel SNRs. The proposed early give-up, when

95

the channel SNR is low, significantly reduces the required iterations and power dis-

sipation. When the channel SNR is 0.1 dB, the proposed approach can reduce the

number of decoding iterations by 51.67%. To understand the hardware overhead

of the early give-up implementation, the proposed turbo decoding process has been

realized by Application-Specific Integrated Circuit (ASIC) design flow. According

to the synthesis report with TSMC 0.18µm cell library, the area overhead of the

early give-up is 0.9%. Running at 50MHz, as per the report of PrimePower (by

Synopsys Corp.), the decision circuit of the early give-up only consumes 0.262 mW,

while the log-MAP decoding unit consumes 46.96 mW per iteration. The power

overhead is extremely lower than the power saving of iteration reduction.

96

Table 5.1: Iteration reduction rate of the proposed turbo decoding (comparing with
conventional turbo decoding with the Magic Genie Rule).

Channel SNR 0dB 0.1dB 0.2dB 0.3dB 0.4dB 0.5dB
Reduction Rate 60.66% 51.67% 36.89% 29.41% 12.47% 7.69%

0
 0.1
 0.2
 0.3
 0.4
 0.5

0

5

10

15

20

SNR (dB)

A
ve

ra
ge

 It
er

at
io

ns

Proposed method

Magic Genie Rule

Figure 5.5: Simulation results of the proposed turbo decoding.

97

Chapter 6

Conclusion

Power consumption is an increasingly pressing problem in modern system

design, especially for embedded systems and portable devices which are powered by

battery. Most previous researches focused on developing power minimization tech-

niques at the lower (transistor and logic) levels of the design hierarchy. Operation

scheduling determines the cost-speed tradeoffs of the design. If the design is sub-

ject to a speed constraint, the scheduling algorithm will attempt to parallelize the

operations to meet the timing constraint. Conversely, if there is a limited on the

cost (area or energy), the scheduler will serialize operations to meet the resource

constraint.

This dissertation focuses on the limited-resource problem which arises while

the number of atomic (function) units is constrained or the power resource is limited.

Considerations and techniques on how to meet the constraint requirement have been

provided in three different chapters, and have been involved in the perspective on

how to utilize the resource efficiently. The contributions of each resource efficient

technique go as follows.

98

1. Resource-Constrained Low-Power Scheduling in HLS

• Maximizing the time frame of each operation

Algorithmic transformations benefit task mobilities. The algebraic trans-

formation has been used to shrink the loops and hence increase the iter-

ation period bound (IPB). Retiming and unfolding techniques have been

employed to reduce the iteration period (IP) as much as possible and

thus maximizing the time frame of each task.

• Maximizing the power saving with consideration on peak power

In low-power designs for battery-driven portable applications, the peak

power drives the transient characteristic of the CMOS circuit. Follow-

ing the optimization of average power dissipation, we suppress the peak

power dissipation by the barrier-driven approach. The barrier-driven ap-

proach gradually compresses the task schedulability until no further legal

scheduling can be found.

• Providing flexibility in usage

The inputs to the proposed multiple-voltage low-power scheduling algo-

rithm are an FSFG, a component library, a resource constraint, and a

latency constraint. The algorithm has been implemented in C++ and

could be applied for other compositions of supply voltages.

2. Limited-Resource Folding Techniques

• Providing Efficient tradeoffs between cost and speed in folded

architectures

99

The folding techniques for resource sharing efficiently to meet both through-

put and resource constraints have been proposed. The datapath cost

could be reduced when the throughput rate is lower than the maximum

speed at which a full-length datapath can operate. The proposed folding

techniques intend to efficiently trade excessive speed for datapath cost

with high degree of flexibility.

• Outperforming published folded architectures

The published folded architectures mainly focus on the utilization of pro-

cessing elements or datapath. The efficient cost of registers and control

units have been emphasized by elaborated arrangement. According to

the simulation results, under the same throughput rate, the proposed

folding techniques outperform the previous works in the literatures with

minimal storage requirement and less power dissipation.

3. Power Efficient Turbo Decoding

• Early Give-Up Decision

The novel early give-up technique of turbo decoding is particularly im-

portant for channels with low signal-to-noise ratio (SNR), in that the

early give-up allows the decoder to stop the decoding process for unsolv-

able packets as early as possible and hence minimizing the number of

redundant iterations and the power dissipation.

• State Reuse Mechanism

The reuse of the a-priori information benefits the power saving as well.

When the channel status recovers to better situation with higher SNR in

100

a fading environment, the state reuse mechanism can further reduce the

required iterations and the computational load.

Overall, This dissertation illuminates the impact of resource constraints on

the design methodologies of VLSI signal processing and communication applica-

tions, proposes several design methodologies in the resource-constrained low-power

high-level synthesis (HLS), the limited-resource folding techniques, and the power

efficient turbo decoder, and tries to stimulate interests in the VLSI signal processing

in reformulating and revisiting classic VLSI signal processing problems under new

constraints and exploring the role of signal processing in exciting new applications.

101

Bibliography

[1] U.S. Environmental Protection Agency (EPA). [Online]. Available:

http://epa.gov/

[2] Energy Star program. [Online]. Available: http://www.energystar.gov/

[3] D. D. Gajski and L. Ramachandran, “ Introduction to high-level synthesis,”

IEEE Design & Test of Computers, vol. 11, no. 4, pp. 44–54, 1994.

[4] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral

synthesis of ASIC’s,” IEEE Trans. Computer-Aided Design, vol. 8, pp. 661–679,

June, 1989.

[5] C. Tseng and D. P. Siewiorek, “Automated synthesis of datapaths in digital

systems,” IEEE Trans. Computer-Aided Design, vol. 5, pp. 379–395, July, 1986.

[6] S. Y. Kung, H. J. Whitehouse, and T. Kailath, VLSI and Modern Signal Pro-

cessing, Englewood Cliffs, NJ: Prentice Hall, 1985.

[7] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett, “Some experiments

in local microcode compaction for horizontal machines,” IEEE Trans. Comput.,

vol. C-30, no. 7, pp. 460–477, July, 1981.

[8] K. Keutzer and P. Vanbekbergen, “The impact of CAD on the design of low

102

power digital circuits,” Proc. IEEE Symp. Low Power Electronics, 1994, pp.

42–45.

[9] Y. Katsumata et al., “CMOS/BiCMOS technology,” The VLSI Handbook, W.-

K. Chen (ed.), CRC Press, Boca Raton, 2000, pp. 2/1–2/28

[10] S. Cristoloveanu, “Silicon on insulator technology,” The VLSI Handbook, W.-K.

Chen (ed.), CRC Press, Boca Raton, 2000, pp. 4/1–4/15

[11] L. Benini and G. De Micheli, “System-level power optimization: techniques and

tools,” Proc. Int. Symp. Low Power Electronics and Design, 1999, pp. 288–293

[12] S. Gary, “Low-power microprocessor design,” Low Power Design Methodolo-

gies, J. Rabaey and M. Pedram (eds.), Kluwer Academic Publishers, Boston,

1996, pp. 255–288

[13] K. Itoh, “Low power memory design,” Low Power Design Methodologies, J.

Rabaey and M. Pedram (eds.), Kluwer Academic Publishers, Boston, 1996, pp.

201–251

[14] L. Benini and G. DeMicheli, “Dynamic Power Management,” Kluwer Academic

Publishers, Boston, 1998.

[15] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for

system-level dynamic power management,” IEEE Trans. VLSI Systems, vol. 8,

no. 3, pp. 299–316, 2000.

[16] (Oct. 2006). Advanced Configuration and Power Interface Specification, Revi-

sion 3.0b. [Online]. Available: http://www.acpi.info/spec.htm

[17] T. Sakurai, H. Kawaguchi, and T. Kuroda, “Low-power CMOS design through

VTH control and low-swing circuits,” Proc. Int. Symp. Low Power Electronics

and Design, 1997, pp. 1–6

103

[18] H. Igura et al., “An 800-MOPS, 110-mW, 1.5-V, parallel DSP for mobilemul-

timedia processing,” IEEE J. Solid-State Circuits, vol. 33, no. 11, 1998, pp.

1820–1828.

[19] H. Kubosawa et al., “A 1.2-W, 2.16-GOPS/720-MFLOPS embedded super-

scalar microprocessor for multimedia applications,” IEEE J. Solid-State Cir-

cuits, vol. 33, no. 11, 1998, pp. 1640–1647

[20] W. Lee et al., “A 1-V programmable DSP for wireless communications,” IEEE

J. Solid-State Circuits, vol. 32, no. 11, 1997, pp. 1766–1776

[21] C. Piguet et al., “Low-power design of 8-b embedded CoolRisc microcontroller

cores,” IEEE J. Solid-State Circuits, vol. 32, no. 7, 1997, pp. 1067–1077

[22] G. Yeap, “Practical Low Power Digital VLSI Design,” Kluwer Academic Pub-

lishers, Boston, 1998

[23] A. Chandrakasan and R. Brodersen, “Low Power Digital CMOS Design,”

Kluwer Academic Publishers, Boston, 1995

[24] M. Stan and W. Burleson, “Low-power encodings for global communication in

CMOS VLSI,” IEEE Trans. VLSI Systems, vol. 5, no. 4, 1997, pp. 444–455

[25] M. Stan andW. Burleson, “Bus-invert coding for low-power I/O,” IEEE Trans.

VLSI Systems, vol. 3, no. 1, 1995, pp. 49–58

[26] C. Kretzschmar, R. Siegmund, and D.Mueller, “A low overhead auto-optimizing

bus encoding scheme for low power data transmission,” Proc. Int. Workshop on

Power and Timing Modeling, Optimization and Simulation (PATMOS), 2002,

pp. 342–352

[27] N. Weste and K. Eshraghian, “Principles of CMOS VLSI Design, 2nd ed.,”

Kluwer Academic Publishers, Boston, 1994

104

[28] T. Callaway and E. Swartzlander, “The power consumption of CMOS adders

and multipliers,” Low-Power CMOS Design, A. Chandrakasan and R. Broder-

sen (eds.), IEEE Press, Piscataway, 1998, pp. 218–224

[29] T. Callaway, “Modeling the power consumption of CMOS arithmetic elements,”

Application Specific Processors, E. Swartzlander (ed.), Kluwer Academic Pub-

lishers, Boston, 1997, pp. 29–61

[30] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli, “Multilevel logic syn-

thesis,” Proc. of the IEEE, vol. 78, no. 2, 1990, pp. 264V299

[31] S. Iman and M. Pedram, Logic synthesis for low power VLSI design, Kluwer

Academic Publishers, Boston, 1998

[32] G. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms,

Kluwer Academic Publishers, Boston, 1996

[33] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill,

New York, 1994

[34] J. Monteiro and S. Devadas, “Techniques for power estimation and optimization

at the logic level: a survey,” J. VLSI Signal Processing Systems, vol. 13, no.

2/3, 1996, pp. 259–276

[35] M. Borah, R. M. Owens, and M. J. Irwin, “Transistor sizing for minimiz-

ing power consumption of CMOS circuits under delay constraints,” Proc. Int.

Symp. Low Power Design, 1995, pp. 167–172

[36] B. Chen and I. Nedelchev, “Power Compiler: a gate-level power optimization

and synthesis system,” Proc. IEEE Int. Conf. Computer Design, 1997, pp. 74–

79

105

[37] L. Benini, G. De Micheli, and E. Macii, “Designing low-power circuits: practical

recipes,” IEEE Circuits and Systems Magazine, vol. 1, no. 1, 2001, pp. 6–25

[38] J. Cong, L. He, and C.-K. Koh, “Layout optimization,” Low Power Design in

Deep Submicron Electronics, W. Nebel and J. Mermet (eds.), Kluwer Academic

Publishers, Dordrecht, 1997, pp. 205–265

[39] R. Zimmermann and W. Fichtner, “Low-power logic styles: CMOS versus

passtransistor logic,” IEEE J. Solid-State Circuits, vol. 32, no. 7, 1997, pp.

1079–1090

[40] M. Kontiala, M. Kuulusa, and J. Nurmi, “Comparison of static logic styles

for lowvoltage digital design,” Proc. IEEE Int. Conf. Electronics, Circuits and

Systems, 2001, pp. 1421–1424

[41] C. Svennson and D. Liu, “Low power circuit techniques,” Low Power Design

Methodologies, J. Rabaey and M. Pedram (eds.), Kluwer Academic Publishers,

Boston, 1996, pp. 37–63

[42] A. Alvandpour and C. Svensson, “Improving cell libraries for low power de-

sign,” Proc. Int. Workshop on Power and Timing Modeling, Optimization and

Simulation (PATMOS), 1996, pp. 317–325

[43] C. Svensson and J. Yuan, “Latches and flip-flops for low-power systems,” Low-

Power CMOS Design, A. Chandrakasan and R. Brodersen (eds.), IEEE Press,

Piscataway, 1996, pp. 233–238

[44] N. Dragone et al., “An innovative methodology for the design automation of

low power libraries,” Proc. Int. Workshop on Power and Timing Modeling,

Optimization and Simulation (PATMOS), 1998, pp. 31–40

[45] O.S. Unsal and I. Koren, “System-level power-aware design techniques in real-

time systems,” Proceedings of the IEEE, vol.91, pp.1055–1069, July 2003.

106

[46] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R.W. Broder-

sen, “Optimizing power using transformations,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol.14, pp.12–31, Jan. 1995.

[47] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low power cmos digital

design,” IEEE J. Solid-State Circuits, vol.27, pp.473–484, April 1992.

[48] A. Raghunathan and N.K. Jha, “Behavioral synthesis for low power,” IEEE

Int. Conf. Computer Design: VLSI in Computer and Processors, pp.318–322,

Oct. 1994.

[49] A. Raghunathan and N.K. Jha, “An iterative improvement algorithm for low

power data path synthesis,” IEEE/ACM Int. Conf. Computer-Aided Design,

pp.597–602, Nov. 1995.

[50] S. Raje and M. Sarrafzadeh, “Scheduling with two voltages under resource

constraints,” tech. rep., Dept. Elect. Eng. Comput. Sci., Northwestern Univ.

Evanston, IL, 1995.

[51] M. Takahashi, M. Hamada, T. Nishikawa, H. Arakida, T. Fujita, F. Hatori,

S. Mita, K. Suzuki, A. Chiba, T. Terazawa, T. Kuroda, and T. Furuyama, “A

60-mw mpeg4 video codec using clustered voltage scaling with variable supply-

voltage scheme,” IEEE J. Solid-State Circuits, vol.33, pp.1772–1780, Nov. 1998.

[52] M. Sarrafzadeh and S. Raje, “Scheduling with multiple voltages under resource

constraints,” IEEE Int. Sym. on Circuits and Systems, pp.350–353, May 1999.

[53] S. Raje and M. Sarrafzadeh, “Variable voltage scheduling,” Proceedings of the

International Symposium on Low Power Design, pp.9–14, 1995.

[54] J.M. Change and M. Pedram, “Energy minimization using multiple supply

voltages,” IEEE Trans. VLSI Syst., vol.5, pp.436–443, Dec. 1997.

107

[55] W.T. Shiue and C. Chakrabarti, “Low power scheduling with resources oper-

ating at multiple voltages,” IEEE Trans. Circuits and Systems II: Analog and

Digital Signal Processing, vol.47, pp.536–543, June 2000.

[56] Hsueh-Chih Yang and Lan-Rong Dung, “On multiple-voltage high-level synthe-

sis using algorithmic transformations,” in Proceedings of the IEEE ASP-DAC,

pp.872–876, Jan. 2005.

[57] M.C. Johnson and K. Roy, “Datapath scheduling with multiple supply volt-

ages and level converters,” ACM Trans. Design Automation Electronic Syst.,

pp.227–248, July 1997.

[58] Y.R. Lin, C.T. Hwang, and A.C.H. Wu, “Scheduling techniques for variable

voltage low power design,” ACM Trans. Design Automation Electronic Syst.,

pp.81–97, April 1997.

[59] A. Manzak and C. Chakrabarti, “A low power scheduling scheme with resources

operating at multiple voltages,” IEEE Trans. VLSI Syst., vol.10, pp.6–14, Feb.

2002.

[60] V.K. Madisetti and B.A. Curtis, “A quantitative methodology for rapid proto-

typing and high-level synthesis of signal processing algorithms,” IEEE Trans.

Signal Processing, vol.42, no.11, pp.3188–3208, November 1994.

[61] V.K. Madisetti, VLSI Digital Signal Processors: An Introduction to Rapid

Prototyping and Design Synthesis, IEEE Press, 1996.

[62] T. Barnwell and C. Hodges, “Optimal implementation of signal flow graphs on

synchronous multiprocessors,” IEEE Int. Conf. Parallel Processing, pp.90–95,

August 1982.

[63] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of iterative

108

data-flow programs via optimum unfolding,” IEEE Trans. Computers, vol.40,

pp.178–195, Feb. 1991.

[64] C.T. Hwang, J.H. Lee, and Y.C. Hsu, “A formal approach to the scheduling

problem in high level synthesis,” IEEE Trans. Computer-Aided Design of Inte-

grated Circuits and Systems, vol.10, pp.464–475, April 1991.

[65] S.P. Mohanty, N. Ranganathan, and V. Krishna, “Datapath scheduling using

dynamic frequency clocking,” IEEE Computer Society Sym. on VLSI, pp.58–63,

April 2002.

[66] T. Lin and C.W. Jen, “An efficient 2-d DWT architecture via resource cycling,”

IEEE International Symposium on Circuits and Systems, vol.4, pp.914–7, May

2001.

[67] W.S. Peng, “An efficient algorithm and architecture design for two-dimension

separable discrete wavelet transform,” ICIP 99, vol.2, 1999.

[68] R.M. Owens and M. Vishwanath, “A very efficient storage structure for DWT

and IDWT filters,” Journal of VLSI Signal Processing, vol.19, pp.215–25, 1998.

[69] T.C. Denk and K.K. Parhi, “Systolic VLSI architectures for 1-d discrete wavelet

transforms,” Conference Record of Thirty-Second Asilomar Conference on Sig-

nals, Systems and Computers, vol.2, pp.1220–4, 1998.

[70] M. S. and M. J.V., “Wavelet packet transforms for system-on-chip applica-

tions,” ICASSP 2000, vol.6, pp.3287 –3290, 2000.

[71] K. Parhi and T. Nishitani, “VLSI architectures for discrete wavelet transforms,”

IEEE Transactions on VLSI Systems, vol.1, no.2, pp.191–202, June 1993.

[72] M. Vishwanath, R. Owens, and M. Irwin, “VLSI architectures for the discrete

109

wavelet transform,” IEEE Trans. Circuit and Systems-II, vol.42, no.5, pp.305–

316, May 1995.

[73] C. Chakrabarti and C. Mumford, “Efficient realizations of analysis and synthe-

sis filters based on the 2-d discrete wavelet transform,” ICASSP 96, pp.3256–

3259, 1996.

[74] C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete and

continuous wavelet transformsGFrom single chip implementations to SIMD par-

allel computers,” IEEE Trans. Signal Processing, vol.43, pp.759–771, March

1995.

[75] C. Yu and S.J. Chen, “Efficient VLSI architectures for separable 2-d discrete

wavelet transforms,” IEEE International Symposium on Consumer Electronics,

Oct. 1998.

[76] S. Mallat., “A theory for multiresolution signal decomposition: The wavelet rep-

resentation,” IEEE Trans. Pattern Analysis and Machine Intell., vol.11, no.7,

pp.674–693, July 1989.

[77] G. Knowles, “VLSI architectures for the discrete wavelet transform,” Electron-

ics Letters, vol.26, no.15, July 1990.

[78] C. S. Burrus, “Digital filter structures described by distributed arithmic,” IEEE

Trans. on Circuits Syst., pp. 674–680, Dec. 1977.

[79] T. C. Denk and K. K. Parhi, “Synthesis of folded pipelined architectures for

multirate DSP algorithms,” IEEE Trans. VLSI, vol. 6, no. 4, pp. 595–607, Dec.

1998.

[80] Rashindra Manniesing, R. Kleihorst, A. V. D. Avoird, and Emile Hendriks

“Power analysis of a general convolution algorithm mapped on a linear processor

array,” Journal of VLSI Signal Processing, vol. 37, pp. 5–19, May 2004.

110

[81] S.-F. Lin, S.-C. Huang, F.-S. Yang, C.-W. Ku, and L.-G. Chen, “Power-efficient

FIR filter architecture design for wireless embedded system,” IEEE Trans. Cir-

cuits Syst. II, vol. 51, no. 1, pp. 21–25, Jan. 2004.

[82] E. Lueder, “Generation of equivalent block parallel digital filters and algorithms

by a linear transformation,” in IEEE Int. Symp. on Circuits and Systems, , pp.

495–498, May 1993.

[83] M. Mehendale and S. D. Sherlekar, VLSI SYNTHESIS OF DSP KERNELS-

Algorithmic and Architectural Transformations. KLUWER ACADEMIC PUB-

LISHERS, 2001.

[84] I. Milentijevic, V. Ciric, T. Tokic, and O. Vojinovic, “Folded bit-plane FIR

filter architecture with changable folding factor,” in IEEE Euromicro Sym. on

Digital System Design, pp. 45–52, Sept. 2002.

[85] Z. J. Mou and P. Duhamel, “Short-length FIR filters and their use in fast

nonrecursive filtering,” IEEE Trans. Signal Processing, vol. 39, no. 6, pp. 1322–

1332, June 1991.

[86] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, 2nd ed.

PRENTICE HALL, 1999.

[87] K. K. Parhi, C.-Y. Wang, and A. P. Brown, “Synthesis of control circuits

in folded pipelined DSP architecture,” IEEE Journal of Solid-State Circuits,

vol. 27, no. 1, pp. 29–43, Jan. 1992.

[88] D. A. Parker and K. K. Parhi, “Low-area/power parallel FIR digital filter

implementations,” J. VLSI Signal Processing Syst., vol. 17, no. 1, pp. 75–92,

1997.

[89] D. N. Pearson and K. K. Parhi, “Low-power FIR digital filter architectures,”

in IEEE Int. Symp. on Circuits and Systems, pp. 231–234, Apr. 1995.

111

[90] S. White, “Applications of distributed arithmetic to digital signal processing:

A tutorial review,” IEEE ASSP Magazine, pp. 4–19, July 1989.

[91] P. Bougas, P. Kalivas, A. Tsirikos, and K. Z. Pekmestzi, “Pipelined Array-

Based FIR Filter Folding,” IEEE Trans. Circuits and Systems-I, vol. 52, no. 1,

pp. 108–118, Jan. 2005.

[92] Vijay Sundararajan and K. K. Parhi, “Synthesis of low power folded pro-

grammable coefficient FIR digital filters,” in Proc. ASPDAC, pp. 153–156, Jan.

2000.

[93] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445,

Mar. 1996.

[94] F. Zhai and I.J. Fair, “Techniques for early stopping and error detection in

turbo decoding,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1617–1623, Oct.

2003.

[95] R.Y. Shao, S. Lin, and M.P.C. Fossorier, “Two simple stopping criteria for

turbo decoding,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1117–1120, Aug.

1999.

[96] Y. Wu, B.D. Woerner, and J. Ebel, “A simple stopping criteria for turbo de-

coding,” IEEE Commun. Lett., vol. 4, no. 8, pp. 258–260, Aug. 2000.

[97] A. Shibutani, H. Suda, and F. Adachi, “A simple stopping criteria for turbo

decoding,” IEE Electronics Lett., vol. 35, no. 9, pp. 701–702, Apr. 1999.

[98] J. Heo, K. Chung, and K.M. Chugg, “Simple stopping criterion for min-sum

iterative decoding algorithm,” IEE Electronics Lett., vol. 37, no. 25, pp. 1530–

1531, Dec. 2001.

112

[99] M.E. Buckley and S.B. Wicker, “The design and performance of a neural net-

work for predicting turbo decoding error with application to hybrid ARQ pro-

tocols,” IEEE Trans. Commun., vol. 48, no. 4, pp. 566–576, Apr. 2000.

[100] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes (1),” in Proc. ICC’93, vol. 2, pp.

1064–1070, May 1993.

113

	cover
	cover1
	推薦函
	中文審定
	英文審定
	hooker_final

