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Abstract

In recent years, there is a fast growing interest in non-coding RNAs (ncRNAs) because they play
a lot of essential roles in many cellular processes, even though the transcripts of these ncRNAs
are not translated into proteins. Actually, the function of most available ncRNAs is still unknown.
Likewise to proteins, a more reliable way for determining the functions of ncRNAs is to analyze
their three-dimensional (3D, tertiary) structures, because structures of molecules are typically
more evolutionarily conserved than their primary sequences. In this regard, a series of recent
efforts and studies has led to a substantial inerease in both the number and the size of solved
RNA tertiary structures deposited in the PDB database. Therefore, it has become more and more
crucial to develop automatic tools that are able to fast and accurately search the PDB database for
structurally similar RNAs. In this study, we have used a structural-alphabet approach to develop a
web server, called R3D-BLAST, that allows biologists to search the PDB database for structural
similarities of an RNA 3D structure. The basic idea behind our R3D-BLAST is as follows. We
first encode all the RNA 3D structures deposited in the PDB database as 1D sequences using the
structural alphabet of 23 letters, which was obtained by using the two pseudo-torsion angles of
RNA nucleotide backbones and the affinity propagation clustering approach. We then apply
BLAST to searching for RNA molecules whose 3D structures are locally similar to that of the
query RNA. Our experimental results have finally shown that our R3D-BLAST indeed has better
performance than BLAST, a famous bioinformatics tool to find homologous proteins/RNAs only
based on their sequence similarity, for identifying those RNA molecules whose tertiary

substructures are locally similar to that of the query RNA, as well as FASTR3D for finding those
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RNAs whose structures are entirely similar to that of the query RNA. Therefore, we believe that

our R3D-BLAST can serve as a useful bioinformatics tool in the study of structural biology.
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Chapter 1

Introduction

In recent years, there is a fast growing interest in noncoding RNAs (ncRNAs) because, they play
essential roles in many cellular processes, including gene regulation, RNA modification and
chromosome replication [9, 14, 25, 31], although their transcripts are not translated into proteins.
However, the function of most available ncRNAs is unknown and needs to be determined.
Likewise to proteins, a common and-useful approach for annotating the function of an ncRNA is
to search databases for similar RNA molecules whose functions are already known. For this
purpose, several databases of ncRNAs have been proposed, such as NONCODE [19], RNAdb
[27], miRBase [17], fRNAdDb [20] and ncRNAdb [32]. For these databases, however, the search is
performed solely by querying keywords, accession numbers, transcript/organism names and/or
nucleotide sequences. Compared with the 20-letter protein alphabet, the 4-letter RNA alphabet is
smaller and less informative, leading to that searching for similar RNA molecules based on

sequence comparison/alignment is not as accurate and powerful as it does for proteins.

Actually, a more reliable way for determining the functions of ncRNAs is to analyze their
structures, since structures of molecules are typically more evolutionarily conserved than their
sequences. In this regard, a series of recent efforts and studies has led to a substantial increase in
both the number and the size of solved RNA structures deposited in the PDB and NDB databases
[4, 3]. Therefore, it has become more and more crucial to develop automatic tools that are able to

efficiently and accurately search for structurally similar RNA substructures and motifs against the



PDB/NDB database. Basically, detecting structural similarities in two RNA molecules at
secondary structure level is an easy job, whereas it is intractable at tertiary structure level,
because it has been shown to be an NP-hard problem even to find a constant ratio approximation
algorithm for computing a pair of maximal substructures from two RNA (or protein)
three-dimensional (3D) structures with exhibiting the highest degree of similarity [22]. Therefore,
currently available tools, such as ARTS [10, 11], DIAL [15], SARSA [7], SARA [6] and iPARTS
[35], are all based on some heuristic approaches for comparing the similarities of two RNA 3D

structures.

ARTS is a web server for detecting'maximuwm common substructures between two given
RNA 3D structures, which was implemented-by Dror eza!/. [10,11] based on a heuristic algorithm
of cubic running time. By representing each RNA 3D structure by a set of its phosphate atoms,
ARTS identifies all structurally similar quadrates (i.e., four phosphate atoms located on two
successive base pairs) between the two input RNA 3D structures and continues to extend them by
using a greedy method for including additional coincident base pairs and unpaired nucleotides.
ARTS is a good tool for detecting RNA structural motifs, but it is still time-consuming for ARTS
to compare large RNA molecules (e.g., ribosomal RNAs) because of its cubic time complexity
and, as was pointed out in [15], the structural alignments produced by ARTS may be incorrect

sometimes.

Later on, to overcome the inaccurate problems caused by ARTS, Ferre' et al. [15]
implemented DIAL, a web server for aligning two RNA 3D structures, by using a dynamic
programming algorithm of quadratic running time based on a scoring function that combines

similarities of nucleotide sequences, base pairs, pseudo-torsion and torsion angles. DIAL is a



versatile web server by providing the user three types of alignments: (i) global alignment, (ii)
local alignment and (iii) an extension of global-semiglobal alignment, that is, a global alignment
of'a motif 4 consisting of one or more contiguous segments is aligned to a contiguous sequence B;
while gap penalties apply throughout for 4 (global alignment), gaps at the ends of B as well as

between portions aligned to contiguous segments of 4 are not penalized (so-called middle gaps).

Next, we developed PARTS [7] for pairwise alignments of RNA tertiary structures based on
a structural alphabet (SA)-based algorithm. Its basic idea is to reduce input RNA 3D structures to
1D sequences of SA letters using backbone torsion angles of constituent residues and continue to
use algorithms of classical sequencealignménts (including global, local, semiglobal and
normalized local alignments) to compate these 1D.SA-encoded sequences for determining their
structural similarities. More recently, we have further-derived a new SA of RNA nucleotide
conformations using their pseudo-torsion angles. Based on this newly designed SA, we have
re-implemented our PARTS as iPARTS [35] (short for improved PARTS) to make its structural

alignments of two RNA molecules more accurate.

Recently, Capriotti and Marti-Renom [5] have proposed a new web server, called SARA, for
globally aligning two RNA 3D structures based on the unit-vector approach and have further
shown its ability in function assignment of RNA structures [6]. For each input RNA 3D structure,
SARA first identifies an atom trace that consists of all contiguous atoms of user-defined type and
also calculates all unit-vectors between any two consecutive atoms along this trace. For each
nucleotide of an input RNA structure, it then groups a set of k consecutive unit-vectors starting
from this nucleotide and places these k unit-vectors at the origin of a unit-sphere, where £ is a

user-defined positive integer. Finally, SARA applies a dynamic programming algorithm without



penalizing end gaps to the two sequences of unit-spheres to find an optimal semiglobal alignment

between them.

However, all these methods mentioned above have at least quadratic-time complexity and
hence are impractical for searching ever-increasing databases of RNA tertiary structures.
Currently, there are several tools that can be used to search motifs in RNA structures, including
FR3D [30], PRIMOS [13], RNAMotif [24], RNA FRABASE [28, 29], and FASTR3D [23].
FR3D uses a base-centered method to perform a geometric search of RNA local/composite 3D
motifs. PRIMOS searches for locally structural similarities of consecutive RNA fragments by
comparing their pseudo-torsion angles. RNAMotif.finds the fragments of an RNA sequence that
conform to a predefined descriptor of defining a particular motif of secondary structure. RNA
FRABASE was developed on the-basis of RNA primary sequences and/or secondary structures
using the methods of regular expression and pattern recognition. FASTR3D was designed based
on a hashing algorithm that is able to fast and accurately find structural similarities for a query of

RNA molecule in the PDB database.

As mentioned above, RNA FRABASE and FASTR3D both find structurally similar RNAs
whose secondary structures exactly match that of the query RNA. However, there are many
examples of RNAs that share similar 3D structures but have only similar or even different 2D
structures. For example, the two tRNA (PDB IDs: 2DR2 and 2J0O2), as shown in Figure 1-1, have
very similar 3D structures (Figure 1-1c), even though their 1D sequences and 2D structures look
different. When querying one of these two tRNAs, RNA FRABASE and FASTR3D both fail to
find the other one with any structural similarity. More often, some RNAs may share only similar

local 3D substructures, rather than similar entire 3D structures (see Figure 1-2 for an example).



Therefore, in this study, we have developed a new web server, called R3D-BLAST, based on a
structural-alphabet approach for fast and accurately searching for structural similarities for a

query of RNA molecules.
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Superimposition of their 3D structures w1th R'MSD of 5.541 angstrom, and (d) 1D sequences and

2D structures of the two tRNAs.




Figure 1-2. Two tRNAs: (a) PDB ID: 2J02, chain ID: V and (b) PDB ID: 1WZ2, chain ID: D, and
(c) their two common similar substructures, one in orange and green colors (RMSD: 1.453

angstrom) and the other in red and blue colors (RMSD: 1.265 angstrom).

The basic idea behind our R3D-BLAST is as follows. First of all, we encode all the RNA 3D
structures deposited in the PDB database as 1D sequences using the structural alphabet of 23
letters, which was obtained by using the two pseudo-torsion angles of RNA nucleotide backbones
and the affinity propagation clustering approach. Next, we apply BLAST to searching for RNA
sub-molecules whose 3D structures are similar to that of the query. Our experimental results have
finally shown that our R3D-BLAST .indeed has,better performance than BLAST, a famous
bioinformatics tool to find homologous proteins/RNAs only based on their sequence similarity,
for identifying those RNA molecules whose tertiary substructures are locally similar to that of the
query RNA, as well as FASTR3D for finding those RNAs whose structures are entirely similar to

that of the query RNA.



Chapter 2

Materials and Methods

The basic idea we used to design our algorithm in this study is as follows. We first use the
affinity propagation approach [16], an excellent method for clustering, to derive an RNA
structural alphabet of 23 letters that represent distinct and most common backbone conformations
of RNAs. According to this structural alphabet, we transform RNA 3D structures currently
deposited in the PDB database into I'D sequences of SA-encoded letters. We then utilize BLAST
[2] to search the collection of 1D SA-encoded sequences for RNA sub-molecules whose 3D
structures are similar to substructutes of the query RNA. In this chapter, we shall describe the
details of (1) pseudo-torsion angles of RNAs, (2)'how to use the affinity propagation approach to
derive the structural alphabet and transform RNA 3D structures into 1D sequences, and (3) how
to derive the substitution scoring matrix for aligning two 1D SA-encoded sequences, and (4) the

details of our algorithm.

2.1 Pseudo-Torsion Angles and Ramachandran-like # — 6 Plot

For protein backbones, two torsion angles (¢ and ) are sufficient to describe the backbone
conformation of each amino acid residue. In contrast, RNA molecules have much higher
dimensionality, since for each nucleotide residue there are six backbone torsion angles (a, £, y, 9,
¢ and ¢{) (see Figure 2-1a) and a torsion angle of the bond between base and ribose ring (y). This

leads the analysis and classification of nucleotide conformation to be a high-dimensional problem



that is computationally intractable and cannot be evaluated visually. In addition, it is difficult to
use these standard torsion angles to distinguish nucleotide conformations, because the so-called
crankshaft effect usually results in that different combinations of stand torsion angles can
describe identical nucleotide conformations. In fact, as was suggested by Duarte and Pyle [12],
the pseudo-torsion angles (7 and @ as illustrated in Figure 2-1b) are at least as sensitive as
standard torsion angles and even may be superior when specifying the backbone conformation of
an individual nucleotide. Particularly, by representing the # and € pseudo-torsion angles of
nucleotides on a 2D plot, one can obtain a Ramachandran-like diagram in which clusters of
nucleotides appear at discrete regions and nucleotides in the same cluster have similar

conformation [34, 12].

Figure 2-1. (a) Six standard backbone torsion angles of @, £, y, J, ¢ and { and (b) two backbone
pseudo-torsion angles of # and € for a nucleotide (denoted by n), where 7 is defined by the atoms

C4’,4, Py, C4°, and Py+, while 6 is defined by P,,, C4’,, Pyi; and C4° 4.

To depict this #—0 plot, we prepared a dataset that includes non-redundant crystal structures

with minimum resolution of 3.0 °A from the PDB database [4]. This dataset finally contains 117



crystal RNA structures, particularly including 74 structures used by Wadley et al. [34], with
9,527 nucleotides in total. We then used AMIGOS that was developed by Duarte and Pyle [12] to
calculate the # and @ pseudo-torsion angles for all non-terminal nucleotides (9,267 nt in total)
from all RNA molecules in the above dataset and plotted these calculated pseudo-torsion angles

on the axes of'a 2D plot as illustrated in Figure 2-2.
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Figure 2-2. An -0 plot of all non-terminal nucleotides from all RNA molecules in the dataset,
where the intersection of the perpendicular gray regions (150" <# < 190" and 190" < 6 <260) is

designated the helical region.



2.2 Affinity Propagation and Structural Alphabet

We here applied the so-called affinity propagation (AP) clustering algorithm, introduced by Frey
and Dueck recently [16], to classify all the non-terminal nucleotides in our prepared dataset
according to their # and 6 pseudo-torsion angles. Like k-means clustering algorithms, the VQ
approaches usually find locally optimum clusters and are sensitive to outliers and noise [36],
although it can be used to classify high dimensional data points. Besides, the VQ methods need to

keep track of a fixed set of candidate centers (or exemplars) while searching for good solutions.

Basically, the AP algorithm is an exemplar-based clustering method for approximately
solving the exemplar learning prob-léﬁ that aims to .idéntify a set of data points as exemplars and
assign every data point to an exemplar 50 as {0 maximi:ze a fitness function, where notably the
exemplar learning problem has beer.l-Show.r-'l o BeINP-hard [8]. Denote the input data points by x;,
X2, ..., Xy the exemplar assigned to x; by ¢;, and the similarity between x; and ¢; by s(x;, ¢;). Then
the fitness function mentioned above is defined to be F ™, s(x,,¢,). Notably, if x; is an exemplar
(i.e., ¢;= x;), then this fitness function includes the term s(x; c¢;). Basically, the AP algorithm
operates by simultaneously considering all input data points xj, x», . . ., X, as potential exemplars
and exchanging messages between data points until a good set of exemplars and clusters emerges.
For simplicity, the similarity (x; x;) between two points x; and x; is also denoted as s(i, /). In
each iteration, two kinds of messages, called responsibility and availability, respectively, are
exchanged between data points. The responsibility (i, k), which is sent from point x; to point xy,
indicates the accumulated evidence for how proper it would be for x; to serve as the exemplar of
x; with taking into account other potential exemplars for x;. Before being sent, the value of #(i, k)

is updated according to the following rule: 7(i, k) = s(i, k) — max;, .., {ali, k") +s(i, k")) The

10



availability a(i, k), which is sent from point x; to point x;, indicates the accumulated evidence for
how proper it would be for x; to choose x; as its exemplar with taking into account the support

from other points that x; should be an exemplar. The value of a(i, k) is updated as follows: if i #k,
then a(i, k) = minf0,r(k, )+ Do max{O,r (@) : otherwise:
a(k, k)= zi’s tie kmax{O, r(i',k)}. It should be noted that numerical oscillations may arise in

some circumstances when updating the above two messages. To avoid such oscillations, therefore,
each message is set to A times its value from the previous iteration plus 1 — A times its currently
prescribed updated value, where A is a damping factor whose value is between 0 and 1. In this
study, we used a default damping factot of'A = 0.5. The above message-passing scheme is
therefore referred to as affinity pr.c.)pagatién.;, At.aﬁy point during the affinity propagation,
responsibilities and availabilities are combined to identi:fy exemplars. That is, for data point x;,
the & that maximizes r(i, k)+a(i,I k) iﬁ:diéatésl- thaf x; is the exemplar of x;. Finally, the
message-passing procedure may be terminated after a fixed number of iterations (or after the
changes in the messages fall below a threshold or the local decisions stay constant for some

number of iterations).

Note that each data point in this study corresponds to a non-terminal nucleotide of an RNA
3D structure on the 2-dimensional #-6 plot and, therefore, the similarity between data point x;and

its exemplar c¢; defined in this study is the negative squared Euclidean distance (that
. 2, . L
is,s(x;,¢;) = —||xl- —cl-|| ), if x; # ci. As to x; = ¢;, the value of s(x; x;) represents the a priori

preference for x; to serve as an exemplar and, therefore, it is not calculated in the same way as
s(x;, xx), where x; # x, because it does not represent an assignment similarity. As suggested in

[16], the preference values can be set to a global (shared) value, or customized for particular data

11



points. Particularly, moreover, high values of the preferences will cause the AP algorithm to find
many exemplars (clusters), while low values will lead to a small number of exemplars. Here, we
set a global value to s(x; x;) for all 1 <i <n such that a total of 9,267 non-terminal nucleotides on
the #-0 plot is classified into 23 conformation clusters, as was illustrated in Figure 2-3. The 3D

conformations of these 23 exemplar nucleotides are shown in Figure 2-4.

For our purpose of transforming RNA 3D structures into 1D sequences, we further assigned
a letter to each of 23 clusters, as named in Table 2-1. We used the set of these 23 letters as a
structural alphabet (SA) and encoded RNA 3D structures as 1D sequences of SA letters by using
the nearest neighbor rule, by which each nucleogide in an RNA molecule is assigned with the
letter of the cluster whose exemplar..(center)éi.sl néareét to the nucleotide being encoded. In this
study, we chose 23 as the number of the clusters on tll_éle n-0 plot based on the following two
reasons. First, over 60% of nucleoﬁde_s (_)1;1: the ;1—9 pl(:;t fall within the helical region (defined by
the intersection of the two perpendicular gray regions in Figure 2-2). As illustrated in Figure 2-3,
the helical region is partitioned into four clusters when N = 23. However, if N = 46, then an
overpartitioning (with more than 10 clusters) in this helical region can be observed. This
overpartitioning results was actually due to the fact that the helical region is so highly populated
in the dataset of currently collected RNA structures that any clustering algorithm may tend to
divide it into a lot of clusters. In fact, according to our experiments (data not shown), the value of
the AUC obtained using our testing dataset with N = 46 is not better than that with N = 23.
Second, choosing N = 23 will allows one to apply BLAST, the most widely used tool of sequence
homology search, for efficiently performing the structurally similar search on the database

consisting of the SA-encoded sequences of RNA 3D structures.

12



Table 2-1. The structural alphabet of 23 conformational clusters classified by the AP algorithm

with their associated letters and the # and 6 pseudo-torsion angles of their exemplars.

Pseudo-torsion angle Pseudo-torsion angle
Number | Letter Number | Letter

n 0 n 0
1 A 168.7 221.4 13 M 203.8 307.5
2 B 169.1 205.7 14 N 92.5 2322
3 C 167.3 235.1 15 Y 69.6 153.8
4 D 163.7 257.1 16 P 310.6 220.1
5 E 169 .4 179.5 17 Q 162.5 1.4
6 F 139.7 216.6 18 R 248.7 2189
7 G 194.1 2272 19 S 318.9 127.7
8 H 1733 125.9 20 T 299.4 32
9 I 208.5 167.9 21 Z 88.3 292.5
10 J 23.1 228.9 22 A% 48.3 52.5
11 K 2294 104.9 23 W 59 3143
12 L 179.8 714

13
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Figure 2-3. Twenty-three clusters classified by the AP algorithm.
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Figure
2-4. Three-dimensional conformations of 23 exemplar nucleotides, where the exemplar
nucleotides are shown in green, whereas the portions of the previous and next nucleotides that

affect the pseudo-torsions are shown in blue.



2.3 BLOSUM-Like Scoring Matrices

For the accuracy of aligning two SA-encoded sequences, we derived a 23 x 23 log-odds matrix
for SA-letter substitution using the statistical method proposed by Henikoff and Henikoff [18].
Let {ai, a», . . ., ax3} denote the structural alphabet of 23 SA letters and f; be the observed

substitution frequency of SA-letter pair (a; a; ). Then the relative frequency g; of an SA-letter

i
23 k
Zk:l I=1 f Kl

>
k=1 k=i 9i
2

pair (a;, a))is ¢, = , and the frequency of occurrence of SA letter ai in an SA-letter

pair (a;, a;) 1s Py =4+ . .Fhe expected: frequency e;; for a substitution between two
SA-letters (a; aj)is pp; fori=j anciplpj +pjp, = 2pp; fot i #j. The logarithm of the odds matrix is
finally calculated by score(a; a)) = Mog{zl} where A is a positive scale factor. For the
ij
purpose of constructing this BLOSUM-like ma;[rix, a dataset of structurally similar RNA pairs
was obtained from the DARTS database [1], which used an automated method to classify 1,333
RNA tertiary structures into 244 groups of highly identical structures, and the SCOR database [21,
33], which organized many RNA structural motifs in a hierarchical classification system similar
to the SCOP database for protein domains. From the initial dataset of 1,333 high-resolution RNA
3D structures, the DARTS database first selected 244 representative structures based on RNA
sequence and 3D structure resemblances and then marked each of the remaining structures as
either a highly identical structure or a highly identical fragment of a representative structure. A
highly identical structure is defined as a structure that is globally almost identical (i.e., with at

least 90% sequence or 3D structure identity) to some other structure of similar size (i.e., size ratio

is between 1 and 1.5), while a highly identical fragment is defined as a structure that is almost

16



identical to only a small substructure of a larger structure (i.e., size ratio is greater than 1.5). Note
that 101 out of 244 representative structures have no highly identical structure. For our purpose,
we used only the remaining 143 representative structures and their highly identical structures to
construct our BLOSUM-like matrix. In addition, a set of structurally similar RNA motif pairs
was obtained from the SCOR database based on the following criteria: (1) motifs must belong to
a structural family, (2) motifs must have length greater than 3 nt, (3) motifs must have specified
starting and ending positions in the chain, and (4) motif pairs must have no 100% sequence
identity. In total, 3,391 RNA structural alignment pairs from 143 DARTS groups of 686
high-resolution RNA 3D structures and 430,628 RNA motif pairs from 334 SCOR classes of
6,220 structural motifs were analyzc_e_d,' Which tog_éthe_r accounted for 8,500,322 SA-letter pairs.
The A value used in this study was:set o 1.6_ if(:)'r the be;,sllt performance, by testing various values
ranging from 1 to 2. Figure 2—5:_illustra_t_es_.thel.._.BLQSUM—like substitution matrix for the 23

SA-letters we derived in this study. K
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2.4 Implementation of R3D-BLAST

Our R3D-BLAST was implemented based on a structural-alphabet approach whose procedure
flowchart, as shown in Figure 2-6, consists of three major procedures. The first procedure is a
preprocessing job to derive the tertiary structure information (i.e., pseudo-torsion angles 1 and 0)
of all the RNAs in the PDB database, where the n and 6 values were derived using the AMIGOS
program [12]. We then encode each RNA 3D structure as a 1D sequence of structural-alphabet
(SA) letters according to its pseudo-torsion angles, and store these SA-encoded sequences in a
local database. Similarly, the second procedure is to_encode the RNA queried by the user as a 1D
sequence of SA-letters. Notice that-the user-currently ean query our R3D-BLAST by a PDB or
NDB code of an RNA tertiary structure optionally with specified residue range. The third
procedure is to use BLAST to search'the local database of SA-encoded sequences for those RNA
molecules whose tertiary substructures are locally similar to that of the query RNA. One of the
benefits of using BLAST is that it can provide each identified RNA an E-value to show its
statistical significance. Basically, the E-value is defined as E = Kmne™, indicating the expected
number of HSPs (High Scoring Pairs) with score at least S by chance, where m is the number of
letters in the query RNA and » is the number of letters in the database, and K and A are two
constants related to the searching space (i.e., mxn) and the scoring matrix, respectively. Since the
database we maintain in the R3D-BLAST and the used BLOSUM-like scoring matrix are
different from those originally used in BLAST, we need to re-estimate K and A values so that our
R3D-BLAST can return correct E-values. Here, we utilize the island method that was proposed
by Olsen et al. [26] for estimating our 4 and K values according to different set of gap open and

extension penalties, whose results are shown in the Table 2-2. In addition, the user can decide on
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whether or not to calculate the RMSD between the query RNA and each of identified RNAs,
which may cost our R3D-BLAST a few minutes to finish its jobs. It is inevitable that some RNAs
identified in this step may not similar to the query RNA in tertiary structure. Therefore, we design
a filter based on a geometric match measure, called structural alignment score (SAS), to further
screen out those RNAs that are structurally non-similar to the query RNA, when their SAS score
with respect to the query RNA is greater than a pre-defined threshold, where

SAS=100xRMSD/(number of aligned residues) and its default value is 25 in our R3D-BLAST.

AMIGOS

DB of 1D
SA-encoded
sequences

List of 3D
n-8 values

Encoder
(NNR)

1D sequences
of SA-letters

<
Encoder [ List of 3D
(NNR) n-0 values g Ao e

Yes
RMSD
computations?

No

Yes
Output g - RMSD
Herto aNAs SAS filter Filter by SAS? somputation

No

Input
query RNA

List of

BLAsl zedren candidates

Figure 2-6. The procedure flowchart of R3D-BLAST

Table 2-2. The A and K values for different sets of gap open and extension penalties.

Open: Extension Penalty A K
4:1 0.236 0.009
5:1 0.326 0.041
6:1 0.372 0.079
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4:2 0.379 0.086
52 0.402 0.125
6:2 0414 0.145
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Chapter 3

Usage of Software Tool

Based on the structural-alphabet approach described in the previous chapter, we have developed
an easy-to-operate web server, named R3D-BLAST that allows biologists to fast and accurately
search the PDB database for those RNA molecules whose 3D substructures are locally similar to

that of the query RNA. In the following, we shall deseribe the details of how to use R3D-BLAST.

3.1 Input of R3D-BLAST

R3D-BLAST provides an intuitive and easy-to-operate interface (see Figure 3-1) that can be
freely accessed at http://bioalgorithm.life.nctu.edu.tw/R3D-BLAST/. allows user to search similar
RNA 3D substructures in the database by BLAST. Below, we describe the details of its input

usage step by step.

1. Enter the PDB/NDB ID (4-/6-character code) of an RNA molecule (or upload its file in the
PDB format), as well as its chain ID and starting and ending residue numbers in sequence.
Note that PDB/NDB ID or uploading the file is mandatory, and others are optional but the

user has to specify a chain ID, if the input RNA molecule has multiple chains.

2. If user would like run the R3D-BLAST with default parameters, just have to click the

“Run R3D-BLAST” button; otherwise, the user continues with the following steps of
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modifying default parameter settings.

3. Choose a different set of gap open and extension penalties, where R3D-BLAST penalizes
the gaps using the affine gap penalty function. Currently, R3D-BLAST provides the user
six different sets of gap open and extension penalties that are 4-1, 4-2, 5-1, 5-2, 6-1, and

6-2 (default).

4. Decide on whether or not to calculate the RMSD between the query RNA and each of
identified RNAs (default no). If yes, also decide on whether or not to perform SAS filter

and, if needed, also enter a positive integer to serve as the cutoff of SAS score (whose

default is 25).

5. Modify the predefined threshold of £-value (whose default is 5) if needed.
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3.2 Output of R3D-BLAST

In the output page, R3D-BLAST will first display the information about input RNA molecule and
user-specified parameters. Next, it will show a detailed list of identified structurally similar
RNAs (see Figure 3-2), including corresponding PDB ID, chain ID, starting and ending residue
numbers of aligned region and its length, title of the RNA in the PDB ID file, classification of the
RNA (based on function, metabolic role, molecule type, cellular location, and so on),
experimental method used to determine the structure of the RNA, the resolution of the solved
RNA, and released data of the RNA in,the PDB:file, £-value, and RMSD (Root Mean Square
Deviation) measured with respect-to the query RNA and its corresponding SAS score and
structural superposition. Particularly, in the display of the structural superposition, the user can
visually view, rotate and enlarge the’3D structures of both the query and target RNA molecules
and their structural superposition in a Jmol window (see Figure 3-3). Notice that in the top panel
of the Jmol window, R3D-BLAST provides the user some useful functions for displaying RNA
molecules. For example, the user can choose either black or white (default) as window
background color, spin RNA molecules or not (default), display RNA molecules in a scheme of
either ribbon, cartoon (default), wireframe or trace, determine whether to display nucleotide IDs
or not (default), and download the PDB files for the query and target RNAs and their
superimposed structure. In addition, R3D-BLAST allows the user to save the search result in the

CSV or text format for later process.
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No. Details of RNAs identified by R3D-BLAST
PDB ID Chain ID Subject:Query Range (Length) Title
1EHZ A 1-7e:1-76 (76:76) THE CRYSTAL STRUCTURE OF YEAST PHENYLALANINE TRNA AT 1 93 A RESOLUTION
1 5
E-value RMSD SAS Jmol Class Method A Release Date
S5E-48 0.000 0 Jmol3D RNA X-RAY DIFFRACTION HT0S 02-0CT-00
PDB ID Chain ID Subject:Query Range (Length) Title
1EVV A 3-76:3-76 (74:74) CRYSTAL STRUCTURE OF YEAST PHENYLALANINE TRANSFER RNA AT 2 0 A RESOLUTION
2 =
E-value RMSD- SAS Jmol Class Method A Release Date
2E-35 1.191 1.6 Jmol3D RNA X-RAY DIFFRACTION 2.00 01-MAY-00
Tabie
PDB ID Chain ID subject:Query Range (Length) CRYSTAL STRUCTURE OF A STREPTOMYCIN DEPENDENT RIBOSOME FROM E COLI, 30S
1PNS v B=F2: 312 (0 ::10) SUBUNIT OF 70S RIBOSOME THIS FILE, 1PNS, CONTAINS THE 30S SUBUNIT, TWO TRNAS,
3 AND ONE MRNA MOLECULE THE 50S RIBOSOMAL SUBUNIT IS IN FILE 1PNU
E-value RMSD- SAS Jmol Class Method A Release Date
8E-34 1.549 282 Jmol13D RIBOSOME X-RAY DIFFRACTION 8.70 15-JUL-03
Title
PDB ID Chain ID subject:Query Range (Length) CRYSTAL STRUCTURE OF THE RIBOSOME AT 5 5 A RESOLUTION THIS FILE, 1GIX,
1GIX Cc B=F2:3=42 (F0:=70) CONTAINS THE 30S RIBOSOME SUBUNIT, THREE TRNA, AND MRNA MOLECULES 50S RIBOSOME
4 SUBUNIT IS IN THE FILE 1GIY
E-value RMSD- SAS Jmol Class Method A Release Date
8E-34 1.562 2.2 Jmol3D RIBOSOME X-RAY DIFFRACTION 5.50 04-MAY-01

Figure 3-2. Partial display of the R3D-BLAST result when queried with a tRNA (PDB ID: 1EHZ,

chain ID: A, residue range: 1-76).
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Figure 3-3. Visual display of the tertiary structures of two input tRNA molecules and their

superposition.
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Chapter 4

Results and Discussions

In this chapter, we shall test our R3D-BLAST on some RNA 3D structures and also compare its
experimental results to those obtained by other available tools, such as BLAST and FASTR3D.
Unless specified, all the experiments were carried out using these three tools with their default

parameters.

4.1 Comparison with BLAST

In fact, the sequences of two RNA sub-molecules can diverge greatly, even while they have a
similar tertiary structure. For example, the RNA substructures as shown in Figures 4-1a and 4-1b
are highly similar, because the RMSD of their superimposition, as shown in Figure 4-1c, is 1.535
angstrom. However, these two RNA substructures belong to two different RNA molecules and
their sequence percentage identity is 36% only, as illustrated in Figure 4-2. This is because that
the 3D structures of RN A molecules are more evolutionarily conserved than their sequences.
Therefore, it can be expected that our R3D-BLAST can search the PDB database for more RNAs
whose whole structures or substructure are similar to those of the query RNA, as compared to
BLAST. To demonstrate this, we tested our R3D-BLAST, as well as BLAST on some tRNAs,

whose results are shown in Table 4-1. Consequently, the average number of RNA

28



(a) (b) ()
Figure 4-1. Tertiary structures of two RNA sub-molecules: (a) PDB ID: 1HR2, chain ID: A,
residue range: 103-260 and (b) PDB ID: 1U6P, chain ID: B, residue range: 280-301, and (c) their

superimposition

IHR2 103%, |
GUCUCAGGGGAAACUUUGAGAU 260

P fokkoki®k kkk k%

1U6P 280
GUACUAGUUGAGAAACUAGCUC 301

Figure 4-2. Sequence alignment of two RNA sub-molecules whose percentage identity is about

36%.

sub-molecules, whose 3D structures are similar to those of the query RNA, identified by
R3D-BLAST are much larger than that returned by BLAST. Particularly, when queried with PDB
IDs 1WZ2 and 2DU6, our R3D-BLAST searched for 37 and 16, respectively, structurally similar
RNA sub-molecules with at least 50% query coverage, while BLAST found only 3 and 4,
respectively, homologous RNA sub-sequences with at least 50% query coverage, where the query

coverage is defined as the percent of the query length that is included in the alignment.
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Table 4-1. Comparison of experimental results between R3D-BLAST and BLAST for some

tRNA molecules.
R3D-BLAST BLAST
PDB:Chain:Residue range
50-100% | 0-49% 50-100% 0-49%
1EHZ:A:1-76 194 149 77 14
1WZ2:D:902-988 37 246 3 37
2DU6:D:902-971 16 111 4 2
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4.2 Comparison with FASTR3D

In this section, we further evaluated our R3D-BLAST by testing it on some RNA molecules and
also comparing its results with those obtained by FASTR3D. FASTR3D is a tool also developed
by our laboratory based on the information of RNA secondary structures for identifying structural
similarities for a query of RNA molecule in the PDB database. As demonstrated in [23],
FASTR3D can serve as a useful tool that allows biologists to fast and accurately search the PDB
database for structurally similar RNAs. However, FASTR3D can find only those RNAs whose
secondary structures exactly match withithat of the query RNA and, therefore, it cannot search
for those structurally similar RN As: whose secondary structures are just approximately equal to
that of the query RNA, or even those RNAs that have only substructures similar to those of the

query RNA.

The experimental results we obtained by testing R3ID-BLAST and FASTR3D on five
different kinds of RNA molecules with different length are shown in Table 4-2. For some RNAs,
such as riboswitch and tRNA, FASTR3D found more candidates, whose tertiary structures
entirely similar to those of the query RNAs For some RNAs, such as riboswitch and tRNA,
FASTR3D found more candidates, whose tertiary structures entirely similar to those of the query
RNAs (i.e., the query coverage is 100%), than R3D-BLAST. The main reason is that FASTR3D
was designed to search for those RNAs whose whole structures are globally similar to that of the
query, but R3D-BLAST was designed to search for those RNAs whose substructures are locally
similar to that of the query. Actually, those RNAs that were found by FASTR3D but not by

R3D-BLAST were still can be identified by R3D-BLAST, when the query coverage is set to at
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least 90%. On the other hand, there are a lot of structurally similar RNA sub-molecules (i.e., with
at least 90% query coverage) that still were able to identified by R3D-BLAST, but not by

FASTR3D, as illustrated in Table 4-2.

Table 4-2. Comparison of experimental results between R3D-BLAST and FASTR3D for five

RNA molecules with length from 46 to 1530 bp.

R3D-BLAST FASTR3D
RNA PDB:Chain:Length
100% | Atleast 90% 100%
Riboswitch 1Y27:X:46 6 20 10
Pseudoknot 1YMO:A47 1 2 1
tRNA 1EHZ:A76 10 133 17
Ribozyme 1HR2:A:157 1 7 1
16S rRNA 1J5E:A:1530 4 74 0
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Chapter 5

Conclusion

In this chapter, we have developed a bioinformatics tool R3D-BLAST that allows biologists to
fast and accurately search the PDB databases for those RNAs that have substructures similar to
that of the query RNA. The basic idea behind our R3D-BLAST is as follows. We first encoded all
the RNA 3D structures deposited in the PDB database as 1D sequences using the structural
alphabet of 23 letters, which was ebtainedyby. using, the two pseudo-torsion angles of RNA
nucleotide backbones and the affinity propagation clustéring approach. We then applied BLAST
to searching for RNA sub-molecules wheose 3D structures are similar to that of the query. Our
experimental results have also demonstrated that our R3D-BLAST indeed has better performance
than BLAST f for identifying those RNA molecules whose tertiary substructures are locally
similar to that of the query RNA, as well as FASTR3D for finding those RNAs whose structures
are entirely similar to that of the query RNA. Therefore, we believe that our R3D-BLAST can

serve as a useful bioinformatics tool in the study of structural biology.
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