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建立基因體計畫的計算流程:序列重組、基因註解與重建代謝路徑 

 
 

學生:黃至昶                               指導教授:黃憲達 

 

國立交通大學生物資訊及系統生物研究所碩士班 

 

摘要 

西元 2003年人類計畫完成，為爾後的生物研究帶來龐大的資源。

近幾年 next-generation sequencing 技術的發展大量的降低定序成

本及時間使得物種的定序更佳的容易，因此各物種的基因體定序也開

始蓬勃發展，而且在這些基因體中也蘊藏了大量的研究資源，這些基

因體計畫的分析及註解也將是更加急迫的需要，因而需要一個有系統

的計算流程。這個流程針對不同的定序技術產生的序列會使用不同的

序列重組工具，整合 ab initio 及 evidence-based 這兩種基因預測

的方式來更準確的預測基因，此外還會根據基因註解的資訊來重建物

種的代謝路徑。 

這個基因體計畫計算流程可以重組各類不同定序技術產生的序

列以及提供基因體註解的服務有:基因註解以及重建代謝路徑。這個

流程將會在高產量的基因體註解中佔有一席之地。 
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Assembly, Gene Annotation and Metabolic Pathway Reconstruction 
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University 

 

Abstract 

Human Genome Project had been completed in 2003. It provides gigantic 

resources for biological research. In recent years, next generation 

sequencing technique dramatically reduces the sequencing cost and time. 

Thus, completely sequencing new organisms will be popular and 

universal, and the genomes of these organisms also include huge research 

resources. The demands of comprehensive genomic annotation will be 

more urgent and necessary. Thus, it is necessary a computational pipeline. 

In order to assembly complete genome sequences, this pipeline uses 

several assembly tools which designed for assembling traditional 

sequencing and next generate sequencing raw data. It also integrates ab 

initio and evidence-based gene prediction approaches to predict genes. In 
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addition, this pipeline can reconstruct metabolic pathways from the gene 

annotation results. This computational pipeline can assemble sequencing 

data from various platforms and provide the service of genomic 

annotation including: gene annotation and metabolic pathway 

reconstruction. This computational pipeline can be a crucial part of 

pipeline in the high throughput genomic annotation. 
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Chapter 1 Introduction 

The techniques of next generation sequencing (high throughput 

sequencing) have made the acquisition of genomic sequences more 

affordable and easier. These techniques have enabled the large scale 

investigations of novel genomes especially for commercial, medical, and 

model organisms. Hence, a well integrated software platforms of genome 

annotation from next generation deep sequencing data is emerged, and 

this platform can reduce the time of learning individual packages and 

provide a sketch of genome in a very short time. Based on the sketch of 

genome annotation, we can quickly compare with well annotated 

genomes and excludes the well annotated genomic sequence. After 

eliminate the well annotate homologous genomic regions, the remaining 

parts might exists abundant genes with novel functions. In other words, 

we can organize the advanced researches in advance for the unexplored 

genomic region. Nevertheless, the prototype of novel genome also 

provides the basic biological understanding because our platform not only 

provides the function of assembly deep sequencing data but also includes 

the gene prediction and metabolic pathway reconstruction. In short, we 
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construct a platform for quickly sketching of a novel genome including 

sequence assembly, gene prediction and metabolic pathway 

reconstruction, based on deep sequencing data. 

1.1 Background 

1.1.1 Next­generation sequencing 

Next-generation sequencing is a high throughput sequencing technology. 

Next-generation sequencing platforms include the Genome Sequencer 

from Roche 454 Life Sciences (www.454.com), the Solexa Genome 

Analyzer from Illumina (www.illumina.com), the SOLiD System from 

Applied Biosystems (www.appliedbiosystems.com). Those platforms are 

characterized by highly parallel operation, higher yield, simpler operation, 

much lower cost per read, and shorter reads[1]. Next-generation 

sequencing produces large amounts (typically millions) of short DNA 

sequence reads of length between 25bp and 400bp. These reads are 

shorter than the traditional Sanger sequence reads of length between 

500bp and 1000bp. The summary of sequencing technology show on 

Table 1.1 

 



 

3 
 

Table 1.1 The comparison of different next generation sequencing 
platforms. 
Platform  Read 

length  
Mb per 
run  

Time per 
run  

Mb per 
day  

Cost per 
Mb  

Sanger 1000 bp - - ~2 Mb  ~$500  
Roche 
454  

250 bp 100 Mb  7 hr  ~350 Mb  ~$60  

Illumina  32~40 bp 1300 Mb 3 days  ~400 Mb  ~$2  
SOLiD  35 bp 4000 Mb 7 days   ~500 Mb  ~$2  

 

1.1.1.1 Roche 454 

The first next-generation platform was GS20 developed by Roche 454 

Life Sciences using pyrosequencing technology. Genomic DNA splice to 

smaller fragment, ligate adaports into the ends of fragment and amplified 

by emulsion PCR. After amplification, the DNA bound beads are placed 

into picotiter-plate wells with sequencing enzymes such as DNA 

polymerase, ATP sulfurylase, and luciferase. During the sequencing, the 

four DNA nucleotides are added into the well. When a nucleotide which 

added into the well complement to the template strand. That nucleotide 

will generate a light signal that detected and recorded by CCD 

(charge-couple device) (Figure 1.1). The performance of GS20 was over 

20 million base pairs in over 4hour. The GS20 was replaced during 2007 

by the GS FLX model, capable of producing over 100 million base pairs 
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of sequence in a similar amount of time. There are other alternative 

sequecing platform which are Solexa Genome Analyser technology and 

the SOLiD[2]. 

 

Figure 1.1 Roche 454 GS FLX sequencing1[3] 

                                                       
1The picture is copy from Next-generation sequencing: from basic research to diagnostics 

 Figure 1 Roche 454 GS FLX sequencing [3] 



 

5 
 

1.1.1.2 Illumina Solexa 

The Solexa Genome Analyzer system was developed by Solexa using 

reversible terminator chemistry technology (Figure 1.2) and now owned 

by Illumina. This is the first of the massively parallel short-read platforms. 

Sequencing templates are immobilised on a flow cell surface, and solid 

phase amplification creates clusters of identical copies of each DNA 

molecule. Sequencing then uses four proprietary fluorescently labelled 

nucleotides to sequence the millions of clusters on the flow cell surface. 

These nucleotides possess a reversible termination property, allowing 

each cycle of the sequencing reaction to occur simultaneously in the 

presence of the four nucleotides [2]. 
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Figure 1.2 Illumina Genome Analyzer sequencing2 

                                                       
2  The picture is copy from Next-generation sequencing: from basic research to diagnostics 
 Figure 2 Illumina Genome Analyzer sequencing [3] 
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1.1.1.3 SOLiD 

The SOLiD (Supported Oligonucleotide Ligation and Detection) System 

was developed by Applied Biosystems. Certain elements of the platform 

are directly analogous to features of both the 454 and Illumina systems. 

Template amplification is by emulsion PCR as the 454 platform and 

template is applied at high density to a flow cell as Illumina[4]. The 

feature of the SOLiD platform is the ligation-based sequencing chemistry 

(Figure 1.3). 
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Figure 1.3 Applied Biosystems SOLiD sequencing by ligation3 

 
                                                       
3 The picture is copy from Next-generation sequencing: from basic research to diagnostics 
 Figure 3 Applied Biosystems SOLiD sequencing by ligation [3] 
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The next-generation sequencing platforms have characteristic error 

profiles. Error profiles can include enrichment of base call error toward 

the 3' ends of reads, compositional bias for or against high-GC sequence, 

and inaccurate determination of simple sequence repeats[1]. 454 error 

rate is approximate 0.1%, Illumina and SoLiD are approximate 1%. 

1.1.2 Sequence Assembly 

Sequencing assembly is a process to group reads into contigs and contigs 

into scaffolds. Reads are sequence fragments sequenced by sequencing 

platforms. Contigs (contiguous sequence) are a set of overlapping reads 

that represent a continuous region of DNA sequence. The scaffolds are 

the contigs order and orientation and the sizes of the gaps between 

contigs (Figure 1.4). 
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Figure 1.4 Sequence assembly flow  

The goal of whole-genome shotgun assembly is to represent each 

genomic sequence in one scaffold. However, this is not always possible. 

One chromosome may be represented by many scaffolds or a single 

scaffold. 

A challenge of assembly is that solve repeat region problem (Figure 

1.5). In assembly process compute the overlap region between reads, the 

similar repeat region may confuse the order of nearby regions. For 



 

11 
 

example in Figure 1.5, the repeat region X cause region A to D has A,C,B 

to D and A,B,C to D two ambiguous assembly sequence. 

 
 

 

Figure 1.5 Repeat region problem 

1.1.2.1 Assembly of next­generation 

sequencing 

The challenges in assembly of next-generation sequencing are more 

difficult than traditional sequencing in shorter reads, high coverage data 

and error rate. The length of shorter reads may shorter than repeat region 

and many reads in repeats will have only one or no different bases. That 

will cause more ambiguous overlap in assembly. High coverage data 

compute the overlap between reads is more complex. Sequencing error 

will cause worse assembly accuracy and next-generation sequencing has 

higher error rate than traditional sequencing. Traditional assembly 

algorithm cannot assemble next-generation sequencing reads well. Thus, 

there are new assembly algorithm is developed in recent years. 

A X C X B X D 

A X B X C X D 
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1.1.2.2 Approaches of assembly 

There are two basic approaches for sequence assembly: 

overlap-layout-consensus and de Bruijn graph. 

1.1.2.2.1 Overlap­layout­consensus approach 

This approach computes pair-wise overlap between all reads and reflect 

to overlap graphs. Reads represent nodes and overlaps represent edges.  

 

Figure 1.6 Overlap graph 

Overlap-layout-consensus approach was used in Sanger sequencing 

assembly. The assemblers used this approach include: CAP3[5], PCAP[6], 

ARACHNE[7], phrap[8], Celera[9] and etc. Roche 454 assembly may 

also use this approach. The Newbler[10] is developed using 

overlap-layout-consensus approach by 454 life sciences. 
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1.1.2.2.2 De Bruijn graph 

Because overlap-layout-consensus approach computes the short and high 

coverage next-generation sequencing data increase most computational 

time, most assembler for next-generation sequencing use de Bruijn graph. 

De Bruijn graph reduce computational complexity by splice reads to 

fragments with k length as k-mer and have k-1 length overlap between 

k-mers.   

 

Figure 1.7 De Bruijn Graph for read with k-mer = 3  

The assemblers used this approach include: Velvet[11], Abyss[12], 

ALLPaths[13], SOAPdenovo[14] and etc. 
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1.1.3 Gene annotations 

Gene annotation is the process to identify gene location on the genome 

sequence and biological information of these genes. 

1.1.3.1 Gene prediction approaches 

1.1.3.1.2 Ab initio approach 

Ab initio approach is prediction gene depend on the signal of 

protein-coding gene (start codon, stop codon, donor site, acceptor site, 

promoters and poly-A tail) and properties of protein-coding gene (exon, 

intron, intergenic region and UTRs). These features of gene show in 

Figure 1.8.The most ab initio gene prediction software is designed by 

hidden Markov model (HMM). Some example of ab initio gene 

prediction software include: AUGUSTUS[15], Fgenesh[16], 

GENSCAN[17], GeneMark.hmm[18], GlimmerHMM[19], and etc.  
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Figure 1.8 Gene structure 

1.1.3.1.1 Evidence­based approach 

The evidence-based is search gene on target sequence form known 

sequence of an mRNA, EST or protein product. BLAST[20] is a widely 

used software designed for this approach.  
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1.1.4 Metabolic pathway 

Metabolic pathways are series of chemical reactions occurring in a cell. 

The molecules called substrates that are at the beginning of the reaction, 

and the enzyme changes these into different molecules as products. Those 

products may as substrates enter new reactions, and a series of reactions 

construct the metabolic pathways. Pathways are important to maintain the 

homeostasis of an organism. Some important metabolic pathways are: 

glycolysis, anaerobic respiration, citric acid cycle (krebs cycle), oxidative 

phosphorylation, pentose phosphate pathway, fatty acid oxidation, urea 

cycle. 

 

Figure 1.9 Enzyme reaction 

Pathway is a method to understanding the role of gene in their larger 

biological context as effects of mutations, drug interventions and changes 

in gene regulation[21] . 



 

17 
 

1.2 Motivation 

Human genomic project was initiated in 1990 and was completed in 2003. 

Around three billion USD were devoted into this project. Nowadays, the 

next-generation sequencing can sequence large genomic sequence with 

very low costs. Next-generation sequencing techniques provide an 

alternative method of massively study the genomes of novel organism 

and initiate the studies of understanding the genome variants of different 

individuals. These techniques have enabled the large scale investigations 

of novel genomes especially for commercial, medical, and model 

organisms.  

 Consequently, the sequence assembly and genome annotation are 

required for investigation the results of next-generation sequencing data. 

Therefore, a genome annotation platform for next-generation sequencing 

might reduce the time of annotating the novel genome and provide a 

quick profiling of the genomes. 
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1.3 The Specific Aim 

For the explosive genome projects, a computational pipeline which 

includes sequence assembly, gene annotation and metabolic pathway 

reconstruction is necessary. This pipeline can assemble various 

sequencing platform and different platform combined data. It integrates 

several ab initio and evidence-based approach prediction tools to provide 

more accuracy prediction, and identify function of these genes. Finally, 

this pipeline reconstructs the metabolic pathway of the sequencing 

organisms. 
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Chapter 2 Related Works 

2.1 Sequence assembly tools 

Table 2.1 lists several sequence assembly tools: phrap[8] and CAP3[5] 

developed to assemble traditional sequencing data, and phrap supported 

Roche 454 sequencing data in later version. SSAKE and Velvet 

developed to assemble next generation sequencing data. SSAKE was one 

of first short reads assembly tools, but it did not support Roche 454 data. 

Velvet used a difference form overlapping assembly approach to 

implement as de bruijn graph, and it is now widely used short reads 

assembly tool.  

Table 2.1 The comparison of assembly tools 
Assembly 
tools 

Approach Supporting 
sequencing 
technology 

Supporting 
paired-end 

Reference 

Phrap Overlapping Sanger, 454 No [8] 

CAP3 Overlapping Sanger No [5] 

SSAKE Overlapping Illumina Yes [22] 

Velvet De bruijn graph 454, Illumina Yes [11] 
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2.1.1 Phrap 

Phrap was developed by Prof. Phil Green to provide rapid comparison, 

alignment, and assembly of large sets of DNA sequences. Phrap does 

pairwise alignment and search to a sequence region that match a 

designated length. Phrap extended the alignment form the match region 

with follow score. Matching residues receive a reward of +1, mismatches 

get a penalty of −2, gap opening residues a penalty of −4 and gap 

extension residues a penalty of −3. In this way PHRAP aligns the data 

into contigs[8]. 

2.1.2 CAP3 

CAP3 is an assembly tool for traditional sequencing data. The assembly 

algorithm consists of three major phases (Figure 2.1). In the first phase, 5’ 

and 3’ poor regions of each read are identified and removed. Overlaps 

between reads are computed. False overlaps are identified and removed. 

In the second phase, reads are joined to form contigs in decreasing order 

of overlap scores. Then, forward–reverse constraints are used to make 

corrections to contigs. In the third phase, a multiple sequence alignment 

of reads is constructed and a consensus sequence along with a quality 
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them into contiguous sequences that can be used to characterize novel 

sequencing targets[22]. 

2.1.4 Velvet 

Velvet was one of popular short read de novo assemblers. It was designed 

based on de bruijn graph and efficiently to both eliminate errors and 

resolve repeats. The first step is construction de bruijn graph with k-mer 

(Figure 2.2). After the initial graph constructed, simplifying it as possible 

without loss of information. Simplification iteratively chains of blocks are 

collapsed into single blocks and reduce the complexity of initial graph 

(Figure 2.3). There were "tip" and "bubble" error in simplified graph. Tip 

error was a chain of nodes that is disconnected on one end. Velvet 

iteratively removes tips from the graph under these two criteria: length 

and minority count. A tip will be removed if it is shorter than 2000. 

"minority count" be defined as starting from that node, going through the 

tip is an alternative to a more common path (Figure 2.4). A bubble error 

was two paths redundant if they start and end at the same nodes and 

contain similar sequences. Velvet removes bubbles with Tour bus 

algorithm. The tour bus algorithm detects redundant of paths using 

breadth-first search, and uses a combination of copy number and 
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predict consistent sets of genes occurring on either or both DNA strands. 

GENSCAN is shown to have substantially higher accuracy than existing 

methods when tested on standardized sets of human and vertebrate genes, 

with 75 to 80% of exons identified exactly. Figure 2.7 is the HMM model, 

each circle or diamond represents a functional unit (state) of a gene or 

genomic region: N, intergenic region; P, promoter; F, 5’ untranslated 

region (extending from the start of transcription up to the translation 

initiation signal); Esngl, single-exon (intronless) gene (translation start to 

stop codon); Einit, initial exon (translation start to donor splice site); Ek 

(0൑k൑2), phase k internal exon (acceptor splice site to donor splice site); 

Eterm, terminal exon (acceptor splice site to stop codon); T, 3’ untranslated 

region (extending from just after the stop codon to the polyadenylation 

signal); A, polyadenylation signal; and Ik (0൑k൑2), phase k intron[17]. 
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Figure 2.7 HMM model of GENSCAN4 

2.2.2 GlimmerHMM 

GlimmerHMM is a gene finder based on a Generalized Hidden Markov 

                                                       
4 The picture is copy from Prediction of complete gene structures in human genomic DNA  

Figure 3 [17] 
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Model. Although the gene finder conforms to the overall mathematical 

framework of a GHMM, additionally it incorporates splice site models 

adapted from the GeneSplicer program and a decision tree adapted from 

GlimmerM. It also utilizes Interpolated Markov Models for the coding 

and noncoding models. Currently, GlimmerHMM's GHMM structure 

includes introns of each phase, intergenic regions, and four types of exons 

(initial, internal, final, and single). Figure 2.8 is the HMM model, the 

dashed line in the middle separates the positive strand and negative strand 

portions of the model. Each state in the GHMM is implemented as a 

separate submodel, such as a weight array matrix or an IMM (interpolated 

Markov models)[19]. 
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Figure 2.8 The HMM model of GlimmerHMM5 

2.2.3 AUGUSUT 

AUGUSUT was a Generalized Hidden Markov Model approach ab initio 

gene prediction program developed by Mario Stanke and Stephan Waack. 

The program is based on a Hidden Markov Model and integrates a 

number of known methods and submodels. It employs a new way of 

modeling intron lengths. It use a new donor splice site model, a new 
                                                       
5 The picture is copy from http://www.cbcb.umd.edu/software/GlimmerHMM/ 
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model for a short region directly upstream of the donor splice site model 

that takes the reading frame into account and apply a method that allows 

better GC-content dependent parameter estimation[15]. 

 

Figure 2.9 The HMM model of AUGUSUT6 

                                                       
6  The picture is copy from Gene prediction with a hidden Markov model and a new intron submodel Figure 1 [15] 
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2.2.4 SNAP 

SNAP is similar to GENSCAN and other generalized hidden Markov 

model (HMM) gene finders, but unlike many, it is easily adaptable to a 

number of organisms and its source code is freely available[23].  

 

Figure 2.10 The HMM model of SNAP7 

   

                                                       
7  The picture is copy from Gene finding in novel genomes Figure 1 SNAP HMM state diagram [23] 
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2.3 Metabolic Pathway Databases 

2.3.1 Biocyc 

BioCyc is a collection of 673 Pathway/Genome Databases. Each database 

in the BioCyc collection describes the genome and metabolic pathways of 

a single organism[24].  

2.3.2 Metacyc 

MetaCyc is a database of nonredundant, experimentally elucidated 

metabolic pathways. MetaCyc contains more than 1,500 pathways from 

more than 1,900 different organisms, and is curated from the scientific 

experimental literature[25]. 

2.3.3 KEGG: Kyoto Encyclopedia of Genes 

and Genomes 

KEGG is a database of biological systems, consisting of genetic building 

blocks of genes and proteins, chemical building blocks of both 

endogenous and exogenous substances, molecular wiring diagrams of 

interaction and reaction networks, and hierarchies and relationships of 

various biological objects[26]. 
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  2.4 Metabolic Pathway 

Reconstruction Tools 

2.4.1 Pathway tools 

A popular metabolic reconstruction tool is Pathway Tool. It used a 

PathoLogic method computationally reconstructs organism-specific 

metabolic pathways and generates a new PGDB by matching the Enzyme 

Commission (EC) number and/or the name of the annotated gene product 

against enzymes in MetaCyc[27]. 
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Chapter 3 Materials and methods 

Our genome reconstruction platform includes three parts: sequence 

assembly, gene annotation and metabolic pathway. Sequence assembly is 

major part that support different sequencing platform. Gene annotation 

and metabolic pathway reconstruction are downstream analysis of 

assembled sequences. 

3.1 Materials 

Our pipeline integrates several biological data source and software. The 

description of the data source and software which integrate in our 

pipeline is in below.  

Assembly tools 

Phrap had been widely used in Human Genome Project, and the late 

version may support Roche 454 sequencing data. Velvet was one of first 

assemble short reads using de bruijn graph this algorithm can reduce 

effective of repeat region in short reads assembly. These two assemble 

tools are very popular on each support sequencing platform data. Velvet 

used to assemble short reads (Illumina reads), and phrap used to assemble 

long reads (Sanger or 454 reads) in our pipeline (Table 3.1). 
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Table 3.1 Assembly tools of materials 
Category Software Reference 
Assembling short 
reads 

Velvet [11] 

Assembling long reads 
and mixture reads 

phrap [8] 

Gene prediction tools 

GENSCAN was one of first gene prediction based on GHMM, and it is a 

flag of gene prediction tools almost later gene prediction tools would 

compare performance and accuracy with GENSCAN. GlimmerHMM, 

AUGUSUT and SNAP are within different GHMM design, the 

performance of these tools are well as GENSCAN and these also 

suggested by EVidenceModeler. 

EVidenceModeler 

The EVidenceModeler (EVM) software combines ab intio gene 

predictions and protein and transcript alignments into weighted consensus 

gene structures. EVM provides a flexible and intuitive framework for 

combining diverse evidence types into a single automated gene structure 

annotation system[28]. 

GBrowse 

The Generic Model Organism System Database Project (GMOD) seeks to 
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develop reusable software components for model organism system 

databases. The Generic Genome Browser (GBrowse), a Web-based 

application for displaying genomic annotations and other features[29]. 

WormBase, FlyBase, and Human Genome Segmental Duplication 

Database build using GBrowse. 

Table 3.2 lists software using in gene annotation of our pipeline. 

Table 3.2 Gene prediction tools of materials 
Category Software Reference 
Ab initio gene 
prediction 

GENSCAN [17] 
GlimmerHMM [19] 
AUGUSUT [15] 
SNAP [23] 

Evidence-based gene 
prediction 

BLAST [20] 

Combinational gene 
prediction 

EVidenceModeler [28] 

Genome viewer GBrowse [29] 

Gene annotation databases: 

Swiss-Prot 

The Swiss-Prot protein knowledgebase connects amino acid sequences 

with the current knowledge in the Life Sciences. Each protein entry 

provides an interdisciplinary overview of relevant information by 

bringing together experimental results, computed features and sometimes 

even contradictory conclusions[30]. 
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Genbank 

GenBank is a comprehensive database that contains publicly available 

nucleotide sequences for more than 260,000 named organisms, obtained 

primarily through submissions from individual laboratories and batch 

submissions from large-scale sequencing projects. 

Table 3.3 list databases using in gene annotation of our pipeline. 

Table 3.3 Gene annotation databases of materials 
Category Software Reference 
Protein database Swiss-Prot [30] 
Gene database Genbank [31] 

Metabolic pathway reconstruction tools 

Pathway Tools has been generated 673 Pathway/Genome Databases in the 

Biocyc. It is the most widely used pathway reconstruction tool. 

Table 3.4 lists software using in metabolic pathway reconstruction of our 

pipeline. 

Table 3.4 Metabolic pathway reconstruction tools of materials 
Category Software Reference 
Metabolic pathway 
reconstruction 

Pathway Tools [27] 
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3.2 The processes of genome 

annotation 

 

Figure 3.1 The schematic indicates the processes of annotating of a novel 
genome including sequence assembly, gene annotation, and metabolic 
pathway reconstruction. 

Figure 3.1 presents the work flow of our computational pipeline. First 

step is sequence assembly, according to different sequencing data select 

assembly tools. This pipeline uses phrap[8] to assemble Sanger and 454 

data and uses Velvet[11] to assemble Illumina data. After each assembly 

complete, it checks the quality of assembly with N50, maximum/average 
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contig size and genome coverage. Before gene prediction, this pipeline 

uses Repeatmasker[32] to mask repeat region for avoid these region 

effect accuracy of gene prediction. This pipeline use four ab initio gene 

prediction tools: GlimmerHMM[19], AUGUSUT[15], GENSCAN[17] 

and SNAP[23] and an evidence-based gene prediction tool: BLAST[20]. 

BLAST search homology protein sequence against Swiss-prot[30]. After 

ab initio and evidence-based gene prediction, this pipeline uses 

EVidenceModeler[28] to combine consensus gene predictions, and uses 

BLAST to search Swiss-prot[30] and Genbank[31] for annotate gene 

information that includes gene symbol, product protein, EC (Enzyme 

Commission) number and protein function to these genes. According to 

the gene information, this pipeline use Pathway Tools[27] to reconstruct 

metabolic pathway for the organisms. 

3.3 Methods 

3.3.1 Sequence assembly 

Our pipeline supports various sequencing raw data such as Sanger, 454, 

Illumina and mixture of those data. Assembling short reads was using 

Velvet[11].  Phrap[8] which is an overlap approach assemble tool 
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assemble long sequences (Sanger or 454) in our pipeline, and phrap have 

been assemble whole genome shotgun sequence within Human genome 

project. In last version, phrap may support 454 reads and length of 454 

reads was enough to assemble Sanger reads with less effect of repeat 

regions. Assembly of 454 and Illumina reads may be affected by repeat 

region. Thus, our pipeline used Velvet to assemble Illumina reads first 

and then combine the result of Velvet assembly with 454 reads. Our 

pipeline used phrap to assemble the mixture data. After each assembly 

complete, our pipeline checked the quality of assembly with N50, 

maximum/average contig size and genome coverage.  

3.3.2 Gene annotation 

In order to avoid transposons affect the accuracy of gene prediction, our 

pipeline used RepeaterMasker[32] to mask those region. RepeatMasker 

screens low complexity DNA sequence and LTRs(Long Terminal 

Repeats) in genome sequence and replace those region letters to N’s. Our 

gene prediction combined ab initio and evidence-based approach. Our 

pipeline used four ab initio approach gene prediction tools 

(GlimmerHMM[19], AUGUSUT[15], GENSCAN[17] and SNAP[23]) 

and used BLAST[20] to search Swiss-prot[30] protein database for 
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homologous proteins. EVidenceModeler[28] can combine ab initio and 

evidence-based gene predictions into weighted consensus gene structures. 

Our pipeline sets ab initio with weight 1 and evidence-based with weight 

3. Consensus gene predictions generated by EVidenceModeler were 

identified gene information include gene symbol, product protein, EC 

number and protein function.  

These gene information identified by using BLAST align gene 

sequence and protein sequence form Swiss-prot to searching similar 

protein and searching Genbank.  

3.3.3 Metabolic pathway reconstruction 

Metabolic pathway reconstruction was using Pathway Tools[27] with the 

information of gene annotation, and the work flow show on Figure 3.2. 

An initial PGDB (Pathway/Genome database) was created for each contig 

and each gene. The metabolic reactions identified by matching the EC 

number and the name of gene product against the MetaCyc[33], and the 

reactions known to be catalyzed are matched against all the pathways in 

MetaCyc. Pathway Tools imports the pathway and its associated reactions 

and substrates from MetaCyc into the initial PGDB. The initial PGDB 

have some pathway holes which are the enzymes missing each predicted 
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pathways. Pathway holes occur when a protein has not been a specific 

function during annotation process, and reactions catalyzed by this 

protein will have a pathway hole in PGDB. The pathway hole-filler is 

implemented as part of the Pathway Tools[34]. The hole-filler uses 

isozyme sequences to search a genome for similar sequences. These 

isozyme sequences retrieve Swiss-Prot IDs directly from the ENZYME 

database[35] and retrieves PIR[36] IDs from the MetaCyc. Homology 

searching these isozyme sequences against the genome sequence using 

BLAST as candidates. Finally, hole-filler evaluates these candidate 

proteins to determine the probability that each candidate protein has the 

activity required by the missing reaction, and use these proteins to fill 

pathway holes. 
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Figure 3.2 Metabolic pathway reconstruction work flow 
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Chapter 4 Results 

We simulated and reconstructed Saccharomyces cerevisiae (yeast) 

genome. Saccharomyces cerevisiae included 16 chromosomes, 5861 

protein coding genes and total length of all chromosomes is 12,244,764 

bp. 

4.1 Result of Sequence assembly 

This simulation of Saccharomyces cerevisiae genome randomly spliced 

Saccharomyces cerevisiae into several type read data: 100bp~200bp, 

200bp~400bp, 36bp single read (36bp_sr), 36bp paired-end with 100bp 

insert (36bp_pe), 100bp single read (100bp_sr), 100bp paired-end with 

100bp insert (100bp_pe). The 100bp~200bp and 200bp~400bp were 

simulation 454 type data, and another reads data were simulation Illumina 

type data (Table 4.1). The 454 type data were with 10x coverage depth 

(12,244,764 bp*10) and 0.1% errors, and the Illumina type data were 

with 20x coverage depth (12,244,764 bp*20) and 1% error. Our pipeline 

assembled 454 type data using phrap[8] and Illumina type data using 

Velvet[11], and the assembly results shown on Table 4.2. Our pipeline 

evaluates the quality of assembly according to N50. N50 of 200bp~400bp 
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data set is 153,047 and it is better than 100bp~200bp data set (N50 is 

42,367) in 454 type data sets. In comparison of Illumina type data sets, 

paired-end data have a better quality than single read and 100bp length 

reads data is better than 36bp. 

Table 4.1 Data sets for each sequencing platform 
Simulation 
sequencing platform 

Data set Coverage 

Roche 454 100bp~200bp 10x 
200bp~400bp 10x 

Illumina 36bp single read  20x 
36bp paired-end with 
100bp insert 

20x 

100bp single read 20x 
100bp paired-end with 
100bp insert 

20x 

Table 4.2 The comparison of data sets assembly 
Reads data N50 (bp)  Number 

of contigs 
(bp)  

Average 
length of 
contigs 
(bp)  

Max 
length of 
contigs 
(bp)  

Total length 
of contigs 
(bp)  

100bp~200bp 42,367 572 20,505.01 201,650 11,728,869 

200bp~400bp 153,047 155 76,001.27 605,145 11,780,198 

36bp_sr 1,816 9,700 1,160.63 10,044 11,258,206 

36bp_pe 2,527 6,927 1,645.39 12,653 11,397,637 

100bp_sr 8,597 3,011 3,753.70 41,128 11,302,409 

100bp_pe 31,048 1,226 9,308.53 130,864 11,412,260 
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Because the 200bp~400bp and 100bp_pe had the best N50 in their 

simulation type, and select these two data set to mixture data simulation. 

Our pipeline assembled 200bp~400bp + 100bp_pe (454_Illumina) and 

200bp~400bp + the result of velvet assembly 100bp_pe (454_velvet) 

using phrap, and the assembly results shown on Table 4.3. 

In the mixture data assembly simulation, 454_velvet date set has a 

better N50 (322,842 bp) than 454_Illumina (222,376 bp), and it is also 

better than another simulation data set. 

Illumina data assemble to longer contigs (result of velvet assembly) 

and then assembly with 454 data (454_velvet) will better than immediate 

assembly Illumina and 454 data. 

Table 4.3 The comparison of two mixture data set 
Reads data N50 (bp) Number 

of contigs 
(bp)  

Average 
length of 
contigs (bp) 

Max 
length of 
contigs 
(bp)  

Total length 
of contigs 
(bp)  

454_Illumina 222,376 417 28,813.92 653,700 12,015,405

454_velvet 322,842 121 101,649.92 1,101,185 12,299,641
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4.2 Result of Gene Annotation 

Our pipeline used GlimmerHMM[19], AUGUSUT[15], GENSCAN[17] 

and SNAP[23] to ab initio gene prediction, BLAST to evidence-based 

gene prediction, and EVidenceModeler[28] to combine ab initio 

prediction result with weight 1 and evidence-based prediction result with 

weight 3. Prediction result of each prediction tools and comparison with 

Saccharomyces cerevisiae gene show on Table 4.4. The number of genes 

predicted by GlimmerHMM is 5383, the number of genes match to genes 

on Saccharomyces cerevisiae is 5283, the number of mismatch genes is 

578 and the number of additional genes is 100. The number of genes 

predicted by AUGUSUT is 4768, the number of genes match to genes on 

Saccharomyces cerevisiae is 4725, the number of mismatch genes is 1136 

and the number of additional genes is 43. The number of genes predicted 

by GENSCAN is 4186, the number of genes match to genes on 

Saccharomyces cerevisiae is 4108, the number of mismatch genes is 1753 

and the number of additional genes is 78. The number of genes predicted 

by SNAP is 5121, the number of genes match to genes on Saccharomyces 

cerevisiae is 5005, the number of mismatch genes is 856 and the number 

of additional genes is 116. The number of genes predicted by 
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EvidenceModeler is 5230, the number of genes match to genes on 

Saccharomyces cerevisiae is 5170, the number of mismatch genes is 691 

and the number of additional genes is 60. 

GlimmerHMM match the most gene on Saccharomyces cerevisiae: 

90% (5283/5861). GENSCAN match the least gene on Saccharomyces 

cerevisiae: 70% (4108/5861). EvidenceModeler match second gene on 

Saccharomyces cerevisiae: 88% (5170/5861). 
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EVidenceModeler predicted 5230 gene and searched homology 

proteins using BLAST against Swiss-prot. Our pipeline annotated gene 

symbol, product protein, EC number and Protein function to these gene 

form Swiss-prot and Genbank. These genes which predicted by 

EVidenceModeler include 5170 gene which matched to Saccharomyces 

cerevisiae gene and 691 gene which mismatch to Saccharomyces 

cerevisiae gene. 

Our pipeline displayed gene location on contigs (Figure 4.1), 

information of annotation (Figure 4.2) and generated gene database using 

GBrowse[29].  

 

Figure 4.1 Gene locations on contig66 
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Figure 4.2 PAU5 detail information 

Table 4.5 list three type example genes: perfect match gene, good 

match gene that have few differences and bad match gene. Perfect match 

gene: SNC1 and its gene structure includes 102bp length CDS, 113bp 

length intron and 252bp length CDS. Good match gene: PAU5 and its 

gene structure includes 200bp length CDS, 54bp length intron and 115bp 

length CDS, but the real gene structure only include a 369bp length CDS 

without intron. Bad match gene: YPL278C and its gene structure includes 

236bp length CDS, 459bp length intron and 103bp length CDS, but the 

real gene structure only include a 303bp length CDS. 
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Table 4.5 The three type example genes 
Match 
type 

Gene Gene structure 
of our predicted 
genes 

Gene structure 
of yeast genes 

Total 
length of 
our 
predicted 
genes 

Total 
length of 
yeast genes

Perfect SNC1 CDS(102bp)→ 
intron(113bp)→
CDS(252bp) 

CDS(102bp)→ 
intron(113bp)→
CDS(252bp) 

467bp 467bp 

Good PAU5 CDS(200bp)→ 
intron(54bp)→ 
CDS(115bp) 

CDS(369bp) 369bp 369bp 

Bad YPL278C CDS(236bp)→ 
intron(459bp)→
CDS(103bp) 

CDS(303bp) 798bp 303bp 
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4.3 Result of Metabolic Pathway 

Reconstruction   

Our pipeline reconstructed metabolic pathway of Saccharomyces 

cerevisiae using Pathway Tools with information of gene annotation. The 

initial pathways included 200 metabolic pathways, but there were 268 

pathway holes in the initial pathways. Our pipeline filled 268 pathway 

holes to 196, and the detail comparison of initial pathways (Initial) with 

the pathways which filled pathway holes (Hole-filled) showed on Table 

4.6. 

Table 4.6 The comparison of initial pathway with hole-filled pathway 
Database statistics Initial Hole-filled 
Metabolic pathways 200 200 
Enzymatic reactions 1274 1294 
Enzymes 1260 1269 
Compounds 865 873 
   
Number of Pathway Holes  268 196 
Pathway Holes as a percentage of 
total reactions in pathways  

37% 27% 

Pathways with No Holes  97 121 
Pathways with 1 Hole  47 34 
Pathways with 2 Holes  18 14 
Pathways with 3 Holes  12 15 
Pathways with 4 Holes  7 4 
Pathways with 5 Holes  5 2 
Total Pathways with Holes  103 79 
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Table 4.7 showed comparison of the number of pathways in 

hole-filled pathway (Hole-filled) with the number of pathways in 

YeastCyc[37] pathway database. 

Table 4.7 The comparison of hole-filled pathway with YeastCyc pathway 
database 
Pathway Class The number of 

pathways in 
YeastCyc 

The number of 
pathways in 
Hole-filled 

Biosynthesis  110 145 
- Amines and Polyamines Biosynthesis 4 4 
- Amino acids Biosynthesis  29 33 
- Aminoacyl-tRNA Charging  0 2 
- Aromatic Compounds Biosynthesis  1 2 
- Carbohydrates Biosynthesis  7 9 
- Cell structures Biosynthesis  0 0 
- Cofactors, Prosthetic Groups, 
Electron Carriers Biosynthesis  

22 34 

- Fatty Acids and Lipids Biosynthesis 13 23 
- Hormones Biosynthesis  0 0 
- Metabolic Regulators Biosynthesis  0 0 
- Nucleosides and Nucleotides 
Biosynthesis  

8 8 

- Other Biosynthesis  0 2 
- Secondary Metabolites Biosynthesis 1 9 
- Siderophore Biosynthesis  0 0 
Degradation/Utilization/Assimilation 40 67 
- Alcohols Degradation  2 5 
- Aldehyde Degradation  1 2 
- Amines and Polyamines Degradation 1 3 
- Amino Acids Degradation  18 23 
- Aromatic Compounds Degradation  0 1 
- C1 Compounds Utilization and 
Assimilation  

1 2 

- Carbohydrates Degradation  6 4 
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- Carboxylates Degradation  1 3 
- Chlorinated Compounds Degradation 0 0 
- Cofactors, Prosthetic Groups, 
Electron Carriers Degradation  

1 0 

- Degradation/Utilization/Assimilation 
- Other  

0 2 

- Fatty Acid and Lipids Degradation  3 9 
- Hormones Degradation  0 0 
- Inorganic Nutrients Metabolism  1 3 
- Nucleosides and Nucleotides 
Degradation and Recycling  

0 1 

- Polymeric Compounds Degradation 0 1 
- Secondary Metabolites Degradation 0 3 
Generation of precursor metabolites 
and energy  

11 21 

Signal transduction pathways  0 0 
Total  133 204 

The pathways generated by our pipeline (Hole-filled) compares to 

YeastCyc with some important pathways. These pathways included: 

gluconeogenesis, glycerol degradation, glycolysis, pentose phosphate 

pathway, glyoxylate cycle, TCA cycle and fatty acid oxidation pathway. 

Gluconeogenesis 

The pathways generated by our pipeline (Hole-filled) included the most 

pathways in YeastCyc. The difference was our pathway had no pyruvate 

to oxaloacetic acid reaction catalyzed by 6.4.1.1. The more detail 

comparison showed on Table 4.8, Figure 4.3 and Figure 4.4 
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Table 4.8 The comparison gluconeogenesis between the pathways 
generated by our pipeline (Hole-filled) and YeastCyc 

Hole-filled YeastCyc 
Evidence 

Glyph 

Enzymes Genes Evidence 

Glyph 

Enzymes Genes 

 

EC# 

1.1.1.37 

Malate dehydrogenase, 

mitochondrial: MDH1  

Malate dehydrogenase, 

peroxisomal: MDH3  

Malate dehydrogenase, 

cytoplasmic: MDH2  

EC# 

1.1.1.38 

malic enzyme: MAE1  

EC# 

4.1.1.31 

None  EC# 

6.4.1.1  

pyruvate carboxylase: 

PYC1  

pyruvate carboxylase: 

PYC2  

EC# 

4.1.1.49 

Phosphoenolpyruvate 

carboxykinase [ATP]: No 

Gene Name  

Phosphoenolpyruvate 

carboxykinase [ATP]: PCK1 

EC# 

1.1.1.37 

peroxisome malate 

dehydrogenase: MDH3  

mitochondrial malate 

dehydrogenase: MDH1  

cytosolic malate 

dehydrogenase: MDH2  

EC# 

1.1.1.40 

NAD-dependent malic 

enzyme, mitochondrial: 

MAE1  

EC# 

4.1.1.49 

phosphoenolpyruvate 

carboxylkinase: PCK1  

EC# 

1.1.1.38 

NAD-dependent malic 

enzyme, mitochondrial: 

MAE1  

EC# 

4.2.1.11 

enolase: ENO2  

enolase I: ENO1  

EC# 

2.7.9.2  

None  EC# 

5.4.2.1  

phosphoglycerate mutase: 

GPM1  

EC# 

4.2.1.11 

Enolase-related protein 3: 

ERR3  

Enolase-related protein 1/2: 

ERR1  

Enolase 2: ENO2  

Enolase 1: ENO1  

EC# 

2.7.2.3  

3-phosphoglycerate kinase: 

PGK1  

EC# 

5.4.2.1  

Phosphoglycerate mutase 1: 

GPM1  

Phosphoglycerate mutase 2: 

EC# 

1.2.1.12 

glyceraldehyde-3-phosphate 

dehydrogenase: TDH1  

glyceraldehyde 3-phosphate 
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GPM2  

Probable phosphoglycerate 

mutase YOR283W: 

YOR283W  

Phosphoglycerate mutase 3: 

GPM3  

Putative phosphoglycerate 

mutase DET1: DET1  

dehydrogenase: TDH2  

glyceraldehyde-3-phosphate 

dehydrogenase: TDH3  

EC# 

2.7.2.3  

Phosphoglycerate kinase: 

PGK1  

EC# 

4.1.2.13 

aldolase: FBA1  

EC# 

1.2.1.12 

Glyceraldehyde-3-phosphate 

dehydrogenase 1: TDH1  

Glyceraldehyde-3-phosphate 

dehydrogenase 2: TDH2  

Glyceraldehyde-3-phosphate 

dehydrogenase 3: TDH3  

EC# 

3.1.3.11 

fructose-1,6-bisphosphatase: 

FBP1  

EC# 

4.1.2.13 

Fructose-bisphosphate 

aldolase: FBA1  

EC# 

5.3.1.9  

glucose-6-phosphate 

isomerase: PGI1  

EC# 

3.1.3.11 

Fructose-1,6-bisphosphatase: 

FBP1  

  

EC# 

5.3.1.9  

Glucose-6-phosphate 

isomerase: PGI1  
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Figure 4.3 Gluconeogenesis in our 
pathways 

Figure 4.4 Gluconeogenesis in 
YeastCyc 
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Glycerol degradation 

These pathways were same in the pathways generated by our pipeline 

(Hole-filled) and YeastCyc. EC 1.1.99.5 had been transferred to EC 

1.1.5.3., they are same enzyme. The detail comparison information was 

on Table 4.9. 

Table 4.9 The comparison glycerol degradation between the pathways 
generated by our pipeline (Hole-filled)y and YeastCyc 

Hole-filled YeastCyc 
Evidence 

Glyph 

Enzymes Genes Evidence 

Glyph 

Enzymes Genes 

 

EC# 

2.7.1.30 

Glycerol kinase: GUT1 EC# 

2.7.1.30 

glycerol kinase: GUT1 

EC# 

1.1.5.3 

Glycerol-3-phosphate 

dehydrogenase, 

mitochondrial: GUT2 

EC# 

1.1.99.5 

glycerol-3-phosphate 

dehydrogenase: GUT2 

Glycolysis 

These pathways were same in our pathways and YeastCyc. Some 

enzymes do not match because these enzymes catalyze reverse reactions. 

The detail comparison information was on Table 4.10. 
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Table 4.10 The comparison glycolysis between our pathway and 
YeastCyc 

Hole-filled YeastCyc 
Evidence 

Glyph 

Enzymes Genes Evidence 

Glyph 

Enzymes Genes 

 

EC# 

5.3.1.9  

Glucose-6-phosphate 

isomerase: PGI1  

 

EC# 

5.3.1.9  

glucose-6-phosphate 

isomerase: PGI1  

EC# 

2.7.1.11  

6-phosphofructokinase 

subunit beta: PFK2  

6-phosphofructokinase 

subunit alpha: PFK1  

EC# 

2.7.1.11  

phosphofructokinase: 

PFK2, PFK1  

EC# 

3.1.3.11  

Fructose-1,6-bisphosphatase: 

FBP1  

EC# 

4.1.2.13  

aldolase: FBA1  

EC# 

4.1.2.13  

Fructose-bisphosphate 

aldolase: FBA1  

EC# 

5.3.1.1  

triosephosphate isomerase: 

TPI1  

EC# 

5.3.1.1  

Triosephosphate isomerase: 

TPI1  

EC# 

1.2.1.12  

glyceraldehyde-3-phosphat

e dehydrogenase: TDH1  

glyceraldehyde 

3-phosphate 

dehydrogenase: TDH2  

glyceraldehyde-3-phosphat

e dehydrogenase: TDH3  

EC# 

1.2.1.12  

Glyceraldehyde-3-phosphate 

dehydrogenase 1: TDH1  

Glyceraldehyde-3-phosphate 

dehydrogenase 2: TDH2  

Glyceraldehyde-3-phosphate 

dehydrogenase 3: TDH3  

EC# 

2.7.2.3  

3-phosphoglycerate 

kinase: PGK1  

EC# 

2.7.2.3  

Phosphoglycerate kinase: 

PGK1  

EC# 

5.4.2.1  

phosphoglycerate mutase: 

GPM1  

EC# 

5.4.2.1  

Phosphoglycerate mutase 1: 

GPM1  

Phosphoglycerate mutase 2: 

GPM2  

Probable phosphoglycerate 

mutase YOR283W: 

YOR283W  

Phosphoglycerate mutase 3: 

EC# 

4.2.1.11  

enolase: ENO2  

enolase I: ENO1  
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GPM3  

Putative phosphoglycerate 

mutase DET1: DET1  

EC# 

4.2.1.11  

Enolase-related protein 3: 

ERR3  

Enolase-related protein 1/2: 

ERR1  

Enolase 2: ENO2  

Enolase 1: ENO1  

EC# 

2.7.1.40  

pyruvate kinase: PYK2  

pyruvate kinase: CDC19  

EC# 

2.7.1.40  

Pyruvate kinase 1: PYK1  

Pyruvate kinase 2: PYK2  

EC# 

2.7.9.2  

None  

Pentose phosphate pathway 

These pathways were same in the pathways generated by our pipeline 

(Hole-filled) and YeastCyc. The detail comparison information was on 

Table 4.11. 
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Table 4.11 The comparison pentose phosphate pathway between the 
pathways generated by our pipeline (Hole-filled) and YeastCyc 

Hole-filled YeastCyc 
Evidence 

Glyph 

Enzymes Genes Evidence 

Glyph 

Enzymes Genes 

 

EC# 

1.1.1.49 

Glucose-6-phosphate 

1-dehydrogenase: ZWF1 

EC# 

1.1.1.49 

glucose-6-phosphate 

dehydrogenase: ZWF1 

EC# 

3.1.1.31

  

6-phosphogluconolactonase 

3: SOL3  

6-phosphogluconolactonase 

4: SOL4 

EC# 

3.1.1.31

  

6-phosphogluconolactonas

e: SOL4  

6-phosphogluconolactonas

e: SOL3 

EC# 

1.1.1.44 

6-phosphogluconate 

dehydrogenase, 

decarboxylating 1: GND1  

6-phosphogluconate 

dehydrogenase, 

decarboxylating 2: GND2 

EC# 

1.1.1.44 

6-phosphogluconate 

dehydrogenase, 

decarboxylating: GND1  

6-phosphogluconate 

dehydrogenase: GND2 

EC# 

5.3.1.6 

Ribose-5-phosphate 

isomerase: RKI1  

Ribose-5-phosphate 

isomerase: RKI1 

EC# 

5.3.1.6 

ribose-5-phosphate 

ketol-isomerase: RKI1 

EC# 

5.1.3.1 

Ribulose-phosphate 

3-epimerase: RPE1 

EC# 

5.1.3.1 

D-ribulose-5-Phosphate 

3-epimerase: RPE1 

EC# 

2.2.1.1 

Transketolase 1: TKL1  

Transketolase 2: TKL2 

EC# 

2.2.1.1 

transketolase: TKL1  

transketolase: TKL2 

EC# 

2.2.1.2 

Transaldolase NQM1: 

NQM1  

Transaldolase NQM1: 

NQM1  

Transaldolase: TAL1 

EC# 

2.2.1.2 

transaldolase: TAL1 

EC# 

2.2.1.1 

Transketolase 1: TKL1  

Transketolase 2: TKL2 

2TRANS

KETO-R

XN  

transketolase: TKL1 
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Glyoxylate cycle 

These pathways were same in the pathways generated by our pipeline 

(Hole-filled) and YeastCyc. The additional node in YeastCyc evidence 

glyph includes in our pathway and it just not show on the graph. The 

detail comparison information was on Table 4.12. 

Table 4.12 The comparison glyoxylate cycle between the pathways 
generated by our pipeline (Hole-filled) and YeastCyc 

Hole-filled YeastCyc 
Evidence 

Glyph 

Enzymes Genes Evidence 

Glyph 

Enzymes Genes 

 

EC# 

2.3.3.9  

Malate synthase 2, 

glyoxysomal: MSL2  

Malate synthase 1, 

glyoxysomal: MLS1  

EC# 

1.1.1.37  

peroxisome malate 

dehydrogenase: MDH3  

mitochondrial malate 

dehydrogenase: MDH1  

cytosolic malate 

dehydrogenase: MDH2  

EC# 

1.1.1.37  

Malate dehydrogenase, 

mitochondrial: MDH1  

Malate dehydrogenase, 

peroxisomal: MDH3  

Malate dehydrogenase, 

cytoplasmic: MDH2  

EC# 

2.3.3.1  

citrate synthase: CIT3  

citrate synthase: CIT1  

citrate synthase: CIT2  

EC# 

2.3.3.1  

Citrate synthase, 

mitochondrial: CIT1  

Citrate synthase, 

peroxisomal: CIT2  

Citrate synthase 3: CIT3  

EC# 

4.2.1.3  

aconitase: ACO1  

aconitate hydratase: ACO2 

EC# 

4.2.1.3  

Probable aconitate hydratase 

2: ACO2  

Aconitate hydratase, 

mitochondrial: ACO1  

Aconitate hydratase, 

EC# 

4.2.1.3  

aconitase: ACO1  
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mitochondrial: ACO1  

EC# 

4.2.1.3  

Probable aconitate hydratase 

2: ACO2  

Aconitate hydratase, 

mitochondrial: ACO1  

Aconitate hydratase, 

mitochondrial: ACO1  

EC# 

4.1.3.1  

isocitrate lyase: ICL1  

EC# 

4.1.3.1  

Isocitrate lyase: ICL1  EC# 

2.3.3.9  

malate synthase: MLS1  

malate synthase 2: DAL7 

TCA cycle 

These pathways were same in the pathways generated by our pipeline 

(Hole-filled) and YeastCyc. The additional enzyme is EC 6.4.1.1 that link 

pyruvate and TCA cycle. The detail comparison information was on Table 

4.13. 

Table 4.13 The comparison TCA cycle between the pathways generated 
by our pipeline (Hole-filled) and YeastCyc 

Hole-filled YeastCyc 
Evidence 

Glyph 

Enzymes Genes Evidence 

Glyph 

Enzymes Genes 

 

EC# 

4.2.1.2  

Fumarate hydratase, 

mitochondrial: FUM1  

EC# 

6.4.1.1  

pyruvate carboxylase: 

PYC1  

pyruvate carboxylase: 

PYC2  

EC# 

1.1.1.37  

Malate dehydrogenase, 

mitochondrial: MDH1  

Malate dehydrogenase, 

peroxisomal: MDH3  

Malate dehydrogenase, 

cytoplasmic: MDH2  

EC# 

2.3.3.1  

citrate synthase: CIT3  

citrate synthase: CIT1  

citrate synthase: CIT2  

EC# 

2.3.3.1  

Citrate synthase, 

mitochondrial: CIT1  

EC# 

4.2.1.3  

aconitase: ACO1  

aconitate hydratase: ACO2 
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Citrate synthase, 

peroxisomal: CIT2  

Citrate synthase 3: CIT3  

EC# 

4.2.1.3  

Probable aconitate hydratase 

2: ACO2  

Aconitate hydratase, 

mitochondrial: ACO1  

Aconitate hydratase, 

mitochondrial: ACO1  

EC# 

4.2.1.3  

aconitase: ACO1  

EC# 

4.2.1.3  

Probable aconitate hydratase 

2: ACO2  

Aconitate hydratase, 

mitochondrial: ACO1  

Aconitate hydratase, 

mitochondrial: ACO1  

EC# 

1.1.1.41  

NAD-dependent isocitrate 

dehydrogenase: IDH2, 

IDH1  

EC# 

1.1.1.41  

Isocitrate dehydrogenase 

[NAD] subunit 2, 

mitochondrial: IDH2  

Isocitrate dehydrogenase 

[NAD] subunit 1, 

mitochondrial: IDH1  

α-ketoglut

arate 

oxidative 

decarboxy

lation  

2-ketoglutarate 

dehydrogenase complex: 

KGD2, KGD1, LPD1  

α-ketoglut

arate 

oxidative 

decarboxy

lation  

2-oxoglutarate 

dehydrogenase, 

mitochondrial: KGD1  

EC# 

6.2.1.5  

succinyl-CoA ligase: 

LSC2, LSC1  

EC# 

6.2.1.5  

Succinyl-CoA ligase 

[ADP-forming] subunit 

alpha, mitochondrial: LSC1 

Succinyl-CoA ligase 

[ADP-forming] subunit beta, 

mitochondrial: LSC2  

EC# 

1.3.5.1  

minor succinate 

dehydrogenase 

(ubiquinone): SDH1b, 

SDH2, SDH3, SDH4  

succinate dehydrogenase 

(ubiquinone): SDH1, 

SDH2, SDH3, SDH4  

EC# 

1.3.5.1  

Succinate dehydrogenase 

[ubiquinone] iron-sulfur 

subunit, mitochondrial: 

SDH2  

Succinate dehydrogenase 

EC# 

4.2.1.2  

fumarate hydralase: FUM1 
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[ubiquinone] flavoprotein 

subunit, mitochondrial: 

SDH1  

Succinate dehydrogenase 

[ubiquinone] flavoprotein 

subunit 2, mitochondrial: 

YJL045W  

  EC# 

1.1.1.37  

peroxisome malate 

dehydrogenase: MDH3  

mitochondrial malate 

dehydrogenase: MDH1  

cytosolic malate 

dehydrogenase: MDH2  
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Fatty acid oxidation 

There is no the reaction catalyzed by EC 5.3.3.8 and the pathway does not 

link to a cycle (Figure 4.5 and 4.6 ) in the pathways generated by our 

pipeline (Hole-filled). The detail comparison information was on Table 

4.14. 

Table 4.14 The comparison fatty acid oxidation between the pathways 
generated by our pipeline (Hole-filled) and YeastCyc 

Hole-filled YeastCyc 
Evidence 

Glyph 

Enzymes Genes Evidence 

Glyph 

Enzymes Genes 

 EC# 

6.2.1.3 

Long-chain-fatty-acid--CoA 

ligase 3: FAA3  

Long-chain-fatty-acid--CoA 

ligase 1: FAA1  

Long-chain-fatty-acid--CoA 

ligase 2: FAA2  

Long-chain-fatty-acid--CoA 

ligase 4: FAA4 

EC# 

5.3.3.8 

delta(3,5)-delta(2,4)-dieno

yl-CoA isomerase: DCI1  

d3,d2-Enoyl-CoA 

Isomerase: ECI1 

EC# 

1.3.3.6 

Acyl-coenzyme A oxidase: 

POX1 

EC# 

6.2.1.3 

long chain fatty acyl:CoA 

synthetase: FAA1  

long chain fatty acyl:CoA 

synthetase: FAA4  

acyl-CoA synthase: FAA3 

acyl-CoA synthetase: 

FAA2  

fatty acid transporter: 

FAT1 

EC# 

4.2.1.17 

None EC# 

1.3.3.6 

fatty-acyl coenzyme A 

oxidase: POX1 
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EC# 

1.1.1.35 

None EC# 

4.2.1.17 

3-hydroxyacyl-CoA 

dehydrogenase: FOX2 

EC# 

2.3.1.16 

3-ketoacyl-CoA thiolase, 

peroxisomal: FOX3 

 

EC# 

1.1.1.35 

3-hydroxyacyl-CoA 

dehydrogenase: FOX2 

EC# 

2.3.1.16 

3-oxoacyl CoA thiolase: 

POT1 
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Figure 4.5 Fatty acid oxidation in our pathways 

 

Figure 4.6 Fatty acid oxidation in YeastCyc 

   

a cis‐3‐enoyl‐CoA 
5.3.3.8 
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Chapter 5 Discussion 

We implement an integrated pipeline for sequence assembly, gene 

annotation and metabolic pathway reconstruction. Our pipeline had been 

tested by three types of dataset including the sequencing results of Roche 

454, Illumina and hybrid dataset that combine the contigs generated by 

velvet assemble Illumina and Roche 454. Our results show that the 

assembly result of the hybrid dataset is better than solely dataset of Roche 

454 or Illumina based on the value of N50. Our pipeline can successfully 

assemble the reads from the next generation sequencing techniques. 

Following the sequence assembly process is the gene annotations. Our 

pipeline integrates four ab initio gene prediction tools and one 

evidence-based gene prediction tool. The ab initio tools include 

GlimmerHMM, AUGUSUT, GENSCAN, and SNAP. The evidence-based 

prediction tool is BLAST. Then, our pipeline use EvidenceModeler to 

combine the results from all of the gene prediction tools. The gene 

annotation simulation of yeast genome shows 88% of genes in yeast are 

well annotated. Our hybrid gene prediction approach can annotate more 

genes than the number of genes predicted by BLAST (86%) or by single 
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ab inito gene prediction tools, which the average recall ratio is 81%. In 

short, the EvidenceModeler can significant increase the gene recall rate. 

Our platform can also reconstruct the metabolic pathways of the predicted 

genes, which belong to the tier 3 databases in Biocyc. We compare some 

of the housekeeping pathways between our annotation and annotated in 

YeastCyc which is a manual curated metabolic pathway database in Yeast. 

We found that the pathways are almost identical. Overall, our platform 

can assembly and annotate the genome sequenced by the next generation 

sequencing techniques in short time and provide the data of genomic 

sequence, genes and metabolic pathways. 

We found that around 88% of yeast genes were predicted by 

EvidenceModeler which is less than the number of genes predicted by 

GlimmerHMM (90%). The reason of the drawback is that the genes 

predicted by EvidenceModeler is the gene prediction combination from 

various tools. Due to some of the genes can only be annotated by 

GilmmerHMM, the EvidenceModeler cannot agree the prediction results 

from single prediction tool. In other words, the gene predicted by 

EvidenceModeler must be predicted by most of the prediction tools. 

The manually curated metabolic pathways are usually different to the 
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pathways predicted by computational approaches. For example, the 

number of metabolic pathways which are computationally annotated in 

CattleCyc is 243. After the manual curation, the number of pathways 

shared with the computational approached is 113[38]. We have similar 

problem of our metabolic pathway reconstruction. YeastCyc include 133 

pathways and our platform predicted 204 pathways. Around 55 pathways 

are shared between YeastCyc annotations and our pathway annotations. 

Hence the computational annotated metabolic pathways must be curated 

manually. 

   



 

72 
 

Chapter 6 Future work 

The sequence assembly quality might be improved if we can design a 

filter to control the quality of the reads. The filter removes the reads 

according to the region of low complexity region and the error rate of 

read. 

 Currently, the parameters for sequence assembly are manually 

adjusted. The best parameters are different for various organisms and 

experiments. Hence, finding the best parameters for each new experiment 

manually is labor intensive. An automatic process to figure out the best 

parameter for each annotation might be reduced the time of finding 

parameters. 

During the evaluation of our gene prediction, we found the accuracy 

of the gene prediction is not higher enough to recover as more genes as 

possible. In order to improve drawbacks, we may include more 

evidence-based gene prediction data such as cDNA and EST sequence.  

A well integrated graphical user interface could improve the usability 

of our annotation platforms because the gene annotation results and the 

metabolic pathways are shown in distinct web sites. It is hard for user to 
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find the annotation linkage between different annotations. If we can 

provide a user interface such as UCSC genome browser, the user can 

access the annotation more convenient. 
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