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Abstract
Human Genome Project had been completed in 2003. It provides gigantic
resources for biological research. In recent years, next generation
sequencing technique dramatically reduces the sequencing cost and time.
Thus, completely sequencing new organisms will be popular and
universal, and the genomes of these organisms also include huge research
resources. The demands of comprehensive genomic annotation will be
more urgent and necessary. Thus, it is necessary a computational pipeline.
In order to assembly complete genome sequences, this pipeline uses
several assembly tools which designed for assembling traditional
sequencing and next generate sequencing raw data. It also integrates ab

initio and evidence-based gene prediction approaches to predict genes. In



addition, this pipeline can reconstruct metabolic pathways from the gene
annotation results. This computational pipeline can assemble sequencing
data from various platforms and provide the service of genomic
annotation including: gene annotation and metabolic pathway
reconstruction. This computational pipeline can be a crucial part of

pipeline in the high throughput genomic annotation.



R

FhOARE MR ERET REHR AL DT e
BRAHAF T NSRBI oL B 4eeh R HE AP

AR R AT AR S LT A R A AR K

bipd EYRRHFHRIELPHA L L 6 g B2 & %o
P?’EEJJ},&E,\‘;&TE./ —:‘E"% Qﬁﬂﬂ://‘,gg\.ﬁ /AJ ﬁ’”“’i}%gﬁ ,.\./—/
WA B RPE - AR IE A G L P R R g

R FHRE R P RS ERGPRAE o0 BT

R R N CF TR W
(OB P Y R P A AR 2 S B s R B

BA AR 4 R T R .

M2 R REAGH TP AT e AL E B

=

ﬁy’@%{ﬁiiﬁé4haﬁ%§ﬁﬁ@%ﬁﬁ’&w

3—\
'h*\
=
=
PR
N
=\

FE S BE S ARG LD ISBLAB A HF £ Leinip s

o WHFE o



Content

Chapter 1 INtrodUCTION..........coviiieiie e 1
1.1 Background...........cooiiiiiiiiiei e 2

1.1.1 Next-generation SEQUENCING.........ccveerierieriueeniieaeeenieeeieenieeereeseeeseeens 2

1.1.2 Sequence ASSEMDIY ........cccceriiriiiiniiniiierieneeieee e 9

1.1.3 GENe anNOtAtIONS. ...c..eevirureriieieeiienieete ettt ettt ettt 14

1.1.4 Metabolic pathway .........ccccoeiiiiiiiiiieeee e 16

1.2 MOTIVALION ...ttt sttt 17

1.3 The SPecific ATM .....cciiiiiiiiiiiiiiieeece e 18
Chapter 2 Related WOIKS..........cooiiiiiiecic e 19
2.1 Sequence assembly tOOIS. ........coiiiiriiriiiiiiiee e 19
211 PRIAP e 20

2. 1.2 CAPS e et 20

213 SSAKE ... e e 21

20104 VEIVEL ittt 22

2.2 Gene prediction tOOLS ...t i iiie b ettt 24
2.2.1 GENSCAN....coctie it it afe ettt 24

2.2.2 GImmeErHMM i . it it b st 26

2.2.3 AUGUSUT . ittt e e 088t bame ettt e sae et s e bt e eneenees 28

224 SNAP . i et ettt ettt 30

2.3 Metabolic Pathway Databases «......c.iiiiii it 31
2301 BIOCYC ot iiun e s th ettt ettt 31

2.3 2 MELACYC .ot e o s o0 st ettt sttt et e 31

2.3.3 KEGG: Kyoto Encyclopedia of Genes and Genomes ................c....... 31

2.4 Metabolic Pathway Reconstruction Tools...........ccceeouiriieniieniiniiiieiiceee 32
2.4.1 Pathway tOOIS ....cc.eeiiiiiiieiieie e 32
Chapter 3 Materials and methods............cccceeveiiiiiecceccecce e 33
3.1 MALETIALS ..ottt 33

3.2 The processes of genome annotation ..........cccueerueerieeriienieeniienieeiee e eiee e 37

3.3 MEthOAS. c..cueiieieeee ettt 38
3.3.1 Sequence assemDIY ........ccoeiviiriiriiiierieeeeee e 38

3.3.2 GENE ANNOLALION ...c.ueenvieneiriteiieieeiteete ettt ettt 39

3.3.3 Metabolic pathway reconsStruction...........cocceeevieerieenieenieeieeeie e 40
Chapter 4 RESUILS........coiiiiiece e 43
4.1 Result of Sequence assembly.........c.ccoceriiriiiiriiniiiiiieceeeeeeee 43

4.2 Result of Gene ANNOtAtION......c...cviiiuirieriieienienteeeteee e 46

4.3 Result of Metabolic Pathway Reconstruction...........cccceeeeeviieieenieeieennene. 52
Chapter 5 DISCUSSION ....ccvveiieiiieiie e et sieesee et e e e eeeennes 69



Chapter 6 Future work
References..........c........




List of Figures

Figure 1.1 Roche 454 GS FLX SEQUENCING .......eevvuvieeirieeeiieeeiieeeieeeeveeeseneeeseveeeeeee e 4
Figure 1.2 Illumina Genome AnalyZzer SEqUENCING.........cccueeeruveeerireeeireeenieeenieeenveeenenes 6
Figure 1.3 Applied Biosystems SOLiD sequencing by ligation ............ccccceevvveennennnee. 8
Figure 1.4 Sequence assembly fIOW.........cccueeiiiiiiiiiiiiiiecieeceeecee e 10
Figure 1.5 Repeat region problem ..........cccvieiiiieeiiieeeiiecciieeciee et 11
Figure 1.6 Overlap @raph........ccooooiiiiiiiieiiieceeeeecee et 12
Figure 1.7 De Bruijn Graph for read with k-mer =3........cccoociiiiiiiiiiieeee 13
Figure 1.8 GENe SUCIUIE......cccuiieeiieeeiieecieeecitee et e et e e etee e eteeesreeesveeesaseeeesseeennseeens 15
Figure 1.9 ENZyme r€actiOn ........cccuvieicuiieriiiieciieeeiieeeieeeeieeeeveeeeveesseveeeeveessaeesaneeens 16
Figure 2.1 Major phases of CAP3 algorithm..........cccccoeeviiieiiiiiiiiiieeeeeeeeee 21
Figure 2.2 Initial de brujin @raph.........cccoovieeiiiieiiieeeeeeeee e 23
Figure 2.3 SImplification Graph.........ccceeeciieeiiiieiiieeciie ettt 23
F1gUIE 2.4 REMOVE tIPS ..eiuiiieiiiiieeiieeeiie et eeteeetee et e e st esaee e st e e snaeeensseeesseeensseeenns 23
Figure 2.5 Remove DUbDIC.........ccccuiiiiiiiiiiecce e 24
Figure 2.6 Re-simplification graphi......c.o i if v 24
Figure 2.7 HMM model of GENSCAN ...t it 26
Figure 2.8 The HMM model of GlimmerHMM .........ci e, 28
Figure 2.9 The HMM model of AUGUSUT .....c0 it 29
Figure 2.10 The HMM model of SNAP ..ot i 30

Figure 3.1 The schematic indicates the processes of annotating of a novel genome

including sequence assembly, gene annotation, and metabolic pathway

TECONSITUCTION. ... de e iitesaa e s aaese e e enteeeuteenteesateenbeesneeenbeesateebeesneeenns 37
Figure 3.2 Metabolic pathway reconstruction work flow ...........ccceeveviiiniiiiniieeninn. 42
Figure 4.1 Gene locations 0n CONTIZO0 .........cccueeeeveeeiiieeiiieeiieeeriieeeieeeeieeeereeesvee e 49
Figure 4.2 PAUS detail information..........c.cceoveieeiieiiiieeiiie et 50
Figure 4.3 Gluconeogenesis in oUr Pathways .......c.cceccveeeriieeiieeeiieeeeeeeieeeeveeesvee e 57
Figure 4.4 Gluconeogenesis i YEASTCYC...uuiriuiiiriieeiiieeiiieesieeeieeeeieeeeeeeesveeesenee e 57
Figure 4.5 Fatty acid oxidation in our pathways.........c.cceccueeeriieeiiieniie e 68
Figure 4.6 Fatty acid oxidation in YEaStCyC.....ccevuirriireriiieeiieeeiee e esiieeevee e 68

vii



List of Tables

Table 1.1 The comparison of different next generation sequencing platforms.............. 3
Table 2.1 The comparison of assembly t0OIS.........cceveeeeiiiiriiieeieece e 19
Table 3.1 Assembly tools of materials ...........cceevvuiieiiiiieriii e 34
Table 3.2 Gene prediction tools of materials ...........ccccveeeciieiiiiieiiieeree e 35
Table 3.3 Gene annotation databases of materials ..........ccccoeeeeriiiiiiiiiiiniiiie 36
Table 3.4 Metabolic pathway reconstruction tools of materials ............c.ccceevevveerneennns 36
Table 4.1 Data sets for each sequencing platform ...........ccceeeieeeiiiiniiiiicieeeeeees 44
Table 4.2 The comparison of data sets assembly .........ccccceeeiviieeiiiieiiiee e, 44
Table 4.3 The comparison of two mixture data Set..........cceevvuveerciieeniieeciie e 45

Table 4.4 The comparison of gene predicted by each prediction tool with

Saccharomyces CErevisiae SENEe .......ccuvervveeeriueeerveeerireeerreeerreeeseveeennns 48
Table 4.5 The three type eXample SENES .......ccveevvieerieieiiie et eseeereeerree e 51
Table 4.6 The comparison of initial pathway with hole-filled pathway ...................... 52

Table 4.7 The comparison of hole-filled pathway with YeastCyc pathway database..53

Table 4.8 The comparison gluconeogenesis between the pathways generated by our
pipeline (Hole-filled) and YeastCyeC it uuiiriieniiienieeeiieeeee e 55

Table 4.9 The comparison glycerol degradation between the pathways generated by

our pipeline (Hole-filled)y and YeastCyc «........cccovvvevviieciiieiieeieeae 58
Table 4.10 The comparison glycolysis between our pathway and YeastCyc............... 59
Table 4.11 The comparison pentose phosphate pathway between the pathways
generated by our pipeline (Hole-filled) and YeastCyc..........ccuvenneeee. 61
Table 4.12 The comparison glyoxylate cycle between the pathways generated by our
pipeline (Hole-filled) and YeastCyc......coceevvuvierciieenciieeeiieecee e, 62
Table 4.13 The comparison TCA cycle between the pathways generated by our
pipeline (Hole-filled) and YeastCyc......ccveveuvieriieenciieeeiieeciee e, 63
Table 4.14 The comparison fatty acid oxidation between the pathways generated by
our pipeline (Hole-filled) and YeastCyc .......cccceevvieeriieeniieeiie e 66

viii



Chapter 1 Introduction

The techniques of next generation sequencing (high throughput
sequencing) have made the acquisition of genomic sequences more
affordable and easier. These techniques have enabled the large scale
investigations of novel genomes especially for commercial, medical, and
model organisms. Hence, a well integrated software platforms of genome
annotation from next generation deep sequencing data is emerged, and
this platform can reduce the time of learning individual packages and
provide a sketch of genome in a very short time. Based on the sketch of
genome annotation, we . can quickly compare with well annotated
genomes and excludes the well "annotated genomic sequence. After
eliminate the well annotate homologous genomic regions, the remaining
parts might exists abundant genes with novel functions. In other words,
we can organize the advanced researches in advance for the unexplored
genomic region. Nevertheless, the prototype of novel genome also
provides the basic biological understanding because our platform not only
provides the function of assembly deep sequencing data but also includes

the gene prediction and metabolic pathway reconstruction. In short, we



construct a platform for quickly sketching of a novel genome including
sequence assembly, gene prediction and metabolic pathway

reconstruction, based on deep sequencing data.

1.1 Background

1.1.1 Next-generation sequencing

Next-generation sequencing is a high throughput sequencing technology.
Next-generation sequencing platforms include the Genome Sequencer
from Roche 454 Life Sciences (www:454.com), the Solexa Genome
Analyzer from Illumina (www.illumina.com), the SOLiD System from
Applied Biosystems (www.appliedbiosystems.com). Those platforms are
characterized by highly parallel operation, higher yield, simpler operation,
much lower cost per read, and shorter reads[1]. Next-generation
sequencing produces large amounts (typically millions) of short DNA
sequence reads of length between 25bp and 400bp. These reads are
shorter than the traditional Sanger sequence reads of length between
500bp and 1000bp. The summary of sequencing technology show on

Table 1.1



Table 1.1 The comparison of different next generation sequencing
platforms.

Platform Read Mb per  Time per Mb per Cost per
length run run day Mb

Sanger 1000bp - - ~2 Mb ~$500

Roche 250 bp 100Mb  7hr ~350 Mb  ~$60

454

[llumina  32~40bp 1300 Mb 3 days ~400 Mb  ~$2

SOLiD 35 bp 4000 Mb 7 days ~500 Mb  ~§2

1.1.1.1 Roche 454

The first next-generation platform was GS20 developed by Roche 454
Life Sciences using pyrosequencing technology. Genomic DNA splice to
smaller fragment, ligate adaports into the ends of fragment and amplified
by emulsion PCR. After amplification, the DNA bound beads are placed
into picotiter-plate wells with 'sequencing enzymes such as DNA
polymerase, ATP sulfurylase, and luciferase. During the sequencing, the
four DNA nucleotides are added into the well. When a nucleotide which
added into the well complement to the template strand. That nucleotide
will generate a light signal that detected and recorded by CCD
(charge-couple device) (Figure 1.1). The performance of GS20 was over
20 million base pairs in over 4hour. The GS20 was replaced during 2007

by the GS FLX model, capable of producing over 100 million base pairs



of sequence in a similar amount of time. There are other alternative
sequecing platform which are Solexa Genome Analyser technology and

the SOLiD[2].
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DNA fragments

Emulsion PCR N ;\g\t‘d;.,
= =
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Figure 1.1 Roche 454 GS FLX sequencing'[3]

The picture is copy from Next-generation sequencing: from basic research to diagnostics

Figure 1 Roche 454 GS FLX sequencing [3]



1.1.1.2 [llumina Solexa

The Solexa Genome Analyzer system was developed by Solexa using
reversible terminator chemistry technology (Figure 1.2) and now owned
by Illumina. This is the first of the massively parallel short-read platforms.
Sequencing templates are immobilised on a flow cell surface, and solid
phase amplification creates clusters of identical copies of each DNA
molecule. Sequencing then uses four proprietary fluorescently labelled
nucleotides to sequence the millions of clusters on the flow cell surface.
These nucleotides possess a reversible termination property, allowing
each cycle of the sequencing reaction to occur simultaneously in the

presence of the four nucleotides-[2].
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Figure 2 Illumina Genome Analyzer sequencing [3]
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1.1.1.3 SOLID

The SOLiID (Supported Oligonucleotide Ligation and Detection) System
was developed by Applied Biosystems. Certain elements of the platform
are directly analogous to features of both the 454 and Illumina systems.
Template amplification is by emulsion PCR as the 454 platform and
template is applied at high density to a flow cell as Illumina[4]. The
feature of the SOLiD platform is the ligation-based sequencing chemistry

(Figure 1.3).
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? The picture is copy from Next-generation sequencing: from basic research to diagnostics
Figure 3 Applied Biosystems SOLiD sequencing by ligation [3]
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The next-generation sequencing platforms have characteristic error
profiles. Error profiles can include enrichment of base call error toward
the 3' ends of reads, compositional bias for or against high-GC sequence,
and inaccurate determination of simple sequence repeats[1]. 454 error

rate is approximate 0.1%, [llumina and SoLiD are approximate 1%.

1.1.2 Sequence Assembly

Sequencing assembly is a process to group reads into contigs and contigs
into scaffolds. Reads are sequence fragments sequenced by sequencing
platforms. Contigs (contiguous sequence) are a set of overlapping reads
that represent a continuous region.-of DNA sequence. The scaffolds are
the contigs order and oriéntation and the 'sizes of the gaps between

contigs (Figure 1.4).



DNA Sequence

Fragment (reads)

Assembly

Figure 1.4 Sequence assembly flow

The goal of whole-genome shotgun assembly is to represent each
genomic sequence in one scaffold. However, this is not always possible.
One chromosome may be represented by many scaffolds or a single
scaffold.

A challenge of assembly is that solve repeat region problem (Figure
1.5). In assembly process compute the overlap region between reads, the

similar repeat region may confuse the order of nearby regions. For

10



example in Figure 1.5, the repeat region X cause region A to D has A,C,B

to D and A,B,C to D two ambiguous assembly sequence.

Figure 1.5 Repeat region problem

[~

1.1.2.1 Assembly of next-generation
sequencing

The challenges in assembly. ‘of next-generation sequencing are more
difficult than traditional sequencing in shorter reads, high coverage data
and error rate. The length of shorter reads may shorter than repeat region
and many reads in repeats will have only one or no different bases. That
will cause more ambiguous overlap in assembly. High coverage data
compute the overlap between reads is more complex. Sequencing error
will cause worse assembly accuracy and next-generation sequencing has
higher error rate than traditional sequencing. Traditional assembly
algorithm cannot assemble next-generation sequencing reads well. Thus,

there are new assembly algorithm is developed in recent years.
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1.1.2.2 Approaches of assembly

There are two basic approaches for sequence assembly:

overlap-layout-consensus and de Bruijn graph.

1.1.2.2.1 Overlap-layout-consensus approach

This approach computes pair-wise overlap between all reads and reflect

to overlap graphs. Reads represent nodes and overlaps represent edges.

[ GraTGATT |

J
[\; | -

[ ccettGra |
\-1 ACCATCCG /

[ AGA

[ AGATCATTACCATCCGTTGTATGATT )

Figure 1.6 Overlap graph

Overlap-layout-consensus approach was used in Sanger sequencing
assembly. The assemblers used this approach include: CAP3[5], PCAP[6],
ARACHNE[7], phrap[8], Celera[9] and etc. Roche 454 assembly may
also use this approach. The Newbler[10] is developed using

overlap-layout-consensus approach by 454 life sciences.
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1.1.2.2.2 De Bruijn graph

Because overlap-layout-consensus approach computes the short and high
coverage next-generation sequencing data increase most computational
time, most assembler for next-generation sequencing use de Bruijn graph.
De Bruijn graph reduce computational complexity by splice reads to

fragments with k length as k-mer and have k-1 length overlap between

k-mers.
Read:  AGATGATT New Read: tcartacc
AGA TGA
GAT GAT
ATG ATT
3-mers: TGA 3-mers: TTA
GAT TAC
ATT ACC
De Bruijn graph: De Bruijn graph:
1 { ]
(acA )+ car }-(arc J—~(rca)  (Laca }~(car )+ arc (1A )
\ ATT [ ATT }>{rTa }—>{ r8c }>{LAcc)

Figure 1.7 De Bruijn Graph for read with k-mer = 3

The assemblers used this approach include: Velvet[11], Abyss[12],

ALLPaths[13], SOAPdenovo[14] and etc.

13



1.1.3 Gene annotations

Gene annotation is the process to identify gene location on the genome

sequence and biological information of these genes.

1.1.3.1 Gene prediction approaches

1.1.3.1.2 Ab initio approach

Ab initio approach is prediction gene depend on the signal of
protein-coding gene (start codon, stop-codon, donor site, acceptor site,
promoters and poly-A tail) and propetrties of protein-coding gene (exon,
intron, intergenic region and . UTRs). These features of gene show in
Figure 1.8.The most ab initio:-gene prediction software is designed by
hidden Markov model (HMM). Some example of ab initio gene
prediction  software  include: @ AUGUSTUS[15], Fgenesh[16],

GENSCAN][17], GeneMark.hmm[ 18], GlimmerHMM][19], and etc.

14



Intronl Intron2

Promaoter

Transcription Translation Splice Splice Translation
Start Start Donor site Acceptor site Stop

Tra ntion

Primary Transcript (RNA)
5!

Mature transcript (mRNA)

5 ¥
Tre lion

Protein

Figure 1.8 Gene structure

1.1.3.1.1 Evidence-based approach

The evidence-based is search gene on target sequence form known
sequence of an mRNA, EST or protein product. BLAST[20] is a widely

used software designed for this approach.
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1.1.4 Metabolic pathway

Metabolic pathways are series of chemical reactions occurring in a cell.
The molecules called substrates that are at the beginning of the reaction,
and the enzyme changes these into different molecules as products. Those
products may as substrates enter new reactions, and a series of reactions
construct the metabolic pathways. Pathways are important to maintain the
homeostasis of an organism. Some important metabolic pathways are:
glycolysis, anaerobic respiration, citric-acid.cycle (krebs cycle), oxidative
phosphorylation, pentose. phosphate pathway, fatty acid oxidation, urea

cycle.

Substrate entering Substrate complex Product complex Products leaving
active site of enzyme active site of enzyme

Figure 1.9 Enzyme reaction

Pathway 1s a method to understanding the role of gene in their larger
biological context as effects of mutations, drug interventions and changes

in gene regulation[21] .
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1.2 Motivation

Human genomic project was initiated in 1990 and was completed in 2003.
Around three billion USD were devoted into this project. Nowadays, the
next-generation sequencing can sequence large genomic sequence with
very low costs. Next-generation sequencing techniques provide an
alternative method of massively study the genomes of novel organism
and initiate the studies of understanding the genome variants of different
individuals. These techniques have enabled. the large scale investigations
of novel genomes especially for commercial, medical, and model
organisms.

Consequently, the sequence assembly and genome annotation are
required for investigation the results of next-generation sequencing data.
Therefore, a genome annotation platform for next-generation sequencing
might reduce the time of annotating the novel genome and provide a

quick profiling of the genomes.

17



1.3 The Specific Aim

For the explosive genome projects, a computational pipeline which
includes sequence assembly, gene annotation and metabolic pathway
reconstruction is necessary. This pipeline can assemble various
sequencing platform and different platform combined data. It integrates
several ab initio and evidence-based approach prediction tools to provide
more accuracy prediction, and identify function of these genes. Finally,
this pipeline reconstructs the metabolic .pathway of the sequencing

organisms.

18



Chapter 2 Related Works

2.1 Sequence assembly tools

Table 2.1 lists several sequence assembly tools: phrap[8] and CAP3[5]
developed to assemble traditional sequencing data, and phrap supported
Roche 454 sequencing data in later version. SSAKE and Velvet
developed to assemble next generation sequencing data. SSAKE was one
of first short reads assembly tools; but it did not support Roche 454 data.
Velvet used a difference form overlapping. assembly approach to
implement as de bruijn. graph, and it is now widely used short reads

assembly tool.

Table 2.1 The comparison of assembly tools

Assembly Approach Supporting  Supporting Reference
tools sequencing  paired-end

technology
Phrap Overlapping Sanger, 454  No [8]
CAP3 Overlapping Sanger No [5]
SSAKE Overlapping [llumina Yes [22]

Velvet De bruijn graph 454, [llumina Yes [11]

19



2.1.1 Phrap

Phrap was developed by Prof. Phil Green to provide rapid comparison,
alignment, and assembly of large sets of DNA sequences. Phrap does
pairwise alignment and search to a sequence region that match a
designated length. Phrap extended the alignment form the match region
with follow score. Matching residues receive a reward of +1, mismatches
get a penalty of —2, gap opening residues a penalty of —4 and gap
extension residues a penalty .of =3.-In this, way PHRAP aligns the data

into contigs[8].

2.1.2 CAP3

CAP3 is an assembly tool for traditional sequencing data. The assembly
algorithm consists of three major phases (Figure 2.1). In the first phase, 5’
and 3’ poor regions of each read are identified and removed. Overlaps
between reads are computed. False overlaps are identified and removed.
In the second phase, reads are joined to form contigs in decreasing order
of overlap scores. Then, forward-reverse constraints are used to make
corrections to contigs. In the third phase, a multiple sequence alignment

of reads is constructed and a consensus sequence along with a quality

20



value for each base is computed for each contig. Base quality values are
used in computation of overlaps and construction of multiple sequence

alignments[5].

Removal of poor end region of reads

A 4

Computation of overlaps between reads

h 4
Removal of false overlaps

A 4

Constructionof contigs

¥
Constructionof multiple sequence
alignments and generation of consensus

Figure 2.1 Major phases of CAP3 algorithm

2.1.3 SSAKE

SSAKE was one of first short reads assembly tools. SSAKE was for
aggressively assembling millions of short nucleotide sequences by
progressively searching through a prefix tree for the longest possible
overlap between any two sequences. SSAKE is designed to help leverage

the information from short sequence reads by stringently assembling

21



them into contiguous sequences that can be used to characterize novel

sequencing targets[22].

2.1.4 Velvet

Velvet was one of popular short read de novo assemblers. It was designed
based on de bruijn graph and efficiently to both eliminate errors and
resolve repeats. The first step is construction de bruijn graph with k-mer
(Figure 2.2). After the initial graph constructed, simplifying it as possible
without loss of information. Simplification iteratively chains of blocks are
collapsed into single blocks and reduce the complexity of initial graph
(Figure 2.3). There were-"tip" and "bubble" error in simplified graph. Tip
error was a chain of nodes that is disconnected on one end. Velvet
iteratively removes tips from the graph under these two criteria: length
and minority count. A tip will be removed if it is shorter than 2000.
"minority count" be defined as starting from that node, going through the
tip is an alternative to a more common path (Figure 2.4). A bubble error
was two paths redundant if they start and end at the same nodes and
contain similar sequences. Velvet removes bubbles with Tour bus
algorithm. The tour bus algorithm detects redundant of paths using

breadth-first search, and uses a combination of copy number and
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topographical information to remove the erroneous edges[11] (Figure

2.5).
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Figure 2.4 Remove tips
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GAGGCT > GCTTTAG > TAGAG

Figure 2.5 Remove bubble

GAGGCTTTAGAG

Figure 2.6 Re-simplification graph

2.2 Gene prediction tools

These gene prediction tools which list in below are based on ab initio
approach using different Generalized Hidden Markov Model (GHMM)
design. GENSCAN was one of first gene prediction tools using GHMM,
and it is a very popular gene prediction tool, now. GlimmerHMM
incorporates splice site models and utilizes Interpolated Markov Models
for the coding and noncoding models. AUGUSUT use a donor splice site
model to model intron lengths. SNAP is similar to GENSCAN and

adaptable to a number of organisms.

2.2.1 GENSCAN

GENSCAN was a Generalized Hidden Markov Model approach ab initio
gene prediction program developed by Chris Burge and Samuel Karlin.
Novel features of the program include the capacity to predict multiple

genes in a sequence, to deal with partial as well as complete genes, and to
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predict consistent sets of genes occurring on either or both DNA strands.
GENSCAN is shown to have substantially higher accuracy than existing
methods when tested on standardized sets of human and vertebrate genes,
with 75 to 80% of exons identified exactly. Figure 2.7 is the HMM model,
each circle or diamond represents a functional unit (state) of a gene or
genomic region: N, intergenic region; P, promoter; F, 5’ untranslated
region (extending from the start of transcription up to the translation
initiation signal); Es,,, single-exon (intronless) gene (translation start to
stop codon); E;., initial exon (translation start to donor splice site); Ey
(0<k<2), phase k internal exon (acceptor splice site to donor splice site);
Em, terminal exon (acceptor splice site to stop.codon); T, 3’ untranslated
region (extending from just after'the'stop codon to the polyadenylation

signal); A, polyadenylation signal; and Iy (0<k<2), phase k intron[17].
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Figure 2.7 HMM model of GENSCAN*

2.2.2 GlimmerHMM

GlimmerHMM is a gene finder based on a Generalized Hidden Markov

* The picture is copy from Prediction of complete gene structures in human genomic DNA

Figure 3 [17]
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Model. Although the gene finder conforms to the overall mathematical
framework of a GHMM, additionally it incorporates splice site models
adapted from the GeneSplicer program and a decision tree adapted from
GlimmerM. It also utilizes Interpolated Markov Models for the coding
and noncoding models. Currently, GlimmerHMM's GHMM structure
includes introns of each phase, intergenic regions, and four types of exons
(initial, internal, final, and single). Figure 2.8 is the HMM model, the
dashed line in the middle separates the positive strand and negative strand
portions of the model. Each state in.the GHMM is implemented as a
separate submodel, such’as a weight array matrix or an IMM (interpolated

Markov models)[19].
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Figure 2.8 The HMM model of GlimmerHMM®

2.2.3 AUGUSUT

AUGUSUT was a Generalized Hidden Markov Model approach ab initio
gene prediction program developed by Mario Stanke and Stephan Waack.
The program is based on a Hidden Markov Model and integrates a
number of known methods and submodels. It employs a new way of

modeling intron lengths. It use a new donor splice site model, a new

> The picture is copy from http://www.cbcb.umd.edu/software/GlimmerHMM/
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model for a short region directly upstream of the donor splice site model
that takes the reading frame into account and apply a method that allows

better GC-content dependent parameter estimation[15].

forward
strand

reverse
strand

;

Figure 2.9 The HMM model of AUGUSUT®

6 . .
The picture is copy from Gene prediction with a hidden Markov model and a new intron submodel Figure 1 [15]
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2.2.4 SNAP

SNAP is similar to GENSCAN and other generalized hidden Markov
model (HMM) gene finders, but unlike many, it is easily adaptable to a

number of organisms and its source code is freely available[23].

Figure 2.10 The HMM model of SNAP’

’ The picture is copy from Gene finding in novel genomes Figure 1 SNAP HMM state diagram [23]
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2.3 Metabolic Pathway Databases

2.3.1 Biocyc

BioCyc is a collection of 673 Pathway/Genome Databases. Each database
in the BioCyc collection describes the genome and metabolic pathways of

a single organism[24].

2.3.2 Metacyc

MetaCyc is a database of. monredundant, experimentally elucidated
metabolic pathways. MetaCyc contains more than 1,500 pathways from
more than 1,900 different organisms, and is curated from the scientific

experimental literature[25].

2.3.3 KEGG: Kyoto Encyclopedia of Genes

and Genomes

KEGG is a database of biological systems, consisting of genetic building
blocks of genes and proteins, chemical building blocks of both
endogenous and exogenous substances, molecular wiring diagrams of
interaction and reaction networks, and hierarchies and relationships of

various biological objects[26].
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2.4 Metabolic Pathway
Reconstruction Tools

2.4.1 Pathway tools

A popular metabolic reconstruction tool is Pathway Tool. It used a
PathoLogic method computationally reconstructs organism-specific
metabolic pathways and generates a new PGDB by matching the Enzyme
Commission (EC) number and/or the name of the annotated gene product

against enzymes in MetaCyc[27].
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Chapter 3 Materials and methods

Our genome reconstruction platform includes three parts: sequence
assembly, gene annotation and metabolic pathway. Sequence assembly is
major part that support different sequencing platform. Gene annotation
and metabolic pathway reconstruction are downstream analysis of

assembled sequences.

3.1 Materials

Our pipeline integrates several biological data source and software. The
description of the data. source and software which integrate in our

pipeline is in below.
Assembly tools

Phrap had been widely used in Human Genome Project, and the late
version may support Roche 454 sequencing data. Velvet was one of first
assemble short reads using de bruijn graph this algorithm can reduce
effective of repeat region in short reads assembly. These two assemble
tools are very popular on each support sequencing platform data. Velvet
used to assemble short reads (Illumina reads), and phrap used to assemble

long reads (Sanger or 454 reads) in our pipeline (Table 3.1).
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Table 3.1 Assembly tools of materials

Category Software Reference
Assembling short Velvet [11]

reads

Assembling long reads phrap [8]

and mixture reads
Gene prediction tools

GENSCAN was one of first gene prediction based on GHMM, and it is a
flag of gene prediction tools almost later gene prediction tools would
compare performance and accuracy with GENSCAN. GlimmerHMM,
AUGUSUT and SNAP .are within different GHMM design, the
performance of these tools are well as GENSCAN and these also
suggested by EVidenceModeler.

EVidenceModeler

The EVidenceModeler (EVM) software combines ab intio gene
predictions and protein and transcript alignments into weighted consensus
gene structures. EVM provides a flexible and intuitive framework for
combining diverse evidence types into a single automated gene structure
annotation system[28].

GBrowse

The Generic Model Organism System Database Project (GMOD) seeks to

34



develop reusable software components for model organism system
databases. The Generic Genome Browser (GBrowse), a Web-based
application for displaying genomic annotations and other features[29].
WormBase, FlyBase, and Human Genome Segmental Duplication
Database build using GBrowse.

Table 3.2 lists software using in gene annotation of our pipeline.

Table 3.2 Gene prediction tools of materials

Category Software Reference

Ab initio gene GENSCAN [17]

prediction GlimmerHMM [19]
AUGUSUT [15]
SNAP [23]

Evidence-based gene ‘BLAST [20]

prediction

Combinational gene = EVidenceModeler [28]

prediction

Genome viewer GBrowse [29]

Gene annotation databases:

Swiss-Prot

The Swiss-Prot protein knowledgebase connects amino acid sequences
with the current knowledge in the Life Sciences. Each protein entry
provides an interdisciplinary overview of relevant information by
bringing together experimental results, computed features and sometimes
even contradictory conclusions[30].
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Genbank

GenBank is a comprehensive database that contains publicly available
nucleotide sequences for more than 260,000 named organisms, obtained
primarily through submissions from individual laboratories and batch
submissions from large-scale sequencing projects.

Table 3.3 list databases using in gene annotation of our pipeline.

Table 3.3 Gene annotation databases of materials

Category Software Reference
Protein database Swiss-Prot [30]
Gene database Genbank [31]

Metabolic pathway reconstruction tools

Pathway Tools has been generated 673 Pathway/Genome Databases in the
Biocyc. It is the most widely used pathway reconstruction tool.

Table 3.4 lists software using in metabolic pathway reconstruction of our

pipeline.

Table 3.4 Metabolic pathway reconstruction tools of materials
Category Software Reference
Metabolic pathway Pathway Tools [27]
reconstruction

36



3.2 The processes of genome

annotation

= J Sequencing reads data
Combined Consensus Prediction

EVidenceModeler

De novo assembly

(EVM)

phrap Velvet
(overlap (de Bruijn graph
methods, for meth , for

long reads) s reads) @

/ Searching gene information \

Blast

(Gene symbol, Product protein, EC
number, Protein function andetc..)

Repeat masker
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Initio vidence-pase | G

GlimmerHMM ~ GENSCAN Blast " Metabolic pathway

Sequence Homolo .
= Searching) ¥ recons“uc‘tlon

Pathway tool

AUGUSUT SNAP

Figure 3.1 The schematic indicates the processes of annotating of a novel
genome including sequence assembly, gene annotation, and metabolic
pathway reconstruction.

Figure 3.1 presents the work flow of our computational pipeline. First
step is sequence assembly, according to different sequencing data select
assembly tools. This pipeline uses phrap[8] to assemble Sanger and 454
data and uses Velvet[11] to assemble Illumina data. After each assembly

complete, it checks the quality of assembly with N50, maximum/average
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contig size and genome coverage. Before gene prediction, this pipeline
uses Repeatmasker[32] to mask repeat region for avoid these region
effect accuracy of gene prediction. This pipeline use four ab initio gene
prediction tools: GlimmerHMM][19], AUGUSUTJ[15], GENSCAN[17]
and SNAP[23] and an evidence-based gene prediction tool: BLAST[20].
BLAST search homology protein sequence against Swiss-prot[30]. After
ab initio and evidence-based gene prediction, this pipeline uses
EVidenceModeler[28] to combine consensus gene predictions, and uses
BLAST to search Swiss-prot[30]-and Genbank[31] for annotate gene
information that includes gene symbol, product protein, EC (Enzyme
Commission) number and protein function to these genes. According to
the gene information, this pipeline use Pathway Tools[27] to reconstruct

metabolic pathway for the organisms.

3.3 Methods

3.3.1 Sequence assembly

Our pipeline supports various sequencing raw data such as Sanger, 454,
[llumina and mixture of those data. Assembling short reads was using

Velvet[11]. Phrap[8] which is an overlap approach assemble tool
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assemble long sequences (Sanger or 454) in our pipeline, and phrap have
been assemble whole genome shotgun sequence within Human genome
project. In last version, phrap may support 454 reads and length of 454
reads was enough to assemble Sanger reads with less effect of repeat
regions. Assembly of 454 and Illumina reads may be affected by repeat
region. Thus, our pipeline used Velvet to assemble Illumina reads first
and then combine the result of Velvet assembly with 454 reads. Our
pipeline used phrap to assemble the mixture data. After each assembly
complete, our pipeline checked the.quality of assembly with NS50,

maximum/average contig size and genome coverage.

3.3.2 Gene annotation

In order to avoid transposons affect the accuracy of gene prediction, our
pipeline used RepeaterMasker[32] to mask those region. RepeatMasker
screens low complexity DNA sequence and LTRs(Long Terminal
Repeats) in genome sequence and replace those region letters to N’s. Our
gene prediction combined ab initio and evidence-based approach. Our
pipeline used four ab initio approach gene prediction tools
(GlimmerHMM][19], AUGUSUTJ15], GENSCANJ[17] and SNAP[23])

and used BLAST[20] to search Swiss-prot[30] protein database for
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homologous proteins. EVidenceModeler[28] can combine ab initio and
evidence-based gene predictions into weighted consensus gene structures.
Our pipeline sets ab initio with weight 1 and evidence-based with weight
3. Consensus gene predictions generated by EVidenceModeler were
identified gene information include gene symbol, product protein, EC
number and protein function.

These gene information identified by using BLAST align gene
sequence and protein sequence form Swiss-prot to searching similar

protein and searching Genbank.

3.3.3 Metabolic pathway reconstruction

Metabolic pathway reconstruction was using -Pathway Tools[27] with the
information of gene annotation, and the work flow show on Figure 3.2.
An initial PGDB (Pathway/Genome database) was created for each contig
and each gene. The metabolic reactions identified by matching the EC
number and the name of gene product against the MetaCyc[33], and the
reactions known to be catalyzed are matched against all the pathways in
MetaCyc. Pathway Tools imports the pathway and its associated reactions
and substrates from MetaCyc into the initial PGDB. The initial PGDB

have some pathway holes which are the enzymes missing each predicted
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pathways. Pathway holes occur when a protein has not been a specific
function during annotation process, and reactions catalyzed by this
protein will have a pathway hole in PGDB. The pathway hole-filler is
implemented as part of the Pathway Tools[34]. The hole-filler uses
isozyme sequences to search a genome for similar sequences. These
isozyme sequences retrieve Swiss-Prot IDs directly from the ENZYME
database[35] and retrieves PIR[36] IDs from the MetaCyc. Homology
searching these isozyme sequences against the genome sequence using
BLAST as candidates. Finally, hole-filler evaluates these candidate
proteins to determine the probability that each candidate protein has the
activity required by the missing reaction, and. use these proteins to fill

pathway holes.
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Figure 3.2 Metabolic pathway reconstruction work flow
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Chapter 4 Results

We simulated and reconstructed Saccharomyces cerevisiae (yeast)
genome. Saccharomyces cerevisiae included 16 chromosomes, 5861
protein coding genes and total length of all chromosomes is 12,244,764

bp.

4.1 Result of Sequence assembly

This simulation of Saccharomyces: cerevisiac genome randomly spliced
Saccharomyces cerevisiae into—several type tead data: 100bp~200bp,
200bp~400bp, 36bp single read (36bp sr), 36bp paired-end with 100bp
insert (36bp pe), 100bp single read (100bp sr), 100bp paired-end with
100bp insert (100bp pe). The 100bp~200bp and 200bp~400bp were
simulation 454 type data, and another reads data were simulation Illumina
type data (Table 4.1). The 454 type data were with 10x coverage depth
(12,244,764 bp*10) and 0.1% errors, and the Illumina type data were
with 20x coverage depth (12,244,764 bp*20) and 1% error. Our pipeline
assembled 454 type data using phrap[8] and Illumina type data using
Velvet[11], and the assembly results shown on Table 4.2. Our pipeline

evaluates the quality of assembly according to N50. N50 of 200bp~400bp
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data set is 153,047 and it is better than 100bp~200bp data set (N50 is
42,367) in 454 type data sets. In comparison of Illumina type data sets,
paired-end data have a better quality than single read and 100bp length

reads data is better than 36bp.

Table 4.1 Data sets for each sequencing platform

Simulation Data set Coverage
sequencing platform
Roche 454 100bp~200bp 10x
200bp~400bp 10x
[Mllumina 36bp single read 20x
36bp _paired-end with 20x
100bp msert
100bp-single read 20x
100bp— paired-end = with 20x
100bp insert

Table 4.2 The comparison of data sets-assembly

Reads data N50 (bp) Number  Average Max Total length
of contigs" "length of length of  of contigs
(bp) contigs contigs (bp)
(bp) (bp)
100bp~200bp 42,367 572 20,505.01 201,650 11,728,869
200bp~400bp 153,047 155 76,001.27 605,145 11,780,198
36bp sr 1,816 9,700 1,160.63 10,044 11,258,206
36bp pe 2,527 6,927 1,645.39 12,653 11,397,637
100bp_sr 8,597 3,011 3,753.70 41,128 11,302,409

100bp_pe 31,048 1,226 9,308.53 130,864 11,412,260
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Because the 200bp~400bp and 100bp pe had the best N50 in their
simulation type, and select these two data set to mixture data simulation.
Our pipeline assembled 200bp~400bp + 100bp pe (454 Illumina) and
200bp~400bp + the result of velvet assembly 100bp pe (454 velvet)
using phrap, and the assembly results shown on Table 4.3.

In the mixture data assembly simulation, 454 velvet date set has a
better N50 (322,842 bp) than 454 Illumina (222,376 bp), and it is also
better than another simulation data set.

[llumina data assemble«to longer contigs (result of velvet assembly)
and then assembly with 454 data (454 velvet) will better than immediate

assembly Illumina and 454 data.

Table 4.3 The comparison of two mixture data set

Reads data N50 (bp) Number  Average Max Total length
of contigs  length of length of  of contigs
(bp) contigs (bp) contigs (bp)
(bp)
454 Illumina 222,376 417 28,813.92 653,700 12,015,405
454 velvet 322,842 121 101,649.92 1,101,185 12,299,641
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4.2 Result of Gene Annotation

Our pipeline used GlimmerHMM[19], AUGUSUT[15], GENSCANJ17]
and SNAP[23] to ab initio gene prediction, BLAST to evidence-based
gene prediction, and EVidenceModeler[28] to combine ab initio
prediction result with weight 1 and evidence-based prediction result with
weight 3. Prediction result of each prediction tools and comparison with
Saccharomyces cerevisiae gene show on Table 4.4. The number of genes
predicted by GlimmerHMM is:5383, the number of genes match to genes
on Saccharomyces cerevisiae is 5283; the number of mismatch genes is
578 and the number of-additional genes is 100. The number of genes
predicted by AUGUSUT is'4768, the number of genes match to genes on
Saccharomyces cerevisiae is 4725, the number of mismatch genes is 1136
and the number of additional genes is 43. The number of genes predicted
by GENSCAN is 4186, the number of genes match to genes on
Saccharomyces cerevisiae is 4108, the number of mismatch genes is 1753
and the number of additional genes is 78. The number of genes predicted
by SNAP is 5121, the number of genes match to genes on Saccharomyces
cerevisiae is 5005, the number of mismatch genes is 856 and the number

of additional genes is 116. The number of genes predicted by
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EvidenceModeler is 5230, the number of genes match to genes on
Saccharomyces cerevisiae is 5170, the number of mismatch genes is 691
and the number of additional genes is 60.

GlimmerHMM match the most gene on Saccharomyces cerevisiae:
90% (5283/5861). GENSCAN match the least gene on Saccharomyces
cerevisiae: 70% (4108/5861). EvidenceModeler match second gene on

Saccharomyces cerevisiae: 88% (5170/5861).
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Table 4.4 The comparison of gene predicted by each prediction tool with

Saccharomyces cerevisiae gene

Gene prediction Number Match Comparison of Predicted
tools of gene  gene on gene with evidence gene
yeas
GlimmerHMM 5383 5283 9383
(90%)
AUGUSUT 4768 4725 4768
(80%)
GENSCAN
\K 1596
SNAP 5121 5005  °121
(85%)
EvidenceModeler 5230 5170 5230
(EVM) (88%)

48



EVidenceModeler predicted 5230 gene and searched homology
proteins using BLAST against Swiss-prot. Our pipeline annotated gene
symbol, product protein, EC number and Protein function to these gene
form Swiss-prot and Genbank. These genes which predicted by
EVidenceModeler include 5170 gene which matched to Saccharomyces
cerevisiae gene and 691 gene which mismatch to Saccharomyces
cerevisiae gene.

Our pipeline displayed gene location on contigs (Figure 4.1),
information of annotation (Figure 4.2).and generated gene database using

GBrowse[29].
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Figure 4.1 Gene locations on contig66
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PAUS Details
Name: PAUS
Type: gene
Description: Seripauperin-5
Source: EVIM
Position; contighg: 11024 11392 (- strand)
Length: 369
Alias: P43575
YFLOZ20C
Note: Seripauperin-5
gene: PALS
load_id: evm.TU.contighG.6
Parts: Type: CDSs
Description:
Source: EVIM
Position; contigha: 11024 11223 (- strand)
Length: 200
load_id: evm. TU.contig66.6.e2
parent_id; evm. TU.contigB6.6
Type: CDSs
Description:
Source: EVIM
Position; contighG: 1127811392 (- strand)
Length: 115
load_id: evm. TU.contigB6.6.e1
parent_id: evm.TU.contigB5.6

Figure 4.2 PAUS detail information

Table 4.5 list three -type example genes: perfect match gene, good
match gene that have few differences and bad match gene. Perfect match
gene: SNCI and its gene structure includes 102bp length CDS, 113bp
length intron and 252bp length CDS. Good match gene: PAUS and its
gene structure includes 200bp length CDS, 54bp length intron and 115bp
length CDS, but the real gene structure only include a 369bp length CDS
without intron. Bad match gene: YPL278C and its gene structure includes
236bp length CDS, 459bp length intron and 103bp length CDS, but the

real gene structure only include a 303bp length CDS.
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Table 4.5 The three type example genes

Match  Gene Gene structure Gene structure Total Total
type of our predicted  of yeast genes length of  length of
genes our yeast genes
predicted
genes
Perfect SNCI1 CDS(102bp)—  CDS(102bp)—  467bp 467bp
intron(113bp)—  intron(113bp)—
CDS(252bp) CDS(252bp)
Good  PAUS CDS(200bp)—  CDS(369bp) 369bp 369bp
intron(54bp)—
CDS(115bp)
Bad YPL278C CDS(236bp)—  CDS(303bp) 798bp 303bp
intron(459bp)—

CDS(103bp)
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4.3 Result of Metabolic Pathway

Reconstruction

Our pipeline reconstructed metabolic pathway of Saccharomyces
cerevisiae using Pathway Tools with information of gene annotation. The
initial pathways included 200 metabolic pathways, but there were 268
pathway holes in the initial pathways. Our pipeline filled 268 pathway
holes to 196, and the detail comparison of initial pathways (Initial) with
the pathways which filled-pathway heles (Hole-filled) showed on Table

4.6.

Table 4.6 The comparison of initial pathway with hole-filled pathway

Database statistics Initial Hole-filled
Metabolic pathways 200 200
Enzymatic reactions 1274 1294
Enzymes 1260 1269
Compounds 865 873
Number of Pathway Holes 268 196
Pathway Holes as a percentage of

total reactions in pathways 7% 1%
Pathways with No Holes 97 121
Pathways with 1 Hole 47 34
Pathways with 2 Holes 18 14
Pathways with 3 Holes 12 15
Pathways with 4 Holes 7

Pathways with 5 Holes 5 2
Total Pathways with Holes 103 79
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Table 4.7 showed comparison of the number of pathways in

hole-filled pathway (Hole-filled) with the number of pathways in

YeastCyc[37] pathway database.

Table 4.7 The comparison of hole-filled pathway with YeastCyc pathway

database

Pathway Class

The number of

The number of

pathways in pathways in
YeastCyc Hole-filled
Biosynthesis 110 145
- Amines and Polyamines Biosynthesis 4 4
- Amino acids Biosynthesis 29 33
- Aminoacyl-tRNA Charging 0
- Aromatic Compounds Biosynthesis 1
- Carbohydrates Biosynthesis 7
- Cell structures Biosynthesis 0
- Cofactors, Prosthetic Groups, 22 34
Electron Carriers Biosynthesis
- Fatty Acids and Lipids Biosynthesis 13 23
- Hormones Biosynthesis 0 0
- Metabolic Regulators Biosynthesis 0 0
- Nucleosides and Nucleotides 8 8
Biosynthesis
- Other Biosynthesis 0
- Secondary Metabolites Biosynthesis 1
- Siderophore Biosynthesis 0
Degradation/Utilization/Assimilation 40 67
- Alcohols Degradation 2 5
- Aldehyde Degradation 1 2
- Amines and Polyamines Degradation 1 3
- Amino Acids Degradation 18 23
- Aromatic Compounds Degradation 0 1
- C1 Compounds Utilization and 1 2
Assimilation
- Carbohydrates Degradation 6 4
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- Carboxylates Degradation 1 3
- Chlorinated Compounds Degradation 0

- Cofactors, Prosthetic Groups, 1 0
Electron Carriers Degradation

- Degradation/Utilization/Assimilation 0 2
- Other

- Fatty Acid and Lipids Degradation 3 9
- Hormones Degradation 0 0
- Inorganic Nutrients Metabolism 1 3
- Nucleosides and Nucleotides 0 1
Degradation and Recycling

- Polymeric Compounds Degradation 0 1
- Secondary Metabolites Degradation 0 3
Generation of precursor metabolites 11 21
and energy

Signal transduction pathways 0 0
Total 133 204

The pathways generated by our pipeline (Hole-filled) compares to
YeastCyc with some important pathways. These pathways included:
gluconeogenesis, glycerol degradation,~glycolysis, pentose phosphate
pathway, glyoxylate cycle, TCA cycle and fatty acid oxidation pathway.
Gluconeogenesis
The pathways generated by our pipeline (Hole-filled) included the most
pathways in YeastCyc. The difference was our pathway had no pyruvate
to oxaloacetic acid reaction catalyzed by 6.4.1.1. The more detail

comparison showed on Table 4.8, Figure 4.3 and Figure 4.4
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Table 4.8 The comparison gluconeogenesis between the pathways

generated by our pipeline (Hole-filled) and YeastCyc

Hole-filled YeastCyc
Evidence Enzymes Genes Evidence Enzymes Genes
Glyph Glyph
N EC# Malate dehydrogenase, o EC# malic enzyme: MAE1
Tﬂ 1.1.1.37  mitochondrial: MDH1 59 11138
Malate dehydrogenase, a
L] &
d peroxisomal: MDH3 a
P Malate dehydrogenase, &
a_a cytoplasmic: MDH2 .9
| |
n EC# None m EC# pyruvate carboxylase:
] 4.1.1.31 u 6.4.1.1 PYCI
pyruvate carboxylase:
PYC2
EC# Phosphoenolpyruvate EC# peroxisome malate
4.1.1.49 carboxykinase [ATP]: No 1.1.1.37 dehydrogenase: MDH3
Gene Name mitochondrial malate
Phosphoenolpyruvate dehydrogenase: MDH1
carboxykinase [ATP]: PCK1 cytosolic malate
dehydrogenase: MDH2
EC# NAD-dependent malic EC# phosphoenolpyruvate
1.1.1.40 enzyme, mitochondrial: 4.1.1.49 carboxylkinase: PCK1
MAEI1
EC# NAD-dependent malic EC# enolase: ENO2
1.1.1.38 enzyme, mitochondrial: 4.2.1.11 enolase [: ENO1
MAEI1
EC# None EC# phosphoglycerate mutase:
2.79.2 5.4.2.1 GPM1
EC# Enolase-related protein 3: EC# 3-phosphoglycerate kinase:
42.1.11 ERR3 2723 PGK1
Enolase-related protein 1/2:
ERRI
Enolase 2: ENO2
Enolase 1: ENO1
EC# Phosphoglycerate mutase 1: EC# glyceraldehyde-3-phosphate
54.2.1 GPM1 1.2.1.12 dehydrogenase: TDH1

Phosphoglycerate mutase 2:

glyceraldehyde 3-phosphate
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EC#
2.72.3
EC#
1.2.1.12

EC#
4.1.2.13
EC#
3.1.3.11
EC#
53.1.9

GPM2

Probable phosphoglycerate
mutase YOR283W:
YOR283W
Phosphoglycerate mutase 3:
GPM3

Putative phosphoglycerate

mutase DET1: DET1

Phosphoglycerate kinase: EC#
PGK1 4.1.2.13
Glyceraldehyde-3-phosphate EC#
dehydrogenase 1: TDH1 3.1.3.11
Glyceraldehyde-3-phosphate

dehydrogenase 2: TDH2

Glyceraldehyde-3-phosphate

dehydrogenase 3: TDH3

Fructose-bisphosphate EC#
aldolase: FBA1 5.3.1.9

Fructose-1,6=bisphosphatase:
FBP1
Glucose-6-phosphate

isomerase: PGI1

dehydrogenase: TDH2
glyceraldehyde-3-phosphate
dehydrogenase: TDH3

aldolase: FBA1

fructose-1,6-bisphosphatase:
FBP1

glucose-6-phosphate

isomerase: PGI1
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Figure 4.3 Gluconeogenesis in our
pathways

Figure 4.4 Gluconeogenesis in
YeastCyc
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Glycerol degradation

These pathways were same in the pathways generated by our pipeline
(Hole-filled) and YeastCyc. EC 1.1.99.5 had been transferred to EC
1.1.5.3., they are same enzyme. The detail comparison information was

on Table 4.9.

Table 4.9 The comparison glycerol degradation between the pathways
generated by our pipeline (Hole-filled)y and YeastCyc

Hole-filled YeastCyc
Evidence Enzymes  Genes Evidence Enzymes  Genes
Glyph Glyph
EC# Glycerol kinase: GUT1 EC# glycerol kinase: GUT1
O-8-& O® 8
2.7.1.30 2.7.1.30
EC# Glycerol-3-phosphate EC# glycerol-3-phosphate
1.1.5.3 dehydrogenase, 1:1.99.5 dehydrogenase: GUT2

mitochondrial: GUT2

Glycolysis
These pathways were same in our pathways and YeastCyc. Some
enzymes do not match because these enzymes catalyze reverse reactions.

The detail comparison information was on Table 4.10.
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Table 4.10 The comparison glycolysis between our pathway and

YeastCyc
Hole-filled YeastCyc
Evidence Enzymes  Genes Evidence Enzymes  Genes
Glyph Glyph
EC# Glucose-6-phosphate EC# glucose-6-phosphate
: 53.1.9 isomerase: PGI1 : 53.1.9 isomerase: PGI1
N EC# 6-phosphofructokinase " EC# phosphofructokinase:
L . L B
4 2.7.1.11 subunit beta: PFK2 . 2.7.1.11 PFK2, PFK1
- 6-phosphofructokinase -
a subunit alpha: PFK1 L
B EC# Fructose-1,6-bisphosphatase: ; EC# aldolase: FBA1
3.1.3.11 FBP1 4.1.2.13
EC# Fructose-bisphosphate EC# triosephosphate isomerase:
4.1.2.13 aldolase: FBA1 53.1.1 TPI1
EC# Triosephosphate isomerase: EC# glyceraldehyde-3-phosphat
5.3.1.1 TPI1 1.2.1.12 e dehydrogenase: TDH1
glyceraldehyde
3-phosphate
dehydrogenase: TDH2
glyceraldehyde-3-phosphat
e dehydrogenase: TDH3
EC# Glyceraldehyde-3-phosphate EC# 3-phosphoglycerate
1.2.1.12 dehydrogenase 1: TDH1 2.7.23 kinase: PGK1
Glyceraldehyde-3-phosphate
dehydrogenase 2: TDH2
Glyceraldehyde-3-phosphate
dehydrogenase 3: TDH3
EC# Phosphoglycerate kinase: EC# phosphoglycerate mutase:
2723 PGK1 54.2.1 GPM1
EC# Phosphoglycerate mutase 1: EC# enolase: ENO2
5421 GPM1 42.1.11 enolase I: ENO1

Phosphoglycerate mutase 2:
GPM2

Probable phosphoglycerate
mutase YOR283W:
YOR283W

Phosphoglycerate mutase 3:
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GPM3
Putative phosphoglycerate
mutase DET1: DET1
EC# Enolase-related protein 3: EC# pyruvate kinase: PYK2
4.2.1.11 ERR3 2.7.1.40 pyruvate kinase: CDC19
Enolase-related protein 1/2:
ERRI1
Enolase 2: ENO2
Enolase 1: ENO1
EC# Pyruvate kinase 1: PYK1
2.7.1.40 Pyruvate kinase 2: PYK2
EC# None
2792

Pentose phosphate pathway
These pathways were same in the pathways generated by our pipeline

(Hole-filled) and YeastCyc. The detail comparison information was on

Table 4.11.
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Table 4.11 The comparison pentose phosphate pathway between the
pathways generated by our pipeline (Hole-filled) and YeastCyc

Hole-filled YeastCyc
Evidence Enzymes  Genes Evidence Enzymes  Genes
Glyph Glyph
[ EC# Glucose-6-phosphate - EC# glucose-6-phosphate
: 1.1.1.49 1-dehydrogenase: ZWF1 : 1.1.1.49 dehydrogenase: ZWF1
- - & EC# 6-phosphogluconolactonase - EC# 6-phosphogluconolactonas
:n" 31131  3:SOL3 :" 31131 e:SOL4
b 6-phosphogluconolactonase ty 6-phosphogluconolactonas
4: SOL4 * e: SOL3
EC# 6-phosphogluconate EC# 6-phosphogluconate
1.1.1.44 dehydrogenase, 1.1.1.44 dehydrogenase,
decarboxylating 1: GND1 decarboxylating: GND1
6-phosphogluconate 6-phosphogluconate
dehydrogenase, dehydrogenase: GND2
decarboxylating.2: GND2
EC# Ribose-5-phosphate EC# ribose-5-phosphate
5.3.1.6 isomerase: RKI1 53.1.6 ketol-isomerase: RKI1
Ribose-5-phosphate
isomerase: RKI1
EC# Ribulose-phosphate EC# D-ribulose-5-Phosphate
5.1.3.1 3-epimerase: RPE1 5.1.3.1 3-epimerase: RPE1
EC# Transketolase 1: TKL1 EC# transketolase: TKL1
22.1.1 Transketolase 2: TKL2 2.2.1.1 transketolase: TKL2
EC# Transaldolase NQM1: EC# transaldolase: TAL1
22.1.2 NQM1 2212
Transaldolase NQM1:
NQM1
Transaldolase: TAL1
EC# Transketolase 1: TKL1 2TRANS  transketolase: TKL1
2.2.1.1 Transketolase 2: TKL2 KETO-R
XN
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Glyoxylate cycle

These pathways were same in the pathways generated by our pipeline
(Hole-filled) and YeastCyc. The additional node in YeastCyc evidence
glyph includes in our pathway and it just not show on the graph. The

detail comparison information was on Table 4.12.

Table 4.12 The comparison glyoxylate cycle between the pathways
generated by our pipeline (Hole-filled) and YeastCyc

Hole-filled YeastCyc
Evidence Enzymes  Genes Evidence Enzymes  Genes
Glyph Glyph
EC# Malate synthase 2, EC# peroxisome malate
O 2339 glyoxysomal:MSL2 °O 1.1.1.37 dehydrogenase: MDH3
Malate synthase 1, mitochondrial malate
glyoxysomal: MLS1 dehydrogenase: MDH1

cytosolic malate

dehydrogenase: MDH2

EC# Malate dehydrogenase; EC# citrate synthase: CIT3
1.1.1.37 mitochondrial: MDH1 2331 citrate synthase: CIT1
Malate dehydrogenase, citrate synthase: CIT2

peroxisomal: MDH3

Malate dehydrogenase,

cytoplasmic: MDH2
EC# Citrate synthase, EC# aconitase: ACO1
2331 mitochondrial: CIT1 42.13 aconitate hydratase: ACO2

Citrate synthase,

peroxisomal: CIT2

Citrate synthase 3: CIT3
EC# Probable aconitate hydratase EC# aconitase: ACO1
4.2.1.3 2: ACO2 4.2.1.3

Aconitate hydratase,

mitochondrial: ACO1

Aconitate hydratase,
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mitochondrial: ACO1
EC# Probable aconitate hydratase EC# isocitrate lyase: ICL1
4.2.1.3 2: ACO2 4.1.3.1

Aconitate hydratase,

mitochondrial: ACO1

Aconitate hydratase,

mitochondrial: ACOI1

EC# Isocitrate lyase: ICL1 EC# malate synthase: MLS1
4.1.3.1 2.3.39 malate synthase 2: DAL7
TCA cycle

These pathways were same in the pathways generated by our pipeline
(Hole-filled) and YeastCyc. The additional enzyme is EC 6.4.1.1 that link
pyruvate and TCA cycle. The detail comparison-information was on Table

4.13.

Table 4.13 The comparison TCA cycle between the pathways generated
by our pipeline (Hole-filled) and YeastCyc

Hole-filled YeastCyc
Evidence Enzymes  Genes Evidence Enzymes  Genes
Glyph Glyph
on' e .“a EC# Fumarate hydratase, z EC# pyruvate carboxylase:
b‘. ______no 4.2.1.2 mitochondrial: FUM1 f : Db 6.4.1.1 PYC1
% = o pyruvate carboxylase:
PYC2
EC# Malate dehydrogenase, EC# citrate synthase: CIT3
1.1.1.37 mitochondrial: MDH1 2.3.3.1 citrate synthase: CIT1
Malate dehydrogenase, citrate synthase: CIT2
peroxisomal: MDH3
Malate dehydrogenase,
cytoplasmic: MDH2
EC# Citrate synthase, EC# aconitase: ACO1
2.3.3.1 mitochondrial: CIT1 4213 aconitate hydratase: ACO2
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EC#
4.2.1.3

EC#
4.2.1.3

EC#
1.1.1.41

a-ketoglut
arate
oxidative
decarboxy
lation
EC#
6.2.1.5

EC#
1.3.5.1

Citrate synthase,
peroxisomal: CIT2
Citrate synthase 3: CIT3
Probable aconitate hydratase
2: ACO2

Aconitate hydratase,
mitochondrial: ACO1
Aconitate hydratase,
mitochondrial: ACO1
Probable aconitate hydratase
2: ACO2

Aconitate hydratase,
mitochondrial: ACO1
Aconitate hydratase,
mitochondrial: ACO1
Isocitrate dehydrogenase
[NAD] subunit 2;
mitochondrial:: IDH2
Isocitrate dehydrogenase
[NAD] subunit 1,
mitochondrial: IDH |
2-oxoglutarate
dehydrogenase,
mitochondrial: KGD1

Succinyl-CoA ligase
[ADP-forming] subunit
alpha, mitochondrial: LSC1
Succinyl-CoA ligase
[ADP-forming] subunit beta,
mitochondrial: LSC2

Succinate dehydrogenase
[ubiquinone] iron-sulfur
subunit, mitochondrial:
SDH2

Succinate dehydrogenase

EC#
4.2.1.3

EC#
1.1.1.41

a-ketoglut
arate
oxidative
decarboxy

lation

EC#
6.2.1.5

EC#
1.3.5.1

EC#
4212

aconitase: ACO1

NAD-dependent isocitrate
dehydrogenase: IDH2,
IDH1

2-ketoglutarate
dehydrogenase complex:

KGD2, KGD1, LPD1

succinyl-CoA ligase:

LSC2, LSCl1

minor succinate
dehydrogenase
(ubiquinone): SDH1b,
SDH2, SDH3, SDH4
succinate dehydrogenase
(ubiquinone): SDHI1,
SDH2, SDH3, SDH4

fumarate hydralase: FUM1
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[ubiquinone] flavoprotein
subunit, mitochondrial:
SDH1

Succinate dehydrogenase
[ubiquinone] flavoprotein
subunit 2, mitochondrial:

YJLO045W

EC#
1.1.1.37

peroxisome malate
dehydrogenase: MDH3
mitochondrial malate
dehydrogenase: MDH1
cytosolic malate

dehydrogenase: MDH2
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Fatty acid oxidation

There is no the reaction catalyzed by EC 5.3.3.8 and the pathway does not
link to a cycle (Figure 4.5 and 4.6 ) in the pathways generated by our
pipeline (Hole-filled). The detail comparison information was on Table

4.14.

Table 4.14 The comparison fatty acid oxidation between the pathways
generated by our pipeline (Hole-filled) and YeastCyc

Hole-filled YeastCyc
Evidence Enzymes  Genes Evidence Enzymes  Genes
Glyph Glyph
o-eesees  ECH Long-chain-fatty-acid--CoA y "\ o . ECH delta(3,5)-delta(2,4)-dieno
6.2.1.3 ligase 3: FAA3 o=y G533.8 yl-CoA isomerase: DCII
Long-chain-fatty-acid--CoA d3,d2-Enoyl-CoA
ligase 1: FAA1 Isomerase: ECI1

Long-chain-fatty-acid--CoA
ligase 2: FAA2
Long-chain-fatty-acid--CoA
ligase 4: FAA4
EC# Acyl-coenzyme A oxidase: EC# long chain fatty acyl:CoA
1.3.3.6 POX1 6.2.1.3 synthetase: FAA1
long chain fatty acyl:CoA
synthetase: FAA4
acyl-CoA synthase: FAA3
acyl-CoA synthetase:
FAA2

fatty acid transporter:

FAT1
EC# None EC# fatty-acyl coenzyme A
4.2.1.17 1.3.3.6 oxidase: POX1
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EC#
1.1.1.35

EC#
2.3.1.16

None

3-ketoacyl-CoA thiolase,

peroxisomal: FOX3

EC#
42.1.17

EC#
1.1.1.35

EC#
23.1.16

3-hydroxyacyl-CoA
dehydrogenase: FOX2

3-hydroxyacyl-CoA
dehydrogenase: FOX2

3-oxoacyl CoA thiolase:
POT1

v

\ 796




wimor2 mepCon ¢ a cis-3-enoyl-CoA

Figure 4.6 Fatty acid oxidation in YeastCyc
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Chapter 5 Discussion

We implement an integrated pipeline for sequence assembly, gene
annotation and metabolic pathway reconstruction. Our pipeline had been
tested by three types of dataset including the sequencing results of Roche
454, Tllumina and hybrid dataset that combine the contigs generated by
velvet assemble Illumina and Roche 454. Our results show that the
assembly result of the hybrid dataset is better than solely dataset of Roche
454 or Illumina based on the value of N50. Our pipeline can successfully
assemble the reads from the next generation  sequencing techniques.
Following the sequence “assembly process is the gene annotations. Our
pipeline integrates four ab: initio~gene prediction tools and one
evidence-based gene prediction tool. The ab initio tools include
GlimmerHMM, AUGUSUT, GENSCAN, and SNAP. The evidence-based
prediction tool is BLAST. Then, our pipeline use EvidenceModeler to
combine the results from all of the gene prediction tools. The gene
annotation simulation of yeast genome shows 88% of genes in yeast are
well annotated. Our hybrid gene prediction approach can annotate more

genes than the number of genes predicted by BLAST (86%) or by single
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ab inito gene prediction tools, which the average recall ratio is 81%. In
short, the EvidenceModeler can significant increase the gene recall rate.
Our platform can also reconstruct the metabolic pathways of the predicted
genes, which belong to the tier 3 databases in Biocyc. We compare some
of the housekeeping pathways between our annotation and annotated in
YeastCyc which is a manual curated metabolic pathway database in Yeast.
We found that the pathways are almost identical. Overall, our platform
can assembly and annotate the genome sequenced by the next generation
sequencing techniques in«short time-and provide the data of genomic
sequence, genes and metabolic pathways.

We found that around 88% of yeast genes were predicted by
EvidenceModeler which is less ‘than ‘the number of genes predicted by
GlimmerHMM (90%). The reason of the drawback is that the genes
predicted by EvidenceModeler is the gene prediction combination from
various tools. Due to some of the genes can only be annotated by
GilmmerHMM, the EvidenceModeler cannot agree the prediction results
from single prediction tool. In other words, the gene predicted by
EvidenceModeler must be predicted by most of the prediction tools.

The manually curated metabolic pathways are usually different to the
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pathways predicted by computational approaches. For example, the
number of metabolic pathways which are computationally annotated in
CattleCyc is 243. After the manual curation, the number of pathways
shared with the computational approached is 113[38]. We have similar
problem of our metabolic pathway reconstruction. YeastCyc include 133
pathways and our platform predicted 204 pathways. Around 55 pathways
are shared between YeastCyc annotations and our pathway annotations.
Hence the computational annotated metabolic pathways must be curated

manually.
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Chapter 6 Future work

The sequence assembly quality might be improved if we can design a
filter to control the quality of the reads. The filter removes the reads
according to the region of low complexity region and the error rate of
read.

Currently, the parameters for sequence assembly are manually
adjusted. The best parameters are different for various organisms and
experiments. Hence, finding‘the best parameters for each new experiment
manually is labor intensive. An automatic process to figure out the best
parameter for each annotation might-be: reduced the time of finding
parameters.

During the evaluation of our gene prediction, we found the accuracy
of the gene prediction is not higher enough to recover as more genes as
possible. In order to improve drawbacks, we may include more
evidence-based gene prediction data such as cDNA and EST sequence.

A well integrated graphical user interface could improve the usability
of our annotation platforms because the gene annotation results and the

metabolic pathways are shown in distinct web sites. It is hard for user to
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find the annotation linkage between different annotations. If we can
provide a user interface such as UCSC genome browser, the user can

access the annotation more convenient.
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