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摘要 

本論文的目標為發展一新穎的色彩濾波陣列(Color Filter Array, CFA)補插演算法用

以解決單一影像感測器之色彩重現問題，以及一具有強健性的視覺追蹤控制系統用以解

決輪式移動型機器人之以視覺為基礎的移動控制問題。目前大部分的數位相機均採用一

貝爾模式(Bayer Pattern)之 CFA 覆蓋於單一影像感測器上，用以擷取一貝爾模式之馬賽

克影像(Bayer Mosaic Image)。一般所見的全彩影像則是將擷取到的貝爾模式之馬賽克影

像，經由一色彩重現處理後，重建出所有像素上的色彩資訊。此色彩重現處理一般稱為

CFA 補插或 CFA 解馬賽克。為了重建出具有高逼真度的全彩影像，本論文提出一新穎

的異次投影硬性決定(Heterogeneity-Projection Hard-Decision, HPHD)演算法並結合一新

的以色差為基礎之邊緣適應性(Color-Difference Based Edge-Adaptive, CDEA)CFA補插方

法來解決貝爾模式之馬賽克影像的色彩重現問題。在此所提出的 HPHD 演算法主要目的

為估測出最佳的補插方向並且執行硬性決定捕差法，此方法的主要特點在於補插的方向

決定於執行補插動作之前，如此可提高色彩補插的效率。另一方面，所提出的 CDEA CFA

補插方法致力於將綠色色彩平面之高頻資訊加入其他色彩平面中，用以重現出較少色彩

遺物的色彩值。 



 

 
ii

在視覺追蹤控制的設計中，本論文提出一應用於配有一傾斜式相機之輪式移動型機

器人的強健型視覺追蹤控制系統，此系統包含一視覺追蹤控制器(Visual Tracking 

Controller, VTC)及一視覺狀態估測器(Visual State Estimator, VSE)。首先，一新穎的雙重

Jacobian 視覺互動模型被推導出來，用以幫助 VTC 及 VSE 的設計。VSE 主要目的為在

影像平面中直接估測出最佳系統狀態以及目標物之移動，VTC 則利用 VSE 所估測出的

結果，接著計算出機器人的控制速度。為了掌握實際視覺追蹤系統中所遭受到的不確定

性，VSE 可以克服由影像雜訊及短暫遮蔽不確定性所造成之干擾。另一方面，VTC 不

但對於系統參數之不確定性具有某種程度的強健性，並且也能克服速度命令中無法模型

化的量化影響。因此，結合所提出的 VTC 及所提出的 VSE，此視覺追蹤控制系統對於

影像雜訊、系統參數、速度量化及短暫遮蔽所造成之不確定性影響皆具有強健性。電腦

模擬及實驗結果驗證所提出的視覺追蹤控制系統之效果，包含追蹤性能、系統收斂性及

系統強健性。 
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ABSTRACT 

The objective of this thesis is to develop a novel color filter array (CFA) interpolation 

algorithm for color reproduction of a single image sensor and a robust visual tracking control 

system for vision-based motion control of a wheeled mobile robot. Most digital cameras 

employ a single image sensor covered with a Bayer CFA to capture a Bayer mosaic image. A 

full-color image is then reconstructed from the captured Bayer mosaic image through a color 

reproduction process, commonly known as CFA interpolation or CFA demosaicing. To 

reconstruct the full-color images with high fidelity, a novel heterogeneity-projection 

hard-decision (HPHD) algorithm combined with a new color-difference based edge-adaptive 

(CDEA) CFA interpolation method is proposed for color reproduction of Bayer mosaic 

images. The proposed HPHD algorithm aims to estimate the optimal interpolation direction 

and perform hard-decision interpolation, in which the direction of interpolation is decided 

before performing the interpolation. On the other hand, the proposed CDEA CFA 
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interpolation method devotes to reproduce color values with fewer color artifacts by adding 

the high-frequency information of green channel to other color channels. Compared with three 

recently reported CFA interpolation techniques, the proposed HPHD-CDEA method 

outperforms all of them in both quantitative and visual comparisons by utilizing twenty-five 

natural images from Kodak PhotoCD. 

In the design of visual tracking control, a robust visual tracking control system, which 

consists of a visual tracking controller (VTC) and a visual state estimator (VSE), is proposed 

for a wheeled mobile robot equipped with a tilt camera. A novel dual-Jacobian visual 

interaction model is first derived to help the design of VTC and VSE. The VSE aims to 

estimate the optimal system state and target motion in the image plane directly, and the VTC 

then calculates the robot’s control velocities by using the estimation results from VSE. To 

handle the uncertainties encountered in practical visual tracking control system, the VSE can 

overcome the disturbances caused by both image noise and temporary occlusion uncertainties. 

On the other hand, the VTC not only possesses some degree of robustness against the system 

model uncertainties, but also overcomes the unmodelled quantization effect in the velocity 

commands. Therefore, by combining the proposed VTC with the proposed VSE, the visual 

tracking control system is robust to the uncertainties of image noise, system model, velocity 

quantization and temporary occlusion. Computer simulations and experimental results 

validate the effectiveness of the proposed visual tracking control system, in terms of tracking 

performance, system convergence, and robustness. 
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Chapter 1 
 
Introduction 

 

1.1  Motivation 
An intelligent robot uses its on-board sensors to collect information from the 

surroundings and react to the changes of its immediate environment. In recent years, vision 

systems become one of the major on-board sensors for autonomous robots. Most vision 

systems utilize a monocular digital camera to capture full-color images of the environment for 

several purposes. A full-color image usually is composed of three color planes and required 

three separate image sensors to measure each color plane. In order to reduce the cost, many 

cameras employ a single image sensor covered with a color filter array (CFA), which consists 

of a set of spectrally selective filters that are arranged in an interleaved pattern so that each 

sensor pixel samples one of three primary color components, to capture the mosaic images. 

To render a full-color image from a mosaic image, a color reproduction process, commonly 

known as CFA interpolation or CFA demosaicing, is required to estimate for each pixel its 

two missing color values. Therefore, the researches on CFA interpolation for color 

reproduction have become an important topic in digital camera pipeline process [1-11]. 

The rendered full-color images of the environment can be used in several robotic 

applications, for example, recognition, navigation, localization, tracking control, etc. In recent 

years, computer vision techniques act a key role in robotic systems for making robot motion 

control and object tracking efficiently. Thus the study of visual tracking control (which means 

the vision-based robot motion control to track a target of interest) has gained increasing 

attention in recent years [12-36]. Based on the motion constraints of the robot, the research on 

visual tracking control can be classified into visual servoing for holonomic manipulators and 
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visual tracking for nonholonomic mobile robots. Although visual servoing of holonomic 

manipulators has been discussed extensively and many results can be found in the literature 

[12-14], mobile robots are commonly nonholonomic and the visual servoing results for 

holonomic manipulators are unsuitable for the mobile platform [15]. Hence, the researches on 

mobile robot visual tracking control have been an active area in robotic researches [15-36]. 

According to the reasons above, this thesis aims to investigate the methodologies of CFA 

interpolation for a single image sensor and visual tracking control for a wheeled mobile robot. 

 

1.2  Literature Survey 
 

1.2.1 CFA Interpolation for a Single Image Sensor 

Digital color images from single-chip digital cameras are obtained by interpolating the 

output from a CFA. The simplest CFA interpolation methodologies apply well-known image 

interpolation techniques, such as nearest-neighbor replication, bilinear interpolation, and 

cubic spline interpolation, to each color channel separately. However, these single-channel 

algorithms usually introduce severe color artifacts and blurs around sharp edges [1]. These 

drawbacks motivate the need of more advanced algorithms for improving demosaicing 

performance. An excellent review on advanced CFA interpolation algorithms can be found in 

[2]. 

In recent years, there have been investigations on more sophisticated CFA interpolation 

algorithms. In [3], Lu and Tan presented an improved hybrid CFA interpolation method that 

consists of two successive steps: an interpolation step to render full-color images and a 

post-processing step to suppress visible demosaicing artifacts. Muresan and Parks proposed 

an improved edge-directed CFA interpolation algorithm based on optimal recovery 

interpolation of grayscale images [4]. They first utilized a grayscale image interpolation 

algorithm based on optimal recovery estimation theory to interpolate the green plane. The 
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red/blue channels were interpolated using inter-channel color difference adaptive filtering. 

These two CFA interpolation algorithms in general produce high quality visual results, 

especially in reconstructing sharp or well-defined edges of the image. However, in fine details 

or texture regions, where edges tend to be short and in different directions, these algorithms 

introduce undesirable errors and give degraded performance. 

Meanwhile, two iterative CFA interpolation techniques were proposed by Gunturk et al. 

[5] and Li [6], respectively. In [5], a projection-onto-convex-set (POCS) technique was 

presented to estimate the missing color values in red and blue channels using alternating 

projection scheme based on high inter-channel correlation. In [6], Li formulated the CFA 

interpolation as a problem of reconstructing correlated signals from decimated versions and 

proposed a successive approximation strategy by adopting color difference interpolation 

iteratively. Although these iterative CFA interpolation algorithms perform well in texture 

regions and reveal low computational complexity, they cannot produce satisfactorily high 

quality visual results in well-defined edges of the image. 

Another recent CFA interpolation approach divides the demosaicing procedure into 

interpolation stage and decision stage [7-10]. In the interpolation stage, horizontally and 

vertically interpolated images are produced respectively. In the latter decision stage, a 

soft-decision method, in which the interpolation must be performed before the decision 

procedure, was employed for choosing the pixels interpolated in the direction with fewer 

artifacts. Because the decision stage is essential for these CFA interpolation approaches, we 

refer them as decision-based CFA interpolation algorithm. For the decision stage, Hirakawa 

et al. proposed a homogeneity metric to measure the misguidance level of color artifacts 

presented in interpolated images [7]. Based on this measurement, the interpolation decision is 

made by choosing the region with larger homogeneity values. In [8], Wu et al. adopted the 

Fisher’s linear discriminant technique to determine the optimal interpolation direction in a 

local window. In [9], Grossmann and Eldar utilized the YIQ color space as a tool to select the 
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reconstructed regions with a smoother chrominance component. Recently, Omer and Werman 

proposed an enhanced decision-based CFA interpolation algorithm that combines the decision 

process with the standard CFA interpolation algorithm such as edge-directed scheme [11] to 

improve its performance in places the standard algorithm tends to fail [10]. The 

decision-based CFA interpolation algorithm performs well not only in texture regions, but 

also in well-defined edges of the image. However, the main drawback of these CFA 

interpolation algorithms is that they are not efficient in the interpolation stage because each 

pixel needs to be interpolated at least twice, one in horizontal direction and the other in 

vertical direction, for the next soft-decision procedure. This drawback also greatly increases 

the computing efforts in the latter decision stage. Therefore, it is still a challenge in CFA 

interpolation design to develop an efficient CFA interpolation method with high performance 

in both texture and edge regions. 

 

1.2.2 Visual Tracking Control for a Wheeled Mobile Robot 

The visual tracking control problem addressed in this thesis focuses on the visual 

tracking control of a unicycle-modeled (usually termed as wheeled) mobile robot equipped 

with an on-board monocular vision system. Due to the high number of different mobile robot 

visual tracking control methods, we classify the reported methods into four groups based on 

the type of the target to be tracked. Many efforts focus on the first group which aims to track a 

static target, such as a ground line, landmark, or reference image, for the purpose of mobile 

robot navigation or regulation (so-called homing) [15-28]. To track the ground line, Ma et al. 

formulated the visual tracking control problem as controlling the shape of a ground curve in 

the image plane and proposed a closed-loop vision-guided control system for a nonholonomic 

mobile robot [16]. Coulaud et al. proposed a simple and stable feedback controller design, 

which avoids sophisticated image processing and control algorithms, for a mobile robot 

equipped with a fixed camera to track a line on the ground [17]. In the case of tracking the 
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landmark, the reported controllers usually modify the visual servoing technique to satisfy the 

nonholonomic constraint for the motion control of the mobile robot [18-21]. In [22], Zhang 

and Ostrowski utilized an optimal control method to solve the visual motion-planning 

problem by generating a virtual trajectory in the image plane and the corresponding optimal 

control signals for the robot to follow. Nierobisch et al. proposed a visual tracking control 

method for a mobile robot with a pan-tilt camera to track visual reference landmarks in the 

acquired views during autonomous navigation [23]. Recently, the homography-based [24, 25] 

and epipolar-based [15, 26-28] visual tracking control approaches were proposed for a mobile 

robot equipped with a pinhole or an omni-directional (so-called central catadioptric) camera 

to track a reference image toward a desired configuration. These two approaches consider the 

mobile robot visual tracking control problem as a visual servoing regulation or visual homing 

problem. In [24], Chen et al. developed a visual tracking controller based on the Euclidean 

homography to track a desired time-varying trajectory defined by a prerecorded image 

sequence of a stationary target viewed by the on-board camera as the mobile robot moves. 

However, the stability of their result is restricted by the non-zero reference velocity condition 

of the desired trajectory. To overcome this drawback, Fang et al. exploited Lyapunov-based 

techniques to construct a homography-based visual servoing regulation controller for proving 

asymptotic regulation of the mobile robot [25]. In [26], Mariottini et al. exploited the epipolar 

geometry defined by the current and desired camera views to develop a two-step visual 

servoing regulation controller. They also extend this design to the visual servoing regulation 

control of a mobile robot with a central catadioptric camera [27]. In [28], Goedemé et al. 

developed a vision-only navigation and homing system for mobile robots with an 

omni-directional camera. Their method divides the visual homing operation into two phases 

and computes visual homing vector based on epipolar geometry estimation. Although these 

approaches of the first group provide appropriate solutions for static target visual tracking 

control problem, they cannot guarantee to solve the moving (non-static) target visual tracking 
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control problem. 

The second group aims to track other robot teammates in a robot group for the formation 

control purpose [29, 30]. The proposed approaches in this group usually are designed based 

on the central catadioptric camera model in order to detect all robot teammates at the same 

instant. The subject of the third group is to track a predictable moving target, such as a 

projectile or straight moving ball, for mobile robot interception purpose [31, 32]. In [31], 

Borgstadt et al. utilized a human vision-based strategy to guide a mobile robot to intercept a 

projectile ball. Similarly, Capparella et al. extended the concept of human-like strategy to 

develop a vision-based two-level interception approach, which contains a lower level 

controller to control the on-board pan-tilt camera and a higher lever controller to operate the 

mobile robot platform, for intercepting a straight moving ball [32]. A common point of the 

second and third group is that the motion of the target of interest is known and predictable. 

However, in some robotic applications, a mobile robot requires to track a dynamic and 

unpredictable motion target, such as a human’s face, for the purpose of pursuit or interaction. 

Thus, the existent methods of the aforementioned two groups are not suitable to solve the 

dynamic moving target visual tracking control problem. 

The purpose of the fourth group aims to solve the problem of tracking a dynamic moving 

target [33-37]. In [33], Wang et al. proposed an adaptive backstepping control law based on 

an image-based camera-target visual interaction model to track a dynamic moving target with 

unknown height parameter. Although the approach in [33] guarantees the asymptotic stability 

of closed-loop visual tracking control system in tracking a dynamic moving target, the case of 

tracking a static target cannot be guaranteed due to the non-zero restrictions on the reference 

velocity of the mobile robot. In [34], Song et al. combined a face detection algorithm with a 

PID controller to track a moving person in a home setting. The main disadvantage of their 

method is that it cannot guarantee the stability of the closed-loop visual tracking system based 

on a stability criterion. In [35], Malis et al. integrated template-based visual tracking 
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algorithms and model-free vision-based control techniques to build a flexible and robust 

visual tracking control system for various robotic applications. Because their visual tracking 

result is based on the homography estimation, which requires two images of the target pattern 

to estimate the optimal homography, the reported system only overcomes the partial occlusion 

problem but fails in the fully occlusion problem. In [36], Han et al. proposed an image-based 

visual tracking control scheme for a mobile robot to estimate the position of the target in the 

next image and track the target to the central area of the image. Since their method utilized the 

differential approximation method to estimate the velocity of target in the image plane, the 

estimation result is very sensitive to the image noise. Recently, a visual interaction controller 

had been proposed for a unicycle-modeled mobile robot to track a dynamic moving target 

such as human’s face [37]. The drawback of this method is that the controller requires the 

target’s 3D motion velocity, which is difficult to estimate when only a monocular camera is 

used.  

Therefore, from the literature survey, one of the most important challenges in mobile 

robot visual tracking control design is to develop a visual tracking control system to estimate 

the motion of the dynamic moving target and track it based on a stability criterion. Further, in 

realization of the control schemes, it has been noted that the disturbances of image noise, 

velocity quantization error and temporary (partial/full) occlusion degrade the performance of 

the controller and might make the system unstable. These problems have not yet been 

clarified in many existent related works and hence motivated us to investigate the robustness 

of the visual tracking control system against the uncertainties of image noise, system model, 

velocity quantization and temporary occlusion. 

 

1.3  Research Objectives  
 The objective of this thesis is to develop a novel CFA interpolation algorithm for color 

reproduction of a single image sensor and a robust visual tracking control system for 
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vision-based motion control of a wheeled mobile robot. For color reproduction, a novel 

heterogeneity-projection hard-decision (HPHD) CFA interpolation algorithm is proposed to 

reconstruct the full-color images from Bayer mosaic images [38]. The proposed HPHD CFA 

interpolation algorithm can combine with many existent image interpolation methods to 

reconstruct each color plane. However, in CFA interpolation process, it should be noticed that 

color artifacts existing around edges and fine textures of the demosaiced image are a factor 

limiting performance. Color artifacts are caused primarily by aliasing error in high-frequency 

regions such as edges or fine textures, and existing algorithms are unable to resolve color 

artifacts in these regions effectively to obtain demosaiced results with high visual quality. To 

effectively reduce color artifacts in demosaiced images, a novel color-difference based 

edge-adaptive (CDEA) CFA interpolation algorithm is then proposed and combined with the 

HPHD CFA interpolation algorithm to reproduce color values by exploiting the green plane 

information for making high-frequency components of red and blue planes similar to the 

green plane, in which the aliasing errors are usually much smaller than those in red and blue 

planes. 

For visual tracking control, a novel design of a robust visual tracking control system, 

which consists of a visual tracking controller (VTC) and a visual state estimator (VSE), is 

proposed for a wheeled mobile robot equipped with a tilt camera. In order to resolve the 

problem of visual tracking a dynamic moving target and guarantee the stability of the 

closed-loop visual tracking system, a novel dual-Jacobian visual interaction model is derived 

to help the design of VTC and VSE. The VSE is constructed by a real-time self-tuning 

Kalman filter and aims to estimate the optimal system state and target motion in the image 

plane directly for later use by the VTC. The VTC then calculates the robot’s control velocities 

in the image plane directly. To handle the uncertainties encountered in practical visual 

tracking control system, the VSE can estimate the optimal target state from the observed 

image with disturbances to overcome both image noise and temporary occlusion uncertainties. 
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On the other hand, the VTC not only possesses some degree of robustness against the system 

model uncertainties, but also overcomes the unmodelled quantization effect in the velocity 

commands. Therefore, the proposed system is robust to the uncertainties of image noise, 

system model, velocity quantization and temporary occlusion. This advantage enhances the 

reliability of the proposed visual tracking control system in practical applications. 

 

1.4  Organization of the Thesis 
The remainder of this thesis is organized as follows: In Chapter 2, a novel HPHD CFA 

interpolation algorithm is first developed based on the concept of spectral-spatial correlation. 

A new CDEA CFA interpolation algorithm is then proposed to combine with HPHD CFA 

interpolation algorithm for color reproduction of Bayer mosaic images. In Chapter 3, a novel 

dual-Jacobian visual interaction model is derived in order to help the design of mobile robot 

visual tracking control for tracking a dynamic moving target. Accordingly, the results of VTC 

design with robustness analysis are developed by using the proposed visual interaction model. 

Furthermore, the robust control law to overcome the velocity quantization error encountered 

in practical systems will also be presented. Chapter 4 develops the VSE using Kalman filter 

with self-tuning algorithm to estimate the optimal system state in the image plane for handling 

the uncertainties caused by image noise and temporary occlusion. Simulation and 

experimental results of the proposed CFA interpolation algorithm and the proposed mobile 

robot visual tracking control system are reported and discussed in Chapter 5. Chapter 6 

concludes the contributions of this work and provides the recommendations for future 

research. In Appendix A, an experiment of tweaking parameters is presented to find the local 

optimal parameters for the proposed HPHD-CDEA CFA interpolation algorithm described in 

Chapter 2. Appendixes B and C present more discussions and visual comparisons of the 

proposed CFA interpolation algorithm. An extended discussion on the proposed VTC scheme 

is presented in Appendix D. Figure 1-1 shows the simplified overview of the thesis. 
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Fig. 1-1: Structure of the thesis. 
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Chapter 2 
 
CFA Interpolation for Color Reproduction of Bayer 

Mosaic Images 
 

2.1  Introduction 

In this chapter, the design of the proposed HPHD-CDEA CFA interpolation algorithm is 

presented for color reproduction from Bayer mosaic images. The proposed algorithm consists 

of HPHD algorithm and CDEA CFA interpolation. The proposed HPHD algorithm aims to 

estimate the optimal interpolation direction before performing CFA interpolation. Because the 

decision stage is performed before the interpolation stage (termed as hard-decision 

interpolation), each pixel only needs to be interpolated once. To do so, a new 

heterogeneity-projection scheme based on a novel spectral-spatial correlation concept is 

proposed to estimate the best interpolation direction directly from the original Bayer mosaic 

image. Using the proposed heterogeneity-projection scheme, a hard-decision rule can be 

decided before performing CFA interpolation. 

In order to effectively reduce color artifacts in CFA interpolation process, the proposed 

CDEA CFA interpolation algorithm is then combined with the HPHD algorithm to reconstruct 

the red and blue color planes by exploiting the green plane information for making 

high-frequency components of red and blue planes similar to the green plane, in which the 

aliasing errors are usually much smaller than those in red and blue planes. To do so, the red 

and blue channels are first reconstructed using bilinear interpolation and then edge-adaptive 

filtered in color-difference space. To reconstruct the green plane, any existent image 

interpolation methods can be employed to combine with the CDEA CFA interpolation 
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algorithm. Moreover, we also present a new edge-adaptive interpolation method to reconstruct 

the green channel from CFA samples. The advantages of the proposed HPHD-CDEA CFA 

interpolation algorithm are summarized as follows:  

1) Many existent CFA interpolation methods can be combined with the proposed HPHD 

algorithm to reconstruct each color plane. For example, the proposed 

heterogeneity-projection scheme can combine with existent decision-based CFA 

interpolation algorithms. More specifically, the proposed heterogeneity-projection scheme 

can adopt into the decision step of existent decision-based CFA interpolation algorithms. 

2) Each pixel only has to be interpolated once. Therefore, the proposed algorithm is much 

more efficient than other decision-based schemes. 

3) Any existing image interpolation methods can be combined with the proposed CDEA CFA 

interpolation algorithm to reconstruct the green plane.  

4) The proposed HPHD-CDEA CFA interpolation algorithm performs well not only in 

texture regions, but also in well-defined edges of the image. 

 

The rest of this chapter is organized as follows: In Section 2.2, the proposed HPHD CFA 

interpolation algorithm is designed by using a novel concept of spectral-spatial correlation. 

Section 2.3 presents the proposed CDEA CFA interpolation algorithm based on 

color-difference model. A new edge-adaptive interpolation method to reconstruct the green 

plane from CFA samples is also presented in this section. Section 2.4 describes the complete 

HPHD-CDEA CFA interpolation algorithm and gives an example study. Section 2.5 

summarizes the contributions of this work. An experiment of tweaking parameters to find the 

local optimal parameters for the proposed CFA interpolation algorithm is presented in 

Appendix A. More discussions and visual comparisons are presented in Appendixes B and C. 
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2.2  Heterogeneity-Projection Hard-Decision (HPHD) CFA interpolation 

 Figure 2-1 shows the most used CFA pattern, the Bayer pattern [38], where R, G and B 

denote, respectively, the pixels having only red, green and blue color values. We limit our 

discussion to the Bayer pattern in this chapter because it is so popular. In the following, image 

spectral and spatial correlations are first introduced. A novel spectral-spatial correlation is 

then derived based on these two correlations. 

 

2.2.1  Spectral and Spatial Correlations 

Many existing demosaicing methods are developed using image spectral and/or spatial 

correlation. The concept of spectral correlation is based on the assumption that the color 

difference signals are locally constant in chrominance smooth areas [39]. Let ][ BGR  

denote three color planes of a nature color image, the concept of spectral correlation leads to 

the following assumption. 

 

A1) The color differences between green and red/blue channels satisfy the following 

conditions 

),(),(),( yxAyxGyxR rg+=  and ),(),(),( yxAyxGyxB bg+= , 

where ),( yxArg  and ),( yxAbg  are piecewise constant within the boundary of a given 

object. 

 

The spatial correlation reflects the fact that within a homogeneous image region, 

neighboring pixels share similar color values [40]. In other words, the difference between 

neighboring pixel values along an edge direction in spatial domain is a constant. Thus we 

have the following assumption based on the concept of spatial correlation [3]. 
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Fig. 2-1: The Bayer pattern. 

 

A2) The rate of change of neighboring pixel values along an edge direction is a constant.  

 

To illustrate this, let us consider the interpolation of 33R  in Fig. 2-1. Suppose that the pixel 

33R  is located on a horizontal edge. Based on A1), the neighboring pixels of 33R  along the 

horizontal direction have the following relationship between green and red/blue pixel values 

),1(),(),1( yxAyxAyxA rgrgrg +==−  and 

),1(),(),1( yxAyxAyxA bgbgbg +==− .             (2.1) 

So we have 

434333332323 GRGRGR −=−=−  and 434333332323 GBGBGB −=−=− .   (2.2) 

The assumption A2) gives the following relationship on horizontal edges 

hdRRRRR ≡−=− 43333323 ,  

hdGGGGG ≡−=− 43333323 , and       (2.3) 

hdBBBBB ≡−=− 43333323 , 

where 33G , 23R , 43R , 23B , 33B , and 43B  denote the missing color values at the respective 

pixel locations. hdG , hdR  and hdB  are constants. 
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2.2.2  Spectral-Spatial Correlation (SSC) 

 A significant characteristic of Bayer pattern is that for each pixel, the surrounding pixels 

are one of the primary components in different channels. It is then interesting to investigate 

the relationship between neighboring pixels in different color channels. Consider the 

following situation: on a horizontal edge, two green pixels surround a red pixel on horizontal 

direction. Take the difference between the center red pixel and right green pixel, we then have 

[ ] [ ]),1(),(),(),(),1(),( yxGyxGyxGyxRyxGyxR +−+−=+− ,   (2.4) 

where ),( yxG  denotes the missing green value at center red pixel location. Recall 

assumptions A1) and A2), expression (2.4) becomes such that 

hrg
xxh

rg dGyxAyxGyxRS +=+−≡+ ),(),1(),()1,( .     (2.5) 

Similarly, the difference between a blue pixel and its right green pixel is given by 

hbg
xxh

bg dGyxAyxGyxBS +=+−≡+ ),(),1(),()1,( .    (2.6) 

The same results also can be obtained along vertical direction on a vertical edge such that 

vrg
yyv

rg dGyxAyxGyxRS +=+−≡+ ),()1,(),()1,( , and 

vbg
yyv

bg dGyxAyxGyxBS +=+−≡+ ),()1,(),()1,( .        (2.7) 

Expressions (2.5)-(2.7) show that the difference between surrounding pixels in different color 

channels is equal to the summation of spectral and spatial correlations. We refer these 

relationships (2.5)-(2.7) as spectral-spatial correlation (SSC). SSC has two important 

characteristics. First, SSC can be easily and directly calculated from the original Bayer mosaic 

image. Second, SSC inherits the characteristics of spectral and spatial correlations. In other 

words, SSC is also piecewise constant within the boundary of a given object or along an edge 

direction. Therefore, we have the following assumption based on these observations: 

 

A3) The SSC defined in (2.5)-(2.7) within the boundary of a given object or along an edge 
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direction is also piecewise constant. 

 

Assumption A3) is a significant clue for us to find the directional smooth regions in Bayer 

mosaic images directly before performing the interpolation. In the following section, we will 

present the method of heterogeneity-projection based on A3). 

 

2.2.3  Heterogeneity-Projection for Bayer Mosaic Images 

The proposed heterogeneity-projection scheme transfers the original Bayer mosaic image 

directly into horizontal and vertical heterogeneity maps, respectively. Using these two 

heterogeneity maps, the interpolation direction can be determined easily by choosing the 

smallest heterogeneity values. 

Assumption A3) implies that the n-order directional finite derivative of SSC along an 

edge direction tends toward a small value. For example, consider a red pixel ),( yxR  locates 

on a horizontal edge, the SSC values of ),( yxR  and its neighboring pixels along horizontal 

direction can be found such that 

hrg
xxh

rg dGyxAS +=+ ),()1,( , hrg
xxh

gr dGyxAS ++−=++ ),2()2,1( ,      (2.8) 

where ),2(),1()2,1( yxRyxGS xxh
gr +−+≡++ . Based on the basic definition of the first-order 

derivative of a one-dimensional discrete function, the first-order horizontal derivative of SSC 

are given by [41] 

),2(),()3,2()1,()3,( yxAyxASSdS rgrg
xxh

rg
xxh

rg
xxh

rg +−=−≡ ++++ , 

),2(),4()4,3()2,1()4,1( yxAyxASSdS rgrg
xxh

gr
xxh

gr
xxh

gr +−+=−≡ ++++++ .          (2.9) 

Recall A1) and A3), one can see that )3,( +xxh
rgdS  and )4,1( ++ xxh

grdS  both will approach to zero 
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along this horizontal edge. Because the higher-order derivative of a discrete function is a 

linear combination of the first-order ones, it implies the higher-order horizontal derivative of 

SSC will also approach to zero along the horizontal edge. Thus we have the following 

assumption. 

 

A4) If pixels locate on a directional edge, then the corresponding nth-order directional 

derivative of SSC along the edge direction approaches to zero. 

 

Assumption A4) poses a question that how the nth-order directional derivative of SSC can be 

directly calculated from Bayer mosaic image. To resolve this problem, a 

heterogeneity-projection scheme is developed to transfer the row data of Bayer mosaic image 

directly into nth-order directional derivative of SSC. Note that the value of nth-order 

directional derivative of SSC is defined as heterogeneity measure, because it leads to a small 

value within a directional smooth region. 

 Denote NN RGRRG ×× = 13211 ][ L  as a row data of Bayer mosaic image, N  is the 

presetting window size, and hH  is the corresponding horizontal heterogeneity value. To 

calculate the horizontal heterogeneity value hH  from NRG ×1 , we propose the following 

steps. First, the row data NRG ×1  is transferred into a )3(1 −× N  vector of first-order 

horizontal derivative of SSC using a linear transformation such that 

1
)3(1)3(1

)6,3()5,2()4,1(
3(1 ][ −××−×−× == NNNN

h
rg

h
gr

h
rgN TRGdSdSdSdS L ,  (2.10) 

where [ ] )3(11111
)3( −⊗−−=−× NeyeT T

NN , ⊗  denotes the 2D convolution operator 

and )(Meye denotes a MM ×  identity matrix. Second, because the high-order derivative of 

a discrete function is derived by the linear combination of its first-order ones, the horizontal 
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heterogeneity value hH , the )3( −N th-order horizontal derivative of SSC, is obtained such 

that [41] 

2
1)3()3(1

)6,3(
3

)5,2(
2

)4,1(
1

),3(5)1,2(5)2,1(5

),2(4)1,1(4),1(3

                           

                           
                            

2                           

×−−×

−−−−−

−−−−

=

+++=

+−=

−=≡

NN

h
rg

h
gr

h
rg

Nh
rg

NNh
gr

NNh
rg

N

Nh
gr

NNh
rg

NNh
rg

N
h

TdS

dSwdSwdSw

SdSdSd

SdSdSdH

L

M     (2.11) 

where [ ]∏
−

=
×− −−⊗−=

4

1

2
1)3( )3(11

N

i

T
N iNeyeT  is a 1)3( ×−N  coefficient vector which 

transfers vector )3(1 −× NdS  into the )3( −N th-order derivative value through Euclidean inner 

product [42]. Next, substituting (2.10) into (2.11) yields 

11
2

1)3(
1

)3(1 ×××−−×× == NNNNNNh PRGTTRGH ,     (2.12) 

where 2
1)3(

1
)3(1 ×−−×× = NNNN TTP  is a 1×N  vector and referred as heterogeneity vector. 

Expression (2.12) shows that the horizontal heterogeneity value hH  is the projection of the 

row data of Bayer mosaic image onto the heterogeneity vector 1×NP . Thus expression (2.12) 

is termed as horizontal heterogeneity-projection. Figure 2-2 illustrates an example of 

horizontal heterogeneity-projection from a 51×  row data of Bayer mosaic image. Using 

(2.12), the heterogeneity vector 1×NP  is obtained as 

[ ]TTTP 120212
12

1
2515 −−== ××× . 

The horizontal heterogeneity value hH  of 33R  is then given by 

534323131551
)5,1(2 22 RGGRPRGSdH h

rgh −+−=== ×× . 

Similarly, the vertical heterogeneity value vH  is the projection of Bayer mosaic image’s 

column data onto the heterogeneity vector 1×NP  such that 
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Fig. 2-2: The concept of horizontal heterogeneity-projection from a 51×  row data of a Bayer mosaic 

image. 

 

11 ××= N
T
Nv PRGH ,        (2.13) 

where T
NN RGRRG 13211 ][ ×× = L  is a column data of Bayer mosaic image. Finally, based 

on (2.12) and (2.13), the horizontal and vertical heterogeneity maps, maphH _  and mapvH _  

are obtained, respectively by 

T
Nmaph PBayerH 1_ ×⊗= , and 1_ ×⊗= Nmapv PBayerH ,    (2.14) 

where Bayer  denotes the original Bayer mosaic image. One can see from (2.14) that the 

horizontal and vertical heterogeneity maps are derived directly from the Bayer mosaic image 

via horizontal and vertical heterogeneity-projection, respectively. 

 

2.2.4  Directional Adaptive Filtering for Error Reduction 

 Assumption A4) states that the directional heterogeneity-projection along an edge 

direction leads to a small heterogeneity value. However, a small heterogeneity measure does 

not imply the directional heterogeneity-projection along a right edge direction. This problem 

will induce the estimation errors in the initial estimated heterogeneity maps. In order to reduce 



 

 
20

the estimation errors, a directional adaptive filter, whose behavior changes based on the 

statistical characteristics inside a local window, is proposed to reduce the estimation error and 

estimate the optimal heterogeneity maps. Moreover, since each heterogeneity measure in the 

initial heterogeneity maps is static, this estimation problem is equivalent to the static 

estimation problem, in which the estimation errors are modeled as the zero mean Gaussian 

noises with non-zero variance. According to [43], the minimum mean square-error (MMSE) 

solution of the static estimation problem can be estimated using a predictor-corrector filter. 

Therefore, the design of the proposed directional adaptive filter adopts the structure of 

predictor-corrector filter to obtain the MMSE estimates.  

The proposed directional adaptive filter is divided into horizontal and vertical adaptive 

filters. For the horizontal heterogeneity map, only the horizontal adaptive filter is applied to it. 

Figure 2-3(a) illustrates the concept of horizontal adaptive filter. In Fig. 2-3(a), the center 

pixel hH  is to be adaptively filtered along the horizontal direction based on statistical 

measures of surrounding pixels R
hH  and L

hH . The simplest statistical measures of R
hH  and 

L
hH  are their mean and variance in a local window [41]. For instance, if a 31×  rectangular 

window defines the window size, the local mean and variance of R
hH  and L

hH  are, 

respectively, given by 

3)( RR
h

R
hh

R
h HHHH ++= , 3])()()[( 222 RR

h
R
h

R
h

R
hh

R
h

R
h HHHHHHH −+−+−=δ .  (2.15) 

3)( LL
h

L
hh

L
h HHHH ++= , 3])()()[( 222 LL

h
L
h

L
h

L
hh

L
h

L
h HHHHHHH −+−+−=δ .  (2.16) 

Using (2.15) and (2.16), the adaptively filtered pixel *
hH  is obtained below 

)(* L
h

R
hR

h
L
h

L
hL

hh HH
HH

HHH −
+

+=
δδ

δ .        (2.17) 

In (2.17), the local mean L
hH  is the predictor term with an associated error variance L

hHδ , 

and the local mean R
hH  is the corresponding corrector term with error variance R

hHδ . Thus, 
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(a)            (b) 

Fig. 2-3: The concept of (a) horizontal and (b) vertical adaptive filtering using a 31×  rectangular 

window. 

 

(2.17) provides the MMSE estimate of horizontal heterogeneity measure in a local window. 

Figure 2-3(b) illustrates an example of vertical adaptive filter for vertical heterogeneity map. 

Using the same procedure discussed above, the adaptively filtered pixel *
vH  is obtained as 

follows 

)(* U
v

D
vD

v
U
v

U
vU

vv HH
HH

HHH −
+

+=
δδ

δ ,                 (2.18) 

where ),( U
v

U
v HH δ  and ),( D

v
D

v HH δ  are the local mean and variance of U
vH  and D

vH . 

Similarly, (2.18) also provides the MMSE estimate of vertical heterogeneity measure in a 

local window. After adopting the horizontal and vertical adaptive filters presented above into 

horizontal and vertical heterogeneity maps, respectively, the MMSE estimates of horizontal 

and vertical heterogeneity maps *
_ maphH  and *

_ mapvH  are obtained. 

 

2.2.5  Hard-Decision CFA interpolation 

With the horizontal and vertical heterogeneity maps, a hard-decision rule is applied for 

CFA interpolation. First, we classify three subsets in the image such that 
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{ }),(),(|),( *
_

*
_ yxHyxHyx mapvmaphh α<≡Ω , 

{ }),(),(|),( *
_

*
_ yxHyxHyx maphmapvv α<≡Ω ,       (2.19) 

{ }vhs yxyxyx Ω∉Ω∉≡Ω ),(,),(|),( , 

where hΩ , vΩ , and sΩ  denote the horizontal, vertical, and smooth subsets, respectively. 

α  is a positive constant satisfying 10 ≤≤α . Second, based on (2.19), the concept of 

hard-decision rule for CFA interpolation is obtained 

 

channel.color  missingeach on  pixels gneighborin of   Perform     

channel;color  missingeach on ion interpolat    Perform     
),(  

channel;color  missingeach on ion interpolat    Perform     
),(  

averagingweight
else

vertical
yxelseif

horizontal
yxif

v

h

Ω∈

Ω∈

  (2.20) 

 

In the following discussion, the CFA interpolation method is developed based on the 

hard-decision rule (2.20). 

 

Remark 2.1: The parameter α  in (2.19) determines the size of smooth subset in the image. 

A small (large) α  leads to a large (small) smooth subset in the image. For example, if 

0=α ,  the image only contains smooth subset without horizontal and vertical subsets. 

Based on (2.20), the interpolation of image only adopts the weight averaging of neighboring 

pixels on each missing color channel [3, 11, 40]. On the other hand, for 1=α , the image 

only contains horizontal and vertical subsets but without smooth subset and the interpolation 

of image only adopts horizontal and vertical interpolations on each missing color channel 

[7-9]. Therefore, for 10 <<α , the hard-decision rule (2.20) is characterized by features of 

weight averaging and directional interpolating. 
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2.3  Color-Difference Based Edge-Adaptive (CDEA) CFA interpolation 

 In this section, a novel CDEA CFA interpolation algorithm is proposed to reproduce the 

missing color values in Bayer mosaic images. The proposed CFA interpolation algorithm aims 

to exploit the green channel information for making high-frequency components of red and 

blue channels similar to the green channel, which is useful to effectively reduce color artifacts 

in demosaiced images. Any of the existing image interpolation methods can be combined with 

the proposed algorithm to reconstruct the green channel; but, a new edge-adaptive 

interpolation method to interpolate the green channel from CFA samples will also be 

presented in this section. The red and blue channels are first reconstructed using bilinear 

interpolation and then edge-adaptive low-pass filtered in color-difference space by the 

assistance of the reconstructed green channel.  

 

2.3.1  Color-Difference Approach to CFA interpolation 

 In a Bayer pattern, green samples are obtained on a quincunx, while red and blue 

samples are obtained in rectangular lattices. The density of red and blue samples is one-half 

that of the green ones, and the aliasing error of high-frequency components in green channel 

is likely to be less than that in red and blue channels. Thus, a common problem in 

demosaicing is that the visible color artifacts in high-frequency regions are caused primarily 

by aliasing in the red and blue channels. Fortunately, there is usually high inter-channel 

correlation in high-frequency regions among red, green, and blue channels for natural color 

images [5]. This implies that the red, green, and blue channels are quite similar at fine texture 

and edge locations with all three colors. Therefore, a valid assumption can be made that object 

boundaries are the same in all three color channels. More specifically, we have the following 

assumption. 

 

A5) The high-frequency regions are similar in all three channels and close to the 
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Fig. 2-4: Test images used in the experiment. 

 

high-frequency regions of the green channel.  

 

In order to validate assumption A5), we utilize twenty-five natural images from the Kodak 

PhotoCD (see Fig. 2-4), which have been used as test images for several demosaicing studies 

[3-10]. 

Figure 2-5 shows the flowchart for demonstrating the assumption of color-difference 

model mentioned above. The key concept is to replace the high-frequency components of red 

and blue planes by using those of green plane, and compare then the mean squared error 

(MSE) between the original and reconstructed color planes. A low-pass filter is utilized for 

red and blue planes and a high-pass filter for the green plane. We utilize 2-D ideal low-pass 

and high-pass filters in this procedure. Their transfer functions are given by [41]: 

⎩
⎨
⎧

>
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Fig. 2-5: Flowchart for demonstrating the assumption of color-difference model. 

 

where 0D  is a specified nonnegative quantity; and ),( vuD is the distance from point ),( vu  

to the origin of the frequency plane. We set 0D  equal to 128 in this test. After filtering in 

each color plane, the new red and blue planes, R  and B , are reconstructed respectively by 

adding the high-frequency components of the green plane to their low-frequency components. 

Table 2-1 records the MSE comparison results of each step. The first and second columns 

show the MSE between original and low-pass filtered red (blue) planes lowR ( lowB ). The third 

and fourth columns show the MSE between original and reconstructed red (blue) planes 

R ( B ). From the test results, it is clear that the MSE is reduced effectively by adding the 

high-frequency regions of the green plane Ghigh to the low-pass filtered red (blue) planes. This 

implies that the high-frequency regions of red and blue planes are similar and close to the 

high-frequency regions of the green plane. Thus, assumption A5) is validated. Based on 

assumption A5), our motivation in this study is to reduce the color artifacts in high-frequency 

regions by adding the high-frequency information of green channel to other color channels. 

As described below, this can be achieved by utilizing the color-difference model. 

Let ][ ddd BGR  denote three color planes of a demosaiced image. The Fourier 

spectrum of each color plane can be described as follows: 
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Table 2-1: Comparison of mean squared error at each step in Fig. 2-5. 

Image No. MSE( lowRR, ) MSE( lowBB, ) MSE( RR, ) MSE( BB, ) 

1 147.3784 123.2171 37.0369 8.7712 
2 260.2865 263.2530 4.2306 2.9049 
3 73.0098 66.0994 9.8449 1.6476 
4 59.1224 55.4568 3.1630 4.0863 
5 75.0895 71.0032 8.0543 1.6137 
6 307.8661 293.3846 6.3342 9.2040 
7 178.8668 174.3140 2.1157 4.2843 
8 76.3988 76.0140 2.8284 3.3626 
9 539.2621 526.6953 8.2720 7.8362 

10 81.2787 77.1119 2.6365 3.9927 
11 86.7402 89.3761 2.8525 4.2737 
12 149.5650 139.4246 4.1582 2.2200 
13 70.4837 74.3636 3.1482 2.9343 
14 415.0555 421.2574 3.3856 10.3724 
15 168.1822 141.2964 9.1458 8.2062 
16 112.1141 103.0222 12.2228 3.6253 
17 82.9777 80.8168 1.3618 1.8066 
18 81.5764 84.8154 2.2567 3.9789 
19 187.1993 182.8144 6.1265 10.0651 
20 179.4598 163.5454 2.7882 3.8415 
21 119.7853 109.3889 2.4227 6.2912 
22 155.7798 160.6295 2.6352 4.9741 
23 124.3185 129.3350 7.7838 7.3834 
24 57.6438 55.0500 4.2972 4.7799 
25 232.1675 302.3846 10.3759 19.5268 

 

h
d

l
dd RFRFRF ][][][ += , h

d
l

dd GFGFGF ][][][ += , h
d

l
dd BFBFBF ][][][ += ,  (2.21) 

where ][•F  denotes the 2-D discrete Fourier transform; and the underscores l and h stand for 

low-frequency and high-frequency components, respectively. The color-difference models of 

the demosaiced image are defined such that 

dd
g GRR −= , dd

g GBB −= .      (2.22) 

Let }{•L  denote a linear low-pass filtering process, and gR~  and gB~  denote the 

low-frequency regions of the color differences corresponding to gR  and gB . Suppose that 

the high-frequency components of the color differences gR  and gB  can be removed by the 

low-pass filtering process, the Fourier spectrum of gR~  and gB~  can be described such that 

l
d

l
d

gg GFRFRFLRF ][][]}[{]~[ −== , l
d

l
d

gg GFBFBFLBF ][][]}[{]~[ −== .  (2.23) 
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Subsequently, the new red and blue planes of the demosaiced image, dR  and dB , can be 

obtained respectively, by adding gR~  and gB~  with dG . Their Fourier spectra are given by 

h
d

l
dd

g
d GFRFGRFRF ][][]~[][ +=+= , h

d
l

dd
g

d GFBFGBFBF ][][]~[][ +=+= . (2.24) 

It is clear from (2.24) that the high-frequency components of the new red and blue planes of 

the demosaiced image are replaced by the high-frequency components of the green plane. 

Because the aliasing error in the green plane is usually much smaller than those in red and 

blue planes, based on the assumption described above, the aliased errors in red and blue 

channels can be efficiently reduced by linear low-pass filtering in the color-difference spaces 

and adding the results with green channel to obtain the new ones. This observation leads to 

the development of an efficient CFA interpolation algorithm based on color-difference that 

can reduce the color artifacts in high-frequency regions such as edges or fine textures. 

 The color-ratio model has been another useful model for the development CFA 

interpolation algorithms [1, 11]. The main difference between the color-difference model and 

the color-ratio model is that the latter assumes the ratios between the red and green values are 

constant within a given object, as are the ratios between the blue and green values. However, 

the color-ratio model usually fails to work around edge regions and results in some color 

artifacts because the constant-ratio assumption is not valid in these regions. But, again, the 

assumption used by color-difference model is that the high-frequency regions are similar in all 

three channels and close to the high-frequency regions of the green channel. If the 

high-frequency components of the green channel (such as edges and fine textures) can be 

recovered within small aliasing errors, then the results can be used to effectively reduce the 

aliasing errors in red and blue channels. In the following section, we describe the proposed 

edge-adaptive CFA interpolation algorithm based on the color-difference model. 
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2.3.2  CDEA Low-pass Filtering 

 To begin with derivation of the proposed CFA interpolation algorithm, we first assume 

that the green channel has been fully recovered by using an existing image interpolation 

method. The initial estimation of red and blue channels can be obtained, for instance, by 

utilizing some well-known method such as bilinear interpolation. Note that at this stage we do 

not process the original red (blue) values, but rather keep them the same as the original 

CFA-sampled color values. When an initial demosaiced image is obtained, we then utilize an 

adaptive low-pass filter to filter the color-difference value at the missing pixel locations in red 

(blue) channels. 

 Let ][ d
i

d
i

d
i BGR  denote three color planes of the initial demosaiced image. The red 

and blue color-difference planes are given by 

d
i

d
ig GRR −=  and d

i
d
ig GBB −= ,       (2.25) 

where d
iR  and d

iB  are, respectively, the initial estimated red and blue channels obtained 

from bilinear interpolation; and d
iG  is the initial estimated green channel obtained by any 

image interpolation method. The filtering procedure involves two sub-steps: first, 

edge-adaptive low-pass filtering of the red (blue) values over the original blue (red) pixels, as 

shown in Fig. 2-6(a); second, edge-adaptive low-pass filtering of the red (blue) values over 

the original green pixels, as shown in Fig. 2-6(b). Because the same procedure is used for 

both gR  and gB  color-difference planes, only the procedure of gR  will be described in 

the following presentation.  

We first consider the red color-difference value at blue pixel locations. Referring to Fig. 

2-6(a), the red color-difference value at blue pixel position, B
gR , is to be filtered adaptively 

by 
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(a)            (b) 
Fig. 2-6: (a) The red color-difference value on blue pixel and (b) the red color-difference value on 
green pixel of a central pixel to be estimated. 
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where 41
ˆ~ˆ

gg RR  are the red color-difference adjusted values and 41 ~ aa ee  are the edge 

indicators corresponding to each color-difference value. These edge indicators are defined as 

a decreasing function of the directional derivative of the center point and its neighboring 

points. In the edge-adaptive low-pass filtering stage, we propose to introduce the second-order 

directional derivatives of neighboring color-difference values for detecting edges more 

accurately. In the case of Fig. 2-6(a), the edge indicators are given by 
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The red color-difference adjusted values 41
ˆ~ˆ

gg RR  are derived based on the assumption that 

the difference of neighboring color-difference values along an interpolation direction is 
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constant. For example, to find the red color-difference adjusted value at 1gR  location, this 

assumption gives the following relationships for the neighboring red color-difference values 

along the right-up direction 

)ˆ()ˆ( 3131 gggggg RRRRRR −+−=−  and      (2.28) 

31
ˆˆ

gggg RRRR −=−         (2.29) 

where gR̂  denotes the missing red color-difference value at gB  location. Combining (2.28) 

and (2.29), we have 

)ˆ(2 131 gggg RRRR −=− . 

This implies that 2)(ˆ
131 gggg RRRR −+= . This value is denoted by 1

ˆ
gR , which is used to 

estimate gR  in the right-up interpolation direction. In a similar manner, the red 

color-difference adjusted values along each interpolation direction is given by 
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 Subsequently, the rest of the red color-difference value at green pixel locations is 

adaptively filtered from its four surrounding red color-difference values. In the case of Fig. 

2-6(b), the red color-difference value at the central green pixel position, G
gR , is adaptively 

filtered according to the hard-decision rule (2.20) such that 
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where 41
ˆ~ˆ

gg RR  denote the red color-difference adjusted values defined in (2.30), and 

41 ~ bb ee  are the corresponding edge indicators given by 
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Finally, the full-red plane is obtained by recovering the spatial plane from red color-difference 

plane such that 

d
ig

d
i GRR += .        (2.33) 

As the same procedure is utilized for recovering the blue plane, a full-color demosaiced image 

can be obtained. 

 

2.3.3  Green Channel Edge-Adaptive Interpolation 

 In this section, we present a novel edge-adaptive interpolation method for green channel 

reconstruction from CFA samples. The green plane has the most spatial information of the 

image to be demosaiced and has great influence on the perceptual quality of the image. In 

order to reconstruct the demosaiced images with satisfactory quality, the hard-decision rule 

(2.20) is utilized for choosing the direction of interpolation to reconstruct the green channel. 

Figure 2-7 shows two cases of green samples in Bayer pattern, where the green value of 

central pixels are to be estimated from its four surrounding green pixels, 41 ~ GG . The 

central missing green value missG  is estimated by the following expression 
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(a)          (b) 
Fig. 2-7: Two cases of missing green value on the central pixel. (a) The green value on blue pixel and 
(b) the green value on red pixel of a central pixel to be estimated. 

 

where 41
ˆ~ˆ GG  denote the color-adjusted green values of four surrounding green pixels; 

41 ~ ss ee  are the corresponding edge indicators when the location of central missing pixel (x, 

y) locates in the smooth subset sΩ ; and 41 ~ ee ee  are the corresponding edge indicators 

when the location of central missing pixel ),( yx  locates in the horizontal subset hΩ  or 

vertical subset vΩ . In other words, if vyx Ω∈),( , we regard the central missing pixel as 

being in a smooth region. Otherwise, we regard the central pixel as being in an edge region. In 

the smooth region, the edge indicators associated with four surrounding color-adjusted green 

values are denoted by 41 ~ ss ee  and the central missing pixel is then estimated by weighted 

sum of them. In the edge region, the edge indicators associated with four surrounding 

color-adjusted green values are denoted by 41 ~ ee ee  and the central missing pixel is then 

carried out by selecting weighted sum in horizontal and vertical directions. 

Based on (2.34), the color-adjusted green values and the corresponding edge indicators 

need to be determined for estimating the central missing green value missG . For instance, in 

the case of Fig. 2-7(a), the color-adjusted values in each interpolation direction are referred to 
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[3] and given by 
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Similarly, in Fig. 2-7(b), the color-adjusted values in each interpolation direction are given by 
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The calculation of edge indicators associated with four surrounding green pixels is divided 

into two cases. In smooth regions, a valid assumption is that the directional derivatives of 

each color channel are small. Thus, the edge indicates in smooth regions can be seen as a 

decreasing function dependent on the sum of local first-order directional derivative such that 
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In edge regions, the assumption is that the directional derivatives of each color channel are 

consistent along the direction of edges. Thus, the edge indicates in edge regions can be seen 

as a decreasing function dependent on the consistence of local first-order directional 

derivative such that 
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(2.38) 

Once the color-adjusted green values and the corresponding edge indicators are obtained from 

(2.35) to (2.38), the missing green value G  can be obtained by using (2.34). Finally, the full 

green channel can be obtained by adopting the procedure as described above to interpolate all 

missing green values on red and blue pixel positions. This method for interpolating green 

channel from CFA samples is combined with the proposed CDEA CFA interpolation 

algorithm. 

 

Remark 2.2: Although edge-adaptive interpolation can provide more pleasing results, it also 

increases the computational load and the amount of memory transactions compared with a 

linear interpolation [39]. In order to reduce the computational cost in CFA interpolation step, 

we can still use a linear interpolation instead of the edge-adaptive interpolation. More 

specifically, for linear interpolation, the edge indicators 41 ~ aa ee  in (2.26) and 41 ~ ss ee  in 

(2.34) are fixed such that 

)1,1,1,1(),,,( 4321 =aaaa eeee , )1,1,1,1(),,,( 4321 =ssss eeee .     (2.39) 

And the edge indicators 41 ~ bb ee  in (2.31) and 41 ~ ee ee  in (2.34) are simplified such that 
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The advantage of linear interpolation is that it not only can skip the calculation of edge 

indicators, but also use bit-shift instead of division to reduce the computation time. Therefore, 

compared with edge-adaptive interpolation, the computation cost of linear interpolation will 

be greatly reduced. 
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2.4  The Complete HPHD-CDEA CFA interpolation Algorithm 

We summarize the complete HPHD-CDEA CFA interpolation algorithm as follows. 

1) Initialization: Set window size N to calculate the heterogeneity vector 1×NP  by 1
)3( −× NNT  

and 2
1)3( ×−NT  defined in (10) and (11), respectively; set parameter α  for spatial 

classification. 

2) Decision Stage (HPHD algorithm): 

a) Heterogeneity-projection: Calculate the horizontal and vertical heterogeneity maps, 

maphH _  and mapvH _ , from original Bayer mosaic image by (2.14). 

b) Directional adaptive filtering: Filter the horizontal and vertical heterogeneity maps by 

directional adaptive filters (2.17) and (2.18), respectively. 

c) Spatial classification: Use parameter α  and the two filtered heterogeneity maps to 

classify the image into three subsets hΩ , vΩ , and sΩ  by (2.10). 

3) Interpolation Stage (CDEA CFA interpolation):  

a) Interpolate G channel at R and B pixels by interpolation rule (2.34). 

b) Interpolate R and B channels by bilinear interpolation; then calculate the red and blue 

color-difference planes, Rg and Bg, by (2.25). 

c) Filter Rg value at B pixels by adaptive filtering rule (2.26) and the B channel similarly. 

d) Filter Rg value at B pixels by adaptive filtering rule (2.31) and the B channel similarly. 

Fig. 2-8 illustrates the flowchart of the proposed HPHD-CDEA CFA interpolation algorithm. 

The main difference between the proposed algorithm and the existent decision-based schemes 

is that the decision stage is performed before the interpolation stage in this design, thanks to 

the heterogeneity-projection. This advantage contributes not only to improving the quality of 

demosaicing result, but also to reducing the computational complexity of the decision stage. 

In Chapter 5, a comparative study of experimental results and analysis of computational 

complexity will be discussed to demonstrate the performance of the proposed method. 
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Fig. 2-8: Flowchart of the proposed HPHD-CDEA CFA interpolation algorithm. 

 

2.4.1  Example Study 

 Figure 2-9 illustrates the execution steps of the proposed algorithm by using an example. 

The Kodak small Lighthouse image (384x256) is downsampled into a Bayer mosaiced image 

as shown in Fig. 2-9(a). In this picture, the fence regions usually challenge the performance of 

a demosaicing procedure. Figures 2-9(b) and 2-9(c), respectively, are the horizontal 

heterogeneity map maphH _  and vertical heterogeneity map mapvH _  obtained from (2.14) 

discussed in Section 2.2.3 ( 24=N  in this example). Through the directional adaptive 

filtering discussed in Section 2.2.4, the filtered horizontal heterogeneity map *
_ maphH  and 

filtered vertical heterogeneity map *
_ mapvH  are obtained in Figs. 2-9(d)-(e), respectively. 

Comparing Figs. 2-9(d)-(e) with Figs. 2-9(b)-(c), one can see that the unwanted noises in two 

original heterogeneity maps have been removed effectively by using the directional adaptive 

filters. Employing two filtered heterogeneity maps, the horizontal, vertical, and smooth 

subsets in the image are obtained directly by (2.19) with 8.0=α . Figure 2-9(f) shows three 

decided subsets in the image, where the gray region is the horizontal subset hΩ , the white 

region is the vertical subset vΩ , and the black region is the smooth subset sΩ . Note that Fig. 

2-9(f) shows the decisions in fence regions are almost all vertical. The interpolations are thus 
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Fig. 2-9: Illustration of execution steps of the proposed HPHD-CDEA CFA interpolation algorithm. (a) 
Original Bayer mosaic image of small Lighthouse image (384x256). (b) Horizontal heterogeneity map 
Hh_map ( 24=N ). (c) Vertical heterogeneity map Hv_map. (d) Filtered horizontal heterogeneity map 

*
_ maphH . (e) Filtered vertical heterogeneity map *

_ mapvH . (f) Three decided subsets in the image 

( 8.0=α ). The gray region is the horizontal subset hΩ , the white region is the vertical subset vΩ , 
and the black region is the smooth subset sΩ . (g) Interpolation result using the proposed CDEA CFA 

interpolation presented in Section 2.3. 

 

     
(a)           (b)        (c)        (d) 

Fig. 2-10: (a) Zoom-in of the original Lighthouse image in the fence region. Zoom-in of the 
demosaicing results with parameters 24=N  and (b) 0=α , (c) 5.0=α , (d) 8.0=α . 

 

along the correct directions. Finally, the proposed CDEA CFA interpolation discussed in 

Section 2.3 was applied to reconstruct the color image based on these three decided subsets. 
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Figure 2-9(g) illustrates the interpolation results. In Fig. 2-9(g), one can see that the fine 

details of interpolation such as the fence and house regions are reconstructed successfully. 

 To further illustrate the performance, we tweak parameter α  and compare the 

demosaicing results with original image ( 24=N  is fixed). Figure 2-10(a) is the zoom-in of 

the original fence regions. Figure 2-10(b) is the zoom-in of demosaicing result with parameter 

0=α . One can see that the demosaiced image contains many color artifacts due to the 

inaccurate smooth interpolation. Figures 2-10(c) and 2-10(d) show the demosaicing results 

with parameter 5.0=α  and 8.0=α , respectively. It is clear that the proposed 

HPHD-CDEA CFA interpolation method reduces the color artifacts efficiently. Visually 

compare Fig. 2-10(d) with Fig. 2-10(a), one can see that most detail features have been 

reconstructed correctly. 

 

2.5  Summary 

A novel hard-decision CFA interpolation procedure has been developed based on the 

spectral-spatial correlation of a Bayer mosaic image. The proposed HPHD CFA interpolation 

method effectively reconstructs fine detail features in both edge and texture regions of 

demosaiced images. One merit of the proposed HPHD algorithm is that it can combine with 

many existing image interpolation methods such as decision-based algorithm (set 1=α ), 

edge-directed interpolation, adaptive interpolation, linear interpolation, etc for improved 

performance. Moreover, the proposed heterogeneity-projection scheme provides an efficient 

method for decision-based algorithms to make accurate direction-selection before performing 

interpolation.  

In order to reconstruct the demosaiced images with fewer color artifacts, a novel CDEA 

CFA interpolation method is then proposed to combine with the HPHD algorithm. The 

proposed CDEA algorithm effectively reduces color artifacts in both smooth and edge regions 

of demosaiced images. Furthermore, any existing image interpolation method can be 
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combined with the proposed CDEA algorithm to reconstruct the green channel. A new 

edge-adaptive interpolation method is also presented by adopting the hard-decision rule from 

HPHD algorithm to reconstruct the green channel from CFA samples. In Chapter 5, the 

performance of the proposed HPHD-CDEA method will be compared with three renowned 

CFA interpolation methods. Experimental results will show that HPHD-CDEA method not 

only outperforms all of them in PSNR (dB) and S-CIELAB *
abE∆  measures, but also gives 

superior demosaiced fidelities in visual comparison. 
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Chapter 3 

 
Robust Mobile Robot Visual Tracking Control Based 

on a Dual-Jacobian Visual Interaction Model 

 

3.1  Introduction 

From the literature discussed in Chapter 1, we have noted that a challenge in mobile 

robot visual tracking control design is to develop a visual tracking control system to track a 

dynamic moving target based on a stability criterion and overcome the uncertainties 

encountered in practical systems. This problem motivates us to derive a new model for 

designing a robust VTC to solve the visual tracking problem of dynamic moving target and 

overcome the internal disturbances of practical system (such as system parametric uncertainty 

and velocity quantization uncertainty). To achieve this, this chapter presents a novel 

dual-Jacobian visual interaction model to help the design of a robust VTC for a wheeled 

mobile robot equipped with a tilt camera. The proposed design enhances various 

image-tracking applications using an on-board monocular camera, such as human-robot 

interaction and surveillance. Based on Lyapunov theory, the proposed control scheme not only 

possesses some degree of robustness against parametric uncertainty, but also overcomes the 

external uncertainty caused by velocity quantization noise. Moreover, the proposed controller 

fully works in image space; hence the computational complexity and the effects of 

sensor/camera modeling errors can be greatly reduced. The main differences between the 

proposed VTC and other existent approaches are summarized as follows: 

1) The proposed dual-Jacobian visual interaction model considers not only the effect of 
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mobile robot motion, but also the effect of target motion. Thus, based on the proposed 

model, the visual tracking control problem of a unicycle-modeled mobile robot for 

tracking a dynamic moving target can be solved with exponential convergence using a 

single controller. Moreover, the proposed model also considers the kinematics of a tilt 

camera platform mounted on the mobile robot. Therefore, the applicability of the 

proposed method is greatly increased. 

2) The proposed visual tracking control system not only possesses some degree of robustness 

against the system model uncertainties, but also overcomes the unmodelled quantization 

effect in the velocity commands and the occlusion effect during visual tracking process. 

This advantage enhances the reliability of the proposed method in practical applications. 

3) The proposed visual tracking control system works fully in image space. Therefore, 

compared with position-based [23], homography-based [13, 14], and epipole-based [4, 15, 

16, 17] visual tracking control approaches, the computational complexity and the 

sensor/camera modeling errors can be reduced due to the advantages of image-based 

visual servo control [2]. 

The basic assumptions of the proposed method are listed as follows: 

1) The on-board camera is supposed to be a calibrated pinhole camera. Because the proposed 

VTC possesses some degree of robustness against parametric uncertainty, a simple linear 

camera calibration method [44] can be used to estimate the intrinsic parameters of the 

camera. 

2) The width of target is supposed to be a priori known constant in order to simplify the depth 

estimation problem. However, this is not a necessary assumption for the proposed method. 

Any algorithm or sensor which provides the depth information can be utilized to combine 

with the proposed method. 
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The rest of this chapter is organized as follows. Section 3.2 describes the system 

modeling of visual tracking control problem and the proposed dual-Jacobian visual interaction 

model accordingly. Section 3.3 presents the results of VTC design. In Section 3.4, the 

robustness of the control system against the system model uncertainty is analyzed and 

discussed. Section 3.5 presents the design of the robust control law to overcome the velocity 

quantization error encountered in practical systems. Section 3.6 summarizes the contributions 

of this design. Experimental results will be reported in Chapter 5. Several interesting 

experimental observations will be presented and discussed.  

 

3.2  Camera-Object Visual Interaction Model 

This section derives the visual interaction model between a mobile robot and a dynamic 

moving target. We first introduce the kinematics model of wheeled mobile robot and target 

used in this design. The mathematic derivations of the proposed model are then presented and 

explained. 

 

3.2.1 Kinematics Model of Wheeled Mobile Robot and Target 

Figure 3-1 shows the model of wheeled mobile robot and target considered in the 

nonholonomic visual tracking control problem. The wheeled mobile robot equips with a tilt 

camera to track a dynamic motion target, which is supposed to be a well-recognizable object 

with appropriate dimensions in the image plane and can only translate with respect to the 

robot. The tilt camera is mounted on top of the mobile robot and its optical-axis faces the 

target of interest, for instance, a human face. Figure 3-1(a) illustrates a model of the wheeled 

mobile robot and the target in the world coordinate frame Ff (see Fig. 3-2), in which the 

motion of the target is supposed to be holonomic such that 

t
f

t
f VX =& ,                      (3.1) 
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(a)          (b) 
Fig. 3-1: (a) A model of the wheeled mobile robot and the target in the world coordinate frame. (b) 
Side view of the wheeled mobile robot with a tilt camera mounted on top of it. 

 

where Tt
f

t
f

t
f

t
f zyxX ][=  and Tz

f
y
f

x
f

t
f vvvV ][= denote, respectively, the position and 

velocity of target in the world coordinates. 

Figure 3-1(b) is the side view of the scenario under consideration, in which the tilt angle 

φ  gives the relationship between the camera coordinate frame cF  and the mobile coordinate 

frame mF . The kinematics of the wheeled mobile robot is described by [45] 
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where Tm
f

m
f

m
f

m
f zyxX ][=  is the position of mobile robot in the world coordinates, 

),( φθ m
f  are the orientation angle of mobile robot and the tilt angle of onboard camera, m

tw  is 

the tilt velocity of the camera, and ),( m
f

m
f wv  are the linear and angular velocities of mobile 

robot. In practice, ),( m
f

m
f wv  can be used to calculate the velocity of each wheel of the mobile 

robot such that 
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2)D( m
f

m
f

m
l wvv ⋅−=  and 2)D( m

f
m
f

m
r wvv ⋅+= ,         (3.3) 

where ( m
lv , m

rv ) are the left- and right-wheel velocities, respectively, and D represents the 

distance between the two drive wheels. In the rest of this chapter, the target model (3.1) and 

mobile robot model (3.2) will be utilized to derive the visual interaction model and to design 

the visual tracking control system. 

 

3.2.2 Coordinate Transformation from World Frame into Camera Frame 

Figure 3-2 illustrates the relationship between coordinate systems, namely the world, 

camera and image coordinate frames. Let m
f

t
ff XXX −=  denote the related position 

between mobile robot and the target in the world coordinate frame. In order to describe a 

mobile robot interacting with the target in the image coordinate frame, a visual interaction 

model has been derived by transferring the kinematics of fX  from the world coordinate 

frame into the image coordinate frame. This subsection presents the transformation of the 

kinematics of fX  from the world coordinate frame into the camera coordinate frame.  

As shown in Fig. 3-2, T
cccc zyxX ][=  denotes the related position in the camera 

coordinate frame and can be calculated by the coordinate transformation such that 

δY),( −= f
m
fc XX θφR ,             (3.4) 

where 
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is the distance between the center of robot head and the onboard camera. Because δY  is a 

constant translation vector, the derivative of (3.4) becomes 
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Fig. 3-2: World, camera and image coordinate frames of robotic visual interaction. 
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Substituting (3.1), (3.2) and (3.4) into (3.5), the kinematics of the interaction between robot 

and target in camera frame can be obtained by taking the derivative of cX  such that 
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where   
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Tm
t

m
f

m
f wwvu ][=  is the control velocity of the mobile robot and on-board tilt camera. In 

the following, the kinematics model (3.6) will be used to derive the interaction model in the 

image coordinate frame.  

 

3.2.3 Coordinate Transformation from Camera Frame into Image Frame 

In this subsection, the related position Xc is transformed into the image coordinate frame 

for deriving the visual interaction model based on (3.6). We first define the system state in the 

image coordinate frame for the controller design. Fig. 3-3 illustrates the definition of observed 

system state in the image plane. In Fig. 3-3, ix  and iy  are, respectively, the horizontal and 

vertical position of the centroid of target in the image plane, and xd  is the width of target in 

the image plane. Similar to the human’s visual tracking behavior, the purpose of the visual 

tracking control design is to control the centroid position and width of target from an initial 

state into the desired state in the image plane. 

In the following, the visual interaction model is derived by (3.6) and the selected system 

state. Based on the pinhole camera model, the diffeomorphism (please see [46] for the 

specification) in the image plane can be defined by the standard projection equations [44] 

such that: 

[ ] [ ]Tcwxcycx
T

xiii zkkykxkdyxX −== , cxx zk f= , cyy zk f= , cw zk W= ,  

(3.7) 
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Fig. 3-3: The definition of observed and desired system states in the image plane. 

 

where )f,f( yx  represent fixed focal length along the image x-axis and y-axis, respectively 

[47], and W denotes the actual width of the target. By taking the derivative of (3.7), the 

kinematic relationship between image and camera coordinate frames can be found such that 
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Substituting (3.6) and (3.7) into (3.8), the kinematic relationship between robot and target in 

the image coordinate frame can be modeled by quasi-linear parameter-varying (Quasi-LPV) 

description [48] such that 

iiiii CuXX ++= BA&        (3.9) 
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where ),,( cbadiag  denotes a 3-by-3 diagonal matrix with diagonal element a, b, and c; the 

elements of system matrix iA  and vector iC  are time-varying function dependent on the 

robot’s pose and target’s velocity; and the elements of control matrix iB  are time-varying 

function dependent on the robot’s pose and current system state. 

 

3.2.4 Dual-Jacobian Visual Interaction Model 

The visual interaction model (3.9) indicates that the elements of system matrix iA  and 

vector iC  are function of target velocity. Thus, expression (3.9) can be rewritten such that 
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Expression (3.10) shows that the visual interaction model consists of two parts: first, the 

effect of target motion [ ] t
fi

Tt
x

t
i

t
i

t
i VdyxX J=≡ &&&& , and second, the effect of mobile robot 

motion [ ] udyxX i
Tm

x
m
i

m
i

m
i B=≡ &&&& . Thus, (3.10) can be rewritten as a dual-Jacobian 

equation such  
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Fig. 3-4: Depicts the concept of dual-Jacobian visual interaction model (3.11). 

 

that 

uVXXX i
t
fi

m
i

t
ii BJ +=+= &&& ,            (3.11) 

where matrix iJ , which is named target image Jacobian, transfers the target velocity t
fV  

into target image velocity t
iX& ; matrix iB , which denotes robot image Jacobian, transfers the 

mobile robot control velocity u  into robot image velocity m
iX& . In other words, the image 

velocity iX&  is caused by the combination of target image velocity t
iX&  and robot image 

velocity m
iX& . Figure 3-4 shows the concept of dual-Jacobian equation (3.11). Therefore, the 

visual interaction between robot and target in the image coordinate frame can be modeled as a 

dual-Jacobian visual interaction model (3.11), which combines the motion effect of mobile 

robot with moving target together. 

 

Remark 3.1: The scalars cxx zk f=  and cyy zk f=  in (3.7) depend on the depth 

information between camera and target. The estimation of depth information is a demanding 

task in visual tracking control design; especially only one camera is used. Thus, an algorithm 

or sensor which provides the depth information is usually required during visual tracking 
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process. In order to simplify the depth estimation problem, an alternative is to assume that the 

width of target is known a priori. Therefore, the scalars xk  and yk  can be calculated using 

the state variable xd  directly based on the fact that Wf xcxx dzk ==  and xyxy kk ff= , 

where W denotes the width of target for a specific target. 

 

3.3  Visual Tracking Controller (VTC) Design 

In this section, a visual tracking control law based on the proposed dual-Jacobian visual 

interaction model (3.11) for tracking a target of interest in the image plane is derived by 

exploiting feedback linearization and pole placement approaches. 

 

3.3.1 Error Coordinate Transformation  

In order to control the system from an initial state to the desired state, an error-state 

model will be helpful for us to design the tracking controller. Define the error state in the 

image plane such that 

[ ] [ ]Txxiiii
T

eeee dyxdyxX *** dyx −−−== ,      (3.12) 

where [ ]Txiii dyxX =  is the vector of fixed desired states in the image plane; 

[ ]Txiii dyxX **** =  is the vector of estimated states from the VSE (see Chapter 4). Based on 

the error state (3.12), the dynamic error state model in the image plane can be derived directly 

by taking the derivative of (3.12) such that 

uVXXX i
t
fi

m
i

t
ie BJ −−=−−= &&& .     (3.13) 

With the new coordinate eX , the visual tracking control problem is transformed into a 

stability problem. If eX  converges to zero, then the visual tracking control problem is 

solved. 
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3.3.2 Visual Feedback Control Design 

Based on the dynamic error state model (3.13), we choose the feedback linearization 

control law such that 

)()( 11 t
iegi

t
fiegi XXVXu &−=−= −− KBJKB ,     (3.14) 

where gK  is an 3-by-3 gain matrix. Substituting (3.14) into (3.13) yields 

ege XX K−=& .              (3.15) 

Next, we choose the gain matrix such that 

)α,α,α( 321diagg =K ,          (3.16) 

in which )α,α,α( 321  are three positive constants. Substituting (3.16) into (3.15) yields 

eege XdiagXX )α,α,α( 321−=−= K& .           (3.17) 

Suppose that the initial error-state )( 0tX e  is within the image plane. Then expression (3.17) 

indicates that 

)(),,())(,;(|)( 0
)(α)(α)(α

00)(,
030201

00
tXeeediagtXttXtX e

tttttt
eetXte e

−−−−−−=≡ ,  (3.18) 

for some 00 ≥t . Because 0)α,α,α( 321 >  are positive constants, expression (3.18) leads to 

the following inequality: 

)())(,;( 0
))((

00
0min tXetXttX e

tt
ee

g −−≤ Kλ  for all 0tt ≥ ,    (3.19) 

where )(min Aλ  denotes the minimum eigenvalue of matrix A, and X  denotes the 2-norm 

value of the vector X. From (3.19), it is clear that the system error-state satisfies 

)()(,;( 000 tXtXttX eee ≤  and 0)(,;(lim 00 =∞→ tXttX eet , and thus the visual tracking 

control problem is solved. Summarizing the above discussions, we obtain the following 

theorem. 

 

Theorem 3.1: Suppose the the initial system state Xi is within the image plane. Let 
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0)α,α,α( 321 >  be three positive constants. Consider the closed-loop visual tracking system 

(3.13). If the matrix iB  is nonsingular, then the closed-loop visual tracking system (3.13) is 

exponentially stable by using the control law 

)(1 t
fiegi VXu JKB −= −                 (3.20-1) 

)(1 t
iegi XX &−= − KB ,        (3.20-2) 

where matrices iB  and iJ  are defined in (3.9) and (3.10), respectively; eX  is defined in 

(3.12); and gK  is a 3-by-3 diagonal gain matrix such that 

)α,α,α( 321diagg =K .        ■ 

Proof: Consider the closed-loop visual tracking system (3.13). We first define a 

positive-definite Lyapunov function associated with the system error-state 

)(
2
1),,( 222

eeeeee dyxdyxV ++= .      (3.21) 

Taking the derivative of (3.21) yields 

)()()(|| )13.3()13.3( ufuXXuXVXXXV i
t
i

T
ei

T
e

t
fi

T
ee

T
e −≡+−=+−== BBJ &&& ,  (3.22) 

where )()( uXXuf i
t
i

T
e B+= & . In view of Lyapunov theory [46], expression (3.22) tells us 

that if 0)( >uf  then the equilibrium point of (3.13) is asymptotically stable. Substituting the 

control law (3.20) into f(u), we then have 

eg
T
e XXuf K=)( ,           (3.23) 

where )α,α,α( 321diagg =K , and )α,α,α( 321  are three positive constants. Since Kg is a 

symmetric positive definite (SPD) matrix, the following inequality holds: 

0)α,α,αmin()()( 2
321

2
min >=≥ eeg XXuf Kλ ,        (3.24) 

where )(min Aλ  denotes the minimum eigenvalue of matrix A. Expression (3.24) concludes 

that the closed-loop visual tracking system (3.13) is exponentially stable and hence completes 
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the proof.                          ■ 

 

Remark 3.2: Although the proposed image control law (3.20) results in a smooth convergence 

in the image plane, it still has to proof that the robot should have followed the target. The 

discussion of this problem is presented in Appendix D. 

 

3.3.3 Singularity Analysis 

The feedback linearization control law (3.20) poses a singularity problem of matrix iB . 

Let mnB  denote an element of matrix iB  corresponding to the m-th row and n-th column. 

By directly computing, the determinant of matrix iB  is given by 

322311331221312312332211)det( BBBBBBBBBBBBi −−+=B .      (3.25) 

Based on (3.25), the singularity condition of matrix iB  can be found such that 

φtan)S(f xiy dy += ,           (3.26) 

where )Wf/()f(S xy yδ=  is a fixed scalar factor. Because of Wf xcxx dzk ==  and 

xyxy kk ff= , (3.26) can be rewritten such that 

yky yi

y

δ
φ

+
=

f
tan .          (3.27) 

Moreover, since cyy zk=f  and cyi yky = , equation (3.27) equals: 

yy
z

c

c

δ
φ

+
=tan .                  (3.28) 

As shown in Fig. 3-5, let φ′  be the angle related to the location of the target, we have the 

following geometric relationship: 

yy
z

c

c

δ
φφ

+
=′+ )tan( .             (3.29) 

From equations (3.28) and (3.29), it is clear that the matrix iB  becomes singular when φ′  

equals to 0 or π . The physical meaning of this is that the target is directly above or directly 
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Fig. 3-5: Physical meaning of the singularity condition (3.26). 

 

below the robot, and the robot will be unable to approach the target in any way due to 

insufficient degrees-of-freedom. Therefore, the robot will stop tracking temporarily under 

such circumstances. 

 

Remark 3.3: The proposed visual interaction model (3.11) poses a question that the derivation 

of Wxx kd =  is not always hold for a cylindrical target used in the system modeling. As 

shown in Fig. 3-6, parameters W, fx and zc remain the same, but the cylindrical target is shifted 

along xc. The projection dx is not the same and includes an error xdδ . Because the camera is 

supposed to have a limited field of view, the error xdδ  would be small and could be modeled 

as a system uncertainty. In the next section, the robustness analysis is presented in order to 

handle this kind of uncertainty. 

 

3.4  Robustness Against System Model Uncertainty 

In this section, the robustness of the VTC (3.20) is investigated against model 

uncertainties from camera parameters )f,f( yx , robot parameters ),( φθ m
f , and target 

parameters ),,,W( t
x

t
i

t
i dyx &&& , etc. Consider the following closed-loop visual tracking system 

with parametric uncertainties: 
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Fig. 3-6: Projection error in dx. 

 

uVuVX ii
t
fiii

t
fie )()( BBJJBJ δδ +−+−=−−=& ,        (3.30) 

where iJδ  and iBδ  are unknown bounded matrix-disturbances. Recall the positive-definite 

Lyapunov function defined in (3.21), the derivative of (3.21) with parametric uncertainties 

becomes 

)(|)]()([][|| )13.3()30.3()30.3( ufVufufuXVXXXV i
T
e

t
fi

T
ee

T
e δδ −=+−=+−== &&& BJ ,   (3.31) 

where uXVXuf i
T
e

t
fi

T
e BJ δδδ +=)(  is unknown. Assume that iJδ  and iBδ  are bounded 

and there exists two positive values MC  and NC  such that 

eNeM XCXCuf +≤ 2)(δ .            (3.32) 

We now introduce the following definition. 

 

Definition 3.1: The system (3.13) is said to be practically stable at the origin if a compact set 

S in nℜ  exists containing the origin such that for each StX e ∈)( 0 , StX e ∈)(  for all 

0tt ≥ . 

 

In practical applications, the practical stability problem can be more easily handled. Now, the 
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main result is presented as follows. 

 

Theorem 3.2: Consider the closed-loop visual tracking system (3.13) with unknown bounded 

parametric uncertainties iJδ  and iBδ  defined in (3.30). Let MC  and NC  be two positive 

values defined in (3.32) and assume that the target’s motion velocity 0≥t
fV  is bounded 

and small enough. Choose the controller u as given in expression (3.20) with gain matrix 

0)α,α,α( 321 >= diaggK . If 

(i) [ ] 1)()( min
1

max →−
gg KK λλ . 

(ii) [ ] 0)( 1
max →−

Ng CKλ . 

Then the origin is asymptotically stable under the condition 0=t
fV , and the origin is 

practically stable under the condition 0>t
fV .                 ■ 

Proof: Choose the controller u in (3.20) with parametric uncertainties such that 

)()( 11 t
iegi

t
fiegi XXVXu &−=−= −− KBJKB ,       (3.33) 

where t
fi

t
i VX J=& . Substituting (3.33) into )(ufδ  defined in (3.31) yields 

,          

    )(          

)(          

)]([)(

2

121
max

11

1

eNeM

e
t
fiiiieiig

t
fiiii

T
eegii

T
e

t
fiegii

T
e

t
fi

T
e

XCXC

XVX

VXXX

VXXVXuf

+=

−+≤

−+=

−+=

−−

−−

−

JBBJBBK

JBBJKBB

JKBBJ

δδδλ

δδδ

δδδ

       (3.34) 

where 1
max )( −= iigMC BBK δλ , t

fiiiiN VC  1JBBJ −−= δδ , )(max Aλ  denotes the 

maximum eigenvalue of matrix A, and A  denotes the Euclidean norm value of the matrix 

A. From (3.31), (3.33) and (3.34), it follows that 

.}])({[                                      

)(||

min

2
)30.3()13.3(

eNeMg

eNeMeg
T
e

XCXC

XCXCXXufVV

−−−≤

++−=+=

K

K

λ

δ&&
       (3.35) 
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Expression (3.35) implies that if 0])([ min >−− NeMg CXCKλ  can be guaranteed, then 

0| )13.3( <V&  is satisfied and thus the system has the robust property w.r.t. the parametric 

uncertainties. 

From (3.34), the condition 0])([ min >−− NeMg CXCKλ  can be rewritten such that 

[ ] [ ] NgiigNMge CCCX 1
max

111
min )()(])([ −−−− −=−> KBBKK λδρλ λ ,     (3.36) 

where [ ] )()()( min
1

max ggg KKK λλρλ
−= . In general, we have that 11 <−

ii BBδ . By 

assumption (i) of the theorem, expression (3.36) follows that when 1)( →gKλρ  satisfies, 

0>∃ε  such that 

[ ] [ ]{ }ελδρζζ λ +−<ℜ∈→ −−−
Ngiig

n
e CX 1

max

11 )()(: KBBK .       (3.37) 

Because of t
fiiiiN VC  1JBBJ −−= δδ , the condition 0=t

fV  follows that 

ε<eX  and [ ] .0 )(| 21
)13.3( <−−≤ −

eiig XV BBK δρλ
&      (3.38) 

Thus, there exists a constant 0>δ , εδ < , T∃  such that 

δε <⇒< )(    )( 0 tXtX ee  Ttt +≥∀ 0 ,         (3.39) 

which means that the origin is asymptotically stable under the condition 0=t
fV . 

On the other hand, the condition 0>t
fV  follows that when 1)( →gKλρ  satisfies, 

0>∃ε  such that 

0| )13.3( <V&  for all [ ] [ ] ελδρλ +−< −−−
Ngiige CX 1

max

11 )()( KBBK .   (3.40) 

Since t
fV  is supposed to be small enough, t

fN VC  ∝  is sufficiently small. By assumption 

(ii) of the theorem, there exists a sufficiently large )(max gKλ and a constant 01 >δ  such that 

0cX e < , where [ ] εδδρλ +−=
−−

1

11
0 )( iigc BBK . Choose the set { }1: cS n ≤ℜ∈= ζζ , 
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where 01 >c  satisfies 01 cc > . Then, any trajectory that begins at any StX e ∈)( 0  will 

remain in S for all 0tt ≥  under the control law (3.20). Thus, the origin is practically stable 

under the condition 0>t
fV . This completes the proof.                 ■ 

 

In Chapter 5, the result of Theorem 3.2 will be validated by practical experiments. 

Further, in realization of the control schemes, it was noted that the quantization error in 

velocity commands degrade the performance of the controller and might make the system 

unstable. It is therefore interesting to study the robustness issues related to velocity 

quantization uncertainty. In the following section, a robust control law based on Lyapunov’s 

direct method will be derived to overcome the velocity quantization uncertainty in practical 

control systems. 

 

3.5  Robustness Against Velocity Quantization Error 

When tracking a target, it is desirable for the robot to have a smooth motion in 

human-robot interaction. But in such circumstances, one will face the problem caused by 

velocity quantization error in practical implementation. In this section, a robust control law is 

derived to eliminate the velocity quantization error encountered in practical control systems 

based on the dynamic error state model defined in (3.13). To do so, a stability necessary 

condition (SNC) is first derived for ensuring asymptotic stability and practical stability of the 

closed-loop visual tracking system through Lyapunov’s direct method. The robust control law 

is then proposed to guarantee that the visual tracking system satisfies the SNC and hence 

complete the controller design. 

 

3.5.1 Stability necessary condition (SNC) 

Digital control systems usually have uniform quantization errors due to the finite-length 
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effects on the sample values [49]. In other words, the ideal (theoretical) control command u is 

quantized such that 

uuu δ+= ,             (3.41) 

where u  denotes the practical (actual) control command sent to the robot actuator, and uδ  

represents the uniform quantization error encountered in the system. Thus, in practice, (3.22) 

becomes 

0)(|)]()()([)(| )13.3(
)41.3(
)13.3( <−=+−−=−= ufVufufufufV δδδδδ && ,      (3.42) 

where uXuXuXuf i
T
ei

T
ei

T
e δδδδδδ BBB ≅−=)( . Expression (3.42) shows that if the 

controller u satisfies the assumptions (i) and (ii) of Theorem 3.2, then the equilibrium point of 

the system (3.13) still can be unstable under the condition 0)( <uf δδ . Therefore, one has the 

following SNC in practical control implementation: 

 

SNC: Consider the closed-loop visual tracking system (3.13) with unknown bounded 

parametric uncertainties iJδ  and iBδ  defined in (3.30). Let uδ  denote the velocity output 

quantization error in practical systems. Suppose that the controller u given in (3.20) satisfies 

the assumptions (i) and (ii) of Theorem 3.2. Then, the result of Theorem 3.2 holds under the 

condition 0)( ≥= uXuf i
T
e δδδ B               ■ 

 

3.5.2 Proposed robust control law 

SNC implies that a practical system may become unstable under the condition 

0)( <uf δδ . Our goal is to design a robust control law which not only guarantees SNC to be 

always satisfied but also increases the convergence rate of the control system. 

First, we expand )( uf δδ  such that 

m
t

m
f

m
f wwvuf δγδγδγδδ 321)( ++= ,         (3.43) 
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where 

eee dByBxB 3121111 ++=γ , eee dByBxB 3222122 ++=γ , eee dByBxB 3323133 ++=γ , 

mnB  denotes the element of matrix iB  corresponding to the m-th row and n-th column. Next, 

based on the velocity transformation  
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,       (3.44) 

where D  represents the distance between two drive wheels, expression (3.43) becomes 

m
t

m
l

m
r wvvuf δγδγγδγγδδ 32121 )]D()2[()]D()2[()( +−++= .     (3.45) 

Expression (3.45) tells us that if each term in (3.45) is equal to a nonnegative value, then 

0)( ≥uf δδ  can be guaranteed. Based on this idea, a variable structure robust control law is 

derived such that: 
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where  

⎪
⎩

⎪
⎨

⎧

>
=
<−

=
0     ,1
0     ,0
0     ,1

)(
xif
xif
xif

xsign , 

),,( *** m
t

m
r

m
l wvv  are the outputs of the proposed robust control law for tracking control of the 

robot, and ),,( trl εεε  are three positive constants such that 

)sup,sup,(sup),,( m
t

m
r

m
ltrl wvv δδδεεε = .    (3.47) 
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The value of constants ),,( trl εεε  is calculated based on the range of quantization errors 

),,( m
t

m
r

m
l wvv δδδ  that are dependent on the resolution of robot motion control module. It is 

easy to show that the outputs of the proposed robust control law guarantee each term of (3.45) 

is equal to a nonnegative value, and thus SNC is satisfied. Further, because of 

0|)(|| )13.3()13.3(
)41.3(
)13.3( <≤−= VufVV &&& δ , an increase of the convergence rate of the practical 

system is obtained. In Chapter 5, the stability characteristic and convergence performance of 

the proposed control law are verified in practical experiments. 

 

3.6  Summary 

A novel dual-Jacobian visual interaction model that represents the visual interaction 

between a mobile robot and a dynamic moving target in the image plane has been derived in 

this chapter. Based on this visual interaction model, a robust VTC is proposed to solve 

dynamic moving target visual tracking control problem with/without the information of 

target’s 3D motion velocity. A study of system model and velocity quantization uncertainties 

in visual tracking control of a wheeled mobile robot has also been discussed in this chapter. In 

the parametric robustness analysis, we have shown that the proposed VTC provides some 

degree of robustness against system model uncertainties. Moreover, based on Lyapunov 

theory, the robust control law efficiently overcomes the unmodelled quantization effect in the 

velocity commands. In Chapter 5, several experimental results will be presented and 

discussed to verify the effectiveness of the proposed VTC, in terms of tracking performance, 

system convergence, and robustness. 
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Chapter 4 
 

Design of Visual State Estimator 

 

4.1  Introduction 

Recall Theorem 3.1, the visual tracking control law (3.20) requires information about 

target 3D velocity t
fV  or target image velocity t

iX& . If t
fV  is known, the first visual tracking 

control law (3.20-1) only needs an estimate of target status iX  to calculate the control signal 

u. However, in practical applications, it is difficult to estimate t
fV  when using only one 

camera in real-time operations. In this situation, the second visual tracking control law (3.20-2) 

provides a useful solution which only needs the target image velocity t
iX&  in the image plane. 

In this chapter, two VSEs will be proposed in order to estimate the necessary information for 

later used by the VTC. The first VSE is developed under the condition that target velocity t
fV  

is known, and the second VSE is designed by releasing this condition. These designs will 

facilitate more general performance of the proposed tracking control scheme in the image 

plane. Another advantage of the proposed VSEs is that they can estimate the optimal target 

state from the observed image, which has both random noise and temporary occlusion 

uncertainties. Therefore, with the proposed VSEs, the visual tracking control system can be 

robust to the uncertainties of image noise and temporary occlusion.  

 

The rest of this chapter is organized as follows. Section 4.2 presents the design of VSE 

with target velocity information to estimate the optimal system state in the image plane for 

handling the uncertainties caused by image noise and temporary occlusion. In Section 4.3, the 



 

 
63

results of VSE design without target velocity information is presented. Section 4.4 

summarizes the contributions of this work. The results of computer simulations and practical 

experiments to validate the effectiveness of the proposed VSEs, in terms of estimation 

performance and robustness, will be reported in Chapter 5.  

 

4.2  VSE Design with Target Velocity Information (VSE-WTV) 

 In the case of knowing the target 3D velocity t
fV , we develop the VSE-WTV based on 

the system model (3.9) to estimate the optimal target status iX  in the image plane. To 

achieve this, a propagation model is required in order to help the design of VSE-WTV. This 

subsection presents the derivation of the required propagation model and the design of the 

proposed VSE-WTV algorithm. 

 

4.2.1 Propagation Model for VSE-WTV 

Since actual image processing is discrete, the first step of the derivation of propagation 

model is to discretize the system model (3.9) into corresponding discrete form. By the 

definition T)]T()([lim)(
0T

−−=
→

txtxtx& , T  denotes the sampling time of the digital system, 

we can approximate the system model (3.9) as 

iniii
p

i CunXnX TT]1[)T(][ 1
*

3 ++−+= −BAI , for ,...2 ,1=n     (4.1) 

where ][nX p
i  is the propagated system state at time step n, 3I  is a 3-by-3 identity matrix, 

[ ]Txiii dyxnX **** ]1[ =−  denotes the estimated system state at time step n-1, and 

[ ]Tm
t

m
f

m
fn wwvu =−1  is the output of VTC at time step n-1. 

The second step of the derivation of propagation model is to analyze the error covariance 

matrix of discrete-time propagation equation (4.1). We first introduce the following variables 
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iii xxx δ+=* , iii yyy δ+=* , xxx ddd δ+=* , 

m
f

m
f

m
f vvv δ+=* , m

f
m
f

m
f www δ+=* , m

t
m
t

m
t www δ+=* ,      (4.2) 

where ( ix , iy , xd ) denote the system state variables; ( *
ix , *

iy , *
xd ) denote the estimated state 

variables and ( ixδ , iyδ , xdδ ) are the corresponding state estimation errors; ( *m
fv , *m

fw , *m
tw ) and 

( m
fv , m

fw , m
tw ), respectively, denote the velocity inverse transformation of the estimated 

velocities ( m
lcv , m

rcv , m
tcw ) and velocity commands ( m

lv , m
rv , m

tw ) based on (3.44) such that 
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where D  is the distance between two drive wheels. Using (4.3), the estimated velocity errors 

( m
fvδ , m

fwδ , m
twδ ) can be estimated by the velocity inverse transformation 
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Next, substituting (4.2) into (4.1) and canceling common terms, the state estimation errors can 

be approximated by neglecting the higher-order terms in the discrete-time error propagation 

equation such that 

1T]1[][ −+−= niii δunδXnδX BAδ ,       (4.5) 

where [ ]Txiii dyxnδX δδδ=− ]1[  denotes the error propagation state, 

[ ]Tm
t

m
f

m
fn wwvδu δδδ=−1  is the estimated velocity error, and 
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Because ]1[ −nδXi  and ]1[ −nδu  are uncorrelated, the covariance matrix propagation 

equation can be obtained by adopting (4.5) such that 

{ } T
ini

T
n

T
iin nδXnδXE BWBAPAP 1

2*
1 T][][ −− +== δδ ,           (4.6) 

where { }]1[]1[1 −−=− nδunδuE T
nW  is the covariance matrix of the estimated velocity error. 

Applying (4.1) and (4.6), the system state and the corresponding covariance matrix in the next 

time steps can be propagated. 
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4.2.2 Observation and Correction for VSE-WTV 

In this subsection, the propagated system state and the propagation covariance matrix 

will be corrected using the observation of camera 

nin δZnXZ += ][3I , 

where ),0(~ nn NZ Rδ  denotes Gaussian observation uncertainty with zero mean and 

covariance matrix nR  at instant n. The correction procedure will be [50] 

{ }][][][* nXZnXnX p
inn

p
ii −+= K , and             (4.7) 

nnn PKIP )( 3
* −= ,             (4.8) 

where nK  is the Kalman gain matrix given by 

1)( −+= nnnn RPPΚ .             (4.9) 

Finally, the corrected system state ][* nX i  and the corresponding covariance matrix *
nP  are 

the optimal estimates at sample instant n. 

 

4.2.3 Summary of the Proposed VSE-WTV Algorithm 

Based on the propagation equations (4.1) and (4.6) and the correction equations 

(4.7)-(4.9), the VSE-WTV can be summarized as follows: 

1) Assume that the initial position of target is located in the field-of-view of the camera, then 

initialize the estimated system state ]0[*
iX  and propagation covariance matrix 0P  by the 

first observation such that 0
* ]0[ ZXi =  and 00 RP = . The proposed VTC starts working. 

2) Compute the propagated system state ][nX p
i  and the corresponding covariance matrix 

nP  using (4.1) and (4.6), respectively. 

3) If the target to be tracked is detected in the observed image, then compute the Kalman gain 

matrix nK  using (4.9); else set ][][* nXnX p
ii =  and nn PP =* , go to step 5. 
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4) Correct the estimated state vector ][* nXi  and the corresponding covariance matrix *
nP  

using (4.7) and (4.8), respectively. 

5) Let ][]1[ ** nXnX ii =−  and **
1 nn PP =− , then go to step 2.                     ■ 

 

Remark 4.1: Because the observation uncertainty usually varies with the conditions of target 

motion (such as orientation and rotation of the target) and working environment (such as light 

variation and occlusion), the corresponding covariance matrix nR  would be time-varying 

for different operating conditions. In order to overcome this problem, a real-time self-tuning 

algorithm to choose a suitable observation covariance matrix nR  in varying environmental 

conditions will be proposed in next section and adopted into the design of both VSEs. 

 

4.3  VSE Design without Target Velocity Information (VSE-WoTV) 

 The VSE-WoTV aims to estimate the optimal target status iX  and target image 

velocity t
iX&  from image space directly when the target 3D velocity t

fV  is unknown. In this 

case, the dual-Jacobian visual interaction model (3.11) plays an essential role in the estimator 

design. The same procedure presented in Section 4.2 will be adopted into the design of 

VSE-WoTV algorithm. 

 

4.3.1 Propagation Model for VSE-WoTV 

To derive the required propagation model for the design of VSE-WoTV, the first step is 

to discretize the system model (3.11) into corresponding discrete form such that 

1
* T]1[T]1[][ −+−+−= ni

t
ii

p
i unXnXnX B& , for ,...2 ,1=n         (4.10) 

Suppose that the target motion is close to a smooth motion during a sampling time, and then 

the target image velocity can be approximated as a constant velocity between two consecutive 
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sample instants 

]1[][ −= nXnX t
i

t
i

&& .             (4.11) 

Based on (4.10) and (4.11), the propagation model of the VSE-WoTV is given by 

1
*

11
3

*
1

33

33 TT
−−−− +≡⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
= nestnestn

i
n

p
n uXuXX BA

0
B

I0
II

,     (4.12) 

where ]])[(])[([)( Tt
i

Tp
i

Tp
n nXnXX &=  is the propagated system state at an instant n, 30  is a 

3-by-3 zero matrix, and [ ]Tt
i

T
i

T
n nXnXX ])1[(])1[()( **

1 −−=−
&  denotes the estimated system 

state at the previous instant n-1.   

Next, the covariance matrix of propagation equation (4.12) at an instant n is given by 

1
*

1 −− += n
T
estnestn QAPAP ,            (4.13) 

where *
1−nP  is the estimated covariance matrix at the previous instant n-1, and nQ  is the 

covariance matrix of the Gaussian propagation uncertainty. Note that (4.11) is an 

oversimplified assumption and will induce propagation error when the target motion is not 

smooth. However, this kind of error can be corrected by the observation information. 

 

Remark 4.2: A major difference between VSE-WTV and VSE-WoTV is that the propagation 

covariance matrix of VSE-WoTV includes the covariance matrix of the Gaussian propagation 

uncertainty, nQ . The main reason is that if t
fV  is known a-priori, the prediction of the target 

state would be more precise with small uncertainty. Thus, the covariance matrix nQ  can be 

approximated by the matrix T
ini BWB 1

2T −  in the propagation covariance matrix of VSE-WTV. 

On the other hand, if t
fV  is unknown, the uncertainty of the target’s prediction state would 

become larger. Therefore, the propagation covariance matrix of VSE-WoTV should take the 

covariance matrix nQ  into account. 
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4.3.2 Observation and Correction for VSE-WoTV 

Because the observed image only contains the information of target status iX  in each 

instant, the observation model of the VSE-WoTV is given by 

[ ] nnestnnn ZXZXZ δδ +≡+= H0I 33 ,          (4.14) 

where ),0(~ nn NZ Rδ  is the observation uncertainty with zero mean and covariance matrix 

nR . Based on equations (4.12) to (4.14), the optimal estimate and the corresponding 

covariance matrix at a sample instant n are given by [50] 

)(* p
nestnn

p
nn XZXX HK −+=  and nestnn PHKIP )( 6

* −= ,     (4.15) 

where 1)( −+= n
T
estnest

T
estnn RHPHHPK  is the Kalman gain matrix, and 6I  is a 6-by-6 

identity matrix.  

 

4.3.2  Self-Tuning Algorithm 

Although expression (4.15) provides the best linear estimates at each instant, the filter 

performance still depends on the covariance matrices nQ  and nR . Thus, a difficult problem 

in Kalman filter applications is to determine the values of matrices nQ  and nR  for 

computing Kalman gain matrix nK  [51]. Moreover, the observation uncertainty usually 

varies with the conditions of target motion and working environment; the corresponding 

covariance matrix nR  would be time-varying for various operating conditions. These 

problems motivate us to combine a self-tuning algorithm with Kalman filter to choose a 

suitable observation covariance matrix nR  in varying environmental conditions. On the 

other hand, because the propagation uncertainty and the corresponding covariance matrix nQ  

are difficult to estimate online, the propagation covariance matrix nQ  will be fixed at 

initialization without updating in this design. 

The proposed self-tuning algorithm attempts to estimate the minimum variance of a set 

of observation data recorded over time. To do so, a linear-least-squares regression method is 
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adopted to analyze the observed time series data [52]. The typical linear regression model for 

a discrete time series is given by 

nn bany ε++= ,        (4.16) 

where the residual nε  is a random variable with zero mean, ),( ba  are the parameters to be 

determined by minimizing the variance of residuals. Figure 4-1 shows the concept of the 

linear-least-squares regression, in which the solid line is the observed time series, and the 

dotted line indicates the best linear fitting banyn +=ˆ  with minimum residual variance 2σ . 

Let k  denote the length of the observed time series. Based on the linear regression 

model (4.16), the observed time series can be modeled as 

εθεθ +≡+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= st

k

Y A

1

12
11

MM
,      (4.17) 

where T
kyyyY ][ 21 L=  is the vector of observed data over time, and  

T
k ][ 21 εεεε L=  represents the corresponding residuals. Tba ][=θ  is the parameter 

vector to be detected such that 

θεεθ
θθθ stY A−=== minmin)var(min* ,     (4.18) 

where )var(X  is the variance of vector X, and X  is the 2-norm value of vector X. The 

optimal solution of (4.18) will be the least-squares solution such that 

Yst
+= A*θ ,        (4.19) 

where T
stst

T
stst AAAA 1)( −+ =  denotes the pseudo-inverse matrix of Ast. Substituting (4.19) into 

(4.17), the residual vector with minimum variance can be obtained by 

YYYY st
T
stst

T
ststkstst TAAAAIAA ≡−=−= −+ ))(( 1*ε ,       (4.20) 

where T
stst

T
ststkst AAAAIT 1)( −−=  is a fixed k-by-k coefficient matrix, and kI  is a k-by-k 
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Fig. 4-1: Concept of time series linear-least-squares regression. 

 

identity matrix. Expression (4.20) tells us that the minimum variance residual vector *ε  is 

the linear transformation of observed data vector Y through a fixed transformation matrix Tst. 

This observation provides us an efficient method for detecting the minimum variance of an 

observed data sequence in real-time. For instance, let kX1 , kY1 , and kD1  denote, respectively, 

the observed data sequence of xi, yi, and dx over time steps 1 to k. Using (4.20), the minimum 

variances of kX1 , kY1 , and kD1  are given by 

)var( 1
2 k

stx XT=σ , )var( 1
2 k

sty YT=σ , and )var( 1
2 k

std DT=σ .      (4.21) 

Based on (4.21), the covariance matrix nR  is updated as 

))(,)(,)(( 222222
0 dyxn diag σσσ+= RR ,      (4.22) 

where 0R  is the initial covariance matrix of nR .  

 

4.3.4 Summary of the Proposed VSE-WToV Algorithm 

Combining the self-tuning equations (4.21)-(4.22) with Kalman filter equations 

(4.12)-(4.15), the implemented VSE-WoTV is summarized in Fig. 4-2. The processing steps 

are listed as follows: 

1) Choose two initial covariance matrices 0Q  and 0R . 
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Fig. 4-2: Architecture of the proposed VSE-WoTV. 

 

2) Assume that the initial position of the target is located in the field-of-view of the camera, 

then initialize the estimated system state *
0X  and propagation covariance matrix 0P  by 

the first observation such that TTZX ]000[ 0
*
0 =  and 60 IP = . 

3) Store current observed measurement in a shift register with length k. If the length of 

storage data is equal to k, then compute the variance of the observed data sequences by 

(4.21) and update covariance matrix nR  by (4.22); else set 0RR =n ; go to step 4. 

4) Compute the ideal propagated state p
nX  defined in (4.12) and the corresponding 

propagation covariance matrix nP  using (4.13). 

5) If the target is detected in the observed image, then compute the Kalman gain matrix nK  

and update the estimated state vector *
nX  with the corresponding covariance matrix *

nP  

using (4.15); else set p
nn XX =*  and nn PP =* ; go to step 6. 

6) Let **
1 nn XX =− , **

1 nn PP =−  and 01 QQ =−n ; go to step 3.         ■ 
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4.4  Summary 

 In this chapter, two novel VSEs (VSE-WTV ans VSE-WoTV) were proposed by using a 

real-time self-tuning Kalman filter technique. The proposed designs can be applied into 

several visual tracking applications, such as visual tracking control, visual surveillance, and 

visual navigation, etc., to estimate the position and the velocity of the target in the image 

plane. Moreover, the proposed VSEs can estimate the optimal system state from the 

observation signal with random noise and overcome the temporary occlusion problem during 

visual tracking process. These advantages provide the visual tracking control system with 

robustness against the external uncertainties caused by image noise and temporary occlusion. 

In next chapter, computer simulations and experimental results of tracking a moving target 

will be presented to validate the estimation performance and robustness of the proposed 

designs.  
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Chapter 5 
 

Simulation and Experimental Results 

 

5.1  Introduction 

In this chapter, computer simulations and experimental results of the proposed CFA 

interpolation algorithm, visual tracking control scheme and visual state estimation method are 

presented and evaluated. In CFA interpolation experiments, the performance of three 

renowned CFA interpolation methods will be employed to compare with the performance of 

the proposed CFA interpolation algorithm. Experimental results will show that the proposed 

method not only outperforms all of them in PSNR (dB) and S-CIELAB *
abE∆  measures, but 

also gives superior demosaiced fidelities in visual comparison. 

In visual tracking control experiments, two experiments will be presented to validate the 

tracking performance and robustness of the proposed VTC. The first and second experiments 

evaluate the robustness of the proposed VTC against the velocity quantization uncertainty and 

system parametric uncertainty, respectively. In visual state estimation experiments, the 

computer simulations are first presented to verify the robustness of the proposed VSEs against 

the uncertainty caused by random image noise. The practical experiments are then presented 

to evaluate the performance of the proposed VSEs to overcome the uncertainty caused by 

temporary partial/full occlusion.  

 

The rest of this chapter is organized as follows. Section 5.2 evaluates the performance of 

the proposed CFA interpolation algorithm by quantitative and visual comparison with three 

recently published methods. Section 5.3 validates the tracking performance and robustness of 
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the proposed VTC design. In Section 5.4, the estimation performance and robustness of the 

proposed VSEs are presented and examined. Section 5.5 gives the concluding remarks.  

 

5.2  Experimental Results of CFA Interpolation  

 In the experiments, twenty-five Kodak photographic images as shown in Fig. 2-4 were 

employed for demonstrating the demosaicing performance of the proposed CFA interpolation 

algorithm presented in Chapter 2. According to [53], the CFA operations in a digital-camera 

pipeline usually include a demosaiced image post-processing framework to provide more 

visually pleasing color output. Therefore, we introduce the post-processing framework in the 

experiments to complete the comparisons. Figure 5-1 illustrates the flowchart of the 

experiment, which contains interpolation and post-processing steps. In the interpolation step, 

the demosaiced results of the proposed method, HPHD color-difference based linear 

interpolation (HPHD-CDLi) and HPHD-CDEA interpolation methods, are compared with 

those using bilinear interpolation and three recently published methods: Lu’s [3], Gunturk’s 

[5] and Li’s [6] methods. The above schemes are chosen due to their high citation rate in 

peer-reviewed literature [2-8, 40] and represent the state of the technology of CFA 

interpolation. For Gunturk’s method, we make use of one-level (1-L) decomposition with 

eight projection iterations in the experiments. For Li’s method, the universal threshold value 

4== hl δδ  and maximum iteration number 20=iter  are chosen in the experiments. For the 

proposed method, an experiment of tweaking parameters ),( αN  presented in Appendix A 

was set to find the local optimal parameters for these 25 test images. The local optimal 

parameters were given by )6.0,11(),( =αN , which were chosen in the experiments. 

Subsequently, Lu’s post-processing method was adopted as the post-processing procedure for 

each demosaicing method. The demosaiced results in each step were compared accordingly. 

As shown in Fig. 2-1, all test images were down-sampled to obtain the Bayer pattern and then 

reconstructed using the demosaicing methods under comparison in RGB color space. 
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Fig. 5-1: Flowchart of the experiment. In the interpolation step, we compare the performance of 
bilinear, Lu’s, Gunturk’s, Li’s and proposed HPHD-CDLi, HPHD-CDEA methods. In post-processing 
step, Lu’s post-processing method is adopted into each CFA interpolation method. 

 

Two performance measures were adopted in the experiments: PSNR and S-CIELAB 

*∆ abE  metric [3, 6, 54] to evaluate the quality of the demosaiced images. The PSNR (in dB) 

metric in this paper is defined as 
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Vy Ux
yxDyxO

UV
DOPSNR ,      (5.1) 

where U, V are the total column and row number of the image, ),( yxO  is the color vector at 

the ),( yx th position of the original color image, and ),( yxD  is the corresponding color 

vector in the demosaiced color image. Note that, for a demosaiced image, high fidelity implies 

high PSNR and small S-CIELAB *∆ abE  measures. 

 

5.2.1 Quantitative Comparison 

 Table 5-1 records the PSNR values and S-CIELAB *
abE∆  measures of the demosaiced 

results obtained by the proposed interpolation method together with those from other methods 

for comparison. In each step, the bold font denotes the highest PSNR and smallest *∆ abE  

values across each row. Moreover, since Gunturk’s and Li’s methods are iterative and others 

are non-iterative, we categorized these methods into iterative and non-iterative groups for 

more detailed comparisons. From Table 5-1, one can see that Li’s and HPHD-CDEA methods 

provide improved demosaiced fidelity in most of the test images in the interpolation step. 

However, when one compares the average PSNR and *
abE∆  measures in the interpolation  
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Table 5-1: Performance comparison among recent proposed methods: PSNR (dB) and *∆ abE  measures 

of demosaiced images in the interpolation and post-processing steps. 
Step Interpolation Step Post-Processing Step 

Group Iterative Non-Iterative Iterative Non-Iterative 
Method Gunturk 

[5] 
Li  
[6] 

Bilinear Lu  
[3] 

HPHD-
CDLi 

HPHD-
CDEA 

Gunturk
[5] 

Li  
[6] 

Bilinear Lu  
[3] 

HPHD-
CDLi 

HPHD-
CDEA 

1 29.3765 
1.7666 

28.4957 
1.8899 

24.8843 
2.7289 

31.0257 
1.5357 

30.5902
1.6579 

31.2393
1.5342 

29.2676
1.7845 

28.3192
1.9083 

28.8878 
1.9067 

30.7940 
1.5466 

30.5619
1.6239 

31.0132
1.5355 

2 33.2296 
1.5972 

33.6676 
1.5396 

21.5611 
5.1618 

31.6889 
1.7135 

31.3683
1.7700 

31.9611
1.6584 

33.6595
1.5445 

33.9846
1.4974 

27.3176 
2.8440 

33.8433 
1.4668 

34.0348
1.4397 

34.5002
1.3893 

3 34.7577 
1.6598 

35.2213 
1.5958 

28.3682 
3.1280 

35.7152 
1.4910 

35.4998
1.5541 

36.0240
1.4463 

34.6331
1.6721 

35.0579
1.6008 

33.2804 
1.9659 

35.7232 
1.4943 

36.0086
1.4923 

36.2940
1.4255 

4 36.6168 
0.9774 

36.3808 
0.9766 

29.7242 
1.7728 

37.3966 
0.9094 

37.3608
0.9143 

38.0755
0.8633 

36.7206
0.9635 

36.3960
0.9615 

35.3870 
1.0873 

38.0096 
0.8576 

37.9466
0.8596 

38.5172
0.8222 

5 34.9839 
1.3508 

34.8997 
1.3260 

28.8694 
2.5128 

35.4482 
1.3020 

34.9540
1.3565 

35.2691
1.3006 

34.9657
1.3075 

34.7714
1.3213 

34.4611 
1.4752 

36.1356 
1.1861 

35.6365
1.2306 

35.8899
1.1934 

6 32.6411 
2.1864 

31.8126 
2.3790 

21.8873 
5.7055 

32.7081 
2.0318 

31.8449
2.3001 

32.8136
2.0001 

32.6069
2.1709 

31.6062
2.3857 

29.3927 
2.8618 

33.7802 
1.8551 

33.4118
1.9444 

33.8814
1.8254 

7 34.0239 
1.2157 

33.8198 
1.2266 

23.0206 
3.6536 

32.4465 
1.2998 

33.4723
1.2130 

34.0733
1.1400 

34.3593
1.1896 

34.5397
1.1590 

28.6949 
2.0249 

34.0965 
1.1592 

35.6736
1.0243 

36.0181
0.9950 

8 36.8763 
1.1338 

36.7725 
1.1444 

28.7405 
2.1614 

37.9098 
0.9885 

36.8668
1.0789 

37.9580
0.9662 

36.6670
1.1576 

36.4265
1.1699 

35.3671 
1.2509 

38.1854 
0.9694 

37.5005
1.0442 

38.1763
0.9687 

9 30.8332 
1.7679 

31.2495 
1.7192 

18.7578 
5.9022 

29.7212 
1.8327 

29.2916
1.9456 

30.5677
1.6909 

31.1581
1.7214 

31.4196
1.6968 

23.9221 
3.4143 

31.3071 
1.6277 

31.3034
1.6376 

32.3919
1.4892 

10 36.7662 
0.8925 

37.2501 
0.8255 

27.5750 
1.8783 

36.8133 
0.8758 

37.0465
0.8258 

37.5485
0.8032 

37.0662
0.8491 

37.2927
0.8226 

33.3472 
1.1263 

37.8106 
0.7919 

38.3269
0.7465 

38.5816
0.7375 

11 36.7975 
0.8954 

37.0956 
0.8286 

27.6351 
1.8566 

36.8098 
0.8715 

36.5621
0.8716 

37.0535
0.8417 

37.0497
0.8536 

37.0952
0.8263 

34.1833 
1.0627 

37.5213 
0.7926 

37.7538
0.7828 

37.9091
0.7717 

12 34.5407 
1.4748 

34.4102 
1.4275 

24.3568 
3.8112 

33.8725 
1.4666 

33.6367
1.5243 

34.3895
1.3974 

34.6820
1.4288 

34.7541
1.3622 

30.3304 
2.1498 

35.2610 
1.3140 

35.4407
1.3067 

35.9223
1.2380 

13 37.8205 
0.6731 

37.7569 
0.6760 

28.7032 
1.5011 

37.3884 
0.6695 

37.7280
0.6527 

38.2135
0.6266 

37.9377
0.6665 

37.8628
0.6610 

34.1471 
0.8955 

38.3279 
0.6267 

38.9659
0.5971 

39.2299
0.5838 

14 29.7386 
2.5595 

30.4264 
2.4457 

19.0903 
7.1986 

27.8600 
2.4652 

27.5973
2.9558 

28.0727
2.7885 

30.2466
2.8077 

30.8242
2.3680 

25.6167 
3.7864 

30.2549 
2.3619 

30.3762
2.3839 

30.7444
2.3128 

15 30.8370 
1.9406 

29.6090 
2.1114 

24.4266 
4.1290 

32.4833 
1.7491 

31.7108
1.8908 

32.6677
1.6838 

30.6644
1.9284 

29.3860
2.1159 

30.1370 
2.3280 

32.6128 
1.6518 

31.9835
1.7319 

32.6813
1.5960 

16 34.4301 
1.4764 

34.3050 
1.4804 

28.2748 
2.5666 

34.4161 
1.3868 

34.5631
1.4168 

34.7185
1.3640 

34.3523
1.4682 

34.2067
1.4704 

33.7516 
1.5735 

34.9354 
1.3388 

35.1211
1.3436 

35.1681
1.3196 

17 37.3602 
0.9964 

37.0917 
1.0009 

26.5250 
2.8594 

35.6650 
1.0971 

37.1741
0.9836 

37.7084
0.9431 

37.6885
0.9740 

37.8239
0.9477 

31.8934 
1.6581 

37.2329 
0.9865 

39.1877
0.8509 

39.5172
0.8314 

18 36.2947 
1.4628 

36.4685 
1.3340 

27.2295 
2.8610 

35.7449 
1.4857 

35.4640
1.5146 

35.9088
1.4615 

36.5932
1.3572 

36.6429
1.3100 

33.7658 
1.6517 

36.8960 
1.3056 

36.9038
1.3098 

37.0386
1.2863 

19 32.3393 
2.3592 

32.3295 
2.3903 

23.3178 
5.0440 

31.6767 
2.2879 

31.3516
2.3566 

31.7392
2.2609 

32.5119
2.3137 

32.2416
2.4326 

29.5746 
2.8095 

32.9921 
2.0898 

32.8655
2.1323 

33.0480
2.0906 

20 34.9738 
1.3061 

35.2707 
1.2493 

23.1302 
3.6480 

34.5020 
1.3409 

34.6201
1.3254 

35.3463
1.2559 

35.2671
1.2452 

35.5570
1.2094 

28.4598 
2.0810 

35.7424 
1.1902 

36.1790
1.1547 

36.6761
1.1201 

21 35.7991 
1.0396 

35.7714 
1.0294 

26.8448 
2.1996 

35.8899 
1.0016 

35.1749
1.0650 

35.9477
0.9915 

36.0108
1.0077 

35.9894
0.9971 

33.1566 
1.2790 

36.8055 
0.9230 

36.5337
0.9458 

36.9950
0.9086 

22 34.0980 
1.3142 

33.8535 
1.3468 

23.7154 
3.4864 

33.0809 
1.3691 

32.5035
1.4679 

33.2871
1.3564 

34.3656
1.2900 

34.4198
1.2757 

29.6633 
1.9425 

34.6893 
1.2138 

34.4820
1.2435 

35.0812
1.1863 

23 32.8830 
1.5024 

32.9540 
1.5250 

25.5756 
2.9269 

33.5303 
1.3922 

32.9888
1.4540 

33.4476
1.3894 

32.8127
1.5307 

32.8188
1.5364 

30.7133 
1.7699 

33.7291 
1.3651 

33.4516
1.4050 

33.6982
1.3690 

24 37.0203 
0.9664 

37.0820 
0.9820 

30.3178 
1.4579 

38.0689 
0.8977 

37.9213
0.9063 

38.4486
0.8702 

36.9022
0.9867 

36.9148
0.9956 

36.3310 
0.9942 

38.1993 
0.8945 

38.2472
0.8976 

38.6336
0.8706 

25 29.8870 
1.4933 

30.0755 
1.5055 

21.9902 
3.6050 

29.4449 
1.4432 

29.7334
1.5206 

29.8614
1.4261 

30.0602
1.4858 

30.0909
1.5123 

27.8193 
1.9570 

30.0984 
1.3599 

30.7241
1.3714 

30.5972
1.3405 

Avg. 34.1970 
1.4403 

34.1628 
1.4382 

25.3809 
3.3503 

34.0523 
1.4099 

33.8810
1.4609 

34.4936
1.3624 

34.3300
1.4145 

34.2577
1.4217 

31.1840 
1.9158 

34.9994 
1.2948 

35.1448
1.3000 

35.5282
1.2483 

Add-up in Average 0.1330 
-0.0258

0.0949 
-0.0165

5.8031 
-1.4345 

0.9471 
-0.1151 

1.2638 
-0.1609

1.0346 
-0.1141

 

step, HPHD-CDEA generates the highest fidelity demosaiced images, followed by the 

Gunturk’s or other methods. 

In the post-processing step, Table 5-1 indicates an interesting phenomenon that all 
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non-iterative methods have significant improvement compared with iterative ones, especially 

the bilinear interpolation (BI). In average, the improvement of BI can add-up the PSNR and 

reduce *
abE∆  of the interpolation results by 5.8031dB and 1.4345 units, respectively. The 

other non-iterative methods also have noticeable improvement in average. In contrast, the 

iterative methods, e.g. Gunturk’s and Li’s methods, only have modest improvement through 

the post-processing step in average. These observations also can be seen in [53], where the 

post-processing step provides the most significant improvement with BI and the smallest 

improvement with Gunturk’s method. Therefore, the experimental results presented in Table 

5-1 as well as [53] pose a question why post-processing is more beneficial to the interpolation 

results of non-iterative approaches compared to that of iterative ones. The main reasons are as 

follows. 

Many CFA interpolation schemes, especially the simple ones such as BI or HPHD-CDLi, 

usually induce visible artifacts due to the non-smooth local color ratios and color differences 

(red-green and blue-green). The function of current post-processing schemes is to correct the 

interpolated color values by enforcing the local color ratio rule [11, 53] and color difference 

rule [3] of initial demosaiced image. Similarly, the principle of iterative demosaicing 

approaches [5, 6] is to iteratively update the initial interpolation result by fitting the local 

color difference rule. For example, according to [8], the idea of Gunturk’s iterative method is 

equivalent to the filtering of down sampled color difference images of the initial interpolated 

image by a 5x5 2-D low-pass filter for reducing the high frequency energy of reconstructed 

color difference images without changing original mosaic samples. In [6], Li utilized the 

Hamilton-Adams’ method [55] and BI to get initial estimates of missing green and red/blue 

samples, respectively. The following iterative procedure is equivalent to linear low-pass 

filtering of the color difference image until the reconstructed results converge to a smooth one. 

In other words, the iterative demosaicing approaches can be regarded as an initial 

interpolation combined with a meta-algorithm that performs iterative linear low-pass filtering 
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of color difference images to enforce the local color difference rule on initial interpolated 

image, which is also the main purpose of the latter post-processing step. Therefore, the 

post-processing only provides modest improvement for iterative approaches. 

Summarizing the above discussion on the experimental results, we have the following 

conclusions: 

1) For iterative approaches, post-processing only provides the modest improvement due to 

both have the same purpose of enforcing the local color difference rule on the initial 

demosaiced image. 

2) On the contrary, post-processing for non-iterative approaches, especially simple linear 

interpolation schemes such as BI or HPHD-CDLi schemes, provides significant 

improvement due to its enforcing on the smoothness of local color ratios and color 

differences. 

3) Because the proposed HPHD-CDEA scheme is non-iterative and provides the best 

interpolation results in interpolation step, it also has great improvement and obtains the 

best results after the post-processing step. 

 

5.2.2 Visual Comparison 

 Figures 5-2(a) and 5-3(a) show the zoom-in of test image No. 1 and 20, respectively. 

These scenes contain many fine detail features, such as fine fiber patterns (Fig. 5-2) and 

picket fences (Fig. 5-3), and can effectively challenge the performance of demosaicing 

methods. Figures 5-2(b), 5-2(c), 5-2(d), 5-2(e) and 5-2(f) are the demosaiced results obtained 

from Gunturk’s, Lu’s, Li’s, HPHD-CDLi and HPHD-CDEA methods in the interpolation step, 

respectively. From visual comparison, one can see that the Gunturk’s, Lu’s and Li’s methods 

induce more color artifacts in edge and textured regions than HPHD-CDLi or HPHD-CDEA 

does. Figures 5-3(b), 5-3(c), 5-3(d), 5-3(e) and 5-3(f) also show the similar comparison results. 

These experimental results validate that the proposed HPHD CFA interpolation method 
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(a)      (b)        (c) 

   

(d)      (e)        (f) 
Fig. 5-2: Zoom-in demosaicing results of test image No. 1. (a) Original picture; Demosaiced result in 
interpolation step: (b) Gunturk’s method, (c) Lu’s method, (d) Li’s method, (e) HPHD-CDLi method, 
and (f) HPHD-CDEA method. 

 

performs satisfactorily not only in textured regions, but also in well-defined edges. More 

discussions and visual comparisons are presented in Appendixes B and C. 

 Furthermore, as can be seen in Figs. 5-2 and 5-3, HPHD-CDLi gives almost the same 

demosaiced results in edge and textured regions compared with HPHD-CDEA does. Hence, 

HPHD-CDLi can use instead of HPHD-CDEA in practical applications for HPHD-CDLi not 

only saves a great amount of computational cost, but also gives comparable visual results as 

HPHD-CDEA. 
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(a)      (b)        (c) 

   

(d)      (e)        (f) 
Fig. 5-3: Zoom-in demosaicing results of test image No. 20. (a) Original picture; Demosaiced result in 
interpolation step: (b) Gunturk’s method, (c) Lu’s method, (d) Li’s method, (e) HPHD-CDLi method, 
and (f) HPHD-CDEA method. 

 

5.2.3 Computational Complexity 

 The calculation performed in reconstructing one color pixel in each stage of the 

algorithm are listed in Table 5-2, where N and α  denote the parameter of window size and 

spatial classification, respectively. For two directional heterogeneity-projections (H.P.), (2.12) 

and (2.13) require a total of 2N-2 additions, 2N multiplications and 2 absolute conversions for 

each color pixel. In the directional adaptive filtering (D.A.F) stage, if a W×1  rectangular 

window was used to compute the local mean and variance by (2.15) and (2.16), then the total 

calculation of (2.17) and (2.18) needs 12W-2 additions and 4W+12 multiplications. In the 

hard-decision CFA interpolation (H.D.C.I), the total calculation of interpolation with 0=α  

and 1=α  requires the maximum and minimum computation for each color pixel, 

respectively. Therefore, if 10 <<α , the total computational load of interpolation will be 
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Table 5-2: Calculations performed for reconstructing one color pixel. 
 HPHD-CDEA HPHD-CDLi 

Stage ADDSs MULTSs ABSs SHIFTs COMPs ADDSs MULTSs ABSs SHIFTs COMPs
H.P. 2N-2 2N 2 0 0 2N-2 2N 2 0 0 

D.A.F. 12W-2 4W+12 0 0 0 12W-2 4W+12 0 0 0 
1=α  59.5 17 13 16 1.5 10.5 0 0 3.5 1.5 H.D.C.I. 
0=α  92.5 28 22 28 3 17.5 0 0 6 3 

1=α  2N+12W 
+55.5 

2N+4W+29 15 16 1.5 2N+12W 
+6.5 

2N+4W+12 2 3.5 1.5 Total 

0=α  2N+12W 
+88.5 

2N+4W+40 24 28 3 2N+12W 
+13.5 

2N+4W+12 2 6 3 

ADDSs: Additions; MULTSs: Multiplications; ABSs: Absolute conversions; 

SHIFTs: Bit-shift operations; COMPs: Compare operations. 

 

Table 5-3: Computational cost per color pixel of different CFA interpolation techniques. 
 ADDSs MULTSs ABSs SHIFTs COMPs LUTs OPs 

Bilinear Interpolation (BI) 4 0 0 3 0 0 7 
Lu’s method [3] 81 16 29 18 0 0 144 

Gunturk’s method [5] 400 384 4 4.5 1 0 793.5
Hirakawa’s method [7] 106 50 12 0 103 6 277 

1=α  185.5 87 15 16 1.5 0 305 HPHD-CDEA 
(N=11, W=9) 0=α  218.5 98 24 28 3 0 371.5

1=α  136.5 70 2 3.5 1.5 0  213.5HPHD-CDLi 
(N=11, W=9) 0=α  143.5 70 2 6 3 0 224.5

1=α  157.5 75 15 16 1.5 0 265 HPHD-CDEA 
(N=9, W=7) 0=α  190.5 86 24 28 3 0 331.5

1=α  108.5 58 2 3.5 1.5 0 173.5 HPHD-CDLi 
(N=9, W=7) 0=α  115.5 58 2 6 3 0 184.5

LUTs: Look-up tables; OPs: Operations; 

 

between that with 1=α  and 0=α . 

 Table 5-3 tabulates the computational cost of the proposed algorithm with those of the 

methods published in [3], [5] and [7]. Although BI and Lu’s methods require fewer operations 

in interpolation step, they will induce more color artifacts in edge and textured regions of the 

demosaiced results. Gunturk’s method provides better demosaicing results; however, it 

requires more operations in interpolation step. Hirakawa’s method represents the state of the 

technology of decision-based CFA interpolation. In his method, the latter decision stage 

requires much more computation compared with the interpolation stage, i.e. it requires 103 

compare operations for choosing the best interpolation result from two directional 
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interpolations. Moreover, if the interpolation stage includes a smooth interpolation step, the 

calculation of decision stage will increase greatly, because it will need to evaluate three 

interpolation results for each color pixel. In contrast, the calculation of the proposed 

hard-decision method depends only on the parameters of window size, N and W. The 

evaluation of horizontal, vertical and smooth interpolations depends on the parameter α  and 

only needs at most 3 compare operations for each color pixel. From Table 5-3, it is clear that 

the computational operations can be reduced efficiently by combining linear interpolation 

with the proposed HPHD algorithm. Therefore, the proposed method provides an efficient 

solution for decision-based CFA interpolation techniques. 

 

Remark 5.1: Another advantage of the proposed HPHD demosaicing algorithm is that the 

algorithm is parallelizable and is faster on dual core processors. For instance, an application 

program of raw photo editing, RawTherapee [56], uses the proposed HPHD algorithm as the 

default demosaicing method, because HPHD not only has better resolution compared to the 

existing algorithms, but also is at least twice as fast compared with the enhanced adaptive 

homogeneity-directed (EAHD) demosaicing algorithm [7]. Please see [56] for more details. 

 

5.3  Simulation and Experimental Results of Visual Tracking Control  

 In order to verify the performance of the proposed controller design, the target’s motion 

velocity is supposed to be known a-priori in the visual tracking control experiments. To do so, 

we set a moving robot as the target with a-priori known motion velocity and combine the 

VSE-WTV presented in Section 4.2 with the proposed VTC to estimate the optimal target 

state in the image plane. Figure 5-4 depicts two experimental mobile robots developed in our 

Lab for the study of mobile robot visual tracking control. In Fig. 5-4, left robot (called 

tracking robot) is equipped with a USB camera and a tilt camera platform to track another 

robot on which a green, cylindrical target of interest was installed (called target robot). Figure 
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Fig. 5-4: Two experimental mobile robots developed in the Intelligent System Control Integration 
(ISCI) Lab, National Chiao Tung University.  

 

 

Fig. 5-5: Implemented VTC (presented in Chapter 3) combined with the VSE-WTV (presented in 
Section 4.2) to test in the visual tracking control experiments.  

 

5-5 illustrates the block diagram of the visual tracking control system, which combines the 

VTC with the VSE-WTV to test in the visual tracking control experiments. The function of 

each block shown in Fig. 5-5 is listed below: 

1) Feature detection and tracking: perform image-processing algorithm to extract and track 

the observed system state [ ]Txii dyx  in the image captured from the camera. 

2) Visual state estimator with target velocity (VSE-WTV): estimate the optimal system state 

[ ]Txii dyx ***  in the image plane. The performance of the VSE-WTV will be verified in 

Section 5.4.2. 
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3) Visual tracking control law: compute the desired velocity control commands 

[ ]Tm
t

m
f

m
f wwv  using (3.20-1). 

4) Velocity transformation: transform the desired velocities into desired left- and right-wheel 

velocity commands using (3.44). 

5) Quantization processing: quantize the desired velocity control commands dependent on the 

resolution of motion control module. The resolution of the self-made motion control card 

used in the experiments is 8-bit, which means it can command the linear wheel velocity 

from -128 to127 cm/s in integer. For example, suppose that the desired left-wheel velocity 

command m
lv  is 2.9925 cm/s. After quantization processing, the quantized velocity 

command m
lv  is ⎣ ⎦ 29925.2 =  cm/s, where ⎣ ⎦x  is the largest integer smaller than x , 

and the corresponding quantization error m
lvδ  is 9925.0−=− m

l
m

l vv  cm/s. In other words, 

the maximum velocity quantization error of left- and right-wheel velocity 

commands [ ]Tm
r

m
l vv δδ  is smaller than 1± cm/s in the experiment. Similarly, the 

maximum quantization error of tilt velocity command m
twδ  is smaller than 028.0±  rad/s. 

Thus, the three positive constants defined in (3.47) can be determined such that 

)028.0,1,1()ε,ε,ε( =trl . 

6) Robust control law: compute robust velocity control commands [ ]Tm
t

m
r

m
l wvv ***  to 

overcome the velocity quantization uncertainty using (3.46).  

7) Motion control card: where the velocity servo loop is implemented. It also estimates 

robot’s current left- and right-wheel velocities [ ]Tm
tc

m
rc

m
lc wvv  for the VSE-WTV to 

calculate the error covariance matrix of the propagated system state (see Section 4.2 for 

details). 

8) Velocity inverse transformation: transform the estimated left- and right-wheel velocities 
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into estimated linear and angular velocities of the robot using (4.3). 

 

One computer simulation and two practical experiments have been carried out to validate 

the performance of the proposed control schemes: computer simulation and experiment 1 aim 

to validate to robustness against the uncertainty of velocity quantization error, and experiment 

2 is to verify the result of Theorem 3.2. In computer simulation and experiment 1, the target is 

static ( 0)( =tvt
f  for any 0≥t ). Experiment 2 considers the situation that the target is always 

moving ( 0)( ≠tvt
f  for any 0≥t ). The parameters used in simulation and both experiments 

are listed in Table 5-4. Note that different control gains were used in experiment 2 in order to 

verify Theorem 3.2. Because the target is static in experiment 1, this leads (3.13) to be 

simplified such that 

uX ie B−=& .             (5.2) 

This implies the parametric uncertainties encountering in visual tracking system are only 

caused by matrix iBδ . In contrast, the visual tracking system in experiment 2 will be 

influenced by the parametric uncertainties of matrices iAδ , iBδ  and vector iCδ . Hence the 

parametric uncertainties encountered in experiment 2 are larger than that in experiment 1. 

This fact will be shown in the experimental results discussed below. Based on Theorem 3.2, 

we note that the larger parameters 0),,( 321 >ααα , the better the robust performance against 

parametric uncertainties in the system. Therefore, the control gains used in experiment 2 are 

larger than that used in experiment 1 in order to overcome the larger parametric uncertainties 

in the experiment. Moreover, the experimental mobile robots have a limitation on motor speed 

and hence the wheel speed ( 25≤ cm/s) for safety reason. In experiment 1, the controller 

usually generates control signals larger than 25 cm/s. In order to guarantee the controller’s 

velocity commands to satisfy this speed limitation, the control gains S),,( 321 ααα  used in 

experiment 1 is quite small; consequently, the quantization effect will be increased. Therefore, 
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Table 5-4: Parameters used in the simulation and experiment of  
visual tracking of a moving robot. 

Symbol Quantity Description 

)f,f( yx  (294,312) pixels Camera focal length in retinal coordinates. 

W 12 cm Width of the target. 
D  30 cm Distance between two drive wheels. 

yδ   10 cm Distance between the center of robot tilt 
platform and the onboard camera 

T 100 ms Sampling period of the control system 
)d,y,x( xii  (0,0,35) Desired system state in the image plane. 

S),,( 321 ααα  (5/64,6/16,4/64) Control gains used in the first and second 
experiments 

L),,( 321 ααα  (5/16,6/8,4/16) Control gains used in the second experiment 

),,( trl εεε  (1,1,0.028) Max. quantization errors 

0|),,,( =t
m
f

m
f

m
f xz φθ  (0,0,0,0) Initial pose of tracking robot. 

 

the proposed robust control law (3.46) plays an important role to overcome this problem and 

guarantee the asymptotic stability of the closed-loop system with a small gain controller. 

 

5.3.1 Computer Simulations 

A simulation environment is setup using MATLAB to evaluate the tracking performance 

of the proposed VTC. Figure 5-6 presents the computer simulation results of the 

stationarytarget case without velocity quantization error. The initial pose of the tracking robot 

is )0 ,cm 0 ,cm 0( , and that of the target robot is ) ,cm 30 ,cm 210( π . Figure 5-6(a) shows the 

robot trajectory in the world coordinate system. Figure 5-6(b) illustrates the tracking errors in 

the image plane. The simulation results show that the tracking errors decay exponentially to 

zero using the proposed control law and hence the robot can track the target smoothly. In 

Table 5-4, we set S),,( 321 ααα  equal to (5/64, 6/16, 4/64). Thus, using (3.18), we have 

)0()
64
4,

16
6,

64
5()( ee XtttdiagtX −−−=  for 00 =t .      (5.3) 

The tracking error ey  will decay to zero faster than ex  and ed . The simulation shown in 

Fig. 5-6(b) validates this result. Figure 5-6(c) depicts the control velocities of the robot center 
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 (a) 

  
(b)         (c) 

Fig. 5-6: Computer simulation results of experiment 1 without velocity quantization error. (a) Robot 
trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities of the 
center point and tilt camera of tracking robot.  

 

point and the tilt camera of the tracking robot. It shows that the control signals also achieve 

exponential convergence. Therefore, the simulation results validate the result of Theorem 3.1. 

 

5.3.2 Experiment 1: Robustness to Velocity Quantization Error 

In this experiment, the proposed VTC is implemented on the tracking robot in order to 

validate the performance of the proposed robust control law (3.46). Figure 5-7 shows practical 

experimental results of this case without using the robust control law (3.46). Figure 5-7(a) 

illustrates the robot trajectory in the world coordinates. Figure 5-7(b) indicates the tracking 

errors, in which the dotted lines are the theoretical values of (5.3) and the solid lines are the  
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 (a) 

  
(b)         (c) 

Fig. 5-7: Experimental results of experiment 1 without using the proposed robust control law (3.46). (a) 
Robot trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities 
of the center point and tilt camera of tracking robot. 

 

experimental results of tracking errors. From Fig. 5-7(b), we see that the system states in the 

practical experiment do not converge to the desired states. This is caused by the system 

quantization error in the velocity commands, which degrades the performance of the 

controller. Figure 5-7(c) shows the control velocities of the tracking robot. In Fig. 5-7(c), it 

can be seen that when the angular velocity was smaller than rad/s .040 , the quantization 

error greatly affected the actual angular velocity. Therefore, the system state cannot converge 

to the desired state as desired. 

We repeated then the experiment by combining the proposed robust control law (3.46) 

with the VTC. Figure 5-8 presents the experimental results using the proposed robust control  
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(a) 

  
(b)         (c) 

Fig. 5-8: Experimental results of experiment 1 using the proposed robust control law (3.46). (a) Robot 
trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities of the 
center point and tilt camera of tracking robot.  

 

law. Figure 5-8(a) depicts the robot trajectory in world coordinates. Figure 5-8(b) indicates the 

tracking errors in the image plane. We observe that the convergence rate of experimental 

results is faster than that of (5.3). This verifies that the proposed robust control law not only 

guarantees the tracking errors to decay to zero asymptotically but also increases the 

convergence rate in the practical system. Moreover, the experimental results also verify the 

result of Theorem 3.2 that the closed-loop control system (3.13) under the control law given 

in (3.20) is asymptotically stable at the origin when 0=t
fV  satisfies. Figure 5-8(c) shows 

the control velocities of the tracking robot. A video clip of experimental 1 is available online 

in [57]. 
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Remark 5.2: Although quantization errors are analyzable using techniques developed for 

finite word-length controllers [58, 59], the reported methods are only useful for the linear 

time-invariant (LTI) systems but not suitable for the Quasi-LPV systems. On the contrary, the 

proposed control method can be applied to both LTI and Quasi-LPV systems. This is the merit 

of the proposed method. On the other hand, using a more responsive controller with high 

control gain is an alternative to reduce the effect of quantization error; however, it usually 

generates large control outputs. In many applications in human-centered service robotics, one 

expects relatively smooth motion for safety considerations. The proposed control method with 

smaller control gain guarantees that the equilibrium point of practical system is also 

asymptotically stable. 

 

5.3.3 Experiment 2: Robustness to System Model Uncertainty 

In this experiment, the target is always moving in order to validate the parametric 

robustness of the proposed VTC. The initial pose of the target robot are set as 

) π,cm 30 ,cm 140( . The target robot is moving along a counterclockwise circular path with 

velocity 

)cos ,0 ,sin(),,( t
f

t
f

t
f

t
f

z
f

y
f

x
f vvvvv θθ= ,     (5.4) 

where sec/cm 5.10=t
fv  and rad 01.0)()( += oldnew t

f
t
f θθ  with πθ =)0(t

f . The target 

velocity information is then used for the VSE-WTV to estimate the state of the target and 

overcome the occlusion problem even the target is fully occluded. The experimental results of 

the VSE-WTV will be presented in Section 5.4.2. The initial pose of the tracking robot is also 

)0 ,cm 0 ,cm 0( . 

In order to validate the result of Theorem 3.2, small control gains S),,( 321 ααα  were 

first applied for the control law (3.20), which implies a small robustness against the system 

parametric uncertainties. Later, larger control gains L),,( 321 ααα  were used in order to  
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(a) 

  
(b)         (c) 

Fig. 5-9: Experimental results of experiment 2 using control gains S),,( 321 ααα = (5/64,6/16,4/64). (a) 

Robot trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities 
of the center point and tilt camera of tracking robot.  

 

increase the robustness and improve the tracking performance of the closed-loop visual 

tracking system. 

Figure 5-9 presents the recorded responses of this experiment using the same control 

gains as in experiment 1. In Fig. 5-9(a), the trajectories of two robots were recorded in the 

world coordinates. Because these two robots were set face to face in the initial condition, the 

tracking robot moved backward in the beginning and then moved forward to track the target 

robot. Figure 5-9(b) depicts the tracking errors in the image plane. In Fig. 5-9(b), the dotted 

lines illustrate the theoretical result from (5.3) while the solid lines show the experimental 

results of tracking errors. From Fig. 5-9(a), we observe that the tracking robot followed the 
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target robot with a poor behavior, which also can be seen in Fig. 5-9(b). In Fig. 5-9(b), the 

error states ex  and ed  in the experiment do not converge to zero asymptotically. The main 

reason is explained in the following. Recall Theorem 3.2 in Section 3.4, the closed-loop visual 

tracking system is practically stable only for NS C>>= 166),,max( 321 ααα  and 

iiSS BBδαααααα >= 61),,max(),,min( 321321  in the experiment. This implies that the 

proposed controller provided a modest robustness against the parametric uncertainties. This 

result can be observed in Fig. 5-9(b) which indicates that ed  has a poor convergence 

performance due to the system parametric uncertainties. 

Based on Theorem 3.2, the proposed controller with larger control gains provides more 

robust property w.r.t. the system parametric uncertainties. Hence larger control gains 

L),,( 321 ααα  as listed in Table 5-4 were used to repeat experiment 2. Figure 5-10 presents 

the recorded responses of this experiment. Similarly, the tracking robot also moved backward 

in the beginning and then moved forward to track the target robot as shown in Fig 5-10(a). 

However, the tracking robot tracked the target robot in a circular motion with improved 

performance compared with that of Fig. 5-9. Figure 5-10(b) depicts the tracking errors in the 

image plane. We observe that the system state in the experiment converges practically to the 

desired state as expected. These experimental results verify Theorem 3.2 and the robust 

control law (3.46) as well. A video clip of experiment 2 can be seen online in [57]. 

 

5.4  Simulation and Experimental Results of Visual State Estimation 

In this section, the computer simulations and practical experiments are presented to 

validate the estimation performance and robustness of the proposed VSE-WTV and 

VSE-WoTV described in Chapter 4. First, MATLAB was used to study the estimation 

performance of the proposed VSE-WoTV. Next, two experiments were performed on the 

experimental mobile robots to validate the robustness against the occlusion uncertainty. Since 
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(a) 

  
(b)         (c) 

Fig. 5-10: Experimental results of experiment 2 using control gains L),,( 321 ααα = (5/16,6/8,4/16). (a) 

Robot trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities 
of the center point and tilt camera of tracking robot. 

 

the estimation without velocity information is more difficult compared with that with velocity 

information, only the simulation results of the VSE-WoTV are presented. 

 

5.4.1 Computer Simulations 

In order to evaluate the estimation performance of the proposed VSE-WoTV, a 

simulation environment is setup using MATLAB. Figure 5-11 shows the architecture of the 

simulation setup. In Fig. 5-11, Xn, which includes the target state Xi[n] and target image 

velocity t
iX& , denotes the ideal state needed to be estimated by the VSE-WoTV. Xi[n] is 

obtained from the coordinate transformations (3.4) and (3.7), and t
iX&  is calculated by (3.11)  
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Fig. 5-11: Simulation setup for the performance evaluation of the proposed VSE-WoTV presented in 
Section 4.3. 

 

such that 

1T
]1[][

−−
−−
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ii
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i unXnXXXX B&&& .      (5.5) 

The observation signal Zn is obtained by the rounding off the value of Xi[n] with random noise 

(RN) to integer. In this paper, the random noise is given by 

⎩
⎨
⎧
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=
otherwise

ifK
RN n

  ),5.0)(1(
)(      ),5.0(

21

321

σσ
ρσσσ       (5.6) 

where 1>nK  is the noise gain; [ ]1,0∈iσ , i=1~3, are three random signals with uniform 

distribution; and [ ]1,0∈ρ  is a constant threshold value. Expression (5.6) indicates that the 

intensity of the noise is time-varying and dependent on a random condition. If the condition 

)( 3 ρσ <  is satisfied, then the random noise will have large noise gain; otherwise the random 

noise will only have noise gain smaller than 2. Thus, the threshold value ρ  determines the 

probability of the event of appearing large observation noise. This kind of random noise is 

usually happened during practical visual tracking process of the mobile robot, since the 

intensity of the observation uncertainty usually is position-dependent and light-dependent. 

The parameters used in the simulations are listed in the Table 5-5. 

Figure 5-12 presents the computer simulation results of the visual tracking control  
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Table 5-5: Parameters used in the simulations of visual state estimation. 
Symbol Quantity Description 

)f,f( yx  (294,312) pixels Camera focal length in retinal coordinates. 

W 12 cm Width of the target. 
D 40 cm Distance between two drive wheels. 

yδ   10 cm Distance between the center of robot tilt platform 
and the onboard camera 

T 35 ms Sampling period of the control system 
)d,y,x( xii  (0,0,35) Desired system state in the image plane. 

)α,α,α( 321  (5/4,3,1/2) Positive control gains used in the experiments. 

Q0 diag(1,1,1,2,2,2) Initial covariance matrix 

Kn 15 Noise gain 

ρ  0.75 Constant threshold value 

 

system shown in Fig. 5-11. Figure 5-12(a) shows the robot trajectory in the world coordinate 

frame. In the simulation, the motion of the target is also set as a circular motion with velocity 

)cos ,0 ,sin(),,( t
f

t
f

t
f

t
f

z
f

y
f

x
f vvvvv θθ= , 

where sec/cm 20=t
fv  and rad )18T()()( πθθ += oldnew t

f
t
f  with 0)0( =t

fθ . From Fig. 

5-12(a), we observe that the motion trajectory of tracking robot is also a circular path in order 

to follow the target. Figure 5-12(b) shows the control velocities of the center point and tilt 

camera of tracking robot. It reveals that the tracking robot’s linear and angular velocities 

converge to constants when the tracking errors decay to zero. Therefore, the tracking robot 

kept tracking the target continuously. Figure 5-12(c) shows the tracking errors with random 

noise (5.6), and Fig. 5-12(d) is the corresponding tracking errors estimated by the VSE-WoTV. 

In Figs. 5-12(c) and 5-12(d), the dotted lines illustrate the ideal tracking errors while the solid 

lines show the observation and estimation results of tracking errors. A comparison of Fig. 

5-12(c) with Fig. 5-12(d) shows that the random noise in each error state is removed 

efficiently, especially the error states ye and de. Thus, the robustness of the proposed 

VSE-WoTV against the random noise uncertainty is validated. Moreover, in Fig. 5-12(d), 

each error state converges to zero exponentially and smoothly, which validates the tracking  



 

 
97

  
(a)         (b) 

  
(c)         (d) 

  
(e)         (f) 

Fig. 5-12: The computer simulation results of the proposed VTC combined with the VSE-WoTV. (a) 
Robot trajectory in the world coordinate frame. (b) Control velocities of the center point and tilt 
camera of tracking robot. (c) Tracking errors with random noise. (d) Tracking errors estimated by the 
VSE-WoTV. (e) Estimated target image velocity. (f) Estimation errors. 

 

performance of the proposed VTC. Figures 5-12(e) and 5-12(f), respectively, present the 

estimation results and the estimation errors of target image velocity from the VSE-WoTV. In 
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Figs. 5-12(e), the dotted lines indicate the ideal target image velocity while the solid lines 

show the estimation results of target image velocity. It is clear that each estimate converges to 

the corresponding ideal one. This result also can be seen in Fig. 5-12(f), which shows that 

each estimation error converges to zero efficiently. Therefore, these simulation results validate 

the estimation performance of the proposed VSE-WoTV. 

 

5.4.2 Experiment 3: Visual Tracking of a Moving Robot 

This section presents the experimental results of tracking a moving target when it is 

temporarily partially and fully occluded during visual tracking to validate the occlusion 

robustness of the visual tracking control system shown in Fig. 5-5. The experimental mobile 

robots and control system parameters used in this experiment are all the same with that used 

in experiments 1 and 2. In order to verify the performance of the VSE-WTV proposed in 

Section 4.1, the motion velocity of the moving robot is supposed to be known a-priori in this 

experiment. 

Figure 5-13 illustrates the photos of partial occlusion experimental results recorded from 

the tilt camera of the tracking robot (the robot with a camera). Figure 5-13(a) shows the 

tracked target before partial occlusion. In Figs. 5-13(b)-(d), the moving target is temporarily 

partially occluded by the moving object. Figures 5-13(e)-(f) show that the moving target is 

still tracked after partial occlusion. In Fig. 5-14, the target was fully blocked by a moving 

person. Figure 5-14(a) shows the tracked target before full occlusion. In Figs. 5-14(b)-(e), the 

moving target is temporarily fully occluded by a moving person. Because the target would not 

be observable in the observed image, the VSE-WTV estimated the moving target only using 

prediction information. Hence the moving target is still tracked even though it is unobservable. 

Figure 5-14(f) shows that the moving target is tracked successfully after full occlusion. Figure 

5-15 compares the observed tracking errors (the dotted lines with spikes) with the estimated 

ones (the solid lines). From Fig. 5-15, we see that the random noise caused by the temporary 
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(a)        (b)             (c) 

   
(d)        (e)             (f) 

Fig. 5-13: Experimental results of tracking a moving target when it is temporarily partially occluded. 
(a) Before partial occlusion. (b)-(d) Partial occlusion occurred. (e)-(f) After partial occlusion, the 
moving target was still under tracking. 

 

   
(a)        (b)             (c) 

   
(d)        (e)             (f) 

Fig. 5-14: Experimental results of tracking a moving target when it is temporarily fully occluded. (a) 
Before full occlusion. (b)-(e) Full occlusion occurred. The moving target is estimated only using 
prediction information. (f) After fully occlusion, the moving target was still under tracking. 
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Fig. 5-15: Estimated tracking errors compared with observed tracking errors. 

 

occlusion effect is removed efficiently by utilizing the proposed VSE-WTV. Therefore, based 

on the above occlusion experiments, the robust estimation performance of the visual tracking 

control system shown in Fig. 5-5 is verified. A video clip of the experimental results is 

available online in [57]. 

 

Remark 5.3: It is interesting to know how long of the occlusion can be handled by using the 

proposed visual tracking control system. In the current design, the optimal covariance matrix 

*
nP  of the self-tuning Kalman filter output is used to evaluate the reliability of the estimation 

result. If one of the diagonal values of the covariance matrix *
nP  is larger than a preset 

threshold, then it implies that the estimation result is not reliable, and thus the visual tracking 

control system will stop and reinitialize. Therefore, the occlusion handling time is dependent 

on the value of preset threshold. In the experiments, the value of preset threshold is 4800, and 

the occlusion handling time is about 3 sec, which is enough to overcome the temporary 

occlusion problem. 

 

 



 

 
101

 

Fig. 5-16: Experimental mobile robot used to test the tracking performance of the proposed VTC 
combined with the VSE-WoTV presented in Section 4.3.  

 
Table 5-6: Parameters used in the experiment of visual tracking of a moving person. 

Symbol Quantity Description 

)f,f( yx  (393.4,391.8) pixels Camera focal length in retinal coordinates. 

W 12 cm Width of the target. 
D 40 cm Distance between two drive wheels. 

yδ   10 cm Distance between the center of robot tilt platform 
and the onboard camera 

T 100 ms sampling period of the control system 
)d,y,x( xii  (0,0,35) Desired system state in the image plane. 

)α,α,α( 321  (5/4,3,1/2) Positive control gains used in the experiments. 

Q0 diag(5,5,5,20,20,20) Initial covariance matrix 

R0 diag(15,15,15) Initial observation covariance matrix 

 

5.4.3 Experiment 4: Visual Tracking of a Moving Person 

In this section, the tracking performance of the proposed VTC combined with the 

VSE-WoTV is tested by tracking a moving person. Figure 5-16 shows the experimental 

mobile robot equipped with a tilt camera for the study of visual tracking of a moving target 

without its motion velocity information. Table 5-6 tabulates the parameters used for the VTC 

and VSE-WoTV in this experiment. In order to detect and track the user in the image plane, a 

real-time face detection and tracking algorithm presented in our previous work [60] is utilized 

to combine with the visual tracking control system. Figure 5-17 illustrates the complete visual 

tracking control system which encompasses the face detection/tracking algorithm, the VTC  
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Fig. 5-17: Block diagram of the visual tracking control system tested in the experiment of visual 
tracking of a moving person. 

 

presented in Section 3.3 and the VSE-WoTV described in Section 4.3. Because the velocity of 

human motion is unknown, the VSE-WoTV aims to estimate the image velocity instead of the 

motion velocity for the VTC used and thus overcome the temporary occlusion problem. 

Figure 5-18 presents the recorded images and responses of the mobile robot and tilt 

camera in the case 1 experiment, which includes occlusions to validate the robustness of the 

proposed visual tracking control system. Figures 5-18(a1-a7) show the recorded pictures from 

a digital video (DV) camera, and Figs. 5-18(b1-b7) are the corresponding pictures recorded by 

the on-board USB camera. Figs. 5-18(c-e) and Figs. 5-18(f-h) depict the response of the 

tracking errors (xe, ye, de) and target image velocity estimates ( t
ix& , t

iy& , t
xd& ), respectively. Figs. 

5-18(i-k) illustrate the response of robot and tilt camera control velocities ( m
fv , m

fw , m
tw ). 

In the beginning, the user statically sat on a stool, and the robot started to track his face 

using the proposed visual tracking control system. From Figs. 5-18(f-h), one can see that the 

target image velocity estimates all approach to zero when robot started working about 5 sec. 

Next, the user stood up (Fig. 5-18(a2)) and the tilt camera worked to keep tracking his face. 

From Fig. 5-18(g), we observe that the target image velocity estimate t
iy&  increased when the 

user stood up. In the following, the user walked forward (Fig. 5-18(a3)) and the robot moved  
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Fig. 5-18: Experimental results. (a1-a7): Image sequence recorded from a DV camera. (b1-b7): 
Corresponding image sequence recorded from on-board USB camera. (c-d): Recorded tracking errors 
in the image plane. (f-h): Target image velocity estimates. (i-j): Command linear and angular 
velocities of the mobile robot. (k): Command velocity of the tilt camera. 

 

backward to keep tracking user’s face. From Fig. 5-18(h), it is clear that the image velocity 

estimate t
id&  increased when the user walked forward. These estimation results are consistent 

with the practical situation. 

When the user walked around in the room, the robot kept following and tracking the 

user’s face. While the user was walking, another person walked across between them 

temporarily (Figs. 5-18(a4-a6)). Thus, in Figs. 5-18(b4-b6), the user’s face was temporarily 

fully blocked by the walking person. In this situation, the variation of observed time sequence 

data will rise, and the corresponding variance will become large. Based on the proposed  
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Fig. 5-19. Estimated tracking errors compared with observed tracking errors. 

 

self-tuning algorithm, the prediction information will dominate the estimation results of the 

Kalman filter even if the target is fully unobservable. Therefore, as shown in Figs. 5-18(c-h), 

the self-tuning Kalman filter still estimated the positions and velocities of the unobservable 

moving target in the image plane successfully even during full occlusion. This occlusion 

experiment validates the robust estimation performance of the proposed visual tracking 

control system. Finally, the user sat down on the stool, and the robot tracked the user 

continuously. Figure 5-19 compares the observed tracking errors (the dotted lines with spikes) 

with the estimated ones (the solid lines). From Fig. 5-19, it is clear that the random noise is 

also removed efficiently by the proposed VSE-WoTV algorithm. Therefore, the above 

experiments verify the robust estimation performance of the visual tracking control system 

shown in Fig. 5-17. A video clip of experiment 4 is available online in [57]. 

 

Remark 5.4: The main differences between the proposed method and the existing video color 

object tracking (VCOT) methods, such as CamShift algorithm [61], are twofold. First, the 

existing VCOT methods usually suppose that the target has located in the camera’s field of 

view and do not consider the camera motion effect. On the contrary, the proposed method 

considers both camera and target motion effects to increase the tracking performance and 
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system robustness. Second, the existing VCOT methods usually do not deal with the 

temporary full occlusion problem. In contrast, the proposed method uses the propagation 

information to deal with the temporary full occlusion problem. Moreover, the propagation 

covariance matrix can be used to evaluate the reliability of the tracking state under the 

situation of full occlusion. Please see Remark 5.3 for the details. 

 

5.4.4 Additional Experiment: Occlusion Robustness Property 

Since the current VSE design is based on the Kalman filter algorithm, the estimation 

performance is dependent on the accuracy of covariance matrices Pn and Rn. In order to 

demonstrate this property, the proposed visual tracking control system is extended to control a 

pan-tile camera platform in this experiment. Figure 5-20 shows the experimental pan-tile 

platform equipped with a camera to track the face of a user. The control velocities of pan-tile 

platform can be computed by simplifying the proposed control law (3.20) such that 
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where pan
fw  is the pan control velocity, tilt

fw  is the tilt control velocity, and mnB  denotes an 

element of matrix iB  corresponding to the m-th row and n-th column. 

Figure 5-21 presents the experimental results. Figure 5-21(a)-(c) show the recorded 

images, in which the green and magenta windows indicate the observation and propagation, 

respectively. Figures 5-21(d) and 5-21(e), respectively, illustrate the variance value of state xi 

in propagation and observation covariance matrices. Because the face tracking algorithm 

employed in current system only uses the skin color to detect the human face in a local search 

window, the algorithm will track another person’s face which moves across the user’s face 

and camera. In this situation, the variance value of observation covariance matrix will 

increase greatly due to the rapid change in the observation. Thus, in Fig. 5-21(e), we see that 
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Fig. 5-20: Experimental pan-tile platform used to demonstrate the robust property of the proposed 
visual tracking scheme. 

 

 
Fig. 5-21: The experimental results of occlusion using VSE-WoTV. (a)-(c) Recorded camera view, 
observation states and propagation states, (d) variance of propagation states, (e) variance of 
observation states. 

 

the variance value of the observed state xi (denoted by Rx) increases rapidly due to the sudden 

change in observation. On the other hand, the variance value of the propagated state xi 
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(denoted by Px) increases smoothly but much smaller than the observed one. Therefore, after 

the correction step in Kalman filtering algorithm, the propagation state will dominate the 

estimation result, which tracks the correct user’s face. Finally, in Fig. 5-21(c), the face 

tracking algorithm detects the human face close to the estimation result, and the observation is 

corrected. A video clip of this experiment is available online in [57]. 

 

Remark 5.5: If there is an object with similar feature and motion to target, then the proposed 

VSE may track to this object when it moves across the target and camera. However, this 

problem can be resolved by combining an object recognition algorithm with visual tracking 

algorithm. In this thesis, we do not cover the object recognition problem and only focus the 

topic on visual tracking control problem. 

 

5.5  Summary 

This chapter evaluates the performance of the proposed CFA interpolation algorithm, 

visual tracking control scheme and visual state estimation method through computer 

simulations and experimental results. In CFA interpolation experiments, the performance of 

the proposed CFA interpolation algorithm has been compared with three renowned CFA 

interpolation methods. Experimental results show that the proposed method not only 

outperforms all of them in quantitative comparison, but also gives superior demosaiced 

fidelities in visual comparison.  

In visual tracking control experiments, experimental results validate that the proposed 

VTC guarantees asymptotic stability and practical stability of the closed-loop visual tracking 

system with parametric and velocity quantization uncertainties. In visual state estimation 

experiments, the robustness of the proposed VSE-WoTV against the image noise uncertainty 

is validated by the computer simulations. The practical experiments then evaluate the 

performance of the proposed VSEs to overcome the temporary partial/full occlusion 
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uncertainty. Therefore, the tracking performance of the proposed visual tracking control 

system is enhanced to cope with image noise, system parametric, velocity quantization, and 

temporary occlusion uncertainties. 
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Chapter 6 
 
Conclusions and Future Work 
 

6.1  Conclusions 

To render a full-color image from a single image sensor covered with a CFA, this work 

proposes a novel HPHD-CDEA CFA interpolation algorithm for color reproduction of a Bayer 

mosaic image is proposed. The proposed CFA interpolation algorithm, which consists of 

HPHD and CDEA CFA interpolation algorithms, effectively reconstructs fine detail features 

in both texture and edge regions of demosaiced images. The proposed HPHD CFA 

interpolation algorithm not only can combine with many existing CFA interpolation methods 

for improved performance, but also provides an efficient method for decision-based 

algorithms to make accurate direction-selection before performing interpolation. The 

proposed CDEA CFA interpolation algorithm aims to reduce color artifacts in both smooth 

and edge regions of demosaiced images by adding the high-frequency information of green 

channel to other color channels. Any existing image interpolation method can be combined 

with the proposed CDEA interpolation algorithm to reconstruct the green channel. By 

combining HPHD algorithm with CDEA CFA interpolation, the proposed method provides an 

efficient solution for color reproduction of Bayer mosaic images with high performance in 

both texture and edge regions. 

To control a mobile robot for tracking a dynamic moving target in the image plane, this 

thesis proposes a robust VTC based on a novel dual-Jacobian visual interaction model. In the 

robustness analysis, we have shown that the proposed VTC possesses some degree of 

robustness against the system parametric uncertainty. Moreover, based on Lyapunov theory, a 

robust control law is developed to efficiently overcome the unmodelled quantization effect in 
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the velocity commands. Therefore, the proposed VTC is robust to the uncertainties of system 

model and velocity quantization. Experimental results validate the effectiveness of the 

proposed VTC, in terms of tracking performance, system convergence, and robustness. 

Two VSEs are designed by using a real-time self-tuning Kalman filter technique in order 

to estimate the optimal system state and target motion in the image plane directly. In computer 

simulations, it shows that the proposed VSE provides high robustness against the observation 

uncertainty with time-varying intensity. This advantage is very useful in practical applications, 

since the observation uncertainty usually varies with the conditions of target motion and 

working environment. In practical experiments, the results show that the proposed VSE 

efficiently overcomes the temporary occlusion uncertainty during visual tracking. Therefore, 

by combining the proposed VTC with the proposed VSE, the tracking performance of the 

visual tracking control system is enhanced to cope with image noise, system parametric, 

velocity quantization, and temporary occlusion uncertainties. This advantage not only 

provides a useful image-based smooth-motion control solution for wheeled mobile robots to 

track a target of interesting effectively and interactively, but also enhances the reliability of 

the visual tracking control system in practical applications. 

 

1.2  Future Directions 

Some directions for future study are recommended below: 

1) For the future study of CFA interpolation, because the green plane has the most spatial 

information of the image to be reconstructed and has great influence on the perceptual 

quality of the image, the future research directions will focus on developing the 

single-plane reconstruction algorithms to reconstruct the green channel with minimum 

interpolation error. 

2) For future visual tracking control studies, the general case of any task/command 
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dimension such as a mobile-manipulator system will be directed. In the current VTC 

design, the robot image Jacobian iB  in (3.11) is square only because the task was 

3-dimensional (coordinates of the target’s center and its width) and the robot had 3 

commands (linear, angular and tilt velocity). If the camera were mounted on a more 

articulated manipulator, matrix iB  would not have been square. Thus, the future work on 

the study of VTC design should address the general case of any task/command dimension 

with exploiting redundancy. Moreover, according to Theorem 3.2, the closed-loop visual 

tracking control system (3.13) under the proposed controller given in (3.20) is practically 

stable at the origin when the target is moving. Therefore, another future work is to develop 

a non-smooth controller, such as a variable structure switching (VSS) controller, to 

achieve asymptotic convergence for tracking a moving target. 

3) For the visual state estimation study, because the current VSE design is based on the 

Kalman filter technique, there are some restrictions on the proposed VSE due to the 

assumptions of Kalman filter such as Gaussian distribution uncertainty, smoothness 

motion, and uniform sampling rate. These assumptions restrict the performance of the 

proposed VSE, which might fail in tracking a highly dynamic moving target. Therefore, 

the future work on the study of visual state estimation will focus on developing other 

types of VSE, such as neural-networks based VSE, to solve this problem and improve the 

accuracy of the visual state estimation results. 

4) Because the tracking performance of the visual tracking control system depends on the 

frame rate of the vision system, a digital high-speed camera system, which allows capture 

of up to 33,000 frames per second, will greatly increase the tracking performance of the 

proposed system. Therefore, it is worth to combine the proposed visual tracking control 

method with a high-speed camera system in the future work. 
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Appendix A 
 
Parameter Tuning Experiment for the Proposed 

Color Interpolation Algorithm 
 

Since the value of parameters ),( αN  may drastically influence demosaicing 

performance and hence the comparison results, it is interesting to study how they affect the 

demosaicing performance of the proposed color interpolation algorithm. In order to evaluate 

the demosaicing performance, we first define the following criterion 

∑
=

=
25

1
)),(,(

25
1),(

i
iiAvg NDOPSNRNPSNR αα ,           (A.1) 

where iO  and iD  indicate the ith test image and its corresponding demosaiced one by using 

the proposed HPHD-CDEA method. PSNR (in dB) denotes the metric of peak signal-to-noise 

ratio defined in (5.1). Based on the criterion (A.1), the parameter N is tweaked from 5 to 25 

with interval 1, and α  is tweaked from 0 to 1 with interval 0.1. Figure A-1 shows the 

experimental results of tweaking parameters ),( αN . Figures A-1(a) and (b), respectively, 

represent the evolution of AvgPSNR  as parameter N and α  increase. In Fig. A-1(a), one can 

see that when 0=α  (only the smooth set under consideration), the AvgPSNR  independs on 

the parameter N. On the other hand, when 1=α  (only the horizontal and vertical sets under 

consideration), the impact of N on AvgPSNR  is increased. Thus, the influence of N on 

AvgPSNR  depends on the parameter α , especially when 1=α . Moreover, one can see in 

Fig. A-1(a) that the local optimal parameter N occurs at 11=optN  in the experiment. 

Figure A-1(b) shows that the parameter α  has significant influence on the AvgPSNR . If 
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parameter α  increases from 0 to 0.6, the AvgPSNR  also increases. However, when 

parameter α  increases from 0.6 to 1, the criterion AvgPSNR  becomes decreasing. This 

implies the local optimal parameter α  should occur in the range from 0.5 to 0.6, and the 

optimal interpolation result will encompass horizontal, vertical and smooth interpolations 

together. Since parameter 6.0=α  obtains the maximum AvgPSNR  in post-processing step, 

we choose 6.0=optα  as the local optimal parameter α . 

Figure A-1(c) shows the influence of the parameters ),( αN  on the performance 

gap AvgPSNR∆  between post-processing and interpolation steps. It is clear that the 

performance gap mostly depends on the parameter α . Moreover, the maximum performance 

gap occurs when parameter 1=α . This implies that the post-processing provides significant 

improvement on the horizontal and vertical interpolation results. Therefore, post-processing 

seems to be more beneficial to the existent soft-decision CFA interpolation algorithms, which 

only considers the horizontal and vertical interpolations. 

Summarizing the tweaking parameter experiment, we have the following findings. 

1) For the proposed method, the parameter α  has significant influence on the demosaicing 

performance compared with parameter N. 

2) When the interpolation only considers horizontal and vertical ones, the post-processing 

provides significant improvement on the interpolation result. 

3) The optimal interpolation result requires encompassing horizontal, vertical and smooth 

interpolations together. 

4) Based on the criterion (A.1), the local optimal parameters ),( optoptN α  of proposed 

HPHD-CDEA method can be found at )6.0,11( . 
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 (a) 

 (b) 

 (c) 
 

Fig. A-1: Experimental results of tuning parameters in each step. (a) Evolution of AvgPSNR  as the 
parameter N increases. (b) Evolution of AvgPSNR  as the parameter α  increases. (c) Influence of the 
parameters ),( αN  on the performance gap AvgPSNR∆  between post-processing and interpolation 
steps. 
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Appendix B 
 
Soft-Decision, Enhanced Soft-Decision and 

Hard-Decision CFA Interpolation Algorithms 
 

To show the difference between the proposed hard-decision method and the existent 

soft-decision ones, we describe the key idea of these two types of decision-based CFA 

interpolation algorithms in this section. Figure B-1 presents the flowchart of each 

decision-based CFA interpolation algorithm. Figure B-1(a) shows the flowchart of the original 

soft-decision method, in which the former interpolation stage usually generates two 

interpolated images, one is horizontally interpolated and another one is vertically. The latter 

decision stage chooses a better one for each color pixel output. In other words, the output 

image of the original soft-decision method only contains horizontal and vertical interpolated 

color pixels without smooth ones. In the aforementioned section, we noticed that the optimal 

interpolation result needs to consider the horizontal, vertical and smooth interpolations 

together. Therefore, the demosaicing performance of the soft-decision method is limited 

because only two directional interpolations are under consideration. 

To overcome this drawback, Omer et al. proposed the enhanced soft-decision CFA 

interpolation algorithm that regards the soft-decision processing as a meta-algorithm to 

improve the performance of traditional interpolation methods in places they tend to fail. 

Figure B-1(b) illustrates the flowchart of enhanced soft-decision CFA interpolation algorithm, 

in which the former interpolation stage generates not only two directional interpolated images, 

but also a smooth interpolated one using a standard CFA interpolation method such as 

edge-directed schemes [11] or [55]. In the latter decision stage, two natural image properties,  
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(a) 

(b) 

(c) 

Fig. B-1: Flowchart of the (a) soft-decision; (b) enhanced soft-decision and (c) proposed hard-decision 
CFA interpolation algorithms. 

 

i.e. color variation and corner value, are employed as the demosaicing hints to evaluate a 

correct interpolation result and two erroneous ones. Although the enhanced soft-decision CFA 

interpolation algorithm provides more pleasing demosaiced results, the computation load in 

latter decision stage is increased greatly because it needs to evaluate three interpolation 
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results. 

Fig. B-1(c) presents the flowchart of the proposed hard-decision CFA interpolation 

algorithm. Thanks to the proposed directional heterogeneity-projection and adaptive filtering 

schemes, the decision stage can be performed directly using the original Bayer mosaic image 

before interpolation stage. Moreover, the spatial classification also contains horizontal, 

vertical and smooth subsets for providing more accurate interpolation results in the latter stage. 

Therefore, the proposed hard-decision method provides comparable results using less 

computation than the enhanced soft-decision method does. 
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Appendix C 
 
Extended Visual Comparison 
 

In this appendix, an extended study on visual comparison is presented using two images 

of 384×256 pixels taken from the Kodak database as shown in Fig. C-1. We visually 

compared the performance of the proposed demosaicing method with six notable ones: Lu’s 

[3], Gunturk’s [5], Li’s [6], Muresan’s [4], Grossman’s [9] and Omer’s [10] methods. The 

parameter setting of [5] and [6] is the same as that in the manuscript. The results of [4] and [9] 

are obtained directly from the authors’ web page in TIF and BMP formats, respectively. For 

Omer’s method, the Kimmel’s interpolation method [11] was employed to provide the smooth 

interpolated image in the interpolation stage. 

For the proposed method, we first use the optimal parameters )6.0,11(),( =optoptN α  to 

reconstruct the Bayer mosaiced image of Lighthouse. The PSNR metric between the original 

and demosaiced images is 32.7315dB; however, there still are some noticeable color artifacts 

in the fence region. In order to reduce these noticeable color artifacts, we increase the values 

of ),( αN  for estimating the horizontal and vertical edges accurately. After a tuning process, 

the suitable parameters are given by )8.0,24(),( =αN  and the PSNR metric reduces to 

32.4413dB. One can see that there is a tradeoff between quantitative and visual qualities. 

Figure C-2 shows the zoom-in of the demosaiced Lighthouse images using proposed method 

with parameters )6.0,11(),( =optoptN α  and )8.0,24(),( =αN  respectively. Figures C-2(a) 

and (d) show the zoom-in of original Lighthouse in the fence and house regions, respectively. 

Figures C-2(b) and (e) show the corresponding zoom-in of demosaicing results using 

parameters )6.0,11(),( =optoptN α , and (c) and (f) show that using parameters )8.0,24(),( =αN . 
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        (a)         (b) 

Fig. C-1: Test images used in the extended visual comparison. (a) Lighthouse. (b) Window. 

 

   

(a)       (b)       (c) 

   

(d)       (e)       (f) 

Fig. C-2: (a) and (d) show the zoom-in of the original Lighthouse image in the fence and house 
regions, respectively. (b) and (e) show the zoom-in of the demosaicing results using parameters 

)6.0,11(),( =optoptN α . (c) and (f) show the zoom-in of the demosaicing results using parameters 

)8.0,24(),( =αN . 
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Visually comparing these images, one can see that the demosaiced image using optimal 

parameters presents better result in house region than that using increased parameters, but 

some color artifacts still remain in fence region. On the contrary, the demosaiced image using 

increased parameters presents less color artifacts in fence region; however, the quality in 

house region is reduced. Therefore, the demosaicing results using increased parameters can 

reduce the color artifacts in the fence region but cannot provide better PSNR metric than those 

using optimal parameters. 

For further visual comparison, we choose larger parameters )8.0,24(),( =αN  for the 

proposed method, because it can provide more pleasing results in the fence region of the 

Lighthouse image. Figures C-3 and C-4, respectively, show the zoom-in of the Lighthouse 

demosaiced images in fence and house regions reconstructed by the methods under 

comparison. In Fig. C-3, one can see that Muresan’s, Grossman’s and the HPHD-CDEA 

methods provide better demosaicing results in the fence region than the others do. However, 

in Fig. C-4, one can see that the demosaicing result of Muresan’s and Grossman’s methods in 

house region induces more visible artifacts than the proposed method does. Therefore, the 

proposed method provides superior demosaicing result not only in fence region, but also in 

house region of the Lighthouse test image compared with other methods. 

Figure C-5(a) shows the zoom-in of the original Window image in flower region, and 

Figs. C-5(b)-(h) present the corresponding demosaiced results of the methods under 

comparison. Visually comparing these images shown in Fig. C-5, one can see that the 

demosaiced images obtained by Lu’s, Grossman’s and the proposed method give more 

satisfactory results compared with others. Therefore, based on the above visual comparison, 

the performance improvement of the proposed HPHD-CDEA method on detail regions of the 

image is verified. 
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(a)              (b)             (c)            (d) 

    

(e)              (f)             (g)            (h) 

Fig. C-3: Zoom-in demosaicing results of Lighthouse image in fence region. (a) Original picture; 
Demosaiced result in interpolation step: (b) Lu’s method, (c) Gunturk’s method, (d) Li’s method, (e) 
Muresan’s method, (f) Grossman’s method, (g) Omer’s method, (h) HPHD-CDEA method. 
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(a)              (b)             (c)            (d) 

    

(e)              (f)             (g)            (h) 

Fig. C-4: Zoom-in demosaicing results of Lighthouse image in house region. (a) Original picture; 
Demosaiced result in interpolation step: (b) Lu’s method, (c) Gunturk’s method, (d) Li’s method, (e) 
Muresan’s method, (f) Grossman’s method, (g) Omer’s method, (h) HPHD-CDEA method. 
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(a)              (b)             (c)            (d) 

    

(e)              (f)             (g)            (h) 

Fig. C-5: Zoom-in demosaicing results of Window image. (a) Original picture; Demosaiced result in 
interpolation step: (b) Lu’s method, (c) Gunturk’s method, (d) Li’s method, (e) Muresan’s method, (f) 
Grossman’s method, (g) Omer’s method, (h) HPHD-CDEA method. 
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Appendix D 

 

Extended Discussion on the Proposed VTC Scheme 

 

Although Theorem 3.1 shows that the proposed VTC guarantees the state Xi toward the 

desired state iX  in the image plane, it does not proof that the robot have followed the target. 

In this appendix, we will show that when Xi converges to iX , the mobile robot has followed 

the motion target. Recall the diffeomorphism defined in (7): 

c
i
ci XX P= ,          (D.1) 

where ),,( wxyx
i
c kkkkdiag −=P . Suppose that Xi has converged to iX , we then have the 

following result based on (D.1) 

d
c

i
ci XP=X , and         (D.2) 
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m
f

Td
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d
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d
c

d
c XzyxX θφR ,     (D.3) 

where d
cX  and d

fX , respectively, are the related position between mobile robot and motion 

target in camera and world coordinate frame when iiX X= . Because i
cP  is invertible, the 

following relation between d
fX  and iX  can be obtained by substituting (D.3) into (D.2) 

such that 

]δYX))[(,( 1 += −
i

i
c

m
f

Td
fX PR θφ .      (D.4) 

Let A  denote the 2-norm value of vector or matrix A. The key idea is that if d
fX  is 
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bounded, it implies that the mobile robot has followed the motion target. Using (D.4), d
fX  

is given by 

δYX)(                                                       

δYX)(                                                       
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Because of max
111111111 )W,,(),,()( λcxyxcwxyx

i
c zfffdiagzkkkkdiag =−=−= −−−−−−−−−P , where 

xxc dfz W=  and )W,max( 111
max

−−−= xy ffλ , we have the following result 

δYX
d
W

max +≤ i
x

xd
f

fX λ .      (D.6) 

From (D.6), it is clear that d
fX  is bounded, and hence the proof is completed. 

 

We use the simulation presented in Section 5.4.1 as an example to explain the physical 

meaning of (D.6). By using the parameters listed in Table 5-5, the term on the right hand side 

of (D.6) can be calculated by 

209.733701350032.0
35

21942
=+×

×
≤d

fX  (cm),     (D.7) 

which means that when Xi converges to iX , the distance between mobile robot and motion 

target is bounded to 209.7337 cm. Figure D-1 shows the simulation result of the distance 

between mobile robot and motion target. In Fig. D-1, the solid line presents the 2-norm value 

of Xf, and the dotted line denotes the bounded distance calculated in (D.7). From Fig. D-1, we 

see that the distance between mobile robot and target finally converges to about 100 cm, 

which is satisfied in the bounded condition (D.7). Because the target is always moving and the 

distance between the robot and target is bounded, this implies that the robot has followed the 
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Fig. D-1: Simulation result of the distance between mobile robot and motion target, || Xf ||. 

 

target as we expected. 
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