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ABSTRACT

The objective of this thesis“is to-develop-a nowvel color filter array (CFA) interpolation
algorithm for color reproduction of a single image sensor and a robust visual tracking control
system for vision-based motion control of a wheeled mobile robot. Most digital cameras
employ a single image sensor covered with a Bayer CFA to capture a Bayer mosaic image. A
full-color image is then reconstructed from the captured Bayer mosaic image through a color
reproduction process, commonly known as CFA interpolation or CFA demosaicing. To
reconstruct the full-color images with high fidelity, a novel heterogeneity-projection
hard-decision (HPHD) algorithm combined with a new color-difference based edge-adaptive
(CDEA) CFA interpolation method is proposed for color reproduction of Bayer mosaic
images. The proposed HPHD algorithm aims to estimate the optimal interpolation direction
and perform hard-decision interpolation, in which the direction of interpolation is decided

before performing the interpolation. On the other hand, the proposed CDEA CFA
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interpolation method devotes to reproduce color values with fewer color artifacts by adding
the high-frequency information of green channel to other color channels. Compared with three
recently reported CFA interpolation techniques, the proposed HPHD-CDEA method
outperforms all of them in both quantitative and visual comparisons by utilizing twenty-five

natural images from Kodak PhotoCD.

In the design of visual tracking control, a robust visual tracking control system, which
consists of a visual tracking controller (VTC) and a visual state estimator (VSE), is proposed
for a wheeled mobile robot equipped with a tilt camera. A novel dual-Jacobian visual
interaction model is first derived to help the design of VIC and VSE. The VSE aims to
estimate the optimal system state and target motion in the image plane directly, and the VTC
then calculates the robot’s control velocities, by using the estimation results from VSE. To
handle the uncertainties encountered in practical visual tracking control system, the VSE can
overcome the disturbances caused by both image noise and temporary occlusion uncertainties.
On the other hand, the VTC not only possesses-some degree of robustness against the system
model uncertainties, but also overcomes the unmodelled quantization effect in the velocity
commands. Therefore, by combining the proposed VTC with the proposed VSE, the visual
tracking control system is robust to the uncertainties of image noise, system model, velocity
quantization and temporary occlusion. Computer simulations and experimental results
validate the effectiveness of the proposed visual tracking control system, in terms of tracking

performance, system convergence, and robustness.
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Chapter 1

Introduction

1.1 Motivation

An intelligent robot uses its on-board sensors to collect information from the
surroundings and react to the changes of its immediate environment. In recent years, vision
systems become one of the major on-board sensors for autonomous robots. Most vision
systems utilize a monocular digital camera to capture full-color images of the environment for
several purposes. A full-color image usually is composed of three color planes and required
three separate image sensors to measure each color plane. In order to reduce the cost, many
cameras employ a single image sensor covered.with a color filter array (CFA), which consists
of a set of spectrally selective filters that-arc arranged in an interleaved pattern so that each
sensor pixel samples one of three primary coler components, to capture the mosaic images.
To render a full-color image from a mosaic image, a color reproduction process, commonly
known as CFA interpolation or CFA demosaicing, is required to estimate for each pixel its
two missing color values. Therefore, the researches on CFA interpolation for color
reproduction have become an important topic in digital camera pipeline process [1-11].

The rendered full-color images of the environment can be used in several robotic
applications, for example, recognition, navigation, localization, tracking control, etc. In recent
years, computer vision techniques act a key role in robotic systems for making robot motion
control and object tracking efficiently. Thus the study of visual tracking control (which means
the vision-based robot motion control to track a target of interest) has gained increasing
attention in recent years [12-36]. Based on the motion constraints of the robot, the research on

visual tracking control can be classified into visual servoing for holonomic manipulators and



visual tracking for nonholonomic mobile robots. Although visual servoing of holonomic
manipulators has been discussed extensively and many results can be found in the literature
[12-14], mobile robots are commonly nonholonomic and the visual servoing results for
holonomic manipulators are unsuitable for the mobile platform [15]. Hence, the researches on
mobile robot visual tracking control have been an active area in robotic researches [15-36].
According to the reasons above, this thesis aims to investigate the methodologies of CFA

interpolation for a single image sensor and visual tracking control for a wheeled mobile robot.

1.2 Literature Survey

1.2.1 CFA Interpolation for a Single Image Sensor

Digital color images from single-chip digital cameras are obtained by interpolating the
output from a CFA. The simplest. CFA interpolation methodologies apply well-known image
interpolation techniques, such @s nearest-neighbor replication, bilinear interpolation, and
cubic spline interpolation, to each.eolor channel separately. However, these single-channel
algorithms usually introduce severe color artifacts and blurs around sharp edges [1]. These
drawbacks motivate the need of more advanced algorithms for improving demosaicing
performance. An excellent review on advanced CFA interpolation algorithms can be found in
[2].

In recent years, there have been investigations on more sophisticated CFA interpolation
algorithms. In [3], Lu and Tan presented an improved hybrid CFA interpolation method that
consists of two successive steps: an interpolation step to render full-color images and a
post-processing step to suppress visible demosaicing artifacts. Muresan and Parks proposed
an improved edge-directed CFA interpolation algorithm based on optimal recovery
interpolation of grayscale images [4]. They first utilized a grayscale image interpolation

algorithm based on optimal recovery estimation theory to interpolate the green plane. The



red/blue channels were interpolated using inter-channel color difference adaptive filtering.
These two CFA interpolation algorithms in general produce high quality visual results,
especially in reconstructing sharp or well-defined edges of the image. However, in fine details
or texture regions, where edges tend to be short and in different directions, these algorithms
introduce undesirable errors and give degraded performance.

Meanwhile, two iterative CFA interpolation techniques were proposed by Gunturk et al.
[5] and Li [6], respectively. In [5], a projection-onto-convex-set (POCS) technique was
presented to estimate the missing color values in red and blue channels using alternating
projection scheme based on high inter-channel correlation. In [6], Li formulated the CFA
interpolation as a problem of reconstructing correlated signals from decimated versions and
proposed a successive approximation strategy by adopting color difference interpolation
iteratively. Although these iterative CFA interpolation algorithms perform well in texture
regions and reveal low computational compleXity, they cannot produce satisfactorily high
quality visual results in well-defined edges.of the image.

Another recent CFA interpolation. approach” divides the demosaicing procedure into
interpolation stage and decision stage [7-10]. In the interpolation stage, horizontally and
vertically interpolated images are produced respectively. In the latter decision stage, a
soft-decision method, in which the interpolation must be performed before the decision
procedure, was employed for choosing the pixels interpolated in the direction with fewer
artifacts. Because the decision stage is essential for these CFA interpolation approaches, we
refer them as decision-based CFA interpolation algorithm. For the decision stage, Hirakawa
et al. proposed a homogeneity metric to measure the misguidance level of color artifacts
presented in interpolated images [7]. Based on this measurement, the interpolation decision is
made by choosing the region with larger homogeneity values. In [8], Wu et al. adopted the
Fisher’s linear discriminant technique to determine the optimal interpolation direction in a

local window. In [9], Grossmann and Eldar utilized the YIQ color space as a tool to select the



reconstructed regions with a smoother chrominance component. Recently, Omer and Werman
proposed an enhanced decision-based CFA interpolation algorithm that combines the decision
process with the standard CFA interpolation algorithm such as edge-directed scheme [11] to
improve its performance in places the standard algorithm tends to fail [10]. The
decision-based CFA interpolation algorithm performs well not only in texture regions, but
also in well-defined edges of the image. However, the main drawback of these CFA
interpolation algorithms is that they are not efficient in the interpolation stage because each
pixel needs to be interpolated at least twice, one in horizontal direction and the other in
vertical direction, for the next soft-decision procedure. This drawback also greatly increases
the computing efforts in the latter decision stage. Therefore, it is still a challenge in CFA
interpolation design to develop an efficient CFA interpolation method with high performance

in both texture and edge regions.

1.2.2 Visual Tracking Control for a Wheeled Mobile Robot

The visual tracking control problem addressed in this thesis focuses on the visual
tracking control of a unicycle-modeled (usually termed as wheeled) mobile robot equipped
with an on-board monocular vision system. Due to the high number of different mobile robot
visual tracking control methods, we classify the reported methods into four groups based on
the type of the target to be tracked. Many efforts focus on the first group which aims to track a
static target, such as a ground line, landmark, or reference image, for the purpose of mobile
robot navigation or regulation (so-called homing) [15-28]. To track the ground line, Ma ef al.
formulated the visual tracking control problem as controlling the shape of a ground curve in
the image plane and proposed a closed-loop vision-guided control system for a nonholonomic
mobile robot [16]. Coulaud et al. proposed a simple and stable feedback controller design,
which avoids sophisticated image processing and control algorithms, for a mobile robot

equipped with a fixed camera to track a line on the ground [17]. In the case of tracking the



landmark, the reported controllers usually modify the visual servoing technique to satisfy the
nonholonomic constraint for the motion control of the mobile robot [18-21]. In [22], Zhang
and Ostrowski utilized an optimal control method to solve the visual motion-planning
problem by generating a virtual trajectory in the image plane and the corresponding optimal
control signals for the robot to follow. Nierobisch et al. proposed a visual tracking control
method for a mobile robot with a pan-tilt camera to track visual reference landmarks in the
acquired views during autonomous navigation [23]. Recently, the homography-based [24, 25]
and epipolar-based [15, 26-28] visual tracking control approaches were proposed for a mobile
robot equipped with a pinhole or an omni-directional (so-called central catadioptric) camera
to track a reference image toward a desired configuration. These two approaches consider the
mobile robot visual tracking control problem as a visual servoing regulation or visual homing
problem. In [24], Chen et al. developed a visual tracking controller based on the Euclidean
homography to track a desired time-varying trajectory defined by a prerecorded image
sequence of a stationary target viewed by.the on-board camera as the mobile robot moves.
However, the stability of their resultis restricted by the non-zero reference velocity condition
of the desired trajectory. To overcome this drawback, Fang et al. exploited Lyapunov-based
techniques to construct a homography-based visual servoing regulation controller for proving
asymptotic regulation of the mobile robot [25]. In [26], Mariottini et al. exploited the epipolar
geometry defined by the current and desired camera views to develop a two-step visual
servoing regulation controller. They also extend this design to the visual servoing regulation
control of a mobile robot with a central catadioptric camera [27]. In [28], Goedemé et al.
developed a vision-only navigation and homing system for mobile robots with an
omni-directional camera. Their method divides the visual homing operation into two phases
and computes visual homing vector based on epipolar geometry estimation. Although these
approaches of the first group provide appropriate solutions for static target visual tracking

control problem, they cannot guarantee to solve the moving (non-static) target visual tracking



control problem.

The second group aims to track other robot teammates in a robot group for the formation
control purpose [29, 30]. The proposed approaches in this group usually are designed based
on the central catadioptric camera model in order to detect all robot teammates at the same
instant. The subject of the third group is to track a predictable moving target, such as a
projectile or straight moving ball, for mobile robot interception purpose [31, 32]. In [31],
Borgstadt et al. utilized a human vision-based strategy to guide a mobile robot to intercept a
projectile ball. Similarly, Capparella et al. extended the concept of human-like strategy to
develop a vision-based two-level interception approach, which contains a lower level
controller to control the on-board pan-tilt camera and a higher lever controller to operate the
mobile robot platform, for intercepting a straight moving ball [32]. A common point of the
second and third group is that the motion of the target of interest is known and predictable.
However, in some robotic applications, a mebile robot requires to track a dynamic and
unpredictable motion target, such as ashuman’s face, for the purpose of pursuit or interaction.
Thus, the existent methods of the aforementioned two groups are not suitable to solve the
dynamic moving target visual tracking control problem.

The purpose of the fourth group aims to solve the problem of tracking a dynamic moving
target [33-37]. In [33], Wang et al. proposed an adaptive backstepping control law based on
an image-based camera-target visual interaction model to track a dynamic moving target with
unknown height parameter. Although the approach in [33] guarantees the asymptotic stability
of closed-loop visual tracking control system in tracking a dynamic moving target, the case of
tracking a static target cannot be guaranteed due to the non-zero restrictions on the reference
velocity of the mobile robot. In [34], Song ef al. combined a face detection algorithm with a
PID controller to track a moving person in a home setting. The main disadvantage of their
method is that it cannot guarantee the stability of the closed-loop visual tracking system based

on a stability criterion. In [35], Malis et al. integrated template-based visual tracking



algorithms and model-free vision-based control techniques to build a flexible and robust
visual tracking control system for various robotic applications. Because their visual tracking
result is based on the homography estimation, which requires two images of the target pattern
to estimate the optimal homography, the reported system only overcomes the partial occlusion
problem but fails in the fully occlusion problem. In [36], Han et al. proposed an image-based
visual tracking control scheme for a mobile robot to estimate the position of the target in the
next image and track the target to the central area of the image. Since their method utilized the
differential approximation method to estimate the velocity of target in the image plane, the
estimation result is very sensitive to the image noise. Recently, a visual interaction controller
had been proposed for a unicycle-modeled mobile robot to track a dynamic moving target
such as human’s face [37]. The drawback of this method is that the controller requires the
target’s 3D motion velocity, which.is difficult to' estimate when only a monocular camera is
used.

Therefore, from the literature survey, one-of the most important challenges in mobile
robot visual tracking control design‘is to.develop a visual tracking control system to estimate
the motion of the dynamic moving target and track it based on a stability criterion. Further, in
realization of the control schemes, it has been noted that the disturbances of image noise,
velocity quantization error and temporary (partial/full) occlusion degrade the performance of
the controller and might make the system unstable. These problems have not yet been
clarified in many existent related works and hence motivated us to investigate the robustness
of the visual tracking control system against the uncertainties of image noise, system model,

velocity quantization and temporary occlusion.

1.3 Research Objectives

The objective of this thesis is to develop a novel CFA interpolation algorithm for color

reproduction of a single image sensor and a robust visual tracking control system for



vision-based motion control of a wheeled mobile robot. For color reproduction, a novel
heterogeneity-projection hard-decision (HPHD) CFA interpolation algorithm is proposed to
reconstruct the full-color images from Bayer mosaic images [38]. The proposed HPHD CFA
interpolation algorithm can combine with many existent image interpolation methods to
reconstruct each color plane. However, in CFA interpolation process, it should be noticed that
color artifacts existing around edges and fine textures of the demosaiced image are a factor
limiting performance. Color artifacts are caused primarily by aliasing error in high-frequency
regions such as edges or fine textures, and existing algorithms are unable to resolve color
artifacts in these regions effectively to obtain demosaiced results with high visual quality. To
effectively reduce color artifacts in demosaiced images, a novel color-difference based
edge-adaptive (CDEA) CFA interpolation algorithm is then proposed and combined with the
HPHD CFA interpolation algorithm:to reproduce color values by exploiting the green plane
information for making high-frequency components-of red and blue planes similar to the
green plane, in which the aliasing errors-are-usually: much smaller than those in red and blue
planes.

For visual tracking control, a novel design of a robust visual tracking control system,
which consists of a visual tracking controller (VTC) and a visual state estimator (VSE), is
proposed for a wheeled mobile robot equipped with a tilt camera. In order to resolve the
problem of visual tracking a dynamic moving target and guarantee the stability of the
closed-loop visual tracking system, a novel dual-Jacobian visual interaction model is derived
to help the design of VTC and VSE. The VSE is constructed by a real-time self-tuning
Kalman filter and aims to estimate the optimal system state and target motion in the image
plane directly for later use by the VTC. The VTC then calculates the robot’s control velocities
in the image plane directly. To handle the uncertainties encountered in practical visual
tracking control system, the VSE can estimate the optimal target state from the observed

image with disturbances to overcome both image noise and temporary occlusion uncertainties.



On the other hand, the VTC not only possesses some degree of robustness against the system
model uncertainties, but also overcomes the unmodelled quantization effect in the velocity
commands. Therefore, the proposed system is robust to the uncertainties of image noise,
system model, velocity quantization and temporary occlusion. This advantage enhances the

reliability of the proposed visual tracking control system in practical applications.

1.4 Organization of the Thesis
The remainder of this thesis is organized as follows: In Chapter 2, a novel HPHD CFA

interpolation algorithm is first developed based on the concept of spectral-spatial correlation.
A new CDEA CFA interpolation algorithm is then proposed to combine with HPHD CFA
interpolation algorithm for color reproduction of Bayer mosaic images. In Chapter 3, a novel
dual-Jacobian visual interaction modelis derived in order to help the design of mobile robot
visual tracking control for tracking a dynamic moving target. Accordingly, the results of VTC
design with robustness analysis are developed by using the proposed visual interaction model.
Furthermore, the robust control law to overcome the velocity quantization error encountered
in practical systems will also be presented. Chapter 4 develops the VSE using Kalman filter
with self-tuning algorithm to estimate the optimal system state in the image plane for handling
the uncertainties caused by image noise and temporary occlusion. Simulation and
experimental results of the proposed CFA interpolation algorithm and the proposed mobile
robot visual tracking control system are reported and discussed in Chapter 5. Chapter 6
concludes the contributions of this work and provides the recommendations for future
research. In Appendix A, an experiment of tweaking parameters is presented to find the local
optimal parameters for the proposed HPHD-CDEA CFA interpolation algorithm described in
Chapter 2. Appendixes B and C present more discussions and visual comparisons of the
proposed CFA interpolation algorithm. An extended discussion on the proposed VTC scheme

is presented in Appendix D. Figure 1-1 shows the simplified overview of the thesis.
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Chapter 2

CFA Interpolation for Color Reproduction of Bayer

Mosaic Images

2.1 Introduction

In this chapter, the design of the proposed HPHD-CDEA CFA interpolation algorithm is
presented for color reproduction from Bayer mosaic images. The proposed algorithm consists
of HPHD algorithm and CDEA CFA interpolation. The proposed HPHD algorithm aims to
estimate the optimal interpolation direction before performing CFA interpolation. Because the
decision stage is performed before thepinterpolation stage (termed as hard-decision
interpolation), each pixel only meeds to be interpolated once. To do so, a new
heterogeneity-projection scheme’-based. on-a'novel spectral-spatial correlation concept is
proposed to estimate the best interpolation direction directly from the original Bayer mosaic
image. Using the proposed heterogeneity-projection scheme, a hard-decision rule can be
decided before performing CFA interpolation.

In order to effectively reduce color artifacts in CFA interpolation process, the proposed
CDEA CFA interpolation algorithm is then combined with the HPHD algorithm to reconstruct
the red and blue color planes by exploiting the green plane information for making
high-frequency components of red and blue planes similar to the green plane, in which the
aliasing errors are usually much smaller than those in red and blue planes. To do so, the red
and blue channels are first reconstructed using bilinear interpolation and then edge-adaptive
filtered in color-difference space. To reconstruct the green plane, any existent image

interpolation methods can be employed to combine with the CDEA CFA interpolation
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algorithm. Moreover, we also present a new edge-adaptive interpolation method to reconstruct

the green channel from CFA samples. The advantages of the proposed HPHD-CDEA CFA

interpolation algorithm are summarized as follows:

)]

2)

3)

4)

Many existent CFA interpolation methods can be combined with the proposed HPHD
algorithm to reconstruct each color plane. For example, the proposed
heterogeneity-projection scheme can combine with existent decision-based CFA
interpolation algorithms. More specifically, the proposed heterogeneity-projection scheme

can adopt into the decision step of existent decision-based CFA interpolation algorithms.

Each pixel only has to be interpolated once. Therefore, the proposed algorithm is much

more efficient than other decision-based schemes.

Any existing image interpolation-methods can be combined with the proposed CDEA CFA

interpolation algorithm to reconstruct the green plane.

The proposed HPHD-CDEA: CFA interpolation’ algorithm performs well not only in

texture regions, but also in well-defined edges of the image.

The rest of this chapter is organized as follows: In Section 2.2, the proposed HPHD CFA

interpolation algorithm is designed by using a novel concept of spectral-spatial correlation.

Section 2.3 presents the proposed CDEA CFA interpolation algorithm based on

color-difference model. A new edge-adaptive interpolation method to reconstruct the green

plane from CFA samples is also presented in this section. Section 2.4 describes the complete

HPHD-CDEA CFA interpolation algorithm and gives an example study. Section 2.5

summarizes the contributions of this work. An experiment of tweaking parameters to find the

local optimal parameters for the proposed CFA interpolation algorithm is presented in

Appendix A. More discussions and visual comparisons are presented in Appendixes B and C.
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2.2 Heterogeneity-Projection Hard-Decision (HPHD) CFA interpolation
Figure 2-1 shows the most used CFA pattern, the Bayer pattern [38], where R, G and B
denote, respectively, the pixels having only red, green and blue color values. We limit our
discussion to the Bayer pattern in this chapter because it is so popular. In the following, image
spectral and spatial correlations are first introduced. A novel spectral-spatial correlation is

then derived based on these two correlations.

2.2.1 Spectral and Spatial Correlations

Many existing demosaicing methods are developed using image spectral and/or spatial
correlation. The concept of spectral correlation is based on the assumption that the color
difference signals are locally constant in chrominance smooth areas [39]. Let [R G B]
denote three color planes of a nature color image, the concept of spectral correlation leads to

the following assumption.

A1) The color differences between green and' red/blue channels satisfy the following

conditions
R(x,y)=G(x,y)+ 4,(x,y) and B(x,y)=G(x,y)+ 4,,(x,»),
where 4,(x,y) and 4,,(x,y) are piecewise constant within the boundary of a given

object.

The spatial correlation reflects the fact that within a homogeneous image region,
neighboring pixels share similar color values [40]. In other words, the difference between
neighboring pixel values along an edge direction in spatial domain is a constant. Thus we

have the following assumption based on the concept of spatial correlation [3].
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Fig. 2-1: The Bayer pattern.

A2) The rate of change of neighboring pixel values along an edge direction is a constant.

To illustrate this, let us consider the interpolation of R,; in Fig. 2-1. Suppose that the pixel

R, i1s located on a horizontal edge. 'Basegg onvAl)","‘- the neighboring pixels of R;; along the

SE(a

horizontal direction have the following relaijidﬂéhip between green and red/blue pixel values

! - J

g

A, =G4 (v +1,5) and

Abg(x_lﬁy) = Abg(xﬁy) = Abg(x+19y) .

So we have

Ry -Gy =Ry - C_;33 =R,,—G,, and B,;—G,;=B;;-G,; =B,
The assumption A2) gives the following relationship on horizontal edges

Ryy—Ry; =Ry; — 1_343 =dR,,

Gy~ Gyy =G, ~ G, =dG, , and

Bz3_§33 :E33_B43 =dB,,

(2.1)

-G,,. (2.2)

(2.3)

where G,,, R,, R,, B,;, By,and B,, denote the missing color values at the respective

pixel locations. dG,, dR, and dB, are constants.
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2.2.2 Spectral-Spatial Correlation (SSC)

A significant characteristic of Bayer pattern is that for each pixel, the surrounding pixels
are one of the primary components in different channels. It is then interesting to investigate
the relationship between neighboring pixels in different color channels. Consider the
following situation: on a horizontal edge, two green pixels surround a red pixel on horizontal
direction. Take the difference between the center red pixel and right green pixel, we then have

R(x,y) - G(x+1,9) = [R(x,3) - G(x. )]+ [G (x,3) - G(x +1,3)]. 2.4)
where G(x,y) denotes the missing green value at center red pixel location. Recall

assumptions A1) and A2), expression (2.4) becomes such that

S = R(x,y) = G(x+1,y) = 4, (x,y) +dG, . (2.5)
Similarly, the difference between a blue pixel and its right green pixel is given by

S,f‘gf”“) =B(x,») -G+ 1L,y) =4, (x,y)+dG,. (2.6)
The same results also can be obtained along vertical direction on a vertical edge such that

Sy = R p)= G(x, y 1) = 4, (x,y) + dG, , and

Sy = B(x,3) = G(x,y +1) = 4,,(x,) + dG, . 2.7

Expressions (2.5)-(2.7) show that the difference between surrounding pixels in different color
channels is equal to the summation of spectral and spatial correlations. We refer these
relationships (2.5)-(2.7) as spectral-spatial correlation (SSC). SSC has two important
characteristics. First, SSC can be easily and directly calculated from the original Bayer mosaic
image. Second, SSC inherits the characteristics of spectral and spatial correlations. In other
words, SSC is also piecewise constant within the boundary of a given object or along an edge

direction. Therefore, we have the following assumption based on these observations:

A3) The SSC defined in (2.5)-(2.7) within the boundary of a given object or along an edge
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direction is also piecewise constant.

Assumption A3) is a significant clue for us to find the directional smooth regions in Bayer
mosaic images directly before performing the interpolation. In the following section, we will

present the method of heterogeneity-projection based on A3).

2.2.3 Heterogeneity-Projection for Bayer Mosaic Images

The proposed heterogeneity-projection scheme transfers the original Bayer mosaic image
directly into horizontal and vertical heterogeneity maps, respectively. Using these two
heterogeneity maps, the interpolation direction can be determined easily by choosing the

smallest heterogeneity values.

Assumption A3) implies that the n-order directional finite derivative of SSC along an

edge direction tends toward a small'value. For example, consider a red pixel R(x,y) locates
on a horizontal edge, the SSC values ‘of “R(x,y) and its neighboring pixels along horizontal

direction can be found such that

K = A, (5, 0)+dGy, SEY =4, (x+2,)+dG, (2.8)

where S;f“l’”z) =G(x+1,y)—R(x+2,y). Based on the basic definition of the first-order

derivative of a one-dimensional discrete function, the first-order horizontal derivative of SSC

are given by [41]

h(xx+3) _ oh(x,x+1) h(x+2,x43) _
as,, =S8 =8, =4, () - A4,(x+2,y),
h(x+lx+4) _ oh(x+1,x42) h(x+3,x+4) _
as,” =S, =8, =4, (x+4,y) - A4,(x+2,y). (2.9)

Recall A1) and A3), one can see that dSr”;""”” and dS ;ff”‘”’x”) both will approach to zero
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along this horizontal edge. Because the higher-order derivative of a discrete function is a
linear combination of the first-order ones, it implies the higher-order horizontal derivative of
SSC will also approach to zero along the horizontal edge. Thus we have the following

assumption.

A4) If pixels locate on a directional edge, then the corresponding n"-order directional

derivative of SSC along the edge direction approaches to zero.

Assumption Ad) poses a question that how the n™-order directional derivative of SSC can be
directly calculated from Bayer mosaic image. To resolve this problem, a
heterogeneity-projection scheme is developed to transfer the row data of Bayer mosaic image
directly into n"-order directional derivative ‘of SSC. Note that the value of n"-order
directional derivative of SSC is defined as‘heterogeneity measure, because it leads to a small

value within a directional smooth région.

Denote RG, , =[R, G, R, ---]., asarow data of Bayer mosaic image, N is the
presetting window size, and H, is the corresponding horizontal heterogeneity value. To
calculate the horizontal heterogeneity value H, from RG, ,, we propose the following
steps. First, the row data RG, , 1is transferred into a 1x(N —3) vector of first-order

horizontal derivative of SSC using a linear transformation such that

dSlx(N-3=[de;l’4) dS;:z,S) dSrh;’é) v = RGy T, (2.10)

where Ty, y_s, =1 -1 -1 1] ®eye(N-3), ® denotes the 2D convolution operator

and eye(M)denotes a M x M identity matrix. Second, because the high-order derivative of

a discrete function is derived by the linear combination of its first-order ones, the horizontal
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heterogeneity value H,, the (N —3)th-0rder horizontal derivative of SSC, is obtained such
that [41]
_ JN-3oh(LN) __ gN-4 oh(1,N-1) N-4 qh(2,N)
H,=d"—§,," =d""S, -d S,
_ gN-5Qh(LN-2) _ N-5ah(2,N-1) N-5 ah(3,N)
=d"S, 2d"S,, +d" 7S,
(2.11)
_ h(1,4) h(2,5) h(3,6)
=wdS,, " +wydS, T+ wydS, T 4

_ 2
= dSlx(N—3)T(N—3)x1

N-4
where T(i,_”xl = H[l - l]T ®eye(N—-3—-i) is a (N-3)x1 coefficient vector which

i=1

transfers vector dS,, ,_;, into the (N —3) ®_order derivative value through Euclidean inner

product [42]. Next, substituting (2.10) into (2.11) yields
H, = RGIXNT]\l/x(N—S)TgV—3)><1 =RGy y By s (2.12)

where Py, =Ty, v-3Tv-spa  is= 8. Nx1 | vector. ‘and referred as heterogeneity vector.

Expression (2.12) shows that the-horizontal heterogeneity value H, is the projection of the
row data of Bayer mosaic image onto the heterogeneity vector P, . Thus expression (2.12)
is termed as horizontal heterogeneity-projection. Figure 2-2 illustrates an example of
horizontal heterogeneity-projection from a 1x5 row data of Bayer mosaic image. Using

(2.12), the heterogeneity vector P, is obtained as
P, =TT =l =2 0 2 —1J.
The horizontal heterogeneity value H, of R, is then given by
H,=d’S}"" = RGP, = Ry —2G,;+2G,; — Ry;.

Similarly, the vertical heterogeneity value H  is the projection of Bayer mosaic image’s

column data onto the heterogeneity vector P, , such that

18



R13 G23 R33 G43 Rs3

OO O]]6

Siy” Sgr” Srg” Sgi?
(-) O
dSrg” dSgr
)
Hh=d’Srg "=R13-2G23+2G43-R53

Fig. 2-2: The concept of horizontal heterogeneity-projection from a 1x5 row data of a Bayer mosaic

image.

P

H,=RG} P, (2.13)

x1

where RG,,,=[R G, R, ---]f\,xl‘ 1s a column data of Bayer mosaic image. Finally, based

on (2.12) and (2.13), the horizental and vettical heterogeneity maps, H, ,, and H, .
are obtained, respectively by
H, = Bayer ® P} |, and H, ., =|Bayer ® P, (2.14)

where Bayer denotes the original Bayer mosaic image. One can see from (2.14) that the
horizontal and vertical heterogeneity maps are derived directly from the Bayer mosaic image

via horizontal and vertical heterogeneity-projection, respectively.

2.2.4 Directional Adaptive Filtering for Error Reduction

Assumption A4) states that the directional heterogeneity-projection along an edge
direction leads to a small heterogeneity value. However, a small heterogeneity measure does
not imply the directional heterogeneity-projection along a right edge direction. This problem

will induce the estimation errors in the initial estimated heterogeneity maps. In order to reduce
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the estimation errors, a directional adaptive filter, whose behavior changes based on the
statistical characteristics inside a local window, is proposed to reduce the estimation error and
estimate the optimal heterogeneity maps. Moreover, since each heterogeneity measure in the
initial heterogeneity maps is static, this estimation problem is equivalent to the static
estimation problem, in which the estimation errors are modeled as the zero mean Gaussian
noises with non-zero variance. According to [43], the minimum mean square-error (MMSE)
solution of the static estimation problem can be estimated using a predictor-corrector filter.
Therefore, the design of the proposed directional adaptive filter adopts the structure of
predictor-corrector filter to obtain the MMSE estimates.

The proposed directional adaptive filter is divided into horizontal and vertical adaptive
filters. For the horizontal heterogeneity map, only the horizontal adaptive filter is applied to it.
Figure 2-3(a) illustrates the concept of horizontal.adaptive filter. In Fig. 2-3(a), the center

pixel H, is to be adaptively filtered along.the horizontal direction based on statistical

measures of surrounding pixels H, ‘and—#;+-Thesimplest statistical measures of H; and
H are their mean and variance in a local'window [41]. For instance, if a 1x3 rectangular

window defines the window size, the local mean and variance of H, and H, are,

respectively, given by

HY=(H,+HF +H™) /3, 6Hf =[(H} - H,)* +(Hf -H} +(H} -H")*1/3. (2.15)
Hy =(H,+H, +H>")[3, 6H; =[(H, —H,) +(H, —Hy)* +(H; - H;*)’]/3. (2.16)

Using (2.15) and (2.16), the adaptively filtered pixel H, is obtained below

OH,

H =H: ¢
e SHE 4 sHE

(Hf-H}). (2.17)
In (2.17), the local mean H, is the predictor term with an associated error variance OH, ,

and the local mean H is the corresponding corrector term with error variance OoH . Thus,
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Fig. 2-3: The concept of (a) horizontal and (b) vertical adaptive filtering using a 1x3 rectangular

(H,,6H,)—

window.

(2.17) provides the MMSE estimate of hotizontal heterogeneity measure in a local window.

Figure 2-3(b) illustrates an example of verticalradaptive filter for vertical heterogeneity map.
Using the same procedure discussed above; the adaptively filtered pixel A is obtained as

follows

H =HY +LVU(HD -HY) (2.18)
v v éHé/ +éHVD v v /2 :
where (H,0H”) and (HP,0H") are the local mean and variance of H" and H”.

Similarly, (2.18) also provides the MMSE estimate of vertical heterogeneity measure in a
local window. After adopting the horizontal and vertical adaptive filters presented above into

horizontal and vertical heterogeneity maps, respectively, the MMSE estimates of horizontal

and vertical heterogeneity maps H ;7 and H, are obtained.

map v_ map

2.2.5 Hard-Decision CFA interpolation

With the horizontal and vertical heterogeneity maps, a hard-decision rule is applied for

CFA interpolation. First, we classify three subsets in the image such that
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Qh = {(x’y) | Hljimap(x’y) < aH:7n1ap (xﬁy)}a

Q, =) H (&) <] . (%)), (2.19)

Q = {0, () 2Q,,(x,») 2 Q,},

where Q,, Q , and Q_ denote the horizontal, vertical, and smooth subsets, respectively.

v

o 1s a positive constant satisfying 0<a <1. Second, based on (2.19), the concept of

hard-decision rule for CFA interpolation is obtained

lf (X, y) € Qh
Perform horizontal interpolation on each missing color channel;
elseif (x,y)eQ,

2.20
Perform vertical interpolation on each'missing color channel; (2.20)

else

Perform weight averaging-of neighboting pixels on each missing color channel.

In the following discussion, the CFA. interpolation method is developed based on the

hard-decision rule (2.20).

Remark 2.1: The parameter « in (2.19) determines the size of smooth subset in the image.
A small (large) o leads to a large (small) smooth subset in the image. For example, if
a =0, the image only contains smooth subset without horizontal and vertical subsets.
Based on (2.20), the interpolation of image only adopts the weight averaging of neighboring
pixels on each missing color channel [3, 11, 40]. On the other hand, for a =1, the image
only contains horizontal and vertical subsets but without smooth subset and the interpolation
of image only adopts horizontal and vertical interpolations on each missing color channel
[7-9]. Therefore, for 0 < a <1, the hard-decision rule (2.20) is characterized by features of

weight averaging and directional interpolating.
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2.3 Color-Difference Based Edge-Adaptive (CDEA) CFA interpolation

In this section, a novel CDEA CFA interpolation algorithm is proposed to reproduce the
missing color values in Bayer mosaic images. The proposed CFA interpolation algorithm aims
to exploit the green channel information for making high-frequency components of red and
blue channels similar to the green channel, which is useful to effectively reduce color artifacts
in demosaiced images. Any of the existing image interpolation methods can be combined with
the proposed algorithm to reconstruct the green channel, but, a new edge-adaptive
interpolation method to interpolate the green channel from CFA samples will also be
presented in this section. The red and blue channels are first reconstructed using bilinear
interpolation and then edge-adaptive low-pass filtered in color-difference space by the

assistance of the reconstructed green channel.

2.3.1 Color-Difference Approach to CFA interpolation

In a Bayer pattern, green :samples_are-obtained on a quincunx, while red and blue
samples are obtained in rectangular lattices. The density of red and blue samples is one-half
that of the green ones, and the aliasing error of high-frequency components in green channel
is likely to be less than that in red and blue channels. Thus, a common problem in
demosaicing is that the visible color artifacts in high-frequency regions are caused primarily
by aliasing in the red and blue channels. Fortunately, there is usually high inter-channel
correlation in high-frequency regions among red, green, and blue channels for natural color
images [5]. This implies that the red, green, and blue channels are quite similar at fine texture
and edge locations with all three colors. Therefore, a valid assumption can be made that object
boundaries are the same in all three color channels. More specifically, we have the following

assumption.

AS) The high-frequency regions are similar in all three channels and close to the
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In order to validate assumption AS), web utﬂrtzié‘ twenty—ﬁve natural images from the Kodak

PhotoCD (see Fig. 2-4), which have been used as test images for several demosaicing studies

[3-10].

Figure 2-5 shows the flowchart for demonstrating the assumption of color-difference
model mentioned above. The key concept is to replace the high-frequency components of red
and blue planes by using those of green plane, and compare then the mean squared error
(MSE) between the original and reconstructed color planes. A low-pass filter is utilized for
red and blue planes and a high-pass filter for the green plane. We utilize 2-D ideal low-pass

and high-pass filters in this procedure. Their transfer functions are given by [41]:

L, if D(u,v)< D,

H u,v) = ’
s ){Q#D@w>%

0, if D(u,v)< D,

and H u’v — ? 9
hlghpass( ) {l’ U(‘D(ua v) > DO
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Original Red Ideal Low-
Plane Pass Filter

Original Green Ideal High-
— .
Plane Pass Filter

Original Blue Ideal Low-
Plane Pass Filter

Fig. 2-5: Flowchart for demonstrating the assumption of color-difference model.

where D, is a specified nonnegative quantity; and D(u,v) is the distance from point (u,v)
to the origin of the frequency plane. We set D, equal to 128 in this test. After filtering in
each color plane, the new red and blue planes, R*.and B , are reconstructed respectively by
adding the high-frequency components.of the green plane to their low-frequency components.
Table 2-1 records the MSE comparison. results of each step. The first and second columns
show the MSE between original and low-pass filtered red (blue) planes R, (5, ). The third
and fourth columns show the MSE between original and reconstructed red (blue) planes
R (B). From the test results, it is clear that the MSE is reduced effectively by adding the
high-frequency regions of the green plane Gyg, to the low-pass filtered red (blue) planes. This
implies that the high-frequency regions of red and blue planes are similar and close to the
high-frequency regions of the green plane. Thus, assumption AS5) is validated. Based on
assumption AS), our motivation in this study is to reduce the color artifacts in high-frequency
regions by adding the high-frequency information of green channel to other color channels.
As described below, this can be achieved by utilizing the color-difference model.

Let [RY GY B“] denote three color planes of a demosaiced image. The Fourier

spectrum of each color plane can be described as follows:
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Table 2-1: Comparison of mean squared error at each step in Fig. 2-5.

Image No. | MSE(R, R, ) MSE(B, B,,,) MSE(R,R ) |MSE(B,B)
1 147.3784 1232171 37.0369 8.7712
2 260.2865 263.2530 4.2306 2.9049
3 73.0098 66.0994 9.8449 1.6476
4 59.1224 55.4568 3.1630 4.0863
5 75.0895 71.0032 8.0543 1.6137
6 307.8661 293.3846 6.3342 9.2040
7 178.8668 174.3140 21157 4.2843
8 76.3988 76.0140 2.8284 33626
9 539.2621 526.6953 8.2720 7.8362
10 81.2787 77.1119 2.6365 3.9927
11 86.7402 89.3761 2.8525 42737
12 149.5650 139.4246 4.1582 2.2200
13 70.4837 74.3636 3.1482 2.9343
14 415.0555 4212574 3.3856 10.3724
15 168.1822 141.2964 9.1458 8.2062
16 112.1141 103.0222 12.2228 3.6253
17 82.9777 80.8168 13618 1.8066
13 81.5764 84.8154 2.2567 3.9789
19 187.1993 182.8144 6.1265 10.0651
20 179.4598 163.5454 27882 3.8415
21 119.7853 109.3889 2.4227 6.2912
22 155.7798 160.6295 2.6352 4.9741
23 1243185 129.3350 7.7838 73834
24 57.6438 55.0500 42972 47799
25 232.1675 302.3846 10.3759 19.5268

F[R‘1=F[R’],+ F[R"],, FIG*]=E[G"],+F[G"],, F[B"]=F[B’], +F[B"],, (2.21)
where F[e] denotes the 2-D discrete Fourier transform; and the underscores / and /4 stand for

low-frequency and high-frequency components, respectively. The color-difference models of

the demosaiced image are defined such that

R,=R'-G’, B,=B"-G". (2.22)
Let L{e} denote a linear low-pass filtering process, and ﬁg and Eé denote the
low-frequency regions of the color differences corresponding to R, and B, . Suppose that
the high-frequency components of the color differences R, and B, can be removed by the

low-pass filtering process, the Fourier spectrum of R . and B . can be described such that

F[R,1=L{F[R,]1} =F[R'],-FIG"),, F[B,]=L{F[B,]}=F[B’],-F[G"],. (2.23)
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Subsequently, the new red and blue planes of the demosaiced image, R¢ and B“, can be

obtained respectively, by adding R , and B . Wwith G . Their Fourier spectra are given by
F[R']1=F[R,+G"1=F[R"),+ FIG"],, FIB‘1=F[B,+G']=F[B"],+F[G'],. (2.24)

It is clear from (2.24) that the high-frequency components of the new red and blue planes of
the demosaiced image are replaced by the high-frequency components of the green plane.
Because the aliasing error in the green plane is usually much smaller than those in red and
blue planes, based on the assumption described above, the aliased errors in red and blue
channels can be efficiently reduced by linear low-pass filtering in the color-difference spaces
and adding the results with green channel to obtain the new ones. This observation leads to
the development of an efficient CFA interpolation algorithm based on color-difference that
can reduce the color artifacts in high-frequency regions such as edges or fine textures.

The color-ratio model hag: been another:useful model for the development CFA
interpolation algorithms [1, 11].The main-difference between the color-difference model and
the color-ratio model is that the latter assumes the ratios between the red and green values are
constant within a given object, as are the ratios between the blue and green values. However,
the color-ratio model usually fails to work around edge regions and results in some color
artifacts because the constant-ratio assumption is not valid in these regions. But, again, the
assumption used by color-difference model is that the high-frequency regions are similar in all
three channels and close to the high-frequency regions of the green channel. If the
high-frequency components of the green channel (such as edges and fine textures) can be
recovered within small aliasing errors, then the results can be used to effectively reduce the
aliasing errors in red and blue channels. In the following section, we describe the proposed

edge-adaptive CFA interpolation algorithm based on the color-difference model.
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2.3.2 CDEA Low-pass Filtering

To begin with derivation of the proposed CFA interpolation algorithm, we first assume
that the green channel has been fully recovered by using an existing image interpolation
method. The initial estimation of red and blue channels can be obtained, for instance, by
utilizing some well-known method such as bilinear interpolation. Note that at this stage we do
not process the original red (blue) values, but rather keep them the same as the original
CFA-sampled color values. When an initial demosaiced image is obtained, we then utilize an
adaptive low-pass filter to filter the color-difference value at the missing pixel locations in red

(blue) channels.

Let [R’ G B'] denote three color planes of the initial demosaiced image. The red

and blue color-difference planes are given by

R, =R =G and B, =B/ -G/, (2.25)

g

where R’ and B/ are, respectively, thé initial estimated red and blue channels obtained

from bilinear interpolation; and G*/i§ the-initial estimated green channel obtained by any

image interpolation method. The filtering procedure involves two sub-steps: first,
edge-adaptive low-pass filtering of the red (blue) values over the original blue (red) pixels, as
shown in Fig. 2-6(a); second, edge-adaptive low-pass filtering of the red (blue) values over

the original green pixels, as shown in Fig. 2-6(b). Because the same procedure is used for

both R, and B, color-difference planes, only the procedure of R, will be described in

the following presentation.

We first consider the red color-difference value at blue pixel locations. Referring to Fig.

2-6(a), the red color-difference value at blue pixel position, R; , 1s to be filtered adaptively

by
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Fig. 2-6: (a) The red color-difference value on blue pixel and (b) the red color-difference value on

green pixel of a central pixel to be estimated.

RE = e,a‘lel + eazRgz" ‘!'eééRg3 + ea4Rg4

g

N : (2.26)
eaf“ + ea;‘+‘ea§ + ea4

where R

o ~R,, are the red color-difference-adjusted values and e, ~e,, are the edge

indicators corresponding to each coibf-difference “\‘/alue. These edge indicators are defined as
a decreasing function of the directional derivative of the center point and its neighboring
points. In the edge-adaptive low-pass filtering stage, we propose to introduce the second-order
directional derivatives of neighboring color-difference values for detecting edges more

accurately. In the case of Fig. 2-6(a), the edge indicators are given by

1 1
e, = s €,y = 5
1 Ry —Ry| |Rys—2R, +R, | Lo [Res = Rea| [Res=2Rpa+ R

RN 22 2 2

€ = 1 e, = ! (2.27)
R, —R R, —2R,; +R,, 1+ R, —R Ry —2R,4 + Ry,

1+|-£
22 22 242 22

3 g2
S

The red color-difference adjusted values R e R .4 are derived based on the assumption that

the difference of neighboring color-difference values along an interpolation direction is
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constant. For example, to find the red color-difference adjusted value at R,, location, this

assumption gives the following relationships for the neighboring red color-difference values

along the right-up direction

R,-R,=(R,-R)+(R,~R,) and (2.28)

R,-R,=R,—R

g g3

(2.29)

where ﬁg denotes the missing red color-difference value at B, location. Combining (2.28)

and (2.29), we have

R,-R;=2(R,—R,).
This implies that ﬁg =R, +(R,; —R,)/2. This value is denoted by Iégl, which is used to
estimate R, in the right-up interpolation _ditection. In a similar manner, the red

color-difference adjusted values along each mterpolation direction is given by

. R Y RTTTS R, R,
glzRgl+—<‘=32 i Rg2=Rg2+—é42 2,

. R, ZR., R, —R

g3=Rg3+—g12 £, Rg4=Rg4+—g22 g (2.30)

Subsequently, the rest of the red color-difference value at green pixel locations is

adaptively filtered from its four surrounding red color-difference values. In the case of Fig.

2-6(b), the red color-difference value at the central green pixel position, Rg, is adaptively

filtered according to the hard-decision rule (2.20) such that

A A

ebZRgZ + eb4Rg4

i (ny) €5

fb2+eb4A
e, R . +e.R
R] = gl 8 i (x,y) e Q) (2.31)

€yt €y
e,,le1 + e,,zRg2 + e,,3Rg3 +e,,R

gt if (x,y)eQ,.

€ €, te;tey,
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where ﬁgl ~1§g4 denote the red color-difference adjusted values defined in (2.30), and

e, ~ e, arethe corresponding edge indicators given by

1 1
“TTTR R IR.—2R. +R. " R.-R.| |R.-2R.+R.|
1+ g3~ gl i g3 g1+ g5 1+| 22 g4| | 6 g2+ g4|
2 2 | 7 | B |
€y = 1 . , e, = ! (2.32)
1+ Rg3 _Rgl + Rg7 - Rg3 + Rgl 1+ Rg2 _Rg4 n Rg2 - 2Rg4 + RgS
2 2 2 2

Finally, the full-red plane is obtained by recovering the spatial plane from red color-difference

plane such that
R =R, +G!. (2.33)

As the same procedure is utilized for recovering the blue plane, a full-color demosaiced image

can be obtained.

2.3.3 Green Channel Edge-Adaptive Interpolation

In this section, we present a novel edge-adaptive interpolation method for green channel
reconstruction from CFA samples. The green plane has the most spatial information of the
image to be demosaiced and has great influence on the perceptual quality of the image. In
order to reconstruct the demosaiced images with satisfactory quality, the hard-decision rule
(2.20) is utilized for choosing the direction of interpolation to reconstruct the green channel.
Figure 2-7 shows two cases of green samples in Bayer pattern, where the green value of
central pixels are to be estimated from its four surrounding green pixels, G, ~G,. The

central missing green value G, is estimated by the following expression

miss

i if (rr)eQ,;

A

e,,G, +

ee
e
O it (ny)eQ,; (2.34)
e

e

e,G +e,G,+e;Gy +ey,

e, +
e, G, +
+

eel

miss

4
e4
3

G, , if (x,1)eQ..

esl + es2 + ex3 + ex4
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Fig. 2-7: Two cases of missing green value on the central pixel. (a) The green value on blue pixel and

(b) the green value on red pixel of a central pixel to be estimated.

where Gl ~ G4 denote the color:adjusted, green‘ values of four surrounding green pixels;
5 - : !

e, ~ e, are the corresponding edge indiée:tc;;él Whe.ﬁ 't‘he location of central missing pixel (x,
) locates in the smooth subset: ‘.LQS \ andTei~ €y ;1re the corresponding edge indicators
when the location of central missiﬁg pixel (x, y) locates in the horizontal subset Q, or
vertical subset Q . In other words, if (x,y)eQ , we regard the central missing pixel as
being in a smooth region. Otherwise, we regard the central pixel as being in an edge region. In
the smooth region, the edge indicators associated with four surrounding color-adjusted green
values are denoted by e, ~e , and the central missing pixel is then estimated by weighted
sum of them. In the edge region, the edge indicators associated with four surrounding
color-adjusted green values are denoted by e, ~e,, and the central missing pixel is then
carried out by selecting weighted sum in horizontal and vertical directions.

Based on (2.34), the color-adjusted green values and the corresponding edge indicators

need to be determined for estimating the central missing green value G

miss *

For instance, in

the case of Fig. 2-7(a), the color-adjusted values in each interpolation direction are referred to
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[3] and given by

B=B ¢ _g BB ¢ B-B, - B-B,

Q:Q+
2 2 2 2

(2.35)

Similarly, in Fig. 2-7(b), the color-adjusted values in each interpolation direction are given by

6,268, 6,26, B GG BB g AR

: 5 (2.36)

The calculation of edge indicators associated with four surrounding green pixels is divided
into two cases. In smooth regions, a valid assumption is that the directional derivatives of
each color channel are small. Thus, the edge indicates in smooth regions can be seen as a

decreasing function dependent on the sum of local first-order directional derivative such that

1

) _1+|G1—G3|+|G5—G1|+|Bl—B|+ G°‘G4+2G10—Gz L Rs—R1;R6—R2

e, = 1

i _1+|G2—G4|+|G6—G2|+|B2—B|+ Gn‘Gm;Glz—Gs N R7—R2w2LR8—R3
e, = 1

" 1416, - 6 +l6, - G yp S @5 + GGl B =R KR
e, = 1
S4_1+|Gz—G4|+|G4—G8|+|B—B4|+ Gl_Glé-;G3_G15 + R4_R11J2FR1_R12 .

(2.37)
In edge regions, the assumption is that the directional derivatives of each color channel are
consistent along the direction of edges. Thus, the edge indicates in edge regions can be seen
as a decreasing function dependent on the consistence of local first-order directional

derivative such that
. 1
T 1+|G - G| +|G; - 2G, + G| +|B, - B~ G, + G,| +|R; = R, - G, + G| +|R; = R, - G,, + G|
1
fer = 1+|G, - G,|+|G, - 2G, + G,| +|B, - B~ G, + G,|+|R, = R, = G, + G| +|R; - R, = G, + G|
1
Ces = 14|G, - G| +|G, - 2G, + G,|+|G, =G, - B+ B,|+|G, - G,, - R, + R)|+|G, - G,, - R, + R,
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1
€4 = .
' 14|G,-G,|+|G, -2G, + G| +|G, -G, - B+B,|+|G, - G,s — R + R,|+|G, ~Gs —R, + R, |

(2.38)
Once the color-adjusted green values and the corresponding edge indicators are obtained from
(2.35) to (2.38), the missing green value G can be obtained by using (2.34). Finally, the full
green channel can be obtained by adopting the procedure as described above to interpolate all
missing green values on red and blue pixel positions. This method for interpolating green
channel from CFA samples is combined with the proposed CDEA CFA interpolation

algorithm.

Remark 2.2: Although edge-adaptive interpolation can provide more pleasing results, it also
increases the computational load and the amount of memory transactions compared with a
linear interpolation [39]. In order to reduce;the’computational cost in CFA interpolation step,
we can still use a linear intetpolation instead of the edge-adaptive interpolation. More
specifically, for linear interpolation, the edge indicators e, ~e,, in (2.26) and e, ~e, in
(2.34) are fixed such that

(e,5€,0.€,5.€,) =(LLLD, (e,.e,.e;,e,)=(11L1). (2.39)

And the edge indicators e, ~¢,, in(2.31)and e, ~e, in(2.34) are simplified such that

(0,1,0,)), if (x,y)eQ, {@¢ML#(%ﬁGQh

‘ (2.40)
(LO,L0), if (x,y)eQ,

(€y>€hy5€43,€,,) =1 (L0,L,0), if (x,)eQ,, (e,,€,,€,3,€,)=
(LLLD, if (x,y) €€,

The advantage of linear interpolation is that it not only can skip the calculation of edge
indicators, but also use bit-shift instead of division to reduce the computation time. Therefore,
compared with edge-adaptive interpolation, the computation cost of linear interpolation will

be greatly reduced.
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2.4 The Complete HPHD-CDEA CFA interpolation Algorithm

1))

2)

We summarize the complete HPHD-CDEA CFA interpolation algorithm as follows.

Initialization: Set window size N to calculate the heterogeneity vector P, , by 7, ;X( N_3)

and T(fHN defined in (10) and (11), respectively; set parameter « for spatial

classification.
Decision Stage (HPHD algorithm):

a) Heterogeneity-projection: Calculate the horizontal and vertical heterogeneity maps,

H and H

b map » map » from original Bayer mosaic image by (2.14).
b) Directional adaptive filtering: Filter the horizontal and vertical heterogeneity maps by
directional adaptive filters (2.17) and (2.18), respectively.

c) Spatial classification: Use parameter « and the two filtered heterogeneity maps to

classify the image into three subsets €,.-Q _and- Q_ by (2.10).

3) Interpolation Stage (CDEA CFA interpolation):

a) Interpolate G channel at R and‘B pixels by interpolation rule (2.34).

b) Interpolate R and B channels by bilinear interpolation; then calculate the red and blue
color-difference planes, R, and B, by (2.25).

c) Filter R, value at B pixels by adaptive filtering rule (2.26) and the B channel similarly.

d) Filter R, value at B pixels by adaptive filtering rule (2.31) and the B channel similarly.

Fig. 2-8 illustrates the flowchart of the proposed HPHD-CDEA CFA interpolation algorithm.

The main difference between the proposed algorithm and the existent decision-based schemes

is that the decision stage is performed before the interpolation stage in this design, thanks to

the heterogeneity-projection. This advantage contributes not only to improving the quality of

demosaicing result, but also to reducing the computational complexity of the decision stage.

In Chapter 5, a comparative study of experimental results and analysis of computational

complexity will be discussed to demonstrate the performance of the proposed method.
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Fig. 2-8: Flowchart of the proposed HPHD-CDEA CFA interpolation algorithm.

2.4.1 Example Study

Figure 2-9 illustrates the execution steps of the proposed algorithm by using an example.
The Kodak small Lighthouse imagei(384x256) is downsampled into a Bayer mosaiced image
as shown in Fig. 2-9(a). In this picture, the fence regions usually challenge the performance of

a demosaicing procedure. Figures 12<9(b)._and 2-9(c), respectively, are the horizontal

heterogeneity map H, ,, and vertical heterogeneity map H obtained from (2.14)

map v_ map

discussed in Section 2.2.3 (N =24 in this example). Through the directional adaptive

Ed

filtering discussed in Section 2.2.4, the filtered horizontal heterogeneity map H and

h_map

*

filtered vertical heterogeneity map H are obtained in Figs. 2-9(d)-(e), respectively.

v_map
Comparing Figs. 2-9(d)-(e) with Figs. 2-9(b)-(c), one can see that the unwanted noises in two
original heterogeneity maps have been removed effectively by using the directional adaptive
filters. Employing two filtered heterogeneity maps, the horizontal, vertical, and smooth
subsets in the image are obtained directly by (2.19) with « =0.8. Figure 2-9(f) shows three
decided subsets in the image, where the gray region is the horizontal subset €, , the white
region is the vertical subset Q , and the black region is the smooth subset € . Note that Fig.

2-9(f) shows the decisions in fence regions are almost all vertical. The interpolations are thus
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Fig. 2-9: Illustration of execution steps of the proposed HPHD-CDEA CFA interpolation algorithm. (a)
Original Bayer mosaic image of small Lighthouse image (384x256). (b) Horizontal heterogeneity map

Hy gy (N =24). (c) Vertical heterogenelty map Hv il (d) Filtered horizontal heterogeneity map
| 1 . k%
(e) Filtered vertical heterogenelty map Hv D

(a =0.8). The gray region is the horlzontalsubsetﬂ A the white region is the vertical subset Q2 ,

*
Hh _map *

=~ (f) Three decided subsets in the image

and the black region is the smooth subset Q (2) Interpblatlon result using the proposed CDEA CFA

interpolation presented in Section 2.3.
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(a) (b) (© (d)
Fig. 2-10: (a) Zoom-in of the original Lighthouse image in the fence region. Zoom-in of the

demosaicing results with parameters N =24 and (b) ¢ =0,(c) ¢=0.5,(d) a=0.8.

along the correct directions. Finally, the proposed CDEA CFA interpolation discussed in

Section 2.3 was applied to reconstruct the color image based on these three decided subsets.
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Figure 2-9(g) illustrates the interpolation results. In Fig. 2-9(g), one can see that the fine
details of interpolation such as the fence and house regions are reconstructed successfully.

To further illustrate the performance, we tweak parameter o and compare the
demosaicing results with original image (N =24 1is fixed). Figure 2-10(a) is the zoom-in of
the original fence regions. Figure 2-10(b) is the zoom-in of demosaicing result with parameter
a=0. One can see that the demosaiced image contains many color artifacts due to the
inaccurate smooth interpolation. Figures 2-10(c) and 2-10(d) show the demosaicing results
with parameter o =0.5 and a=0.8 , respectively. It is clear that the proposed
HPHD-CDEA CFA interpolation method reduces the color artifacts efficiently. Visually
compare Fig. 2-10(d) with Fig. 2-10(a), one can see that most detail features have been

reconstructed correctly.

2.5 Summary

A novel hard-decision CFA interpolation_procedure has been developed based on the
spectral-spatial correlation of a Bayer mosaic image. The proposed HPHD CFA interpolation
method effectively reconstructs fine detail features in both edge and texture regions of
demosaiced images. One merit of the proposed HPHD algorithm is that it can combine with
many existing image interpolation methods such as decision-based algorithm (set o =1),
edge-directed interpolation, adaptive interpolation, linear interpolation, etc for improved
performance. Moreover, the proposed heterogeneity-projection scheme provides an efficient
method for decision-based algorithms to make accurate direction-selection before performing
interpolation.

In order to reconstruct the demosaiced images with fewer color artifacts, a novel CDEA
CFA interpolation method is then proposed to combine with the HPHD algorithm. The
proposed CDEA algorithm effectively reduces color artifacts in both smooth and edge regions

of demosaiced images. Furthermore, any existing image interpolation method can be
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combined with the proposed CDEA algorithm to reconstruct the green channel. A new
edge-adaptive interpolation method is also presented by adopting the hard-decision rule from
HPHD algorithm to reconstruct the green channel from CFA samples. In Chapter 5, the
performance of the proposed HPHD-CDEA method will be compared with three renowned
CFA interpolation methods. Experimental results will show that HPHD-CDEA method not

only outperforms all of them in PSNR (dB) and S-CIELAB AE’, measures, but also gives

superior demosaiced fidelities in visual comparison.
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Chapter 3

Robust Mobile Robot Visual Tracking Control Based

on a Dual-Jacobian Visual Interaction Model

3.1 Introduction

From the literature discussed in Chapter 1, we have noted that a challenge in mobile
robot visual tracking control design is to develop a visual tracking control system to track a
dynamic moving target based on a stability criterion and overcome the uncertainties
encountered in practical systems..This problem motivates us to derive a new model for
designing a robust VTC to solve the visual tracking problem of dynamic moving target and
overcome the internal disturbances of'practical-system (such as system parametric uncertainty
and velocity quantization uncertainty).. To.achieve this, this chapter presents a novel
dual-Jacobian visual interaction model to help the design of a robust VTC for a wheeled
mobile robot equipped with a tilt camera. The proposed design enhances various
image-tracking applications using an on-board monocular camera, such as human-robot
interaction and surveillance. Based on Lyapunov theory, the proposed control scheme not only
possesses some degree of robustness against parametric uncertainty, but also overcomes the
external uncertainty caused by velocity quantization noise. Moreover, the proposed controller
fully works in image space; hence the computational complexity and the effects of
sensor/camera modeling errors can be greatly reduced. The main differences between the

proposed VTC and other existent approaches are summarized as follows:

1) The proposed dual-Jacobian visual interaction model considers not only the effect of
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2)

3)

mobile robot motion, but also the effect of target motion. Thus, based on the proposed
model, the visual tracking control problem of a unicycle-modeled mobile robot for
tracking a dynamic moving target can be solved with exponential convergence using a
single controller. Moreover, the proposed model also considers the kinematics of a tilt
camera platform mounted on the mobile robot. Therefore, the applicability of the

proposed method is greatly increased.

The proposed visual tracking control system not only possesses some degree of robustness
against the system model uncertainties, but also overcomes the unmodelled quantization
effect in the velocity commands and the occlusion effect during visual tracking process.

This advantage enhances the reliability of the proposed method in practical applications.

The proposed visual tracking control ‘system works fully in image space. Therefore,
compared with position-based [23], homography-based [13, 14], and epipole-based [4, 15,
16, 17] visual tracking control approaches, the computational complexity and the
sensor/camera modeling error§ can be reduced due to the advantages of image-based

visual servo control [2].

The basic assumptions of the proposed method are listed as follows:

1))

2)

The on-board camera is supposed to be a calibrated pinhole camera. Because the proposed
VTC possesses some degree of robustness against parametric uncertainty, a simple linear
camera calibration method [44] can be used to estimate the intrinsic parameters of the

camera.

The width of target is supposed to be a priori known constant in order to simplify the depth
estimation problem. However, this is not a necessary assumption for the proposed method.
Any algorithm or sensor which provides the depth information can be utilized to combine

with the proposed method.
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The rest of this chapter is organized as follows. Section 3.2 describes the system
modeling of visual tracking control problem and the proposed dual-Jacobian visual interaction
model accordingly. Section 3.3 presents the results of VTC design. In Section 3.4, the
robustness of the control system against the system model uncertainty is analyzed and
discussed. Section 3.5 presents the design of the robust control law to overcome the velocity
quantization error encountered in practical systems. Section 3.6 summarizes the contributions
of this design. Experimental results will be reported in Chapter 5. Several interesting

experimental observations will be presented and discussed.

3.2 Camera-Object Visual Interaction Model

This section derives the visual interaction model between a mobile robot and a dynamic
moving target. We first introduce the kinematics model of wheeled mobile robot and target
used in this design. The mathematic derivations of the-proposed model are then presented and

explained.

3.2.1 Kinematics Model of Wheeled Mobile Robot and Target

Figure 3-1 shows the model of wheeled mobile robot and target considered in the
nonholonomic visual tracking control problem. The wheeled mobile robot equips with a tilt
camera to track a dynamic motion target, which is supposed to be a well-recognizable object
with appropriate dimensions in the image plane and can only translate with respect to the
robot. The tilt camera is mounted on top of the mobile robot and its optical-axis faces the
target of interest, for instance, a human face. Figure 3-1(a) illustrates a model of the wheeled
mobile robot and the target in the world coordinate frame Fy (see Fig. 3-2), in which the

motion of the target is supposed to be holonomic such that

X} :fo, (3.1)
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Fig. 3-1: (a) A model of the wheeled mobile robot and the target in the world coordinate frame. (b)

Side view of the wheeled mobile robot with a tilt camera mounted on top of it.

where X =[x, | z,]" and ¥f=[vi v’ ]  denote, respectively, the position and

velocity of target in the world coordinates.

Figure 3-1(b) is the side view of the scenario under consideration, in which the tilt angle

¢ gives the relationship between the camera coordinate frame £, and the mobile coordinate

frame F, . The kinematics of the wheeled mobile robot is described by [45]

vy smt9f wom
X7 = 0 ,and | ., (3.2)
m m g=w"
v cos 6'/.

where X' =[x} y; =z} 1" is the position of mobile robot in the world coordinates,
(6;,9) are the orientation angle of mobile robot and the tilt angle of onboard camera, w;" is
the tilt velocity of the camera, and (v;,w}) are the linear and angular velocities of mobile

robot. In practice, (vy,w;) can be used to calculate the velocity of each wheel of the mobile

robot such that
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V' =i —(D-w})/2 and v =v}+(D-w))/2, (3.3)
where (v,",v") are the left- and right-wheel velocities, respectively, and D represents the

distance between the two drive wheels. In the rest of this chapter, the target model (3.1) and
mobile robot model (3.2) will be utilized to derive the visual interaction model and to design

the visual tracking control system.

3.2.2 Coordinate Transformation from World Frame into Camera Frame

Figure 3-2 illustrates the relationship between coordinate systems, namely the world,

camera and image coordinate frames. Let X, =X ’f — X7 denote the related position

between mobile robot and the target in the world coordinate frame. In order to describe a

mobile robot interacting with the target in the image coordinate frame, a visual interaction

model has been derived by transferring the kinematics of X, from the world coordinate

frame into the image coordinate frame. This‘subsection presents the transformation of the

kinematics of X ; from the world coordinate'frame into the camera coordinate frame.

As shown in Fig. 3-2, X_ =[x, y, =z denotes the related position in the camera
coordinate frame and can be calculated by the coordinate transformation such that
X, =R(4,0;)X, -0Y, (3.4
where

1 0 0 cosd; 0 —sindy
R(4,0/)=R(H)R(@})=|0 cosg —sing| 0 1 0 ,8Y=[0 & of . &
0 sing cosg |sind 0 cosf/

is the distance between the center of robot head and the onboard camera. Because 8Y is a

constant translation vector, the derivative of (3.4) becomes
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Fig. 3-2: World, camera and image coordinate frames of robotic visual interaction.

. OR(4,07) . .«OR(#,0]") . )
X = : + 07 | X, +R(4,07)X ., 3.5
c o9 ¢ og & [N (4,0,)X, (3.5)
R(4.07) 0 0 0 0 0 O
where Tf =| —cos@sin 0" —sing—rrcosgcost; |=|0 0 —1R(4,07)="YR(4,0]),
—singsin@; ““eosg —singdcoso; 01 0
R(.07) ‘—sm 0; ) 0 ‘— c0§ 0; ) O singg —cos¢ ) )
Tm' =|—singcosd; 0 singsin@; |=|-sing 0 0 [R(4,60])=Y,R(4,0;)-
4 cosgcosd; 0 —cosgsing; cos ¢ 0 0

Substituting (3.1), (3.2) and (3.4) into (3.5), the kinematics of the interaction between robot
and target in camera frame can be obtained by taking the derivative of X, such that
X, =¥ w' +¥,wHR($,07 )X, - X7)+RAREG; NX| - X7])
= (¥, W +¥ W)X, +6V)+ R@RO ! +ev"]
=Y w" +¥ wHX, +[R(de, ¥, 0¥ ¥ 0Yu+R(407)V,
=A X, +Bu+R(4,07)V],

(3.6)

where
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0 wising —wy cos¢ 0

A =YW +¥ W) =|-wsing 0 -w" |, =] 0 |,and
W cos¢@ w" 0 -1
0 oysing 0
B,=[R(¢)e, W,6¥ WoY|=| sing 0 0
—cos¢ 0 oy

u=[vy wy w"]" is the control velocity of the mobile robot and on-board tilt camera. In

the following, the kinematics model (3.6) will be used to derive the interaction model in the

image coordinate frame.

3.2.3 Coordinate Transformation from Camera Frame into Image Frame

In this subsection, the related position X, is transformed into the image coordinate frame
for deriving the visual interaction model based.on (3.6). We first define the system state in the
image coordinate frame for the controller.design. Fig.3-3 illustrates the definition of observed
system state in the image plane. In Fig..3-3, x.-and y, are, respectively, the horizontal and
vertical position of the centroid of target in the image plane, and d_ is the width of target in
the image plane. Similar to the human’s visual tracking behavior, the purpose of the visual
tracking control design is to control the centroid position and width of target from an initial
state into the desired state in the image plane.

In the following, the visual interaction model is derived by (3.6) and the selected system
state. Based on the pinhole camera model, the diffeomorphism (please see [46] for the
specification) in the image plane can be defined by the standard projection equations [44]

such that:
X':[xi yi dx]T:[_kxxc kyyc kkaZc]T’ kx:fx/Zc’ ky:fy/zc’ kw:W/Zc’

1

(3.7)
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Fig. 3-3: The definition of observed and desired system states in the image plane.

where (f,,f ) represent fixed focal length along the image x-axis and y-axis, respectively

[47], and W denotes the actual width of the target. By taking the derivative of (3.7), the
kinematic relationship between image and camera coordinate frames can be found such that
—k, .0 H—kxf;x,.

5 B=|0 k=, | (3.8)
0 0 —kfld

X, =PX
Substituting (3.6) and (3.7) into (3:8); fhe kinematic relationship between robot and target in
the image coordinate frame can be modeled by quasi-linear parameter-varying (Quasi-LPV)

description [48] such that
X, =AX, +Bu+C, (3.9)
where A, =diag(4,,4,,4,),

k : .
A= —f—"(v}‘ cosgsin& +v;sing+v; cosgcosdy),

X

k : .
A, = —f—y(v}‘. cosgsin@; +vysing +v; cosgcosd;),
y
V4 b m X m
k. (v;sin@; —v; cosd))
C,=|k,(v;cosg—v;singsin@; —v; singcosb;) |,
0
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S+f] (kov+y,) |
k_xxi cos ¢ (ﬂ)cos¢—f—x(k o+ y,)sing _M
fx fx fy y fy
' f : +f2 4k, y,
B -|kGing+Licosp)  LxGsingrlicosy) -2l tEIY
fy fx fy fy
; d (koy+y,
ﬁdi cos ¢ —x’dx cos ¢ _M
£, f, f,

where diag(a,b,c) denotes a 3-by-3 diagonal matrix with diagonal element a, b, and c; the
elements of system matrix A, and vector C, are time-varying function dependent on the
robot’s pose and target’s velocity; and the elements of control matrix B, are time-varying

function dependent on the robot’s pose and current system state.

3.2.4 Dual-Jacobian Visual Interaction Model

The visual interaction model (3.9) indicates that'the elements of system matrix A, and

vector C, are function of target:velocity.-Thus, expression (3.9) can be rewritten such that

X, =(AXHC)¥Bu=JV,+Bu, (3.10)
where
| xi : m m xi : xi m : m |
—kx(f—cos¢sm0f +cosd)') —kxf—sm¢ —kx(f—cos¢cos0f —sin ;)
J = —k},(%cos¢sin 0" +sin gsin ') —ky(%sin¢—cos¢) —k},(%cos¢cosﬁ}” +singcosd)) |-

Y Y y

-k, %cos¢sin 0; -k, %sin¢ -k, %cos¢cos 0

X X X

Expression (3.10) shows that the visual interaction model consists of two parts: first, the

effect of target motion X' E[fc.’ Vi d;]r =JV;, and second, the effect of mobile robot

1

motion X" E[)'c.m v d’;”]’ =B.u . Thus, (3.10) can be rewritten as a dual-Jacobian

1

equation such
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Fig. 3-4: Depicts the concept of dual-Jacobian visual interaction model (3.11).

that

X, =X/ +X"=JV +Bu, (3.11)

where matrix J., which is named target image:Jacobian, transfers the target velocity V/’

into target image velocity X!; matrix B,, which denotes robot image Jacobian, transfers the
mobile robot control velocity u “into  robot image velocity X . In other words, the image
velocity X, is caused by the combination of target image velocity X/ and robot image

velocity X. Figure 3-4 shows the concept of dual-Jacobian equation (3.11). Therefore, the

visual interaction between robot and target in the image coordinate frame can be modeled as a
dual-Jacobian visual interaction model (3.11), which combines the motion effect of mobile

robot with moving target together.

Remark 3.1: The scalars k, =f /z, and k,=f /z. in (3.7) depend on the depth

information between camera and target. The estimation of depth information is a demanding
task in visual tracking control design; especially only one camera is used. Thus, an algorithm

or sensor which provides the depth information is usually required during visual tracking
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process. In order to simplify the depth estimation problem, an alternative is to assume that the

width of target is known a priori. Therefore, the scalars k. and k, can be calculated using

the state variable d, directly based on the fact that k, =f /z, =d /W and k =kf /f ,

where W denotes the width of target for a specific target.

3.3 Visual Tracking Controller (VTC) Design
In this section, a visual tracking control law based on the proposed dual-Jacobian visual
interaction model (3.11) for tracking a target of interest in the image plane is derived by

exploiting feedback linearization and pole placement approaches.

3.3.1 Error Coordinate Transformation
In order to control the system from.an initial state to the desired state, an error-state
model will be helpful for us to=design the tracking controller. Define the error state in the

image plane such that
X =l v dl=[&-x y-y d-af. (3.12)
where X, =[ii Y, ax]’ is the vector of fixed desired states in the image plane;

X = [x?’ y d:]T is the vector of estimated states from the VSE (see Chapter 4). Based on

1

the error state (3.12), the dynamic error state model in the image plane can be derived directly

by taking the derivative of (3.12) such that

X,=-X/-X"=-3V/-Bu. (3.13)
With the new coordinate X,, the visual tracking control problem is transformed into a

stability problem. If X, converges to zero, then the visual tracking control problem is

solved.
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3.3.2 Visual Feedback Control Design
Based on the dynamic error state model (3.13), we choose the feedback linearization

control law such that
u=B(K,X,-JV)=B(K X, - X)), (3.14)
where K, isan 3-by-3 gain matrix. Substituting (3.14) into (3.13) yields

X, =-K,X,. (3.15)
Next, we choose the gain matrix such that
K, =diag(a,,a,,0;), (3.16)
in which (a,,a,,0,) are three positive constants. Substituting (3.16) into (3.15) yields
X, =KX, = —diag(a,,0,,0;) X, . (3.17)
Suppose that the initial error-state X (#,) - 1s within the image plane. Then expression (3.17)
indicates that
X O]y x.i0= X (6103 X (8,)) = diagle ™™ e e X (1), (3.18)
for some ¢, >0. Because (a,,a,,0,)>0 are positive constants, expression (3.18) leads to

the following inequality:

||X€ (t’ tO ) Xe (tO ))” < e_lmm(Kg)(t—zo)

X,(t,)| forall r>1,, (3.19)

where A (A) denotes the minimum eigenvalue of matrix A, and ||X || denotes the 2-norm

value of the vector X. From (3.19), it is clear that the system error-state satisfies

|X. (510, X (1) < | X.(2)| and lim,_ [ X, (54, X,(#,)|=0, and thus the visual tracking

t—)oo|

control problem is solved. Summarizing the above discussions, we obtain the following

theorem.

Theorem 3.1: Suppose the the initial system state X; is within the image plane. Let

51



(a,,0,,0,) >0 be three positive constants. Consider the closed-loop visual tracking system
(3.13). If the matrix B, is nonsingular, then the closed-loop visual tracking system (3.13) is

exponentially stable by using the control law

u=B'(K,X,-J V) (3.20-1)
—1 ,
=B (K X, - X)), (3.20-2)

where matrices B, and J, are defined in (3.9) and (3.10), respectively; X, is defined in

(3.12);and K, is a 3-by-3 diagonal gain matrix such that

K, =diag(o,,a,,0;). [ ]

Proof: Consider the closed-loop visual tracking system (3.13). We first define a

positive-definite Lyapunov function associated with the system error-state
VYRS + ) (321)
Taking the derivative of (3.21) ytelds
Vs =X X, .5 ==X IV + XBu)=-X] (X! +Bu)=—f(u), (3.22)
where f(u)= X/ (X ! +B.u). In view of Lyapunov theory [46], expression (3.22) tells us

that if f(u#) >0 then the equilibrium point of (3.13) is asymptotically stable. Substituting the

control law (3.20) into f{u), we then have
fw)=X/K X,, (3.23)
where K, =diag(a,,a,,0,), and (a,,a,,0,) are three positive constants. Since K, is a

symmetric positive definite (SPD) matrix, the following inequality holds:

? = min(ocl,ocz,oc3)||Xe||2 >0, (3.24)

f(l/l) 2 //i’min (Kg)"Xe
where A . (A) denotes the minimum eigenvalue of matrix A. Expression (3.24) concludes

that the closed-loop visual tracking system (3.13) is exponentially stable and hence completes
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the proof. |

Remark 3.2: Although the proposed image control law (3.20) results in a smooth convergence
in the image plane, it still has to proof that the robot should have followed the target. The

discussion of this problem is presented in Appendix D.

3.3.3 Singularity Analysis

The feedback linearization control law (3.20) poses a singularity problem of matrix B,.

Let B, denote an element of matrix B, corresponding to the m-th row and n-th column.
By directly computing, the determinant of matrix B, is given by

det(B,) = B,,B,,B;; + B,,B,;,B;, — B,,B,,B;; — B,,B,;B;, . (3.25)

Based on (3.25), the singularity condition of matrix_B, can be found such that

f,=(y, +Sd,)tang, (3.26)
where S=(f 9y)/(f W) is a fixed scalar-factor; Because of k, =f /z =d /W and

k,=kf,/f,,(3.26) can be rewritten such that

tang =———. (3.27)
yi + kyéy
Moreover, since f, =k z, and y, =k, y,, equation (3.27) equals:
z
tan g = < (3.28)

y o+

As shown in Fig. 3-5, let ¢’ be the angle related to the location of the target, we have the

following geometric relationship:

t N fe 3.29
an(¢ +¢') 5 (3.29)

From equations (3.28) and (3.29), it is clear that the matrix B, becomes singular when ¢’

equals to 0 or 7z . The physical meaning of this is that the target is directly above or directly
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Fig. 3-5: Physical meaning of the singularity condition (3.26).

below the robot, and the robot will be unable to approach the target in any way due to
insufficient degrees-of-freedom. Therefore, the robot will stop tracking temporarily under

such circumstances.

Remark 3.3: The proposed visualkinteraction-model'(3.11) poses a question that the derivation

of d_=k W 1is not always hold for a cylindrical target used in the system modeling. As

shown in Fig. 3-6, parameters W, fi.and z. remain the same, but the cylindrical target is shifted

along x.. The projection d, is not the same and includes an error &d . Because the camera is
supposed to have a limited field of view, the error &4 would be small and could be modeled

as a system uncertainty. In the next section, the robustness analysis is presented in order to

handle this kind of uncertainty.

3.4 Robustness Against System Model Uncertainty

In this section, the robustness of the VTC (3.20) is investigated against model

uncertainties from camera parameters (f,,f ), robot parameters (&;,¢4), and target

parameters (W, x;, j/,-t,d ‘), etc. Consider the following closed-loop visual tracking system

with parametric uncertainties:
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Fig. 3-6: Projection error in d,.

X, =—JV -Bu=—J,+8J)V;,—(B,+B)u, (3.30)

e —

wheredJ; and OB, are unknown bounded matrix-disturbances. Recall the positive-definite

Lyapunov function defined in (3',;2__: R

-
becomes -

L

X =

V |(3.30): Xe Xe |(3.30): _[Xe'..

where & (u)=X_ 8V V,+X oBu is unknown. Assume that & . and JB, are bounded
and there exists two positive values C,, and C, such that
§w<C,x,

T+x- (3.32)

We now introduce the following definition.

Definition 3.1: The system (3.13) is said to be practically stable at the origin if a compact set
S in R" exists containing the origin such that for each X, (¢))eS, X,(t)eS for all

t>t,.

In practical applications, the practical stability problem can be more easily handled. Now, the

55



main result is presented as follows.

Theorem 3.2: Consider the closed-loop visual tracking system (3.13) with unknown bounded

parametric uncertainties &J, and 6B, defined in (3.30). Let C,, and C, be two positive
values defined in (3.32) and assume that the target’s motion velocity HV} H >0 is bounded
and small enough. Choose the controller u as given in expression (3.20) with gain matrix
K, =diag(a,,0,,0,)>0.1If

D) [ (K] 20 (K ) > 1.

(i) [ (K] Cy 0.

Then the origin is asymptotically stable;under the condition ‘V; =0, and the origin is

>0 . [ |

practically stable under the condition ‘ij

Proof: Choose the controller u in(3.20) with patametric uncertainties such that
u=B" (K X;j=3#)=B, (K X, - X!), (3.33)

where X =3,V . Substituting (3.33) into & (1) defined in (3.31) yields

Fw)=X. 31V} +X/oB[B (KX, ~JV))
=X/BB,'K X, +X!(8),-BBI )V,

_ _ 3.34
<A (KB B |, B ey
=C, x| + x|,

where  C,, =4, (K,)|BB"| . C,=|&,-BB'T||/;]| . A..(A) denotes the

maximum eigenvalue of matrix A, and ||A|| denotes the Euclidean norm value of the matrix

A. From (3.31), (3.33) and (3.34), it follows that

4 |(3,13): V |(3.30) +of (u) = _XeTKgXe + CM ||Xe
< _{[/lmin (Kg)_CM ]”Xe

? +Cy| X,
- CN}”Xe

(3.35)
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Expression (3.35) implies that if [4,,,(K,)-C,,]

XC

—C, >0 can be guaranteed, then

14 |3.13< 0 is satisfied and thus the system has the robust property w.rt. the parametric

uncertainties.

From (3.34), the condition [4,,, (K,)-C,,]

Xe

—C, >0 can be rewritten such that
2 — 1 H o
> U (K )= C, 17 Cy =, ()= [oBB[ [hn O 0 (336)

where pﬂ(Kg):[/l

Xe

e KO

(K,) . In general, we have that HéBl.Ei‘IH<1. By

assumption (i) of the theorem, expression (3.36) follows that when p,(K,) —>1 satisfies,

Jde >0 such that

X - {,/ e ¢ <[, k) ~[oB,B; H]_l[ﬂ,max K )['Cy+ g}. (3.37)
Because of C, = Héll ,—OB,B; 11” Vi ls the condition HV}H =0 follows that
X[ <e& and V| < —[pl (Kg)—HéBiﬁi‘IH]”Xe”z <0. (3.38)

Thus, there exists a constant 6 > 0,70 < &, 3T such that

|X. @) <& =

X, (@0)|<6 Vizt1,+T, (3.39)

which means that the origin is asymptotically stable under the condition =0.

v;

On the other hand, the condition

vy

>0 follows that when p,(K,)—>1 satisfies,
J& >0 such that

Pl <0 forall |X,]<|[p, (Kg)—HaB,.E;IH]‘I[Am K)['Cy+s. (3.40)
Since HV}H is supposed to be small enough, C, o« HV}H is sufficiently small. By assumption

(i) of the theorem, there exists a sufficiently large 4, (K,)and a constant &, >0 such that

max

<c¢,, where ¢, =[pﬁ(Kg)—HéBi§[1“]_151 +¢. Choose the set S = {{eSR” : (”Scl},

X(!

57



where ¢, >0 satisfies ¢, >¢,. Then, any trajectory that begins at any X,(¢z,)e S will

remain in § for all #>7¢, under the control law (3.20). Thus, the origin is practically stable

under the condition HV} > 0 . This completes the proof. [ |

In Chapter 5, the result of Theorem 3.2 will be validated by practical experiments.
Further, in realization of the control schemes, it was noted that the quantization error in
velocity commands degrade the performance of the controller and might make the system
unstable. It is therefore interesting to study the robustness issues related to velocity
quantization uncertainty. In the following section, a robust control law based on Lyapunov’s
direct method will be derived to overcome the velocity quantization uncertainty in practical

control systems.

3.5 Robustness Against Velocity Quantization Error

When tracking a target, it.is. desirable'for ‘the robot to have a smooth motion in
human-robot interaction. But in sucheircumstances, one will face the problem caused by
velocity quantization error in practical implementation. In this section, a robust control law is
derived to eliminate the velocity quantization error encountered in practical control systems
based on the dynamic error state model defined in (3.13). To do so, a stability necessary
condition (SNC) is first derived for ensuring asymptotic stability and practical stability of the
closed-loop visual tracking system through Lyapunov’s direct method. The robust control law
is then proposed to guarantee that the visual tracking system satisfies the SNC and hence

complete the controller design.

3.5.1 Stability necessary condition (SNC)

Digital control systems usually have uniform quantization errors due to the finite-length
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effects on the sample values [49]. In other words, the ideal (theoretical) control command u is
quantized such that

Uu=u+ou, (3.41)
where u# denotes the practical (actual) control command sent to the robot actuator, and ou
represents the uniform quantization error encountered in the system. Thus, in practice, (3.22)

becomes

Vign=—f@) =L/ @) =& @)+ F @)=V |5, —0f (6u) <0, (3.42)

(3.41)
where & (0u) = X B,ou— X! oB,6u= XB,ou . Expression (3.42) shows that if the
controller u satisfies the assumptions (i) and (i1) of Theorem 3.2, then the equilibrium point of

the system (3.13) still can be unstable under the condition & (du) < 0. Therefore, one has the

following SNC in practical control implémentation:

SNC: Consider the closed-loop visual tracking system (3.13) with unknown bounded

parametric uncertainties A&J;, and<¢B, “defined 1n'(3.30). Let ou denote the velocity output
quantization error in practical systems. Suppose that the controller u given in (3.20) satisfies

the assumptions (i) and (ii) of Theorem 3.2. Then, the result of Theorem 3.2 holds under the

condition & (o) = X B,du >0 [ |

3.5.2 Proposed robust control law

SNC implies that a practical system may become unstable under the condition
& (6u) < 0. Our goal is to design a robust control law which not only guarantees SNC to be
always satisfied but also increases the convergence rate of the control system.

First, we expand ¢ (di) such that

F (Gu) = 3,07 + 7,607 + 0w, (3.43)
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where
7= Ellxe +§21ye +§31de s V2= EIZ‘X@ +§22ye +§32de’ V3= Fl3xe +§23ye +§33de=

B, denotes the element of matrix B, corresponding to the m-th row and n-th column. Next,

based on the velocity transformation

v 1 -D/2 0]} vy
vi|=|1 D/2 0w} |=Alw)]|, (3.44)
w" 0 0 Lifw" w"

t

where D represents the distance between two drive wheels, expression (3.43) becomes
F () =[(7,/2)+ (7,/D)," +[(71/2) = (7,/D)IV," +y;6w,". (3.45)

Expression (3.45) tells us that if each term in (3.45) is equal to a nonnegative value, then
& (6u) >0 can be guaranteed. Based, onl this idea, a variable structure robust control law is

derived such that:

b

e _ {v:" ~ &, sign(6v," ). if sign ([(7/2) + (7, /D)) = -1

vy~ otherwise.

ro

b

sue _ V" = sign(v]), if sign((7,/2) = (7,/D)ev") = -1
v,", otherwise.

th* — th - gtSlgn(i‘/Vtm )’ l.f Slgn (7/35‘4}1‘”’) = _1 , (3.46)
w", otherwise.
where
-1, if x<0
sign(x)=<0, if x=0,
L, if x>0

—m* —m*

V", v"™, w"™) are the outputs of the proposed robust control law for tracking control of the

robot, and (¢,¢,,¢,) are three positive constants such that

(€-,.£,) = (sup|6h

,sup|ov,"

, sup‘é'w[”

). (3.47)
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The value of constants (g,¢,,¢,) is calculated based on the range of quantization errors
(6v",ov",6w") that are dependent on the resolution of robot motion control module. It is
easy to show that the outputs of the proposed robust control law guarantee each term of (3.45)
is equal to a nonnegative value, and thus SNC is satisfied. Further, because of

V|(3_13):V|(3_13) —5f(u)§V|(3_13)<0, an increase of the convergence rate of the practical
(3.41)

system is obtained. In Chapter 5, the stability characteristic and convergence performance of

the proposed control law are verified in practical experiments.

3.6 Summary

A novel dual-Jacobian visual interaction model that represents the visual interaction
between a mobile robot and a dynamic moying target in the image plane has been derived in
this chapter. Based on this visual interactionmodel, a robust VTC is proposed to solve
dynamic moving target visual ‘tracking control problem with/without the information of
target’s 3D motion velocity. A study of system-model and velocity quantization uncertainties
in visual tracking control of a wheeled mobile robot has also been discussed in this chapter. In
the parametric robustness analysis, we have shown that the proposed VTC provides some
degree of robustness against system model uncertainties. Moreover, based on Lyapunov
theory, the robust control law efficiently overcomes the unmodelled quantization effect in the
velocity commands. In Chapter 5, several experimental results will be presented and
discussed to verity the effectiveness of the proposed VTC, in terms of tracking performance,

system convergence, and robustness.
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Chapter 4

Design of Visual State Estimator

4.1 Introduction

Recall Theorem 3.1, the visual tracking control law (3.20) requires information about
target 3D velocity V} or target image velocity X!.If V, is known, the first visual tracking
control law (3.20-1) only needs an estimate of target status X, to calculate the control signal

u. However, in practical applications, it is difficult to estimate V; when using only one

camera in real-time operations. In this situation;'the second visual tracking control law (3.20-2)

provides a useful solution which-only needs the target image velocity X ! in the image plane.

In this chapter, two VSEs will be proposed in order-to estimate the necessary information for

later used by the VTC. The first VSE is developed under the condition that target velocity V;

is known, and the second VSE is designed by releasing this condition. These designs will
facilitate more general performance of the proposed tracking control scheme in the image
plane. Another advantage of the proposed VSEs is that they can estimate the optimal target
state from the observed image, which has both random noise and temporary occlusion
uncertainties. Therefore, with the proposed VSEs, the visual tracking control system can be

robust to the uncertainties of image noise and temporary occlusion.

The rest of this chapter is organized as follows. Section 4.2 presents the design of VSE
with target velocity information to estimate the optimal system state in the image plane for

handling the uncertainties caused by image noise and temporary occlusion. In Section 4.3, the
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results of VSE design without target velocity information is presented. Section 4.4
summarizes the contributions of this work. The results of computer simulations and practical
experiments to validate the effectiveness of the proposed VSEs, in terms of estimation

performance and robustness, will be reported in Chapter 5.

4.2 VSE Design with Target Velocity Information (VSE-WTYV)

In the case of knowing the target 3D velocity V;, we develop the VSE-WTYV based on

the system model (3.9) to estimate the optimal target status X, in the image plane. To
achieve this, a propagation model is required in order to help the design of VSE-WTV. This
subsection presents the derivation of the required propagation model and the design of the

proposed VSE-WTYV algorithm.

4.2.1 Propagation Model for VSE-WTV
Since actual image processing: is-discrete;-the first step of the derivation of propagation

model is to discretize the system model (3.9) into corresponding discrete form. By the

definition x(¢) = lTing[x(t)—x(t—T)]/T, T denotes the sampling time of the digital system,

we can approximate the system model (3.9) as

XP[n]=1,+TA)X, [n-1]+TBu, ,+TC,, for n=1,2,... (4.1)
where X/[n] is the propagated system state at time step n, I, is a 3-by-3 identity matrix,
X [n-1]= [xl* y; d::]T denotes the estimated system state at time step n-1, and

T .
u,, = [v’f" wy w,'”] is the output of VTC at time step n-1.

The second step of the derivation of propagation model is to analyze the error covariance

matrix of discrete-time propagation equation (4.1). We first introduce the following variables

63



X =X A0, Y, =y 40y, do=d +dd,,

m* _ _m m m* __ _m m m*¥ __ _m m
Vi =vEHovE, Wi =wi+onwr, w o =w +on, (4.2)

t

where (x,,y,,d,) denote the system state variables; (x;,y,,d.) denote the estimated state

1

variables and (0, ,dy;,dd, ) are the corresponding state estimation errors; (v; ,w) ,w" ) and
(v, wy,w"), respectively, denote the velocity inverse transformation of the estimated

velocities (v, , v,

re?

w,. ) and velocity commands (v,", v, w" ) based on (3.44) such that

v_'f”* v /2 1/2 0] v vy v
wi|=A7| v |=|-D /D 0f v |,and |w] |=A"| V] |, (4.3)
w" wy 0 0 1w w" w"

where D is the distance between two drive wheels. Using (4.3), the estimated velocity errors

(ovy, 0w}, ow") can be estimated by the veloeity inverse transformation

m m m m m m
oy Vv Ve =V, ov,
Wi | =| W —wi = ATV =V = AT S . (4.4)
ow" W =W wr —w" ow"

t tc t

Next, substituting (4.2) into (4.1) and canceling common terms, the state estimation errors can
be approximated by neglecting the higher-order terms in the discrete-time error propagation

equation such that

0X [n]=A0X,[n—1]+TB,du,_,, (4.5)

where oX[n-11=[& &, od ] denotes  the  error  propagation  state,

ou, ,=[om v swr] s the estimated velocity error, and

As=|a, ay ay

a3 Az A

where
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a, =1+ T{Al + fi[(kxv;”.* +2x, ) Ycosp— k(6 + %)th*]} ,

X y

f . X, e
a, :—Tf—x(w}i Sln¢+f—’wt'” ),
y

X

*
*

T xik * P X. ® .
a;=—3 xl.A1+kx(f—’v}” cosg — oyw; sm¢—’f—@}wf" +v;sing; —v;cosb)) |,
X X X

fy : yz* m*
a, = Tf—(sm¢ +f—cos¢)wf ,
x y

a,, :1+T|:A2 +f4cos¢+;€—’w}”. cos¢—fi(2yi +k,op)w” },
y X y

ay, = dl {y:Az +k,[(sing+ % cos ¢)v}’* = yjf_éy W+ vy cosg— v, singsin@; —v; singcos b} ]} ,

X y y

a,, = —Tﬂw,m*,
f
y
2k, . x . 2k Oy + y )w"
ay, =1+T 2A1+(f—yv_’f" +)1§—’w_’f" )cos¢—( y@}fy’)
y X y

Because oX,[n—1] and oJu[n—1] are uncorrelated, the covariance matrix propagation

equation can be obtained by adopting (4.5) such that

P, = E{oX,[n}oX [n]}= A,P. A} +T°B,W, B, (4.6)
where W, =FE {5u[n —1Jou"[n - l]} is the covariance matrix of the estimated velocity error.

Applying (4.1) and (4.6), the system state and the corresponding covariance matrix in the next

time steps can be propagated.
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4.2.2 Observation and Correction for VSE-WTV
In this subsection, the propagated system state and the propagation covariance matrix
will be corrected using the observation of camera
Z =LX,[n]+0Z,,
where oZ, ~ N(0,R,) denotes Gaussian observation uncertainty with zero mean and

covariance matrix R, at instant n. The correction procedure will be [50]
X, [n]= X![n]+K,{Z, - X?[n]}, and (4.7)
P, =(,-K,)P, (4.8)
where K isthe Kalman gain matrix given by
K,=P(P,+R,)". (4.9)
Finally, the corrected system state <X [n]_and.thé-corresponding covariance matrix P, are

the optimal estimates at sample instant #.

4.2.3 Summary of the Proposed VSE-WTYV Algorithm

Based on the propagation equations (4.1) and (4.6) and the correction equations
(4.7)-(4.9), the VSE-WTYV can be summarized as follows:

1) Assume that the initial position of target is located in the field-of-view of the camera, then

initialize the estimated system state X;[0] and propagation covariance matrix P, by the
first observation such that X;[0]=Z, and P, =R,. The proposed VTC starts working.

2) Compute the propagated system state X”[n] and the corresponding covariance matrix
P using (4.1) and (4.6), respectively.
3) If the target to be tracked is detected in the observed image, then compute the Kalman gain

matrix K, using (4.9); else set X, [n]=X/[n] and P, =P,, go to step 5.
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4) Correct the estimated state vector X;[n] and the corresponding covariance matrix P,
using (4.7) and (4.8), respectively.

5) Let X;[n—1]=X,[n] and P, , =P, then go to step 2. [ |

Remark 4.1: Because the observation uncertainty usually varies with the conditions of target
motion (such as orientation and rotation of the target) and working environment (such as light

variation and occlusion), the corresponding covariance matrix R, would be time-varying

for different operating conditions. In order to overcome this problem, a real-time self-tuning

algorithm to choose a suitable observation covariance matrix R, in varying environmental

conditions will be proposed in next section and adopted into the design of both VSEs.

4.3 VSE Design without Target Velocity Information (VSE-WoTV)

The VSE-WoTV aims to-estimate-the optimal target status X, and target image
velocity X! from image space directly when the target 3D velocity V, is unknown. In this
case, the dual-Jacobian visual interaction model (3.11) plays an essential role in the estimator

design. The same procedure presented in Section 4.2 will be adopted into the design of

VSE-WoTV algorithm.

4.3.1 Propagation Model for VSE-WoTV
To derive the required propagation model for the design of VSE-WoTV, the first step is

to discretize the system model (3.11) into corresponding discrete form such that
X'[n]=X[n-1]+TX/[n-1]+TBu, ,for n=1,2,. (4.10)

Suppose that the target motion is close to a smooth motion during a sampling time, and then

the target image velocity can be approximated as a constant velocity between two consecutive
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sample instants
X/[n]=X/[n-1]. 4.11)

Based on (4.10) and (4.11), the propagation model of the VSE-WoTYV is given by

I, TI,] . [TB, ,
an = Xn—l + un—l = AestXn—l + Bestun—l s (412)
03 I3 03

where (X?)' =[(X/[n]) (X ‘[n])"] is the propagated system state at an instant n, 0, isa

3-by-3 zero matrix, and (X, )" = [(X n—-1)" (X/[n-1])" ] denotes the estimated system

state at the previous instant n-1.

Next, the covariance matrix of propagation equation (4.12) at an instant n is given by
Pn = AestP:—lA:st + Qn—l 4 (413)
where P, is the estimated covatiance;mattix:at the previous instant n-1, and Q, is the

covariance matrix of the Gaussian, propagation uncertainty. Note that (4.11) is an
oversimplified assumption and will induce propagation error when the target motion is not

smooth. However, this kind of error can be corrected by the observation information.

Remark 4.2: A major difference between VSE-WTV and VSE-WoTV is that the propagation

covariance matrix of VSE-WoTV includes the covariance matrix of the Gaussian propagation
uncertainty, Q, . The main reason is that if V; 1s known a-priori, the prediction of the target
state would be more precise with small uncertainty. Thus, the covariance matrix Q, can be

approximated by the matrix T°B,W, B! in the propagation covariance matrix of VSE-WTV.

On the other hand, if V; is unknown, the uncertainty of the target’s prediction state would

become larger. Therefore, the propagation covariance matrix of VSE-WoTV should take the

covariance matrix Q, into account.
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4.3.2 Observation and Correction for VSE-WoTV

Because the observed image only contains the information of target status X, in each
instant, the observation model of the VSE-WoTV is given by

z, =, 0]x,+6z,=H,X,+Z,, (4.14)

where oZ, ~ N(O,R ) is the observation uncertainty with zero mean and covariance matrix

R, . Based on equations (4.12) to (4.14), the optimal estimate and the corresponding

covariance matrix at a sample instant n are given by [50]

X: = le + Kl’l (Zl’l - H@S[Xl’f)) and P: = (16 - KI’IHCS[)PH > (4.15)
where K, =PH' (H_PH! +R )" is the Kalman gain matrix, and I, is a 6-by-6

identity matrix.

4.3.2 Self-Tuning Algorithm
Although expression (4.15) provides-the best linear estimates at each instant, the filter
performance still depends on the covariance matrices Q, and R, . Thus, a difficult problem

in Kalman filter applications is to determine the values of matrices Q, and R, for

computing Kalman gain matrix K, [51]. Moreover, the observation uncertainty usually
varies with the conditions of target motion and working environment; the corresponding
covariance matrix R, would be time-varying for various operating conditions. These
problems motivate us to combine a self-tuning algorithm with Kalman filter to choose a
suitable observation covariance matrix R, in varying environmental conditions. On the
other hand, because the propagation uncertainty and the corresponding covariance matrix Q,
are difficult to estimate online, the propagation covariance matrix Q, will be fixed at
initialization without updating in this design.

The proposed self-tuning algorithm attempts to estimate the minimum variance of a set

of observation data recorded over time. To do so, a linear-least-squares regression method is
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adopted to analyze the observed time series data [52]. The typical linear regression model for
a discrete time series is given by

y,=an+b+e¢, , (4.16)
where the residual &, is a random variable with zero mean, (a,b) are the parameters to be
determined by minimizing the variance of residuals. Figure 4-1 shows the concept of the

linear-least-squares regression, in which the solid line is the observed time series, and the
dotted line indicates the best linear fitting $ =an+5b with minimum residual variance o~ .

Let £ denote the length of the observed time series. Based on the linear regression

model (4.16), the observed time series can be modeled as

11

1
Y = |0+e=A0+¢, (4.17)

k1
where Y =[y, vy, -+ y, 1'% is' the wvector- of observed data over time, and
e=[g, &, - &/ representsthé correspondingresiduals. & =[a b]" is the parameter

vector to be detected such that

6 = min var(¢) = mgin”g” = mgin”Y -A_ 0|, (4.18)

where var(X) is the variance of vector X, and ||X || is the 2-norm value of vector X. The

optimal solution of (4.18) will be the least-squares solution such that

0 =A"Y, (4.19)

where A! =(Al A )"Al denotes the pseudo-inverse matrix of A,. Substituting (4.19) into

(4.17), the residual vector with minimum variance can be obtained by

g* = Y_AstA:tY = (Ik _Ast (A{tAst)ilAZsﬂt)Y = TstY= (420)

where T, =1, —A_ (A’ A )"'A! is a fixed k-by-k coefficient matrix, and I, is a k-by-k
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30 Observed Time Series

18l V,=an+b+g,||

v, =an+b

160
14b
12b

10¢

5] 7 8 9

2 3 4 s
Time Step n

Fig. 4-1: Concept of time series linear-least-squares regression.

identity matrix. Expression (4.20) tells us that the minimum variance residual vector & is
the linear transformation of observed data vector Y through a fixed transformation matrix T,.
This observation provides us an efficient method for detecting the minimum variance of an
observed data sequence in real-time. For instance, let, X 1" , Ylk , and le denote, respectively,
the observed data sequence of x;, y;, and d over time Steps 1 to £. Using (4.20), the minimum
variances of X/, Y,and D/ ‘are givénby
o’ =var(T, X/|), ai =var(T,Y"),and o =var(T,D/). (4.21)
Based on (4.21), the covariance matrix R, is updated as
R, =R, +diag((c7)’,(0,)",(07)"), (4.22)

where R, is the initial covariance matrix of R, .

4.3.4 Summary of the Proposed VSE-WToV Algorithm

Combining the self-tuning equations (4.21)-(4.22) with Kalman filter equations
(4.12)-(4.15), the implemented VSE-WoTV is summarized in Fig. 4-2. The processing steps
are listed as follows:

1) Choose two initial covariance matrices Q, and R, .
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2)

3)

4)

5)

6)

ZZ,| 2] 2, <J Kalman Filter
T sﬁzn % :
v ¥ (I ] Correction
Variance Detection R, [|K,-PH,H_PH,+R,)"| (X:F)
ol =var(T, X} | X, =P+ K (Z,-H,_X7)
o} =var(T,I}) 13"1 =1,-K,H,)P, '
o =var(T, Df) Delay
; y X Propagation
Covariance Matrix Update
2yt 2z e [T (XYPP) A &esrkn1+Bes:’fn1"
R, =R, +diag((c;)".(c,)".(5;)) Snota
! ’ ‘ P _Xest n- 1 eSZ +Qn 1
y
A

Self-Tuning
Algorithm Initial Covariance
Matrices
R, (RO’QD> le :QO

Fig. 4-2: Architecture of the proposed VSE-WoTV.

Assume that the initial position of the target is located in the field-of-view of the camera,

then initialize the estimated syStem-state X, and propagation covariance matrix P, by

the first observation such that X, =[Z; 0. 0 '0]" and P, =1,.

Store current observed measurément in_a-shift register with length 4. If the length of
storage data is equal to &, then compute the variance of the observed data sequences by

(4.21) and update covariance matrix R, by (4.22); else set R, =R, ; go to step 4.
Compute the ideal propagated state X/ defined in (4.12) and the corresponding

propagation covariance matrix P, using (4.13).

If the target is detected in the observed image, then compute the Kalman gain matrix K,

and update the estimated state vector X, with the corresponding covariance matrix P,
using (4.15); else set X, = X7” and P, =P,; go to step 6.

Let X, =X,, P, =P and Q,, =Q,; go to step 3. [ |
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4.4 Summary

In this chapter, two novel VSEs (VSE-WTV ans VSE-WoTV) were proposed by using a
real-time self-tuning Kalman filter technique. The proposed designs can be applied into
several visual tracking applications, such as visual tracking control, visual surveillance, and
visual navigation, etc., to estimate the position and the velocity of the target in the image
plane. Moreover, the proposed VSEs can estimate the optimal system state from the
observation signal with random noise and overcome the temporary occlusion problem during
visual tracking process. These advantages provide the visual tracking control system with
robustness against the external uncertainties caused by image noise and temporary occlusion.
In next chapter, computer simulations and experimental results of tracking a moving target
will be presented to validate the estimation performance and robustness of the proposed

designs.
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Chapter 5

Simulation and Experimental Results

5.1 Introduction

In this chapter, computer simulations and experimental results of the proposed CFA
interpolation algorithm, visual tracking control scheme and visual state estimation method are
presented and evaluated. In CFA interpolation experiments, the performance of three
renowned CFA interpolation methods will be employed to compare with the performance of
the proposed CFA interpolation algorithm. Experimental results will show that the proposed
method not only outperforms all-0f theni in PSNR (dB) and S-CIELAB AE], measures, but
also gives superior demosaiced fidelities in visual comparison.

In visual tracking control experiments, two exXperiments will be presented to validate the
tracking performance and robustness of the proposed VTC. The first and second experiments
evaluate the robustness of the proposed VTC against the velocity quantization uncertainty and
system parametric uncertainty, respectively. In visual state estimation experiments, the
computer simulations are first presented to verify the robustness of the proposed VSEs against
the uncertainty caused by random image noise. The practical experiments are then presented
to evaluate the performance of the proposed VSEs to overcome the uncertainty caused by

temporary partial/full occlusion.

The rest of this chapter is organized as follows. Section 5.2 evaluates the performance of
the proposed CFA interpolation algorithm by quantitative and visual comparison with three

recently published methods. Section 5.3 validates the tracking performance and robustness of
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the proposed VTC design. In Section 5.4, the estimation performance and robustness of the

proposed VSEs are presented and examined. Section 5.5 gives the concluding remarks.

5.2 Experimental Results of CFA Interpolation

In the experiments, twenty-five Kodak photographic images as shown in Fig. 2-4 were
employed for demonstrating the demosaicing performance of the proposed CFA interpolation
algorithm presented in Chapter 2. According to [53], the CFA operations in a digital-camera
pipeline usually include a demosaiced image post-processing framework to provide more
visually pleasing color output. Therefore, we introduce the post-processing framework in the
experiments to complete the comparisons. Figure 5-1 illustrates the flowchart of the
experiment, which contains interpolation and post-processing steps. In the interpolation step,
the demosaiced results of the proposed method, HPHD color-difference based linear
interpolation (HPHD-CDLi) and HPHD-CDEA interpolation methods, are compared with
those using bilinear interpolation and:thtee recently published methods: Lu’s [3], Gunturk’s
[5] and Li’s [6] methods. The above schemes-are chosen due to their high citation rate in
peer-reviewed literature [2-8, 40] and represent the state of the technology of CFA
interpolation. For Gunturk’s method, we make use of one-level (1-L) decomposition with
eight projection iterations in the experiments. For Li’s method, the universal threshold value
0, =0, =4 and maximum iteration number ifer =20 are chosen in the experiments. For the
proposed method, an experiment of tweaking parameters (N,«) presented in Appendix A
was set to find the local optimal parameters for these 25 test images. The local optimal
parameters were given by (N,a)=(11,0.6), which were chosen in the experiments.
Subsequently, Lu’s post-processing method was adopted as the post-processing procedure for
each demosaicing method. The demosaiced results in each step were compared accordingly.
As shown in Fig. 2-1, all test images were down-sampled to obtain the Bayer pattern and then

reconstructed using the demosaicing methods under comparison in RGB color space.
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CFA Interpolation

I
I .
CFA || Interpolation _ | Post-Processing 1, Der:(l)gzlice d
Samples || Step Full-Color Step I |
| Demosaiced | mage
I
| Image :

Fig. 5-1: Flowchart of the experiment. In the interpolation step, we compare the performance of
bilinear, Lu’s, Gunturk’s, Li’s and proposed HPHD-CDLi, HPHD-CDEA methods. In post-processing
step, Lu’s post-processing method is adopted into each CFA interpolation method.

Two performance measures were adopted in the experiments: PSNR and S-CIELAB

AE, metric [3, 6, 54] to evaluate the quality of the demosaiced images. The PSNR (in dB)

metric in this paper is defined as

PSNR(0,D) =10log,, 255{% >, Y |ox,y) - D(x, y)||2j , (5.1)

1SysVil=«a<U
where U, V are the total column.and row number of the image, O(x,y) is the color vector at
the (x,»)™ position of the original ;color image, and D(x,y) is the corresponding color

vector in the demosaiced color image. Note that; for a demosaiced image, high fidelity implies

high PSNR and small S-CIELAB AE’, measures.

5.2.1 Quantitative Comparison

Table 5-1 records the PSNR values and S-CIELAB AE], measures of the demosaiced
results obtained by the proposed interpolation method together with those from other methods
for comparison. In each step, the bold font denotes the highest PSNR and smallest AE],
values across each row. Moreover, since Gunturk’s and Li’s methods are iterative and others
are non-iterative, we categorized these methods into iterative and non-iterative groups for
more detailed comparisons. From Table 5-1, one can see that Li’s and HPHD-CDEA methods

provide improved demosaiced fidelity in most of the test images in the interpolation step.

However, when one compares the average PSNR and AE,, measures in the interpolation
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Table 5-1: Performance comparison among recent proposed methods: PSNR (dB) and AE], measures

of demosaiced images in the interpolation and post-processing steps.

Step Interpolation Step Post-Processing Step
Group Iterative Non-lIterative Iterative Non-Iterative

Method | Gunturk Li Bilinear Lu HPHD- HPHD- Gunturk Li Bilinear Lu HPHD- HPHD-
[5] [6] [3] CDLi CDEA [5] [6] [3] CDLi CDEA
1 29.3765 | 28.4957 | 24.8843 | 31.0257 | 30.5902 | 31.2393 | 29.2676 | 28.3192 | 28.8878 | 30.7940 | 30.5619 | 31.0132
1.7666 1.8899 2.7289 1.5357 1.6579 1.5342 1.7845 1.9083 1.9067 1.5466 1.6239 1.5355

2 33.2296 | 33.6676 | 21.5611 | 31.6889 | 31.3683 | 31.9611 | 33.6595 | 33.9846 | 27.3176 | 33.8433 | 34.0348 | 34.5002
1.5972 1.5396 5.1618 1.7135 1.7700 1.6584 1.5445 1.4974 2.8440 1.4668 1.4397 1.3893
3 347577 | 35.2213 | 28.3682 | 35.7152 | 35.4998 | 36.0240 | 34.6331 | 35.0579 | 33.2804 | 35.7232 | 36.0086 | 36.2940
1.6598 1.5958 3.1280 1.4910 1.5541 1.4463 1.6721 1.6008 1.9659 1.4943 1.4923 1.4255
4 36.6168 | 36.3808 | 29.7242 | 37.3966 | 37.3608 | 38.0755 | 36.7206 | 36.3960 | 35.3870 | 38.0096 | 37.9466 | 38.5172
0.9774 0.9766 1.7728 0.9094 0.9143 0.8633 0.9635 0.9615 1.0873 0.8576 0.8596 0.8222
5 34.9839 | 34.8997 | 28.80694 | 35.4482 | 34.9540 | 35.2691 | 34.9657 | 34.7714 | 34.4611 | 36.1356 | 35.6365 | 35.8899
1.3508 1.3260 2.5128 1.3020 1.3565 1.3006 1.3075 1.3213 1.4752 1.1861 1.2306 1.1934
6 32.6411 | 31.8126 | 21.8873 | 32.7081 | 31.8449 | 32.8136 | 32.6069 | 31.6062 | 29.3927 | 33.7802 | 33.4118 | 33.8814
2.1864 2.3790 5.7055 2.0318 2.3001 2.0001 2.1709 2.3857 2.8618 1.8551 1.9444 1.8254

7 34.0239 | 33.8198 | 23.0206 | 32.4465 | 33.4723 | 34.0733 | 34.3593 | 34.5397 | 28.6949 | 34.0965 | 35.6736 | 36.0181
1.2157 1.2266 3.6536 1.2998 1.2130 1.1400 1.1896 1.1590 2.0249 1.1592 1.0243 0.9950

8 36.8763 | 36.7725 | 28.7405 | 37.9098 | 36.8668 | 37.9580 | 36.6670 | 36.4265 | 35.3671 | 38.1854 | 37.5005 | 38.1763
1.1338 1.1444 2.1614 0.9885 1.0789 0.9662 1.1576 1.1699 1.2509 0.9694 1.0442 0.9687
9 30.8332 | 31.2495 | 18.7578 | 29.7212 | 29.2916 | 30.5677 | 31.1581 | 31.4196 | 23.9221 | 31.3071 | 31.3034 | 32.3919
1.7679 1.7192 5.9022 1.8327 1.9456 1.6909 1.7214 1.6968 3.4143 1.6277 1.6376 1.4892
10 36.7662 | 37.2501 | 27.5750 | 36.8133 | 37.0465 | 37.5485 | 37.0662 | 37.2927 | 33.3472 | 37.8106 | 38.3269 | 38.5816
0.8925 0.8255 1.8783 0.8758 0.8258 0.8032 0.8491 0.8226 1.1263 0.7919 0.7465 0.7375

11 36.7975 | 37.0956 | 27.6351 | 36.8098 | 36.5621 | 37.0535 | 37.0497 | 37.0952 | 34.1833 | 37.5213 | 37.7538 | 37.9091
0.8954 0.8286 1.8566 0.8715 0.8716 0.8417 0.8536 0.8263 1.0627 0.7926 0.7828 0.7717

12 34.5407 | 34.4102 | 24.3568 | 33.8725 | 33.6367 | 34.3895 | 34.6820 | 34.7541 | 30.3304 | 35.2610 | 35.4407 | 35.9223
1.4748 1.4275 3.8112 1.4666 1.5243 1:3974 1.4288 1.3622 2.1498 1.3140 1.3067 1.2380
13 37.8205 | 37.7569 | 28.7032 | 37.3884 | 37.7280 | 38.2135 | #37.9377 | 37.8628 | 34.1471 | 38.3279 | 38.9659 | 39.2299
0.6731 0.6760 1.5011 0.6695 016527 0,6266 056665 0.6610 0.8955 0.6267 0.5971 0.5838
14 29.7386 | 30.4264 | 19.0903 | 27.8600 | 227.5973 | 28.0727 | 30.2466 | 30.8242 | 25.6167 | 30.2549 | 30.3762 | 30.7444
2.5595 2.4457 7.1986 2.4652 2.9558 217885 2.8077 2.3680 3.7864 2.3619 2.3839 2.3128

15 30.8370 | 29.6090 | 24.4266 | 32.4833 4 31.7108 | 32.6677 | 30.6644 | 29.3860 | 30.1370 | 32.6128 | 31.9835 | 32.6813
1.9406 2.1114 4.1290 1.7491 1.8908 1.6838 1.9284 2.1159 2.3280 1.6518 1.7319 1.5960

16 344301 | 34.3050 | 28.2748 | 34.4161 | 34.5631  34.7185 34.3523 | 34.2067 | 33.7516 | 34.9354 | 35.1211 | 35.1681
1.4764 1.4804 2.5666 1.3868 1.4168 1.3640 14682 1.4704 1.5735 1.3388 1.3436 1.3196
17 37.3602 | 37.0917 | 26.5250 | 35.6650 | 37.1741"| 37.7084 | 37.6885 | 37.8239 | 31.8934 | 37.2329 | 39.1877 | 39.5172
0.9964 1.0009 2.8594 1.0971 0.9836 0.9431 0.9740 0.9477 1.6581 0.9865 0.8509 0.8314
18 36.2947 | 36.4685 | 27.2295 | 35.7449 | 35.4640.| 35.9088 | 36.5932 | 36.6429 | 33.7658 | 36.8960 | 36.9038 | 37.0386
1.4628 1.3340 2.8610 1.4857 1.5146 1.4615 1.3572 1.3100 1.6517 1.3056 1.3098 1.2863
19 32.3393 | 32.3295 | 23.3178 | 31.6767 | 31.3516 | 31.7392 | 32.5119 | 32.2416 | 29.5746 | 32.9921 | 32.8655 | 33.0480
2.3592 2.3903 5.0440 2.2879 2.3566 2.2609 2.3137 2.4326 2.8095 2.0898 2.1323 2.0906

20 34.9738 | 35.2707 | 23.1302 | 34.5020 | 34.6201 | 35.3463 | 35.2671 | 35.5570 | 28.4598 | 35.7424 | 36.1790 | 36.6761
1.3061 1.2493 3.6480 1.3409 1.3254 1.2559 1.2452 1.2094 2.0810 1.1902 1.1547 1.1201
21 35.7991 | 35.7714 | 26.8448 | 35.8899 | 35.1749 | 35.9477 | 36.0108 | 35.9894 | 33.1566 | 36.8055 | 36.5337 | 36.9950
1.0396 1.0294 2.1996 1.0016 1.0650 0.9915 1.0077 0.9971 1.2790 0.9230 0.9458 0.9086

22 34.0980 | 33.8535 | 23.7154 | 33.0809 | 32.5035 | 33.2871 | 34.3656 | 34.4198 | 29.6633 | 34.6893 | 34.4820 | 35.0812
1.3142 1.3468 3.4864 1.3691 1.4679 1.3564 1.2900 1.2757 1.9425 1.2138 1.2435 1.1863
23 32.8830 | 32.9540 | 25.5756 | 33.5303 | 32.9888 | 33.4476 | 32.8127 | 32.8188 | 30.7133 | 33.7291 | 33.4516 | 33.6982
1.5024 1.5250 2.9269 1.3922 1.4540 1.3894 1.5307 1.5364 1.7699 1.3651 1.4050 1.3690
24 37.0203 | 37.0820 | 30.3178 | 38.0689 | 37.9213 | 38.4486 | 36.9022 | 36.9148 | 36.3310 | 38.1993 | 38.2472 | 38.6336
0.9664 0.9820 1.4579 0.8977 0.9063 0.8702 0.9867 0.9956 0.9942 0.8945 0.8976 0.8706
25 29.8870 | 30.0755 | 21.9902 | 29.4449 | 29.7334 | 29.8614 | 30.0602 | 30.0909 | 27.8193 | 30.0984 | 30.7241 | 30.5972
1.4933 1.5055 3.6050 1.4432 1.5206 1.4261 1.4858 1.5123 1.9570 1.3599 1.3714 1.3405

Avg. 34.1970 | 34.1628 | 25.3809 | 34.0523 | 33.8810 | 34.4936 | 34.3300 | 34.2577 | 31.1840 | 34.9994 | 35.1448 | 35.5282
1.4403 1.4382 3.3503 1.4099 1.4609 1.3624 1.4145 1.4217 1.9158 1.2948 1.3000 1.2483

Add-up in Average | 0.1330 0.0949 5.8031 0.9471 1.2638 1.0346

-0.0258 | -0.0165 | -1.4345 | -0.1151 -0.1609 | -0.1141

step, HPHD-CDEA generates the highest fidelity demosaiced images, followed by the

Gunturk’s or other methods.

In the post-processing step, Table 5-1 indicates an interesting phenomenon that all
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non-iterative methods have significant improvement compared with iterative ones, especially
the bilinear interpolation (BI). In average, the improvement of BI can add-up the PSNR and
reduce AE,, of the interpolation results by 5.8031dB and 1.4345 units, respectively. The
other non-iterative methods also have noticeable improvement in average. In contrast, the
iterative methods, e.g. Gunturk’s and Li’s methods, only have modest improvement through
the post-processing step in average. These observations also can be seen in [53], where the
post-processing step provides the most significant improvement with BI and the smallest
improvement with Gunturk’s method. Therefore, the experimental results presented in Table
5-1 as well as [53] pose a question why post-processing is more beneficial to the interpolation
results of non-iterative approaches compared to that of iterative ones. The main reasons are as
follows.

Many CFA interpolation schemes, especially the simple ones such as BI or HPHD-CDLi,
usually induce visible artifacts due to the non-smooth-local color ratios and color differences
(red-green and blue-green). The ‘function of current post-processing schemes is to correct the
interpolated color values by enforcing the local color ratio rule [11, 53] and color difference
rule [3] of initial demosaiced image. Similarly, the principle of iterative demosaicing
approaches [5, 6] is to iteratively update the initial interpolation result by fitting the local
color difference rule. For example, according to [8], the idea of Gunturk’s iterative method is
equivalent to the filtering of down sampled color difference images of the initial interpolated
image by a 5x5 2-D low-pass filter for reducing the high frequency energy of reconstructed
color difference images without changing original mosaic samples. In [6], Li utilized the
Hamilton-Adams’ method [55] and BI to get initial estimates of missing green and red/blue
samples, respectively. The following iterative procedure is equivalent to linear low-pass
filtering of the color difference image until the reconstructed results converge to a smooth one.
In other words, the iterative demosaicing approaches can be regarded as an initial

interpolation combined with a meta-algorithm that performs iterative linear low-pass filtering
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of color difference images to enforce the local color difference rule on initial interpolated

image, which is also the main purpose of the latter post-processing step. Therefore, the

post-processing only provides modest improvement for iterative approaches.
Summarizing the above discussion on the experimental results, we have the following
conclusions:

1) For iterative approaches, post-processing only provides the modest improvement due to
both have the same purpose of enforcing the local color difference rule on the initial
demosaiced image.

2) On the contrary, post-processing for non-iterative approaches, especially simple linear
interpolation schemes such as BI or HPHD-CDLi schemes, provides significant
improvement due to its enforcing on the smoothness of local color ratios and color
differences.

3) Because the proposed HPHD-CDEA 'scheme is non-iterative and provides the best
interpolation results in interpolation”step,-it-also has great improvement and obtains the

best results after the post-processing:step.

5.2.2 Visual Comparison

Figures 5-2(a) and 5-3(a) show the zoom-in of test image No. 1 and 20, respectively.
These scenes contain many fine detail features, such as fine fiber patterns (Fig. 5-2) and
picket fences (Fig. 5-3), and can effectively challenge the performance of demosaicing
methods. Figures 5-2(b), 5-2(¢), 5-2(d), 5-2(e) and 5-2(f) are the demosaiced results obtained
from Gunturk’s, Lu’s, Li’s, HPHD-CDLi and HPHD-CDEA methods in the interpolation step,
respectively. From visual comparison, one can see that the Gunturk’s, Lu’s and Li’s methods
induce more color artifacts in edge and textured regions than HPHD-CDLi or HPHD-CDEA
does. Figures 5-3(b), 5-3(c), 5-3(d), 5-3(e) and 5-3(f) also show the similar comparison results.

These experimental results validate that the proposed HPHD CFA interpolation method
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performs satisfactorily not only in textured regions, but also in well-defined edges. More
discussions and visual comparisons are presented in Appendixes B and C.

Furthermore, as can be seen in Figs. 5-2 and 5-3, HPHD-CDLIi gives almost the same
demosaiced results in edge and textured regions compared with HPHD-CDEA does. Hence,
HPHD-CDLi can use instead of HPHD-CDEA in practical applications for HPHD-CDLi not
only saves a great amount of computational cost, but also gives comparable visual results as

HPHD-CDEA.
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Fig. 5-3: Zoom-in demosaicing res
interpolation step: (b) Gunturk’s
and (f) HPHD-CDEA method.
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5.2.3 Computational Complexity

The calculation performed in reconstructing one color pixel in each stage of the
algorithm are listed in Table 5-2, where N and « denote the parameter of window size and
spatial classification, respectively. For two directional heterogeneity-projections (H.P.), (2.12)
and (2.13) require a total of 2N-2 additions, 2N multiplications and 2 absolute conversions for
each color pixel. In the directional adaptive filtering (D.A.F) stage, if a 1xW rectangular
window was used to compute the local mean and variance by (2.15) and (2.16), then the total
calculation of (2.17) and (2.18) needs 12W-2 additions and 4412 multiplications. In the
hard-decision CFA interpolation (H.D.C.I), the total calculation of interpolation with a =0
and o =1 requires the maximum and minimum computation for each color pixel,

respectively. Therefore, if 0<a <1, the total computational load of interpolation will be
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Table 5-2: Calculations performed for reconstructing one color pixel.

HPHD-CDEA HPHD-CDLi
Stage ADDSs MULTSs | ABSs | SHIFTs | COMPs | ADDSs MULTSs | ABSs | SHIFTs | COMPs
H.P. 2N-2 2N 2 0 0 2N-2 2N 2 0 0
D.AF 12W-2 4W+12 0 0 0 12W-2 4W+12 0 0 0
HDCIL | g =1 59.5 17 13 16 L.5 10.5 0 0 35 1.5
a=0 92.5 28 22 28 3 17.5 0 0 6 3
Total o =1 | 2N+12W | 2N+4W+29 15 16 1.5 2N+12W | 2N+4W+12 2 3.5 1.5
+55.5 +6.5
oa=0 | 2ZN+12W | 2N+4W+40 | 24 28 3 2N+12W | 2N+4W+12 2 6 3
+88.5 +13.5

ADDSs: Additions; MULTSs: Multiplications; ABSs: Absolute conversions;

SHIFTs: Bit-shift operations; COMPs: Compare operations.

Table 5-3: Computational cost per color pixel of different CFA interpolation techniques.

ADDSs | MULTSs | ABSs | SHIFTs | COMPs | LUTs OPs
Bilinear Interpolation (BI) 4 0 0 3 0 0 7

Lu’s method [3] 81 16 29 18 0 0 144
Gunturk’s method [5] 400 384 4 45 1 0 793.5
Hirakawa’s method [7] 106 50 12 0 103 6 277
HPHD-CDEA | g =1 185.5 87 15 16 1.5 0 305
(N=11, W=9) a=0 | 21853 98 24 28 3 0 371.5
HPHD-CDLi a=1 136.5 70 2 3.5 1.5 0 213.5
(N=11, W=9) a=0 | 1435 70 2 6 3 0 224.5
HPHD-CDEA | g =1 1575 75 15 16 1.5 0 265
(N=9, W=17) a=0 190.5 86 24 28 3 0 331.5
HPHD-CDLi a=1 108:5 58 2 3.5 1.5 0 |1735
(N=9, W=T) a=0 1155 58 2 6 3 0 184.5

between that with ¢ =1 and a=0.

LUTs: Look-up tables; OPs: Operations;

Table 5-3 tabulates the computational cost of the proposed algorithm with those of the

methods published in [3], [5] and [7]. Although BI and Lu’s methods require fewer operations

in interpolation step, they will induce more color artifacts in edge and textured regions of the

demosaiced results. Gunturk’s method provides better demosaicing results; however, it

requires more operations in interpolation step. Hirakawa’s method represents the state of the

technology of decision-based CFA interpolation. In his method, the latter decision stage

requires much more computation compared with the interpolation stage, i.e. it requires 103

compare operations for choosing the best interpolation result from two directional
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interpolations. Moreover, if the interpolation stage includes a smooth interpolation step, the
calculation of decision stage will increase greatly, because it will need to evaluate three
interpolation results for each color pixel. In contrast, the calculation of the proposed
hard-decision method depends only on the parameters of window size, N and W. The
evaluation of horizontal, vertical and smooth interpolations depends on the parameter o and
only needs at most 3 compare operations for each color pixel. From Table 5-3, it is clear that
the computational operations can be reduced efficiently by combining linear interpolation
with the proposed HPHD algorithm. Therefore, the proposed method provides an efficient

solution for decision-based CFA interpolation techniques.

Remark 5.1: Another advantage of the proposed HPHD demosaicing algorithm is that the
algorithm is parallelizable and is faster on dual core processors. For instance, an application
program of raw photo editing, RawTherapee [56], uses the proposed HPHD algorithm as the
default demosaicing method, because: HPHD not only has better resolution compared to the
existing algorithms, but also is at least twice as fast compared with the enhanced adaptive

homogeneity-directed (EAHD) demosaicing algorithm [7]. Please see [56] for more details.

5.3 Simulation and Experimental Results of Visual Tracking Control

In order to verify the performance of the proposed controller design, the target’s motion
velocity is supposed to be known a-priori in the visual tracking control experiments. To do so,
we set a moving robot as the target with a-priori known motion velocity and combine the
VSE-WTV presented in Section 4.2 with the proposed VTC to estimate the optimal target
state in the image plane. Figure 5-4 depicts two experimental mobile robots developed in our
Lab for the study of mobile robot visual tracking control. In Fig. 5-4, left robot (called
tracking robot) is equipped with a USB camera and a tilt camera platform to track another

robot on which a green, cylindrical target of interest was installed (called target robot). Figure
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Fig. 5-4: Two experimental mobile robots developed in the Intelligent System Control Integration

(ISCI) Lab, National Chiao Tung University.
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Fig. 5-5: Implemented VTC (presenté& in Chapter 'T?a).'combined with the VSE-WTV (presented in

Section 4.2) to test in the visual tracking control experiments.

5-5 illustrates the block diagram of the visual tracking control system, which combines the
VTC with the VSE-WTYV to test in the visual tracking control experiments. The function of
each block shown in Fig. 5-5 is listed below:

1) Feature detection and tracking: perform image-processing algorithm to extract and track
the observed system state [xi v, d, ]T in the image captured from the camera.

2) Visual state estimator with target velocity (VSE-WTV): estimate the optimal system state

[x?‘ vy, d. ]T in the image plane. The performance of the VSE-WTV will be verified in

1

Section 5.4.2.
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3)

4)

S)

6)

7)

8)

Visual tracking control law: compute the desired velocity control commands
brwr wr] using (3.20-1).

Velocity transformation: transform the desired velocities into desired left- and right-wheel
velocity commands using (3.44).

Quantization processing: quantize the desired velocity control commands dependent on the
resolution of motion control module. The resolution of the self-made motion control card
used in the experiments is 8-bit, which means it can command the linear wheel velocity

from -128 to127 cm/s in integer. For example, suppose that the desired left-wheel velocity

command v is 2.9925 cm/s. After quantization processing, the quantized velocity
command " is [2.9925]=2 cm/s, where |x] is the largest integer smaller than x,

and the corresponding quantization error_ov," is v," —v" =-0.9925 cm/s. In other words,
the maximum velocity -quantization error “of left- and right-wheel velocity

commands [5\/,’” o ]T is smaller than Tlem/s in the experiment. Similarly, the

maximum quantization error of tilt velocity command ow" is smaller than +0.028 rad/s.

Thus, the three positive constants defined in (3.47) can be determined such that

(¢,,€,,€,)=(1,1,0.028).

Robust control law: compute robust velocity control commands [\7[”* v v_vt’"*]r to

overcome the velocity quantization uncertainty using (3.46).
Motion control card: where the velocity servo loop is implemented. It also estimates

m
rc

m m T
robot’s current left- and right-wheel velocities [Vlc v Wtc] for the VSE-WTV to

calculate the error covariance matrix of the propagated system state (see Section 4.2 for
details).

Velocity inverse transformation: transform the estimated left- and right-wheel velocities
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into estimated linear and angular velocities of the robot using (4.3).

One computer simulation and two practical experiments have been carried out to validate
the performance of the proposed control schemes: computer simulation and experiment 1 aim
to validate to robustness against the uncertainty of velocity quantization error, and experiment

2 is to verify the result of Theorem 3.2. In computer simulation and experiment 1, the target is

static (v (1) =0 for any ¢>0). Experiment 2 considers the situation that the target is always

moving (v; (t) # 0 for any #=>0). The parameters used in simulation and both experiments

are listed in Table 5-4. Note that different control gains were used in experiment 2 in order to
verify Theorem 3.2. Because the target is static in experiment 1, this leads (3.13) to be

simplified such that

X =oB s (5.2)

This implies the parametric uncertainties..encountering in visual tracking system are only
caused by matrix oB,. In contrast, the visual tracking system in experiment 2 will be
influenced by the parametric uncertainties of matrices 0A;, JB, and vector JSC,. Hence the
parametric uncertainties encountered in experiment 2 are larger than that in experiment 1.
This fact will be shown in the experimental results discussed below. Based on Theorem 3.2,
we note that the larger parameters (a,,a,,a;) > 0, the better the robust performance against
parametric uncertainties in the system. Therefore, the control gains used in experiment 2 are
larger than that used in experiment 1 in order to overcome the larger parametric uncertainties
in the experiment. Moreover, the experimental mobile robots have a limitation on motor speed
and hence the wheel speed (<25cm/s) for safety reason. In experiment 1, the controller
usually generates control signals larger than 25 cm/s. In order to guarantee the controller’s
velocity commands to satisfy this speed limitation, the control gains («,,,,2;); used in

experiment 1 is quite small; consequently, the quantization effect will be increased. Therefore,
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Table 5-4: Parameters used in the simulation and experiment of
visual tracking of a moving robot.

Symbol Quantity Description
(f,, fy) (294,312) pixels Camera focal length in retinal coordinates.
w 12 cm Width of the target.
D 30 cm Distance between two drive wheels.
5 10 cm Distance between the center of robot tilt
platform and the onboard camera
T 100 ms Sampling period of the control system
(X,,¥,,d,) (0,0,35) Desired system state in the image plane.
(a,,0,,a,) (5/64,6/16,4/64) Control gains used in the first and second
’ ’ experiments
(a,,a,,a5), (5/16,6/8,4/16) Control gains used in the second experiment
(&,¢,,¢,) (1,1,0.028) Max. quantization errors
(27,x7,607.0) | (0,0,0,0) Initial pose of tracking robot.

the proposed robust control law (3.46) plays an important role to overcome this problem and

guarantee the asymptotic stability of theclosed=loop system with a small gain controller.

5.3.1 Computer Simulations

A simulation environment issetup“using MATLAB to evaluate the tracking performance
of the proposed VTC. Figure 5-6 presents the computer simulation results of the
stationarytarget case without velocity quantization error. The initial pose of the tracking robot
is (0cm,0cm,0), and that of the target robot is (210cm,30cm, ). Figure 5-6(a) shows the
robot trajectory in the world coordinate system. Figure 5-6(b) illustrates the tracking errors in
the image plane. The simulation results show that the tracking errors decay exponentially to

zero using the proposed control law and hence the robot can track the target smoothly. In

Table 5-4, we set (¢,,a,,a;) equal to (5/64, 6/16, 4/64). Thus, using (3.18), we have
X, (t) =dia (—it—it—it))( (0) for #,=0 (5.3)
‘ %64 16 64 e 0T '

The tracking error y, will decay to zero faster than x, and d,. The simulation shown in

Fig. 5-6(b) validates this result. Figure 5-6(c) depicts the control velocities of the robot center
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Fig. 5-6: Computer simulation results of experiments1 without velocity quantization error. (a) Robot

trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities of the

center point and tilt camera of tracking robot.

point and the tilt camera of the tracking robot. It shows that the control signals also achieve

exponential convergence. Therefore, the simulation results validate the result of Theorem 3.1.

5.3.2 Experiment 1: Robustness to Velocity Quantization Error

In this experiment, the proposed VTC is implemented on the tracking robot in order to
validate the performance of the proposed robust control law (3.46). Figure 5-7 shows practical
experimental results of this case without using the robust control law (3.46). Figure 5-7(a)
illustrates the robot trajectory in the world coordinates. Figure 5-7(b) indicates the tracking

errors, in which the dotted lines are the theoretical values of (5.3) and the solid lines are the
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Fig. 5-7: Experimental results of experiment d=without using the proposed robust control law (3.46). (a)
Robot trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities

of the center point and tilt camera of tracking robot.

experimental results of tracking errors. From Fig. 5-7(b), we see that the system states in the
practical experiment do not converge to the desired states. This is caused by the system
quantization error in the velocity commands, which degrades the performance of the
controller. Figure 5-7(c) shows the control velocities of the tracking robot. In Fig. 5-7(c), it
can be seen that when the angular velocity was smaller than 0.04 rad/s, the quantization
error greatly affected the actual angular velocity. Therefore, the system state cannot converge
to the desired state as desired.

We repeated then the experiment by combining the proposed robust control law (3.46)

with the VTC. Figure 5-8 presents the experimental results using the proposed robust control
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Fig. 5-8: Experimental results of experimentslrusingrthe proposed robust control law (3.46). (a) Robot
trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities of the

center point and tilt camera of tracking robot.

law. Figure 5-8(a) depicts the robot trajectory in world coordinates. Figure 5-8(b) indicates the
tracking errors in the image plane. We observe that the convergence rate of experimental
results is faster than that of (5.3). This verifies that the proposed robust control law not only
guarantees the tracking errors to decay to zero asymptotically but also increases the
convergence rate in the practical system. Moreover, the experimental results also verify the

result of Theorem 3.2 that the closed-loop control system (3.13) under the control law given

in (3.20) is asymptotically stable at the origin when HV;

=( satisfies. Figure 5-8(c) shows

the control velocities of the tracking robot. A video clip of experimental 1 is available online

in [57].
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Remark 5.2: Although quantization errors are analyzable using techniques developed for
finite word-length controllers [58, 59], the reported methods are only useful for the linear
time-invariant (LTI) systems but not suitable for the Quasi-LPV systems. On the contrary, the
proposed control method can be applied to both LTI and Quasi-LPV systems. This is the merit
of the proposed method. On the other hand, using a more responsive controller with high
control gain is an alternative to reduce the effect of quantization error; however, it usually
generates large control outputs. In many applications in human-centered service robotics, one
expects relatively smooth motion for safety considerations. The proposed control method with
smaller control gain guarantees that the equilibrium point of practical system is also

asymptotically stable.

5.3.3 Experiment 2: Robustness to System. Model Uncertainty
In this experiment, the target is always- moving in order to validate the parametric
robustness of the proposed VIC.: The initial pose of the target robot are set as

(140cm,30cm, ). The target robot is-moving-along a counterclockwise circular path with

velocity

(v;,vi,v;) =(v,sind,,0,v, cos b)), (5.4)
where v, =10.5cm/sec and &) (new) =6, (old)+0.01rad with 6,(0)=7r . The target

velocity information is then used for the VSE-WTV to estimate the state of the target and
overcome the occlusion problem even the target is fully occluded. The experimental results of
the VSE-WTYV will be presented in Section 5.4.2. The initial pose of the tracking robot is also
(Ocm, O0cm,0).

In order to validate the result of Theorem 3.2, small control gains (¢,,a,,a;), were
first applied for the control law (3.20), which implies a small robustness against the system

parametric uncertainties. Later, larger control gains («,,c,,a;), were used in order to
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Fig. 5-9: Experimental results of experiment 2-using-eontrol gains (a,,a,,a;) = (5/64,6/16,4/64). (a)
Robot trajectory in the world coordinates. (b) Tracking errors in the image plane. (c) Control velocities

of the center point and tilt camera of tracking robot.

increase the robustness and improve the tracking performance of the closed-loop visual
tracking system.

Figure 5-9 presents the recorded responses of this experiment using the same control
gains as in experiment 1. In Fig. 5-9(a), the trajectories of two robots were recorded in the
world coordinates. Because these two robots were set face to face in the initial condition, the
tracking robot moved backward in the beginning and then moved forward to track the target
robot. Figure 5-9(b) depicts the tracking errors in the image plane. In Fig. 5-9(b), the dotted
lines illustrate the theoretical result from (5.3) while the solid lines show the experimental

results of tracking errors. From Fig. 5-9(a), we observe that the tracking robot followed the
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target robot with a poor behavior, which also can be seen in Fig. 5-9(b). In Fig. 5-9(b), the

error states x, and d, in the experiment do not converge to zero asymptotically. The main

reason is explained in the following. Recall Theorem 3.2 in Section 3.4, the closed-loop visual

tracking system is practically stable only for max(e,,a,,a;); =6/16 >>C, and
min(a,,a,,a;)s /max(a,,a,,a;); =1/6 > 6B B,| in the experiment. This implies that the

proposed controller provided a modest robustness against the parametric uncertainties. This
result can be observed in Fig. 5-9(b) which indicates that d, has a poor convergence
performance due to the system parametric uncertainties.

Based on Theorem 3.2, the proposed controller with larger control gains provides more
robust property w.rt. the system parametric uncertainties. Hence larger control gains
(a,,a,,a;), as listed in Table 5-4 were used to repeat experiment 2. Figure 5-10 presents
the recorded responses of this experimentzSimilarly; the tracking robot also moved backward
in the beginning and then moved forward to track thé target robot as shown in Fig 5-10(a).
However, the tracking robot tracked-the target robot in a circular motion with improved
performance compared with that of Fig: 5-9. Figure 5-10(b) depicts the tracking errors in the
image plane. We observe that the system state in the experiment converges practically to the
desired state as expected. These experimental results verify Theorem 3.2 and the robust

control law (3.46) as well. A video clip of experiment 2 can be seen online in [57].

5.4 Simulation and Experimental Results of Visual State Estimation

In this section, the computer simulations and practical experiments are presented to
validate the estimation performance and robustness of the proposed VSE-WTV and
VSE-WoTV described in Chapter 4. First, MATLAB was used to study the estimation
performance of the proposed VSE-WoTV. Next, two experiments were performed on the

experimental mobile robots to validate the robustness against the occlusion uncertainty. Since
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Fig. 5-10: Experimental results of experiment-2-usmg-control gains (a,,a,,a;), = (5/16,6/8,4/16). (a)

Robot trajectory in the world coordinates. (b) Tracking etrors in the image plane. (c) Control velocities

of the center point and tilt camera of tracking robot.

the estimation without velocity information is more difficult compared with that with velocity

information, only the simulation results of the VSE-WoTV are presented.

5.4.1 Computer Simulations
In order to evaluate the estimation performance of the proposed VSE-WoTV, a
simulation environment is setup using MATLAB. Figure 5-11 shows the architecture of the

simulation setup. In Fig. 5-11, X, which includes the target state X;[n] and target image

velocity X !, denotes the ideal state needed to be estimated by the VSE-WoTV. Xj[n] is

obtained from the coordinate transformations (3.4) and (3.7), and X! is calculated by (3.11)
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Fig. 5-11: Simulation setup for the performance evaluation of the proposed VSE-WoTV presented in
Section 4.3.

such that

Xilnlz Xi[n—1]

X=X, - g B.u

u, . (5.5)
The observation signal Z, is obtained by the rounding off the value of X;[n] with random noise

(RN) to integer. In this paper, the.randent noise.is. given by

_{Kno-l(o's_o-Z)? if (o5 <p)

5.6
(1+0,)(05=0,), otherwise (5.6)

where K, >1 1is the noise gain; o, € [0,1], 1=1~3, are three random signals with uniform
distribution; and p € [0,1] is a constant threshold value. Expression (5.6) indicates that the
intensity of the noise is time-varying and dependent on a random condition. If the condition
(o, < p) is satisfied, then the random noise will have large noise gain; otherwise the random
noise will only have noise gain smaller than 2. Thus, the threshold value p determines the
probability of the event of appearing large observation noise. This kind of random noise is
usually happened during practical visual tracking process of the mobile robot, since the
intensity of the observation uncertainty usually is position-dependent and light-dependent.
The parameters used in the simulations are listed in the Table 5-5.

Figure 5-12 presents the computer simulation results of the visual tracking control
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Table 5-5: Parameters used in the simulations of visual state estimation.

Symbol Quantity Description
(f,, fy) (294,312) pixels Camera focal length in retinal coordinates.
W 12 cm Width of the target.
D 40 cm Distance between two drive wheels.
& 10 em Distance between the center of robot tilt platform
and the onboard camera
T 35 ms Sampling period of the control system
(X,,¥,,d,) (0,0,35) Desired system state in the image plane.
(0,,0,,05) (5/4,3,1/2) Positive control gains used in the experiments.
Qo diag(1,1,1,2,2,2) Initial covariance matrix
K, 15 Noise gain
P 0.75 Constant threshold value

system shown in Fig. 5-11. Figure 5-12(a) shows the robot trajectory in the world coordinate

frame. In the simulation, the motion of the target is also set as a circular motion with velocity
(vi, Vi) = (v, singy, 0,V cos 6y),
where v, =20cm/sec and Op(new)=@; (old)+ (Tz/18)rad with 6;(0)=0. From Fig.

5-12(a), we observe that the motion trajéctory of tracking robot is also a circular path in order
to follow the target. Figure 5-12(b) shows the control velocities of the center point and tilt
camera of tracking robot. It reveals that the tracking robot’s linear and angular velocities
converge to constants when the tracking errors decay to zero. Therefore, the tracking robot
kept tracking the target continuously. Figure 5-12(c) shows the tracking errors with random
noise (5.6), and Fig. 5-12(d) is the corresponding tracking errors estimated by the VSE-WoTV.
In Figs. 5-12(c) and 5-12(d), the dotted lines illustrate the ideal tracking errors while the solid
lines show the observation and estimation results of tracking errors. A comparison of Fig.
5-12(c) with Fig. 5-12(d) shows that the random noise in each error state is removed
efficiently, especially the error states y, and d.. Thus, the robustness of the proposed
VSE-WoTV against the random noise uncertainty is validated. Moreover, in Fig. 5-12(d),

each error state converges to zero exponentially and smoothly, which validates the tracking

96



Rabot Trajectary

Control Velocities

3000 100 . T T T
Target Trajectory _g
20} LA LM‘_
B
Robot Trajectory & o . : | & n ;
ot 0 5 10 15 20 25 30 35
0.4 T T T T T T
= @
L sl
e =
=
100k 0 . . \ . . .
0 5 10 15 20 25 30 35
1 :
S0F Robot F sl 1
Initial 5
Position Initial = L
g Paosition
. . . . L . ) 05 . . \ . . .
0 50 100 150 200 240 300 0 5 10 15 20 25 30 35
Zf(Cm) Time (sec)
(a) (b)
Error-State with Random MNoise Estimated Error-State by VSE-WoTY
&0 T T T T T 80 T T T T T
T &0 E T 60 g
aw 1 5 a0 i
@ 201 - @ 20 i
= ol ‘ " h " = g
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
L e S e = 0
= =
=] E =] g
@ QO
40 B = a0 i
. . \ . . . . . \ . . .
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

De (pixel)
De (pixel)

L = L
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Time (=ec)

(c)

Target Image Velocity

Time (gec)

(d)

Estimation Error of Target Image Velocity

20 10 T T
0 b of
Hé ol NG S | _%m W
== -0 1
01 j
. . ’ n 1 0 . . . . . .
o &) 10 15 20 25 30 35 a 5 10 15 20 25 30 35
5 T T T T T T 10 T T T T T T

avt
e
Ve
ot
=]
o m

act
e
i
dot
=}
] L]

\ \
5| 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (sce) Time (sce)

(e) ®
Fig. 5-12: The computer simulation results of the proposed VTC combined with the VSE-WoTV. (a)
Robot trajectory in the world coordinate frame. (b) Control velocities of the center point and tilt
camera of tracking robot. (c) Tracking errors with random noise. (d) Tracking errors estimated by the

VSE-WoTV. (e) Estimated target image velocity. (f) Estimation errors.

performance of the proposed VTC. Figures 5-12(e) and 5-12(f), respectively, present the

estimation results and the estimation errors of target image velocity from the VSE-WoTV. In
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Figs. 5-12(e), the dotted lines indicate the ideal target image velocity while the solid lines
show the estimation results of target image velocity. It is clear that each estimate converges to
the corresponding ideal one. This result also can be seen in Fig. 5-12(f), which shows that
each estimation error converges to zero efficiently. Therefore, these simulation results validate

the estimation performance of the proposed VSE-WoTV.

5.4.2 Experiment 3: Visual Tracking of a Moving Robot

This section presents the experimental results of tracking a moving target when it is
temporarily partially and fully occluded during visual tracking to validate the occlusion
robustness of the visual tracking control system shown in Fig. 5-5. The experimental mobile
robots and control system parameters used in this experiment are all the same with that used
in experiments 1 and 2. In order to verify the performance of the VSE-WTV proposed in
Section 4.1, the motion velocity -of the moving.robot is supposed to be known a-priori in this
experiment.

Figure 5-13 illustrates the photos of partial-‘@eclusion experimental results recorded from
the tilt camera of the tracking robot (the robot with a camera). Figure 5-13(a) shows the
tracked target before partial occlusion. In Figs. 5-13(b)-(d), the moving target is temporarily
partially occluded by the moving object. Figures 5-13(e)-(f) show that the moving target is
still tracked after partial occlusion. In Fig. 5-14, the target was fully blocked by a moving
person. Figure 5-14(a) shows the tracked target before full occlusion. In Figs. 5-14(b)-(e), the
moving target is temporarily fully occluded by a moving person. Because the target would not
be observable in the observed image, the VSE-WTV estimated the moving target only using
prediction information. Hence the moving target is still tracked even though it is unobservable.
Figure 5-14(f) shows that the moving target is tracked successfully after full occlusion. Figure
5-15 compares the observed tracking errors (the dotted lines with spikes) with the estimated

ones (the solid lines). From Fig. 5-15, we see that the random noise caused by the temporary
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(d) (e)
Fig. 5-13: Experimental results of tracking a moving target when it is temporarily partially occluded.
(a) Before partial occlusion. (b)-(d) Partial occlusion occurred. (e)-(f) After partial occlusion, the

moving target was still under tracking. 421

@ © 0

Fig. 5-14: Experimental results of tracking a moving target when it is temporarily fully occluded. (a)

Before full occlusion. (b)-(e) Full occlusion occurred. The moving target is estimated only using

prediction information. (f) After fully occlusion, the moving target was still under tracking.
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Fig. 5-15: Estimated tracking errors compared with observed tracking errors.

occlusion effect is removed efficiently by utilizing the proposed VSE-WTV. Therefore, based
on the above occlusion experiments, the robust estimation performance of the visual tracking
control system shown in Fig. 5-5.is verified. ‘Aryideo clip of the experimental results is

available online in [57].

Remark 5.3: 1t is interesting to know hew long ot the occlusion can be handled by using the

proposed visual tracking control system. In the current design, the optimal covariance matrix

P of the self-tuning Kalman filter output is used to evaluate the reliability of the estimation

result. If one of the diagonal values of the covariance matrix P, is larger than a preset

threshold, then it implies that the estimation result is not reliable, and thus the visual tracking
control system will stop and reinitialize. Therefore, the occlusion handling time is dependent
on the value of preset threshold. In the experiments, the value of preset threshold is 4800, and
the occlusion handling time is about 3 sec, which is enough to overcome the temporary

occlusion problem.
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Fig. 5-16: Experimental mobile robot used to test the tracking performance of the proposed VTC
combined with the VSE-WoTYV presented in Section 4.3.

Table 5-6: Parameters used in the experiment of visual tracking of a moving person.

Symbol Quantity Description
(f.f,) (393.4,391.8) pixels Camera focal length in retinal coordinates.
\Y 12 cm Width of the target.
D 40 cm NIEATEE ’T_-i Distance between two drive wheels.
5 10 cm ¥ |, Distance’between the center of robot tilt platform
ndy | E'FI - % - and the onboard camera
T 100 ms Pz '_ .+ sampling period of the control system
(X,,¥:.d,) (0,0.35) - ,_li)e.sire‘dl:system state in the image plane.
(0, 0,,05) (5/4.3, ]‘/2)13.‘;::;.-,"_ Pbsitivcfl:fit')ntrol gains used in the experiments.
Q diag(5,5,5,26f20?20) | " Initial covariance matrix
Ry diag(15,15,15) | Initial observation covariance matrix

5.4.3 Experiment 4: Visual Tracking of a Moving Person

In this section, the tracking performance of the proposed VTC combined with the
VSE-WoTV is tested by tracking a moving person. Figure 5-16 shows the experimental
mobile robot equipped with a tilt camera for the study of visual tracking of a moving target
without its motion velocity information. Table 5-6 tabulates the parameters used for the VTC
and VSE-WoTV in this experiment. In order to detect and track the user in the image plane, a
real-time face detection and tracking algorithm presented in our previous work [60] is utilized
to combine with the visual tracking control system. Figure 5-17 illustrates the complete visual

tracking control system which encompasses the face detection/tracking algorithm, the VTC
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tracking of a moving person.

presented in Section 3.3 and the VSE-WoTV described in Section 4.3. Because the velocity of
human motion is unknown, the VSE-WoTV aims to estimate the image velocity instead of the
motion velocity for the VTC used and thus overcome the temporary occlusion problem.

Figure 5-18 presents the recorded images and responses of the mobile robot and tilt
camera in the case 1 experiment; which“includes occlusions to validate the robustness of the
proposed visual tracking control system: Figures 5-18(al-a7) show the recorded pictures from
a digital video (DV) camera, and Figs. 5-18(b1-b7) are the corresponding pictures recorded by

the on-board USB camera. Figs. 5-18(c-e) and Figs. 5-18(f-h) depict the response of the

tracking errors (x,, y., do) and target image velocity estimates (x', y', d"), respectively. Figs.

5-18(i-k) illustrate the response of robot and tilt camera control velocities (v, wi, w").

In the beginning, the user statically sat on a stool, and the robot started to track his face
using the proposed visual tracking control system. From Figs. 5-18(f-h), one can see that the
target image velocity estimates all approach to zero when robot started working about 5 sec.

Next, the user stood up (Fig. 5-18(a2)) and the tilt camera worked to keep tracking his face.

From Fig. 5-18(g), we observe that the target image velocity estimate y; increased when the

user stood up. In the following, the user walked forward (Fig. 5-18(a3)) and the robot moved
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Fig. 5-18: Experimental results. (al—a7) Ima‘ge—sequence recorded from a DV camera. (bl-b7):
Corresponding image sequence recordesd from on-board ‘USB camera. (c-d): Recorded tracking errors
in the image plane. (f-h): Target 1mage VelocTty estimates. (i-j): Command linear and angular

velocities of the mobile robot. (k): Command velocity of the tilt camera.

backward to keep tracking user’s face. From Fig. 5-18(h), it is clear that the image velocity
estimate a"f increased when the user walked forward. These estimation results are consistent

with the practical situation.

When the user walked around in the room, the robot kept following and tracking the
user’s face. While the user was walking, another person walked across between them
temporarily (Figs. 5-18(a4-a6)). Thus, in Figs. 5-18(b4-b6), the user’s face was temporarily
fully blocked by the walking person. In this situation, the variation of observed time sequence

data will rise, and the corresponding variance will become large. Based on the proposed
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Estimated Error-State Compared with Observed Error-State
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Fig. 5-19. Estimated tracking errors compared with observed tracking errors.

self-tuning algorithm, the prediction information will dominate the estimation results of the
Kalman filter even if the target is fully unobservable. Therefore, as shown in Figs. 5-18(c-h),
the self-tuning Kalman filter still estimated the peositions and velocities of the unobservable
moving target in the image plane_successfully even- during full occlusion. This occlusion
experiment validates the robust estimation_performance of the proposed visual tracking
control system. Finally, the user sat .down on the stool, and the robot tracked the user
continuously. Figure 5-19 compares the observed tracking errors (the dotted lines with spikes)
with the estimated ones (the solid lines). From Fig. 5-19, it is clear that the random noise is
also removed efficiently by the proposed VSE-WoTV algorithm. Therefore, the above
experiments verify the robust estimation performance of the visual tracking control system

shown in Fig. 5-17. A video clip of experiment 4 is available online in [57].

Remark 5.4: The main differences between the proposed method and the existing video color
object tracking (VCOT) methods, such as CamShift algorithm [61], are twofold. First, the
existing VCOT methods usually suppose that the target has located in the camera’s field of
view and do not consider the camera motion effect. On the contrary, the proposed method

considers both camera and target motion effects to increase the tracking performance and
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system robustness. Second, the existing VCOT methods usually do not deal with the
temporary full occlusion problem. In contrast, the proposed method uses the propagation
information to deal with the temporary full occlusion problem. Moreover, the propagation
covariance matrix can be used to evaluate the reliability of the tracking state under the

situation of full occlusion. Please see Remark 5.3 for the details.

5.4.4 Additional Experiment: Occlusion Robustness Property

Since the current VSE design is based on the Kalman filter algorithm, the estimation
performance is dependent on the accuracy of covariance matrices P, and R,. In order to
demonstrate this property, the proposed visual tracking control system is extended to control a
pan-tile camera platform in this experiment. Figure 5-20 shows the experimental pan-tile
platform equipped with a camera tostrack the faceof a user. The control velocities of pan-tile

platform can be computed by simplifying the proposed control law (3.20) such that

an =1 .
WJPZ iy |:B12 Bl3:| l:al‘xe _xit :| (5 7)
Wt;h B,, B, ). _yzt

where w;™ is the pan control velocity, wji” is the tilt control velocity, and B,, denotes an

element of matrix B, corresponding to the m-th row and n-th column.

Figure 5-21 presents the experimental results. Figure 5-21(a)-(c) show the recorded
images, in which the green and magenta windows indicate the observation and propagation,
respectively. Figures 5-21(d) and 5-21(e), respectively, illustrate the variance value of state x;
in propagation and observation covariance matrices. Because the face tracking algorithm
employed in current system only uses the skin color to detect the human face in a local search
window, the algorithm will track another person’s face which moves across the user’s face
and camera. In this situation, the variance value of observation covariance matrix will

increase greatly due to the rapid change in the observation. Thus, in Fig. 5-21(e), we see that
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Fig. 5-20: Experimental pan-tile platform used to demonstrate the robust property of the proposed
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Fig. 5-21: The experimental results of occlusion using VSE-WoTV. (a)-(c) Recorded camera view,
observation states and propagation states, (d) variance of propagation states, (e) variance of

observation states.

the variance value of the observed state x; (denoted by Ry) increases rapidly due to the sudden

change in observation. On the other hand, the variance value of the propagated state x;

106



(denoted by Py) increases smoothly but much smaller than the observed one. Therefore, after
the correction step in Kalman filtering algorithm, the propagation state will dominate the
estimation result, which tracks the correct user’s face. Finally, in Fig. 5-21(c), the face
tracking algorithm detects the human face close to the estimation result, and the observation is

corrected. A video clip of this experiment is available online in [57].

Remark 5.5: 1f there is an object with similar feature and motion to target, then the proposed
VSE may track to this object when it moves across the target and camera. However, this
problem can be resolved by combining an object recognition algorithm with visual tracking
algorithm. In this thesis, we do not cover the object recognition problem and only focus the

topic on visual tracking control problem.

5.5 Summary

This chapter evaluates the ‘performance.of. the proposed CFA interpolation algorithm,
visual tracking control scheme and-wvisual state estimation method through computer
simulations and experimental results. In CFA interpolation experiments, the performance of
the proposed CFA interpolation algorithm has been compared with three renowned CFA
interpolation methods. Experimental results show that the proposed method not only
outperforms all of them in quantitative comparison, but also gives superior demosaiced
fidelities in visual comparison.

In visual tracking control experiments, experimental results validate that the proposed
VTC guarantees asymptotic stability and practical stability of the closed-loop visual tracking
system with parametric and velocity quantization uncertainties. In visual state estimation
experiments, the robustness of the proposed VSE-WoTV against the image noise uncertainty
i1s validated by the computer simulations. The practical experiments then evaluate the

performance of the proposed VSEs to overcome the temporary partial/full occlusion
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uncertainty. Therefore, the tracking performance of the proposed visual tracking control
system is enhanced to cope with image noise, system parametric, velocity quantization, and

temporary occlusion uncertainties.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

To render a full-color image from a single image sensor covered with a CFA, this work
proposes a novel HPHD-CDEA CFA interpolation algorithm for color reproduction of a Bayer
mosaic image is proposed. The proposed CFA interpolation algorithm, which consists of
HPHD and CDEA CFA interpolation algorithms, effectively reconstructs fine detail features
in both texture and edge regions of demosaiced images. The proposed HPHD CFA
interpolation algorithm not only can combine withrmany existing CFA interpolation methods
for improved performance, but also provides an- efficient method for decision-based
algorithms to make accurate .direction-selection ' before performing interpolation. The
proposed CDEA CFA interpolation”algerithm-aims to reduce color artifacts in both smooth
and edge regions of demosaiced images by adding the high-frequency information of green
channel to other color channels. Any existing image interpolation method can be combined
with the proposed CDEA interpolation algorithm to reconstruct the green channel. By
combining HPHD algorithm with CDEA CFA interpolation, the proposed method provides an
efficient solution for color reproduction of Bayer mosaic images with high performance in
both texture and edge regions.

To control a mobile robot for tracking a dynamic moving target in the image plane, this
thesis proposes a robust VTC based on a novel dual-Jacobian visual interaction model. In the
robustness analysis, we have shown that the proposed VTC possesses some degree of
robustness against the system parametric uncertainty. Moreover, based on Lyapunov theory, a

robust control law is developed to efficiently overcome the unmodelled quantization effect in
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the velocity commands. Therefore, the proposed VTC is robust to the uncertainties of system
model and velocity quantization. Experimental results validate the effectiveness of the
proposed VTC, in terms of tracking performance, system convergence, and robustness.

Two VSEs are designed by using a real-time self-tuning Kalman filter technique in order
to estimate the optimal system state and target motion in the image plane directly. In computer
simulations, it shows that the proposed VSE provides high robustness against the observation
uncertainty with time-varying intensity. This advantage is very useful in practical applications,
since the observation uncertainty usually varies with the conditions of target motion and
working environment. In practical experiments, the results show that the proposed VSE
efficiently overcomes the temporary occlusion uncertainty during visual tracking. Therefore,
by combining the proposed VTC with the proposed VSE, the tracking performance of the
visual tracking control system is enhanced to cope with image noise, system parametric,
velocity quantization, and temporary occlusion. uncertainties. This advantage not only
provides a useful image-based smooth-motion_control solution for wheeled mobile robots to
track a target of interesting effectively-and interactively, but also enhances the reliability of

the visual tracking control system in practical applications.

1.2 Future Directions

Some directions for future study are recommended below:

1) For the future study of CFA interpolation, because the green plane has the most spatial
information of the image to be reconstructed and has great influence on the perceptual
quality of the image, the future research directions will focus on developing the
single-plane reconstruction algorithms to reconstruct the green channel with minimum

interpolation error.

2) For future visual tracking control studies, the general case of any task/command
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3)

4)

dimension such as a mobile-manipulator system will be directed. In the current VTC
design, the robot image Jacobian B, in (3.11) is square only because the task was
3-dimensional (coordinates of the target’s center and its width) and the robot had 3
commands (linear, angular and tilt velocity). If the camera were mounted on a more
articulated manipulator, matrix B, would not have been square. Thus, the future work on
the study of VTC design should address the general case of any task/command dimension
with exploiting redundancy. Moreover, according to Theorem 3.2, the closed-loop visual
tracking control system (3.13) under the proposed controller given in (3.20) is practically
stable at the origin when the target is moving. Therefore, another future work is to develop
a non-smooth controller, such as a variable structure switching (VSS) controller, to

achieve asymptotic convergence for tracking a moving target.

For the visual state estimation studyjrbecause the current VSE design is based on the
Kalman filter technique, there are some restrictions on the proposed VSE due to the
assumptions of Kalman filter such as-‘Gaussian distribution uncertainty, smoothness
motion, and uniform sampling rate. These assumptions restrict the performance of the
proposed VSE, which might fail in tracking a highly dynamic moving target. Therefore,
the future work on the study of visual state estimation will focus on developing other
types of VSE, such as neural-networks based VSE, to solve this problem and improve the

accuracy of the visual state estimation results.

Because the tracking performance of the visual tracking control system depends on the
frame rate of the vision system, a digital high-speed camera system, which allows capture
of up to 33,000 frames per second, will greatly increase the tracking performance of the
proposed system. Therefore, it is worth to combine the proposed visual tracking control

method with a high-speed camera system in the future work.
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Appendix A

Parameter Tuning Experiment for the Proposed

Color Interpolation Algorithm

Since the value of parameters (N,o) may drastically influence demosaicing
performance and hence the comparison results, it is interesting to study how they affect the
demosaicing performance of the proposed color interpolation algorithm. In order to evaluate

the demosaicing performance, we first define the following criterion

PSNR

Avg

(N, o) = %iPSNR(Oi ,D.(N,a)), (A.1)

=1

where O, and D, indicate the ith test image and-its corresponding demosaiced one by using
the proposed HPHD-CDEA method. PSNR (in.dB) denotes the metric of peak signal-to-noise
ratio defined in (5.1). Based on the“criterion (A:l), the parameter N is tweaked from 5 to 25

with interval 1, and « is tweaked from 0 to 1 with interval 0.1. Figure A-1 shows the

experimental results of tweaking parameters (N,a). Figures A-1(a) and (b), respectively,

represent the evolution of PSNR,,, as parameter N and « increase. In Fig. A-1(a), one can

see that when « =0 (only the smooth set under consideration), the PSNR,,, independs on

the parameter NV. On the other hand, when « =1 (only the horizontal and vertical sets under

consideration), the impact of N on PSNR,, is increased. Thus, the influence of N on
PSNR,,, depends on the parameter «, especially when a =1. Moreover, one can see in

Fig. A-1(a) that the local optimal parameter N occurs at N,

o =11 in the experiment.

Figure A-1(b) shows that the parameter « has significant influence on the PSNR,,, . If
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parameter « increases from 0 to 0.6, the PSNR, also increases. However, when

parameter « increases from 0.6 to 1, the criterion PSNR,, becomes decreasing. This

implies the local optimal parameter « should occur in the range from 0.5 to 0.6, and the

optimal interpolation result will encompass horizontal, vertical and smooth interpolations

together. Since parameter « =0.6 obtains the maximum PSNR,,, in post-processing step,

we choose @, =0.6 as the local optimal parameter « .
Figure A-1(c) shows the influence of the parameters (N,a) on the performance

gap APSNR,,, between post-processing and interpolation steps. It is clear that the

performance gap mostly depends on the parameter « . Moreover, the maximum performance
gap occurs when parameter « =1. This implies.that the post-processing provides significant
improvement on the horizontal and vertical .interpolation results. Therefore, post-processing
seems to be more beneficial to the existent soft-decision CFA interpolation algorithms, which
only considers the horizontal and vertical interpolations.

Summarizing the tweaking parameter experiment, we have the following findings.

1) For the proposed method, the parameter o has significant influence on the demosaicing

performance compared with parameter V.

2) When the interpolation only considers horizontal and vertical ones, the post-processing

provides significant improvement on the interpolation result.

3) The optimal interpolation result requires encompassing horizontal, vertical and smooth

interpolations together.

4) Based on the criterion (A.l), the local optimal parameters (N,,,c,,) of proposed

HPHD-CDEA method can be found at (11,0.6) .
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Appendix B

Soft-Decision, Enhanced Soft-Decision and

Hard-Decision CFA Interpolation Algorithms

To show the difference between the proposed hard-decision method and the existent
soft-decision ones, we describe the key idea of these two types of decision-based CFA
interpolation algorithms in this section. Figure B-1 presents the flowchart of each
decision-based CFA interpolation algorithm. Figure B-1(a) shows the flowchart of the original
soft-decision method, in which the:formerf interpolation stage usually generates two
interpolated images, one is horizentally interpolated-and another one is vertically. The latter
decision stage chooses a better-one for each color pixel output. In other words, the output
image of the original soft-decision.method only comntains horizontal and vertical interpolated
color pixels without smooth ones. In the aforementioned section, we noticed that the optimal
interpolation result needs to consider the horizontal, vertical and smooth interpolations
together. Therefore, the demosaicing performance of the soft-decision method is limited
because only two directional interpolations are under consideration.

To overcome this drawback, Omer et al. proposed the enhanced soft-decision CFA
interpolation algorithm that regards the soft-decision processing as a meta-algorithm to
improve the performance of traditional interpolation methods in places they tend to fail.
Figure B-1(b) illustrates the flowchart of enhanced soft-decision CFA interpolation algorithm,
in which the former interpolation stage generates not only two directional interpolated images,
but also a smooth interpolated one using a standard CFA interpolation method such as

edge-directed schemes [11] or [55]. In the latter decision stage, two natural image properties,
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Fig. B-1: Flowchart of the (a) soft-decision; (b) enhanced soft-decision and (c) proposed hard-decision
CFA interpolation algorithms.

i.e. color variation and corner value, are employed as the demosaicing hints to evaluate a
correct interpolation result and two erroneous ones. Although the enhanced soft-decision CFA
interpolation algorithm provides more pleasing demosaiced results, the computation load in

latter decision stage is increased greatly because it needs to evaluate three interpolation
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results.

Fig. B-1(c) presents the flowchart of the proposed hard-decision CFA interpolation
algorithm. Thanks to the proposed directional heterogeneity-projection and adaptive filtering
schemes, the decision stage can be performed directly using the original Bayer mosaic image
before interpolation stage. Moreover, the spatial classification also contains horizontal,
vertical and smooth subsets for providing more accurate interpolation results in the latter stage.
Therefore, the proposed hard-decision method provides comparable results using less

computation than the enhanced soft-decision method does.
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Appendix C

Extended Visual Comparison

In this appendix, an extended study on visual comparison is presented using two images
of 384x256 pixels taken from the Kodak database as shown in Fig. C-1. We visually
compared the performance of the proposed demosaicing method with six notable ones: Lu’s
[3], Gunturk’s [5], Li’s [6], Muresan’s [4], Grossman’s [9] and Omer’s [10] methods. The
parameter setting of [5] and [6] is the same as that in the manuscript. The results of [4] and [9]
are obtained directly from the authors’ web page in TIF and BMP formats, respectively. For
Omer’s method, the Kimmel’s interpolation method.[11] was employed to provide the smooth

interpolated image in the interpolation stage.

For the proposed method, we fifst-use-theyoptimal parameters (N,,,«,,)=(11,0.6) to

opt
reconstruct the Bayer mosaiced image ‘of Lighthouse. The PSNR metric between the original
and demosaiced images is 32.7315dB; however, there still are some noticeable color artifacts
in the fence region. In order to reduce these noticeable color artifacts, we increase the values
of (N,a) for estimating the horizontal and vertical edges accurately. After a tuning process,
the suitable parameters are given by (N,a)=(24,0.8) and the PSNR metric reduces to
32.4413dB. One can see that there is a tradeoff between quantitative and visual qualities.

Figure C-2 shows the zoom-in of the demosaiced Lighthouse images using proposed method

with parameters (N,

s %,,) =(11,0.6) and (N,a)=(24,0.8) respectively. Figures C-2(a)
and (d) show the zoom-in of original Lighthouse in the fence and house regions, respectively.

Figures C-2(b) and (e) show the corresponding zoom-in of demosaicing results using

parameters (N,

a,,)=(11,0.6), and (c) and (f) show that using parameters (N,a)=(24,0.8).
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(@) (b)

Fig. C-1: Test images used in the extended visual comparison. (a) Lighthouse. (b) Window.

i

(d) (e) ¢

Fig. C-2: (a) and (d) show the zoom-in of the original Lighthouse image in the fence and house
regions, respectively. (b) and (e) show the zoom-in of the demosaicing results using parameters
(N »
(N,) =(24,0.8) .

a,,)=(0110.6). (c) and (f) show the zoom-in of the demosaicing results using parameters
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Visually comparing these images, one can see that the demosaiced image using optimal
parameters presents better result in house region than that using increased parameters, but
some color artifacts still remain in fence region. On the contrary, the demosaiced image using
increased parameters presents less color artifacts in fence region; however, the quality in
house region is reduced. Therefore, the demosaicing results using increased parameters can
reduce the color artifacts in the fence region but cannot provide better PSNR metric than those

using optimal parameters.

For further visual comparison, we choose larger parameters (N,a)=(24,0.8) for the
proposed method, because it can provide more pleasing results in the fence region of the
Lighthouse image. Figures C-3 and C-4, respectively, show the zoom-in of the Lighthouse
demosaiced images in fence and house  regions reconstructed by the methods under
comparison. In Fig. C-3, one can sece that-Muresan’s, Grossman’s and the HPHD-CDEA
methods provide better demosaicing results.in the fence region than the others do. However,
in Fig. C-4, one can see that the demosaicing result'of Muresan’s and Grossman’s methods in
house region induces more visible artifacts than the proposed method does. Therefore, the
proposed method provides superior demosaicing result not only in fence region, but also in

house region of the Lighthouse test image compared with other methods.

Figure C-5(a) shows the zoom-in of the original Window image in flower region, and
Figs. C-5(b)-(h) present the corresponding demosaiced results of the methods under
comparison. Visually comparing these images shown in Fig. C-5, one can see that the
demosaiced images obtained by Lu’s, Grossman’s and the proposed method give more
satisfactory results compared with others. Therefore, based on the above visual comparison,
the performance improvement of the proposed HPHD-CDEA method on detail regions of the

image is verified.
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Appendix D

Extended Discussion on the Proposed VTC Scheme

Although Theorem 3.1 shows that the proposed VTC guarantees the state X; toward the

desired state X, in the image plane, it does not proof that the robot have followed the target.

In this appendix, we will show that when X; converges to X,, the mobile robot has followed

the motion target. Recall the diffeomorphism defined in (7):

X, =PX,, (D.1)

where P’ =diag(—k_k ,kk, ). Suppose that X; has converged to X,, we then have the

x2Vy»

following result based on (D.1)

X =P/ X, and (D.2)

X =[x’

c

vl 2T =R(4,07)X] -5Y, (D.3)

where X¢ and X f., respectively, are the related position between mobile robot and motion
target in camera and world coordinate frame when X, =X,. Because P’ is invertible, the

following relation between X j. and X, can be obtained by substituting (D.3) into (D.2)

such that

X{ =R'(,0))[(P)"'X, +3Y]. (D.4)

Let ||A|| denote the 2-norm value of vector or matrix 4. The key idea is that if HX }’H is
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bounded, it implies that the mobile robot has followed the motion target. Using (D.4),

x|
is given by

7= IR @071y %, +8v)|<|R7 (6. 67)] -2 "X, +5Y]
<[eH X |+ oy

(D.5)
<y x| +[8v]

Because of H(P;‘)-‘H :Hdiag(—k;‘,k-l )

y 2x

|==.

diag(—ﬂc‘l,fy‘l,ﬂ‘IW‘l)H:ZC A » Where

z, = fo/ d. and A_, =max( fy"l, fx_IW"l) , we have the following result

] < 2

X

X[+ [3Y] - (D.6)

From (D.6), it is clear that HX }’H 1s bounded;and hence the proof is completed.

We use the simulation preseénted-in Section 5.4.1 as an example to explain the physical
meaning of (D.6). By using the parameters listed in Table 5-5, the term on the right hand side

of (D.6) can be calculated by

294x12
35

| x¢] < 1/0.0032 x35+10=209.7337 (cm), (D.7)

which means that when X; converges to Xi, the distance between mobile robot and motion

target is bounded to 209.7337 cm. Figure D-1 shows the simulation result of the distance
between mobile robot and motion target. In Fig. D-1, the solid line presents the 2-norm value
of X;, and the dotted line denotes the bounded distance calculated in (D.7). From Fig. D-1, we
see that the distance between mobile robot and target finally converges to about 100 cm,
which is satisfied in the bounded condition (D.7). Because the target is always moving and the

distance between the robot and target is bounded, this implies that the robot has followed the
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Fig. D-1: Simulation result of the distance between mobile robot and motion target, || Xy ||.

target as we expected.
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