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Abstract

Protein-protein interaction (PPI) networks provide key insights into complex biological
systems, from how different processes communicate to the function of individual residues on a
single protein. Therefore, several large network databases (e.g. IntAct, DIP, and BioGRID)
record hundreds of thousands of physical and genetic interactions from a wide variety of
organisms have been purposed. However, these PPl databases are dominated by few species
and usually could not provide the binding mechanisms. Therefore, constructing the structure
resolved PPI networks across multiple organisms should provide a great value for investigating
the behavior of PPI network.

To address the issues, we proposed the concepts of protein interaction family (i.e.
protein-protein interaction family and protein complex family) to construct a structure resolved
PPI networks and study the behaviors of a specific PPI network. The protein interaction family
iIs a group of protein interactions (PPl or protein complex) which share the consensus
interacting domain, binding environment, and have similar biological processes. According to
the concept "3D-domain interolog mapping” with a scoring system, we are able to explore all
homologous protein-protein interaction pairs (protein-protein interaction family) between two
homolog families, derived from a known 3D-structure dimmer (template), across multiple
species. Then, we also identify the homologous protein complexes with the binding models
(e.g. hydrogen bonds and conserved amino acids in the interfaces), functional modules, and the
conserved interacting domains and Gene Ontology annotations in multiple organisms.

Based on the PPIs derived from "3D-domain interolog mapping"” and "protein complex
family", we are able to construct structure resolved PPI networks in multiple organisms (e.g.
Homo sapiens, Mus musculus, and Danio rerio). In each network, the PPIs with residue-based
binding models have a highly agreement in Gene Ontology similarities. Furthermore, the
architecture (i.e. scale-free network properties) of these networks is consistent with some
cellular networks of previous studies. In addition, the consensus proteins and PPIs derived
form on our method are highly related to the essential genes and disease related proteins
recorded in OMIM. We also indicate that the disease related mutations are more enrichment on

the interacting residues, especially on the hydrogen bond residues. In addition, for a given PPI
|



network, we also provided a new characterization (named MS-matrix) to describe the
modularity and relative importance of proteins. We believe that structure resolved PPI
networks derived from the PPI family would provide the insight for understanding the
mechanism of biological processes within a given PPI network.
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Chapter 1. Introduction

1-1. Background

Protein-protein interaction (PPI) networks provide key insights into complex biological
systems, from how different processes communicate to the function of individual residues on a
single protein. For instance, the systematic identification of protein-protein interactions™ or
protein complexes*’ has been a widely used strategy for understanding the physical
architecture of the cell. Therefore, several large network databases such as IntAct®, DIP?, and
BioGRID™ record hundreds of thousands of physical ‘and genetic interactions from a wide

variety of organisms have been purposed.

A wealth of investigations have been undertaken to deepen our understanding of
hereditary diseases. As a result of that, databases such as the Online Mendelian Inheritance in
Man (OMIM)* and" UniProt*. together.contain almost 30,000 experimentally verified
mutations. Nevertheless, the exact mechanisms by which mutations alter a protein's function
are in many cases poorly understood. Therefore, researchers have recently begun to use PPI

1316 on the basis that many

networks to explore the genotype-to-phenotype -relationships
proteins function by interacting with other proteins. However, this idea has only been applied

in Human based on the requirement of high-quality PPI with the binding mechanism.

In addition, the concept "homologs"” is useful for identifying consensus proteins across
multiple organisms and could provide the key residues related to the functions within a given
protein. Previous studies have been compared PPl network across multiple organisms to
identify the essential pathways and the mechanisms of evolution'*°. For example, Peterson, G.
J. et al. have shown that interaction change through binding site evolution is faster than
through gene gain or loss*® based on the comparison between 23 fungal PPI networks.

1



However, these studies only focused on a small sub-network or on few organisms which have

an enrichment PPI data (e.g. Homo sapiens and Saccharomyces cerevisiae).

Al Protein interfaces ) B Consensus pathways  Specific pathways
PPI family Protein complex family B
Shucvurgél i i ":* &
Sequente FIE on o Homo sapiens
MVGQQ...  MSQLANS... + .
A c -
V Mus musculus|
Interactomes 1
Homo sapiens * Danio rerio

C Homo sapiens

Danio rerio

o 0 diseases

A

o 1-2 diseases

Vertebrate I o 3.9 diseases

° 10*diseases

© >50 interactions

° 25~50 interactions

Eukaryote - <25 interactions

Figure 1-1. The overview of constructing the structure resolved PPI networks and studying the interactome
behavior

(A) Using protein-protein interaction family ‘and protein complex family to construct the structure resolved PPI
networks in multiple oragnsims. (B) The "interactome behavior" through the consensus component. (C) The
structure resolved PPl networks would provide the insight for understanding the mechanism of biological

processes.

To address these issues, the structure resolved interaction family (i.e. protein-protein
interaction family and protein complex family) are the basic elements and the core idea of our
research to construct structure resolved PPI networks and study the behaviors of a specific PPI
network. The PPI family is a group of molecular interactions which share the consensus

interacting domain, binding environment, and have similar biological processes. The concepts



of PPI families not only help us to construct the highly reliable PPI network in a specific
organisms (e.g. Homo sapiens, Mus musculus, and Danio rerio) but also provide the consensus
and the diversity behavior of interactome through comparing with multiple species (Fig. 1-1).
The methods of inferring interface families and interactomes are briefly summarized as

follows.

In protein-protein interaction family, the concept of PPI families is similar to that of

2021 and protein structure family?®. Here, the members of a PPI family

protein sequence family
are conserved on specific functions and in interacting domain(s). Using these conservations of
homologous PPIs, it can be used to annotate the protein functions and provide high quality

PPIs.

Protein complexes are fundamental units of macromolecular organization and their
composition is also_known to vary according to cellular requirements’. According to these
homologous complexes across multiple species, protein complex family provides the binding
models (e.g. hydrogen bonds and conserved amino acids.in.the interfaces), functional modules,

and the conserved interacting domains and Gene Ontology annotations of the members.

Based on the members (protein-protein or protein complexes) of protein-protein interface
family?® and protein complex family** that are consensus of functional annotation across
multiple species, we are able to identify the conserved components in the PPI networks across
multiple species and indicate the changes of the conserved components at the interspecific

level. Therefore, we would use the strategies to reveal "interactome behavior".

1-2. Current state of constructing protein-protein interaction networks

Many high throughput experimental and computational approaches, such as

25,26

high-throughput yeast two-hybrid screening and co-affinity purification?”, have been



proposed to construct the PPI network within an organism. These large-scale methods are often
unable to respond how a protein interacts with another one and describe the relationship
between the mutation of proteins and disease syndrome. Previous studies have combined
protein structure information with protein interaction data to investigate how mutations affect
protein interactions in disease™**°. For instance, Wang, X. J. et al. generated a structurally
resolved human protein interaction network to systematically examine relationship genes,

mutations and associated disorders®®.

Table 1-1. The list of the members of proteins and protein-protein interactions in 11 common used organisms

NCBI Organisms No. Proteins in No. PPIs in five
Taxonomy ID Integr8 database annotated database
9606 Homo sapiens 56,006 67,596
10090 Mus musculus 36,379 7,535
3702 Arabidopsis thaliana 35,825 6,985
6239 Caenorhabditis elegans 23,154 10,095
7227 Drosophila melanogaster 15,155 37,674
7955 Danio rerio 21,601 221
10116 Rattus norvegicus 13,807 2,199
9913 Bos taurus 12,235 281
9031 Gallus gallus 6,279 70
36329 Plasmodium falciparum 5,353 2,956
4932 Saccharomyces cerevisiae 5,727 237,193
Total 231,521 372,805

However, the experimental PPl data is necessary for these methods. The experimental PPI
databases (e.g. IntAct®, DIP%, MIPS®, BioGRID™, and MINT?°) are dominated by few species,
especially Saccharomyces cerevisiae. Table 1-1 presents the number of PPIs and proteins in
organisms that are commonly used in molecular researches. For example, there are 56,006
proteins (24.19% of 11 common organisms) and 67,596 PPIs (18.1% of 11 common organisms)

of Homo sapiens are recorded in Integr8 database *°

(which are collected the complete
sequencing genomes) and the five public interaction databases, respectively. On the contrary,
the Saccharomyces cerevisiae only has 5,727 proteins (2.4%), but it has the dominant
experimental PPI recorded in the databases (i.e. 237,193; 63.6% of 11 common organisms).

This statistical data indicate that current interaction databases are overestimated and have many

false-positive recorded PPIs in some organisms (e.g. Saccharomyces cerevisiae). Moreover,
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these databases are underestimated and incomplete in most organisms (e.g. Homo sapiens and
Mus musculus). Both of the overestimated and underestimated protein interaction data could

influence the low reliable construction of protein interactome in a specific organism.

Protein Data Bank (PDB) stores three-dimensional (3D) structure complexes, from
which physical interacting domains can be identified to study DDIs and PPIs using
comparative modeling®**®. As the number of protein structures increases rapidly, some
domain-domain interaction databases, such as 3did*, and iPfam™, have recently been derived
from PDB. Additionally, some methods have utilized template-based methods (i.e. comparative
modeling® and fold recognition?), which search a 3D-complex library to identify homologous
templates of a pair of query protein sequences, in. order to predict the protein-protein
interactions by accessing interface preference, and score query pair protein sequences

according to how they fit_the known template structures. However, these methods®*

are
time-consuming to search all possible protein-protein pairs in a large genome-scale database.
For example, the possible protein-protein pairs on the UniProt'* database (4,826,134 sequences)

are about 2.33x10", In addition, these methods are unable to form homologous PPIs to explore

the protein-protein evolution for a specific structure template.

In this thesis, we presented the "3D-domain interologs mapping" and "protein complex
family" to construct the structure resolved PPl networks across multiple organisms.
"3d-domain interolos mapping” is a concept for efficiently enlarging protein interactions
annotated through the homologous PPIs with residue-based binding models. We verified the
structure resolved PPl networks on Gene Ontology annotations® and the architecture of
topology (i.e. scale-free network properties). In addition, we also provide the consensus
proteins across three networks based on "3D-domain interologs mapping"”. These consensus
proteins are highly related to the essential genes and disease related proteins. We believe that
structure resolved PPI networks would provide the insight for understanding the mechanism of
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biological processes within a given PPI network.

1-3. Thesis overview

The thesis is organized as follows. In Chapter 2, for efficiently enlarging protein
interactions annotated with residue-based binding models, we proposed a new concept
"3D-domain interolog mapping™ with a scoring system to explore all homologous
protein-protein interaction pairs between the two homolog families, derived from a known
3D-structure dimmer (template), across multiple species. Each family consists of homologous
proteins which have interacting domains of the template for studying domain interface
evolution of two interacting homolog families. The 3D-interologs database records the
evolution of protein-protein interactions database across. multiple species. Based on
“3D-domain interolog mapping” and a template-based scoring function, we infer 173,294
homologous protein-protein interactions by using 1,895 three-dimensional (3D) structure
heterodimers to search the UniProt database (4,826,134 protein sequences). The 3D-interologs
database comprises 15,124 species and 283,980 protein-protein interactions, including 173,294
interactions (61%) and 110,686 interactions (39%) summarized from the IntAct database. For a
protein-protein interaction, the 3D-interologs database shows functional annotations (e.g. Gene
Ontology), interacting domains and binding models (e.g. hydrogen-bond interactions and
conserved residues). Additionally, this database provides couple-conserved residues and the
interacting evolution by exploring the interologs across multiple species. Experimental results
reveal that the proposed scoring function obtains good agreement for the binding affinity of
275 mutated residues from the ASEdb. The precision and recall of our method are 0.52 and
0.34, respectively, by using 563 non-redundant heterodimers to search on the Integr8
database®® (549 complete genomes). Experimental results demonstrate that the proposed

method can infer reliable physical protein-protein interactions and be useful for studying the
6



protein-protein interaction evolution across multiple species. In addition, the top-ranked
strategy and template interface score are able to significantly improve the accuracies of

identifying protein-protein interactions in a complete genome.

In Chapter 3, we presented the PCFamily server to identify template-based homologous
protein complexes (called protein complex family) and infer functional modules of the query
proteins. This server first finds homologous structure complexes of the query using BLASTP to
search the structural template database (11,263 complexes). PCFamily then searches the
homologous complexes of the templates (query) from a complete genomic database (Integr8
with 6,352,363 protein sequences in 2,274 species). According to these homologous complexes
across multiple species, this sever infers binding models (e.g. hydrogen bonds and conserved
amino acids in the interfaces), functional modules, and the conserved. interacting domains and
Gene Ontology annotations of the protein complex family. Experimental results demonstrate
that the PCFamily server can be useful for binding model visualizations and annotating the
query proteins. We believe that the server is able to provide valuable insights for determining

functional modules of biological networks across multiple species.

In chapter 4, we provide the structure resolved PPl networks across multiple species,
including H. sapiens, M. musculus, and D. rerio. According to structure-based homologous
PPIs in multiple species, the PPIs with atomic residue-based binding models in the derived
structure resolved network achieved highly agreement with Gene Ontology (BP, CC, and MF
terms) similarities. Furthermore, the architecture of these networks is a scale-free network
which is consistent with most of the cellular networks. In addition, our derived networks can be
used to observe the consensus proteins and modules (a fundamental unit forming with highly
connected proteins) which are high conserved appearing in multiple organisms. These
consensus proteins are often the essential genes and related to diseases recorded in OMIM.
Experimental results also indicate that the mutations of interacting residues on the PPIs often
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related to diseases are often on. Our results demonstrate that the structure resolved PPI
networks can provide valuable insights for understanding the mechanisms of biological

processes.

In chapter 5, we provide a method to characterize a given PPl network. Although, many
graphic features have been purposed to measure the role of proteins and identify local
modularity structures of high connectivity in a PPl network, the pseudoinverse of the Laplacian
matrix plays a key role, has a nice interpretation in terms of random walk on a network, and
defines the kernels on a given network. Therefore, we proposed the modularity structure matrix
(MS-matrix), which is the pseudoinverse of the Laplacian matrix for a given network, to
evaluate the modularity structure properties of a PPI network. According to our knowledge, the
MS-matrix is the first property to identify both global important proteins and local density
regions within a network. For a given PPl network of S. cerevisiae, our results demonstrate that
the important proteins identified by the MS-matrix are related to the essential biological
processes (i.e. essential genes) and highly consistence with the topology features (i.e. degree,
closeness centrality, and betweenness centrality). Then, the relationship between proteins
derived from the MS-matrix could reflect the similarity of Gene Ontology and could be useful
for the module identification. Furthermore, biological characterization (e.g. Gene Onotology)
of the modules derived from the MS-matrix is similar to the modules collected from the
experiment database (e.g. MIPS). Our results demonstrate that the MS-matrix would provide
the insight for investigating a PPI network through important proteins and local modularity

structures.

In the final chapter, we summarized the results of this thesis, and then discuss the future
works. To further investigate the behavior of PPI network within a given cell, gene expression
data would provide an aspect of in-depth understanding of the dynamic organization of the PPI
network and its role in the regulation of cellular processes. For example, the Connectivity Map
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(also known as cmap) provided by Lamb, J. et al. is a collection of genome-wide
transcriptional expression data from cultured human cells treated with bioactive small
molecules and simple pattern-matching algorithms that together enable the discovery of
functional connections between drugs, genes and diseases through the transitory feature of
common gene-expression changes *’. Therefore, we will combine the gene expression data into
the PPI network. We will try to illustrate the behavior of PPl networks under different cell
types and different conditions. For example, because the Connectivity Map could provide the
up-regulated and down-regulated proteins of given drugs and diseases, combining these data
with our structure resolved PPl networks should be able to explain the mechanism of

relationship between the drugs, genes and diseases.



Chapter 2. 3D-interologs: An evolution database of
physical protein-protein interactions across multiple

genomes

Interactions between proteins are critical to most biological processes. To identify and
characterize protein-protein interactions (PPIs) and their networks, many high-throughput
experimental approaches, such as yeast two-hybrid screening, mass spectroscopy, and tandem
affinity purification, and computational methods (phylogenetic profiles®, known 3D
complexes®, and interologs*®) have been proposed*. Some PPI databases, such as IntAct?,
BioGRID™, DIP?, MIPS?, and MINT?, have accumulated PPIs submitted by biologists, and
those from mining literature, high-throughput experiments, and other data sources. As these
interaction databases continue growing in size, they become increasingly useful for analysis of

newly identified interactions.

The discovery of sequence homologs to a known protein often provides clues for
understanding the function of a newly sequenced gene. As an increasing number of reliable
PPIs become available, identifying homologous PPIs should be useful to understand a newly
determined PPI. Recently, several PPI databases (e.g., IntAct and BioGRID) allow users to
input one or a pair of proteins or gene names to acquire the PPIs associated with the query

42,43

protein(s). Few computational methods applied homologous interactions to assess the

reliability of PPIs.

To address this issue, we proposed the concept called "homologous protein-protein

interaction"?

. We define a homologous PPI as follows: (1) homologs of A and B are proteins
with significant sequence similarity BLASTP E-values <10™° “°**: (2) significant joint

sequence similarity (Je <10™°) between two pairs, i.e., (A, A/') and (B, By'), of the query
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protein pair (A and B) and their respective homologs (A;' and B;") recorded in annotated PPI
databases. In addition, we constructed the PPISearch server for searching homologous PPIs
across multiple species and annotating the query protein pair. According to our knowledge,
PPISearch is the first public server that identifies homologous PPIs from annotated PPI
databases and infers transferability of interacting domains and functions between homologous
PPIs and the query. Our results demonstrate that this server achieves high agreements on
interacting domain-domain pairs and function pairs between query protein pairs and their

respective homologous PPIs.

Furthermore, a known 3D structure of interacting proteins provides interacting domains
and atomic details for thousands of direct physical interactions. It is usually possible to build
the binding model of a protein-protein interaction by comparative modeling if a known
complex structure comprising homologs of these two sequences is available®?**. Therefore, we
developed a new scoring function®, which includes the contact residue interacting score (e.g.
the steric, hydrogen bonds, and electrostatic interactions) and the template consensus score (e.g.
couple-conserved residue and the template similarity scores), to evaluate how well the

interfaces between the query and interacting candidates.

For efficiently enlarging protein interactions annotated with residue-based binding models,
we proposed a hew concept "3D-domain interolog mapping" with a scoring system* to explore
all possible homologous protein-protein interaction pairs between the two homolog families,
derived from a known 3D-structure dimmer (template), across multiple species. Each family
consists of homologous proteins which have interacting domains of the template for studying

domain interface evolution of two interacting homolog families.

The 3D-interologs database records the evolution of protein-protein interactions database
across multiple species. Based on “3D-domain interolog mapping” and a new scoring function,

we infer 173,294 homologous protein-protein interactions by using 1,895 three-dimensional
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(3D) structure heterodimers to search the UniProt database (4,826,134 protein sequences). The
3D-interologs database comprises 15,124 species and 283,980 protein-protein interactions,
including 173,294 interactions (61%) and 110,686 interactions (39%) summarized from the
IntAct database. For a protein-protein interaction, the 3D-interologs database shows functional
annotations (e.g. Gene Ontology), interacting domains and binding models (e.g.
hydrogen-bond interactions and conserved residues). Additionally, this database provides
couple-conserved residues and the interacting evolution by exploring the interologs across
multiple species. Experimental results reveal that the proposed scoring function obtains good
agreement for the binding affinity of 275 mutated residues from the ASEdb. The precision and
recall of our method are 0.52 and 0.34, respectively, by using 563 non-redundant heterodimers

to search on the Integr8 database (549 complete genomes).

Experimental results demonstrate that the proposed method can infer reliable physical
protein-protein interactions and be useful for studying the protein-protein interaction evolution
across multiple species. In addition, the top-ranked strategy and template interface score are
able to significantly improve the accuracies of identifying protein-protein interactions in a
complete genome. The 3D-interologs database is available at

http://3D-interologs.life.nctu.edu.tw.

2-1. Introduction

A major challenge of post genomic biology is to understand the networks of interacting

genes, proteins and small molecules that produce biological functions. The large number of

8,9,28 26,46,47

protein interactions , generated by large-scale experimental methods , computational

32,38,39,44,48-50 51,52

methods , and integrated approaches , provides opportunities and challenges in

annotating protein functions, protein-protein interactions (PPI) and domain-domain interactions
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(DDI), and in modeling the cellular signaling and regulatory networks. An approach based on
evolutionary cross-species comparisons, such as PathBLAST °*** and interologs (i.e.

interactions are conserved across species “0**

), is a valuable framework for addressing these
issues. However, these methods often cannot respond how a protein interacts with another one

across multiple species.

Protein Data Bank (PDB) ' stores three-dimensional (3D) structure complexes, from
which physical interacting domains can be identified to study DDIs and PPIs using
comparative modeling 3*%. Some DDI databases, such as 3did *, and iPfam *°, have recently
been derived from PDB. Additionally, some methods have utilized template-based methods (i.e.

2 and fold recognition *), which search a 3D-complex library to

comparative modeling 3
identify homologous templates of a pair of query protein sequences, in order to predict the
protein-protein interactions by accessing interface preference, and score query pair protein
sequences according to how they fit the known template structures. However, these methods
3233 are time-consuming to search all possible protein-protein pairs in a large genome-scale
database (Fig. 2-1A). For example, the possible protein-protein pairs on the UniProt database

(4,826,134 sequences) are-about 2.33x10* 2. In addition, these methods are unable to form

homologous PPIs to explore the protein-protein evolution for a specific structure template.

To address these issues, we proposed a new concept "3D-domain interolog mapping” (Fig.
2-1B): for a known 3D-structure complex (template T with chains A and B), domain a (in chain
A) interacts with domain b (in chain B) in one species. Homolog families A" and B' of A and B
are proteins, which are significant sequence similarity BLASTP E-values <10™° and contain
domains a and b, respectively. All possible protein pairs between these two homolog families
are considered as protein-protein interaction candidates using the template T. Based on this
concept, protein sequence databases can be searched to predict protein-protein interactions
across multiple species efficiently. When the genome was deciphered completely for a species,
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we considered the rank of protein-protein interaction candidates in each species into our

previous scoring system *°

to reduce a large number of false positives. The 3D-interologs
database which can indicate interacting domains and contact residues in order to visualize
molecular details of a protein-protein interaction. Additionally, this database can provide

couple-conserved residues and evolutionary clues of a query sequence and its partners by

examining the interologs across multiple species.

A B

3D-Dimer
structure database

UniProt

Protein sequence database
(4,826,134 proteins)

‘ Protein dimer with
v~ chains Aand B

Query Query —
sequence 1 x sequence 2 Using interacting
domains to search

4,826,134 4,826,134 .
protein database

1 Family
assignment

UniProt
Protein sequence database

4,826,134 protein

3D-Dimer
structure database M homologs of N homologs of
chain A chain B
Test 2.33x1013 {-

Interactions Test M x N interactions

Figure 2-1. Two frameworks of template-based methods for protein-protein interactions (PPI).

(A) For each query protein sequence pair, the method searches 3D-dimer template library to identify homologous
templates for exploring the query protein pair, such as MULTIPROSPECTOR *. (B) For each structure in
3D-dimer template library, the method searches protein sequence database to identify homologous PPIs of the

query structure, such as 3D-interologs.

2-2. Methods and Materials

Figure 2-2 illustrates the overview of the 3D-interologs database. The 3D-interologs
allows users to input the UniProt accession number (UniProt AC %) or the sequence with
FASTA format of the query protein (Fig. 2-2A). When the input is a sequence, 3D-interologs
uses BLAST to identify the hit interacting proteins. We identified protein-protein interactions
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in 3D-interologs database through structure complexes and a new scoring function using the
following steps (Fig. 2-2B). First, a 3D-dimer template library comprising 1,895 heterodimers
(3,790 sequences, called NR1895) was selected from the PDB released in Feb 24, 2006.
Duplicate complexes, defined by sequence identity of above 98%, were removed from the
library. Dimers containing chains shorter than 30 residues were also excluded ***°. Interacting
domains and contact residues of two chains were identified for each complex in the 3D-dimer
library. Contact residues, in which any heavy atoms should be within a threshold distance of
45 A to any heavy atoms of another chain, were regarded as the core parts of the
3D-interacting domains in a complex. Each domain was required to have at least 5 contact
residues and more than 25 interacting contacted-residue pairs_to ensure that the interface
between two domains was reasonably extensive. After the interacting domains were determined,
its SCOP domains % were identified, and its template profiles were constructed by PSI-BLAST.
PSI-BLAST was adopted to search the domain sequences against the UniRef90 database 2, in

which the sequence identity < 90% of each other and the number of iteration was set to 3.

After 3D-dimer template library and template profiles were built, we inferred candidates
of interacting proteins by 3D-domain interolog mapping. To identify the interacting-protein
candidates against protein sequences in the UniProt version 11.3 (containing 4,826,134 protein
sequences), the chain profile was used as the initial position-specific score matrix (PSSM) of
PSI-BLAST in each template consisting of two chains (e.g. Ca and Cg, Fig. 2-2C). The number
of iterations was set to 1. Therefore, this search procedure can be considered as a
profile-to-sequence alignment. A pairing-protein sequence (e.g. S1 and S2) was considered as a
protein-protein interaction candidate if the sequence identity exceeded 30% and the aligned
contact residue ratio (CR) was greater than 0.5 for both alignments (i.e. S1 aligning to Cx and
S2 aligning to Cg). For each interacting candidate, the scoring function was applied to calculate

the interacting score and the Z-value, which indicates the statistical significance of the
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interacting score. An interacting candidate was regarded as a protein-protein interaction if its
Z-value was above 3.0 and it ranked in the Top 25 in one species. The candidate rank was
considered in one species to reduce the ill-effect of the out-paralogs that arose from a
duplication event before the speciation *°. These inferred interacting protein pairs were

collected in the database.
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i ; FFEMLPSSEFQISVVDCQPVHDEATPSQTTVLVVICGSVKFEGNKQRDFNQNFILTAQAS
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Figure 2-2. Overview of the 3D-interologs database for protein-protein interacting evolution, protein functions

annotations and binding models across multiple species.

Finally, for the hit interacting partner derived from 3D-domain interolog mapping, this
database provides functional annotations (e.g. UniProt AC, organism, descriptions, and Gene
Ontology (GO) annotations *, Fig. 2-2D), and the visualization of the binding models and
interaction evolutions (Fig. 2-2C) between the query protein and its partners. We then
constructed two multiple sequence alignments of the query protein and its interacting partner
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(Fig. 2-2C) across multiple species. Here, the interacting-protein pair with the highest Z-score
in a species was chosen as interologs for constructing multiple sequence alignments using a
star alignment. The chains (e.g. Chains A and B, Fig. 2-2C) of the hit structure template were
considered as the centers, and all selected interacting-protein pairs across species were aligned
to respective chains of the template by PSI-BLAST. The 3D-interologs database annotates the
important contact residues in the interface according to the following formats: hydrogen-bond
residues (green); conserved residues (orange), conserved residues with hydrogen bonds (yellow)

and other (gray).
Data Sets

Two data sets were used to assess 3D-domain interolog mapping and the scoring functions.
To determine the contribution of a residue to the binding affinity, the alanine-scanning
mutagenesis is frequently used as an experimental probe. We selected 275 mutated (called
BA-275) residues from the ASEdb >’ with 16 heterodimers whose 3D structures were known.
Those mutated residues are contact residues and positioned at protein—protein interfaces.
ASEdb gives the corresponding delta G value representing the change in free energy of binding
upon mutation to alanine for each experimentally mutated residue. Residues that contribute a

large amount of binding energy are often labeled as hot spots.

In addition, we selected a non-redundant set (NR-563), comprising 563 dimer protein
structures from the set NR1895 to evaluate the performance of our scoring functions for
predicting PPIs in S. cerevisiae and in 549 species collected in Integr8 database (2,102,196

proteins ).

2-3. Scoring Function and Matrices

We have recently proposed a scoring function to determine the reliability of a
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protein-protein interaction *°. This study enhances this scoring by dividing the template
consensus score into the template similar score and the couple-conserved residue score. Based
on this scoring function, the 3D-interologs database can provide the interacting evolution
across multiple species and the statistical significance (Z-value), the binding models and
functional annotations between the query protein and its interacting partners. The scoring
function is defined as
Ew: =Eqw + Ese + Egiy + WE,¢ 1)

where E,qw and Egg are the interacting van der Waals energy and the special interacting bond
energy (i.e. hydrogen-bond energy, electrostatic energy and disulfide-bond energy),
respectively; and Egn, is the template interface similar score; and the Econs 1S couple-conserved
residue score. The optimal w value was. yielded by testing various values ranging from 0.1 to
5.0; w is set to 3 for the best performance and efficiency on predicting binding affinity
(BA-275) and predicting PPIs in S. cerevisiae and in 549 species (Integr8) using the data set

NR-563. The E,qy and Egg are given as

CP
EvdW . Z(\/SS”‘ +VSbij +VSbji)

i

CP
Eqr =D (TsS; +Tsh, +Tsb;)

i
ij
where CP denotes the number of the aligned-contact residues of proteins A and B aligned to a
hit template; Vss;; and Vsbj; (Vsb;) are the sidechain-sidechain and sidechain-backbone van der
Waals energies between residues i (in protein A) and j (in protein B), respectively. Tss;; and Tsbj;
(Tsbj) are the sidechain-sidechain and sidechain-backbone special interacting energies between
i and j, respectively, if the pair residues i and j form the special bonds (i.e. hydrogen bond, salt
bridge, or disulfide bond) in the template structure. The van der Waals energies (Vssij, Vsbj,
and Vsb;) and special interacting energies (Tss;j, Tshjj, and Tsb;;) were calculated from the four
knowledge-based scoring matrices (Fig. 2-3), namely sidechain-sidechain (Fig. 2-3A) and
sidechain-backbone van der Waals scoring matrices (Fig. 2-3B); and sidechain-sidechain (Fig.
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2-3C) and sidechain-backbone special-bond scoring matrices (Fig. 2-3D).
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Figure 2-3. Knowledge-based protein-protein-interacting scoring matrices: (A) sidechain-sidechain van-der Waals
scoring matrix; (B) sidechain-backbone van-der Waals scoring matrix; (C).sidechain-sidechain special-bond
scoring matrix; (D) sidechain-backbone special-bond matrix scoring.

The sidechain-sidechain scoring matrices are symmetric and sidechain-backbone scoring matrices are
non-symmetric. For sidechain-sidechain van-der Waals scoring matrix, the scores are high (yellow blocks) if
large-aliphatic residues (i.e. Val, Leu, lle, and Met) interact to large-aliphatic residues or aromatic residues (i.e.
Phe, Tyr, and Trp) interact to aromatic residue. In contrast, the scores are low (orange blocks) when nonpolar
residues interact to polar residues. For sidechain-sidechain special-bond scoring matrix, the scores are high when
an interacting resides (i.e. Cys to Cys) form a disulfide bond or basic residues (i.e. Arg, Lys, and His) interact to

acidic residues (Asp and Glu). The scoring values are zero if nonpolar residues interact to other residues.

These four knowledge-based matrices, which were derived using a general mathematical
structure *® from a nonredundant set of 621 3D-dimer complexes proposed by Glaser et al.
are the key components of the 3D-interologs database for predicting protein-protein

interactions. This dataset is composed of 217 heterodimers and 404 homodimers and the
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sequence identity is less than 30% to each other. The entry (S;), which is the interacting score

for a contact residue i, j pair (1<i, J<20), of a scoring matrix is defined as S;=In % , where g
e.

i
and e;; are the observed probability and the expected probability, respectively, of the occurrence
of each i, j pair. For sidechain-sidechain van-der Waals scoring matrix, the scores are high
(yellow blocks) if large-aliphatic residues (i.e. Val, Leu, lle, and Met) interact to large-aliphatic
residues or aromatic residues (i.e. Phe, Tyr, and Trp) interact to aromatic residue. In contrast,

the scores are low (orange blocks) when nonpolar residues interact to polar residues. The top

two highest scores are 3.0 (Met. interacting to Met) and 2.9 (Trp interacting to Trp).

The value of E, Was calculated from the BLOSUM62 matrix > based on two alignments
between two chains (A and B) of the template and their homologous proteins (A" and B'),

respectively. The Esin, is defined as

()

where CP is the number of contact residue pairs in the template; i and j are the contact residue
in chains A and B, respectively. Kj; I the score of aligning residue i (in chain A) to i* (in protein
A") and Kj; is the score of aligning residue j (in-chain B) to ' (in protein B') according to
BLOSUMG62 matrix. K; and K;; are the diagonal scores of BLOSUMG62 matrix for residues i
and j, respectively. The couple-conserved residue score (Econs) Was determined from two

profiles of the template and is given by

Econs = Czp(maX(O!(Mip - Kii) + (M i T ij)) (3)

i]

where CP is the number of contact residue pairs; Mip is the score in the PSSM for residue type i
at position p in Protein A; M,, is the score in the PSSM for residue type j at position p' in
Protein B, and Kj; and Kj; are the diagonal scores of BLOSUM®62 matrix for residue types i and

J, respectively.
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To evaluate statistical significance (Z-value) of the interacting score of a protein-protein
interaction candidate, we randomly generated 10,000 interfaces by mutating 60% contact
residues for each heterodimer in 3D-dimer template library. The selected residue was
substituted with another amino acid residue according to the probability derived from these 621
complexes *°. The mean and standard deviation for each 3D-dimer were determined from these
10,000 random interfaces which are assuming to form a normal distribution. Based on the
mean and standard deviation, the Z-value of a protein-protein candidate predicted by this

template can be calculated.

2-4. Inputs and Outputs

The 3D-interologs database server is easy-to-use. Users input the UniProt AC or the
FASTA format of the query protein (Fig. 2-2A). The server generally returns a list of
interacting partners with functional annotations (e.g. the gene name, the protein description and
GO annotations) (Fig..2-2D) and provides the visualization of the binding model and contact
residues between the query protein and its partner by aligning them to respective template
sequences and structures. Additionally, the 3D-interologs system indicates the interacting
evolution analysis by using multiple sequence alignments of the interologs across multiple
species (Fig. 2-2C). The significant contact residues in the interface are indicated. If Java is
installed in the user’s browser, then the output shows the structures, and users can dynamically

view the binding model, interacting domains and important residues in the browser.

2-5. Example Analysis

Figure 2-4 show the search results using the human protein NXT1 (UniProt AC Q9UKKG6)

as the query sequence. The NXT1, which is a nucleocytoplasmic transport factor and shuttles
21



between the nucleus and cytoplasm, accumulates at the nuclear pore complexes®. For this
query, 3D-interologs database yielded 8 hit interacting partners (Fig. 2-4A), comprising 5
partners derived from 3D-interologs database and 5 partners from the IntACT database. Thus,
two partners were present in both databases. Among these 8 hits, 3 partners (i.e. Uniprot AC
Q68CW9, Q5H9I1 and Q9GZY0) were not recorded in IntAct database, but they very likely
interact with NXT1. The Q68CW9, which is part of the protein NXF1 (UniProt AC Q9UBU9),
consists of the UBA-like domain and the NTF-like domain, which is responsible for
association with the protein NXT1 ®. The sequence of the protein Q5H9I1 is the same as that
of the protein Q9H4D5 (i.e. nuclearrRNA export factor 3), which binds to NXT1 ®2 The
protein Q9GZYO0 (nuclear RNA export factor 2) binds protein NXT1 to export mMRNA cargoes

from nucleus into cytosol %,

The protein NXT1 interacts with the protein NXF1 to form a compact heterodimers (PDB
code 1jkg ®*)and anvinteracting B surface, which is lined with hydrophobic and hydrophilic
residues (Fig. 2-4B). Twenty hydrogen bonds or electrostatic interactions are formed in this
compact interface. The salt bridge formed by NXT1 Arg134 and NXF1 Asp482 is especially
important in the interface 2. The.interacting evolution analysis built by 10 interologs reveals
that two residues (Arg134 and Asp482) are conserved in all species (Fig. 2-4C). Additionally,
some interacting residues forming the hydrogen bonds are also couple-conserved, for example
NXT1 Asp76 and NXF1 Arg440; NXT1 GIn78 and NXF1 Ser417; NXT1 Pro79 and NXF1
Asn531 °’. The evolution of interaction is valuable to reflect both couple-conserved and critical

residues in the binding site.
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Figure 2-4. The 3D-interologs database search results of using human NXT1 as query.

(A) Eight interacting partners of NXT1 are found in the 3D-Interologs. For each interacting partner, this server
provides UniProt accession number, protein description, organism and Gene Ontology annotation. (B) Detailed
interactions between the query and its interacting partner (UniProt accession number Q9UBUO9) are indicated via
the structure template which consists of NXT1 (PDB entry 1jkg-A) and NXF1 (PDB entry 1jkg-B). The contact
residues of NXT1 (query side) and NXFL (partner side) are colored by red and blue, respectively. The contact
residues forming hydrogen bonds (green and dash) ‘are given the atom details. (C) The interacting evolution
analysis by using multiple sequence alignments of hit interacting partners of the query across multiple species.
The 3D-interologs yields 10 interologs of the query template structure. The contacted residues are marked in
template structure based on their interacting characteristics, including hydrogen-bond residues (green); conserved
residues (orange); both (yellow), and others (gray). The couple-conserved contact positions are colored in the
multiple alignments according to the physical-chemical property of amino acid residues. Twenty amino acid types
are classified into 7 groups, namely polar positive (His,Arg, and Lys, blue); polar negative (Asp and Glu, red);
polar neutral (Ser, Thr, Asn and GIn, green); cystein (yellow); non-polar aliphatic (Ala, Val, Leu, lle and Met,

gray); non-polar aromatic (Phe, Tyr and Trp, pink); and others: (Gly and Pro, brown).

Conversely, some positions, which are not conserved in all species but conserved in an

individual taxonomic group, are important for observing the co-evolution across multiple
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species. The interacting residue pair (NXT1 Phe6 and NXF1 Cys415) in mammalia and
vertebrata is different from that in metazoan (NXF1 Cys415—Met and NXT1 Phe—Leu
variant). The van-der Waals potential (1.3 in the sidechain-sidechain van-der Waals scoring
matrix, Fig. 2-3A) between Leu and Met is much larger than the potential (—0.1) between Cys

and Phe. This co-evolution favors the formation of the hydrophaobic interaction in metazoan.

2-6. Results
Database

The 3D-interologs database currently contains 15,124 species and 283,980 protein-protein
interactions, including 173,294 interactions (61%) derived from our method based on
3D-domain interolog-mapping and 110,686 interactions (39%) summarized from the IntAct
database®. For the hit interacting partner derived from 3D-domain interolog mapping, this
database provides functional annotations (e.g. UniProt AC, organism, descriptions, and Gene
Ontology (GO) annotations *), and the visualization of the binding models and interaction
evolutions between the query protein and its partners. On the other hand, the 3D-interologs
database presents only the functional annotations-of the hit protein-protein interaction if this

interaction was summarized from the IntAct database.

Table 2-1. Statistics of 3D-interologs database on 19 species commonly used in research projects

Species 3D-domain interologs IntAct
Mus musculus 8,876 2,634
Homo sapiens 8,639 18,716
Danio rerio 4,564 0
Xenopus laevis 4,057 58
Rattus norvegicus 3,685 958
Bos taurus 3,549 174
Drosophila melanogaster 2,644 25,036
Arabidopsis thaliana 2,418 2,111
Caenorhabditis elegans 1,433 4,684
Saccharomyces cerevisiae 443 36,821
Escherichia coli 426 14,007
Schizosaccharomyces pombe 371 341
Dictyostelium discoideum 284 84
Zea mays 219 0
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Oryza sativa 193 69

Takifugu rubripes 191 0
Chlamydomonas reinhardtii 122 14
Plasmodium falciparum 68 2,707
Pneumocystis carinii 23 0
other species 131,089 2,272
Total 173,294 110,686

Among 15,124 species in the 3D-interologs database, Table 2-1 shows 19 species
commonly used in molecular research projects, such as Homo sapiens, Mus musculus, Rattus
norvegicus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, and
Escherichia coli. To analyze couple-conserved residues and interface evolutions for providing
evolutionary clues, the 15,124 species were-divided into 10 taxonomic groups ®, namely
mammalia, vertebrata, metazoa, invertebrata, fungi, plant, bacteria, archaea, viruses, and

others.

Binding Affinity Prediction

The enhanced scoring functions were first evaluated on 275 mutated residues selected
from the ASEdb database® to reveal the Pearson correlations between ddG values and
predicted energies. The 3D-interologs method applied four scoring functions (Fig. 2-5),
including 3D-interologs (red), 3D-partner (blue), Esim (only template similarity, green) and one
matrix (black) proposed by Lu, et al. **. Among these four scoring functions, the 3D-interologs
is the best (0.92) and one matrix is the worst (0.55, i.e. Lu, et al.). The correlations are 0.91 and

0.88 for 3D-partner and 0.88 (only template similarity), respectively.

The binding free energy is often not evenly distributed across interfaces but involves a
small subset of “hot spots™ contributed extraordinarily high energy ®. For instance, the human
blood-coagulation complex (PDB code 1dan) has 52 residues whose energy contribution was

probed by alanine scanning mutagenesis ®*®’. Among these 52 residues, residues Lys-20 and
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Asp-58, which are highly conserved in many species, provide the binding free energy upper 2
kcal/mol; on the other hand, the average energy contribution of the other 50 residues is 0.37
kcal/mol. This result implies that the couple-conserved residue score (Econs) iS beneficial to
model the binding energy of residues positioned in the interfaces. Although the hotspots of
protein-protein binding are often for maintaining their function, the antibodies keep the
diversity to recognize a wide variation of antigens. The correlation is 0.143 when the Econs Was
used to model the binding energy of antigen-antibody complexes. Fortunately, integrating Econs,

Esim and Esr is able to improve the correlation to 0.606 for antigen-antibody complexes.
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Figure 2-5. Evaluation of the 3D-interologs in binding affinities.

The Pearson correlations between experimental free energies (ddG) and the predicted values of the 3D-interologs
using four scoring functions, including 3D-interologs (red), 3D-partner (blue), Eg;, (only template similarity, green)
and one matrix (black) proposed by Lu, et al., on 275 mutated residues selected from Alanine Scanning Energetics

database.

Interactions Prediction in S. cerevisiae

Additionally, a non-redundant set (NR-563), comprising 563 dimer complexes from the
3D-dimer library, was adopted to evaluate the performance of this enhanced scoring function
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for interacting partner predictions in S. cerevisiae. This set comprised 5,882 protein-protein
interactions, which were recorded as the core subset in the DIP database as the positive cases,
and 2,708,746 non-interacting protein pairs, defined by Jansen et al. * as the negative cases.
Figure 2-6A shows the ROC curves of our method and other three scoring functions for
predicting PPIs in S. cerevisiae. Among these four scoring functions, the 3D-interologs and the
template similar score (Esim) were the best and achieved the similar accuracy. Conversely, one

matrix (i.e. Lu, et al. **) was the worst. The average precisions, which was calculated as
(Z:li/Thi)/A, where T, denotes the number of compounds in a hit list including i correct

hits, were 0.84 (3D-interologs), 0.82 (3D-partner), and 0.67 for one matrix (proposed by Lu et
al.). These results demonstrated that the proposed new scoring function can achieve good
agreement for the binding affinity in PPIs and provide statistical significance (Z-value) for

predicting PPIs.
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Figure 2-6. The ROC curves of the 3D-interologs for protein-protein interactions.
The 3D-interologs search results on (A) S. cerevisiae and (B) 549 species (Intger8) using the data set NR-563 (563
dimer-complex structures) by applying four scoring functions, including 3D-interologs (red), 3D-partner (blue),

only template similarity (Es;y,, green) and one matrix (black) proposed by Lu, et al.

Interactions Prediction on Multiple Species

To evaluate the performance of the 3D-domain interolog mapping on multiple species,
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563 non-redundant dimer complexes (NR-563) were used as queries to search on the Integr8
database (Release 65) which comprises 2,102,196 proteins in 549 species (Fig. 2-6B and Fig.
2-7). The Integr8 is an integrated database for organisms with completely deciphered genomes,
which are mainly obtained from the non-redundant sets of UniProt entries. Experimentally
determined protein-protein interactions dataset were collected from IntAct ® as the gold
standard positive set (110,686 interactions). The gold standard negative set was generated
according to the assumption that two proteins acting in the same biological process are more
likely to interact than two proteins involved in different processes °. This study applied the

relative specificity similarity (RSS), proposed by Wu et al. *°

, to measure the biological process
similarity and the location similarity of two proteins based on the GO terms of the biological
process (BP) and the.cellular .component (CC), which describes locations at levels of
subcellular structures and macromolecular complexes; respectively. Among 110,686
interactions recorded in the IntAct database, 51,049 interactions can be used to calculate the BP
and the CC RSS scores. The BP and CC RSS scores of 15.85% and 2.65% interactions,

respectively, are less than 0.4. Here, we considered an interacting protein pair as a negative PPI

if its CC RSS score is less than 0.4.
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Figure 2-7. Precisions and recalls of 3D-interologs the on Integr8.
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The 3D-interologs searches Integr8 database (2,102,196 proteins in 549 species) using the data set NR-563 (563
dimer-complex structures). The 3D-interologs server uses five scoring schemes, including rank in a species (blue),

Z-score (red), rank and Z-score >=3 (black), rank and Z-score >=2 (purple), and sequence identity (green).

The structures in the NR-563 as queries to search the Integr8 database yielded 1,063
protein-protein interactions recorded in the IntAct database and 131,831 protein pairs, whose
CC RSS scores were less than 0.4 as the negative cases. Based on ROC curves (Fig. 2-6B) for
predicting PPIs in 549 species, 3D-interologs and the template similar score (Esim) outperform
the 3D-partner server and one-matrix (i.e. Lu, et al.) method. In addition, the precision and
recall were adopted to access the predicted-quality of the 3D-interologs using these four
scoring schemes (Fig. 2-7). The precision was defined as An/(An+Fr), where A, and Fy, denote
the numbers of hit positive cases and hit negative cases, respectively. The recall was defined as
An/A, where A is the total number of positives (here A=1,063). Furthermore, the accuracy of our

scoring function (red) is significantly better than that of the sequence identity (green).

The 3D-domain interolog mapping may yield many PPI candidates (e.g. > 200) for one
species from a structure template because a eukaryote genome frequently contains multiple
paralogous genes. Here, we proposed a top-rank strategy to limit the number of PPIs inferred
from a structural template in the same species. For-example, we discarded the PPI candidates
whose ranks > 25 for a species if the rank threshold is set to 25. Figure 2-7 shows that the
performance of the top-rank scores (blue, with different rank thresholds) is similar to that of
using Z-score scoring method (red). When we combined the top-rank strategy and the Z-score
scoring methods, the precisions (purple and black) are significantly improved. The precision

was 0.52 and the recall was 0.34 when Z-score > 3.0 and the rank < 25 in one species.

Adopting the top-rank strategy in one species as the scoring function is useful for
distinguishing between positives and negatives when the 3D-domain interolog mapping

yielded many protein-protein interactions for one species from a structure template. However,
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the rank cannot reflect the binding affinity of a PPI candidate, conversely, the Z-score cannot
be adopted to identify the orthologs and in-paralogs arising from a duplication event following

56

the speciation These results reveal that Z-scores and ranks scoring methods are

complementary.

Table 2-2 shows an example for illustrating processes and robustness of combining the
top-ranked strategy and Z-score methods. Using human calcineurin heterodimer (PDB code
laui) structure as query, the 3D-domain interolog mapping yielded 1096 PPI candidates in 38
species if the Z score is set to 2. These 1096 candidates possess the interacting domains (i.e.
Metallophos and efand domains).of the query template. Among these PPI candidates, 10 PPIs
were recorded in IntACT and 9 candidates were considered as negative PPIs because their CC
RSS scores are less than 0.4. The ranks of these 9 negative PPIs are more than 15; conversely,
these 10 positive PPIS are top 10 in each species. These observations showed that the
top-ranked strategy is useful to dramatically reduce the false positive rate when the 3D-domain

interolog mapping for predicting PPIs across multiple complete genomes.

Table 2-2. 3D-interologs search results using human calcineurin heterodimer as the query

RSS of RSSof Interacting Interacting

H a
Interactorl Interactor2 Species. Zscore Rank P/N Bp® cCe domaini domain2

P48456 P48451 Fruit fly 8.98 1 0.89 0.85  Metallophos efand
P23287 P25296 Yeast 8.25 1 0.88 1.00  Metallophos efand
P14747 P25296 Yeast 7.95 2 0.88 1.00  Metallophos efand
Q12705 QouUU93 Yeast 7.94 1 -d 0.78  Metallophos efand
P48456 P47948 Fruit fly 4.42 16 0.41 0.30  Metallophos efand
P48456 P47949 Fruit fly 4.38 17 0.41 0.30  Metallophos efand
P48456 P49258 Fruit fly 3.99 23 0.41 0.56  Metallophos efand
P48456 Q9VQH2 Fruit fly 3.94 25 0.49 0.33  Metallophos efand
Plasmodium
Q8IAMS8 P62203 falciparum 3.79 2 - - Metallophos efand

P48456 P48593 Fruit fly 3.72 31
P48456 AlZAE1 Fruit fly 3.59 34

Q27889 P48593 Fruit fly 3.42 40
P23287 P06787 Yeast 3.36 5
P48456 QIVMT2 Fruit fly 3.03 50
P48456 Q7K860 Fruit fly 2.99 53
P14747 P06787 Yeast 2.86 6
P48454 QINP86 Human 2.33 0
Q08209 QINP86 Human 231 91

0.35 0.56  Metallophos efand
0.00 0.30  Metallophos efand

- - Metallophos efand
0.61 0.88  Metallophos efand
0.41 0.30  Metallophos efand
0.41 0.30  Metallophos efand
0.61 0.88  Metallophos efand

- 0.00  Metallophos efand
0.41 0.00  Metallophos efand

ZZTUVZZTUVUZ U U ZTUVT Z Z1UVTUTTU U
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P16298 QINP86 Human 2.31 91 N - 0.00 Metallophos efand

3D-interologs infers 10 positive and 9 negative protein-protein interactions by human calcineurin heterodimer

(PDB code 1laui), including calmodulin-dependent calcineurin A subunit alpha isoform (chain A with interacting

domain Metallophos) and calcineurin subunit B type 1 (chain B with interacting domain efhand), searching on

Integr8 database.

® PPl is a positive (P, recorded in IntACT database) or negative case (N, RSS of cellular component is less than

0.4).

®¢ The relative specificity similarity (RSS) scores, proposed by Wu et al. %, of Gene Ontology biological process
(BP) and cellular component (CC), respectively.

? The protein pair is without Gene Ontology annotations in BP or CC.

2-7. Conclusions

This work demonstrates that the 3D-interologs database is robust and feasible for the
interacting evolution of PPIs and DDIs across multiple species. This database can provide
couple-conserved residues, interacting models and interface evolution through 3D-domain
interolog mapping and template-based-scoring functions. The scoring function achieves good
agreement for the binding affinity-in protein-protein interactions. We believe that the
3D-domain interolog mapping should be useful in protein-protein interacting evolution and is

able to infer reliable physical protein-protein interactions across multiple genomes.
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Chapter 3. PCFamily: a web server for searching

homologous protein complexes

The proteins in a cell often assemble into complexes to carry out their functions and play
an essential role of biological processes. The PCFamily server identifies template-based
homologous protein complexes (called protein complex family) and infers functional modules
of the query proteins. This server first finds homologous structure complexes of the query
using BLASTP to search the structural template database (11,263 complexes). PCFamily then
searches the homologous complexes of the templates (query) from a complete genomic
database (Integr8 with 6,352,363 protein sequences in 2,274 species). According to these
homologous complexes across multiple species, this sever infers binding models (e.g.
hydrogen bonds and conserved amino acids in the interfaces), functional modules, and the
conserved interacting domains and Gene Ontology annotations of the protein complex family.
Experimental results demonstrate that the PCFamily. server can be useful for binding model
visualizations and annotating the query proteins. We believe that the server is able to provide
valuable insights for determining functional modules of biological networks across multiple

species. The PCFamily sever is available at http://pcfamily.life.nctu.edu.tw.

3-1. Introduction

Protein complexes are fundamental units of macromolecular organization and their
composition is also known to vary according to cellular requirements ’. To identify and
characterize the protein complexes, genome-scale interaction discovery approaches, such as
two-hybrid system or affinity purification "™, have been proposed. However, these methods

are often unable to respond how a protein interacts with others. Based on increasing
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892829 and structure complexes !, previous studies have

protein-protein interactions (PPI)
suggested that the total number of protein-protein interaction types are limited (~10,000 types)

"2 and the quaternary structures (QS) can be clustered into 3,151 QS families ”.

A known three-dimensional (3D) structure complex provides physical protein interaction
topology, interacting domains, and atomic detailed binding models of interactions. Recently,
some studies utilized template-based methods (i.e. comparative modeling ** and fold
recognition *%), which search a 3D-complex library to model a large set of yeast complexes *>™.
These methods are time-consuming to search all possible homologous PPIs or complexes,

which are useful to explore interface evolutions of a specific 3D structure complex, from a

large complete genomic database (e.g. Integr8) with many species *°.

To address these issues, we numerously enhanced and modified both PPI family search
(sequence-based PPI search method ?%) and 3D-domain interologs with template-based scoring
function (3D-template PPI prediction method *°). According to our knowledge, PCFamily is
the first public server that identifies homologous complexes (= two proteins) and module
evolution of the query. For a set of query protein sequences, this server provides the
template-based homologous: complexes (called protein-complex family (PCF)) in multiple
species, graphic visualization of conserved interacting residues and binding models (interfaces),
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conserved Gene Ontology (GO) annotations and interacting domains. Our results

demonstrate that this server achieves high agreements on interacting domains and GO

annotations between query proteins and their respective homologous complexes.

3-2. Method and Implementation
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Figure 3-1. Overview of the PCfamily server for homologous complexes search using proteins Skpl, Skp2, and
Cks1 of Rattus norvegicus as the query.

(A) The main procedure. (B) Identify the template candidate (PDB code 2ast) of the query using BLASTP and
template-based scoring function to scan the structural template database. (C) The topology of the template. (D)
The homologous PPI families of interfaces A-B and B-C of the template searching on Integr8 database. (E)

Template-based homologous complexes of the query.

Figure 3-1 shows the details of the PCFamily server to search the template-based
homologous complexes (PCF) of a set of query protein sequences by following steps (Fig.
3-1A). First, the server uses BLASTP to search template candidates from structural template
database (11,263 structure complexes selected from Protein Data Bank (PDB)). Then we utilize
template-based scoring function * to statistically evaluate the complex similarity (joint Z-value

> 3.0) between query proteins and candidates (Figs. 3-1B and 3-1C). After a template was
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selected, the server searches the PPl family of each interface of template with Z-value > 3.0
from a complete genomic database (Integr8 version 103, containing 6,352,363 protein
sequences in 2,274 species) *° (Figs. 3-2A and 3-1D). These PPI families are combined into
homologous complexes with the significant complex similarity (joint Z-value > 3.0) according
to the interfaces of the 3D-complex template (Fig. 3-1E). For this PCF including the query, we
measured the conservation ratio (CR) of the domain composition (DC) and CRs of biological
processes (BP), cellular components (CC), and molecular functions (MF) using Gene Ontology
annotations. Finally, this server provides homologous complexes; graphic visualization of
complex topology; detailed residues: interactions and .interface alignments across multiple

species (Fig. 3-2); conservations with GO annotations and DCs.

A Template (2ast) 4.

2ast Chain A-Chain

¥
rrace

) 1100 1110 1120 1130 1140 1150 1160
2ast chain A By == - = ey | e
QBTLEELIEAARYLOIRGLEDVIERTVANMER - GRTBEE ERr T ENIRNDE reeEERofiRRENGHE
Query 1 QETLEELILALNYLDIRGLLDVTCETVANKIE-GRTEEE IRRTENIRNDETEEEEAQVREENQWC . Hydrogen-bond
o e residues
P&3208 9606 FRI 3 : QETLFELILARNYLDIRGLLDVTCRTVANMIR-GRTEEEIRRTFNIRNDETEEEEAGVREENGWC
QEPEC4 10116 ROD 3 : QGTLFELILAANYLDIRGLLDVTCRTVANMIE-GRTPEEIRETFNIKNDFTEEEEAQVREENQWC H d b d
Q3zcF3 9913 MEM 3 : QGTLFELILARNYLDIKGLLDVTCETVANMIE-GRTEEEIRKTENIKNDETEEEELQVREENQWC ydrogen-bon
: residues and
2100 2110 2120 2130 2140 2150 Conserved residues
2ast chain B rciSnBsLEo=H L BT FsBLEEBE  BRvEEVER-iEr L soE SLwoTLOETCRNEHPDR TCRELS
e Conserved
Query 2 PGVSHWDSLPDELLLGIFSCLCLPELLRVSGVCRRWYRLSLDESLWQSLDLAGENLHPDVIVRLLS reSIdUes
Q13309 9606 PRI 93 : PGVSWDSLPDELLLGIFSCHCLPELLEVSGVCRRWYRLASDESLWQTLDETGRNLHPDVIGRLLS Other contact
326Uz0 10116  ROD 83 : PGVSWDSLPDELLLGIFSCLCLPELLRVSGVCERWYRLSLDESLWQSLDLAGENLHEDVTVRLLS [ ] .
nIMEOG 9813 MAM ©3 : PGVSWDSLPDELLLGIFSCLCLPELLEVSSVCRRWYHLAFDESLWQTVDLAGRNLYEDVVGRLLS residues

Figure 3-2. Binding models and multiple sequence alignments of PPI family in Skp1-Skp2-Cksl complex (PDB
code 2ast).

(A) The atomic binding model with hydrogen bonds (red dash lines) for each interface of the template. (B)
Multiple sequence alignments of PPI family of the interface A (Skp1)-B (Skp2), respectively.

Homologous complex
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The concept of homologous complex (> two proteins) is extended from homologous PPIs

23 39

and 3D-domain interologs with template-based scoring function *°. Here, we used a
3D-trimer template T (proteins A, B, and C) with two interfaces A-B and B-C as a simple case
to define the homologous complex of T as follows: (1) A", B' and C' are the homologous
proteins of A, B, and C, respectively, with the significant sequence similarity (BLASTP
E-values <107%) 4% (2) A'-B' and B'-C' are the template-based homologous PPIs of A-B and
B-C, respectively, with the significant interface similarity (Z-value > 3.0) *%; (3) significant

complex similarity (joint Z-value > 3.0) between complexes A'-B'-C' and A-B-C. The joint

Z-value of the complex similarity is defined as

z

1,=1T.z
=T @)

where n is the number of interfaces of a template (T); Z; is the Z-value (interface similarity) of
the template-based homologous PPI i (e.g. A-B’) based on the template interface (e.g. A-B).
Here, Jz > 3.0 is considered as significant similarity according to the statistical analysis of 941

3D-structure complexes with 2,138,123 homologous complexes.
Template-based scoring function

We have recently proposed a template-based scoring function to determine the reliability
of the PPI derived from a 3D-dimer structure *. For a predicted template-based PPI, this
scoring function assigned a score, including residue-residue interacting scores, which consist of
the steric (Evaw) and hydrogen-bond (Esg) energies, and sequence consensus scores which the
couple-conserved residue score (Econs) and contact-residue similarity score (Esim). Finally, we
calculated the Z-value of the score for this PPl using the mean and standard deviation of

10,000 random interfaces by mutating 60% interface residues.

Annotations of homologous complexes
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A 3D-complex template and its homologous complexes can be considered as a PCF. The
concept of the PCF is analogous to the notions of protein sequence family %, protein structure

2 and PPI family %. We believe that PCFs can be applied widely in biological

family 2
investigations. We assume that the members of a PCF are conserved on GO annotations,
interacting domain(s) and binding model(s). Using these conservations of a PCF, the PCFamily
server can annotate the GO terms (BP, CC, and MF) and DCs of query proteins. To statistically
evaluate the agreement of GO terms and DCs between the template and its PCF (with N
homologous complexes), we define the agreement ratio (AR) using the conservation ratio

(CR=Na/N), where N, is the number.of homologous complexes with the same GO term (or DC)

ina PCF. The AR is given as

AR =To(A(CRZOIT,CR=C)) | 1y

where Q is a set of query templates; T; (CR> c) is the total number of the GO terms (or DCs) of
template i when CR > ¢; Ai (CR > ¢) iIs the number of the agreement GO terms (or DCs) of

template i when CR > c.

3-3. Input, Output and Options

PCFamily is an easy-to-use web server (Fig. 3-3). Users input a single or a set of protein
sequence(s) in FASTA format or a 3D-complexes protein structure (PDB code) (Fig. 3-3A).
Typically, the PCFamily server yields structural template candidates within 25 seconds when
querying three sequences and the numbers of amino acids are < 450 (Fig. 3-3B). For the query,
this server shows the template candidate and its PCF; detailed atomic interactions of the
interfaces and binding models by using Jmol "; protein interaction topology (Fig. 3-3C);
multiple sequence alignments (MSA) with hydrogen-bond residues and conserved residues

(Fig. 3-3D); and CRs of DCs and GO terms (BP, CC and MF) (Fig. 3-3E).
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Figure 3-3. The PCfamily server search results using proteins Epor, Epo, and Epor of Mus musculus as the query.

(A) The user interface for inputting the query protein sequences or PDB code. (B) The template candidate of the
query. (C) The numbers of conserved domains and GO term conservations, interfaces, protein interaction topology,
homologous complexes of the query (selected template). (D) Multiple sequence alignments and interacting residue

conservations of homologous PPIs of the interface A (Epo)-B (Epor), respectively. (E) Conserved domain and GO

term compositions of the protein complex family.
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3-4. Example Analysis
The complex of Skpl, Skp2, and Cksl

Figure 3-1 shows search results using S-phase kinase-associated protein 1 (Skpl, UniProt
accession number: Q6PEC4), S-phase kinase-associated protein 2 (Skp2, B2GUZO0), and
RGD1561797 protein (Cksl, B2RZ99) of Rattus norvegicus as the query. Skpl and Skp2 are
subunits of the SCF***? ubiquitin ligase complex that regulates proteolysis of the p27""* protein
in cell cycle progression """, Recognition and ubiquitination of p27""* requires the accessory
protein Cksl by the SCF*P? ubiquitin-ligase .complex . According to KEGG pathway
database "8, Skp1-Skp2 and Skp2-Cksl in Rattus norvegicus are recorded in the ubiquitin
mediated proteolysis pathway and the small cell lung cancer pathway, respectively. For this
query, the PCFamily server found the template candidate (PDB code 2ast ') (Fig. 3-1C) and 43
homologous complexes (called SCF complex family), from nine species (e.g. Homo sapiens,
Rattus norvegicus, and Bos taurus (Fig. 3-1E)). Among these 43 homologous complexes, one
complex (Homo sapiens) is recorded in the IntAct database ® and three‘homologous complexes,
including the query in Rattus norvegicus, Q9WTX5 (Skp1)-Q920Z3 (Skp2)-P61025 (Ckslb)
in Mus musculus, and Q3ZCF3 (SKP1)-A7MB09 (SKP2)-QOP5A5 (CKS1B) in Bos taurus, are
recorded in KEGG pathway. In addition, 6 members are Skpl-Skp2-Ckslb (or Cks2)
complexes which are highly relative to the query and the template. All members of this PCF
have the same DC PF01466 (Skpl)-PF00646 (F-box)-PF01111 (CKS) and a high consensus
DC PF03931 (Skpl POZ)-PF00646-PF01111 (CR=0.95). The query proteins consist of these

two DCs (Fig. 3-1E).

The PCFamily server provides the binding model and MSAs of each interface (Figs. 3-2
and Fig. 3-4) based on the template. Interface A-B (Fig 3-2A) contains 3 main hydrogen bonds,
including GIn1097-Trp2097, Glul156-Tyr2128, and Asn1157-Ser2121. These six residues are

conserved in mammals (Fig 3-2B). Additionally, PCFamily identifies six sidechain-sidechain
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hydrogen bonds forming the network to stabilize the interface B-C "® (Fig. 3-4). All interacting

residues forming the hydrogen bonds are often highly conserved and useful for observing the

interface evolution across multiple species.

Figure 3-4. Binding models and

code 2ast).
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P61024 9606 PRI 5 : QIYYSDKY-DDEEFEYRHVMLPKDIAKLVEKTHL LGVOQSCGWVHYMIHEPEPHILLERREL | residues
QST179 9606 PRI 5 : QIYYSDKY-DDEEFEYRHVMLPKDIAKLVPKTHLMSESEWRNLGVQQSQGWVHYMIHEP--—-——-—-——
Q9BZU3 %606 PRI 1 R —=-MRTRHVMLPKDIAKLVPKTHLMSESEWRNLGVQQSQGWVHYMIHEPEPHILLFRRPL
P33552 9606 PRI 5 : QIYYSDKY-FDEHYEYRHVMLPRELSKQVEKTHLMSEEEWRRLGVQQSLGWVHYMIHEPEPHILLERREL

Hydrogen-bond
P61025 10090 ROD 5 : QIYYSDKY-DDEEFEYRHVMLPKDIAKLVPKTHLMSESEWRNLGVQQSQGWVHYMIHEPEPHILLFRRPL d d
Q9D108 10090  ROD 5  : QIYYSDKY-DDKEFEYRHVMLPKDTAKLVEKTHIMSESEWRNLGVQQSQGWVHYMTHEPEPHTILFRRPL | Fesiduesan
Q3UNCO 10030  ROD 22 : QIYYSDKY-DDEEFEYRHVMLPKDIDKLVPKTHIMSESEWRKLGVQQSQGWVHYMTHEPELHTLLEQWeL [ Conserved
P56390 10090 ROD 5 : QIYYSDKY-FDEHYEYRHVMLPRELSKQVPKTHLMSEEEWRRLGVQQSLGWVHYMIHEPEPHILLFRRPL resldues
B2RZ99 10116 ROD 5 : QIYYSDKY-DDEEFEYRHVMLPKDIAKLVPKTHLMSESEWRNLGVQQSQGHVHYMIHEPEPHILLFRRPL
B1wWCc51 10116 ROD 5 : QIYYSDKY-FDEHYEYRHVMLPRELSKQVPKTHLMSEEEWRRLGVQQSLGWVHYMIHEPEPHILLFRRPL .
QOPSAS 9913 MAM 5  : QIYYSDKY-DDEEFEYRHVMLPKDIAKLVEKTHLMSESEWRNLGVQQSQGWVHYMIHEPEPHILLFRRPL
Q2KJI1 %913 MAM 5 : QIYYSDKY-FDEHYEYRHVMLPRELSKQVPKTHLMSEEEWRRLGVQQSLGWVHYMIHEPEPHILLFRRPL Conser\/ed
QEDELB 7955 VRT 5  : QIYYSDKY-DDDKFEYRHVMLPKDIAKRVEKTHLMSETEWRNLGVQQSQGWVHYMIHQPEPHILLFRREL residues
QBEIQC3 7955 VRT 5 : QIYYSDKY-TDDHFEYRHVVLPRELARQVPKSHLMSEDECRRLGVQQSLGWVHYMIHEPESHILLFRRPL
QIIX17 7955 VRT 7  : QIYYSDKY-SDEEYEYRHVMLPKQLSKLVESSHLMSEEEWRGLGVQQSQGWIHYMIHKPEPHILLFRRPL [ ]
QTQFX2 180454 INV 5  : QIQYSEKY-YDDVYEYRHVILPEDLAKYVEKTHL LGVQQSPGHVLYMIHSPE PHVLLERRE — Otr_]er contact
Q7PTNO 180454 INV 6 : -IYYSDKY-YDDEYEYRHVVLPKDIAKLVPKTHLMTENEWRAIGVQQSRGWVHYMVHOPEPHILLFRRPT | residues
A7s6MA 45351 INV 14 I === EKY-FDEYFEYRHVMLPKELVSQVPSVHLMTESEWRNLGVQQSPGWVHYLIHEPEPHVLLFRRPL
A7SPG3 45351  INV 6  : QIYYSEKY-FDSQYEYRHVMVPKDIAKLVERKKL [GIQQSQGHQHYMHHHPEPHI ILFRR——
A7RSAS 45351  INV 5 : -IFYSTKYEDDTGYEYRHVIVPKVLAKKIPKDRLMREDEWRGMGIQQSQGWQQYMIHHPEPHVLLEKREV
B5DHB1 46245 INV 5 : —-IYYSDKY-YDEKFEYRHVVLPKELVKLVPKTHLMTETEWRS IGVQQSRGWIHYMIHKPEPHILLFRRP—
0294K5 46245  INV 5 : QIQYSEKY-FDDKFEYRHVILPSDLAKHVEPKAHLMTETEWRNLGVQQSPGWVHYMMHAPEPHVILFRR-—
QOTFNT 7159 INV 6 : -IYYSDKY-YDDEYEYRHVVLPKDIAKLVEKTHLMTENEWRSIGVQQSRGWIHYMIHQPEPHILLFRRE-
Q172P8  715% INV 5 : QIQYSEKY-YDDVYEYRHVILPPDLARNVEKSHLMTETEWRNLGVQQSPGWVMYMMHAPEPHILLERRE-

multiple sequence alignments of PPI family in Skp1-Skp2-Cksl complex (PDB

(A) The atomic binding model with hydrogen bonds (red dash lines) for each interface of the template. (B)

Multiple sequence alignments of the interface B-C (Skp2-Cksl). This interface includes 11 and 26 homologous

proteins of the chains B (Skp2) and C (Cks1), respectively.

Epor-Epo-Epor complex

Erythropoietin (Epo) stimulates the proliferation and differentiation of the cells (e.g.
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erythroid precursor cells) "%, Epo binds and orientates two cell-surface erythropoietin
receptors (Epor) to activate cells and trigger an intracellular phosphorylation cascade . Using
Mus musculus Epor (P14753), Epo (P07321), and Epor (P14753) as the query proteins (Fig.
3-3A), the PCFamily server found the template candidate (PDB code leer) (Fig. 3-3B) and its
6 homologous Epor-Epo-Epor complexes in three species (Fig. 3-3C). Among these 6
complexes, three complexes, P19235-P01588-P19235 (Homo sapiens),
P14753-P07321-P14753 (Mus musculus) and Q5FVS4-P29676-Q5FVS4 (Rattus norvegicus)
are recorded in KEGG. Two complexes are formed by Epo (P29676) binding to Epors Q07303
" and 035545 ®, respectively. PCFamily indicates the MSAs with hydrogen-bond and

conserved residues in the interfaces A-B (Fig. 3-3D) and A-C (Fig. 3-5) of Epor-Epo-Epor

A
1eerA side (Query 1)

10 80 100 110
leer-n RPPREICDSRVLERELL  Qariv  DrefiscrasnrfErRan
Query 1 APPRLICDSRVLERYIL  QALLE  DRATSGLRSLTSLLRVL
P01588 9606 PRI 28 : BPPRLICDSRVLERYLL QALLV  DEAVSGLRSLITLLRAL

P0T7321 10090 ROD 27 : APPRLICDSRVLERYIL QRLLE DERISGLRSLTSLLRVL
BTZMYQ 10090 ROD 27 : APPRLICDSRVLERYIL QARLLE DRAISGLRSLTSLLRVL
P29676 10116 ROD 27 : APPRLICDSRVLERYIL QRLOR DERATSGLRSLTSLLRVL

B
1eerC side (Query 2)

30 &0 20 150 150 200
leer-c TERLED  LEBEP [EapzssEV  PMrBs  ButBE  meee§
Query 2 TQRLED LEGES TADTSSEV  EMTTH  EMTTH  MREPS
P19235 9606 PRI 32 : TERLED LEDEP TADTSSEV  BMTSH  EMTSH  MAEPS
P14753 10090  ROD 32 : TQRLED LEGES TADTSSEV  BMTTH  EMTTH  MREES
035545 10116  ROD 32 : TQRLED LEGES TADTSSEV ~ EMTTH  EMTTH  MREES
Q07303 10116  ROD 32 : TQRLED LEGES TADTSSEV ~ EMTTH  BMTTH  MREFS
Q5FVS4 10116  ROD 32 : TQRLED LEGES TADTSSEV ~ EMTTH  EMTTH  MAEPS

Contact residues: Marked by 4 colors

Hydrogen-bond residues: green Conserved residues:orange Both:yellow Others:-
Figure 3-5. Multiple sequence alignments of the (Epo-Epor) A-C interface of template cytokine/receptor complex
(PDB code 1eer).
This interface includes five and six homologous proteins of the chains A (erythropoietin) and C (erythropoietin

receptors), respectively.
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This PCF includes 65 GO term compositions. Among these GO term compositions, the
CR ratios of two MF compositions and three CC compositions exceed 0.6 (Fig. 3-3E). The
query has these five GO term compositions, such as GO:0004900 (erythropoietin receptor
activity)-G0:0005128 (erythropoietin receptor binding)-G0O:0004900. Additionally, the query
and these homologous complexes consistently contain two conserved DCs (CR=1), including
PF00041-PF00758-PF00041 and PF09067-PF00758-PF09067. PF00758-PF00041 and
PF00758-PF09067 are recorded in iPfam *. These results reveal that the PCFamily server can

identify homologous complexes for the interface evolution and annotations of the query.

3-5. Results
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Figure 3-6. Evaluations of the PCFamily server on 941 protein complex families.
(A) The distributions of recall (solid) and precision (dot) with different joint Z-value thresholds. (B) The
relationships between agreement ratios and the conservation ratios of domain compositions (DC), biological

processes (BP), molecular functions (MF), and cellular components (CC).

To evaluate the accuracy of the PCFamily server for discovery of homologous complexes
and the annotations of query proteins, we selected a non-redundant query structural template
set. This set comprising 941 protein complexes (2,979 sequences and 2,042 interfaces, called
NR941) was selected from the PDB released in Feb 24, 2006. For searching homologous
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complexes, NR941 was used to assess PCFamily performance and to determine the threshold
of joint Z-value J, (Equation (1)) on the Integr8 database (Fig. 3-6A). In addition, the NR941
set was applied to calculate CRs of DCs (and GO terms) for each PCF and infer the relations

between CRs and ARs (Equation 2) of DCs and GO terms (Fig. 3-6B).

We defined the gold standard positive and negative sets to measure the performance of the
PCFamily server. Here, we used a trimer structural template T (proteins A, B, and C) with two
interfaces A-B and B-C as a simple case to describe a positive complex (A'-B'-C') of T as
follows: (1) A, B' and C' are homologs of A, B, and C, respectively, with the significant
sequence similarity (BLASTP E-values <107 4% (2) A-B' and B'-C' are PPIs recorded in
annotated PPI databases (e.g. IntAct) and have the same interacting domains of A-B and B-C,
respectively. Based on the rules, the gold standard positive set includes 770 complexes derived
from the Integr8 for.the set NR941. On the other hand, the gold standard negative set was
generated according to the assumption that proteins, located in the same subcellular
localization and acting in the similar biological processes, are more likely to form a complex
than proteins involved .in different processes. This study applied the relative specificity
similarity (RSS) ® to measure the BP and CC similarities of PPIs based on the GO terms.
According to 198,882 interactions in IntAct database, we considered a complex candidate is a
negative case, if BP and CC RSS scores of any interface of the complex are less than 0.4 (Fig.

3-7). Here, the negative set consists of 1,960 complexes.

Precision, recall and F-measure were utilized to assess the reliability of the PCFamily
server for searching homologous complexes. The F-measure is given as (2 x precision x recall)
| (precision + recall) where the precision and recall using the gold standard positive and
negative sets. Figure 3-6A shows the relationships between joint Z-value J, and recall and
precision using 941 complexes on the Integr8 database. The recall significantly decreases when
joint Z-value > 3; conversely, the precision increases slightly when joint Z-value is between 3
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and 4. The recall and precision are 0.82 and 0.45, respectively, and the PCFamily server yields

the highest F-measure value (0.55) if the threshold of joint Z-value is set to 3.

Figure 3-6B shows the relationships between ARs and the CRs of DCs, BP, CC, and MF. If
the CR of DCs is greater than 0.6 (black), the AR between the query and their respective
homologous complexes exceeds 0.95 (Equation 2). If the CR of GO terms (i.e. BP, CC, and MF)
is greater than 0.6, the ARs are consistent larger than 0.74 for BP (0.77, green), CC (0.74,
yellow), and MF (0.75, red). These experimental results demonstrate that this server achieves
high agreements on DCs and GO terms between the query (i.e. template complexes) and their

respective homologous complexes.

35
30 mBP
mCC
25
<
S
q_)207
[@>]
S
c
g 15 -
[¢D)
[a
10 -
- i
k. LHNEEEN
oFgc\!oqq-mLOI\oomo_
"¢ ¢ 9 9 9 ¢ P F T
O +4 N ™M < 1 © N~ 0 O
o O O O o o o o o
RSS score

Figure 3-7. The distributions of the biological process (BP) and cellular component (CC) RSS scores on 84,082
protein-protein interactions selected from the IntAct database.

Among 198,882 interactions recorded in IntAct, 84,082 interactions can be calculated the BP and CC RSS scores.
The BP and CC RSS scores of 14,188 (16.88%) and 1,742 (2.07%) interactions, respectively, are less than 0.4.
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3-6. Conclusions

This study demonstrates the utility and feasibility of the PCFamily server in identifying
homologous complexes and inferring conserved domains and GO terms from protein complex
families. PCFamily is the first server to provide homologous complexes in multiple species;
graphic visualization of the complex topology and detailed atomic residue-residue interactions;
interface alignments; conservations of GO terms and domain compositions. Our experimental
results demonstrate that the query and its homologous complexes achieve high agreements on
domains and GO terms. We believe that PCFamily is a fast homologous complexes search
server and is able to provide valuable insights for determining functional modules of biological

networks across multiple species.
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Chapter 4. Structural interactome of multiple vertebrate

genomes though homologous protein-protein interactions

A crucial step toward understanding the spatiotemporal dynamics of a cellular system is to
investigate protein-protein interaction (PPI) networks and biochemical progress. Currently, the
large-scale methods are often unable to respond how a protein interacts with another one within
a given PPI network and describe the relationship between the mutation of proteins and disease
syndrome. To address this issue, we numerously enhanced and modified our previous PPI
family search and 3D-domain interologs with template-based scoring function. Our method
could efficiently enlarge the PPls-annotated with residue-based binding models in structure
resolved networks in H. sapiens, M..musculus, and D. rerio. This work is the first to construct
structure resolved PPI networks across multiple species, including H. sapiens, M. musculus,
and D. rerio. The PPIs with atomic residue-based binding models in the derived structure
resolved network achieved highly agreement with Gene Ontology similarities. Furthermore,
the architecture of these networks is a scale-free network which is consistent with most of the
cellular networks. In addition, our derived networks can be used to observe the consensus
proteins and modules which are high conserved appearing in multiple organisms. These
consensus proteins are often the essential genes and related to diseases recorded in OMIM.
Experimental results also indicate that the mutations of interacting residues on the PPIs often
related to diseases are often on. Our results demonstrate that the structure resolved PPI
networks in vertebrates can provide valuable insights for understanding the mechanisms of

biological processes.

46



4-1. Introduction

A crucial step toward understanding the spatiotemporal dynamics of a cellular system is to
investigate protein-protein interaction (PPI) networks and biochemical progress *®#. Many

high throughput experimental methods, such as high-throughput yeast two-hybrid screening

25,26 27

and co-affinity purification “*, and computational approaches have been proposed to
construct the PPI network within an organism. These large-scale methods are often unable to
respond how a protein interacts with another one and describe the relationship between the
mutation of proteins and disease syndrome. Previous studies have combined protein structure
information with experimental PPIs to investigate how mutations affect protein interactions in
disease **'°. Based on experimental PPIs, a structurally resolved human protein interaction
network has been reconstructed to examine the relationships between genes, mutations and
associated disorders.'®. These experimental PPIs were distributed on several well-studied
organisms (e.g. S. cerevisiae); conversely, the PPls of most species were not complete. For

example, the numbers of PPIs for D. rerio.(227) and Mus musculus (7,736) recorded in five

public databases '°%# (e.g. BioGRID and IntAct).

To discover the sequence. homologs of a known' protein provides the clues for
understanding the function of a newly sequenced gene. We have provided "protein-protein
interaction family" to annotate genome-scale PPIs through the homologous PPIs ?* searching
the complete genomic database (Integr8, containing 6,352,363 protein sequences in 2,274
species) *°. Furthermore, a known three-dimensional (3D) structure complex could provide
interacting domains, and atomic detailed binding models of interactions. Some methods have
utilized template-based methods (i.e. comparative modeling ** and fold recognition **) to
predict the PPIs by accessing interface preference through the fitness of known template

structures. However, these methods 3*%

are time-consuming to search all possible
protein-protein pairs in a large genome-scale database across multiple species. Therefore, to
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further utilize both "protein-protein interaction family” and 3D structure complexes, we are
able to construct structure resolved PPl networks with binding mechanisms in multiple

organisms.

To address this issue, we numerously enhanced and modified our previous PPI family
search (sequence-based PPI search method %) and 3D-domain interologs with template-based
scoring function (3D-template PPI prediction method ®). Our method could efficiently enlarge
the PPIs annotated with residue-based binding models in structure resolved networks in H.
sapiens, M. musculus, and D. rerio. For each structure resolved network, we investigated the
reliability by using the Gene Ontology and the network architecture (i.e. scale-free network). In
addition, our method can identify the conserved proteins and network modules across multiple
networks. These conserved proteins are highly related to the essential genes and diseases
recorded in "Online Mendelian Inheritance in Man (OMIM *)". Furthermore, we demonstrated
that these disease-related mutations are more enrichment on the interacting residues, especially
forming the hydrogen bonds. These results indicate that the structure resolved PPI networks
can provide the insight for understanding the- mechanisms. of Dbiological processes and

interactomes.

4-2. Methods and Materials
Constructing the structural resolved PPI networks

A major challenge of systems biology is to understand the networks of interacting genes,
proteins and small molecules that produce biological functions. For efficiently enlarging
protein interactions annotated with residue-based binding models, we have proposed the
concept "3D-domain interolog mapping 3*#™: for a known 3D-structure complex (template T

with chains A and B), domain a (in chain A) interacts with domain b (in chain B) in one species.
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The proteins of the homolog families A" and B' of A and B have the significant sequence
similarity (i.e. BLASTP E-values <10™°) and contain interacting domains a and b, respectively.
All possible protein pairs between these two homolog families are considered as
protein-protein interaction candidates using the template T. Then, we utilize our previous

3987 t0 evaluate the binding model similarity between candidates and template.

scoring system
According to this concept, protein sequence databases can be searched to annotated

protein-protein interactions across multiple species efficiently.

Complete genomic Structural template database
database,Integr8 (24,815 structural templates
(6,352,363 protein and 60,618 structural
sequences in 2,274 species) complex)
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Figure 4-1. The overview of constructing structure resolved PPI networks in three vertebrates though "3D-domain
interolog mapping"

(A) 3D-domain interolog mapping is used to infer the homologous PPIs through structural templates and complete
genome databases. (B) The structure resolved PPI networks of H. sapiens, M. musculus, and D. rerio. (C)The
human PPI network with the disease data derived from the OMIM. The size and color of a node (protein) denote

the numbers of interactions and diseases, respectively.

Figure 4-1 illustrates the overview of constructing structure resolved PPl networks in

three vertebrates though "3D-domain interolog mapping”. First, a structure template library
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comprising 60,618 3D-dimers involved in 24,815 complexes was selected from the protein
data bank (PDB®®) released in Sep 2, 2011 (Fig. 4-1A). The interacting residues and scoring

functions defined by using our previous studies %%’

were used to identify the similar binding
interfaces of PPIs. After 3D-dimer template library and template profiles were built, we
inferred homologous PPIs of each interface of the template with Z-value > 3.0 from a complete
genomic database (Integr8 *) (Fig. 4-1A). According to these homologous PPIs in H. sapiens,

M. musculus, and D. rerio, we constructed and aligned these structure resolved PPl networks

(Fig. 4-1B).

Multiple network alignment

The methods for network alignments can be roughly divided into global alignment and
local alignment. By searching for a single comprehensive PPl netwark mapping of the whole
set of proteins and protein interactions from different species®, the global network alignment
can answer interactome evolutions with conserved and specific proteins (and PPIs). Two basic
issues should be addressed for a network alignment method. Firstly, an alignment method
should provide the importance (such as hub.and conservations) of proteins and PPIs in multiple
networks across species. Second, for a selected protein and PPI, the score function of an
alignment method should reflect the similarity of the aligned proteins and PPIs in the networks.
Here, we described a new global network alignment method based on "3d-domain interologs
mapping"”. According to the definition of the "3d-domain interologs mapping”, the
protein-protein interactions of the same family share the same interacting domains and have the
similar binding models. Therefore, for a specific PPI, these PPIs could be considered as the

corresponding PPI alignment candidate in other organisms.
Our global alignment method applied a greedy strategy which the PPl with highest
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importance is aligned with the highest priority. Here, we evaluated the importance of a given
PPI (1) within the network based on the degree, conservation, and PPI reliability. Two proteins,
forming a PPI, with a higher degree are usually the hub in a network. The degree (DI) of a PPI
forming by proteins a and b is defined as DI = Da + Db, where the Da and Db are the degrees
of proteins a and b, respectively. The PPI involving in many organisms is usually the essential
PPl and plays an important role for biological functions and processes. Therefore, the
evaluation conservation (CI) of a PPI (1) is defined as CI = Taxl /11, where Taxl is the number
of taxonomy divisions, defined by the NCBI taxonomy database *!, of the interacting proteins
in the PPI I family. Here, the maximum number of taxonomy divisions is 11. Finally, the
reliability (RI) of a PPI is defined as Rl = (EI + TI) / 2, where El is 1 if the PPI | was recorded
in five public PPI databases (e.g. IntAct®, DIP®, MIPS?, BioGRID', and MINT?); otherwise,
El'is 0. The Tl is set to'1 while the 3D-dimer template and the PP1 | are in the same organism;

otherwise, Tl is 0. Final, the importance (S) of a given PPI (1) is calculated by S=CI + Rl + TI.
The network alignment algorithm

Given three structural resolved PPI networks of H. sapiens (Ny), M. musculus (Nw), and D.
rerio (Np), we provided multiple network alignment by aligning Ny and Np to Ny and the

algorithm is summarized in Figure 4-2 and proceeds as follows:

(1) For each PPI of Ny, Nm and Np, we calculate the importance (S) of the PPI by using

the equation (S=C, + R, + T)) describing in previous paragraph.

(2) After calculating the all importance of all PPIs among the Ny, each PPI gets the
priority according to the value of importance. Then, Greedy picking the PPI | with the

highest value of importance and its corresponding PPI 1, family (Fy).

(3) Selecting the most similar PPI Iy, and Ip of M. musculus and D. rerio, respectively, in
the Fy based on the significant joint sequence similarity between two pairs, i.e., (A,
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A;") and (B, By'), of the I (A and B) and Iy (A:' and B;'). This work followed previous

studies 244 to define joint sequence similarity as Jz = /E, X Eg. Ea is the E-value

of proteins Aand A;"; and Eg is the E-value of proteins B and B;'.

(4) If the Iy and Ip exist, the I is an alignable PPI of Ny and the summarized importance S'

= Sy + Sm + Sp; otherwise, | is a human-specific PPl and S'is 0.

(5) Repeat the steps (4) and (5) until all PPIs of are Ny are assigned as alignable or

human-specific PPIs with S'.

(6) Greedy aligning networks by choosing PPI alignment which 1, Iy, and Ip have the

highest summarized importance S'.

(7) Repeat the steps (4) and (5) to find the next PPl alignment with the highest

summarized.importance S'.

(8) Repeat step (7) until all PPIs of Ny, N, and Np are aligned.

Input networks Assign PPl importance S Greedy PPI alighment Output alignments
by degree, conservation, from PPI with with a consensus
and reliability highest importance S network

o> Aligned networks
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Figure 4-2. Conceptual overview of alignment procedure.
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Finally, we identified 1,887 proteins and 5,845 PPIs which are consensus in structure

resolved PPI1 networks of H. sapiens, M. musculus, and D. rerio.

Collecting the list of disease-associated genes, mutations, and diseases

To further investigate the relationship between disease-associated genes and mutations in
the structure resolved human PPl networks, we collected the disease-related mutations from
OMIM ** database. The database of single nucleotide polymorphisms (dbSNP %, build 132) is
a public-domain archive for a broad collection of simple genetic polymorphisms. According to
OMIM ! database which contains the relationships between genes and diseases, we collected
all "OMIM-curated-records"” from-the dbSNP database. We got 15,995 mutations including
in-frame and truncating mutations-in-1,949 genes. For the further analysis, we selected the
2,202 mutations in 137 genes to validate the structurally resolve human PPl network with
annotations of mutations and diseases (Fig. 4-1C). Here, the sizes and color distributions of the
nodes (proteins) denote the numbers of interactions and diseases, respectively. The larger node
represents the protein with the more number of PPIs and the red node denotes the protein with
the more number of diseases. There are two main disease hubs (No. of disease > 10): TGFR4

and TGFR3 with 14 and 13 diseases, respectively.

4-3. Results
Structure resolved PPI networks of H. sapiens, M. musculus, and D. rerio

For evaluating the structural PPI network annotated with residue-based binding models,
we compared the numbers of the proteins and PPIs in our structure resolved PPl networks with

ones of the human structural PPI network *® which can only be applied on the well-studied
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species. According to PPI recorded in five public databases, the number of PPIs in human
(67,596 PPIs) is significantly more than the ones of mouse (7,735 PPIs) and zebrafish (221
PPIs) (Table 4-1). The method proposed by Wang, X. J. et al. *® would not be useful to apply to
the mouse and zebrafish because this methods considered both the experimental PPIs and
protein structures. Conversely, our method using "3d-domain interologs mapping” and "PPI
family is able to efficiently enlarge PPIs annotated with residue-based binding models,
especially useful for seldom-studied organisms (e.g. zebrafish) or new sequencing organisms.
Although most of the PPIs derived from our "3d-domain interologs mapping™ are still not
confirmed by experiments, our previous works have achieved the high annotating precision and

high agreement with ddG of experimental binding energies and experimental PPIs 23243987,

Table 4-1. Statistics of proteins.and PPIs derived from our result, public databases, and Wang, X. J. et al. on H.

sapiens, M. musculus, and.D. rerio

Species No. proteins | ..3D-domain interologs . | Five public databases * Wang, X. J. etal *°.
P in genome™ | No. proteins | No. PPIs | No. proteins | No. PPIs | No. proteins | No. PPIs
H. sapiens 56,006 9,493 39,058 12,206 67,596 2,816 4,222
M. musculus 36,379 7,689 33,125 4,177 7,735 - -
D. rerio 21,601 5,084 21,236 137 221 - -

“ The number of proteins in aspecific genome is calculated by using the Integr8 database.
"2 The experimental PPIs are derived from five public databases (IntAct, MIPS, DIP, MINT, and BioGRID)

To further verify the quality of our structure resolved PPI networks, we utilized the Gene
Ontology (GO) * similarities, including biological process (BP), cellular component (CC), and
molecular function (MF), between interacting protein pairs and all protein pairs in a structural
PPI network. Here, we applied the relative specificity similarity (RSS) ® to measure the GO
similarities between two proteins. Figure 4-3 illustrates the RSS score distributions of BP, CC,
and MF on interacting protein pairs and all protein pairs in the structural PPl network. GO
annotations of BP, CC, and MF of are enrichment while the RSS scores are higher than 0.7 (Fig.
4-3). In addition, the RSS scores of interacting protein pairs are significantly greater than the

ones of all pairs by using the Mann-Whitney U test (p-value < 10™*°) which is a non-parametric
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statistical hypothesis test. The RSS score distributions of BP, CC, and MF on interacting
protein pairs and all protein pairs within the mouse and zebrafish networks (Fig. 4-4) are
similar to ones of the human network. These results illustrate the importance of structural
resolution and imply that the PPIs in our structure resolved PPI networks significantly share

the similar GO annotations.
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Figure 4-3. The distributions of relative specificity similarity.(RSS) of BP, CC, and MF of the interacting protein
pairs in the derived structural PP networks

(A) The BP RSS distributions of 10,163 interacting protein pairs and all protein pairs (3,925,772 pairs). (B) The
CC RSS distributions of 9,254 interacting protein pairs and all protein pairs (3,424,256 pairs). (C) The MF RSS
distributions of 12,387 interacting protein pairs.and all protein pairs (4,331,532 pairs). The protein pairs with BP
(CC or MF) annotations are considered. The BP, CC, and MF RSS scores of interacting pairs have a significantly
enrichment while RSS score >= 0.7. The interacting pairs have significantly higher RSS scores than the ones of

random pairs in the networks according to the Mann-Whitney U test (p-value < 10°).

A network with a power degree distribution is called scale-free, a name that is rooted in
statistical physics literature. An important finding of the cellular network architecture is that
most networks within the cell approximate a scale-free topology °*. Therefore, our structure
resolved PPI networks of H. sapiens, M. musculus, and D. rerio were evaluated based on the
characteristic of scale-free networks that the P(k), the probability of a node with k links,
decreases as the node degree increases on a log-log plot (Fig. 4-5). Then, the degree exponent y
are 2.127, 2.088, and 1.958 in the structure resolved PPI networks of H. sapiens, M. musculus,
and D. rerio, respectively. In general, the smaller the value of y, the more important the role of
the hubs is in the network. A scale-free network typically has degree exponents 2 <y < 3, but
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can also exist with exponents less than 2 **°. This result is consistent with the architecture (i.e.

scale-free network property) of some cellular networks .
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Figure 4-4. The distributions of BP, CC, and MF RSS scores on interacting protein pairs and all protein pairs

within the mouse and zebrafish networks

The BP, CC, and MF RSS scores have a significantly enrichment while RSS score >=0.7 in both mouse and

zebrafish networks.
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Figure 4-5. The node degree distributions of three structure resolved PPI networks: (A) H. sapiens, (B) M.

musculus, and (C) D. rerio

The degree exponent y are 2.127, 2.088, and 1.958 in the structure resolved PPI networks of H. sapiens, M.

musculus, and D. rerio, respectively. A scale-free network typically has degree exponents 2 <y < 3, but can also

exist with exponents less than 2. These three structural networks are scale-free networks.
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The structure resolved PPI networks analysis

To further investigate the biological meaning of our networks, we analyzed the grouping
property of human network by using the Gene Ontology annotations. Here, we defined the
grouping property of a network as that the proteins which are involved in similar process and
located on similar cellular component would be the neighbors in a network. We identified four
cellular components (i.e. nucleus, intracellular, membrane, and others) for each protein based
on the CC annotations (Fig. 4-6A). We also identified six biological processes (i.e. immune
response, transport, signal transduction, protein metabolic, nucleic acid metabolic process, and

others) for each protein based on the BP annotations (Fig. 4-6B).
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Figure 4-6. Characteristics of the structure resolved protein network in H. sapiens using GO annotations.

(A) According to GO cellular component (CC) annotations, proteins in structure resolved protein network can be
annotated into four CC terms (groups), including 218 proteins in nuclear part (GO:0044428, red), 829 proteins in
intracellular (GO:0005622, yellow), 1265 proteins in membrane (GO:0016020, green), and others (gray). (B)
Based on biological processes, 281 proteins are annotated with nucleobase-containing compound metabolic
process (e.g., transcription) (GO:0006139, red); 613 proteins are annotated with protein metabolic process (e.qg.,
translation) (G0:0019538, yellow); 710 proteins are with signal transduction (GO:0007165, green); 364 proteins
are with transport (GO:0006810, blue); and 436 proteins are with immune response (G0O:0006810, black).
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Figure 4-7. Six major cellular processes in our derived network of H. sapiens.

According to the GO annotations (Fig. 4-6), our derived structure resolved PPI network could be grouped into six
major cellular processes,-including nucleic acid metabolic process (e.g., transcription); protein metabolic process
(e.g., translation); intracellular signal transduction process; membrane signal transduction process; transport

process; proteolysis process (€.g. proteasome); and immune responses.

According to the GO annotations, our derived structure resolved PPl network could be
grouped into six major cellular processes, including nucleic acid metabolic process (e.g.,
transcription); protein metabolic process (e.g., translation); intracellular signal transduction
process; membrane signal transduction process; transport process; proteolysis process (e.g.
proteasome); and immune responses. In addition, our PPl network can also reflect the
communication of six major cellular processes (Fig. 4-7). The intracellular signal transduction
plays an important role in our network. This process receives the signals which are provided
from the membrane signal transduction (e.g. EGFR, FGFR, and other membrane receptors) and
the immune response (e.g. T-cell receptor). In addition, the intracellular signal transduction also

communicates with the transport process which locates in cell membrane and cytoplasm and is
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the peripheral portion of our derived network. The nucleic acid metabolic processes are the
kernel processes of a living cell and could be regulated by the signal transduction. In our
derived network, the nucleic acid metabolic process only communicates with the intracellular
signal transduction and transport process. The results imply that the biological behavior of our

derived network is consistence with our knowledge for a living cell.

The consensus proteins, processes, and organism-specific processes

According to "3d-domain interologs mapping* and the multiple network alignment
described in Methods, we were able to compare these three vertebrate protein interaction
networks (i.e. H. sapiens, M. musculus,.and D. rerio) and identify the consensus proteins and
protein-protein interactions. Here, we-identified 1,887 consensus proteins and 5,845 consensus
PPIs from 4,135 proteins and 21,648 PPIs of structure resolved human network. To further
evaluate the biological meanings and network topologies of the consensus and non-consensus
proteins, we investigated these consensus proteins.according to the three dimensions, including
the essential proteins; involving in diseases; and locating in the central part (e.g. hub) within

the protein interaction network.

Essential genes usually involve in the fundamental cellular processes which required for
the survival of an organism. As a result, the essential genes are often highly conserved across
multiple organisms *°. We collected the annotations of essential proteins from the Database of
Essential Gene (DEG °"). Because few vertebrate proteins, especially in Homo sapiens, were
recorded as are essential genes recorded in DEG, we identified the essential proteins (genes) of
the Homo sapiens, Mus musculus, and Danio rerio by using BLAST to search orthologs of
essential genes recorded in DEG from Integr8 *°. To investigate the reliability of the orthologs

mapping, we collected the orthologs protein data set (named ORT) from the COG database %
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and evaluated the relationship between the sequence similarity (i.e. BLASTP E-value) and
orthologs protein pairs. The ORT set consists of 3,050,847 orthologs protein pairs and 112,920
proteins. Figure 4-8 illustrates the sequence similarity distribution of these orthologs protein
pairs. When sequence similarity (BLASTP E-value) > 10-70, the number of all protein pairs
significantly increase to cause the decreasing of the precision (No. orthologs protein pairs / No.
all protein pairs); moreover, the number of orthologs protein pairs decrease more gradually
than all protein pairs at JE < 10-70. While the threshold of sequence similarity (BLASTP
E-value) is set to 10-70, the precision is higher than 0.7 and 431,062 orthologs pairs can be
annotated. As a result, we could be able to enrich the number of essential proteins with a
reliable accuracy. Finally, we annotated 1,557 essential proteins in the structurally resolved

human protein interaction network through the DEG and orthologs annotation.

1600 - - 0.74
1400 - - 0.72
1200 -
o) - 0.7
S
4 1000 -
g - 068 §
£ 800 1 mm Orthologs protein pairs g
S —all protein pairs 066 q
5 600 - -
S —precision (orthologs/All)
Z - 0.64
400 -
200 i [ 062
0 - - 0.6
O O O O O OO OO O O O O O o
< 6O O M~ 00O OO O 1 AN M < IO O N~ o
D e I B B B I B I |
Sequence similarity (-log(BLAST E-value))

Figure 4-8. The distribution of orthologs protein pairs under different sequence similarities
The precisions of orthologs annotation (No. orthologs pairs / No. all pairs) are higher than 0.72, while the cut-off

of sequence similarity (-log (BLASTP E-value)) are set to 70, 80, and 90.
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To further investigate the relationship between the essential proteins and consensus prions,
we evaluated the ratios of essential proteins in consensus (i.e. the proteins are conserved in
three vertebrates) and between non-consensus proteins of structurally resolved human protein
interaction network. Table 4-2 shows the distribution of essential proteins in consensus and
non-consensus proteins. As a result, 969 (51.4%, 969/1887) and 558 (26.2%) essential proteins
were recognized as consensus and non-consensus proteins, respectively. Furthermore, the
consensus proteins lead to the significant enrichment (Z-value=16.69) of essential proteins in

the structural network. Here, the Z-value is calculated by:

i

Z-value =
Ox

where X (=969) is-the number-of-essential proteins identified as consensus proteins; X
and oy are the average and the standard deviation of essential proteins among 1,000 random
sets. Each set consists of 1,887 proteins randomly selected from 4,135 proteins in the human
network. This result indicates that these consensus proteins are significant related to the

essential genes.

Furthermore, we investigated the relationship between the diseases and consensus proteins.
Although many of diseases are organism specific, there are still many disease involved in the
essential biological pathways which is conserved in multiple organisms (e.g. cancer). If a
disease is involved in conserved pathway, the scientists could utility the animal model to
research and investigate the mechanism of human disease. Therefore, we collected the disease
and mutation data from the OMIM ™. There are 1,442 in-frame and 1,898 truncating mutations
within 393 proteins of our structurally resolved human protein interaction network. Table 4-2
illustrates the distributions of the consensus and non-consensus proteins involving in diseases.
In the structurally resolved human protein interaction network, 207 (11.0%) consensus proteins

involved in diseases and 84 (3.7%) non-consensus proteins involved in diseases. Furthermore,
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the proteins involved in diseases have the significance enrichment (Z-value=8.92) of essential
proteins. These results suggest that the mutations with structure binding in OMIM are highly

related to the consensus proteins across three vertebrate PPI networks.

Table 4-2. The ratios of essential proteins and disease related proteins in consensus and non-consensus proteins

. . Proteins involved in Essential proteins
Essential proteins . . e
. No. of disease involved in disease
Protein type roteins | No. of No. of No. of
P ‘. | Ratio |Z-value ‘. | Ratio [Z-value " | Ratio |Z-value
proteins proteins proteins
All 4,135 1,557 |0.377 291 |0.070 187
Consensus 1,887 969 |0.514| 16.69 207 |0.110| 8.92 154 |0.082| 10.79
Non-consensus| 2,248 588 |0.262|-16.66 84 0.037| -9.03 33 0.015| -10.49

To further investigate the consensus proteins and its corresponding cellular process, we
compared these 1,887 consensus proteins and 5,845 consensus PPIs with original human
network. The original human PPl network could be grouped into six major cellular processes
based on the GO annotations. Five of these groups (e.g. proteolysis, transport, signal
transductions, nucleic acid metabolic processes) are the foundational process to maintain a
living cell. As a result, although the number of proteins and PPIs are difference between these
two networks, the consensus networks still keep these groups to maintain the foundational
processes (Fig. 4-9). However, the mechanism of immune response is the organism-specific
response. It has much difference from the fish to the'mammalian. There are only few proteins
and PPIs in the immune response region of the consensus network (green dot line in Fig. 4-9).
This result indicates that the group of immune response is not the consensus region in three
vertebrate protein interaction networks and it is consistence with the biological behaviors of

immune response.
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Consensus Proteins and PPls in H. sapiens
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Figure 4-9. Six major cellular processes in consensus proteins and PPIs.

We identified 1,887 consensus proteins and 5,845 consensus PPIs from 4,135 proteins and 21,648 PPIs of
structure resolved human network based on the “3d-domain interologs mapping”. There are six major cellular
processes in original human network based on the GO annotations (Figs. 4-6.and.4-7). The major difference of
cellular process between original network and consensus PPIs is the immune response process. This result is

consistence with that the mechanisms of immune response are difference from fish to the mammalian.

Finally, we investigated the relationship between the consensus proteins and network
topology properties. In the scope of network analysis, there are various types of measures of
the centrality of a protein (vertex) within a given network (graph) that determine the relative
importance of a protein within the network. Because the consensus proteins often play an
essential role in the biological processes, these proteins should have more relative importance
among the network. Here, we used "MS-matrix" to evaluate the relative importance within a
network based on the modularity structure property. The proteins with lower modularity

structure properties are usually the hubs and locate on the central part of a network. This
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modularity structure property is highly correlated to degree, betweenness centrality, and

closeness centrality.
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Figure 4-10. The distributions of protein ‘dynamic ability (A), degree (B), closeness centrality (C), and
betweenness centrality (D) in network of 1,887 consensus proteins

(A) The distributions of protein dynamic ability in protein interaction network of consensus and non-consensus
proteins. The consensus proteins prefer to have lower dynamic abilities in network. On the contrary, the
non-consensus proteins are not the central part of the network and have higher dynamic abilities. The proteins
with higher degree (B), betweenness centralities (C), or closeness centralities (D) prefer to be conserved across
three networks. However, the closeness centrality cannot distinguish consensus and non-consensus protein as well

as degree or betweenness centrality.

Figure 4-10 shows the distributions of consensus and non-consensus protein dynamic
ability in structurally resolved human protein interaction network. The consensus proteins

prefer to have lower modularity structure properties in network. On the contrary, the
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non-consensus proteins are not the central part of the network and have higher modularity
structure properties. We also investigated the distributions of degree, closeness centrality, and
betweenness centrality in consensus and non-consensus proteins (Fig. 4-10). The proteins with
higher degree, betweenness centralities or closeness centralities prefer to conserve in these
three networks. Our results imply that these consensus proteins among three vertebrate PPI
networks usually have more relative importance with other proteins based on our "MS-matrix"
and other graphic-based centrality properties. As a result, these consensus proteins are more
relative importance according to that they are usually involved in several processes or are the

regulated bridge between processes.

Disease related mutations in human-network

Disease-related mutations can be roughly classified into two broad categories (i.e.,
in-frame and truncating mutations) *°. Here, the in-frame mutations were considered as
missense point mutations and the in-frame insertions or deletions are likely to produce
full-length proteins with local defects. The truncating mutations including nonsense point
mutations and frame-shift insertions or deletions often give rise to incomplete fragments. We
collected 1,898 in-frame mutations and 304 truncating mutations on 124 and 35 proteins,

respectively, in the structure resolved human network.

Previous studies have shown that the in-frame mutations can lead to loss of interactions *°.
To further evaluate the relationships between mutations and their associated disorders, we
identified the positions of the disease-associated in-frame and truncating mutations on the
corresponding proteins. Among the 1898 in-frame mutations, 427 mutations position on the
contact residues that are important for PPIs. The disease-related mutations are significantly

enriched with respect to the contact residues according to the odds ratio (Table 4-3 and Fig.
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4-11A). Here, the odds ratio is calculated by *°:

p1/(1—p1)

Odds ratio = ———
p2/(1—p,)

where p; is the fraction of observed mutations of the contact or non-contact residues; p; is the
fraction of total sequence length. Here, the values of p; are 0.22 (427/1898; Table 4-3) and 0.77
(1471/1898) in the contact and non-contact residues, respectively. The values of p, are 0.087
(15,344/183,730) and 0.92 (168,386/183,730) in the contact and non-contact residues,
respectively. Therefore, the odds ratios of contact residue and non-contact residues are 3.19

([0.22/(1-0.22)]/[0.087/(1-0.087)]) and 0.31, respectively.
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Figure 4-11. The odds ratios of in-frame and truncating mutations-on the binding interface
The odds ratios for the distributions of ((A) in-frame and (B) truncating mutations in. contact residues and
non-contact residues on the protein interfaces in human protein interaction network. The in-frame mutations are

enrichment in the contact residues with a high odds ratio (3.19).

Table 4-3. The distribution of in-frame and truncating mutations in human protein interaction network

No. of No. of . No. of mutations
No. of | Sequence No. of | No. mutations
. contact non-contact - . not on the
protein length . : mutation |on the interfaces .
residue residues interface
In-frame 124 | 183,730 | 15,344 168,386 1,898 427 1,471
mutation
trunca@mg 35 56,262 4,169 52,093 304 42 262
mutation

This result indicates that the contact residues of PPIs play an important role in diseases.
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While a mutation is occurred and change the contact residue of the protein, it may influence the
bind environment and lose the interaction to cause the corresponding disease. For example, the
FGFR2 (821 amino acids) has 31 amino acids having the mutation data recorded in OMIM and
has 14 disease syndromes most of which are related to the cancers. Then, the FGFR2 have 80
contacting residues based the PPIs derived from 3d-structures and "3d-domain interologs
mapping”. 13 mutations are contact residues and 18 mutations are non-contact residues.
According to the definition of odd ratios, the odd ratios of contact residues is 6.69 and
([(13/31)/(1-13/31)]/[(80/821)/(1-80/821)]) is significant higher the non-contact residues (0.15).
In addition, truncating mutations also have an enrichment on the contact residues (odds ratio =

2.0).

To further investigate the characteristic of disease-related mutations, we divided 427
in-frame mutations which locate on contact residues into four types, including the residues
forming hydrogen-bond (H-bond), conserved residues, the conserved residues forming H-bond,
the other residues. 335 mutations (78%) involved in forming hydrogen bonds on the interfaces;
and 118 mutations (35%) are conserved and forming hydrogen binds. On the contrary, 57 (13%)
mutations neither are conserved residues and nor involve in hydrogen bonds. For example, the
13 mutations involving in the PPl interface of FGFR2 have 7 mutations involving in H-bond, 2
mutations which are conserved residues, and 1 mutation both involving in H-bond and
conserved residue. These results indicate that the disease-related mutations are usually located

on the contact residues forming the hydrogen bonds within PPIs.

Disease-related consensus pathways

According to our structure resolved human network with mutations and diseases, two

major groups of proteins are highly involved in cancers and cardiovascular-related diseases
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(Figs. 4-1C, 12, and 13 and Table 4-4). The proteins, such as fibroblast growth factors (FGF),
fibroblast growth factor receptors (FGFR) and protein kinases, involves in cancers. FGF and
FGFR regulate some key biological processes, such as cell proliferation, survival, migration,
and differentiation both during development and in the adult **. The FGFR2 and FGFR3 are the
top-rank proteins with the numbers (i.e. 14 and 13 diseases recorded in OMIM; Fig. 4-1C) of

annotated diseases.
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Figure 4-12. The pathways and proteins involved in a great amount of diseases, especially the cancers

MAPK signaling
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The proteins colored with yellow are the proteins which have mutation data recorded in OMIM. The
MAPKI1/ERK2 and MAPK3/ERK1 play essential roles in several important pathways (e.g. proliferation and
apoptosis) related to the cancer. FGFR2-FGF2 is one of the upstream regulating PPI of these pathways. The
mutations of FGFR2 may influence the interaction of FGFR2-FGF2 and cause the defects of it corresponding

pathways.
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Figure 4-13. The pathways and proteins-involved in.a great amount of diseases, especially the cardiovascular-

related diseases

The proteins colored with yellow are the proteins which have mutation data recorded in OMIM. The mechanisms

of cardiovascular-related diseases are highly related to the regulation of calcium ion. There are three pathways to

regulate the concentration-of calcium ion. The first one is the sodium/calcium exchanger 1 (SLC8A1) which can

rapidly transport Ca®* during excitation-contraction coupling. The second one is voltage-dependent calcium

channel. The third one regulates the calcium concentration by the transports Ca’* between sarcoplasmic and

endoplasmic reticulum (e.g. ATP2A2 and RYR?2). Mutations of these Ca?* transports could cause the ventricular

tachycardia, Brugada syndrome, and Timothy.syndrome. In addition, the mutations on the proteins of cardiac

muscle contraction pathway could cause the cardiomyopathy.

Table 4-4. The diseases recorded in OMIM of each protein in FGF-FGFR and upstream proteins of MAPK1 and

MAPK3
Gene | UniProt Diseases recorded in OMIM _Involved _Conserved
name AC in cancer |in networks
1. Adenocarcinoma of lung
2. Cardiofaciocutaneous syndrome
3. Colorectal cancer
BRAF | P15056 |4. LEOPARD syndrome “ .
5. Melanoma, malignant
6. Nonsmall cell lung cancer
7. Noonan syndrome
EGER | P00533 1. Adenocarcinoma of lung - -
2. Nonsmall cell lung cancer
EGF | P01133 [1. Hypomagnesemia i
1. Adenocarcinoma of lung, somatic
ERBB2 | P04626 [2. Gastric cancer ; ;
3. Glioblastoma
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Ovarian cancer

FGF10

015520

Aplasia of lacrimal and salivary glands
LADD syndrome

FGF3

P11487

I el e

Deafness, congenital with inner ear agenesis, microtia, and
microdontia
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P55075

Kallmann syndrome
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P31371

Multiple synostoses syndrome

FGFR1

P11362

Hypogonadotropic hypogonadism
Jackson-Weiss syndrome
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Osteoglophonic dysplasia
Pfeiffer syndrome
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Figure 4-14. The mapping pathways and proteins which are related to the cancers of M. musculus.

Figures 4-12, 4-14, and 4-15 show the series of protein kinases and upstream of
MAPKS3/ERK1 and MAPK1/ERK2 in our derived networks of H. sapiens, M. musculus, and D.
rerio, respectively. These two MAPKSs are highly related to the cancer by involving diverse
biological functions and critical pathways such as cell growth, adhesion, survival and
differentiation "*'%. In addition, the RAF and B-RAF, which regulate MAPKKK of ERK
pathway, act as a regulatory link between the upstream signal proteins (e.g.

membrane-associated Ras GTPases (i.e. KRAS, NRAS, and HRAS) and non-receptor protein
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tyrosine kinase (e.g. SRC)) and the MAPK/ERK cascade. SRC can be activated by the EGFR
and ERBB?2 in the ERBB signal pathway for adhesion and migration "®. The PPIs colored blue
are also recorded in five public PPI databases (e.g. IntAct®, DIP®, MIPS?®, BioGRID, and
MINT?%). The PPIs with the dot line are not identified by structure template and "3D-domain

interolog mapping" but have been recorded in PPI databases or KEGG '® database.

Zebrafish
Cell cycle
akt3a | pathways
rafla
MAPK signaling
cdk2
O Protein identified in this species pathways .’makal cdkl
. mapkl 4 ) ccna2

%, .« Protein not identified in this species ap O O mapk3 ‘

=== PP| in our network O’
««=1 PP| no in our network ‘mapkapk3 (of]]] cycle

|BIUE: PP recorded in five databases

B PPI not recorded in five databases Proliferation )
Apoptosis
Migration ]

Figure 4-15. The mapping pathways and proteins which are related to the cancers of D. rerio.

There are 65 PPIs among the pathway of human network. 32 of 65 PPIs are also recorded
in 5 public PPI databases. Although 33 PPIs are not recorded in databases, previous studies
100102 have been indicated several protein pairs (e.g. FGF4-FGFR1, FGF4-FGFR2,
FGF6-FGFR1, and FGF6-FGFR4) should be interacting protein pairs. In addition, there are
only 3 PPIs and non PPIs recorded in public PPl databases among the pathways of M.
musculus and D. rerio, respectively. This result implied that our structural networks can

annotate and infer the cell behaviours of a new determined (or seldom-studied) species (e.g.

zebrafish), by mapping some well-studied species.
72



Furthermore, the mechanisms of cardiovascular-related diseases are highly related to the
regulation of calcium ion. There are three major pathways to regulate the concentration of
calcium ion (Figs. 4-13, 4-16, and 4-17). One is the sodium/calcium exchanger 1 (SLC8A1)
which can rapidly transport Ca®* during excitation-contraction coupling. Another one is
voltage-dependent calcium channel which transport Ca®* without Na* exchanging. The other
one regulates the calcium concentration by the transports Ca®* between sarcoplasmic and
endoplasmic reticulum (e.g. ATP2A2 and RYR2). Mutations of these Ca®* transports could
cause the ventricular tachycardia, Brugada syndrome, and Timothy syndrome. Then, the
myosins and actins are the major proteins of cardiac muscle contraction pathway. The

mutations of these proteins could cause the cardiomyopathy.

Cacnalc

Mouse @ @

Sarcolemma
S

Ryr2 @ Sarcoplasmic
Reticulum (SR

Myh7 Myl2

Myl3
. PR . . === PP| in our network
O Protein identified in this species
===* PPl no in our network
Cardiomyopathy [BIG& PPI recorded in five databases

*  Protein not identified in this species o
" [GF&E PPI not recorded in five databases

Figure 4-16. The mapping pathways and proteins which are involved in the cardiovascular-related diseases of M.

musculus.
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Figure 4-17. The mapping pathways and proteins which are involved in the cardiovascular-related diseases of D.

rerio.

These proteins involving in cancers and cardiovascular-related diseases are conserved in
three vertebrate PPl _networks. Here, we used the FGF2-FGFR2, TNNI3-TNNT2, and
F2-SERPINA5 as examples to explain the relationship between mutations, corresponding
consensus pathways among three vertebrate PPl networks. In addition, our methods also
provided the organism-specific proteins-and.its.corresponding pathways. Here, we used the
F2-SERPINAS which only appear in human and mouse networks and involve in complement
and coagulation pathway as an example to describe the organism-specific pathway among our

derived networks.

Disease related mutations in the binding interface of FGF2-FGFR2

A mutated Fibroblast growth factor receptor 2 (FGFR2) could cause endometrial, gastric
cancer, or pfeiffer syndrome %% Among 187 samples of endometrial carcinoma, previous

work shows that seven somatic S252W mutations (the most common FGFR2 mutation) were
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the endometrioid subtype and one S252W mutation was the serous subtype '%. Ibrahimi et al.
demonstrated that the D321A mutation increased the binding affinity between FGFR2c and the

FGFs expressed in the cranial suture *®

A P09038 (1ev2A)
\
. FGF2
— GIn56
). \
T \ o \
T Leu98‘ \
P21802 (1ev2E) L
FGFR2 er252 o oT—
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B = C =
lev2-E KE . .| [lev2-A . .9 A...ERLES. .
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P11362 H. sapiens PRI . . TTP|KE . .| |P0O9038 H. sapiens PRI .0 ..ERLES . .
P21802 H. sapiens PRI . . TTP|KE . .| |P05230 H. sapiens PRI : . .90 A...ERLEE. .
]
P16092 M. musculus ROD : . .ER|s|lp. .. TTP|KE. .| |P15655 M. musculus ROD : . . Q A...ERLES. .
P21803 M. musculus ROD : . .ER|S|p. . . TTIDJKE . .| [P13109 R.norvegicus ROD : . . Q A...ERLES. .
Q04589 R. norvegicus ROD : . .ER|s|p. .. TTPD|KE . .| [P61149 R.norvegicus ROD : . . Q ...ERLEE..
g T : ..ER|s|p. . . TTDKE . .
063237 R. narvegicus  ROD -1 B3DGE3 D. rerio VRT : . . QLQA...ERLES. .
Q90200 D. rerio VRT : . .ER|s|p. .. TTDJkE . .| [P48800 G. gallus VRT : . . Q . .ERLES . .
Q8JG38 D. rerio VRT : ..ER|slp. . . TTPKE. .| |P19596 G. gallus VRT : . . QL|s|A. . . ERLEE. .
P21804 G. gallus VRT : ..ER|slp. .. TTDKE . .
P18461 G. gallus VRT : ..ER|slp. .. TTDKE. .
[ ]
Hydrogen-bond residues: green Hydrogen-bond and conserved residues: yellow
Conserved residues: orange van der Waals residues: gy

Figure 4-18. Binding models and multiple sequence alignments of PPl family derived from FGF2-FGFR2
heterodimer (PDB code: 1lev2)

(A) The atomic binding model with the highlight van der Waals and hydrogen-bond interaction of Asp321-GIn56
and Ser252-Leu98, respectively. (B) Multiple sequence alignments of PPI family of the interface E (FGFR2)-A
(FGF2).

According to the FGFR2-FGF2 binding interface of the structure template (PDB code:
1lev2 97y | the Ser252 and Asp321 are the contact residues of FGFR2 on the FGF2-FGFR2
binding interface (Fig. 4-18). The Ser252 forms a conserved van der waals interaction to the

Leu98 of FGF2 according to the PPI family of this template (Fig. 4-18B), and the Asp321
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forms a hydrogen-bond interaction with the GIn56 (Fig 4-18C). Because the FGF2-FGFR2 is
the upstream interactions of MAPK3/ERK1 and MAPKI1/ERK2, the S252W mutation
influences the cell proliferation and apoptosis in the ERK pathway for the endometrial cancer
(Fig. 4-12). In addition, the interaction residues Ser252 and Leu98 are conserved on the PPI

(FGF2-FGFR?2) of three vertebrate PPI networks.

Cardiovascular-related diseases and its corresponding pathways

Figure 4-13 shows the cardiovascular-related diseases and its corresponding pathways.
The proteins colored with yellow are the proteins which have mutation data recorded in OMIM.
All of three type regulations for the concentration of calcium ion could be identified in our
derived networks. In addition, the pathway for cardiac muscle contraction pathway could also
be identified in our ‘derived networks. The mutations of these proteins (e.g. TNNC1 '*® and
MYH?7 %% could cause the cardiomyopathy. According to KEGG database ", there are three
complexes, including cardiac troponin complex, TPM complex, and Actin-Myosin complex,
involved in the muscle contraction pathway. All of these complexes of human have the
experimental data (solid line in Fig. 4-13).recorded in five public databases. In addition, our
method could provide the binding mechanism by the 3d-strucutre and "3d-domain interologs
mapping"”. For example, the cardiac troponin (cTn) has an important function for cardiac
muscle contraction, which is a complex of three subunits, including cardiac troponin C (cTnC,
TNNC1), troponin | (cTnl, TNNI3) and troponin T (cTnT, TNNT2) . According to binding
interface of the structure template (PDB code: 1j1d), the Pro82 is a contact residue of TNNI3
on the TNNI3-TNNT?2 binding interface. The Pro82 of TNNI3 can form a conserved van der

waals interaction to the Trp237 of TNNT2 in the PPI family of this template (Fig. 4-19).
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1j1d-B

P19429  H. sapiens PRI 32: .-
P19237  H. sapiens PRI 2: .-

LELAG-- P45379  H. sapiens PRI 193: -
PTLQTRG- - Q9BUF6 H. sapiens PRI 183 : --
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P48787 M. musculus ROD 33: --.
Q9WUZ5 M. musculus ROD  2: --
P23693  R. norvegicus ROD 33: ..
P13413  R. norvegicus ROD 2: -

Q61Q92  D. rerio VRT 1: - APHLQLSG-- ABE586 D. rerio VRT 184: ..
Q8AW33 D. rerio VRT 1: .. PPILQTQS- | Q4QRC7 D. rerio VRT 138: -.
P68246  G. gallus VRT 6: -- BPLSLPG-- P02642 G. gallus VRT 197: ..
Q6S7R6  G. gallus VRT 25: - PPPELEG- - 057559 G. gallus VRT 185: -.

Hydrogen-bond residues: gféen Hydrogen-bond and conserved residues: yellow van der waals residues: gfayj Conserved residues: orange
Figure 4-19. Binding models and multiple sequence alignments of PPI family derived from TNNT2-TNNI3
heterodimer (PDB code: 1j1d)
(A) The atomic binding model with a highlight van der Waals interaction of Trp237-Pro82. (B) Multiple sequence
alignments of PPI family of the interface B(TNNT2)-C(TNNI3).

However, there are still some experimental PPIs (dot line in Fig. 4-13) cannot be
annotated the binding mechanism by currently 3d-strucutre recorded in PDB. The construction
of our derived PPI networks largely relies on the availability of 3D-crystal structures, which
limits the coverage of our networks. However, there are no PPI within these complexes of Mus
musculus, and Danio rerio recorded in five public databases (Figs. 4-16 and 4-17). Our
methods are able to construct these complexes and pathways on the non-well-known organisms
(e.g. zebrafish). It may provide a new insight for understanding the cardiovascular-related

diseases based on using the animal model with our derived networks.

Complement and coagulation pathway in human
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The complement system is a proteolytic cascade in blood plasma and a mediator of innate
immunity "®. According to the complement and coagulation pathway among our derived
network (Fig. 4-20), there are several proteins (yellow node in Fig. 4-20) which are involved in
blood coagulation related diseases. One of these proteins is prothrombin (F2), which is
activated to the thrombin by coagulation factor X (F10). The activated thrombin plays
important roles in hemostasis and thrombosis, and it converts fibrinogen to fibrin for blood clot
formation; stimulates platelet aggregation, and activates coagulation factors V (F5), VIII (F8),
and XIIl (F13). A mutated F2 could case dysprothrombinemia, hypoprothrombinemia, or

12 Ppoort et al. described a common genetic variation in the 3-prime

thrombophilia
untranslated region of the prothrombin gene that is associated with elevated plasma

prothrombin levels and an increased risk of venous thrombosis **.

Complement and

coagulation pathway Vascular injury

S v \
F9 F3
TFPI F2-SERPINAS
Q., F10 } \ SERPINAS
s SERPIND1 Gly601 (3b9fl)
.......... SERPINAS <Y
(3b9fH) k¢
THBD

pROCO O Protein mutation not involve in
coagulation-related diseases

SERPINEL Coagulation . - .
Protein mutation involve in
process coagulation-related diseases

PLAT ' Protein not identified in zebra fish

piau. =<Thrombophilia

=== PPl in our network
===+ PPI no in our network
PLAUR [BIGE: PPI recorded in five databases

BF&¥E PPI not recorded in five databases
Proliferation

Figure 4-20. The specific proteins among the complement and coagulation pathway

The proteins colored with yellow are the proteins which have mutation data recorded in OMIM. The SERPINA5S
and PLAUR are the specific proteins among the complement and coagulation pathway and are colored with red.
SERPINAS could inhibit the F2 which could be activated by coagulation factor X (F10) and plays important roles
in hemostasis and thrombosis. A mutated F2 could case thrombophilia, dysprothrombinemia, or

hypoprothrombinemia.
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In addition, there are two specific proteins SERPINA5 and PLAUR both not identified in
zebra fish among the complement and coagulation pathway. The PLAUR plays a central role in
cell migration and tissue remodeling processes and has so far only been identified in mammals
12 Moreover, SERPINA5 could inhibit the F2 and play hemostatic roles in the blood plasma,
which appears to be a regulatory factor in blood coagulation and fibrinolysis **. According to
binding mechanism derived from the interface of the structure template (PDB code: 3b9f), the
Gly601 is a contact residue of F2 on the F2-SERPINAS binding interface (Fig. 4-21). The
Gly601 of F2 can form a conserved van der waals interaction to the Arg373 of SERPINAS in

the PPI family of this template (Fig. 4-21).

A )
P05154 (3b9fl)
/ SERPINAS
F2
B
3b9f-H
P00734 H. sapiens PRI 364: ..GKY|GFYT. . PO5154 H. sapiens PRI 16: . .
A6NIES H. sapiens PRI 68: . .DFP|GVYT. . B3KTV6 H. sapiens PRI 45: . .
P19221 M. musculus ROD 361: . .GKY[GFYT. . P70458 M. musculus ROD 35: ..
P16294 M. musculus ROD 237: . .GKY[GIYT. . Q03734 M. musculus ROD 33: ..
P18292 R. norvegicus ROD 360: ..GKY|GFYT. . 088292 R. norvegicus ROD 36: .
P16296 R. norvegicus ROD 56: . .GKY|QIYT. . ]

Hydrogen-bond residues: §fééR Hydrogen-bond and conserved residues: yellow van der waals residues: §f@y| Conserved residues: orange

Figure 4-21. Binding models and multiple sequence alignments of PPI family derived from F2-SERPINA5
heterodimer (PDB code: 3b9f)

(A) The atomic binding model with a highlight van der Waals and conserved interaction of Gly601-Arg373. (B)
Multiple sequence alignments of PPI family of the interface H(F2)-1(SERPINADS).

Therefore, the Gly601 mutation may cause the dysprothrombinemia by influencing the

fibrin degradation process in this pathway (Fig. 4-20). We also suggested that the different
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pathway of complement and coagulation was existed in zebra fish compared with human and

mouse (Figs. 4-20 and 4-22); because SERPINADS are not found in zebra fish (Fig. 4-23).
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Figure 4-22. The mapping pathways and proteins involved in the complement and coagulation pathway of M.
musculus.
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Figure 4-23. The mapping pathways and proteins involved in the complement and coagulation pathway of D.
rerio.
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4-4. Conclusions

This work is the first to construct structure resolved PPI networks across multiple species,
including H. sapiens, M. musculus, and D. rerio. According to structure-based homologous
PPIs in multiple species, the PPIs with atomic residue-based binding models in the derived
structure resolved network achieved highly agreement with Gene Ontology (BP, CC, and MF
terms) similarities. Furthermore, the architecture of these networks is a scale-free network
which is consistent with most of the cellular networks. Experimental results also indicate that
the mutations of interacting residues on the PPIs often related to diseases are often on. Our
results demonstrate that the structure resolved PPl networks can provide valuable insights for

understanding the mechanisms of biological processes.

The construction of our structurally resolved PPl networks largely relies on the
availability of 3D-crystal structures, which limits the coverage of our network. However with
the rapid growth of PDB, more 3D-crystal information will become available and our methods
can be readily applied to uncover potential molecular mechanisms whose structural
information is currently missing. More importantly, our structural networks can annotate and
infer the cell behaviours of a new determined (or seldom-studied) species (e.g. zebrafish), by
mapping some well-studied species. In addition, our methods can also be used to observe the
consensus proteins and modules (a fundamental unit forming with highly connected proteins)
which are high conserved appearing in multiple organisms. These consensus proteins are often

the essential genes and related to diseases recorded in OMIM.
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Chapter 5. Modularity structure matrix for investigating

protein interaction network

A crucial step toward understanding cellular systems properties is to analyze the topology
of biological networks and biochemical progress in cells. Many graphic features are purposed
to measure the role of proteins and identify local modularity structures of high connectivity in a
PPI network. Laplacian matrix is a matrix representation of a given network. Here, we
proposed the modularity structure matrix (MS-matrix), which is the pseudoinverse of the
Laplacian matrix for describing the kernels on a graph, to evaluate the modularity structure
properties of a PPl network. According-to our knowledge, the modularity structure property is
the first property to identify both-global important proteins and local modularity structures
within a network. Fora given PPl network of S. cerevisiae, our results demonstrate that the
important proteins identified by the MS-matrix are related to the essential biological processes
(i.e. essential genes) and highly consistence with the topology features (i.e. degree, closeness
centrality, and betweenness centrality). Then, the relationship between proteins derived from
the MS-matrix could reflect the similarity-of Gene Ontology and could be useful for the module
identification. Furthermore, biological characterization (e.g. Gene Onotology) of the modules
derived from the MS-matrix is similar to the modules collected from the experiment database
(e.g. MIPS). Our results demonstrate that the MS-matrix would provide the insight for

investigating a PPI network through important proteins and local modularity structures.

5-1. Introduction

A crucial step toward understanding cellular systems properties is to analyze the topology

of biological networks and biochemical progress in cells *®. To construct the protein-protein
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interaction (PPI) network as completely as possible, genome-scale interaction discovery

approaches, such as high-throughput yeast two-hybrid screening 2>

and coaffinity purification
2" have been proposed. Because of the complexity of a PPI network, many graphic features
(e.g. degree, closeness centrality, and betweenness centrality) are purposed to measure the role
of proteins in a PPI network ™°. In addition, several agglomerative algorithmic approaches
16T have been developed to identify local modularity structures of high connectivity with

relatively low connectivity to the rest of network. These dense sub-graphs are treated as

potential functional modules.

In the mathematical and computational field of graph theory, the Laplacian matrix (or
Kirchhoff matrix) is a matrix representation of a graph. In-addition, the pseudoinverse of the
Laplacian matrix plays.a key role, has a nice interpretation in terms of random walk on a graph,
and defines the kernels.on a graph-**%.-its application on biological field; the Gaussian network
model has succeeded in describing the local modularity structures (e.g. flexible/rigid regions
and domains of proteins) and the important residues of a given protein ****?°. However, a PPI
network, which has the functional local modularity structures (i.e. module and complex) and

the important hubs, is similar to the behaviors of a protein.

To address these issues, we proposed the MS-matrix to evaluate the modularity structure
property within a PP1 network. According to our knowledge, the MS-matrix is the first property
to identify both global important proteins and local modularity structures within a network. For
a given PPI network of S. cerevisiae, our results demonstrate that the important proteins
identified by the MS-matrix are related to the essential biological processes (i.e. essential
genes). In addition, the important proteins derived from MS-matrix are highly consistence with
the topology features (i.e. degree, closeness centrality, and betweenness centrality). Then, the
relationship between proteins derived from the MS-matrix could reflect the similarity of Gene
Ontology and could be useful for the module identification. Furthermore, biological
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characterization (e.g. Gene Onotology) of the modules derived from the MS-matrix is similar to
the modules collected from the experiment database (e.g. MIPS). Our results demonstrate that
the MS-matrix would provide the insight for investigating a PPl network through important

proteins and local modularity structures.

5-2. Methods

Modularity structure matrix
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Figure 5-1. The overview of the evaluating the importance of each node in a simple network through the
"MS-matrix"
(A) A simple network with three local density regions (red, blue and green nodes). (B) Laplacian matrix of the

simple network. (C) MS-matrix is derived from the pseudo-inverse of Laplacian matrix.

Here, we consider a PPI network as an undirected graph. The Laplacian matrix is a matrix
representation of a graph. Here, we use a simple network (Fig. 5-1A) with 17 proteins to

construct the Laplacian matrix and introduce the MS-matrix. First, we construct the Laplacian
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matrix M (Fig. 5-1B) for the network. The M;; is given as

—1, ifi # jand protein i interacts with protein j
M;; =4 0, ifi# jand protein inotinteract with protein j (D
k, ifi = j, ks the degree of protein i

For example, the degree of node 8 is 3 (interacting with node 6, 9, and 14); and the Mgs,
Mes, Mgo, and Mg14 are 4, -1, -1, and -1, respectively. Then, the MS-matrix (MS) (Fig. 5-1C)
Is the pseudoinverse of Laplacian matrix M. Here, we got the pseudoinverse of Laplacian

matrix based on the Scientific Tools for Python (SciPY).

According to the local modularity structure (MS;;), these 17 proteins in this matrix MS can
be clustered into three local modularity structures matching with the original network (red, blue
and green regions). Additionally, the three lowest diagonal values (nodes 6, 9 and 14) of
MS-matrix (MS;;) are the centrality nodes; conversely, two highest values (nodes 7 and 13) of
MS;; are the peripheral nodes. These results are highly consistent with the graphic features,

such as degree, closeness and betweenness centrality (Table 5-1).

Table 5-1. The degree, clustering coefficient, closeness centrality, betweenness centrality, and dynamic property of

each node in the simple network (Fig. 5-1)

clustering closeness betweenness .
ID Degree coefficient centrality centrality Qi
1 3 0.667 0.421 0.004 0.52
2 3 0.667 0.421 0.004 0.52
3 3 0.667 0.421 0.004 0.52
4 3 0.667 0.421 0.004 0.52
5 3 0.667 0.421 0.004 0.52
6 9 0.222 0.64 0.563 0.183
7 1 0 0.4 0 1.066
8 3 1 0.516 0 0.36
9 6 0.4 0.593 0.4 0.242
10 3 1 0.41 0 0.595
11 3 1 0.41 0 0.595
12 4 0.5 0.421 0.125 0.566
13 1 0 0.302 0 1.448
14 5 0.3 0.571 0.329 0.272
15 2 0 0.39 0.058 0.845
16 2 0 0.39 0.058 0.845
17 2 0 0.296 0.004 1.036
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Centrality properties

Here, we introduce two measures of centrality determining the relative importance of a
node within a network. The betweenness centrality Cy(i) measures the node centrality in a
network by computing the number of the shortest paths from all nodes to all others that pass

through the node i. Cy(i) is defined as follows:

Co(D) = Lsizt(0st(D)/0st) (2)

where s and t are nodes different from i, o5 denotes the number of shortest paths from s to t,
and o (i) is the number of the shortest paths from'sto.t that i lies on. The betweenness value of
the node i is normalized by dividing by the number of node pairs excluding i: (N-1)(N-2)/2,

where N is the total number of nodes in the paths that i belongs to.

The closeness centrality Cq(i) of a node i-is defined as the reciprocal of the average

shortest path length and is computed as follows:

C.(i) = 1/avg(L(i, m)) 3

where L(i,m) is the length of the shortest path between two nodes n and m. The closeness

centrality of each node is a value between 0 and 1.

The modular similarity between protein pair

The non-diagonal value of MS-matrix (MS;) could provide the relationship between
related modularity properties of protein i and j. For a given protein A, we could identify the
overall MS,; of A and all proteins to evaluate overall modularity relationships. Therefore, we
are able to identify the similarity between a protein pair (A and B) based on the overall MSp;
and MSg;. Here, the similarity is evaluated by the Pearson correlation coefficient (r) and
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computed as follows:

Yk=1(MSak—MS,)(MSpx—MSg) 4)

r(A,B) =
\/zlfzzl(MsAk—M_sAfJZﬂzl(MsBk—M_sB)z

where MS, and MSg are the averages of MSakx and MSgy, respectively.

For example, the r(5,6) between nodes 5 and 6 located in the same region (red part in
Fig. 5-1A) is 0.88. On the contrary, the r between nodes 6 and 9 which are in the different

region (red and blue) is -0.53.

The protein-protein interaction network of S. cerevisiae

The high-through. put data usually have the non-reliable protein-protein interactions. To
construct a high-quality protein interaction yeast, we collected protein-protein interaction data
from the core subset:(named DIPc) of the DIP.database ® which consists of 1,882 proteins and
4,104 protein-protein interactions (the version dated 10 October 2010). Here, the DIPc consists

of only the most reliable interactions **.

Data set of module of S. cerevisiae

To evaluate reliability of modules which are identified through the MS-matrix, we
collected a positive set of yeast module derived MIPS . For 193 modules derived MIPS, we
selected 160 modules which have more than a half of proteins in the network constructed by

84,122,123, a module

DIPc. According to the definitions of module from the previous studies
should have a higher connectivity. Here, the connectivity is defined by previous study *?* and

calculated as follow:

.. No.of PPI within a module
connectivity = o< (= 1) (11)
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where, k is the number of protein within a module. Finally, we defined a golden positive

dataset which includes 69 MIPS modules, which connectivity is more than 0.6.

5-3. Results
The diagonal value of MS-matrix infers essential genes in PP network of S. cerevisiae

Essential genes usually involve in the fundamental cellular processes which required for
the survival of an organism *9'%_As a result, the proteins which are products of essential
genes should play an important role in the protein-protein interaction network of an organism.
To further investigate the relationship between essential genes and important proteins detected
by the diagonal values of MS-matrix (MS;), we constructed the yeast protein interaction
network by using the high-quality protein-protein interaction data extracting from the core sub
set in DIP database (named DIPc). Figure 5-2 displays the progressive ration of essential
protein for MS;; from 0 to corresponding value. There are approximately one-half of the
proteins recorded as essential proteins while whose MS;; values are less than 0.2; and the
proportion of essential protein decreases with the increasing value of MS;. Furthermore,
YBR160W (main cell cycle cyclin-dependent kinase *?°) and YJR045C (Hsp70 family ATPase
127y are the proteins with lowest value of MS;;, are recorded as essential genes, and play a key
role in the important biological processes (e.g. cell cycle and protein folding). These two
proteins have enriched interactions and locate on the center of the network. On the contrary,
YGLO001C and YLR100W, which are related to a non-essential process (ERGosterol
biosynthesis), have highest value and only one interaction in the network. These results suggest

that those proteins with lower MS;; are located within the steadier regions among the network

and more critical for the survival of an organism.
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Figure 5-2. The relationship between importance of protein and essential proteins
The importance of protein.is calculated by MS-matrix diagonal value (MS;). The interval of MS;; denotes the

progressive ratios of essential proteins; the lower MS;; value, more essential proteins are among the network.

The characterization and quantification of network topology derived from the diagonal

value of MS-matrix

For a given network, there are various types of measurement for determining the relative
importance of a node (protein) within a network. For example, degree (degree centrality) is
defined as the number of links incident upon a node. According to the degree distribution, P(k),
a network could be identified as a scale-free network, which is the architecture of many cellular
networks *. Closeness centrality is defined as the inverse of the average shortest paths of a
given node. The average shortest paths can be regarded as a measure of how fast it will take to
spread information from a node to all other nodes sequentially *?. The betweenness represents
the fraction of all of the shortest paths between all nodes in a network that pass through a given

node *°.
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Our experimental result confirms that the MS;; could represent the essential gene within
the yeast PPl network. Next, we evaluated the relationship between MS; and relative
importance (i.e. degree, closeness centrality, and betweenness centrality) of protein within a
PPI network (Fig. 5-3). Although the Pearson's correlation coefficient (r) between degree and
MS;; is only -0.50, the Spearman correlation (s) is -0.85. This result implicates that the relative
importance detected by the older of MS;j; is related to the older of relative importance detected
by the degree. For example, the protein with the lowest MS;;, YBR160W (main cell cycle

cyclin-dependent kinase '%°

), is also the node with highest degree (58). Furthermore, the r
between closeness centrality and MS;; is -0.78. For example, according to the network
described in Figure 5-1, the ‘node 8 is relative important. by closeness centrality (0.52; top 4)
and could also be identified by using-MS;;. In addition, the MS;; is slightly similar (r=-0.3 and

s=-0.70) to the betweennes centrality.
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Figure 5-3. Evaluation importance of protein by (A) Degree centrality (B) Closeness centrality (C) Between

centrality

(A) The Spearman correlation between degree centrality and MS;; is -0.85. (B) The Pearson correlation between

closeness centrality and MS;; is -0.78. (C) The Spearman correlation between betweenness centrality and MS;; is

-0.70.

The non-diagonal value of MS-matrix reflects the relationship between proteins in yeast

PPI network

We have introduced that the MS;; could infer the relative importance of protein i among

the whole network. Here, to further investigate the biological meaning of MS;; within a given
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network, we utilize the similarity of Gene Ontology®® and distance of a given protein pair (i
and j) to evaluate the MS;. The similarity of Gene Ontology is detected by the relative

122

specificity similarity (RSS), proposed by Wu et al. **“, to measure the biological process,

molecular function, and cellular component similarities.

For a given protein A, we could identify the overall MSx; of A and all proteins to evaluate
overall modularity structure relationships. Therefore, we are able to identify the similarity of
overall modularity relationships between protein pair (A and B) based on the MSp; and MSg;.
Here, the similarity between A and B is evaluated by the Pearson correlation coefficient and

derived from the equation (4).

——BP ——CC ——MF --- Distance

0.9 4

0.8 4

0.7 4

0.5 4

RSS of gene ontology
Ave. shortest path

0.3 A

0.2 4

0.1 4

-04-03-02-01 0 0.1 02 03 04 05 0.6 0.7 0.8 0.9
Pearson's correlation of MS-matrix value

Figure 5-4. The distribution of gene ontology similarities (i.e. RSS of BP, CC, and MF) and the shortest path
between protein pairs under different modular similarity
The RSS-BP and RSS-MF have the highest value while modular similarity is more than 0.9; moreover, the

average distance is lower than 2. The RSS-CC are higher than 0.7 while modular similarities are higher than 0.4.

Figure 5-4 illustrates the distribution of gene ontology similarities and the shortest path
between protein pairs. While the protein pairs have >0.1 modular similarity, the average of
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their distance has an obvious decrease (from 4.88 to 3.48) and all of the average RSS have an
obvious increase. In addition, the average of protein pair’s distance would be less than 2.5 and
share the higher biological process and cellular component annotation (RSS-BP > 0.7 and
RSS-CC > 0.8), while these protein pairs have more than 0.4 modular similarity. The RSS-BP
and RSS-MF have the highest value while modular similarity is more than 0.9; moreover, the
average distance is lower than 2. This result implies that a protein pair with a highly modular
similarity would share a significant similarity of Gene Ontology, especially BP and CC, and are

neighboring proteins (e.g. an interaction protein pair) in the PPI network.

Identification of modules based on the non-diagonal value of MS-matrix

According to the definitions of module from the previous studies #1221

, the proteins of a
module should locate on the same component, join a same biological process, carry out similar
or related function, and have relatively autonomous of the whole network. We have introduced
that the modular similarity of protein pair (A and B) derived from the Pearson correlation
coefficient of MSa; and MSg;j, could infer the similarity of Gene Ontology and the relationship
between A and B within the PPI network. Therefore, we believe that the MS-matrix could be
useful for identifying modules of a give PPl network. Here, we utilize the hierarchical
clustering method to identify the modules and the distance between protein pair (A and B) is
calculated by using the modular similarity (i.e. Pearson correlation coefficient of MS,; and
MSg;). Then, we identified 126 modules including 724 proteins derived from the MS-matrix. To

further investigate the reliability of modules, we compare our modules with the modules

recorded in MIPS and analysis the Gene Ontology and connectivity of our modules.

For 193 modules derived MIPS, we selected 160 modules which have more than a half of

proteins in the network constructed by DIPc. According to the definitions of module from the
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previous studies %1%

, @ module should have a higher connectivity. Finally, we defined a
golden positive dataset which includes 69 MIPS modules, which connectivity is more than 0.6.
The overlap between a reference MIPS module R and a predicted module M can be quantified

by Jaccard index ?°. The Jaccard index is calculated as follow:

. __ |RNM]
Jaccard index = RoM| (12)

where, the |R n M| is the number of protein which is the intersection of R and M; the

|[R U M| is the number of protein which is the union of R and M.

For each reference module, we find the prediction that has the highest Jaccard index. Total
47 modules are related to our modules (Jaccard index > 0). If a module with Jaccard index >

0.5 is considered as a hit module, our method has 36 (52%) hits of golden positive dataset.

Next, because modules have relatively autonomous of the whole network, the connectivity
of modules should be higher than the proteins which include the module and the proteins
connecting to the module (named “extent 1 layer"). Table 5-2 shows the connectivity of our
module, 160 MIPS module, and golden positive dataset. Because the 160 MIPS modules are
only filtered by number of protein within PPl network; these 160 MIPS have a lower
connectivity. In addition, both of our modules and the golden positive dataset have a higher
average connectivity (i.e. 0.73 and 0.84, respectively). The average connectivity of all set
would have an obvious decreasing from modules to the extent 1 layer. In addition, all modules
derived from MS-matrix and golden positive dataset have a higher connectivity than the extent

1 layer (Table 5-2).

Table 5-2. Connectivity of module and proteins which include the module and the proteins connecting to the

module (named "extent 1 layer")

Module No. of Average Average connectivity of | No. of module which connectivity >
Set Module connectivity extent 1 layer connectivity of extent 1 layer
Our 126 0.73 0.32 126

MIPS 160 0.49 0.18 150
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Golden

L 69 0.84 0.28 69
positive

Furthermore, we annotated modules by utilizing the consensus GO terms within a given
module. To annotate a module with Y proteins, we define a consensus ratio (CRM) of GO term
i as CRM=Y;/Y, where Y; is the number of proteins with GO term i in a module. Next, the
enrichment for each module in each GO term was determined by the p-value of the
hypergeometric distribution and then this p-value was adjusted based on Bonferroni correction
130131 "Here, a GO term is considered as a representative GO term of a module if CRM > 0.6
and adjusted p-value of GO term < 0.05 **!¥! based on statistically analysis. Figure 5-5
illustrates the distribution of the number of representative GO term within a given module
derived from MS-matrix and MIPS. Then, we applied the two-tailed T-test to further
investigate the difference between -MS-matrix and MIPS. However, all of the P-values (0.18,
0.30, and 0.13) imply that the number of representative GO term within'a given module do not
have a significant different between MS-matrix and MIPS. In addition, we also investigate the
representative GO terms which have the top 5 ratio in our modules or MIPS modules. The
Jaccard index of BP, CC, and MF are 0.67, 0.67, and 1, respectively. This result implies that the
biological characterization (i.e. No. of representative GO terms in a module and top 5 terms) of
our module derived from the MS-matrix is similar to the MIPS modules which are identified by

the experiments.
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Figure 5-5. The distribution of the number of gene ontology annotations (i.e. (A)BP, (B)CC, and C(MF) within a

given module derived from MS-matrix and MIPS
94



Based on the two-tailed T-test between MS-matrix and MIPS, all of gene ontology annotations (i.e. BP, CC and

BF) do not have significant different (i.e. P-values are 0.18, 0.30, and 0.13 respectively).

Example of modules derived from the MS-matrix

According to 126 modules including 724 proteins derived from the MS-matrix, Figures 6A
and 6B illustrate the 9 modules, which sizes are greater than 10, on the network and their
density region on the MS-matrix. Two modules with the lowest average MS;; values (0.1 and
0.16) are the 19S proteasome and U4/U6 x U5 tri-snRNP complex (purple and light blue
regions in Fig. 5A). The proteasome is a protease that controls diverse processes in eukaryotic
cells; and snRNPs are large RNA-protein molecular complexes upon which splicing of
pre-mRNA occur. Both of two modules are play essential roles in a yeast PPl network. In
addition, two largest. modules (19 and 17 proteins) are the F1-FO ATP synthase and
peroxisomes. Then, we use two modules (i.e. anaphase-promoting complex/cyclosome (APC/C)
and peroxisomes) as examples to further introduce the module identification derived from the

MS-matrix.

Peroxisomes

- Rab family GTPase
5. Anaphase-promoting complex/cyclosome

DNA replication factor =

U4/U6 x U5 tri-snRNP complex &

Figure 5-6. The modules derived from the MS-matrix
(A) Yeast protein interaction network with 9 colored modules (e.g. F1-FO ATP synthase (red), 19S proteasome

(purple), anaphase-promoting complex/cyclosome (pink), and peroxisome (light green)). (B) The MS-matrix of
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PPI network with the 9 modules which map to the 9 colored regions on the network.

The anaphase-promoting complex/cyclosome (APC/C) mediates cell cycle-regulated
ubiquitination, and thereby degradation, of proteins containing sequences called destruction
boxes . There are 11 proteins are defined as anaphase-promoting complex derived from the
MIPS database. In addition, 6 of these proteins are also the products of essential genes derived
from the DEG database. According to MS-matrix, we identified a region which is local density
region (pink region in Fig. 5-6A) and has 12 proteins sharing the similar behaviours of
non-diagonal values (pink in Fig. 5-6B). The protein not recorded in MIPS is YGL003C, a
cell-cycle regulated activator of the APC/C *33%%4 Although Y GL003C is not a member of APC,
YGLOO03C is highly related to the APC and share the same Gene Ontology annotation (i.e.
anaphase-promoting complex) with other  APC/C proteins based on the Saccharomyces
Genome Database (SGD) ™. This result indicates that the 12 APC/C related proteins derived

from the MS-matrix could be considered as a reasonable module.

In addition, we also identified novel modules. which are not recorded in the MIPS.
Peroxisomal proteins are synthesized on free polyribosomes and imported posttranslationally.
The biogenesis of peroxisomes requires a group of protein factors referred to as peroxins which
are encoded by the PEX genes *°. According to MS-matrix, we identified a region which is
local density region (light green region in Fig. 5-6A) and has 17 proteins sharing the similar
behaviours of non-diagonal values (light green in Fig. 5-6B). There are 14 proteins are
recorded as PEX genes in SGD. Two proteins (i.e. YML042W and YIL160C) are also involved
in the same cellular component (i.e. peroxisome) based on SGD. Therefore, this module

derived from the MS-matrix may be a reasonable module.
5-4. Conclusions
For a given PPI network of S. cerevisiae, our results demonstrate that the important
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proteins identified by the MS-matrix are related to the essential biological processes (i.e.
essential genes). In addition, the important proteins derived from MS-matrix are highly
consistence with the topology features (i.e. degree, closeness centrality, and betweenness
centrality). Then, the relationship between proteins derived from the MS-matrix could reflect
the similarity of Gene Ontology and could be useful for the module identification. For 69
reference modules of golden positive dataset, there are 47 modules are related to our modules
(Jaccard index > 0). If a module with Jaccard index > 0.5 is considered as a hit module, our
method has 36 (52%) hits of golden positive dataset. Furthermore, our results also imply that
the biological characterization (i.e. No. of representative GO terms in a module and top 5 terms)
of our module derived from the MS-matrix is similar to the MIPS modules which are identified

by the experiments.
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Chapter 6. Conclusion

6-1. Summary

In this thesis, we presented the "3D-domain interologs mapping" and "protein complex
family" to construct the structure resolved PPl networks across multiple organisms.
"3d-domain interolos mapping” is a concept for efficiently enlarging protein interactions
annotated through the homologous PPIs with residue-based binding models. We verified the
structure resolved PPl networks on:Gene Ontology annotations® and the architecture of
topology (i.e. scale-free network properties). In addition, we also provide the consensus
proteins across three networks based-on-"3D-domain interologs mapping”. These consensus
proteins are highly related to the essential genes and disease related proteins. We believe that
structure resolved PPI networks would provide the insight for understanding the mechanism of
biological processes within a given PPI network. In summary, the major contributions of this

study are listed as the following:

1. We proposed several new concepts, including "3D-domain interologs mapping” and
"protein complex family", to study the evolution of PPIs and protein complexes across
multiple species. A group of PPIs are regarded as a PPl family when they meet the
following criteria: (1) The proteins of the PPIs are homologous proteins, respectively; (2)
The interactions of PPIs share the similar binding model based on the structure templates.
In addition, a group of protein complexes are regarded as a protein complex family when
they meet the two criteria and an additional criterion: the protein complexes share the
similar complex similarity. More importantly, these two concepts provide a new way to
efficiently enlarge the PPIs and protein complexes annotated with residue-based binding

models.
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We developed a database, namely 3D-interologs, records the evolution of protein-protein
interactions database across multiple species derived from “3D-domain interolog mapping”
and a template-based scoring function. We have inferred 173,294 homologous
protein-protein interactions by using 1,895 three-dimensional (3D) structure heterodimers
to search the UniProt database (4,826,134 protein sequences). For a protein-protein
interaction, the 3D-interologs database shows interacting domains and binding models
derived from structure template. More importantly, this database provides the evolution of

PPI by exploring its PPI family across multiple species.

We developed a web server, namely PCFamily, for identifying homologous complexes
and inferring conserved domains and GO terms from protein complex families. PCFamily
is the first server to provide homologous complexes in multiple species; graphic
visualization of the complex topology and detailed atomic residue-residue interactions;
interface alignments; conservations of GO terms and domain compositions. We believe
that the server is able to provide valuable insights for determining functional modules of

biological networks across multiple species.

Based on the two concepts, we were able to construct the structure resolved PPI networks
in H. sapiens, M. musculus, and D. rerio. In each structure resolved network, the PPIs
with atomic residue-based binding models in the derived structure resolved network
achieved highly agreement with Gene Ontology similarities. In addition, our derived
networks can be used to observe the consensus proteins and modules derived from the
multiple network alignment of H. sapiens, M. musculus, and D. rerio. These consensus
proteins are often the essential genes and play key roles in the architecture of these
networks. More importantly, our results demonstrate that the structure resolved PPI
networks would provide valuable insights into understanding the mechanism of biological
processes (e.g. cancer, cardiovascular-related diseases, and complement and coagulation
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pathway) across multiple organisms.

6-2. Discussion and future work

According to the characteristics of "3D-domain interologs mapping” and “protein
complex family", the interactome behavior, we discussed here, is focused on the conserved
proteins and PPIs which are the members of the PPI and protein complex families. In this
thesis, we used our concept to studying the evolution of these PPIs and protein complexes.
Therefore, we only discuss the conservation and difference of these consensus pathways across
multiple organisms. However, the organism-specific proteins. and PPIs usually play an
important role during the organism-evolution. This issue should be the next important issue for

our studies.

Our structural networks can annotate and infer the cell behaviors of a new determined (or
seldom-studied) species (e.g. zebrafish), by mapping some well-studied species. However, the
construction of our structurally resolved PPI networks largely relies on the availability of
3D-crystal structures, which limits the coverage of our network. But, we believe that the rapid
growth of PDB providing more 3D-crystal.information and our methods can be readily applied

to uncover potential molecular mechanisms whose structural information is currently missing.

In addition, our methods should also be considering these high-quality experimental PPIs
with possible domain annotations. Prof. Yang Lab has already provided the sequence-based PPI
family for annotating and studying PPIs across multiple organisms with non-structure
information. Although the accuracy of method for PPl annotation is less than "3D-domain
interologs mapping”, the sequence-based PPl family has more coverage to explore the
non-well-known organisms. In the future work, we could carefully utilize sequence-based PPI
family with high-quality experimental PPIs to enlarging the coverage of PPIs and provide a
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more complete PPI network for understanding the mechanism of cell behaviors.

However, dynamic architecture of the protein interaction network has an important role in
the regulation of cell behavior. Understanding the functional organization of protein interaction
networks is the most important issue for understanding the principles of cellular behavior.
More importantly, it also provides a way for understanding the diseases where cellular behavior
is miss-regulated. Currently, most of these studies have considered the protein interaction
networks without taking into account the dynamic nature of protein expression, which is

essential for a proper representation of biological networks.

In current state, we have already been able to construct the structure resolved PPI
networks in multiple organisms. We also provide the consensus proteins and PPIs in these
networks. According to our results, the structure resolved PPI networks derived from the PPI
family would provide the insight for understanding the mechanism of biological processes
within a given PPI netwaork. To further investigate the behavior of PPl network within a given
cell, gene expression.data would provide an aspect of in-depth understanding of the dynamic
organization of the PPI network and. its role in the regulation of cellular processes. For example,
the Connectivity Map (also-known-as cmap) provided by Lamb, J. et al. is a collection of
genome-wide transcriptional expression data from cultured human cells treated with bioactive
small molecules and simple pattern-matching algorithms that together enable the discovery of
functional connections between drugs, genes and diseases through the transitory feature of

common gene-expression changes *’.

Therefore, we will combine the gene expression data into the PPI network. We will try to
illustrate the behavior of PPI networks under different cell types and different conditions.
Because the Connectivity Map could provide the up-regulated and down-regulated proteins of
given drugs and diseases, combining these data with our structure resolved PPl networks

should be able to explain the mechanism of relationship between the drugs, genes and diseases.
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