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Homologous protein-protein interactions and protein complexes 

reveal interactome behavior 

Student : Yu Shu Lo Adviser : Dr. Jinn-Moon Yang 

Institute of Bioinformatics and Systems Biology 

National Chiao Tung University 

Abstract 

Protein-protein interaction (PPI) networks provide key insights into complex biological 

systems, from how different processes communicate to the function of individual residues on a 

single protein. Therefore, several large network databases (e.g. IntAct, DIP, and BioGRID) 

record hundreds of thousands of physical and genetic interactions from a wide variety of 

organisms have been purposed. However, these PPI databases are dominated by few species 

and usually could not provide the binding mechanisms. Therefore, constructing the structure 

resolved PPI networks across multiple organisms should provide a great value for investigating 

the behavior of PPI network. 

To address the issues, we proposed the concepts of protein interaction family (i.e. 

protein-protein interaction family and protein complex family) to construct a structure resolved 

PPI networks and study the behaviors of a specific PPI network. The protein interaction family 

is a group of protein interactions (PPI or protein complex) which share the consensus 

interacting domain, binding environment, and have similar biological processes. According to 

the concept "3D-domain interolog mapping" with a scoring system, we are able to explore all 

homologous protein-protein interaction pairs (protein-protein interaction family) between two 

homolog families, derived from a known 3D-structure dimmer (template), across multiple 

species. Then, we also identify the homologous protein complexes with the binding models 

(e.g. hydrogen bonds and conserved amino acids in the interfaces), functional modules, and the 

conserved interacting domains and Gene Ontology annotations in multiple organisms. 

Based on the PPIs derived from "3D-domain interolog mapping" and "protein complex 

family", we are able to construct structure resolved PPI networks in multiple organisms (e.g. 

Homo sapiens, Mus musculus, and Danio rerio). In each network, the PPIs with residue-based 

binding models have a highly agreement in Gene Ontology similarities. Furthermore, the 

architecture (i.e. scale-free network properties) of these networks is consistent with some 

cellular networks of previous studies. In addition, the consensus proteins and PPIs derived 

form on our method are highly related to the essential genes and disease related proteins 

recorded in OMIM. We also indicate that the disease related mutations are more enrichment on 

the interacting residues, especially on the hydrogen bond residues. In addition, for a given PPI 
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network, we also provided a new characterization (named MS-matrix) to describe the 

modularity and relative importance of proteins. We believe that structure resolved PPI 

networks derived from the PPI family would provide the insight for understanding the 

mechanism of biological processes within a given PPI network. 

.  
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同源蛋白質交互作用與複合體剖析蛋白質交互作用體行為 

研究生：羅宇書 指導教授：楊進木博士 

國立交通大學 生物資訊及系統生物研究所 博士班 

中文摘要 

透過蛋白質交互作用網路（protein interaction network）可以對於複雜的生物系統有

更進一步的了解，例如探討不同生化途經之間的協同作用、蛋白質上特定殘基對功能的

影響。因此，大量的交互作用資料庫（如：IntAct、DIP 和 BioGRID 等）被建立來探討

蛋白質交互作用網路。然而，這些資料庫中的蛋白質交互作用資料往往集中在少數的物

種，而且也缺乏對於交互作用介面機制的解釋。 

針對此議題，我們提出了蛋白質交互作用家族的觀念（包含蛋白質－蛋白質交互作

用家族(protein-protein interaction family)和蛋白質複合體家族(protein complex family)）以

協助多個物種中建立具有結構解析的蛋白質交互作用網路，並探討單一物種的蛋白質交

互作用網路行為。蛋白質交互作用家族為一群有擁有保留性交互作用區塊、結合環境和

相似生物途徑的蛋白質交互作用所組成。而透過“3D-domain interolog mapping＂與一個

新的能量函式，我們將透過已知結構的模板（template），來探索多個物種間所有的同源

蛋白質相互作用。此外，我們也在多個物種中找尋同源蛋白複合體，並描述了結合模型

（例如在交互作用介面上的氫鍵和保留性氨基酸配對）、功能模塊、保留性相互作用區塊

（interacting domain）和 Gene Ontology。 

透過由“3D-domain interolog mapping＂與蛋白質複合體家族，我們在人類、老鼠與

斑馬魚中建立了具有結構解析的蛋白質交互作用網路。在每一個網路中，這些具有結構

解析的蛋白質交互作用與 Gene Ontology相似度有很高的一致性。此外，這些網路也都具

有之前對於生化網路研究中所指出的拓譜特性(scale-free network)。而透過蛋白質交互作

用家族我們也可指出網路中在跨物種間具有高度保留的蛋白質與交互作用，而這些蛋白

質往往是生存必須基因(essential gene)或是跟疾病相關。更進一步的，這些跟疾病相關的

基因突變往往位於蛋白質交互作用介面，並擔任重要的交互作用（例如氫鍵）。此外，對

於單一蛋白質交互作用網路，我們提出了一個新的概念“MS-matrix＂來描述網路上重要

的蛋白質以及模組化特性。基於上述這些研究，我們認為透過交互作用家族所構建的結

構解析交互作用網路對於了解生化途徑的機制是很有幫助的。 
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Chapter 1. Introduction 

 

1-1. Background 

Protein-protein interaction (PPI) networks provide key insights into complex biological 

systems, from how different processes communicate to the function of individual residues on a 

single protein. For instance, the systematic identification of protein-protein interactions
1-3

 or 

protein complexes
4-7

 has been a widely used strategy for understanding the physical 

architecture of the cell. Therefore, several large network databases such as IntAct
8
, DIP

9
, and 

BioGRID
10

 record hundreds of thousands of physical and genetic interactions from a wide 

variety of organisms have been purposed. 

A wealth of investigations have been undertaken to deepen our understanding of 

hereditary diseases. As a result of that, databases such as the Online Mendelian Inheritance in 

Man (OMIM)
11

 and UniProt
12

 together contain almost 30,000 experimentally verified 

mutations. Nevertheless, the exact mechanisms by which mutations alter a protein's function 

are in many cases poorly understood. Therefore, researchers have recently begun to use PPI 

networks to explore the genotype-to-phenotype relationships
13-16

, on the basis that many 

proteins function by interacting with other proteins. However, this idea has only been applied 

in Human based on the requirement of high-quality PPI with the binding mechanism. 

In addition, the concept "homologs" is useful for identifying consensus proteins across 

multiple organisms and could provide the key residues related to the functions within a given 

protein. Previous studies have been compared PPI network across multiple organisms to 

identify the essential pathways and the mechanisms of evolution
17-19

. For example, Peterson, G. 

J. et al. have shown that interaction change through binding site evolution is faster than 

through gene gain or loss
19

 based on the comparison between 23 fungal PPI networks. 
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However, these studies only focused on a small sub-network or on few organisms which have 

an enrichment PPI data (e.g. Homo sapiens and Saccharomyces cerevisiae). 

 

Figure 1-1. The overview of constructing the structure resolved PPI networks and studying the interactome 

behavior 

(A) Using protein-protein interaction family and protein complex family to construct the structure resolved PPI 

networks in multiple oragnsims. (B) The "interactome behavior" through the consensus component. (C) The 

structure resolved PPI networks would provide the insight for understanding the mechanism of biological 

processes. 

 

To address these issues, the structure resolved interaction family (i.e. protein-protein 

interaction family and protein complex family) are the basic elements and the core idea of our 

research to construct structure resolved PPI networks and study the behaviors of a specific PPI 

network. The PPI family is a group of molecular interactions which share the consensus 

interacting domain, binding environment, and have similar biological processes. The concepts 
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of PPI families not only help us to construct the highly reliable PPI network in a specific 

organisms (e.g. Homo sapiens, Mus musculus, and Danio rerio) but also provide the consensus 

and the diversity behavior of interactome through comparing with multiple species (Fig. 1-1). 

The methods of inferring interface families and interactomes are briefly summarized as 

follows. 

In protein-protein interaction family, the concept of PPI families is similar to that of 

protein sequence family
20,21

 and protein structure family
22

. Here, the members of a PPI family 

are conserved on specific functions and in interacting domain(s). Using these conservations of 

homologous PPIs, it can be used to annotate the protein functions and provide high quality 

PPIs. 

Protein complexes are fundamental units of macromolecular organization and their 

composition is also known to vary according to cellular requirements
7
. According to these 

homologous complexes across multiple species, protein complex family provides the binding 

models (e.g. hydrogen bonds and conserved amino acids in the interfaces), functional modules, 

and the conserved interacting domains and Gene Ontology annotations of the members. 

Based on the members (protein-protein or protein complexes) of protein-protein interface 

family
23

 and protein complex family
24

 that are consensus of functional annotation across 

multiple species, we are able to identify the conserved components in the PPI networks across 

multiple species and indicate the changes of the conserved components at the interspecific 

level. Therefore, we would use the strategies to reveal "interactome behavior". 

 

1-2. Current state of constructing protein-protein interaction networks 

Many high throughput experimental and computational approaches, such as 

high-throughput yeast two-hybrid screening
25,26

 and co-affinity purification
27

, have been 
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proposed to construct the PPI network within an organism. These large-scale methods are often 

unable to respond how a protein interacts with another one and describe the relationship 

between the mutation of proteins and disease syndrome. Previous studies have combined 

protein structure information with protein interaction data to investigate how mutations affect 

protein interactions in disease
14-16

. For instance, Wang, X. J. et al. generated a structurally 

resolved human protein interaction network to systematically examine relationship genes, 

mutations and associated disorders
16

. 

Table 1-1. The list of the members of proteins and protein-protein interactions in 11 common used organisms 

NCBI 

Taxonomy ID 
Organisms 

No. Proteins in 

Integr8 database 

No. PPIs in five 

annotated database 

9606 Homo sapiens 56,006 67,596 

10090 Mus musculus 36,379 7,535 

3702 Arabidopsis thaliana 35,825 6,985 

6239 Caenorhabditis elegans 23,154 10,095 

7227 Drosophila melanogaster 15,155 37,674 

7955 Danio rerio 21,601 221 

10116 Rattus norvegicus 13,807 2,199 

9913 Bos taurus 12,235 281 

9031 Gallus gallus 6,279 70 

36329 Plasmodium falciparum 5,353 2,956 

4932 Saccharomyces cerevisiae 5,727 237,193 

Total 231,521 372,805 

 

However, the experimental PPI data is necessary for these methods. The experimental PPI 

databases (e.g. IntAct
8
, DIP

9
, MIPS

28
, BioGRID

10
, and MINT

29
) are dominated by few species, 

especially Saccharomyces cerevisiae. Table 1-1 presents the number of PPIs and proteins in 

organisms that are commonly used in molecular researches. For example, there are 56,006 

proteins (24.19% of 11 common organisms) and 67,596 PPIs (18.1% of 11 common organisms) 

of Homo sapiens are recorded in Integr8 database 
30

 (which are collected the complete 

sequencing genomes) and the five public interaction databases, respectively. On the contrary, 

the Saccharomyces cerevisiae only has 5,727 proteins (2.4%), but it has the dominant 

experimental PPI recorded in the databases (i.e. 237,193; 63.6% of 11 common organisms). 

This statistical data indicate that current interaction databases are overestimated and have many 

false-positive recorded PPIs in some organisms (e.g. Saccharomyces cerevisiae). Moreover, 
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these databases are underestimated and incomplete in most organisms (e.g. Homo sapiens and 

Mus musculus). Both of the overestimated and underestimated protein interaction data could 

influence the low reliable construction of protein interactome in a specific organism. 

Protein Data Bank (PDB)
31

 stores three-dimensional (3D) structure complexes, from 

which physical interacting domains can be identified to study DDIs and PPIs using 

comparative modeling
32,33

. As the number of protein structures increases rapidly, some 

domain-domain interaction databases, such as 3did
34

, and iPfam
35

, have recently been derived 

from PDB. Additionally, some methods have utilized template-based methods (i.e. comparative 

modeling
32

 and fold recognition
33

), which search a 3D-complex library to identify homologous 

templates of a pair of query protein sequences, in order to predict the protein-protein 

interactions by accessing interface preference, and score query pair protein sequences 

according to how they fit the known template structures. However, these methods
32,33

 are 

time-consuming to search all possible protein-protein pairs in a large genome-scale database. 

For example, the possible protein-protein pairs on the UniProt
12

 database (4,826,134 sequences) 

are about 2.33×10
13

. In addition, these methods are unable to form homologous PPIs to explore 

the protein-protein evolution for a specific structure template. 

In this thesis, we presented the "3D-domain interologs mapping" and "protein complex 

family" to construct the structure resolved PPI networks across multiple organisms. 

"3d-domain interolos mapping" is a concept for efficiently enlarging protein interactions 

annotated through the homologous PPIs with residue-based binding models. We verified the 

structure resolved PPI networks on Gene Ontology annotations
36

 and the architecture of 

topology (i.e. scale-free network properties). In addition, we also provide the consensus 

proteins across three networks based on "3D-domain interologs mapping". These consensus 

proteins are highly related to the essential genes and disease related proteins. We believe that 

structure resolved PPI networks would provide the insight for understanding the mechanism of 
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biological processes within a given PPI network. 

 

1-3. Thesis overview 

The thesis is organized as follows. In Chapter 2, for efficiently enlarging protein 

interactions annotated with residue-based binding models, we proposed a new concept 

"3D-domain interolog mapping" with a scoring system to explore all homologous 

protein-protein interaction pairs between the two homolog families, derived from a known 

3D-structure dimmer (template), across multiple species. Each family consists of homologous 

proteins which have interacting domains of the template for studying domain interface 

evolution of two interacting homolog families. The 3D-interologs database records the 

evolution of protein-protein interactions database across multiple species. Based on 

“3D-domain interolog mapping” and a template-based scoring function, we infer 173,294 

homologous protein-protein interactions by using 1,895 three-dimensional (3D) structure 

heterodimers to search the UniProt database (4,826,134 protein sequences). The 3D-interologs 

database comprises 15,124 species and 283,980 protein-protein interactions, including 173,294 

interactions (61%) and 110,686 interactions (39%) summarized from the IntAct database. For a 

protein-protein interaction, the 3D-interologs database shows functional annotations (e.g. Gene 

Ontology), interacting domains and binding models (e.g. hydrogen-bond interactions and 

conserved residues). Additionally, this database provides couple-conserved residues and the 

interacting evolution by exploring the interologs across multiple species. Experimental results 

reveal that the proposed scoring function obtains good agreement for the binding affinity of 

275 mutated residues from the ASEdb. The precision and recall of our method are 0.52 and 

0.34, respectively, by using 563 non-redundant heterodimers to search on the Integr8 

database
30

 (549 complete genomes). Experimental results demonstrate that the proposed 

method can infer reliable physical protein-protein interactions and be useful for studying the 
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protein-protein interaction evolution across multiple species. In addition, the top-ranked 

strategy and template interface score are able to significantly improve the accuracies of 

identifying protein-protein interactions in a complete genome. 

In Chapter 3, we presented the PCFamily server to identify template-based homologous 

protein complexes (called protein complex family) and infer functional modules of the query 

proteins. This server first finds homologous structure complexes of the query using BLASTP to 

search the structural template database (11,263 complexes). PCFamily then searches the 

homologous complexes of the templates (query) from a complete genomic database (Integr8 

with 6,352,363 protein sequences in 2,274 species). According to these homologous complexes 

across multiple species, this sever infers binding models (e.g. hydrogen bonds and conserved 

amino acids in the interfaces), functional modules, and the conserved interacting domains and 

Gene Ontology annotations of the protein complex family. Experimental results demonstrate 

that the PCFamily server can be useful for binding model visualizations and annotating the 

query proteins. We believe that the server is able to provide valuable insights for determining 

functional modules of biological networks across multiple species. 

In chapter 4, we provide the structure resolved PPI networks across multiple species, 

including H. sapiens, M. musculus, and D. rerio. According to structure-based homologous 

PPIs in multiple species, the PPIs with atomic residue-based binding models in the derived 

structure resolved network achieved highly agreement with Gene Ontology (BP, CC, and MF 

terms) similarities. Furthermore, the architecture of these networks is a scale-free network 

which is consistent with most of the cellular networks. In addition, our derived networks can be 

used to observe the consensus proteins and modules (a fundamental unit forming with highly 

connected proteins) which are high conserved appearing in multiple organisms. These 

consensus proteins are often the essential genes and related to diseases recorded in OMIM. 

Experimental results also indicate that the mutations of interacting residues on the PPIs often 



 

8 

 

related to diseases are often on. Our results demonstrate that the structure resolved PPI 

networks can provide valuable insights for understanding the mechanisms of biological 

processes. 

In chapter 5, we provide a method to characterize a given PPI network. Although, many 

graphic features have been purposed to measure the role of proteins and identify local 

modularity structures of high connectivity in a PPI network, the pseudoinverse of the Laplacian 

matrix plays a key role, has a nice interpretation in terms of random walk on a network, and 

defines the kernels on a given network. Therefore, we proposed the modularity structure matrix 

(MS-matrix), which is the pseudoinverse of the Laplacian matrix for a given network, to 

evaluate the modularity structure properties of a PPI network. According to our knowledge, the 

MS-matrix is the first property to identify both global important proteins and local density 

regions within a network. For a given PPI network of S. cerevisiae, our results demonstrate that 

the important proteins identified by the MS-matrix are related to the essential biological 

processes (i.e. essential genes) and highly consistence with the topology features (i.e. degree, 

closeness centrality, and betweenness centrality). Then, the relationship between proteins 

derived from the MS-matrix could reflect the similarity of Gene Ontology and could be useful 

for the module identification. Furthermore, biological characterization (e.g. Gene Onotology) 

of the modules derived from the MS-matrix is similar to the modules collected from the 

experiment database (e.g. MIPS). Our results demonstrate that the MS-matrix would provide 

the insight for investigating a PPI network through important proteins and local modularity 

structures. 

In the final chapter, we summarized the results of this thesis, and then discuss the future 

works. To further investigate the behavior of PPI network within a given cell, gene expression 

data would provide an aspect of in-depth understanding of the dynamic organization of the PPI 

network and its role in the regulation of cellular processes. For example, the Connectivity Map 
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(also known as cmap) provided by Lamb, J. et al. is a collection of genome-wide 

transcriptional expression data from cultured human cells treated with bioactive small 

molecules and simple pattern-matching algorithms that together enable the discovery of 

functional connections between drugs, genes and diseases through the transitory feature of 

common gene-expression changes 
37

. Therefore, we will combine the gene expression data into 

the PPI network. We will try to illustrate the behavior of PPI networks under different cell 

types and different conditions. For example, because the Connectivity Map could provide the 

up-regulated and down-regulated proteins of given drugs and diseases, combining these data 

with our structure resolved PPI networks should be able to explain the mechanism of 

relationship between the drugs, genes and diseases. 
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Chapter 2. 3D-interologs: An evolution database of 

physical protein-protein interactions across multiple 

genomes 

 

Interactions between proteins are critical to most biological processes. To identify and 

characterize protein-protein interactions (PPIs) and their networks, many high-throughput 

experimental approaches, such as yeast two-hybrid screening, mass spectroscopy, and tandem 

affinity purification, and computational methods (phylogenetic profiles
38

, known 3D 

complexes
39

, and interologs
40

) have been proposed
41

. Some PPI databases, such as IntAct
8
, 

BioGRID
10

, DIP
9
, MIPS

28
, and MINT

29
, have accumulated PPIs submitted by biologists, and 

those from mining literature, high-throughput experiments, and other data sources. As these 

interaction databases continue growing in size, they become increasingly useful for analysis of 

newly identified interactions. 

The discovery of sequence homologs to a known protein often provides clues for 

understanding the function of a newly sequenced gene. As an increasing number of reliable 

PPIs become available, identifying homologous PPIs should be useful to understand a newly 

determined PPI. Recently, several PPI databases (e.g., IntAct and BioGRID) allow users to 

input one or a pair of proteins or gene names to acquire the PPIs associated with the query 

protein(s). Few computational methods
42,43

 applied homologous interactions to assess the 

reliability of PPIs. 

To address this issue, we proposed the concept called "homologous protein-protein 

interaction"
23

. We define a homologous PPI as follows: (1) homologs of A and B are proteins 

with significant sequence similarity BLASTP E-values ≤10
-10

 
40,44

; (2) significant joint 

sequence similarity (JE ≤10
-40

) between two pairs, i.e., (A, A1') and (B, B1'), of the query 
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protein pair (A and B) and their respective homologs (A1' and B1') recorded in annotated PPI 

databases. In addition, we constructed the PPISearch server for searching homologous PPIs 

across multiple species and annotating the query protein pair. According to our knowledge, 

PPISearch is the first public server that identifies homologous PPIs from annotated PPI 

databases and infers transferability of interacting domains and functions between homologous 

PPIs and the query. Our results demonstrate that this server achieves high agreements on 

interacting domain-domain pairs and function pairs between query protein pairs and their 

respective homologous PPIs. 

Furthermore, a known 3D structure of interacting proteins provides interacting domains 

and atomic details for thousands of direct physical interactions. It is usually possible to build 

the binding model of a protein-protein interaction by comparative modeling if a known 

complex structure comprising homologs of these two sequences is available
32,45

. Therefore, we 

developed a new scoring function
39

, which includes the contact residue interacting score (e.g. 

the steric, hydrogen bonds, and electrostatic interactions) and the template consensus score (e.g. 

couple-conserved residue and the template similarity scores), to evaluate how well the 

interfaces between the query and interacting candidates. 

For efficiently enlarging protein interactions annotated with residue-based binding models, 

we proposed a new concept "3D-domain interolog mapping" with a scoring system
39

 to explore 

all possible homologous protein-protein interaction pairs between the two homolog families, 

derived from a known 3D-structure dimmer (template), across multiple species. Each family 

consists of homologous proteins which have interacting domains of the template for studying 

domain interface evolution of two interacting homolog families. 

The 3D-interologs database records the evolution of protein-protein interactions database 

across multiple species. Based on “3D-domain interolog mapping” and a new scoring function, 

we infer 173,294 homologous protein-protein interactions by using 1,895 three-dimensional 
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(3D) structure heterodimers to search the UniProt database (4,826,134 protein sequences). The 

3D-interologs database comprises 15,124 species and 283,980 protein-protein interactions, 

including 173,294 interactions (61%) and 110,686 interactions (39%) summarized from the 

IntAct database. For a protein-protein interaction, the 3D-interologs database shows functional 

annotations (e.g. Gene Ontology), interacting domains and binding models (e.g. 

hydrogen-bond interactions and conserved residues). Additionally, this database provides 

couple-conserved residues and the interacting evolution by exploring the interologs across 

multiple species. Experimental results reveal that the proposed scoring function obtains good 

agreement for the binding affinity of 275 mutated residues from the ASEdb. The precision and 

recall of our method are 0.52 and 0.34, respectively, by using 563 non-redundant heterodimers 

to search on the Integr8 database (549 complete genomes). 

Experimental results demonstrate that the proposed method can infer reliable physical 

protein-protein interactions and be useful for studying the protein-protein interaction evolution 

across multiple species. In addition, the top-ranked strategy and template interface score are 

able to significantly improve the accuracies of identifying protein-protein interactions in a 

complete genome. The 3D-interologs database is available at 

http://3D-interologs.life.nctu.edu.tw.  

 

2-1. Introduction 

A major challenge of post genomic biology is to understand the networks of interacting 

genes, proteins and small molecules that produce biological functions. The large number of 

protein interactions 
8,9,28

, generated by large-scale experimental methods 
26,46,47

, computational 

methods 
32,38,39,44,48-50

, and integrated approaches 
51,52

, provides opportunities and challenges in 

annotating protein functions, protein-protein interactions (PPI) and domain-domain interactions 

http://3d-interologs.life.nctu.edu.tw/
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(DDI), and in modeling the cellular signaling and regulatory networks. An approach based on 

evolutionary cross-species comparisons, such as PathBLAST 
53,54

 and interologs (i.e. 

interactions are conserved across species 
40,44

), is a valuable framework for addressing these 

issues. However, these methods often cannot respond how a protein interacts with another one 

across multiple species. 

Protein Data Bank (PDB) 
31

 stores three-dimensional (3D) structure complexes, from 

which physical interacting domains can be identified to study DDIs and PPIs using 

comparative modeling 
32,33

. Some DDI databases, such as 3did 
34

, and iPfam 
35

, have recently 

been derived from PDB. Additionally, some methods have utilized template-based methods (i.e. 

comparative modeling 
32

 and fold recognition 
33

), which search a 3D-complex library to 

identify homologous templates of a pair of query protein sequences, in order to predict the 

protein-protein interactions by accessing interface preference, and score query pair protein 

sequences according to how they fit the known template structures. However, these methods 

32,33
 are time-consuming to search all possible protein-protein pairs in a large genome-scale 

database (Fig. 2-1A). For example, the possible protein-protein pairs on the UniProt database 

(4,826,134 sequences) are about 2.33×10
13

 
12

. In addition, these methods are unable to form 

homologous PPIs to explore the protein-protein evolution for a specific structure template. 

To address these issues, we proposed a new concept "3D-domain interolog mapping" (Fig. 

2-1B): for a known 3D-structure complex (template T with chains A and B), domain a (in chain 

A) interacts with domain b (in chain B) in one species. Homolog families A' and B' of A and B 

are proteins, which are significant sequence similarity BLASTP E-values ≤10
-10

 and contain 

domains a and b, respectively. All possible protein pairs between these two homolog families 

are considered as protein-protein interaction candidates using the template T. Based on this 

concept, protein sequence databases can be searched to predict protein-protein interactions 

across multiple species efficiently. When the genome was deciphered completely for a species, 



 

14 

 

we considered the rank of protein-protein interaction candidates in each species into our 

previous scoring system 
39

 to reduce a large number of false positives. The 3D-interologs 

database which can indicate interacting domains and contact residues in order to visualize 

molecular details of a protein-protein interaction. Additionally, this database can provide 

couple-conserved residues and evolutionary clues of a query sequence and its partners by 

examining the interologs across multiple species. 

 

Figure 2-1. Two frameworks of template-based methods for protein-protein interactions (PPI). 

(A) For each query protein sequence pair, the method searches 3D-dimer template library to identify homologous 

templates for exploring the query protein pair, such as MULTIPROSPECTOR 
33

. (B) For each structure in 

3D-dimer template library, the method searches protein sequence database to identify homologous PPIs of the 

query structure, such as 3D-interologs. 

 

2-2. Methods and Materials 

Figure 2-2 illustrates the overview of the 3D-interologs database. The 3D-interologs 

allows users to input the UniProt accession number (UniProt AC 
12

) or the sequence with 

FASTA format of the query protein (Fig. 2-2A). When the input is a sequence, 3D-interologs 

uses BLAST to identify the hit interacting proteins. We identified protein-protein interactions 
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in 3D-interologs database through structure complexes and a new scoring function using the 

following steps (Fig. 2-2B). First, a 3D-dimer template library comprising 1,895 heterodimers 

(3,790 sequences, called NR1895) was selected from the PDB released in Feb 24, 2006. 

Duplicate complexes, defined by sequence identity of above 98%, were removed from the 

library. Dimers containing chains shorter than 30 residues were also excluded 
33,55

. Interacting 

domains and contact residues of two chains were identified for each complex in the 3D-dimer 

library. Contact residues, in which any heavy atoms should be within a threshold distance of 

4.5 Å  to any heavy atoms of another chain, were regarded as the core parts of the 

3D-interacting domains in a complex. Each domain was required to have at least 5 contact 

residues and more than 25 interacting contacted-residue pairs to ensure that the interface 

between two domains was reasonably extensive. After the interacting domains were determined, 

its SCOP domains 
22

 were identified, and its template profiles were constructed by PSI-BLAST. 

PSI-BLAST was adopted to search the domain sequences against the UniRef90 database 
12

, in 

which the sequence identity < 90% of each other and the number of iteration was set to 3. 

After 3D-dimer template library and template profiles were built, we inferred candidates 

of interacting proteins by 3D-domain interolog mapping. To identify the interacting-protein 

candidates against protein sequences in the UniProt version 11.3 (containing 4,826,134 protein 

sequences), the chain profile was used as the initial position-specific score matrix (PSSM) of 

PSI-BLAST in each template consisting of two chains (e.g. CA and CB, Fig. 2-2C). The number 

of iterations was set to 1. Therefore, this search procedure can be considered as a 

profile-to-sequence alignment. A pairing-protein sequence (e.g. S1 and S2) was considered as a 

protein-protein interaction candidate if the sequence identity exceeded 30% and the aligned 

contact residue ratio (CR) was greater than 0.5 for both alignments (i.e. S1 aligning to CA and 

S2 aligning to CB). For each interacting candidate, the scoring function was applied to calculate 

the interacting score and the Z-value, which indicates the statistical significance of the 
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interacting score. An interacting candidate was regarded as a protein-protein interaction if its 

Z-value was above 3.0 and it ranked in the Top 25 in one species. The candidate rank was 

considered in one species to reduce the ill-effect of the out-paralogs that arose from a 

duplication event before the speciation 
56

. These inferred interacting protein pairs were 

collected in the database. 

 

Figure 2-2. Overview of the 3D-interologs database for protein-protein interacting evolution, protein functions 

annotations and binding models across multiple species. 

 

Finally, for the hit interacting partner derived from 3D-domain interolog mapping, this 

database provides functional annotations (e.g. UniProt AC, organism, descriptions, and Gene 

Ontology (GO) annotations 
36

, Fig. 2-2D), and the visualization of the binding models and 

interaction evolutions (Fig. 2-2C) between the query protein and its partners. We then 

constructed two multiple sequence alignments of the query protein and its interacting partner 
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(Fig. 2-2C) across multiple species. Here, the interacting-protein pair with the highest Z-score 

in a species was chosen as interologs for constructing multiple sequence alignments using a 

star alignment. The chains (e.g. Chains A and B, Fig. 2-2C) of the hit structure template were 

considered as the centers, and all selected interacting-protein pairs across species were aligned 

to respective chains of the template by PSI-BLAST. The 3D-interologs database annotates the 

important contact residues in the interface according to the following formats: hydrogen-bond 

residues (green); conserved residues (orange), conserved residues with hydrogen bonds (yellow) 

and other (gray). 

Data Sets 

Two data sets were used to assess 3D-domain interolog mapping and the scoring functions. 

To determine the contribution of a residue to the binding affinity, the alanine-scanning 

mutagenesis is frequently used as an experimental probe. We selected 275 mutated (called 

BA-275) residues from the ASEdb 
57

 with 16 heterodimers whose 3D structures were known. 

Those mutated residues are contact residues and positioned at protein–protein interfaces. 

ASEdb gives the corresponding delta G value representing the change in free energy of binding 

upon mutation to alanine for each experimentally mutated residue. Residues that contribute a 

large amount of binding energy are often labeled as hot spots. 

In addition, we selected a non-redundant set (NR-563), comprising 563 dimer protein 

structures from the set NR1895 to evaluate the performance of our scoring functions for 

predicting PPIs in S. cerevisiae and in 549 species collected in Integr8 database (2,102,196 

proteins 
30

).  

 

2-3. Scoring Function and Matrices 

We have recently proposed a scoring function to determine the reliability of a 
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protein-protein interaction 
39

. This study enhances this scoring by dividing the template 

consensus score into the template similar score and the couple-conserved residue score. Based 

on this scoring function, the 3D-interologs database can provide the interacting evolution 

across multiple species and the statistical significance (Z-value), the binding models and 

functional annotations between the query protein and its interacting partners. The scoring 

function is defined as 

conssimSFvdwtot wEEEEE   (1) 

where Evdw and ESF are the interacting van der Waals energy and the special interacting bond 

energy (i.e. hydrogen-bond energy, electrostatic energy and disulfide-bond energy), 

respectively; and Esim is the template interface similar score; and the Econs is couple-conserved 

residue score. The optimal w value was yielded by testing various values ranging from 0.1 to 

5.0; w is set to 3 for the best performance and efficiency on predicting binding affinity 

(BA-275) and predicting PPIs in S. cerevisiae and in 549 species (Integr8) using the data set 

NR-563. The Evdw and ESF are given as 

 
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where CP denotes the number of the aligned-contact residues of proteins A and B aligned to a 

hit template; Vssij and Vsbij (Vsbji) are the sidechain-sidechain and sidechain-backbone van der 

Waals energies between residues i (in protein A) and j (in protein B), respectively. Tssij and Tsbij 

(Tsbji) are the sidechain-sidechain and sidechain-backbone special interacting energies between 

i and j, respectively, if the pair residues i and j form the special bonds (i.e. hydrogen bond, salt 

bridge, or disulfide bond) in the template structure. The van der Waals energies (Vssij, Vsbij, 

and Vsbji) and special interacting energies (Tssij, Tsbij, and Tsbji) were calculated from the four 

knowledge-based scoring matrices (Fig. 2-3), namely sidechain-sidechain (Fig. 2-3A) and 

sidechain-backbone van der Waals scoring matrices (Fig. 2-3B); and sidechain-sidechain (Fig. 
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2-3C) and sidechain-backbone special-bond scoring matrices (Fig. 2-3D). 

 

Figure 2-3. Knowledge-based protein-protein interacting scoring matrices: (A) sidechain-sidechain van-der Waals 

scoring matrix; (B) sidechain-backbone van-der Waals scoring matrix; (C) sidechain-sidechain special-bond 

scoring matrix; (D) sidechain-backbone special-bond matrix scoring. 

The sidechain-sidechain scoring matrices are symmetric and sidechain-backbone scoring matrices are 

non-symmetric. For sidechain-sidechain van-der Waals scoring matrix, the scores are high (yellow blocks) if 

large-aliphatic residues (i.e. Val, Leu, Ile, and Met) interact to large-aliphatic residues or aromatic residues (i.e. 

Phe, Tyr, and Trp) interact to aromatic residue. In contrast, the scores are low (orange blocks) when nonpolar 

residues interact to polar residues. For sidechain-sidechain special-bond scoring matrix, the scores are high when 

an interacting resides (i.e. Cys to Cys) form a disulfide bond or basic residues (i.e. Arg, Lys, and His) interact to 

acidic residues (Asp and Glu). The scoring values are zero if nonpolar residues interact to other residues. 

 

These four knowledge-based matrices, which were derived using a general mathematical 

structure 
58

 from a nonredundant set of 621 3D-dimer complexes proposed by Glaser et al. 
59

, 

are the key components of the 3D-interologs database for predicting protein-protein 

interactions. This dataset is composed of 217 heterodimers and 404 homodimers and the 

GLY ALA VAL LEU ILE MET PRO PHE TRP TYR CYS SER THR ASN GLN  HIS ARG LYS ASP GLU

GLY 0.1 -0.7 -0.8 -0.8 -0.5 -0.4 -0.4 -0.3 0.2 0.0 -0.2 -0.8 -0.3 -0.5 -0.2 -0.1 0.1 -0.4 -0.8 -1.1

ALA -0.7 0.3 -0.3 0.1 -0.2 0.3 -0.5 0.6 0.3 0.0 -0.6 -1.1 -0.9 -0.6 -0.5 -0.2 -0.6 -1.2 -1.0 -1.0

VAL -0.8 -0.3 1.5 1.1 0.9 1.1 -0.2 1.2 0.3 0.6 -0.3 -0.9 -0.1 -0.8 0.1 -0.4 -0.1 -0.6 -1.0 -0.5

LEU -0.8 0.1 1.1 2.3 1.4 1.3 0.0 1.3 1.2 0.6 -0.2 -0.6 -0.2 -0.4 0.3 0.6 0.2 -0.9 -1.3 -0.3

ILE -0.5 -0.2 0.9 1.4 2.3 1.2 0.1 1.7 1.5 1.0 -0.9 -1.2 0.1 -0.5 0.1 -0.3 -0.1 -0.8 -0.9 -0.4

MET -0.4 0.3 1.1 1.3 1.2 3.0 0.5 1.8 1.2 1.0 0.4 -0.5 0.0 -0.4 -0.2 0.3 0.1 0.0 -1.3 0.0

PRO -0.4 -0.5 -0.2 0.0 0.1 0.5 0.4 0.5 1.5 0.9 0.0 -0.5 -0.2 0.0 0.5 -0.3 0.0 -0.7 -0.8 -0.1

PHE -0.3 0.6 1.2 1.3 1.7 1.8 0.5 2.7 2.1 1.2 -0.1 -0.4 0.6 0.1 0.5 0.1 0.5 -0.6 -0.9 -0.1

TRP 0.2 0.3 0.3 1.2 1.5 1.2 1.5 2.1 2.9 1.1 0.3 -0.3 0.3 0.9 0.7 0.6 0.9 0.1 0.0 -0.6

TYR 0.0 0.0 0.6 0.6 1.0 1.0 0.9 1.2 1.1 1.4 0.3 0.1 0.1 0.6 0.9 0.8 1.0 0.5 0.5 0.5

CYS -0.2 -0.6 -0.3 -0.2 -0.9 0.4 0.0 -0.1 0.3 0.3 -0.1 -0.3 -1.1 -1.6 -1.0 0.5 -0.9 -1.3 -2.2 -1.1

SER -0.8 -1.1 -0.9 -0.6 -1.2 -0.5 -0.5 -0.4 -0.3 0.1 -0.3 0.4 -0.5 0.0 -0.3 -0.3 -0.1 -0.3 -0.1 -0.1

THR -0.3 -0.9 -0.1 -0.2 0.1 0.0 -0.2 0.6 0.3 0.1 -1.1 -0.5 0.6 0.0 0.0 0.1 0.1 -0.6 -0.2 -0.2

ASN -0.5 -0.6 -0.8 -0.4 -0.5 -0.4 0.0 0.1 0.9 0.6 -1.6 0.0 0.0 1.4 0.4 -0.2 0.3 0.0 0.3 -0.2

GLN -0.2 -0.5 0.1 0.3 0.1 -0.2 0.5 0.5 0.7 0.9 -1.0 -0.3 0.0 0.4 1.6 0.2 0.7 0.2 0.4 0.1

 HIS -0.1 -0.2 -0.4 0.6 -0.3 0.3 -0.3 0.1 0.6 0.8 0.5 -0.3 0.1 -0.2 0.2 2.1 0.3 -0.8 0.8 0.8

ARG 0.1 -0.6 -0.1 0.2 -0.1 0.1 0.0 0.5 0.9 1.0 -0.9 -0.1 0.1 0.3 0.7 0.3 1.3 -0.5 1.8 1.9

LYS -0.4 -1.2 -0.6 -0.9 -0.8 0.0 -0.7 -0.6 0.1 0.5 -1.3 -0.3 -0.6 0.0 0.2 -0.8 -0.5 0.0 1.2 1.6

ASP -0.8 -1.0 -1.0 -1.3 -0.9 -1.3 -0.8 -0.9 0.0 0.5 -2.2 -0.1 -0.2 0.3 0.4 0.8 1.8 1.2 0.0 -0.9

GLU -1.1 -1.0 -0.5 -0.3 -0.4 0.0 -0.1 -0.1 -0.6 0.5 -1.1 -0.1 -0.2 -0.2 0.1 0.8 1.9 1.6 -0.9 0.7

GLY ALA VAL LEU ILE MET PRO PHE TRP TYR CYS SER THR ASN GLN  HIS ARG LYS ASP GLU

GLY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LEU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ILE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PHE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TRP 0 0 0 0 0 0 0 0 0.0 2.2 0.0 3.2 3.7 4.4 3.1 0.0 0.0 0.0 5.1 4.5

TYR 0 0 0 0 0 0 0 0 2.2 3.7 4.0 4.4 4.0 4.7 5.0 4.7 4.6 4.2 5.5 5.5

CYS 0 0 0 0 0 0 0 0 0.0 4.0 8.0 2.4 0.0 2.6 2.8 3.9 0.0 0.0 3.2 3.1

SER 0 0 0 0 0 0 0 0 3.2 4.4 2.4 4.9 4.3 4.5 4.1 4.6 4.4 4.1 5.4 5.4

THR 0 0 0 0 0 0 0 0 3.7 4.0 0.0 4.3 4.8 4.7 4.8 3.2 4.4 4.0 5.2 4.8

ASN 0 0 0 0 0 0 0 0 4.4 4.7 2.6 4.5 4.7 5.6 4.7 4.5 4.6 4.4 5.2 4.7

GLN 0 0 0 0 0 0 0 0 3.1 5.0 2.8 4.1 4.8 4.7 5.7 4.6 4.9 4.5 4.8 4.7

 HIS 0 0 0 0 0 0 0 0 0.0 4.7 3.9 4.6 3.2 4.5 4.6 5.3 4.3 1.9 5.9 6.2

ARG 0 0 0 0 0 0 0 0 0.0 4.6 0.0 4.4 4.4 4.6 4.9 4.3 0.0 0.0 6.9 7.0

LYS 0 0 0 0 0 0 0 0 0.0 4.2 0.0 4.1 4.0 4.4 4.5 1.9 0.0 0.0 6.5 6.7

ASP 0 0 0 0 0 0 0 0 5.1 5.5 3.2 5.4 5.2 5.2 4.8 5.9 6.9 6.5 0.0 0.0

GLU 0 0 0 0 0 0 0 0 4.5 5.5 3.1 5.4 4.8 4.7 4.7 6.2 7.0 6.7 0.0 0.0

GLY ALA VAL LEU ILE MET PRO PHE TRP TYR CYS SER THR ASN GLN  HIS ARG LYS ASP GLU

GLY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VAL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LEU 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ILE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MET 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PRO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PHE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TRP 0.0 4.5 0.0 2.8 3.3 0.0 3.2 3.4 0.0 0.0 3.3 3.1 3.1 0.0 3.5 0.0 0.0 3.2 3.2 0.0

TYR 4.1 3.8 4.4 3.6 4.0 3.6 4.5 3.7 4.1 3.8 3.6 2.8 2.8 4.8 3.1 3.5 4.3 4.0 4.4 3.8

CYS 4.7 4.4 4.5 4.5 4.0 3.8 4.4 4.2 5.2 2.9 3.7 4.5 3.9 4.1 4.5 4.0 4.4 4.9 5.1 3.5

SER 4.6 4.9 3.8 4.7 4.7 4.4 3.9 2.7 4.2 2.8 4.3 5.1 4.7 3.9 2.1 0.0 3.8 4.8 3.9 4.4

THR 4.9 4.1 4.1 3.9 4.0 3.7 3.5 2.0 4.2 4.2 4.5 4.4 4.8 3.3 2.8 3.9 3.8 3.8 4.7 4.0

ASN 4.8 5.3 4.7 5.0 4.2 4.6 4.0 4.8 4.7 5.2 4.9 4.9 5.3 5.4 5.1 4.6 4.9 4.9 4.9 4.3

GLN 5.1 4.8 5.1 5.3 5.3 5.0 4.4 5.6 4.6 5.1 4.4 5.5 5.3 4.8 5.0 4.6 4.6 4.4 4.7 4.7

 HIS 4.9 4.8 4.6 4.5 3.8 4.0 4.4 4.5 5.0 4.9 2.7 3.9 4.1 4.1 4.2 5.2 3.5 4.0 4.6 3.8

ARG 5.9 5.3 5.2 5.3 4.8 5.2 5.3 5.3 5.4 4.5 5.2 5.4 5.6 5.0 5.0 5.2 4.8 4.5 5.2 5.4

LYS 4.9 3.8 3.5 4.2 3.6 2.7 4.5 4.4 4.3 4.7 3.6 4.9 4.4 5.0 4.6 4.0 3.7 5.2 4.7 5.0

ASP 4.9 4.5 3.4 3.4 4.5 2.6 0.0 2.7 4.3 3.9 2.7 5.1 4.6 4.5 4.0 4.2 4.3 4.0 3.3 3.9

GLU 4.7 5.0 4.7 4.6 4.4 4.6 0.0 4.8 4.2 3.4 3.5 5.1 4.4 4.5 4.3 2.5 4.4 4.4 4.0 4.1

A

DC

B
GLY ALA VAL LEU ILE MET PRO PHE TRP TYR CYS SER THR ASN GLN  HIS ARG LYS ASP GLU

GLY 0.1 -0.7 -0.8 -0.8 -0.5 -0.4 -0.4 -0.3 0.2 0.0 -0.2 -0.8 -0.3 -0.5 -0.2 -0.1 0.1 -0.4 -0.8 -1.1

ALA -0.7 1.1 -0.6 -1.3 -1.1 -0.8 -0.7 -1.4 -1.4 -1.9 -0.5 -0.3 -0.7 -0.9 -0.9 -0.7 -1.8 -1.4 -1.1 -0.8

VAL -0.8 0.6 0.7 -0.4 0.1 0.2 -0.2 -0.7 -1.0 -1.6 0.3 0.1 0.1 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.6

LEU -0.8 0.7 0.1 1.1 -0.1 0.5 0.0 -0.4 -0.4 -1.5 0.2 0.4 -0.1 -0.7 0.0 0.2 -0.6 -0.4 -0.5 -0.5

ILE -0.5 0.6 0.3 0.2 0.6 0.1 -0.3 -0.7 -1.3 -0.9 -1.1 0.0 0.2 -0.4 -0.4 -0.4 -1.3 -0.7 -0.6 -0.4

MET -0.4 1.5 1.0 0.5 0.5 1.3 0.5 0.2 0.4 0.2 0.6 0.4 0.2 -1.2 -0.3 0.3 -0.4 0.3 -0.2 0.1

PRO -0.4 0.4 -0.8 -0.7 -1.1 0.2 0.6 -0.2 -0.6 -1.0 0.3 0.0 0.0 0.2 -0.3 -0.5 -0.4 -0.1 -0.7 -0.6

PHE -0.3 1.5 0.3 0.7 0.6 0.9 0.9 1.0 0.8 0.1 0.2 0.5 0.6 0.2 0.3 -0.2 -0.5 0.2 -0.2 0.0

TRP 0.2 1.3 0.6 0.8 1.4 1.5 2.2 0.4 1.1 0.9 2.3 0.5 0.9 1.6 0.4 1.2 1.1 0.7 1.1 -0.5

TYR 0.0 1.2 0.3 0.0 0.2 0.7 1.1 0.7 -0.8 0.4 1.3 0.9 0.5 0.9 0.8 0.6 0.5 1.0 0.6 0.3

CYS -0.2 0.8 -1.3 -1.0 -0.5 -1.3 -0.1 -0.4 -3.1 -1.3 1.0 1.2 -0.9 -0.6 -0.9 -1.2 -0.4 -1.4 -1.2 -1.2

SER -0.8 0.6 -0.8 -0.6 -0.9 -0.5 0.0 -1.4 -1.8 -1.2 -0.2 0.8 0.0 -0.5 -1.8 -1.5 -1.3 -1.0 -0.1 -0.7

THR -0.3 0.4 -0.3 -0.4 -0.4 -0.5 -0.1 -1.0 -0.8 -0.7 0.2 0.5 0.5 -0.1 -1.2 -0.9 -0.8 -0.5 0.3 -0.9

ASN -0.5 0.9 -0.1 -0.1 -0.4 -1.0 0.2 0.1 -0.4 -0.3 0.5 0.8 0.7 1.4 -0.3 0.3 -0.3 -0.1 0.4 -0.6

GLN -0.2 0.9 0.4 0.5 0.2 0.4 0.8 0.7 -0.1 -0.2 0.7 1.3 0.4 0.7 1.1 0.0 -0.4 -0.2 0.4 0.4

 HIS -0.1 1.2 -0.4 0.2 -0.8 -0.8 -0.3 -0.2 0.1 -0.7 0.8 0.9 0.0 0.0 -0.2 1.4 -0.4 -0.5 0.4 -0.3

ARG 0.1 1.3 0.4 0.5 0.2 0.3 1.0 0.4 0.1 -0.2 0.5 1.1 1.0 0.7 0.3 0.5 0.5 0.0 1.6 0.9

LYS -0.4 -0.1 -0.7 -0.7 -1.3 -0.6 0.0 -0.7 -0.5 -1.1 -0.1 0.8 -0.5 0.0 0.0 -0.3 -1.7 0.3 0.3 0.6

ASP -0.8 0.3 -1.4 -1.6 -1.0 -2.4 -0.3 -2.3 -1.5 -1.3 -0.7 0.6 0.1 -0.2 -0.4 -0.1 -0.6 -1.2 -0.1 -1.9

GLU -1.1 0.4 -0.2 -0.5 -0.7 0.1 0.0 -0.3 -1.2 -1.2 0.2 0.7 0.1 -0.2 -0.6 -0.8 -0.3 -0.1 -0.6 -0.2
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sequence identity is less than 30% to each other. The entry (Sij), which is the interacting score 

for a contact residue i, j pair (1≤i, j≤20), of a scoring matrix is defined as 
ij

ij

ij
e

q
S ln , where qij 

and eij are the observed probability and the expected probability, respectively, of the occurrence 

of each i, j pair. For sidechain-sidechain van-der Waals scoring matrix, the scores are high 

(yellow blocks) if large-aliphatic residues (i.e. Val, Leu, Ile, and Met) interact to large-aliphatic 

residues or aromatic residues (i.e. Phe, Tyr, and Trp) interact to aromatic residue. In contrast, 

the scores are low (orange blocks) when nonpolar residues interact to polar residues. The top 

two highest scores are 3.0 (Met. interacting to Met) and 2.9 (Trp interacting to Trp). 

The value of Esim was calculated from the BLOSUM62 matrix 
58

 based on two alignments 

between two chains (A and B) of the template and their homologous proteins (A' and B'), 

respectively. The Esim is defined as  







CP

ji jjii

jjii

sim
KK

KK
E

,

''  (2) 

where CP is the number of contact residue pairs in the template; i and j are the contact residue 

in chains A and B, respectively. Kii' is the score of aligning residue i (in chain A) to i' (in protein 

A') and Kjj' is the score of aligning residue j (in chain B) to j' (in protein B') according to 

BLOSUM62 matrix. Kii and Kjj are the diagonal scores of BLOSUM62 matrix for residues i 

and j, respectively. The couple-conserved residue score (Econs) was determined from two 

profiles of the template and is given by  

))()(,0(max(
,

' 
CP

ji

jjjpiiipcons KMKME  (3) 

where CP is the number of contact residue pairs; Mip is the score in the PSSM for residue type i 

at position p in Protein A; Mjp′ is the score in the PSSM for residue type j at position p′ in 

Protein B, and Kii and Kjj are the diagonal scores of BLOSUM62 matrix for residue types i and 

j, respectively. 



 

21 

 

To evaluate statistical significance (Z-value) of the interacting score of a protein-protein 

interaction candidate, we randomly generated 10,000 interfaces by mutating 60% contact 

residues for each heterodimer in 3D-dimer template library. The selected residue was 

substituted with another amino acid residue according to the probability derived from these 621 

complexes 
59

. The mean and standard deviation for each 3D-dimer were determined from these 

10,000 random interfaces which are assuming to form a normal distribution. Based on the 

mean and standard deviation, the Z-value of a protein-protein candidate predicted by this 

template can be calculated. 

 

2-4. Inputs and Outputs 

The 3D-interologs database server is easy-to-use. Users input the UniProt AC or the 

FASTA format of the query protein (Fig. 2-2A). The server generally returns a list of 

interacting partners with functional annotations (e.g. the gene name, the protein description and 

GO annotations) (Fig. 2-2D) and provides the visualization of the binding model and contact 

residues between the query protein and its partner by aligning them to respective template 

sequences and structures. Additionally, the 3D-interologs system indicates the interacting 

evolution analysis by using multiple sequence alignments of the interologs across multiple 

species (Fig. 2-2C). The significant contact residues in the interface are indicated. If Java is 

installed in the user’s browser, then the output shows the structures, and users can dynamically 

view the binding model, interacting domains and important residues in the browser. 

 

2-5. Example Analysis 

Figure 2-4 show the search results using the human protein NXT1 (UniProt AC Q9UKK6) 

as the query sequence. The NXT1, which is a nucleocytoplasmic transport factor and shuttles
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between the nucleus and cytoplasm, accumulates at the nuclear pore complexes
60

. For this 

query, 3D-interologs database yielded 8 hit interacting partners (Fig. 2-4A), comprising 5 

partners derived from 3D-interologs database and 5 partners from the IntACT database. Thus, 

two partners were present in both databases. Among these 8 hits, 3 partners (i.e. Uniprot AC 

Q68CW9, Q5H9I1 and Q9GZY0) were not recorded in IntAct database, but they very likely 

interact with NXT1. The Q68CW9, which is part of the protein NXF1 (UniProt AC Q9UBU9), 

consists of the UBA-like domain and the NTF-like domain, which is responsible for 

association with the protein NXT1 
61

. The sequence of the protein Q5H9I1 is the same as that 

of the protein Q9H4D5 (i.e. nuclear RNA export factor 3), which binds to NXT1 
62

. The 

protein Q9GZY0 (nuclear RNA export factor 2) binds protein NXT1 to export mRNA cargoes 

from nucleus into cytosol 
63

.  

The protein NXT1 interacts with the protein NXF1 to form a compact heterodimers (PDB 

code 1jkg 
63

)and an interacting β surface, which is lined with hydrophobic and hydrophilic 

residues (Fig. 2-4B). Twenty hydrogen bonds or electrostatic interactions are formed in this 

compact interface. The salt bridge formed by NXT1 Arg134 and NXF1 Asp482 is especially 

important in the interface 
57

. The interacting evolution analysis built by 10 interologs reveals 

that two residues (Arg134 and Asp482) are conserved in all species (Fig. 2-4C). Additionally, 

some interacting residues forming the hydrogen bonds are also couple-conserved, for example 

NXT1 Asp76 and NXF1 Arg440; NXT1 Gln78 and NXF1 Ser417; NXT1 Pro79 and NXF1 

Asn531 
57

. The evolution of interaction is valuable to reflect both couple-conserved and critical 

residues in the binding site. 

 



 

23 

 

 

Figure 2-4. The 3D-interologs database search results of using human NXT1 as query. 

(A) Eight interacting partners of NXT1 are found in the 3D-Interologs. For each interacting partner, this server 

provides UniProt accession number, protein description, organism and Gene Ontology annotation. (B) Detailed 

interactions between the query and its interacting partner (UniProt accession number Q9UBU9) are indicated via 

the structure template which consists of NXT1 (PDB entry 1jkg-A) and NXF1 (PDB entry 1jkg-B). The contact 

residues of NXT1 (query side) and NXF1 (partner side) are colored by red and blue, respectively. The contact 

residues forming hydrogen bonds (green and dash) are given the atom details. (C) The interacting evolution 

analysis by using multiple sequence alignments of hit interacting partners of the query across multiple species. 

The 3D-interologs yields 10 interologs of the query template structure. The contacted residues are marked in 

template structure based on their interacting characteristics, including hydrogen-bond residues (green); conserved 

residues (orange); both (yellow), and others (gray). The couple-conserved contact positions are colored in the 

multiple alignments according to the physical-chemical property of amino acid residues. Twenty amino acid types 

are classified into 7 groups, namely polar positive (His,Arg, and Lys, blue);  polar negative (Asp and Glu, red);  

polar neutral (Ser, Thr, Asn and Gln, green); cystein (yellow); non-polar aliphatic (Ala, Val, Leu, Ile and Met, 

gray); non-polar aromatic (Phe, Tyr and Trp, pink); and others: (Gly and Pro, brown). 

 

Conversely, some positions, which are not conserved in all species but conserved in an 

individual taxonomic group, are important for observing the co-evolution across multiple 

A S V D F K T Y V D Q A C R A A E E F V F Q I S V V D C Q P V H D E A T P S Q T A S D C F R F Q D W A S

Mam HUMAN 5.93 A S V D F K T Y V D Q A C R A A E E F V F Q I S V V D C Q P V H D E A T P S Q T A S D C F R F Q D W A S

Mam MOUSE 5.92 A S V D F K T Y V D Q A C R A A E E F V . . F Q I S V V D C Q P V H D D A T P S Q T . . A S D C F R F Q D W A S

Mam BOVIN 5.82 A S V D F K T Y V G Q A C R A A E E F V F Q I N V V D C Q P V H D E A T P S Q T A S D C F R F Q D W A -

Ver XENLA 4.95 A T T D F R T E V D L A C R T A D E F V F Q V N M F D C Q P V H E Q A T Q G Q K A S D C F R F Q D W A S

Ver TETNG 3.22 - - - D F R T Q V D Q S C R Y S E E F V F Q V Q T V D C Q P V H E Q A T Q G Q T A S D C F R F Q D W N S

Ver DANRE 3.10 - T V D F R T Q V D Q S C R Y S E E F I F Q V Q T L D C Q P V H E Q A T Q G Q T - - - - - - - - - - - -

Met DROPS 4.86 - - - E L K I K V E R C A H T A E D F T H Q M N T L D A Q P I L D A A V G I Q L A S D C Y R L Q E - - -

Met ANOGA 4.83 - - - D M R T K I D T V C T T A E A F V H T I T T L D A Q P I V D D A V S S Q L V S D C F R L Q D - - -

Met AEDAE 4.53 - - - E L R T K I D T A C R T A E E F T H I M N T L D A Q P I I D D A V S S Q L A S D C F R L Q D - - -

Met DROME 4.44 - - - D L K A K V E S C A R T A D T F T H Q L N T L D A Q P I V D Q A V S N Q L V S D C Y R M Q E - - -

Y H D G A C C S L S I P F I P S R N V K K F V V D I S A Q T S T L L C F S V N G I V N D E L F V R N A S S E - - - E I

Mam HUMAN 5.93 Y H D G A C C S L S I P F I P S R N V K K F V V D I S A Q T S T L L C F S V N G I V N D E L F V R N A S S E - - - E I

Mam MOUSE 5.92 Y H D G A C C S L S I P Y N P . . S R N V K K . . F V V D I S A Q T S T L L C F S V N G . . I V N D E L F V R N A S P E - - - E I

Mam BOVIN 5.82 Y H D G A C C S L S I P F T P S R N V K K F V V D I S A Q T S T L L C F S V N G I V N D E L F V R N A S A D - - - E I

Ver XENLA 4.95 Y H D E A C C S L S I P F S V S R N I R K F V V D I L A H S N T L L C F V V N G L V N D E Q F I R D A N T E - - - E I

Ver TETNG 3.22 Y H D G A S F S L T T P Y S T S R N L K R F T T D V N T Y T N T L L A F T V S G - - - - - - - - - - - - - - - - - - -

Ver DANRE 3.10 Y H E S A C F S L C L P S - I S R N V K N I N V D V N A Y A S T L L A F T V S G I V N D E L F V R N T T M E - - - E I

Met DROPS 4.86 Y H E H A M L S I T M P - N A N R N F R R F T V D L T I Y N P Q M I V F T V T G I R N E T I F I T A A T N E Q V R E F

Met ANOGA 4.83 Y H E H A M F S L T V N T T Y S R N I K H F A V D L T L F T P H M L Q L T V T G I R N E M M H V N T V T R A - - - Q E

Met AEDAE 4.53 Y H E H A M I S M T V F N S P N R N L N T F V V D L T L F T P Q L I L L T V T G I R N E M I H I N N A T R I - - - Q E

Met DROME 4.44 Y H E K A M L S I S M P S A S N R N L R R F T V D L T I Y N T S M M V F T V T G I R N E T I F I T N A T H E Q V R E F
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species. The interacting residue pair (NXT1 Phe6 and NXF1 Cys415) in mammalia and 

vertebrata is different from that in metazoan (NXF1 Cys415→Met and NXT1 Phe→Leu 

variant). The van-der Waals potential (1.3 in the sidechain-sidechain van-der Waals scoring 

matrix, Fig. 2-3A) between Leu and Met is much larger than the potential (−0.1) between Cys 

and Phe. This co-evolution favors the formation of the hydrophobic interaction in metazoan. 

 

2-6. Results  

Database 

The 3D-interologs database currently contains 15,124 species and 283,980 protein-protein 

interactions, including 173,294 interactions (61%) derived from our method based on 

3D-domain interolog mapping and 110,686 interactions (39%) summarized from the IntAct 

database
8
. For the hit interacting partner derived from 3D-domain interolog mapping, this 

database provides functional annotations (e.g. UniProt AC, organism, descriptions, and Gene 

Ontology (GO) annotations 
36

), and the visualization of the binding models and interaction 

evolutions between the query protein and its partners. On the other hand, the 3D-interologs 

database presents only the functional annotations of the hit protein-protein interaction if this 

interaction was summarized from the IntAct database. 

Table 2-1. Statistics of 3D-interologs database on 19 species commonly used in research projects 

Species 3D-domain interologs IntAct  

Mus musculus 8,876 2,634 

Homo sapiens 8,639 18,716 

Danio rerio 4,564 0 

Xenopus laevis 4,057 58 

Rattus norvegicus 3,685 958 

Bos taurus 3,549 174 

Drosophila melanogaster 2,644 25,036 

Arabidopsis thaliana 2,418 2,111 

Caenorhabditis elegans 1,433 4,684 

Saccharomyces cerevisiae 443 36,821 

Escherichia coli 426 14,007 

Schizosaccharomyces pombe 371 341 

Dictyostelium discoideum 284 84 

Zea mays 219 0 
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Oryza sativa 193 69 

Takifugu rubripes 191 0 

Chlamydomonas reinhardtii 122 14 

Plasmodium falciparum 68 2,707 

Pneumocystis carinii 23 0 

other species  131,089 2,272 

Total  173,294 110,686  

 

Among 15,124 species in the 3D-interologs database, Table 2-1 shows 19 species 

commonly used in molecular research projects, such as Homo sapiens, Mus musculus, Rattus 

norvegicus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, and 

Escherichia coli. To analyze couple-conserved residues and interface evolutions for providing 

evolutionary clues, the 15,124 species were divided into 10 taxonomic groups 
64

, namely 

mammalia, vertebrata, metazoa, invertebrata, fungi, plant, bacteria, archaea, viruses, and 

others. 

 

Binding Affinity Prediction 

The enhanced scoring functions were first evaluated on 275 mutated residues selected 

from the ASEdb database
57

 to reveal the Pearson correlations between ddG values and 

predicted energies. The 3D-interologs method applied four scoring functions (Fig. 2-5), 

including 3D-interologs (red), 3D-partner (blue), Esim (only template similarity, green) and one 

matrix (black) proposed by Lu, et al. 
33

. Among these four scoring functions, the 3D-interologs 

is the best (0.92) and one matrix is the worst (0.55, i.e. Lu, et al.). The correlations are 0.91 and 

0.88 for 3D-partner and 0.88 (only template similarity), respectively. 

The binding free energy is often not evenly distributed across interfaces but involves a 

small subset of “hot spots” contributed extraordinarily high energy 
65

. For instance, the human 

blood-coagulation complex (PDB code 1dan) has 52 residues whose energy contribution was 

probed by alanine scanning mutagenesis 
66,67

. Among these 52 residues, residues Lys-20 and 
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Asp-58, which are highly conserved in many species, provide the binding free energy upper 2 

kcal/mol; on the other hand, the average energy contribution of the other 50 residues is 0.37 

kcal/mol. This result implies that the couple-conserved residue score (Econs) is beneficial to 

model the binding energy of residues positioned in the interfaces. Although the hotspots of 

protein-protein binding are often for maintaining their function, the antibodies keep the 

diversity to recognize a wide variation of antigens. The correlation is 0.143 when the Econs was 

used to model the binding energy of antigen-antibody complexes. Fortunately, integrating Econs, 

Esim and ESF is able to improve the correlation to 0.606 for antigen-antibody complexes. 

 

Figure 2-5. Evaluation of the 3D-interologs in binding affinities. 

The Pearson correlations between experimental free energies (ddG) and the predicted values of the 3D-interologs 

using four scoring functions, including 3D-interologs (red), 3D-partner (blue), Esim (only template similarity, green) 

and one matrix (black) proposed by Lu, et al., on 275 mutated residues selected from Alanine Scanning Energetics 

database. 

 

Interactions Prediction in S. cerevisiae 

Additionally, a non-redundant set (NR-563), comprising 563 dimer complexes from the 

3D-dimer library, was adopted to evaluate the performance of this enhanced scoring function 
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for interacting partner predictions in S. cerevisiae. This set comprised 5,882 protein-protein 

interactions, which were recorded as the core subset in the DIP database as the positive cases, 

and 2,708,746 non-interacting protein pairs, defined by Jansen et al. 
48

 as the negative cases. 

Figure 2-6A shows the ROC curves of our method and other three scoring functions for 

predicting PPIs in S. cerevisiae. Among these four scoring functions, the 3D-interologs and the 

template similar score (Esim) were the best and achieved the similar accuracy. Conversely, one 

matrix (i.e. Lu, et al. 
33

) was the worst. The average precisions, which was calculated as

ATi i

h

A

i
/)/(

1 
, where i

hT  denotes the number of compounds in a hit list including i correct 

hits, were 0.84 (3D-interologs), 0.82 (3D-partner), and 0.67 for one matrix (proposed by Lu et 

al.). These results demonstrated that the proposed new scoring function can achieve good 

agreement for the binding affinity in PPIs and provide statistical significance (Z-value) for 

predicting PPIs. 

 

Figure 2-6. The ROC curves of the 3D-interologs for protein-protein interactions. 

The 3D-interologs search results on (A) S. cerevisiae and (B) 549 species (Intger8) using the data set NR-563 (563 

dimer-complex structures) by applying four scoring functions, including 3D-interologs (red), 3D-partner (blue), 

only template similarity (Esim, green) and one matrix (black) proposed by Lu, et al. 
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563 non-redundant dimer complexes (NR-563) were used as queries to search on the Integr8 

database (Release 65) which comprises 2,102,196 proteins in 549 species (Fig. 2-6B and Fig. 

2-7). The Integr8 is an integrated database for organisms with completely deciphered genomes, 

which are mainly obtained from the non-redundant sets of UniProt entries. Experimentally 

determined protein-protein interactions dataset were collected from IntAct 
8
 as the gold 

standard positive set (110,686 interactions). The gold standard negative set was generated 

according to the assumption that two proteins acting in the same biological process are more 

likely to interact than two proteins involved in different processes 
68

. This study applied the 

relative specificity similarity (RSS), proposed by Wu et al. 
69

, to measure the biological process 

similarity and the location similarity of two proteins based on the GO terms of the biological 

process (BP) and the cellular component (CC), which describes locations at levels of 

subcellular structures and macromolecular complexes, respectively. Among 110,686 

interactions recorded in the IntAct database, 51,049 interactions can be used to calculate the BP 

and the CC RSS scores. The BP and CC RSS scores of 15.85% and 2.65% interactions, 

respectively, are less than 0.4. Here, we considered an interacting protein pair as a negative PPI 

if its CC RSS score is less than 0.4. 

 

Figure 2-7. Precisions and recalls of 3D-interologs the on Integr8. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

P
re

ci
si

o
n

Rank

Z-score

Rank & Z-score>=3

Rank & Z-score>=2

Sequence identity



 

29 

 

The 3D-interologs searches Integr8 database (2,102,196 proteins in 549 species) using the data set NR-563 (563 

dimer-complex structures). The 3D-interologs server uses five scoring schemes, including rank in a species (blue), 

Z-score (red), rank and Z-score >=3 (black), rank and Z-score >=2 (purple), and sequence identity (green). 

 

The structures in the NR-563 as queries to search the Integr8 database yielded 1,063 

protein-protein interactions recorded in the IntAct database and 131,831 protein pairs, whose 

CC RSS scores were less than 0.4 as the negative cases. Based on ROC curves (Fig. 2-6B) for 

predicting PPIs in 549 species, 3D-interologs and the template similar score (Esim) outperform 

the 3D-partner server and one-matrix (i.e. Lu, et al.) method. In addition, the precision and 

recall were adopted to access the predicted quality of the 3D-interologs using these four 

scoring schemes (Fig. 2-7). The precision was defined as Ah/(Ah+Fh), where Ah and Fh denote 

the numbers of hit positive cases and hit negative cases, respectively. The recall was defined as 

Ah/A, where A is the total number of positives (here A=1,063). Furthermore, the accuracy of our 

scoring function (red) is significantly better than that of the sequence identity (green). 

The 3D-domain interolog mapping may yield many PPI candidates (e.g. > 200) for one 

species from a structure template because a eukaryote genome frequently contains multiple 

paralogous genes. Here, we proposed a top-rank strategy to limit the number of PPIs inferred 

from a structural template in the same species. For example, we discarded the PPI candidates 

whose ranks ≥ 25 for a species if the rank threshold is set to 25. Figure 2-7 shows that the 

performance of the top-rank scores (blue, with different rank thresholds) is similar to that of 

using Z-score scoring method (red). When we combined the top-rank strategy and the Z-score 

scoring methods, the precisions (purple and black) are significantly improved. The precision 

was 0.52 and the recall was 0.34 when Z-score > 3.0 and the rank ≤ 25 in one species.  

Adopting the top-rank strategy in one species as the scoring function is useful for 

distinguishing between positives and negatives when the 3D-domain interolog mapping 

yielded many protein-protein interactions for one species from a structure template. However, 
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the rank cannot reflect the binding affinity of a PPI candidate, conversely, the Z-score cannot 

be adopted to identify the orthologs and in-paralogs arising from a duplication event following 

the speciation 
56

. These results reveal that Z-scores and ranks scoring methods are 

complementary. 

Table 2-2 shows an example for illustrating processes and robustness of combining the 

top-ranked strategy and Z-score methods. Using human calcineurin heterodimer (PDB code 

1aui) structure as query, the 3D-domain interolog mapping yielded 1096 PPI candidates in 38 

species if the Z score is set to 2. These 1096 candidates possess the interacting domains (i.e. 

Metallophos and efand domains) of the query template. Among these PPI candidates, 10 PPIs 

were recorded in IntACT and 9 candidates were considered as negative PPIs because their CC 

RSS scores are less than 0.4. The ranks of these 9 negative PPIs are more than 15; conversely, 

these 10 positive PPIS are top 10 in each species. These observations showed that the 

top-ranked strategy is useful to dramatically reduce the false positive rate when the 3D-domain 

interolog mapping for predicting PPIs across multiple complete genomes. 

Table 2-2. 3D-interologs search results using human calcineurin heterodimer as the query 

Interactor1 Interactor2 Species Z score Rank P / N
a
 

RSS of 

BP 
b
 

RSS of 

CC 
c
 

Interacting 

domain1 

Interacting 

domain2 

P48456 P48451 Fruit fly 8.98 1 P 0.89 0.85 Metallophos efand 

P23287 P25296 Yeast 8.25 1 P 0.88 1.00 Metallophos efand 

P14747 P25296 Yeast 7.95 2 P 0.88 1.00 Metallophos efand 

Q12705 Q9UU93 Yeast 7.94 1 P - 
d
 0.78 Metallophos efand 

P48456 P47948 Fruit fly 4.42 16 N 0.41 0.30 Metallophos efand 

P48456 P47949 Fruit fly 4.38 17 N 0.41 0.30 Metallophos efand 

P48456 P49258 Fruit fly 3.99 23 P 0.41 0.56 Metallophos efand 

P48456 Q9VQH2 Fruit fly 3.94 25 N 0.49 0.33 Metallophos efand 

Q8IAM8 P62203 
Plasmodium 

falciparum 
3.79 2 P - - Metallophos efand 

P48456 P48593 Fruit fly 3.72 31 P 0.35 0.56 Metallophos efand 

P48456 A1ZAE1 Fruit fly 3.59 34 N 0.00 0.30 Metallophos efand 

Q27889 P48593 Fruit fly 3.42 40 P - - Metallophos efand 

P23287 P06787 Yeast 3.36 5 P 0.61 0.88 Metallophos efand 

P48456 Q9VMT2 Fruit fly 3.03 50 N 0.41 0.30 Metallophos efand 

P48456 Q7K860 Fruit fly 2.99 53 N 0.41 0.30 Metallophos efand 

P14747 P06787 Yeast 2.86 6 P 0.61 0.88 Metallophos efand 

P48454 Q9NP86 Human 2.33 90 N - 0.00 Metallophos efand 

Q08209 Q9NP86 Human 2.31 91 N 0.41 0.00 Metallophos efand 
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P16298 Q9NP86 Human 2.31 91 N - 0.00 Metallophos efand 

3D-interologs infers 10 positive and 9 negative protein-protein interactions by human calcineurin heterodimer 

(PDB code 1aui), including calmodulin-dependent calcineurin A subunit alpha isoform (chain A with interacting 

domain Metallophos) and calcineurin subunit B type 1 (chain B with interacting domain efhand), searching on 

Integr8 database.  
a
 PPI is a positive (P, recorded in IntACT database) or negative case (N, RSS of cellular component is less than 

0.4). 
b,c

 The relative specificity similarity (RSS) scores, proposed by Wu et al. 
69

, of Gene Ontology biological process 

(BP) and cellular component (CC), respectively.   
d
 The protein pair is without Gene Ontology annotations in BP or CC. 

 

2-7. Conclusions  

This work demonstrates that the 3D-interologs database is robust and feasible for the 

interacting evolution of PPIs and DDIs across multiple species. This database can provide 

couple-conserved residues, interacting models and interface evolution through 3D-domain 

interolog mapping and template-based scoring functions. The scoring function achieves good 

agreement for the binding affinity in protein-protein interactions. We believe that the 

3D-domain interolog mapping should be useful in protein-protein interacting evolution and is 

able to infer reliable physical protein-protein interactions across multiple genomes.  
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Chapter 3. PCFamily: a web server for searching 

homologous protein complexes 

 

The proteins in a cell often assemble into complexes to carry out their functions and play 

an essential role of biological processes. The PCFamily server identifies template-based 

homologous protein complexes (called protein complex family) and infers functional modules 

of the query proteins. This server first finds homologous structure complexes of the query 

using BLASTP to search the structural template database (11,263 complexes). PCFamily then 

searches the homologous complexes of the templates (query) from a complete genomic 

database (Integr8 with 6,352,363 protein sequences in 2,274 species). According to these 

homologous complexes across multiple species, this sever infers binding models (e.g. 

hydrogen bonds and conserved amino acids in the interfaces), functional modules, and the 

conserved interacting domains and Gene Ontology annotations of the protein complex family. 

Experimental results demonstrate that the PCFamily server can be useful for binding model 

visualizations and annotating the query proteins. We believe that the server is able to provide 

valuable insights for determining functional modules of biological networks across multiple 

species. The PCFamily sever is available at http://pcfamily.life.nctu.edu.tw. 

 

3-1. Introduction 

Protein complexes are fundamental units of macromolecular organization and their 

composition is also known to vary according to cellular requirements 
7
. To identify and 

characterize the protein complexes, genome-scale interaction discovery approaches, such as 

two-hybrid system or affinity purification 
70,71

, have been proposed. However, these methods 

are often unable to respond how a protein interacts with others. Based on increasing 

http://pcfamily.life.nctu.edu.tw/
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protein-protein interactions (PPI) 
8,9,28,29

 and structure complexes 
31

, previous studies have 

suggested that the total number of protein-protein interaction types are limited (~10,000 types) 

72
 and the quaternary structures (QS) can be clustered into 3,151 QS families 

73
. 

A known three-dimensional (3D) structure complex provides physical protein interaction 

topology, interacting domains, and atomic detailed binding models of interactions. Recently, 

some studies utilized template-based methods (i.e. comparative modeling 
32

 and fold 

recognition 
33

), which search a 3D-complex library to model a large set of yeast complexes 
45,74

. 

These methods are time-consuming to search all possible homologous PPIs or complexes, 

which are useful to explore interface evolutions of a specific 3D structure complex, from a 

large complete genomic database (e.g. Integr8) with many species 
30

. 

To address these issues, we numerously enhanced and modified both PPI family search 

(sequence-based PPI search method 
23

) and 3D-domain interologs with template-based scoring 

function (3D-template PPI prediction method 
39

). According to our knowledge, PCFamily is 

the first public server that identifies homologous complexes (≥ two proteins) and module 

evolution of the query. For a set of query protein sequences, this server provides the 

template-based homologous complexes (called protein complex family (PCF)) in multiple 

species, graphic visualization of conserved interacting residues and binding models (interfaces), 

conserved Gene Ontology (GO) annotations 
36

 and interacting domains. Our results 

demonstrate that this server achieves high agreements on interacting domains and GO 

annotations between query proteins and their respective homologous complexes. 

 

 

3-2. Method and Implementation 
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Figure 3-1. Overview of the PCfamily server for homologous complexes search using proteins Skp1, Skp2, and 

Cks1 of Rattus norvegicus as the query. 

(A) The main procedure. (B) Identify the template candidate (PDB code 2ast) of the query using BLASTP and 

template-based scoring function to scan the structural template database. (C) The topology of the template. (D) 

The homologous PPI families of interfaces A-B and B-C of the template searching on Integr8 database. (E) 

Template-based homologous complexes of the query. 

 

Figure 3-1 shows the details of the PCFamily server to search the template-based 

homologous complexes (PCF) of a set of query protein sequences by following steps (Fig. 
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39
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selected, the server searches the PPI family of each interface of template with Z-value ≥ 3.0 

from a complete genomic database (Integr8 version 103, containing 6,352,363 protein 

sequences in 2,274 species) 
30

 (Figs. 3-2A and 3-1D). These PPI families are combined into 

homologous complexes with the significant complex similarity (joint Z-value ≥ 3.0) according 

to the interfaces of the 3D-complex template (Fig. 3-1E). For this PCF including the query, we 

measured the conservation ratio (CR) of the domain composition (DC) and CRs of biological 

processes (BP), cellular components (CC), and molecular functions (MF) using Gene Ontology 

annotations. Finally, this server provides homologous complexes; graphic visualization of 

complex topology; detailed residues interactions and interface alignments across multiple 

species (Fig. 3-2); conservations with GO annotations and DCs. 

 

Figure 3-2. Binding models and multiple sequence alignments of PPI family in Skp1-Skp2-Cks1 complex (PDB 

code 2ast). 

(A) The atomic binding model with hydrogen bonds (red dash lines) for each interface of the template. (B) 

Multiple sequence alignments of PPI family of the interface A (Skp1)-B (Skp2), respectively. 
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The concept of homologous complex (≥ two proteins) is extended from homologous PPIs 

23
 and 3D-domain interologs with template-based scoring function 

39
. Here, we used a 

3D-trimer template T (proteins A, B, and C) with two interfaces A-B and B-C as a simple case 

to define the homologous complex of T as follows: (1) A', B' and C' are the homologous 

proteins of A, B, and C, respectively, with the significant sequence similarity (BLASTP 

E-values ≤10
-10

) 
40,44

; (2) A'-B' and B'-C' are the template-based homologous PPIs of A-B and 

B-C, respectively, with the significant interface similarity (Z-value ≥ 3.0) 
39

; (3) significant 

complex similarity (joint Z-value ≥ 3.0) between complexes A'-B'-C' and A-B-C. The joint 

Z-value of the complex similarity is defined as 

 


n

i iz ZJ
1  (1) 

where n is the number of interfaces of a template (T); Zi is the Z-value (interface similarity) of 

the template-based homologous PPI i (e.g. A'-B') based on the template interface (e.g. A-B). 

Here, JZ ≥ 3.0 is considered as significant similarity according to the statistical analysis of 941 

3D-structure complexes with 2,138,123 homologous complexes. 

Template-based scoring function 

We have recently proposed a template-based scoring function to determine the reliability 

of the PPI derived from a 3D-dimer structure 
39

. For a predicted template-based PPI, this 

scoring function assigned a score, including residue-residue interacting scores, which consist of 

the steric (Evdw) and hydrogen-bond (ESF) energies, and sequence consensus scores which the 

couple-conserved residue score (Econs) and contact-residue similarity score (Esim). Finally, we 

calculated the Z-value of the score for this PPI using the mean and standard deviation of 

10,000 random interfaces by mutating 60% interface residues.  

Annotations of homologous complexes 
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A 3D-complex template and its homologous complexes can be considered as a PCF. The 

concept of the PCF is analogous to the notions of protein sequence family 
20

, protein structure 

family 
22

 and PPI family 
23

. We believe that PCFs can be applied widely in biological 

investigations. We assume that the members of a PCF are conserved on GO annotations, 

interacting domain(s) and binding model(s). Using these conservations of a PCF, the PCFamily 

server can annotate the GO terms (BP, CC, and MF) and DCs of query proteins. To statistically 

evaluate the agreement of GO terms and DCs between the template and its PCF (with N 

homologous complexes), we define the agreement ratio (AR) using the conservation ratio 

(CR=Na/N), where Na is the number of homologous complexes with the same GO term (or DC) 

in a PCF. The AR is given as 

))(/)((  Qi ii cCRTcCRAAR
 (2) 

where Q is a set of query templates; Ti (CR≥ c) is the total number of the GO terms (or DCs) of 

template i when CR ≥ c; Ai (CR ≥ c) is the number of the agreement GO terms (or DCs) of 

template i when CR ≥ c. 

3-3. Input, Output and Options 

PCFamily is an easy-to-use web server (Fig. 3-3). Users input a single or a set of protein 

sequence(s) in FASTA format or a 3D-complexes protein structure (PDB code) (Fig. 3-3A). 

Typically, the PCFamily server yields structural template candidates within 25 seconds when 

querying three sequences and the numbers of amino acids are ≤ 450 (Fig. 3-3B). For the query, 

this server shows the template candidate and its PCF; detailed atomic interactions of the 

interfaces and binding models by using Jmol 
75

; protein interaction topology (Fig. 3-3C); 

multiple sequence alignments (MSA) with hydrogen-bond residues and conserved residues 

(Fig. 3-3D); and CRs of DCs and GO terms (BP, CC and MF) (Fig. 3-3E). 
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Figure 3-3. The PCfamily server search results using proteins Epor, Epo, and Epor of Mus musculus as the query. 

(A) The user interface for inputting the query protein sequences or PDB code. (B) The template candidate of the 

query. (C) The numbers of conserved domains and GO term conservations, interfaces, protein interaction topology, 

homologous complexes of the query (selected template). (D) Multiple sequence alignments and interacting residue 

conservations of homologous PPIs of the interface A (Epo)-B (Epor), respectively. (E) Conserved domain and GO 

term compositions of the protein complex family. 

 

… …

… … … … … … …

A B
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D E
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3-4. Example Analysis 

The complex of Skp1, Skp2, and Cks1 

Figure 3-1 shows search results using S-phase kinase-associated protein 1 (Skp1, UniProt 

accession number: Q6PEC4), S-phase kinase-associated protein 2 (Skp2, B2GUZ0), and 

RGD1561797 protein (Cks1, B2RZ99) of Rattus norvegicus as the query. Skp1 and Skp2 are 

subunits of the SCF
Skp2 

ubiquitin ligase complex that regulates proteolysis of the p27
Kip1 

protein 

in cell cycle progression 
76,77

. Recognition and ubiquitination of p27
Kip1 

requires the accessory 

protein Cks1 by the SCF
Skp2 

ubiquitin-ligase complex 
76

. According to KEGG pathway 

database 
78

, Skp1-Skp2 and Skp2-Cks1 in Rattus norvegicus are recorded in the ubiquitin 

mediated proteolysis pathway and the small cell lung cancer pathway, respectively. For this 

query, the PCFamily server found the template candidate (PDB code 2ast 
76

) (Fig. 3-1C) and 43 

homologous complexes (called SCF complex family), from nine species (e.g. Homo sapiens, 

Rattus norvegicus, and Bos taurus (Fig. 3-1E)). Among these 43 homologous complexes, one 

complex (Homo sapiens) is recorded in the IntAct database 
8
 and three homologous complexes, 

including the query in Rattus norvegicus, Q9WTX5 (Skp1)-Q9Z0Z3 (Skp2)-P61025 (Cks1b) 

in Mus musculus, and Q3ZCF3 (SKP1)-A7MB09 (SKP2)-Q0P5A5 (CKS1B) in Bos taurus, are 

recorded in KEGG pathway. In addition, 6 members are Skp1-Skp2-Cks1b (or Cks2) 

complexes which are highly relative to the query and the template. All members of this PCF 

have the same DC PF01466 (Skp1)-PF00646 (F-box)-PF01111 (CKS) and a high consensus 

DC PF03931 (Skp1_POZ)-PF00646-PF01111 (CR=0.95). The query proteins consist of these 

two DCs (Fig. 3-1E). 

The PCFamily server provides the binding model and MSAs of each interface (Figs. 3-2 

and Fig. 3-4) based on the template. Interface A-B (Fig 3-2A) contains 3 main hydrogen bonds, 

including Gln1097-Trp2097, Glu1156-Tyr2128, and Asn1157-Ser2121. These six residues are 

conserved in mammals (Fig 3-2B). Additionally, PCFamily identifies six sidechain-sidechain 
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hydrogen bonds forming the network to stabilize the interface B-C 
76

 (Fig. 3-4). All interacting 

residues forming the hydrogen bonds are often highly conserved and useful for observing the 

interface evolution across multiple species. 

 

Figure 3-4. Binding models and multiple sequence alignments of PPI family in Skp1-Skp2-Cks1 complex (PDB 

code 2ast). 

(A) The atomic binding model with hydrogen bonds (red dash lines) for each interface of the template. (B) 

Multiple sequence alignments of the interface B-C (Skp2-Cks1). This interface includes 11 and 26 homologous 

proteins of the chains B (Skp2) and C (Cks1), respectively. 

 

Epor-Epo-Epor complex 

Erythropoietin (Epo) stimulates the proliferation and differentiation of the cells (e.g. 
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erythroid precursor cells) 
79,80

. Epo binds and orientates two cell-surface erythropoietin 

receptors (Epor) to activate cells and trigger an intracellular phosphorylation cascade 
81

. Using 

Mus musculus Epor (P14753), Epo (P07321), and Epor (P14753) as the query proteins (Fig. 

3-3A), the PCFamily server found the template candidate (PDB code 1eer) (Fig. 3-3B) and its 

6 homologous Epor-Epo-Epor complexes in three species (Fig. 3-3C). Among these 6 

complexes, three complexes, P19235-P01588-P19235 (Homo sapiens), 

P14753-P07321-P14753 (Mus musculus) and Q5FVS4-P29676-Q5FVS4 (Rattus norvegicus) 

are recorded in KEGG. Two complexes are formed by Epo (P29676) binding to Epors Q07303 

79
 and O35545 

82
, respectively. PCFamily indicates the MSAs with hydrogen-bond and 

conserved residues in the interfaces A-B (Fig. 3-3D) and A-C (Fig. 3-5) of Epor-Epo-Epor 

PCF. 

 

Figure 3-5. Multiple sequence alignments of the (Epo-Epor) A-C interface of template cytokine/receptor complex 

(PDB code 1eer). 

This interface includes five and six homologous proteins of the chains A (erythropoietin) and C (erythropoietin 

receptors), respectively. 
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This PCF includes 65 GO term compositions. Among these GO term compositions, the 

CR ratios of two MF compositions and three CC compositions exceed 0.6 (Fig. 3-3E). The 

query has these five GO term compositions, such as GO:0004900 (erythropoietin receptor 

activity)-GO:0005128 (erythropoietin receptor binding)-GO:0004900. Additionally, the query 

and these homologous complexes consistently contain two conserved DCs (CR=1), including 

PF00041-PF00758-PF00041 and PF09067-PF00758-PF09067. PF00758-PF00041 and 

PF00758-PF09067 are recorded in iPfam 
35

. These results reveal that the PCFamily server can 

identify homologous complexes for the interface evolution and annotations of the query. 

 

3-5. Results 
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Figure 3-6. Evaluations of the PCFamily server on 941 protein complex families. 

(A) The distributions of recall (solid) and precision (dot) with different joint Z-value thresholds. (B) The 

relationships between agreement ratios and the conservation ratios of domain compositions (DC), biological 

processes (BP), molecular functions (MF), and cellular components (CC). 

 

To evaluate the accuracy of the PCFamily server for discovery of homologous complexes 

and the annotations of query proteins, we selected a non-redundant query structural template 

set. This set comprising 941 protein complexes (2,979 sequences and 2,042 interfaces, called 

NR941) was selected from the PDB released in Feb 24, 2006. For searching homologous 
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complexes, NR941 was used to assess PCFamily performance and to determine the threshold 

of joint Z-value Jz (Equation (1)) on the Integr8 database (Fig. 3-6A). In addition, the NR941 

set was applied to calculate CRs of DCs (and GO terms) for each PCF and infer the relations 

between CRs and ARs (Equation 2) of DCs and GO terms (Fig. 3-6B). 

We defined the gold standard positive and negative sets to measure the performance of the 

PCFamily server. Here, we used a trimer structural template T (proteins A, B, and C) with two 

interfaces A-B and B-C as a simple case to describe a positive complex (A'-B'-C') of T as 

follows: (1) A', B' and C' are homologs of A, B, and C, respectively, with the significant 

sequence similarity (BLASTP E-values ≤10
-10

) 
40,44

; (2) A'-B' and B'-C' are PPIs recorded in 

annotated PPI databases (e.g. IntAct) and have the same interacting domains of A-B and B-C, 

respectively. Based on the rules, the gold standard positive set includes 770 complexes derived 

from the Integr8 for the set NR941. On the other hand, the gold standard negative set was 

generated according to the assumption that proteins, located in the same subcellular 

localization and acting in the similar biological processes, are more likely to form a complex 

than proteins involved in different processes. This study applied the relative specificity 

similarity (RSS) 
69

 to measure the BP and CC similarities of PPIs based on the GO terms. 

According to 198,882 interactions in IntAct database, we considered a complex candidate is a 

negative case, if BP and CC RSS scores of any interface of the complex are less than 0.4 (Fig. 

3-7). Here, the negative set consists of 1,960 complexes. 

Precision, recall and F-measure were utilized to assess the reliability of the PCFamily 

server for searching homologous complexes. The F-measure is given as (2 × precision × recall) 

/ (precision + recall) where the precision and recall using the gold standard positive and 

negative sets. Figure 3-6A shows the relationships between joint Z-value Jz and recall and 

precision using 941 complexes on the Integr8 database. The recall significantly decreases when 

joint Z-value ≥ 3; conversely, the precision increases slightly when joint Z-value is between 3 
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and 4. The recall and precision are 0.82 and 0.45, respectively, and the PCFamily server yields 

the highest F-measure value (0.55) if the threshold of joint Z-value is set to 3. 

Figure 3-6B shows the relationships between ARs and the CRs of DCs, BP, CC, and MF. If 

the CR of DCs is greater than 0.6 (black), the AR between the query and their respective 

homologous complexes exceeds 0.95 (Equation 2). If the CR of GO terms (i.e. BP, CC, and MF) 

is greater than 0.6, the ARs are consistent larger than 0.74 for BP (0.77, green), CC (0.74, 

yellow), and MF (0.75, red). These experimental results demonstrate that this server achieves 

high agreements on DCs and GO terms between the query (i.e. template complexes) and their 

respective homologous complexes. 

 

Figure 3-7. The distributions of the biological process (BP) and cellular component (CC) RSS scores on 84,082 

protein-protein interactions selected from the IntAct database. 

Among 198,882 interactions recorded in IntAct, 84,082 interactions can be calculated the BP and CC RSS scores. 

The BP and CC RSS scores of 14,188 (16.88%) and 1,742 (2.07%) interactions, respectively, are less than 0.4. 
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3-6. Conclusions 

This study demonstrates the utility and feasibility of the PCFamily server in identifying 

homologous complexes and inferring conserved domains and GO terms from protein complex 

families. PCFamily is the first server to provide homologous complexes in multiple species; 

graphic visualization of the complex topology and detailed atomic residue-residue interactions; 

interface alignments; conservations of GO terms and domain compositions. Our experimental 

results demonstrate that the query and its homologous complexes achieve high agreements on 

domains and GO terms. We believe that PCFamily is a fast homologous complexes search 

server and is able to provide valuable insights for determining functional modules of biological 

networks across multiple species.  
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Chapter 4. Structural interactome of multiple vertebrate 

genomes though homologous protein-protein interactions 

 

A crucial step toward understanding the spatiotemporal dynamics of a cellular system is to 

investigate protein-protein interaction (PPI) networks and biochemical progress. Currently, the 

large-scale methods are often unable to respond how a protein interacts with another one within 

a given PPI network and describe the relationship between the mutation of proteins and disease 

syndrome. To address this issue, we numerously enhanced and modified our previous PPI 

family search and 3D-domain interologs with template-based scoring function. Our method 

could efficiently enlarge the PPIs annotated with residue-based binding models in structure 

resolved networks in H. sapiens, M. musculus, and D. rerio. This work is the first to construct 

structure resolved PPI networks across multiple species, including H. sapiens, M. musculus, 

and D. rerio. The PPIs with atomic residue-based binding models in the derived structure 

resolved network achieved highly agreement with Gene Ontology similarities. Furthermore, 

the architecture of these networks is a scale-free network which is consistent with most of the 

cellular networks. In addition, our derived networks can be used to observe the consensus 

proteins and modules which are high conserved appearing in multiple organisms. These 

consensus proteins are often the essential genes and related to diseases recorded in OMIM. 

Experimental results also indicate that the mutations of interacting residues on the PPIs often 

related to diseases are often on. Our results demonstrate that the structure resolved PPI 

networks in vertebrates can provide valuable insights for understanding the mechanisms of 

biological processes. 
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4-1. Introduction 

A crucial step toward understanding the spatiotemporal dynamics of a cellular system is to 

investigate protein-protein interaction (PPI) networks and biochemical progress 
3,83,84

. Many 

high throughput experimental methods, such as high-throughput yeast two-hybrid screening 

25,26
 and co-affinity purification 

27
, and computational approaches have been proposed to 

construct the PPI network within an organism. These large-scale methods are often unable to 

respond how a protein interacts with another one and describe the relationship between the 

mutation of proteins and disease syndrome. Previous studies have combined protein structure 

information with experimental PPIs to investigate how mutations affect protein interactions in 

disease 
14-16

. Based on experimental PPIs, a structurally resolved human protein interaction 

network has been reconstructed to examine the relationships between genes, mutations and 

associated disorders 
16

. These experimental PPIs were distributed on several well-studied 

organisms (e.g. S. cerevisiae); conversely, the PPIs of most species were not complete. For 

example, the numbers of PPIs for D. rerio (227) and Mus musculus  (7,736) recorded in five 

public databases 
8-10,85,86

 (e.g. BioGRID and IntAct).  

To discover the sequence homologs of a known protein provides the clues for 

understanding the function of a newly sequenced gene. We have provided "protein-protein 

interaction family" to annotate genome-scale PPIs through the homologous PPIs 
23

 searching 

the complete genomic database (Integr8, containing 6,352,363 protein sequences in 2,274 

species) 
30

. Furthermore, a known three-dimensional (3D) structure complex could provide 

interacting domains, and atomic detailed binding models of interactions. Some methods have 

utilized template-based methods (i.e. comparative modeling 
32

 and fold recognition 
33

) to 

predict the PPIs by accessing interface preference through the fitness of known template 

structures. However, these methods 
32,33

 are time-consuming to search all possible 

protein-protein pairs in a large genome-scale database across multiple species. Therefore, to 



 

48 

 

further utilize both "protein-protein interaction family" and 3D structure complexes, we are 

able to construct structure resolved PPI networks with binding mechanisms in multiple 

organisms. 

To address this issue, we numerously enhanced and modified our previous PPI family 

search (sequence-based PPI search method 
23

) and 3D-domain interologs with template-based 

scoring function (3D-template PPI prediction method 
87

). Our method could efficiently enlarge 

the PPIs annotated with residue-based binding models in structure resolved networks in H. 

sapiens, M. musculus, and D. rerio. For each structure resolved network, we investigated the 

reliability by using the Gene Ontology and the network architecture (i.e. scale-free network). In 

addition, our method can identify the conserved proteins and network modules across multiple 

networks. These conserved proteins are highly related to the essential genes and diseases 

recorded in "Online Mendelian Inheritance in Man (OMIM 
11

)". Furthermore, we demonstrated 

that these disease-related mutations are more enrichment on the interacting residues, especially 

forming the hydrogen bonds. These results indicate that the structure resolved PPI networks 

can provide the insight for understanding the mechanisms of biological processes and 

interactomes. 

 

4-2. Methods and Materials 

Constructing the structural resolved PPI networks 

A major challenge of systems biology is to understand the networks of interacting genes, 

proteins and small molecules that produce biological functions. For efficiently enlarging 

protein interactions annotated with residue-based binding models, we have proposed the 

concept "3D-domain interolog mapping 
39,87

": for a known 3D-structure complex (template T 

with chains A and B), domain a (in chain A) interacts with domain b (in chain B) in one species. 
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The proteins of the homolog families A' and B' of A and B have the significant sequence 

similarity (i.e. BLASTP E-values ≤10
-10

) and contain interacting domains a and b, respectively. 

All possible protein pairs between these two homolog families are considered as 

protein-protein interaction candidates using the template T. Then, we utilize our previous 

scoring system 
39,87

 to evaluate the binding model similarity between candidates and template. 

According to this concept, protein sequence databases can be searched to annotated 

protein-protein interactions across multiple species efficiently. 

 

Figure 4-1. The overview of constructing structure resolved PPI networks in three vertebrates though "3D-domain 

interolog mapping" 

(A) 3D-domain interolog mapping is used to infer the homologous PPIs through structural templates and complete 

genome databases. (B) The structure resolved PPI networks of H. sapiens, M. musculus, and D. rerio. (C)The 

human PPI network with the disease data derived from the OMIM. The size and color of a node (protein) denote 

the numbers of interactions and diseases, respectively. 

 

Figure 4-1 illustrates the overview of constructing structure resolved PPI networks in 

three vertebrates though "3D-domain interolog mapping". First, a structure template library 

A

B

C
Complete genomic 
database,Integr8

(6,352,363 protein 
sequences in 2,274 species)

Structural template database
(24,815 structural templates 

and 60,618 structural 
complex)

Homologous protein-protein interaction family 
across multiple species

>50 interactions

25~50 interactions

<25 interactions

H. sapiens

M. musculus

D. rerio
0 diseases

1-2 diseases

3-9 diseases

10+ diseases

Structure resolved network in three vertebrates

cancers

cardiovascular-
related diseases

FGFR2

FGFR3



 

50 

 

comprising 60,618 3D-dimers involved in 24,815 complexes was selected from the protein 

data bank (PDB
88

) released in Sep 2, 2011 (Fig. 4-1A). The interacting residues and scoring 

functions defined by using our previous studies 
39,87

 were used to identify the similar binding 

interfaces of PPIs. After 3D-dimer template library and template profiles were built, we 

inferred homologous PPIs of each interface of the template with Z-value ≥ 3.0 from a complete 

genomic database (Integr8 
89

) (Fig. 4-1A). According to these homologous PPIs in H. sapiens, 

M. musculus, and D. rerio, we constructed and aligned these structure resolved PPI networks 

(Fig. 4-1B). 

 

Multiple network alignment 

The methods for network alignments can be roughly divided into global alignment and 

local alignment. By searching for a single comprehensive PPI network mapping of the whole 

set of proteins and protein interactions from different species
90

, the global network alignment 

can answer interactome evolutions with conserved and specific proteins (and PPIs). Two basic 

issues should be addressed for a network alignment method. Firstly, an alignment method 

should provide the importance (such as hub and conservations) of proteins and PPIs in multiple 

networks across species. Second, for a selected protein and PPI, the score function of an 

alignment method should reflect the similarity of the aligned proteins and PPIs in the networks. 

Here, we described a new global network alignment method based on "3d-domain interologs 

mapping". According to the definition of the "3d-domain interologs mapping", the 

protein-protein interactions of the same family share the same interacting domains and have the 

similar binding models. Therefore, for a specific PPI, these PPIs could be considered as the 

corresponding PPI alignment candidate in other organisms. 

Our global alignment method applied a greedy strategy which the PPI with highest 
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importance is aligned with the highest priority. Here, we evaluated the importance of a given 

PPI (I) within the network based on the degree, conservation, and PPI reliability. Two proteins, 

forming a PPI, with a higher degree are usually the hub in a network. The degree (DI) of a PPI 

forming by proteins a and b is defined as DI = Da + Db, where the Da and Db are the degrees 

of proteins a and b, respectively. The PPI involving in many organisms is usually the essential 

PPI and plays an important role for biological functions and processes. Therefore, the 

evaluation conservation (CI) of a PPI (I) is defined as CI = TaxI /11, where TaxI is the number 

of taxonomy divisions, defined by the NCBI taxonomy database 
91

, of the interacting proteins 

in the PPI I family. Here, the maximum number of taxonomy divisions is 11. Finally, the 

reliability (RI) of a PPI is defined as RI = (EI + TI) / 2, where EI is 1 if the PPI I was recorded 

in five public PPI databases (e.g. IntAct
8
, DIP

9
, MIPS

28
, BioGRID

10
, and MINT

29
); otherwise, 

EI is 0. The TI is set to 1 while the 3D-dimer template and the PPI I are in the same organism; 

otherwise, TI is 0. Final, the importance (S) of a given PPI (I) is calculated by S=CI + RI + TI. 

The network alignment algorithm 

Given three structural resolved PPI networks of H. sapiens (NH), M. musculus (NM), and D. 

rerio (ND), we provided multiple network alignment by aligning NM and ND to NH and the 

algorithm is summarized in Figure 4-2 and proceeds as follows: 

(1) For each PPI of NH, NM and ND, we calculate the importance (S) of the PPI by using 

the equation (S=CI + RI + TI) describing in previous paragraph. 

(2) After calculating the all importance of all PPIs among the NH, each PPI gets the 

priority according to the value of importance. Then, Greedy picking the PPI I with the 

highest value of importance and its corresponding PPI IH family (FH). 

(3) Selecting the most similar PPI IM and ID of M. musculus and D. rerio, respectively, in 

the FH based on the significant joint sequence similarity between two pairs, i.e., (A, 
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A1') and (B, B1'), of the I (A and B) and IM (A1' and B1'). This work followed previous 

studies 
23,40,44

 to define joint sequence similarity as 𝐽𝐸 = √𝐸𝐴 × 𝐸𝐵. EA is the E-value 

of proteins A and A1'; and EB is the E-value of proteins B and B1'. 

(4) If the IM and ID exist, the I is an alignable PPI of NH and the summarized importance S' 

= SH + SM + SD; otherwise, I is a human-specific PPI and S' is 0. 

(5) Repeat the steps (4) and (5) until all PPIs of are NH are assigned as alignable or 

human-specific PPIs with S'. 

(6) Greedy aligning networks by choosing PPI alignment which I, IM, and ID have the 

highest summarized importance S'. 

(7) Repeat the steps (4) and (5) to find the next PPI alignment with the highest 

summarized importance S'. 

(8) Repeat step (7) until all PPIs of NH, NM, and ND are aligned. 

 

Figure 4-2. Conceptual overview of alignment procedure. 
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Finally, we identified 1,887 proteins and 5,845 PPIs which are consensus in structure 

resolved PPI networks of H. sapiens, M. musculus, and D. rerio. 

 

Collecting the list of disease-associated genes, mutations, and diseases 

To further investigate the relationship between disease-associated genes and mutations in 

the structure resolved human PPI networks, we collected the disease-related mutations from 

OMIM 
11

 database. The database of single nucleotide polymorphisms (dbSNP 
92

, build 132) is 

a public-domain archive for a broad collection of simple genetic polymorphisms. According to 

OMIM 
11

 database which contains the relationships between genes and diseases, we collected 

all "OMIM-curated-records" from the dbSNP database. We got 15,995 mutations including 

in-frame and truncating mutations in 1,949 genes. For the further analysis, we selected the 

2,202 mutations in 137 genes to validate the structurally resolve human PPI network with 

annotations of mutations and diseases (Fig. 4-1C). Here, the sizes and color distributions of the 

nodes (proteins) denote the numbers of interactions and diseases, respectively. The larger node 

represents the protein with the more number of PPIs and the red node denotes the protein with 

the more number of diseases. There are two main disease hubs (No. of disease > 10): TGFR4 

and TGFR3 with 14 and 13 diseases, respectively.  

 

4-3. Results 

Structure resolved PPI networks of H. sapiens, M. musculus, and D. rerio 

For evaluating the structural PPI network annotated with residue-based binding models, 

we compared the numbers of the proteins and PPIs in our structure resolved PPI networks with 

ones of the human structural PPI network 
16

 which can only be applied on the well-studied 
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species. According to PPI recorded in five public databases, the number of PPIs in human 

(67,596 PPIs) is significantly more than the ones of mouse (7,735 PPIs) and zebrafish (221 

PPIs) (Table 4-1). The method proposed by Wang, X. J. et al. 
16

 would not be useful to apply to 

the mouse and zebrafish because this methods considered both the experimental PPIs and 

protein structures. Conversely, our method using "3d-domain interologs mapping" and "PPI 

family is able to efficiently enlarge PPIs annotated with residue-based binding models, 

especially useful for seldom-studied organisms (e.g. zebrafish) or new sequencing organisms. 

Although most of the PPIs derived from our "3d-domain interologs mapping" are still not 

confirmed by experiments, our previous works have achieved the high annotating precision and 

high agreement with ddG of experimental binding energies and experimental PPIs 
23,24,39,87

. 

Table 4-1. Statistics of proteins and PPIs derived from our result, public databases, and Wang, X. J. et al. on H. 

sapiens, M. musculus, and D. rerio 

Species 
No. proteins 

in genome
*1

 

3D-domain interologs Five public databases
*2

 Wang, X. J. et al 
16

. 

No. proteins No. PPIs No. proteins No. PPIs No. proteins No. PPIs 

H. sapiens 56,006 9,493 39,058 12,206 67,596 2,816 4,222 

M. musculus 36,379 7,689 33,125 4,177 7,735 - - 

D. rerio 21,601 5,084 21,236 137 221 - - 

*1
 The number of proteins in a specific genome is calculated by using the Integr8 database. 

*2
 The experimental PPIs are derived from five public databases (IntAct, MIPS, DIP, MINT, and BioGRID) 

 

To further verify the quality of our structure resolved PPI networks, we utilized the Gene 

Ontology (GO) 
93

 similarities, including biological process (BP), cellular component (CC), and 

molecular function (MF), between interacting protein pairs and all protein pairs in a structural 

PPI network. Here, we applied the relative specificity similarity (RSS) 
69

 to measure the GO 

similarities between two proteins. Figure 4-3 illustrates the RSS score distributions of BP, CC, 

and MF on interacting protein pairs and all protein pairs in the structural PPI network. GO 

annotations of BP, CC, and MF of are enrichment while the RSS scores are higher than 0.7 (Fig. 

4-3). In addition, the RSS scores of interacting protein pairs are significantly greater than the 

ones of all pairs by using the Mann–Whitney U test (p-value < 10
-40

) which is a non-parametric 
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statistical hypothesis test. The RSS score distributions of BP, CC, and MF on interacting 

protein pairs and all protein pairs within the mouse and zebrafish networks (Fig. 4-4) are 

similar to ones of the human network. These results illustrate the importance of structural 

resolution and imply that the PPIs in our structure resolved PPI networks significantly share 

the similar GO annotations. 

 

Figure 4-3. The distributions of relative specificity similarity (RSS) of BP, CC, and MF of the interacting protein 

pairs in the derived structural PPI networks 

(A) The BP RSS distributions of 10,163 interacting protein pairs and all protein pairs (3,925,772 pairs). (B) The 

CC RSS distributions of 9,254 interacting protein pairs and all protein pairs (3,424,256 pairs). (C) The MF RSS 

distributions of 12,387 interacting protein pairs and all protein pairs (4,331,532 pairs). The protein pairs with BP 

(CC or MF) annotations are considered. The BP, CC, and MF RSS scores of interacting pairs have a significantly 

enrichment while RSS score >= 0.7. The interacting pairs have significantly higher RSS scores than the ones of 

random pairs in the networks according to the Mann–Whitney U test (p-value < 10
-40

). 

 

A network with a power degree distribution is called scale-free, a name that is rooted in 

statistical physics literature. An important finding of the cellular network architecture is that 

most networks within the cell approximate a scale-free topology 
94

. Therefore, our structure 

resolved PPI networks of H. sapiens, M. musculus, and D. rerio were evaluated based on the 

characteristic of scale-free networks that the P(k), the probability of a node with k links, 

decreases as the node degree increases on a log-log plot (Fig. 4-5). Then, the degree exponent γ 

are 2.127, 2.088, and 1.958 in the structure resolved PPI networks of H. sapiens, M. musculus, 

and D. rerio, respectively. In general, the smaller the value of γ, the more important the role of 

the hubs is in the network. A scale-free network typically has degree exponents 2 ≤ γ ≤ 3, but 
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can also exist with exponents less than 2 
94,95

. This result is consistent with the architecture (i.e. 

scale-free network property) of some cellular networks 
95

.  

 

Figure 4-4. The distributions of BP, CC, and MF RSS scores on interacting protein pairs and all protein pairs 

within the mouse and zebrafish networks 

The BP, CC, and MF RSS scores have a significantly enrichment while RSS score >= 0.7 in both mouse and 

zebrafish networks. 

 

 

Figure 4-5. The node degree distributions of three structure resolved PPI networks: (A) H. sapiens, (B) M. 

musculus, and (C) D. rerio 

The degree exponent γ are 2.127, 2.088, and 1.958 in the structure resolved PPI networks of H. sapiens, M. 

musculus, and D. rerio, respectively. A scale-free network typically has degree exponents 2 ≤ γ ≤ 3, but can also 

exist with exponents less than 2. These three structural networks are scale-free networks. 
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The structure resolved PPI networks analysis 

To further investigate the biological meaning of our networks, we analyzed the grouping 

property of human network by using the Gene Ontology annotations. Here, we defined the 

grouping property of a network as that the proteins which are involved in similar process and 

located on similar cellular component would be the neighbors in a network. We identified four 

cellular components (i.e. nucleus, intracellular, membrane, and others) for each protein based 

on the CC annotations (Fig. 4-6A). We also identified six biological processes (i.e. immune 

response, transport, signal transduction, protein metabolic, nucleic acid metabolic process, and 

others) for each protein based on the BP annotations (Fig. 4-6B). 

 
Figure 4-6. Characteristics of the structure resolved protein network in H. sapiens using GO annotations. 

(A) According to GO cellular component (CC) annotations, proteins in structure resolved protein network can be 

annotated into four CC terms (groups), including 218 proteins in nuclear part (GO:0044428, red), 829 proteins in 

intracellular (GO:0005622, yellow), 1265 proteins in membrane (GO:0016020, green), and others (gray). (B) 

Based on biological processes, 281 proteins are annotated with nucleobase-containing compound metabolic 

process (e.g., transcription) (GO:0006139, red); 613 proteins are annotated with protein metabolic process (e.g., 

translation) (GO:0019538, yellow); 710 proteins are with signal transduction (GO:0007165, green); 364 proteins 

are with transport (GO:0006810, blue); and 436 proteins are with immune response (GO:0006810, black). 

Intracellular
Nucleus

Membrane
Others

Immune response
Transport
Signal transduction
Protein metabolic
Nucleobase-containing compound metabolic

A B

Others



 

58 

 

 

Figure 4-7. Six major cellular processes in our derived network of H. sapiens. 

According to the GO annotations (Fig. 4-6), our derived structure resolved PPI network could be grouped into six 

major cellular processes, including nucleic acid metabolic process (e.g., transcription); protein metabolic process 

(e.g., translation); intracellular signal transduction process; membrane signal transduction process; transport 

process; proteolysis process (e.g. proteasome); and immune responses. 

 

According to the GO annotations, our derived structure resolved PPI network could be 

grouped into six major cellular processes, including nucleic acid metabolic process (e.g., 

transcription); protein metabolic process (e.g., translation); intracellular signal transduction 

process; membrane signal transduction process; transport process; proteolysis process (e.g. 

proteasome); and immune responses. In addition, our PPI network can also reflect the 

communication of six major cellular processes (Fig. 4-7). The intracellular signal transduction 

plays an important role in our network. This process receives the signals which are provided 

from the membrane signal transduction (e.g. EGFR, FGFR, and other membrane receptors) and 

the immune response (e.g. T-cell receptor). In addition, the intracellular signal transduction also 

communicates with the transport process which locates in cell membrane and cytoplasm and is 
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Proteolysis

Transport

Membrane signal
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the peripheral portion of our derived network. The nucleic acid metabolic processes are the 

kernel processes of a living cell and could be regulated by the signal transduction. In our 

derived network, the nucleic acid metabolic process only communicates with the intracellular 

signal transduction and transport process. The results imply that the biological behavior of our 

derived network is consistence with our knowledge for a living cell. 

 

The consensus proteins, processes, and organism-specific processes 

According to "3d-domain interologs mapping" and the multiple network alignment 

described in Methods, we were able to compare these three vertebrate protein interaction 

networks (i.e. H. sapiens, M. musculus, and D. rerio) and identify the consensus proteins and 

protein-protein interactions. Here, we identified 1,887 consensus proteins and 5,845 consensus 

PPIs from 4,135 proteins and 21,648 PPIs of structure resolved human network. To further 

evaluate the biological meanings and network topologies of the consensus and non-consensus 

proteins, we investigated these consensus proteins according to the three dimensions, including 

the essential proteins; involving in diseases; and locating in the central part (e.g. hub) within 

the protein interaction network. 

Essential genes usually involve in the fundamental cellular processes which required for 

the survival of an organism. As a result, the essential genes are often highly conserved across 

multiple organisms 
96

. We collected the annotations of essential proteins from the Database of 

Essential Gene (DEG 
97

). Because few vertebrate proteins, especially in Homo sapiens, were 

recorded as are essential genes recorded in DEG, we identified the essential proteins (genes) of 

the Homo sapiens, Mus musculus, and Danio rerio by using BLAST to search orthologs of 

essential genes recorded in DEG from Integr8 
30

. To investigate the reliability of the orthologs 

mapping, we collected the orthologs protein data set (named ORT) from the COG database 
98
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and evaluated the relationship between the sequence similarity (i.e. BLASTP E-value) and 

orthologs protein pairs. The ORT set consists of 3,050,847 orthologs protein pairs and 112,920 

proteins. Figure 4-8 illustrates the sequence similarity distribution of these orthologs protein 

pairs. When sequence similarity (BLASTP E-value) ≥ 10-70, the number of all protein pairs 

significantly increase to cause the decreasing of the precision (No. orthologs protein pairs / No. 

all protein pairs); moreover, the number of orthologs protein pairs decrease more gradually 

than all protein pairs at JE ≤ 10-70. While the threshold of sequence similarity (BLASTP 

E-value) is set to 10-70, the precision is higher than 0.7 and 431,062 orthologs pairs can be 

annotated. As a result, we could be able to enrich the number of essential proteins with a 

reliable accuracy. Finally, we annotated 1,557 essential proteins in the structurally resolved 

human protein interaction network through the DEG and orthologs annotation. 

 

Figure 4-8. The distribution of orthologs protein pairs under different sequence similarities 

The precisions of orthologs annotation (No. orthologs pairs / No. all pairs) are higher than 0.72, while the cut-off 

of sequence similarity (-log (BLASTP E-value)) are set to 70, 80, and 90. 
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To further investigate the relationship between the essential proteins and consensus prions, 

we evaluated the ratios of essential proteins in consensus (i.e. the proteins are conserved in 

three vertebrates) and between non-consensus proteins of structurally resolved human protein 

interaction network. Table 4-2 shows the distribution of essential proteins in consensus and 

non-consensus proteins. As a result, 969 (51.4%, 969/1887) and 558 (26.2%) essential proteins 

were recognized as consensus and non-consensus proteins, respectively. Furthermore, the 

consensus proteins lead to the significant enrichment (Z-value=16.69) of essential proteins in 

the structural network. Here, the Z-value is calculated by: 

𝑍-value =
𝑋 − 𝑋

𝜎𝑋
 

where X (=969) is the number of essential proteins identified as consensus proteins; 𝑋 

and 𝜎𝑋 are the average and the standard deviation of essential proteins among 1,000 random 

sets. Each set consists of 1,887 proteins randomly selected from 4,135 proteins in the human 

network. This result indicates that these consensus proteins are significant related to the 

essential genes. 

Furthermore, we investigated the relationship between the diseases and consensus proteins. 

Although many of diseases are organism specific, there are still many disease involved in the 

essential biological pathways which is conserved in multiple organisms (e.g. cancer). If a 

disease is involved in conserved pathway, the scientists could utility the animal model to 

research and investigate the mechanism of human disease. Therefore, we collected the disease 

and mutation data from the OMIM 
11

. There are 1,442 in-frame and 1,898 truncating mutations 

within 393 proteins of our structurally resolved human protein interaction network. Table 4-2 

illustrates the distributions of the consensus and non-consensus proteins involving in diseases. 

In the structurally resolved human protein interaction network, 207 (11.0%) consensus proteins 

involved in diseases and 84 (3.7%) non-consensus proteins involved in diseases. Furthermore, 
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the proteins involved in diseases have the significance enrichment (Z-value=8.92) of essential 

proteins. These results suggest that the mutations with structure binding in OMIM are highly 

related to the consensus proteins across three vertebrate PPI networks. 

Table 4-2. The ratios of essential proteins and disease related proteins in consensus and non-consensus proteins 

Protein type 
No. of 

proteins 

Essential proteins 
Proteins involved in 

disease 

Essential proteins 

involved in disease 

No. of 

proteins 
Ratio Z-value 

No. of 

proteins 
Ratio Z-value 

No. of 

proteins 
Ratio Z-value 

All 4,135 1,557 0.377 
 

291 0.070  187   

Consensus 1,887 969 0.514 16.69 207 0.110 8.92 154 0.082 10.79 

Non-consensus 2,248 588 0.262 -16.66 84 0.037 -9.03 33 0.015 -10.49 

 

To further investigate the consensus proteins and its corresponding cellular process, we 

compared these 1,887 consensus proteins and 5,845 consensus PPIs with original human 

network. The original human PPI network could be grouped into six major cellular processes 

based on the GO annotations. Five of these groups (e.g. proteolysis, transport, signal 

transductions, nucleic acid metabolic processes) are the foundational process to maintain a 

living cell. As a result, although the number of proteins and PPIs are difference between these 

two networks, the consensus networks still keep these groups to maintain the foundational 

processes (Fig. 4-9). However, the mechanism of immune response is the organism-specific 

response. It has much difference from the fish to the mammalian. There are only few proteins 

and PPIs in the immune response region of the consensus network (green dot line in Fig. 4-9). 

This result indicates that the group of immune response is not the consensus region in three 

vertebrate protein interaction networks and it is consistence with the biological behaviors of 

immune response.  
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Figure 4-9. Six major cellular processes in consensus proteins and PPIs. 

We identified 1,887 consensus proteins and 5,845 consensus PPIs from 4,135 proteins and 21,648 PPIs of 

structure resolved human network based on the "3d-domain interologs mapping". There are six major cellular 

processes in original human network based on the GO annotations (Figs. 4-6 and 4-7). The major difference of 

cellular process between original network and consensus PPIs is the immune response process. This result is 

consistence with that the mechanisms of immune response are difference from fish to the mammalian. 

 

Finally, we investigated the relationship between the consensus proteins and network 

topology properties. In the scope of network analysis, there are various types of measures of 

the centrality of a protein (vertex) within a given network (graph) that determine the relative 

importance of a protein within the network. Because the consensus proteins often play an 

essential role in the biological processes, these proteins should have more relative importance 

among the network. Here, we used "MS-matrix" to evaluate the relative importance within a 

network based on the modularity structure property. The proteins with lower modularity 

structure properties are usually the hubs and locate on the central part of a network. This 
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modularity structure property is highly correlated to degree, betweenness centrality, and 

closeness centrality.  

 

Figure 4-10. The distributions of protein dynamic ability (A), degree (B), closeness centrality (C), and 

betweenness centrality (D) in network of 1,887 consensus proteins 

(A) The distributions of protein dynamic ability in protein interaction network of consensus and non-consensus 

proteins. The consensus proteins prefer to have lower dynamic abilities in network. On the contrary, the 

non-consensus proteins are not the central part of the network and have higher dynamic abilities. The proteins 

with higher degree (B), betweenness centralities (C), or closeness centralities (D) prefer to be conserved across 

three networks. However, the closeness centrality cannot distinguish consensus and non-consensus protein as well 

as degree or betweenness centrality. 

 

Figure 4-10 shows the distributions of consensus and non-consensus protein dynamic 

ability in structurally resolved human protein interaction network. The consensus proteins 

prefer to have lower modularity structure properties in network. On the contrary, the 
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non-consensus proteins are not the central part of the network and have higher modularity 

structure properties. We also investigated the distributions of degree, closeness centrality, and 

betweenness centrality in consensus and non-consensus proteins (Fig. 4-10). The proteins with 

higher degree, betweenness centralities or closeness centralities prefer to conserve in these 

three networks. Our results imply that these consensus proteins among three vertebrate PPI 

networks usually have more relative importance with other proteins based on our "MS-matrix" 

and other graphic-based centrality properties. As a result, these consensus proteins are more 

relative importance according to that they are usually involved in several processes or are the 

regulated bridge between processes. 

 

Disease related mutations in human network 

Disease-related mutations can be roughly classified into two broad categories (i.e., 

in-frame and truncating mutations) 
16

. Here, the in-frame mutations were considered as 

missense point mutations and the in-frame insertions or deletions are likely to produce 

full-length proteins with local defects. The truncating mutations including nonsense point 

mutations and frame-shift insertions or deletions often give rise to incomplete fragments. We 

collected 1,898 in-frame mutations and 304 truncating mutations on 124 and 35 proteins, 

respectively, in the structure resolved human network. 

Previous studies have shown that the in-frame mutations can lead to loss of interactions 
15

. 

To further evaluate the relationships between mutations and their associated disorders, we 

identified the positions of the disease-associated in-frame and truncating mutations on the 

corresponding proteins. Among the 1898 in-frame mutations, 427 mutations position on the 

contact residues that are important for PPIs. The disease-related mutations are significantly 

enriched with respect to the contact residues according to the odds ratio (Table 4-3 and Fig. 
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4-11A). Here, the odds ratio is calculated by 
16

: 

Odds ratio =
𝑝1 (1 − 𝑝1)⁄

𝑝2 (1 − 𝑝2)⁄
 

where p1 is the fraction of observed mutations of the contact or non-contact residues; p2 is the 

fraction of total sequence length. Here, the values of p1 are 0.22 (427/1898; Table 4-3) and 0.77 

(1471/1898) in the contact and non-contact residues, respectively. The values of p2 are 0.087 

(15,344/183,730) and 0.92 (168,386/183,730) in the contact and non-contact residues, 

respectively. Therefore, the odds ratios of contact residue and non-contact residues are 3.19 

([0.22/(1-0.22)]/[0.087/(1-0.087)]) and 0.31, respectively. 

 

Figure 4-11. The odds ratios of in-frame and truncating mutations on the binding interface 

The odds ratios for the distributions of (A) in-frame and (B) truncating mutations in. contact residues and 

non-contact residues on the protein interfaces in human protein interaction network. The in-frame mutations are 

enrichment in the contact residues with a high odds ratio (3.19). 

 

Table 4-3. The distribution of in-frame and truncating mutations in human protein interaction network 

 

No. of 

protein 

Sequence 

length 

No. of 

contact 

residue 

No. of 

non-contact 

residues 

No. of 

mutation 

No. mutations 

on the interfaces 

No. of mutations 

not on the 

interface 

In-frame 

mutation 
124 183,730 15,344 168,386 1,898 427 1,471 

truncating 

mutation 
35 56,262 4,169 52,093 304 42 262 

 

This result indicates that the contact residues of PPIs play an important role in diseases. 
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While a mutation is occurred and change the contact residue of the protein, it may influence the 

bind environment and lose the interaction to cause the corresponding disease. For example, the 

FGFR2 (821 amino acids) has 31 amino acids having the mutation data recorded in OMIM and 

has 14 disease syndromes most of which are related to the cancers. Then, the FGFR2 have 80 

contacting residues based the PPIs derived from 3d-structures and "3d-domain interologs 

mapping". 13 mutations are contact residues and 18 mutations are non-contact residues. 

According to the definition of odd ratios, the odd ratios of contact residues is 6.69 and 

([(13/31)/(1-13/31)]/[(80/821)/(1-80/821)]) is significant higher the non-contact residues (0.15). 

In addition, truncating mutations also have an enrichment on the contact residues (odds ratio = 

2.0). 

To further investigate the characteristic of disease-related mutations, we divided 427 

in-frame mutations which locate on contact residues into four types, including the residues 

forming hydrogen-bond (H-bond), conserved residues, the conserved residues forming H-bond, 

the other residues. 335 mutations (78%) involved in forming hydrogen bonds on the interfaces; 

and 118 mutations (35%) are conserved and forming hydrogen binds. On the contrary, 57 (13%) 

mutations neither are conserved residues and nor involve in hydrogen bonds. For example, the 

13 mutations involving in the PPI interface of FGFR2 have 7 mutations involving in H-bond, 2 

mutations which are conserved residues, and 1 mutation both involving in H-bond and 

conserved residue. These results indicate that the disease-related mutations are usually located 

on the contact residues forming the hydrogen bonds within PPIs. 

 

Disease-related consensus pathways 

According to our structure resolved human network with mutations and diseases, two 

major groups of proteins are highly involved in cancers and cardiovascular-related diseases 
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(Figs. 4-1C, 12, and 13 and Table 4-4). The proteins, such as fibroblast growth factors (FGF), 

fibroblast growth factor receptors (FGFR) and protein kinases, involves in cancers. FGF and 

FGFR regulate some key biological processes, such as cell proliferation, survival, migration, 

and differentiation both during development and in the adult 
99

. The FGFR2 and FGFR3 are the 

top-rank proteins with the numbers (i.e. 14 and 13 diseases recorded in OMIM; Fig. 4-1C) of 

annotated diseases.  

 

Figure 4-12. The pathways and proteins involved in a great amount of diseases, especially the cancers 

The proteins colored with yellow are the proteins which have mutation data recorded in OMIM. The 

MAPK1/ERK2 and MAPK3/ERK1 play essential roles in several important pathways (e.g. proliferation and 

apoptosis) related to the cancer. FGFR2-FGF2 is one of the upstream regulating PPI of these pathways. The 

mutations of FGFR2 may influence the interaction of FGFR2-FGF2 and cause the defects of it corresponding 

pathways. 
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Figure 4-13. The pathways and proteins involved in a great amount of diseases, especially the cardiovascular- 

related diseases 

The proteins colored with yellow are the proteins which have mutation data recorded in OMIM. The mechanisms 

of cardiovascular-related diseases are highly related to the regulation of calcium ion. There are three pathways to 

regulate the concentration of calcium ion. The first one is the sodium/calcium exchanger 1 (SLC8A1) which can 

rapidly transport Ca
2+

 during excitation-contraction coupling. The second one is voltage-dependent calcium 

channel. The third one regulates the calcium concentration by the transports Ca
2+

 between sarcoplasmic and 

endoplasmic reticulum (e.g. ATP2A2 and RYR2). Mutations of these Ca
2+

 transports could cause the ventricular 

tachycardia, Brugada syndrome, and Timothy syndrome. In addition, the mutations on the proteins of cardiac 

muscle contraction pathway could cause the cardiomyopathy. 

 

Table 4-4. The diseases recorded in OMIM of each protein in FGF-FGFR and upstream proteins of MAPK1 and 

MAPK3 

Gene 

name 

UniProt 

AC 
Diseases recorded in OMIM 

Involved 

in cancer 

Conserved 

in networks 

BRAF P15056 

1. Adenocarcinoma of lung 

2. Cardiofaciocutaneous syndrome 

3. Colorectal cancer 

4. LEOPARD syndrome 

5. Melanoma, malignant 

6. Nonsmall cell lung cancer 

7. Noonan syndrome 

ˇ ˇ 

EGFR P00533 
1. Adenocarcinoma of lung 

2. Nonsmall cell lung cancer 
ˇ ˇ 

EGF P01133 1. Hypomagnesemia 
 

ˇ 

ERBB2 P04626 

1. Adenocarcinoma of lung, somatic 

2. Gastric cancer 

3. Glioblastoma 

ˇ ˇ 
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4. Ovarian cancer 

FGF10 O15520 
1. Aplasia of lacrimal and salivary glands 

2. LADD syndrome  
ˇ 

FGF3 P11487 
1. Deafness, congenital with inner ear agenesis, microtia, and 

microdontia  
ˇ 

FGF8 P55075 1. Kallmann syndrome 
 

ˇ 

FGF9 P31371 1. Multiple synostoses syndrome 
 

ˇ 

FGFR1 P11362 

1. Hypogonadotropic hypogonadism 

2. Jackson-Weiss syndrome 

3. Kallmann syndrome 

4. Osteoglophonic dysplasia 

5. Pfeiffer syndrome 

6. Trigonocephaly 

 
ˇ 

FGFR2 P21802 

1. Antley-Bixler syndrome without genital anomalies or 

disordered steroidogenesis 

2. Apert syndrome 

3. Beare-Stevenson cutis gyrata syndrome 

4. Bent bone dysplasia syndrome 

5. Craniofacial-skeletal-dermatologic dysplasia 

6. Craniosynostosis 

7. Crouzon syndrome 

8. Gastric cancer 

9. Jackson-Weiss syndrome 

10. LADD syndrome 

11. Pfeiffer syndrome 

12. Saethre-Chotzen syndrome 

13. Scaphocephaly and Axenfeld-Rieger nomaly 

14. Scaphocephaly, maxillary retrusion, and mental retardation 

ˇ ˇ 

FGFR3 P22607 

1. Achondroplasia 

2. Bladder cancer 

3. CATSHL syndrome 

4. Cervical cancer 

5. Colorectal cancer 

6. Crouzon syndrome with acanthosis  

7. Igricans 

8. Hypochondroplasia 

9. LADD syndrome 

10. Muenke syndrome 

11. Nevus, keratinocytic, nonepidermolytic 

12. Spermatocytic seminoma 

13. Thanatophoric dysplasia, type I 

14. Thanatophoric dysplasia, type II 

ˇ ˇ 

FGFR4 P22455 1. Cancer progression/metastasis ˇ ˇ 

HRAS P01112 

1. Costello syndrome 

2. Bladder cancer 

3. Thyroid carcinoma 

ˇ ˇ 

KDR P35968 1. Hemangioma ˇ ˇ 

KRAS P01116 

1. Bladder cancer 

2. Breast cancer 

3. Cardiofaciocutaneous syndrome 

4. Gastric cancer 

5. Leukemia, acute myelogenous 

6. Lung cancer 

7. Noonan syndrome 

8. Pancreatic carcinoma 

ˇ ˇ 

MAP2K1 Q02750 1. Cardiofaciocutaneous syndrome 
 

ˇ 

NRAS P01111 

1. Autoimmune lymphoproliferative syndrome type IV 

2. Colorectal cancer 

3. Noonan syndrome 

ˇ ˇ 
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4. Thyroid carcinoma, follicular 

RAF1 P04049 
1. LEOPARD syndrome 

2. Noonan syndrome  
ˇ 

RET P07949 

1. Central hypoventilation syndrome, congenital 

2. Medullary thyroid carcinoma 

3. Multiple endocrine neoplasia IIA 

4. Multiple endocrine neoplasia IIB 

5. Pheochromocytoma 

6. Renal agenesis 

7. Hirschsprung disease 

ˇ ˇ 

SOS1 Q07889 
1. Fibromatosis, gingival 

2. Noonan syndrome 
ˇ ˇ 

SRC P12931 1. Colon cancer ˇ ˇ 

 

 

Figure 4-14. The mapping pathways and proteins which are related to the cancers of M. musculus. 

 

Figures 4-12, 4-14, and 4-15 show the series of protein kinases and upstream of 

MAPK3/ERK1 and MAPK1/ERK2 in our derived networks of H. sapiens, M. musculus, and D. 

rerio, respectively. These two MAPKs are highly related to the cancer by involving diverse 

biological functions and critical pathways such as cell growth, adhesion, survival and 

differentiation 
78,100

. In addition, the RAF and B-RAF, which regulate MAPKKK of ERK 

pathway, act as a regulatory link between the upstream signal proteins (e.g. 

membrane-associated Ras GTPases (i.e. KRAS, NRAS, and HRAS) and non-receptor protein 
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tyrosine kinase (e.g. SRC)) and the MAPK/ERK cascade. SRC can be activated by the EGFR 

and ERBB2 in the ERBB signal pathway for adhesion and migration 
78

. The PPIs colored blue 

are also recorded in five public PPI databases (e.g. IntAct
8
, DIP

9
, MIPS

28
, BioGRID

10
, and 

MINT
29

). The PPIs with the dot line are not identified by structure template and "3D-domain 

interolog mapping" but have been recorded in PPI databases or KEGG 
78

 database. 

 

 

Figure 4-15. The mapping pathways and proteins which are related to the cancers of D. rerio. 

 

There are 65 PPIs among the pathway of human network. 32 of 65 PPIs are also recorded 

in 5 public PPI databases. Although 33 PPIs are not recorded in databases, previous studies 

101,102
 have been indicated several protein pairs (e.g. FGF4-FGFR1, FGF4-FGFR2, 

FGF6-FGFR1, and FGF6-FGFR4) should be interacting protein pairs. In addition, there are 

only 3 PPIs and non PPIs recorded in public PPI databases among the pathways of M. 

musculus and D. rerio, respectively. This result implied that our structural networks can 

annotate and infer the cell behaviours of a new determined (or seldom-studied) species (e.g. 

zebrafish), by mapping some well-studied species. 
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Furthermore, the mechanisms of cardiovascular-related diseases are highly related to the 

regulation of calcium ion. There are three major pathways to regulate the concentration of 

calcium ion (Figs. 4-13, 4-16, and 4-17). One is the sodium/calcium exchanger 1 (SLC8A1) 

which can rapidly transport Ca
2+

 during excitation-contraction coupling. Another one is 

voltage-dependent calcium channel which transport Ca
2+

 without Na
+
 exchanging. The other 

one regulates the calcium concentration by the transports Ca
2+

 between sarcoplasmic and 

endoplasmic reticulum (e.g. ATP2A2 and RYR2). Mutations of these Ca
2+

 transports could 

cause the ventricular tachycardia, Brugada syndrome, and Timothy syndrome. Then, the 

myosins and actins are the major proteins of cardiac muscle contraction pathway. The 

mutations of these proteins could cause the cardiomyopathy. 

 

Figure 4-16. The mapping pathways and proteins which are involved in the cardiovascular-related diseases of M. 

musculus. 
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Figure 4-17. The mapping pathways and proteins which are involved in the cardiovascular-related diseases of D. 

rerio. 

 

These proteins involving in cancers and cardiovascular-related diseases are conserved in 

three vertebrate PPI networks. Here, we used the FGF2-FGFR2, TNNI3-TNNT2, and 

F2-SERPINA5 as examples to explain the relationship between mutations, corresponding 

consensus pathways among three vertebrate PPI networks. In addition, our methods also 

provided the organism-specific proteins and its corresponding pathways. Here, we used the 

F2-SERPINA5 which only appear in human and mouse networks and involve in complement 

and coagulation pathway as an example to describe the organism-specific pathway among our 

derived networks. 

 

Disease related mutations in the binding interface of FGF2-FGFR2 

A mutated Fibroblast growth factor receptor 2 (FGFR2) could cause endometrial, gastric 

cancer, or pfeiffer syndrome 
103,104

. Among 187 samples of endometrial carcinoma, previous 
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the endometrioid subtype and one S252W mutation was the serous subtype 
105

. Ibrahimi et al. 

demonstrated that the D321A mutation increased the binding affinity between FGFR2c and the 

FGFs expressed in the cranial suture 
106

.  

 

Figure 4-18. Binding models and multiple sequence alignments of PPI family derived from FGF2-FGFR2 

heterodimer (PDB code: 1ev2) 

(A) The atomic binding model with the highlight van der Waals and hydrogen-bond interaction of Asp321-Gln56 

and Ser252-Leu98, respectively. (B) Multiple sequence alignments of PPI family of the interface E (FGFR2)-A 

(FGF2). 

 

According to the FGFR2-FGF2 binding interface of the structure template (PDB code: 

1ev2 
107

) , the Ser252 and Asp321 are the contact residues of FGFR2 on the FGF2-FGFR2 

binding interface (Fig. 4-18). The Ser252 forms a conserved van der waals interaction to the 

Leu98 of FGF2 according to the PPI family of this template (Fig. 4-18B), and the Asp321 

1ev2-E . . E R S P . . . T T D K E . .

P11362 H. sapiens PRI : . . E R S P . . . T T D K E . .
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forms a hydrogen-bond interaction with the Gln56 (Fig 4-18C). Because the FGF2-FGFR2 is 

the upstream interactions of MAPK3/ERK1 and MAPK1/ERK2, the S252W mutation 

influences the cell proliferation and apoptosis in the ERK pathway for the endometrial cancer 

(Fig. 4-12). In addition, the interaction residues Ser252 and Leu98 are conserved on the PPI 

(FGF2-FGFR2) of three vertebrate PPI networks. 

 

Cardiovascular-related diseases and its corresponding pathways 

Figure 4-13 shows the cardiovascular-related diseases and its corresponding pathways. 

The proteins colored with yellow are the proteins which have mutation data recorded in OMIM. 

All of three type regulations for the concentration of calcium ion could be identified in our 

derived networks. In addition, the pathway for cardiac muscle contraction pathway could also 

be identified in our derived networks. The mutations of these proteins (e.g. TNNC1 
108

 and 

MYH7 
109,110

) could cause the cardiomyopathy. According to KEGG database 
78

, there are three 

complexes, including cardiac troponin complex, TPM complex, and Actin-Myosin complex, 

involved in the muscle contraction pathway. All of these complexes of human have the 

experimental data (solid line in Fig. 4-13) recorded in five public databases. In addition, our 

method could provide the binding mechanism by the 3d-strucutre and "3d-domain interologs 

mapping". For example, the cardiac troponin (cTn) has an important function for cardiac 

muscle contraction, which is a complex of three subunits, including cardiac troponin C (cTnC, 

TNNC1), troponin I (cTnI, TNNI3) and troponin T (cTnT, TNNT2) 
111

. According to binding 

interface of the structure template (PDB code: 1j1d), the Pro82 is a contact residue of TNNI3 

on the TNNI3-TNNT2 binding interface. The Pro82 of TNNI3 can form a conserved van der 

waals interaction to the Trp237 of TNNT2 in the PPI family of this template (Fig. 4-19). 
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Figure 4-19. Binding models and multiple sequence alignments of PPI family derived from TNNT2-TNNI3 

heterodimer (PDB code: 1j1d) 

(A) The atomic binding model with a highlight van der Waals interaction of Trp237-Pro82. (B) Multiple sequence 

alignments of PPI family of the interface B(TNNT2)-C(TNNI3). 

 

However, there are still some experimental PPIs (dot line in Fig. 4-13) cannot be 

annotated the binding mechanism by currently 3d-strucutre recorded in PDB. The construction 

of our derived PPI networks largely relies on the availability of 3D-crystal structures, which 

limits the coverage of our networks. However, there are no PPI within these complexes of Mus 

musculus, and Danio rerio recorded in five public databases (Figs. 4-16 and 4-17). Our 

methods are able to construct these complexes and pathways on the non-well-known organisms 

(e.g. zebrafish). It may provide a new insight for understanding the cardiovascular-related 

diseases based on using the animal model with our derived networks. 
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The complement system is a proteolytic cascade in blood plasma and a mediator of innate 

immunity 
78

. According to the complement and coagulation pathway among our derived 

network (Fig. 4-20), there are several proteins (yellow node in Fig. 4-20) which are involved in 

blood coagulation related diseases. One of these proteins is prothrombin (F2), which is 

activated to the thrombin by coagulation factor X (F10). The activated thrombin plays 

important roles in hemostasis and thrombosis, and it converts fibrinogen to fibrin for blood clot 

formation; stimulates platelet aggregation, and activates coagulation factors V (F5), VIII (F8), 

and XIII (F13). A mutated F2 could case dysprothrombinemia, hypoprothrombinemia, or 

thrombophilia 
112

. Poort et al. described a common genetic variation in the 3-prime 

untranslated region of the prothrombin gene that is associated with elevated plasma 

prothrombin levels and an increased risk of venous thrombosis 
113

. 

 

Figure 4-20. The specific proteins among the complement and coagulation pathway 

The proteins colored with yellow are the proteins which have mutation data recorded in OMIM. The SERPINA5 

and PLAUR are the specific proteins among the complement and coagulation pathway and are colored with red. 

SERPINA5 could inhibit the F2 which could be activated by coagulation factor X (F10) and plays important roles 

in hemostasis and thrombosis. A mutated F2 could case thrombophilia, dysprothrombinemia, or 

hypoprothrombinemia. 
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In addition, there are two specific proteins SERPINA5 and PLAUR both not identified in 

zebra fish among the complement and coagulation pathway. The PLAUR plays a central role in 

cell migration and tissue remodeling processes and has so far only been identified in mammals 

112
. Moreover, SERPINA5 could inhibit the F2 and play hemostatic roles in the blood plasma, 

which appears to be a regulatory factor in blood coagulation and fibrinolysis 
114

. According to 

binding mechanism derived from the interface of the structure template (PDB code: 3b9f), the 

Gly601 is a contact residue of F2 on the F2-SERPINA5 binding interface (Fig. 4-21). The 

Gly601 of F2 can form a conserved van der waals interaction to the Arg373 of SERPINA5 in 

the PPI family of this template (Fig. 4-21). 

 

Figure 4-21. Binding models and multiple sequence alignments of PPI family derived from F2-SERPINA5 

heterodimer (PDB code: 3b9f) 

(A) The atomic binding model with a highlight van der Waals and conserved interaction of Gly601-Arg373. (B) 

Multiple sequence alignments of PPI family of the interface H(F2)-I(SERPINA5). 

 

Therefore, the Gly601 mutation may cause the dysprothrombinemia by influencing the 

fibrin degradation process in this pathway (Fig. 4-20). We also suggested that the different 

P00734 (3b9fH)
F2

P05154 (3b9fI)
SERPINA5

A

3b9f-I . . F T F R S A R L N . .

P05154 H. sapiens PRI 16 : . . F T F R S A R L N . .

B3KTV6 H. sapiens PRI 45 : . . F T F R S A R L N . .

P70458 M. musculus ROD 35 : . . F T F R S A R P S . .

Q03734 M. musculus ROD 33 : . . F G F R S R R L Q . .

O88292 R. norvegicus ROD 36 : . . F T L R S A R P S . .

C

Hydrogen-bond residues: green  Hydrogen-bond and conserved residues: yellow  van der waals residues: gray  Conserved residues: orange

B
3b9f-H . . G K Y G F Y T . .

P00734 H. sapiens PRI 364 : . . G K Y G F Y T . .

A6NIE9 H. sapiens PRI 68 : . . D F P G V Y T . .

P19221 M. musculus ROD 361 : . . G K Y G F Y T . .

P16294 M. musculus ROD 237 : . . G K Y G I Y T . .

P18292 R. norvegicus ROD 360 : . . G K Y G F Y T . .

P16296 R. norvegicus ROD 56 : . . G K Y G I Y T . .

Gly601
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pathway of complement and coagulation was existed in zebra fish compared with human and 

mouse (Figs. 4-20 and 4-22); because SERPINA5 are not found in zebra fish (Fig. 4-23). 

 
Figure 4-22. The mapping pathways and proteins involved in the complement and coagulation pathway of M. 

musculus. 

 

Figure 4-23. The mapping pathways and proteins involved in the complement and coagulation pathway of D. 

rerio. 
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4-4. Conclusions 

This work is the first to construct structure resolved PPI networks across multiple species, 

including H. sapiens, M. musculus, and D. rerio. According to structure-based homologous 

PPIs in multiple species, the PPIs with atomic residue-based binding models in the derived 

structure resolved network achieved highly agreement with Gene Ontology (BP, CC, and MF 

terms) similarities. Furthermore, the architecture of these networks is a scale-free network 

which is consistent with most of the cellular networks. Experimental results also indicate that 

the mutations of interacting residues on the PPIs often related to diseases are often on. Our 

results demonstrate that the structure resolved PPI networks can provide valuable insights for 

understanding the mechanisms of biological processes. 

The construction of our structurally resolved PPI networks largely relies on the 

availability of 3D-crystal structures, which limits the coverage of our network. However with 

the rapid growth of PDB, more 3D-crystal information will become available and our methods 

can be readily applied to uncover potential molecular mechanisms whose structural 

information is currently missing. More importantly, our structural networks can annotate and 

infer the cell behaviours of a new determined (or seldom-studied) species (e.g. zebrafish), by 

mapping some well-studied species. In addition, our methods can also be used to observe the 

consensus proteins and modules (a fundamental unit forming with highly connected proteins) 

which are high conserved appearing in multiple organisms. These consensus proteins are often 

the essential genes and related to diseases recorded in OMIM. 
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Chapter 5. Modularity structure matrix for investigating 

protein interaction network 

 

A crucial step toward understanding cellular systems properties is to analyze the topology 

of biological networks and biochemical progress in cells. Many graphic features are purposed 

to measure the role of proteins and identify local modularity structures of high connectivity in a 

PPI network. Laplacian matrix is a matrix representation of a given network. Here, we 

proposed the modularity structure matrix (MS-matrix), which is the pseudoinverse of the 

Laplacian matrix for describing the kernels on a graph, to evaluate the modularity structure 

properties of a PPI network. According to our knowledge, the modularity structure property is 

the first property to identify both global important proteins and local modularity structures 

within a network. For a given PPI network of S. cerevisiae, our results demonstrate that the 

important proteins identified by the MS-matrix are related to the essential biological processes 

(i.e. essential genes) and highly consistence with the topology features (i.e. degree, closeness 

centrality, and betweenness centrality). Then, the relationship between proteins derived from 

the MS-matrix could reflect the similarity of Gene Ontology and could be useful for the module 

identification. Furthermore, biological characterization (e.g. Gene Onotology) of the modules 

derived from the MS-matrix is similar to the modules collected from the experiment database 

(e.g. MIPS). Our results demonstrate that the MS-matrix would provide the insight for 

investigating a PPI network through important proteins and local modularity structures. 

 

5-1. Introduction 

A crucial step toward understanding cellular systems properties is to analyze the topology 

of biological networks and biochemical progress in cells 
3,83

. To construct the protein-protein 
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interaction (PPI) network as completely as possible, genome-scale interaction discovery 

approaches, such as high-throughput yeast two-hybrid screening 
25,26

 and coaffinity purification 

27
 , have been proposed. Because of the complexity of a PPI network, many graphic features 

(e.g. degree, closeness centrality, and betweenness centrality) are purposed to measure the role 

of proteins in a PPI network 
115

. In addition, several agglomerative algorithmic approaches 

116,117
 have been developed to identify local modularity structures of high connectivity with 

relatively low connectivity to the rest of network. These dense sub-graphs are treated as 

potential functional modules. 

In the mathematical and computational field of graph theory, the Laplacian matrix (or 

Kirchhoff matrix) is a matrix representation of a graph. In addition, the pseudoinverse of the 

Laplacian matrix plays a key role, has a nice interpretation in terms of random walk on a graph, 

and defines the kernels on a graph 
118

. Its application on biological field, the Gaussian network 

model has succeeded in describing the local modularity structures (e.g. flexible/rigid regions 

and domains of proteins) and the important residues of a given protein 
119,120

. However, a PPI 

network, which has the functional local modularity structures (i.e. module and complex) and 

the important hubs, is similar to the behaviors of a protein. 

To address these issues, we proposed the MS-matrix to evaluate the modularity structure 

property within a PPI network. According to our knowledge, the MS-matrix is the first property 

to identify both global important proteins and local modularity structures within a network. For 

a given PPI network of S. cerevisiae, our results demonstrate that the important proteins 

identified by the MS-matrix are related to the essential biological processes (i.e. essential 

genes). In addition, the important proteins derived from MS-matrix are highly consistence with 

the topology features (i.e. degree, closeness centrality, and betweenness centrality). Then, the 

relationship between proteins derived from the MS-matrix could reflect the similarity of Gene 

Ontology and could be useful for the module identification. Furthermore, biological 
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characterization (e.g. Gene Onotology) of the modules derived from the MS-matrix is similar to 

the modules collected from the experiment database (e.g. MIPS). Our results demonstrate that 

the MS-matrix would provide the insight for investigating a PPI network through important 

proteins and local modularity structures. 

 

5-2. Methods 

Modularity structure matrix 

 

Figure 5-1. The overview of the evaluating the importance of each node in a simple network through the 

"MS-matrix" 

(A) A simple network with three local density regions (red, blue and green nodes). (B) Laplacian matrix of the 

simple network. (C) MS-matrix is derived from the pseudo-inverse of Laplacian matrix. 

 

Here, we consider a PPI network as an undirected graph. The Laplacian matrix is a matrix 

representation of a graph. Here, we use a simple network (Fig. 5-1A) with 17 proteins to 

construct the Laplacian matrix and introduce the MS-matrix. First, we construct the Laplacian 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0.5 0.2 0.2 0.2 0.2 0.1 0.1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

2 0.2 0.5 0.2 0.2 0.2 0.1 0.1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

3 0.2 0.2 0.5 0.2 0.2 0.1 0.1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

4 0.2 0.2 0.2 0.5 0.2 0.1 0.1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

5 0.2 0.2 0.2 0.2 0.5 0.1 0.1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

6 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0 -0 -0 -0 -0 -0 -0 -0 -0 -0

7 0.1 0.1 0.1 0.1 0.1 0.1 1.1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

8 -0 -0 -0 -0 -0 0 -0 0.4 0.1 -0 -0 -0 -0 0.1 -0 -0 -0

9 -0 -0 -0 -0 -0 -0 -0 0.1 0.2 0.2 0.2 0.2 0.1 0 -0 -0 -0

10 -0 -0 -0 -0 -0 -0 -0 -0 0.2 0.6 0.3 0.3 0.3 -0 -0 -0 -0

11 -0 -0 -0 -0 -0 -0 -0 -0 0.2 0.3 0.6 0.3 0.3 -0 -0 -0 -0

12 -0 -0 -0 -0 -0 -0 -0 -0 0.2 0.3 0.3 0.6 0.5 -0 -0 -0 -0

13 -0 -0 -0 -0 -0 -0 -0 -0 0.1 0.3 0.3 0.5 1.4 -0 -0 -0 -0

14 -0 -0 -0 -0 -0 -0 -0 0.1 0 -0 -0 -0 -0 0.3 0.2 0.2 0.2

15 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0.2 0.8 0.3 0.6

16 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0.2 0.3 0.8 0.6

17 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0.2 0.6 0.6 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 3 -1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0

2 -1 3 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

3 0 -1 3 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0

4 0 0 -1 3 -1 -1 0 0 0 0 0 0 0 0 0 0 0

5 -1 0 0 -1 3 -1 0 0 0 0 0 0 0 0 0 0 0

6 -1 -1 -1 -1 -1 9 -1 -1 -1 0 0 0 0 -1 0 0 0

7 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 -1 0 3 -1 0 0 0 0 -1 0 0 0

9 0 0 0 0 0 -1 0 -1 6 -1 -1 -1 0 -1 0 0 0

10 0 0 0 0 0 0 0 0 -1 3 -1 -1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 -1 -1 3 -1 0 0 0 0 0

12 0 0 0 0 0 0 0 0 -1 -1 -1 4 -1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0

14 0 0 0 0 0 -1 0 -1 -1 0 0 0 0 5 -1 -1 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 2 0 -1

16 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 2 -1

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 2

A

B

C
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matrix M (Fig. 5-1B) for the network. The Mij is given as 

Mij = {

−1, if i ≠ j and protein i interacts with protein j
0, if i ≠ j and protein i not interact with protein j
k, if i = j, k is the degree of protein i

 (1) 

For example, the degree of node 8 is 3 (interacting with node 6, 9, and 14); and the M8 8, 

M6 8, M8 9, and M8 14 are 4, -1, -1, and -1, respectively. Then, the MS-matrix (MS) (Fig. 5-1C) 

is the pseudoinverse of Laplacian matrix M. Here, we got the pseudoinverse of Laplacian 

matrix based on the Scientific Tools for Python (SciPY). 

According to the local modularity structure (MSij), these 17 proteins in this matrix MS can 

be clustered into three local modularity structures matching with the original network (red, blue 

and green regions). Additionally, the three lowest diagonal values (nodes 6, 9 and 14) of 

MS-matrix (MSii) are the centrality nodes; conversely, two highest values (nodes 7 and 13) of 

MSii are the peripheral nodes. These results are highly consistent with the graphic features, 

such as degree, closeness and betweenness centrality (Table 5-1). 

 

Table 5-1. The degree, clustering coefficient, closeness centrality, betweenness centrality, and dynamic property of 

each node in the simple network (Fig. 5-1) 

ID Degree 
clustering 

coefficient 

closeness 

centrality 

betweenness 

centrality 
Qii 

1 3 0.667 0.421 0.004 0.52 

2 3 0.667 0.421 0.004 0.52 

3 3 0.667 0.421 0.004 0.52 

4 3 0.667 0.421 0.004 0.52 

5 3 0.667 0.421 0.004 0.52 

6 9 0.222 0.64 0.563 0.183 

7 1 0 0.4 0 1.066 

8 3 1 0.516 0 0.36 

9 6 0.4 0.593 0.4 0.242 

10 3 1 0.41 0 0.595 

11 3 1 0.41 0 0.595 

12 4 0.5 0.421 0.125 0.566 

13 1 0 0.302 0 1.448 

14 5 0.3 0.571 0.329 0.272 

15 2 0 0.39 0.058 0.845 

16 2 0 0.39 0.058 0.845 

17 2 0 0.296 0.004 1.036 
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Centrality properties 

Here, we introduce two measures of centrality determining the relative importance of a 

node within a network. The betweenness centrality Cb(i) measures the node centrality in a 

network by computing the number of the shortest paths from all nodes to all others that pass 

through the node i. Cb(i) is defined as follows: 

Cb(i) = ∑ (σst(i) σst⁄ )s≠i≠t  (2) 

where s and t are nodes different from i, σst denotes the number of shortest paths from s to t, 

and σst (i) is the number of the shortest paths from s to t that i lies on. The betweenness value of 

the node i is normalized by dividing by the number of node pairs excluding i: (N-1)(N-2)/2, 

where N is the total number of nodes in the paths that i belongs to. 

The closeness centrality Cc(i) of a node i is defined as the reciprocal of the average 

shortest path length and is computed as follows: 

Cc(i) = 1 avg(L(i, m))⁄  (3) 

where L(i,m) is the length of the shortest path between two nodes n and m. The closeness 

centrality of each node is a value between 0 and 1. 

 

The modular similarity between protein pair 

The non-diagonal value of MS-matrix (MSij) could provide the relationship between 

related modularity properties of protein i and j. For a given protein A, we could identify the 

overall MSAi of A and all proteins to evaluate overall modularity relationships. Therefore, we 

are able to identify the similarity between a protein pair (A and B) based on the overall MSAi 

and MSBi. Here, the similarity is evaluated by the Pearson correlation coefficient (r) and 
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computed as follows: 

r(A, B) =
∑ (MSAk−MSA)(MSBk−MSB)n

k=1

√∑ (MSAk−MSA)
2n

k=1
√∑ (MSBk−MSB)

2n
k=1

 (4) 

where 𝑀𝑆𝐴 and 𝑀𝑆𝐵 are the averages of MSAk and MSBk, respectively. 

 For example, the 𝑟(5,6) between nodes 5 and 6 located in the same region (red part in 

Fig. 5-1A) is 0.88. On the contrary, the r between nodes 6 and 9 which are in the different 

region (red and blue) is -0.53. 

 

The protein-protein interaction network of S. cerevisiae 

The high-through put data usually have the non-reliable protein-protein interactions. To 

construct a high-quality protein interaction yeast, we collected protein-protein interaction data 

from the core subset (named DIPc) of the DIP database 
9
 which consists of 1,882 proteins and 

4,104 protein-protein interactions (the version dated 10 October 2010). Here, the DIPc consists 

of only the most reliable interactions 
121

. 

 

Data set of module of S. cerevisiae 

To evaluate reliability of modules which are identified through the MS-matrix, we 

collected a positive set of yeast module derived MIPS 
85

. For 193 modules derived MIPS, we 

selected 160 modules which have more than a half of proteins in the network constructed by 

DIPc. According to the definitions of module from the previous studies 
84,122,123

, a module 

should have a higher connectivity. Here, the connectivity is defined by previous study 
124

 and 

calculated as follow: 

connectivity =
No.of PPI within a module

k×(k−1)
 (11) 
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where, k is the number of protein within a module. Finally, we defined a golden positive 

dataset which includes 69 MIPS modules, which connectivity is more than 0.6. 

 

5-3. Results 

The diagonal value of MS-matrix infers essential genes in PPI network of S. cerevisiae 

Essential genes usually involve in the fundamental cellular processes which required for 

the survival of an organism 
96,97,125

. As a result, the proteins which are products of essential 

genes should play an important role in the protein-protein interaction network of an organism. 

To further investigate the relationship between essential genes and important proteins detected 

by the diagonal values of MS-matrix (MSii), we constructed the yeast protein interaction 

network by using the high-quality protein-protein interaction data extracting from the core sub 

set in DIP database (named DIPc). Figure 5-2 displays the progressive ration of essential 

protein for MSii from 0 to corresponding value. There are approximately one-half of the 

proteins recorded as essential proteins while whose MSii values are less than 0.2; and the 

proportion of essential protein decreases with the increasing value of MSii. Furthermore, 

YBR160W (main cell cycle cyclin-dependent kinase 
126

) and YJR045C (Hsp70 family ATPase 

127
) are the proteins with lowest value of MSii, are recorded as essential genes, and play a key 

role in the important biological processes (e.g. cell cycle and protein folding). These two 

proteins have enriched interactions and locate on the center of the network. On the contrary, 

YGL001C and YLR100W, which are related to a non-essential process (ERGosterol 

biosynthesis), have highest value and only one interaction in the network. These results suggest 

that those proteins with lower MSii are located within the steadier regions among the network 

and more critical for the survival of an organism. 
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Figure 5-2. The relationship between importance of protein and essential proteins 

The importance of protein is calculated by MS-matrix diagonal value (MSii). The interval of MSii denotes the 

progressive ratios of essential proteins; the lower MSii value, more essential proteins are among the network. 

 

The characterization and quantification of network topology derived from the diagonal 

value of MS-matrix 

For a given network, there are various types of measurement for determining the relative 

importance of a node (protein) within a network. For example, degree (degree centrality) is 

defined as the number of links incident upon a node. According to the degree distribution, P(k), 

a network could be identified as a scale-free network, which is the architecture of many cellular 

networks 
94

. Closeness centrality is defined as the inverse of the average shortest paths of a 

given node. The average shortest paths can be regarded as a measure of how fast it will take to 

spread information from a node to all other nodes sequentially 
128

. The betweenness represents 

the fraction of all of the shortest paths between all nodes in a network that pass through a given 

node 
115

. 
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Our experimental result confirms that the MSii could represent the essential gene within 

the yeast PPI network. Next, we evaluated the relationship between MSii and relative 

importance (i.e. degree, closeness centrality, and betweenness centrality) of protein within a 

PPI network (Fig. 5-3). Although the Pearson's correlation coefficient (r) between degree and 

MSii is only -0.50, the Spearman correlation (s) is -0.85. This result implicates that the relative 

importance detected by the older of MSii is related to the older of relative importance detected 

by the degree. For example, the protein with the lowest MSii, YBR160W (main cell cycle 

cyclin-dependent kinase 
126

), is also the node with highest degree (58). Furthermore, the r 

between closeness centrality and MSii is -0.78. For example, according to the network 

described in Figure 5-1, the node 8 is relative important by closeness centrality (0.52; top 4) 

and could also be identified by using MSii. In addition, the MSii is slightly similar (r=-0.3 and 

s=-0.70) to the betweennes centrality. 

 

Figure 5-3. Evaluation importance of protein by (A) Degree centrality (B) Closeness centrality (C) Between 

centrality 

(A) The Spearman correlation between degree centrality and MSii is -0.85. (B) The Pearson correlation between 

closeness centrality and MSii is -0.78. (C) The Spearman correlation between betweenness centrality and MSii is 

-0.70.  

 

The non-diagonal value of MS-matrix reflects the relationship between proteins in yeast 

PPI network 

We have introduced that the MSii could infer the relative importance of protein i among 

the whole network. Here, to further investigate the biological meaning of MSij within a given 
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network, we utilize the similarity of Gene Ontology
36

 and distance of a given protein pair (i 

and j) to evaluate the MSij. The similarity of Gene Ontology is detected by the relative 

specificity similarity (RSS), proposed by Wu et al. 
122

, to measure the biological process, 

molecular function, and cellular component similarities. 

For a given protein A, we could identify the overall MSAi of A and all proteins to evaluate 

overall modularity structure relationships. Therefore, we are able to identify the similarity of 

overall modularity relationships between protein pair (A and B) based on the MSAi and MSBi. 

Here, the similarity between A and B is evaluated by the Pearson correlation coefficient and 

derived from the equation (4). 

 

Figure 5-4. The distribution of gene ontology similarities (i.e. RSS of BP, CC, and MF) and the shortest path 

between protein pairs under different modular similarity 

The RSS-BP and RSS-MF have the highest value while modular similarity is more than 0.9; moreover, the 

average distance is lower than 2. The RSS-CC are higher than 0.7 while modular similarities are higher than 0.4. 

 

Figure 5-4 illustrates the distribution of gene ontology similarities and the shortest path 

between protein pairs. While the protein pairs have ≥0.1 modular similarity, the average of 
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their distance has an obvious decrease (from 4.88 to 3.48) and all of the average RSS have an 

obvious increase. In addition, the average of protein pair’s distance would be less than 2.5 and 

share the higher biological process and cellular component annotation (RSS-BP > 0.7 and 

RSS-CC > 0.8 ), while these protein pairs have more than 0.4 modular similarity. The RSS-BP 

and RSS-MF have the highest value while modular similarity is more than 0.9; moreover, the 

average distance is lower than 2. This result implies that a protein pair with a highly modular 

similarity would share a significant similarity of Gene Ontology, especially BP and CC, and are 

neighboring proteins (e.g. an interaction protein pair) in the PPI network. 

 

Identification of modules based on the non-diagonal value of MS-matrix 

According to the definitions of module from the previous studies 
84,122,123

, the proteins of a 

module should locate on the same component, join a same biological process, carry out similar 

or related function, and have relatively autonomous of the whole network. We have introduced 

that the modular similarity of protein pair (A and B) derived from the Pearson correlation 

coefficient of MSAi and MSBi, could infer the similarity of Gene Ontology and the relationship 

between A and B within the PPI network. Therefore, we believe that the MS-matrix could be 

useful for identifying modules of a give PPI network. Here, we utilize the hierarchical 

clustering method to identify the modules and the distance between protein pair (A and B) is 

calculated by using the modular similarity (i.e. Pearson correlation coefficient of MSAi and 

MSBi). Then, we identified 126 modules including 724 proteins derived from the MS-matrix. To 

further investigate the reliability of modules, we compare our modules with the modules 

recorded in MIPS and analysis the Gene Ontology and connectivity of our modules. 

For 193 modules derived MIPS, we selected 160 modules which have more than a half of 

proteins in the network constructed by DIPc. According to the definitions of module from the 
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previous studies 
84,122,123

, a module should have a higher connectivity. Finally, we defined a 

golden positive dataset which includes 69 MIPS modules, which connectivity is more than 0.6. 

The overlap between a reference MIPS module R and a predicted module M can be quantified 

by Jaccard index 
129

. The Jaccard index is calculated as follow: 

Jaccard index =  
|R∩M|

|R∪M|
 (12) 

where, the |𝑅 ∩ 𝑀| is the number of protein which is the intersection of R and M; the 

|𝑅 ∪ 𝑀| is the number of protein which is the union of R and M. 

For each reference module, we find the prediction that has the highest Jaccard index. Total 

47 modules are related to our modules (Jaccard index > 0). If a module with Jaccard index ≥ 

0.5 is considered as a hit module, our method has 36 (52%) hits of golden positive dataset. 

Next, because modules have relatively autonomous of the whole network, the connectivity 

of modules should be higher than the proteins which include the module and the proteins 

connecting to the module (named "extent 1 layer"). Table 5-2 shows the connectivity of our 

module, 160 MIPS module, and golden positive dataset. Because the 160 MIPS modules are 

only filtered by number of protein within PPI network, these 160 MIPS have a lower 

connectivity. In addition, both of our modules and the golden positive dataset have a higher 

average connectivity (i.e. 0.73 and 0.84, respectively). The average connectivity of all set 

would have an obvious decreasing from modules to the extent 1 layer. In addition, all modules 

derived from MS-matrix and golden positive dataset have a higher connectivity than the extent 

1 layer (Table 5-2). 

Table 5-2. Connectivity of module and proteins which include the module and the proteins connecting to the 

module (named "extent 1 layer") 

Module 

Set 

No. of 

Module 

Average 

connectivity 

Average connectivity of 

extent 1 layer 

No. of module which connectivity > 

connectivity of extent 1 layer 

Our 126 0.73 0.32 126 

MIPS 160 0.49 0.18 150 
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Golden 

positive 
69 0.84 0.28 69 

 

Furthermore, we annotated modules by utilizing the consensus GO terms within a given 

module. To annotate a module with Y proteins, we define a consensus ratio (CRM) of GO term 

i as CRM=Yi/Y, where Yi is the number of proteins with GO term i in a module. Next, the 

enrichment for each module in each GO term was determined by the p-value of the 

hypergeometric distribution and then this p-value was adjusted based on Bonferroni correction 

130,131
. Here, a GO term is considered as a representative GO term of a module if CRM > 0.6 

and adjusted p-value of GO term ≤ 0.05 
130,131

 based on statistically analysis. Figure 5-5 

illustrates the distribution of the number of representative GO term within a given module 

derived from MS-matrix and MIPS. Then, we applied the two-tailed T-test to further 

investigate the difference between MS-matrix and MIPS. However, all of the P-values (0.18, 

0.30, and 0.13) imply that the number of representative GO term within a given module do not 

have a significant different between MS-matrix and MIPS. In addition, we also investigate the 

representative GO terms which have the top 5 ratio in our modules or MIPS modules. The 

Jaccard index of BP, CC, and MF are 0.67, 0.67, and 1, respectively. This result implies that the 

biological characterization (i.e. No. of representative GO terms in a module and top 5 terms) of 

our module derived from the MS-matrix is similar to the MIPS modules which are identified by 

the experiments. 

 

Figure 5-5. The distribution of the number of gene ontology annotations (i.e. (A)BP, (B)CC, and C(MF) within a 

given module derived from MS-matrix and MIPS 
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Based on the two-tailed T-test between MS-matrix and MIPS, all of gene ontology annotations (i.e. BP, CC and 

BF) do not have significant different (i.e. P-values are 0.18, 0.30, and 0.13 respectively). 

 

Example of modules derived from the MS-matrix 

According to 126 modules including 724 proteins derived from the MS-matrix, Figures 6A 

and 6B illustrate the 9 modules, which sizes are greater than 10, on the network and their 

density region on the MS-matrix. Two modules with the lowest average MSii values (0.1 and 

0.16) are the 19S proteasome and U4/U6 x U5 tri-snRNP complex (purple and light blue 

regions in Fig. 5A). The proteasome is a protease that controls diverse processes in eukaryotic 

cells; and snRNPs are large RNA-protein molecular complexes upon which splicing of 

pre-mRNA occur. Both of two modules are play essential roles in a yeast PPI network. In 

addition, two largest modules (19 and 17 proteins) are the F1-F0 ATP synthase and 

peroxisomes. Then, we use two modules (i.e. anaphase-promoting complex/cyclosome (APC/C) 

and peroxisomes) as examples to further introduce the module identification derived from the 

MS-matrix. 

 

Figure 5-6. The modules derived from the MS-matrix 

(A) Yeast protein interaction network with 9 colored modules (e.g. F1-F0 ATP synthase (red), 19S proteasome 

(purple), anaphase-promoting complex/cyclosome (pink), and peroxisome (light green)). (B) The MS-matrix of 

19S proteasome

F1F0 ATP synthase

Peroxisomes

Rab family GTPase

U4/U6 x U5 tri-snRNP complex

CCR4-NOT complex

Anaphase-promoting complex/cyclosome

Exosome complex

DNA replication factor

A B
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PPI network with the 9 modules which map to the 9 colored regions on the network. 

 

The anaphase-promoting complex/cyclosome (APC/C) mediates cell cycle–regulated 

ubiquitination, and thereby degradation, of proteins containing sequences called destruction 

boxes 
132

. There are 11 proteins are defined as anaphase-promoting complex derived from the 

MIPS database. In addition, 6 of these proteins are also the products of essential genes derived 

from the DEG database. According to MS-matrix, we identified a region which is local density 

region (pink region in Fig. 5-6A) and has 12 proteins sharing the similar behaviours of 

non-diagonal values (pink in Fig. 5-6B). The protein not recorded in MIPS is YGL003C, a 

cell-cycle regulated activator of the APC/C 
133,134

. Although YGL003C is not a member of APC, 

YGL003C is highly related to the APC and share the same Gene Ontology annotation (i.e. 

anaphase-promoting complex)  with other APC/C proteins based on the Saccharomyces 

Genome Database (SGD) 
135

. This result indicates that the 12 APC/C related proteins derived 

from the MS-matrix could be considered as a reasonable module. 

In addition, we also identified novel modules which are not recorded in the MIPS. 

Peroxisomal proteins are synthesized on free polyribosomes and imported posttranslationally. 

The biogenesis of peroxisomes requires a group of protein factors referred to as peroxins which 

are encoded by the PEX genes 
136

. According to MS-matrix, we identified a region which is 

local density region (light green region in Fig. 5-6A) and has 17 proteins sharing the similar 

behaviours of non-diagonal values (light green in Fig. 5-6B). There are 14 proteins are 

recorded as PEX genes in SGD. Two proteins (i.e. YML042W and YIL160C) are also involved 

in the same cellular component (i.e. peroxisome) based on SGD. Therefore, this module 

derived from the MS-matrix may be a reasonable module. 

5-4. Conclusions  

For a given PPI network of S. cerevisiae, our results demonstrate that the important 
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proteins identified by the MS-matrix are related to the essential biological processes (i.e. 

essential genes). In addition, the important proteins derived from MS-matrix are highly 

consistence with the topology features (i.e. degree, closeness centrality, and betweenness 

centrality). Then, the relationship between proteins derived from the MS-matrix could reflect 

the similarity of Gene Ontology and could be useful for the module identification. For 69 

reference modules of golden positive dataset, there are 47 modules are related to our modules 

(Jaccard index > 0). If a module with Jaccard index ≥ 0.5 is considered as a hit module, our 

method has 36 (52%) hits of golden positive dataset. Furthermore, our results also imply that 

the biological characterization (i.e. No. of representative GO terms in a module and top 5 terms) 

of our module derived from the MS-matrix is similar to the MIPS modules which are identified 

by the experiments.  
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Chapter 6. Conclusion 

 

6-1. Summary  

In this thesis, we presented the "3D-domain interologs mapping" and "protein complex 

family" to construct the structure resolved PPI networks across multiple organisms. 

"3d-domain interolos mapping" is a concept for efficiently enlarging protein interactions 

annotated through the homologous PPIs with residue-based binding models. We verified the 

structure resolved PPI networks on Gene Ontology annotations
36

 and the architecture of 

topology (i.e. scale-free network properties). In addition, we also provide the consensus 

proteins across three networks based on "3D-domain interologs mapping". These consensus 

proteins are highly related to the essential genes and disease related proteins. We believe that 

structure resolved PPI networks would provide the insight for understanding the mechanism of 

biological processes within a given PPI network. In summary, the major contributions of this 

study are listed as the following: 

1. We proposed several new concepts, including "3D-domain interologs mapping" and 

"protein complex family", to study the evolution of PPIs and protein complexes across 

multiple species. A group of PPIs are regarded as a PPI family when they meet the 

following criteria: (1) The proteins of the PPIs are homologous proteins, respectively; (2) 

The interactions of PPIs share the similar binding model based on the structure templates. 

In addition, a group of protein complexes are regarded as a protein complex family when 

they meet the two criteria and an additional criterion: the protein complexes share the 

similar complex similarity. More importantly, these two concepts provide a new way to 

efficiently enlarge the PPIs and protein complexes annotated with residue-based binding 

models. 
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2. We developed a database, namely 3D-interologs, records the evolution of protein-protein 

interactions database across multiple species derived from “3D-domain interolog mapping” 

and a template-based scoring function. We have inferred 173,294 homologous 

protein-protein interactions by using 1,895 three-dimensional (3D) structure heterodimers 

to search the UniProt database (4,826,134 protein sequences). For a protein-protein 

interaction, the 3D-interologs database shows interacting domains and binding models 

derived from structure template. More importantly, this database provides the evolution of 

PPI by exploring its PPI family across multiple species. 

3. We developed a web server, namely PCFamily, for identifying homologous complexes 

and inferring conserved domains and GO terms from protein complex families. PCFamily 

is the first server to provide homologous complexes in multiple species; graphic 

visualization of the complex topology and detailed atomic residue-residue interactions; 

interface alignments; conservations of GO terms and domain compositions. We believe 

that the server is able to provide valuable insights for determining functional modules of 

biological networks across multiple species.  

4. Based on the two concepts, we were able to construct the structure resolved PPI networks 

in H. sapiens, M. musculus, and D. rerio. In each structure resolved network, the PPIs 

with atomic residue-based binding models in the derived structure resolved network 

achieved highly agreement with Gene Ontology similarities. In addition, our derived 

networks can be used to observe the consensus proteins and modules derived from the 

multiple network alignment of H. sapiens, M. musculus, and D. rerio. These consensus 

proteins are often the essential genes and play key roles in the architecture of these 

networks. More importantly, our results demonstrate that the structure resolved PPI 

networks would provide valuable insights into understanding the mechanism of biological 

processes (e.g. cancer, cardiovascular-related diseases, and complement and coagulation 
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pathway) across multiple organisms. 

 

6-2. Discussion and future work 

According to the characteristics of "3D-domain interologs mapping" and "protein 

complex family", the interactome behavior, we discussed here, is focused on the conserved 

proteins and PPIs which are the members of the PPI and protein complex families. In this 

thesis, we used our concept to studying the evolution of these PPIs and protein complexes. 

Therefore, we only discuss the conservation and difference of these consensus pathways across 

multiple organisms. However, the organism-specific proteins and PPIs usually play an 

important role during the organism evolution. This issue should be the next important issue for 

our studies. 

Our structural networks can annotate and infer the cell behaviors of a new determined (or 

seldom-studied) species (e.g. zebrafish), by mapping some well-studied species. However, the 

construction of our structurally resolved PPI networks largely relies on the availability of 

3D-crystal structures, which limits the coverage of our network. But, we believe that the rapid 

growth of PDB providing more 3D-crystal information and our methods can be readily applied 

to uncover potential molecular mechanisms whose structural information is currently missing.  

In addition, our methods should also be considering these high-quality experimental PPIs 

with possible domain annotations. Prof. Yang Lab has already provided the sequence-based PPI 

family for annotating and studying PPIs across multiple organisms with non-structure 

information. Although the accuracy of method for PPI annotation is less than "3D-domain 

interologs mapping", the sequence-based PPI family has more coverage to explore the 

non-well-known organisms. In the future work, we could carefully utilize sequence-based PPI 

family with high-quality experimental PPIs to enlarging the coverage of PPIs and provide a 
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more complete PPI network for understanding the mechanism of cell behaviors. 

However, dynamic architecture of the protein interaction network has an important role in 

the regulation of cell behavior. Understanding the functional organization of protein interaction 

networks is the most important issue for understanding the principles of cellular behavior. 

More importantly, it also provides a way for understanding the diseases where cellular behavior 

is miss-regulated. Currently, most of these studies have considered the protein interaction 

networks without taking into account the dynamic nature of protein expression, which is 

essential for a proper representation of biological networks. 

In current state, we have already been able to construct the structure resolved PPI 

networks in multiple organisms. We also provide the consensus proteins and PPIs in these 

networks. According to our results, the structure resolved PPI networks derived from the PPI 

family would provide the insight for understanding the mechanism of biological processes 

within a given PPI network. To further investigate the behavior of PPI network within a given 

cell, gene expression data would provide an aspect of in-depth understanding of the dynamic 

organization of the PPI network and its role in the regulation of cellular processes. For example, 

the Connectivity Map (also known as cmap) provided by Lamb, J. et al. is a collection of 

genome-wide transcriptional expression data from cultured human cells treated with bioactive 

small molecules and simple pattern-matching algorithms that together enable the discovery of 

functional connections between drugs, genes and diseases through the transitory feature of 

common gene-expression changes 
37

. 

Therefore, we will combine the gene expression data into the PPI network. We will try to 

illustrate the behavior of PPI networks under different cell types and different conditions. 

Because the Connectivity Map could provide the up-regulated and down-regulated proteins of 

given drugs and diseases, combining these data with our structure resolved PPI networks 

should be able to explain the mechanism of relationship between the drugs, genes and diseases.  
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