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Abstract. In this paper we derive a result to ensure the global stability of a 
predator-prey system. The method used is quite general and may have applica- 
tions to other situations. 
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1. Introduction 

It is quite an interesting mathematical problem to estimate the basin of an 
asymptotic equilibrium of a dynamical system. For a predator-prey system, 
usually the biologists believe that a unique, "positive", locally asymptotically 
stable equilibrium is globally stable. Thus Goh [6] constructs a Lyapunov function 
to prove global stability of the classical Lotka-Volterra system. Hsu, Hubbel and 
Waltman [9] employ the Dulac criterion (Bendixson's negative criterion) to prove 
global stability for a specific predator-prey model. In a subsequent paper, Hsu 
[8] constructs a Lyapunov function to ensure the global stability of a general 
predator-prey system which was discussed by many authors (Freedman [4], 
Gaus, Smaragdova and Witt [5], May [11], Oaten and Murdoch [12], and 
Rosenzweig and MacArthur [15], for example). Recently, Cheng, Hsu and Lin 
[3] give some results which cover most of  the models proposed in the ecological 
literature. One of the methods they use is the comparison of two similar systems. 
We like to note that either constructing a Lyapunov function, or using the Dulac 
criterion is not an easy job. 

In this paper, we employ a general comparison method to prove the global 
stability of a class of predator-prey systems. The method is quite effective and 
useful. In fact, Liou and Cheng [10] prove a uniqueness theorem of a limit cycle 
for a predator-prey system by using a similar comparison method. 

For other discussions of  a predator-prey system, we refer to Albrecht, Gatzke, 
Haddad and Wax [1], Cheng [2], Hastings [7], Rosenzweig [14, 16] and Maynard 
Smith [17]. 

We would like to thank the referee for his useful suggestions. 
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2. The model  and global stability 

As in Cheng et al. [3], we consider the following basic model for the predator-prey 
system 

dx/ dt = xg(x) - yh(x), (2.1) 

dy/ dt = y ( m h ( x ) -  d), (2.2) 

x(0) > 0, y(0) > 0, 

where x represents the prey population (or density), y represents the predator 
population (or density), g(x) is the specific growth rate which governs the growth 
of the prey in the absence of predators, h(x) is the predator response function 
which has been much discussed in the literature, m is the efficiency rate of the 
predator in predating the prey and d is the death rate of the predator. 

The general assumptions on g(x) and h(x) are: 
(a) g e C1([0, oo), R), g(0) > 0 and there exists K > 0 such that g(K)  = 0 and 

( x - K ) g ( x ) < O  for x #  K. 
(b) h e  C1([0, oo), R), h (0 )=0  and h ' ( x ) > 0  for all x > 0 .  
Some of the specific forms of g(x) and h (x) frequently used are (see Freedman 

[4], May [11], Oaten and Murdoch [12], Real [13] and Rosenzweig [14]): 

( x) [ 
�9 r 1 -  l > b > O ,  (2.3) g (x ) : r  1 -  ' K + a x '  -K ' 

bx" 
h ( x ) : - -  n ~ l ;  ax b, l~>b>0;  a(1--e-bX), a > 0 .  (2.4) 

a + x  n' 

We assume that there is a locally stable equilibrium: 
(c) There exists (x*, y*) such that mh(x*) - d = 0 and x*g(x*) - y*h (x* )  = 0 

with 0 < x * < K ,  y * > 0 ,  

f ' ( x )  < 0 for all x* ~< x <~ K, (2.5) 

where f ( x )  = xg(x) /h  (x). 
Now since f ' ( x )  < 0 for x* <~ x ~< K, the inverse function o f f  exists. Let G be 

the inverse function o f f  in the range x* <~ x <~ K. Then 

f :  [x*, K]  --> [0, y*] 

and 

(2.6) 

G:[0,  y*] ~ [x*, K]  (2.7) 

f ( G ( y ) ) = y  and G ( f ( x ) ) = x .  (2.8) 

Let Q be the solution of the initial value problem 

dQ(y) m - d / h ( G ( y ) )  
- -  - G ' ( y )  

dy m - d / h ( Q ( y ) )  (2.9) 

Q(y*) = x*, Q(y) ~ (0, x*) for y 6 [0, y*). 

It is easily seen that Q is uniquely determined and satisfies 0 <  Q(y )< x*  for 
0 ~< y< y  * and Q'(y)>O for 0<~y<y  *. From the assumption (b) of h, we can 
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easily see that Q(0)/> 0. Le t /~  = Q(0). Now let F be the inverse function of Q, 
that is, F and Q satisfy 

Q:[O, y*] + [/~, x*], (2.10) 

F : [/s x*] + [0, y*], (2.11) 

F ( Q ( y ) ) = y  and Q ( F ( x ) ) = x .  (2.12) 

Our last assumption is 
(d) Assume that f ( x )  >- F (x )  for all x ~ [/~, x*]. 
Now we can state our main result. 

Theorem 1. Under the assumptions (a)-(d),  (x*, y*) is globally asymptotically stable 
for system (2.1), (2.2) in the interior of the first quadrant. 

To prove Theorem 1, we introduce an auxiliary system 

dx/  dt = x~,(x) - yh (x), (2.14) 

dy/  dt = y (mh (x )  - d), (2.15) 

where the constants m and d and the function h are the same as in system (2.1), 
(2.2), and ~(x) is defined by 

ff,(x) = ~ g(x)  if x ~ [x*, K] ,  (2.16) 
[ F ( x ) h ( x ) / x  if x ~ [/(, x*]. 

We have the following lemma which follows directly from the proof  in [1]. 

Lemma 1. Solutions of  system (2.1), (2.2) are positive and bounded. 

For system (2.14), (2.15), we have 

Lemma 2. For system (2.14), (2.15) under the assumptions (a)-(d),  every trajectory 
3' starting at po = (x*, Yo) with 0 < y o < y *  is a closed orbit contained in the strip 
{(x, y): K<-x<~K,O<y<oe} .  

Proof Let 7 = (x(t) ,  y ( t ) )  be the trajectory which starts at po = (x*, Yo) with 
0 < y o < y * .  Choose t l< t2  such that y ( t ) < f ( x ( t ) )  for all O<~t<t l ,y ( t l )  = 
f ( x ( t l ) ) ,  y ( t )  > f ( x ( t ) )  for all tl < t ~< t2 and x(te) = x*. Let Pl = (x(tl) ,  y(tl))  = 
(xl,  Yl) and P2 = (x(t2), y(t2)) = (x2, Y2) = (x*, Y2). We let the trajectory of 3, 
between Po and Pl be denoted by 3,1 and that between Pl and P2 be denoted by 3,2. 

Now define the transformation T 

T:  [x*, K]  x (0, oe) ~ [/s x*] x (0, o0) 

by 

The trajectory Yl satisfies 

T(x, y) = (Tl(x, y),  T2(x, y))  

= (Q o f (x ) ,  y). 

d x -  ( f ( x ) - y )  

y (x*)  = Yo, x e [x*, x0.  

(2.17) 

(2.18) 
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Let ~1 = T3,1- Then "~1 satisfies 

d~ _ dy 1 dy 

d~ d ( Q o f ( x ) )  Q ' ( f ( x ) ) f ' ( x ) d x  

- Q ' ( f ( x ) ) f ' ( x )  ( f ( x ) - y )  

Now let f ( x )  = z, then Q(z) = Y and z = F(Y). 
From (2.9), we have 

d 
m 

h(G(z))  
O ' ( f (x ) )  = O'(z) - a ' (z) .  

d 
m 

h(Q(z))  

From (2.8), we have 

G'( f ( x ) ) f ' ( x )  = 1. 

Using (2.19), (2.20) and (2.21), we have 

dfi 1 f i lm  

d~ d m 

( F(:~) - y) " 

(2.19) 

(2.20) 

(2.21) 

(V(~) -y) 

(2.22) 

Hence Yl coincides with the trajectory 3' = (x(t) ,  y( t ) )  with t < 0 .  Similarly, we 
can prove that ~2 = 1"72 coincides with the trajectory 3, = (x(t) ,  y( t ) )  for  t>~ t2. 
This proves that  3, is a closed orbit. In  fact, 3, = Yl U3'2 UT3"2 UTyl. The lemma is 
proved. Q.E.D. 

Lemma 3. I f  we represent the systems (2.1), (2.2) and (2.14), (2.15) in the same 
phase plane (see Fig. 1), let 

C1 ={(x ,y )  ly = f ( x ) ,  0~< x ~< x*}, 

C2= {(x, y ) l y =  F(x) ,  ~2 <~ x<~ x *} 

and consider trajectories F1 and F2 for systems (2.1) and (2.14), respectively, 

1"1 = Pl P2P3P4Ps, I~2 = qlq2q3q4ql,  

where Pl, qa and P5 belong to Cl,p2 and q2 belong to C2, and p3 = q3 = (X*,  Y3) 

with Y3 % Y* and P4 "= q4 ---'= (X*,  Y4) with Y4 > Y*, then we have xp, < Xq, < xp5 , where 
xp, and Xq, are the x-coordinates of points Pi and qi respectively. 



Global stability of a predator-prey system 69 

Fig. 1. Phase plane of (2.1), (2.2), (2.14) / 
and (2.15) X ~ 

P4 = q4 = ( x*,yQ 

K 
m X 

Proof Cons ider  the arcs P4P5 and q4ql. Arc P4P5 satisfies 

d x -  f ( x ) - y  ' y ( x * ) = y 4 .  

Arc q4q] satisfies 

dx F(x )  - y ' 

(2.23) 

Since we have f ( x )  >t F ( x )  for  all x ~ [/(,  x*]  and f ( x )  > F(x )  at least in a small  
ne ighborhood  of  x*, we obtain  that  

Similarly we can prove  that  

Xq~ < xps. 

Xpl ~ Xql . 

This comple tes  the proof .  Q.E.D. 

N o w  we are in a posi t ion to prove  Theo rem 1. 

Proof of  Theorem 1. From L e m m a  1, solut ions of  (2.1), (2.2) are posit ive and 
bounded .  F rom L e m m a  3, xp~ < Xp~ for  all t rajectories F1, and hence there is no 
per iodic  solution. Fur the rmore  (x*, y*) of  (2.1), (2.2) is locally asymptot ica l ly  
stable. Thus (x*, y*) of  (2.1), (2.2) is global ly stable. This comple tes  the p roof  
of  Theo rem 1. Q.E.D. 

y(x*)  = Y4. (2.24) 
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We shall use the above general theorem to derive some specific theorems 
which include the theorem obtained by Cheng et al. in [3]. 

Let the assumptions (e) and (f) be 
(e) f (2x*-x)<~f(x)  for all x satisfying 

max{0, 2x* - K } < - x ~ x * .  

(f) d / h ( x ) - m >  m - d / h ( 2 x * - x )  for all x satisfying 

x* ~< x < min{2x*, K}. 

Theorem 2. Under the assumptions (a), (b), (c), (e) and (f), (x*, y*) is globally 
asymptotically stable for system (2.1), (2.2) in the interior of the first quadrant, o 

Proof Let H ( x ) = f ( 2 x * - x )  for max{O, 2x*-K}<-x<~x *. Then the inverse 
function V of H has derivative 

1 
V'(y) = H'(x) - 

From assumption (f), we have 

m 

V'(y) = -G'(y)  >! 

1 

- f ' ( 2 x *  - x )  - - ~ " ~ Y )  "-" ' - '  
(2.25) 

d 
h(G(y)) ,_,,, 

-~ tJ ~y ). 

From (2.26) and (2.9), we have 

V(y) <~ Q(y) 

m 
h(V(y)) 

(2.26) 

From assumption (e) and (2.27), we have 

f (x )  >i H(x) >t F(x). 

This means that assumption (d) is satisfied. From Theorem 1, we prove this 
theorem. Q.E.D. 

We define now 

H(x)=min{f (x) , f (2x*-x)} ,max{O,  2x*-K)}<~x<~x *. (2.28) 

Let the assumption (g) be 
(g) Assume that the H defined in (2.28) satisfies H'(x) > 0 for all x except 

at a set of finite points and that 

d 
m d 1 >~(m h(V-s 1 

H'(Vof(x))  

for all x* <~ x ~< K, where V is the inverse function of H. 
Now we have 

Theorem 3. Under the assumptions (a), (b), (c) and (g), (x*, y*) is globally 
asymptotically stable for system (2.1), (2.2) in the interior of the first quadrant. 

and hence H(x) >i F(x). (2.27) 
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Proof Assumption (g) means that 

d 
m 

1 , ~  h ( a ( Y ) ) G , ( y  ) 
V ' ( y )  = H ' ( V ( y ) . )  d " 

m 
h(V(y)) 

Hence as in the proof of Theorem 2, we have 

f ( x )  >1 H(x)  >1 F(x),  max{0, 2x* - K} ~< x <~ x*. 

Hence assumption (d) is satisfied. This completes the proof. Q.E.D. 

3. Discussion 

Assumptions (e), (f) and (g) are more easy to check than assumption (d). But 
using computer, it is relatively easy to check assumption (d). Computer simula- 
tions indicate that almost all combinations from (2.3) and (2.4) satisfy the 
assumption (d). 
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