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Abstract

Bit-interleaved coded modulation (BICM) is a bandwidth-efficient scheme with
a diversity order higher than the Ungerboeck’s trellis-coded modulation over fading
channels. In this thesis, we investigate the'pérformance of punctured BICM with soft
and hard decoding over additive‘white Gaussian and Rayleigh fading channels. Tight
BER upper bounds are derived for QAM-constellation with gray labeling, which is
known to have the best performance and constitutes a large portion of the practical
applications of BICM systems. Both BICM with random (BICM-RLP) and fixed
label position (BICM-FLP) mapping are analyzed. For BICM-RLP with soft decoding,
the new upper bound is tighter than the well-known BICM Union and the Expurgated
Bound proposed in [4]. The tight upper bounds for hard decision and for BICM-FLP
with soft decision are newly derived results.

Index Terms—Bit-interleaved coded modulation (BICM), gray labeling, punctured

convolutional code, BER upper bounds, Rayleigh fading channels.
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Chapter 1: Introduction

Trellis-coded modulation (TCM) was proposed by Ungerboeck for
bandwidth-efficient communications in the additive white Gaussian noise (AWGN)
channels [1]. Through a joint design of coding and high-order modulation, one can
achieve a large coding gain without increasing the signal bandwidth. Originally, TCM
was designed to maximize the minimum Euclidean distance of the coded systems in
order to achieve a high coding gain. For fading channels, however, Divsalar and
Simon showed that it is the diversity order rather than the minimum Euclidean
distance that plays a key role in achieving such an objective [2]. Placing a symbol
interleaver after modulator and/or using no,parallel transitions are the conventional
techniques to increase the diversity orderf[2]:-Nevettheless, they may not be effective
due to the fundamental limitation of diversity order to the minimum number of
distinct coded symbols along any error event.~Zehavi [3] later proposed to add a bit
interleaver between channel encoder and'modulator so that the diversity order can be
increased to the minimum number of distinct coded bits, instead of the distinct coded
symbols. This technique was named bit-interleaved coded modulation (BICM) in [4]
and has been known to outperform TCM over fading channels with the same order of
decoding complexity [3-6].

After Zehavi’s pioneering work in [3], Caire, Taricco, and Biglieri laid a
theoretical foundation for BICM from a viewpoint of information theory [4]; Along
with new methods for performance analysis, design guidelines were given for
efficient design of BICM with random label-position mapping (BICM-RLP). In
[7-10], motivated by the concept of turbo decoding, BICM-RLP with iterative

decoding was proposed to increase the system performance. Both soft and hard



feedbacks are possible in terms of complexity and performance tradeoffs. In [7, 11],
by making the I and Q components of the transmitted signal being independently
faded, the diversity order can be increased to twice of the diversity order of the
conventional BICM-RLP with iterative decoding.

Most of the previous works on BER (Bit Error Rate) analysis of BICM are based
on the BICM Union and Expurgated bounds proposed in [4]; for examples see [7,
12 ,13]. Under the assumption of random label-position mapping and constellation
symmetrization, a union upper bound, named BICM Union Bound, was derived in [4]
for BICM-RLP for any signal constellation. Because this bound is too loose in
general, a tighter expurgated bound was also obtained in [4] by expurgating the
irrelevant error events in the BICM Union Bound. The expurgated bound is
considered by the authors in [4] <an upper bound for QAM constellation with gray
labeling but is only an approximation for others.

In this thesis, firstly a new tighter-tpper-bound is proposed for BICM with QAM
constellation and gray labeling, under the samé assumption of random label-position
mapping and constellation symmetrization as in [4]. Also, it will be shown that the
BICM Expurgated Bound in [4] is actually only an approximation even for QAM
constellation with gray labeling. Secondly, a new upper bound is proposed for BICM
with fixed label-position mapping (BICM-FLP) [21,22]. BICM-FLP is one other
popular form of BICM discussed in the literature. The proposed bound are very tight
and applicable to any code rates if punctured convolutional codes is employed
[14-16]. Only the QAM constellation with gray labeling will be explicitly treated in
this thesis, although the principle leads to the new upper bounds can also be applied
to other types of constellations. QAM constellation with gray labeling has the best
performance and constitutes a very large portion of practical applications of BICM

systems.



The rest of this thesis is organized as follows. Chapter 2 provides a brief
overview of BICM, including MICM-RLP and BICM-FLP. We describe the BICM
system model, includes interleaving, label-position mappings, channel model, and
decoding rule. The proposed analysis methods with soft decoding will be shown in
Chapter 3 and Chapter 4 for BICM-RLP and BICM-FLP, respectively. Extensive
simulation and analytical results over AWGN and Rayleigh fading channel are also
presented in these chapters. Conclusions are given in Chapter 5. Finally, new BER

upper bounds for BICM systems with hard decoding are given in Appendix A.



Chapter 2: System Model

A block diagram of a general BICM system is shown in Fig.1. The BICM
encoder is a serial concatenation of a (punctured) convolutional encoder C, a bit
interleaver 7, and a memory-less modulator, which is characterized by the mapping
function u and an N-dimensional constellation } . After encoding, the coded sequence

c 1is interleaved first, and a block of m-bits of the interleaved sequence 7(c) is

mapped to one of M =2" signals x in the N-dimensional constellation . The

modulated signal sequence x is then transmitted over the vector channel,

characterized by the conditional pdf (probability density function) p,(ylx), where

y is the received signal sequence: The receiver performs just the reverse operations

of the transmitter: after demodulation and-bit metric calculation, the received code

sequence is de-interleaved and decoded, where: L /is the bit metric sequence.

Punced | Interleaver i (Q) Modulator =
convolutional —» p I
encoder wu,y 4*
Channel
Po(]2)
Decoder DG-InteEl]eaver < bimetric
T calculation
L y

Fig.1 A block diagram of general BICM systems.



A high code rate system can be easily obtained by puncturing some of the coded
bits of a low code rate system without increasing the decoding complexity. For
example, 2/3-rate and 3/4 -rate systems are obtained from a 1/2 -rate system by
Both the punctured and

using the puncture pattern, as shown in Table. 1.

un-punctured systems will be investigated.

Code rate Puncture Pattern
12 1
1
2/3

s

3/4 1 1 %
1. x 1

Table.1 Puncture pattern systems.for’.2/3 -rate and 3/4 -rate

2.1 Interleaving and Label-Position Mapping

Depending on the design of interleaver, two types of label-position mapping
have been discussed in the literature [3, 4, 21, 22]. The first one is random mapping,
where a coded bit is randomly mapped to any position of the m-bitlabel of a
constellation point [4]. The other is fixed mapping that the mapping between a coded
bits and a label position follows a fixed pattern [3, 21,22]. For random mapping, the
channel can be modeled as a parallel of m binary input channels, randomly selected
by the input coded bit, as shown in Fig. 2. For fixed mapping, as is mentioned, the
mapping between a coded bit and a label position is fixed, as shown in Fig. 3, where

i

¢’ is to denote the sequence of coded bit that is mapped to the i label position of

x . Both random and fixed label-position mapping are considered in this study.



encoder

¢~ |

Binary Channel 1

Binary Channel m

Bit metric
calculation

It~

» Decoder

Fig.2 BICM with random label-position mapping (BICM-RLP) .

encoder

Bit metric

I~

calculation

Decoder

Fig.3 BICM with-fixed label-pesition mapping. (BICM-FLP)

2.2 QAM Constellation with Gray Labeling

Only QAM constellation with gray labeling will be explicitly treated in this
study, although the analysis may be extended to some other types of constellation and
labeling. QAM constellation with gray labeling gives the best performance for BICM
systems and constitutes a very large portion of practical applications of BICM

systems. Figs. 4-5 show a gray labeling for 16 and 64 QAM constellations,

respectively.



QA I'(x) P ()P (x)1* (x)
00 10 0110 1110 10 10
. o 43 . .
00 11 0111 1111 10 11
° ° +14 ° °
-1 +1 +3
t t —
0o otor | o1 1000 1
3 3 -1 . .
0000 0100 11 00 1000
. . -3 . .

Fig.4 16-QAM with Gray labeling

QA I'(x) P (x) 8 (x) 1 (x) P (x)1° (%)
000100 001100 011108~ 010 1007 1104007 411100 101100 100100

. . . e i L . . .
000101 001101 011101 010 101 - 110101 111101 101101 100101

. . . o 454 . . . .
000111 001111  O11111 *“G10 1113 110 111 111 111 101111 100111

. . . SNETHL S . . .
000110 001110 011110 010110] 110110 111110 101110 100110

. . . o 14 . . . .

7 " 3 ! + i o T
000010 001010 011010 010 0101__ 110010 111010 101010 100010
000011 001011 011011 0100113“ 110011 111 011 101 011 100 011
000001 001001 011001 010 0015 110001 111001 101001 100001
000000 001000 011000 010 0007 110000 111000 101000 100000

Fig.5 64-QAM w/ith Gray labeling



Note that/ and Q may use different forms of gray labeling and that it may be

different from those shown in Figs 4-5.

2.3 Vector Channel Model

The vector channel is characterized by the transition pdf,
po(y|x):6e CV;x,ye C". (1)
where the complex-valued vector & represents the channel parameter and is

independent of the channel input x. Conditioned on the sequence &, the channel is

memory-less, i.e.,

po(2fx) =T Pa (3i]5)- @)
6 is a constant for AWGN channel and ‘is ‘the multiplicative fading process for
frequency nonselective slow-fading channels. For fading channels, assuming that the
depth of interleaver is large enough “So that {6, } are i.i.d. random variables. In

addition, it will be assumed that perfeet € issknown to the receiver, hence we have

ideal channel state information (CSI).

2.4 Decoding Rule [3, 4]

Let ['(x)denote the ith label bit of x, g, the subset of signals xe y with

I'(x)=b, be{0,1}, and b the complement of b. Recall that y is the channel

output resulting from the transmission of x. From [3, 4], the optimum bit metric with

ideal CSIfor ['(x)=b atthetime k is given by
L';=10g2p6k(yk|z)—log2p,,k(yk|z). 3)

EH, €15
The branch metrics (3) may be computationally too complex for hardware
implementation. Therefore, the simplified bit metric

8



€Y,

1 =102 3 1, (1<) 5 2, (312
€%

= max p, ()’k|z)—r2%<p9k (v]2)

2 2 4)
€N 2
s

is often used in practical applications, in which only the largest term is each
summation in (3) is selected for computation.

With the bit metric given in (4), the Viterbi algorithm can be employed to search
through the code trellis to find the most likely one. The decoding procedure for the

punctured systems is almost the same as the un-punctured one, except that a zero bit
metric is assigned to the punctured bits.



Chapter 3: Upper Bounds for BICM with Random

Label-Position Mapping (BICM-RLP)

The performance of BICM-RLP was first analyzed in [4]. Two BER upper
bounds, that is, BICM Union and Expurgated Bound, were proposed. In this chapter,

these bounds will be reviewed first, and then a new tighter bound is derived.

3.1 BICM Union (BICMyn) and Expurgated Bounds (BICMgx) [4]

Consider a (k,n) convolutonal code, the union bound on BER is given by [4]

pb-l > W,(d) f(d,u,x) )

k d:dmin

where W, (d)is the total weight.of error_events at Hamming distance d, d,,, the
minimum Hamming distancezof the code, and ' f(d,u,y) the pair-wise error

probability (PEP) with Hamming distance d « As is clear, f(d,u,y) is also a

function of the mapping u and constellation y. Let d be the Hamming distance
between the correct code sequence ¢ and error code sequence ¢ . From [4], the PEP
is given by

fdou, x)=Egy| P(c > &)U | (©6)
where S=(---,S8,,5,.5,,--)and U =(-,U_,U,,U,,---)are the sequences of random
variables to denote the operations of random label-position mapping and
symmetrization of the use of the constellation, respectively. S, =i, i=1,---m

denotes that the coded bit ¢, is mapped to the i" label position, U, =1denotes

that the mapping u is used forc, ,and U, =0, the complement mapping u is used

instead. S, and U, are assumed uniformly distributed, independent of each other

10



and independent of other random variables. Note that U was introduced in [4] for

the purpose of easy analysis.

Let

S _ i i i
He =X XX Yy XX X8

R a
Xi = 2% X XX

be the Cartesian product of signal subsets ;(Zkk and Z:kk , selected by the bits ¢, and

¢, with the label positions S, =i, , respectively. According to the decoding rule ZZ in

(4), the path metric difference between ¢ and ¢ is

i

d d
o= Zma)_flog Pe, (yk|zk)—zma$§10g Do, (yk|Zk)
Z
= maxlog p, (1\;) —maxlog p, (X‘ 2)

That results in

P(c—¢

S.U)=P(6<0

S.U)

s
&Q@H )
§,_,£ﬂ (a)

§,l_f,z)] (b)

= P(magi Po(y]2) < max p, ()
e = =% =

=E, P(Hg{gﬂ Po(3]2) < max p,(y2)

<E, P(pg(z\z) < max pg(z\z)

<E,| > P(py(3]< py(y]2)

&

where x is the transmitted signal sequence and y the received one. The upper

bound (a) 1is because p,(y|x) < max pg(y‘;) is used in the comparison, and the
AN g L0

upper bound (b) is due to the invoking of union bound. By using (5)-(9), the

BICMuynin [4] is given by

-
PSy > W, (d) f,(dou, ), (10)

where

11



[ (du,g)=m D 2703 270N N P(x—2) . (11)

u xex) €1

Several observations can be made on BICMyy in (10). Firstly, the bound is quite
general and can be applied to any mapping u# and constellation y . Secondly,
because of a union bound is invoked in (b), it is quite loose in general, respecially it is
much looser than the union bound given in (5) and (6). And, finally, as shown in (11),
it is quite difficult to evaluate. In [4], by introducing the symmetrization operation U ,
a much simpler method was proposed in to ease this computation complexity.

BICM Expurgated Bound (BICMEgx) was also proposed in [4] in order to remedy
the deficiencies associated with (BICMyy). Instead of including all the error signal

sequences Zze€ ;(f as in (11), only the unique nearest neighbor z of x in ;(f is

calculated in BICMEgx. With this simplification;.BICMgx is obtained as

| =
P <3 2 Wild) 14w, (12)
where
fuldou,z)= *d22 22 o ”ZP(x—)z) (13)

ezl

BICMEx is considered as a tighter upper bound for the special case of QAM with
gray labeling in [4] and just an accurate approximation for other forms of mappings
or constellations. Nevertheless, as is to be shown, it is still an approximation even for

QAM constellation with gray labeling.

3.2 New Tighter Bound for QAM Constellation with Gray Labeling
In this section, a new easy-to-calculate, tighter upper bound will be proposed for
QAM constellation with gray labeling, which is known to have the best performance

and constitutes a very large portion of practical applications of BICM systems. The

12



rationale that leads to the new upper bound roots on the following observations on the

gray labeling of QAM constellations.

Observation 1: The error probability of a transmitted signal xe ;(jkk with

decoding rule Z; depends only on the I or Q part of its binary label, i.e., all the

signals in ;(jkk with the same I or Q part of binary label have the same probability.

The first and second half m/2 bits are arbitrarily to denote the/ and Q part of the

label, respectively. Fig. 6 shows the example of 16 QAM. According to the decoding

rule in (4), the decision boundaries forxe ,(zkk, i, =1,2,3,4 are given in Fig 6
(a)-(d), respectively. As is clear, all the signals in ;(jkk with the same [ or Q binary

label have the same error probability. {For example, for xe y, with
I'(x)=0,*(x)=0, ie., the signals with ‘binary . labels of 0000, 0001,0011, and
0010 have the same error - probabilityof P{nk,, > 3} , where n,, is the

corresponding I part of noise. Likewise, for xe ;(f with P(x)=1101*(x)=1, ie.,

the signals with binary labels of 0011, 0111,1111, and 1011 have the error
probability of P{nk,Q > —1} , where n, , is the corresponding @ part of noise.
Thus, only one out four signals has to be considered in the performance evaluation
and the total number of signals that need to be considered is reduced from 16 to 4. In

other words, a two-dimensional constellation is reduced to a one-dimensional PAM

constellation.
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Fig.6 (a) Degision boundary between y, and |
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Fig.6 (b) Decision boundary between y; and %,
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Fig.6 (c) Decision boundary between y. and z,
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Fig.6 (d) Decision boundary between ; and ;'
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Let y* be the equivalent one-dimensional signal set of y* . Then, the
k k

equivalent (one-dimensional) signal sets and their decision boundaries for 16 QAM
are shown as in Fig. 7 (a)-(b). Fig. 8 (a)-(c) are those for 64 QAM. This reduction of
the number of signals will significantly simply the performance evaluation, as to be
seen. Again, /and Q may use different gray mapping and may be different from

those shown above.

]
-3 -1 : +1 +3
: : : : —
00 1) | 10 1
]
(a) ij , l//fk with decision boundary
] ]
] ]
3 ' 1 +1 ] +3
! — + -
00 =01 1e o100 1
0 0

(b) w2 .y withdecision boundary

Fig.7 Equivalent one dimensional signal set chk for 16-QAM
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-1 -5 -3 -1 +1 +3 +5 +7

000 001 011 010 110 111 101 100 I

(a) v, .y, with decision boundary

+5 +7

. . . . >
000 001 011 010 110 111 101 100 I
2 5 . . .
(b) . .y with decision boundary
-7 : -5 -3 : -1 +1 : +3 +5 : +7
—t —t —t —t »I
000 3 001 011 &+ 010 110+ 111 101+ 100

(c) l//fk , l//fk with decision boundary

Fig.8 Equivalent one-dimensional signal set l//f_k for 64-QAM

Observation 2: Given the decision boundary of l//ji and l/fz"k , the pair-wise error
probability P{x - ;c} , where xe l//c’kk and xe l/fz"k , can be evaluated by

P{p,(y1x)<p,(ylw)}, with w defined as the virtual signal of X . More

specifically, w is defined in the way that if only the pair of signals x and w are

considered, the decision boundary determined by p,(ylx)=p,(ylw) will be

coincide with the original boundary so that P{x — )Ac} =P{p,(y1x)< p,(yIw)}.

For example, in Fig. 7(b), ifx=-1, and x= 3, then w=5. As will be clear, the
definition of w will facilitate in the expression of our upper bound.
Equipped with these observations on gray labeling, we can now proceed to

derive the new upper bound. Practically, our job to derive the new upper bound is just

17



to find a tighter bound for the conditional PEP P(¢ — ¢|S,U) in (6). Following the

notation in (9), we have

P(c—¢|S,U)=P(6<0

S.U)

o)

&Q&ﬂ (14)

= P(n:;a} pg(z‘;) < max Pg(z‘;)

—E P(rr;ewlgc Po(y]2) < max s3]0

S.U,x|| (a)

<E,| P| py(y]x) < max py(y|w)

L 1

S.Ux)| )

where

Q

185 A

w, = virtual signal of xe y¥
= V_V:(a W—I’WO’WI’”' ‘ g WCk (15)
with respettd.the transmitted signal x

The bound 14 (b) is tighter than-(9-b) because-of the following two reasons. (i) Fewer
terms are included in the union bound.-Reeall-that from Observation 1, only NI
rather than M signals are needed te be.considéred in our case. (ii) The true decision
boundary is used in 11 (a), and this results in a tighter bound. For example, see Fig.
7(b),if x=-1, and =3 , then by using (9-b), the decision boundary will be y =1,
but in fact the true boundary is y =2.

The upper bound in 11 (b) can be made tighter by removing the irrelevant error

events in the union bound. Since we just need to consider the one-dimensional
constellation, for a givenx, only the nearest signals on both side of x, denoted x;

and X, , in the set of Q3 required to be included. It is easy to see that the set of y

that results in an error signal x# x; and x#x, have been accounted for when

12}

considering X/ or x,.Let Q: be the subset of Qf with the X/ and x being

I

18



retained in the set of l//f: . Then a tighter bound is obtained for the conditional PEP

5.0 1o

<E| Y P(pa(3]2) < po(o]w

weQe
The idea of expurgating the irrelevant error events in (16) is similar to the one used
for BICMgx in [4]. Nevertheless, only one side of the error signals ;c; or )Ac, 18
included in BICMgx and that makes it only an approximation even for QAM
constellation with gray labeling.

By using (16), the new upper bound BICMngyw is obtained as follows.

ph—_ Z W new d M’Z) (17)

min

where

Frew (dou, 7) = Zz d22—d<"”2 “Z Y. P(xow) . (18)

xeys we Q3

Methods for computing “the” “weight “distribution W, (d) for punctured

convolutional codes has been well known as in [16], where the original error-state

diagram of the convoultional code was modified to account for the effects due to the

puncturing. Only the calculation of f,,, (d,u, ) will be discussed in the following.

3.3 Pair-wise Error Probability

Without loss of generality, assume that the same gray labeling is applied to both
I'and Q components of the signal x. Since the bit error probability is the same for
both components, we do not need to differential whether I or Q of a coded bit is
mapped to. Only 16 QAM and 64 QAM will be explicitly considered. Other size of

constellation can be treated similarly.
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3.3.1 Pair-wise Error Probability for Soft-decision in AWGN Channels

In AWGN channels, P(x — w) is given by

2mA’RE
Plx—>w xXWw h 19
(x> w) Q[ )= J (19)
where
1 * (\ /2)
Qla)=——= dy,
(@)=7=], ¢
|xk Wk| . . )
plx;w) = Z is a half of the Euclidean distance between w and x, A the

power normalization factor of M-ary QAM, E, bit energy, N, the one-sided

noise density and R code rate. A=1/ J10 for 16 QAM, and A=1/ V42 for 64

QAM. Using (19), (7) becomes

(o) =m T2 32 8 S Q[ (z;v_vxjw] (20)
xew WEQS dNO

The computation of (21) can“be further-simplified by utilizing symmetrization
constellation, which have the symmetric™ property introduced in [17], of

one-dimensional PAM constellation. Consider 16QAM as an example. First define

the signal subsets X, ={(0,0),(1,0)}and X, 2{(0,1),(1,1)}. From Fig. 8(a) it is

observed that for xe X, has the same error probability P(x — w), and so does

forxe X,, no matter if the MSB (first label position) or the LSB (second label
position) is considered. Indeed, this is the case; for MSB p(x;w) =1 for xe X,, and
p(x;w)y=3 for xe X, . Likewise, for LSB, p(x;w)=1 for xe X, , and
p(x;w)=3 and p(x;w,)=1 for xe X,. Note that forxe X,, there are two
regions for errors to occur when bit error in LSB is considered. With this symmetry

property, (21) can be simplified as follows.

20



4.(d
Frow (o, )= 2‘2"2( j

i=0 \ /!

AR N FALSEE T 4RE,
2GS Cpletomran )

1)

where

® d =i+ is the total number of bit errors.

® jand jare the number of bit errors in MSB and LSB, respectively.

® i=i+i,.

® | isthe number of MSB errors with xe X,and i, is with xe X,.

® j=j+].

® ; isthe number of LSB errors with xe X,and j, is with xe X,.

® 5 isthe number of LSB errors withxe X, and p(x;w,)=3.

Similar idea can be applied.'to, themicasé, 64-QAM. In this case we have
X, ={000,100}, X,={001,104} ; X, ={0FL111}, and X, ={010,110} . For any

x€ X,, the error probability P (x'= w})is the same no matter if the MSB, center bit or

the LSB is considered. The result is given by

Frew (ds11, )

j(i—il i—il—iz}
L, I
J= i \(J= = J2 | & ([ Ja [ Js
(jz Js ]rzo:[f)zo:("j (22)
LS &\ r—h—n P&+t
SR
Ti, 450, + 30, +i, +3j, + J, +[(, =)+ Tt]+ \/ﬁ
[3(j, —v)+5v]+[(r—s)+3s] 7dN,
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where d =i+ j+r, where i, j, and r are the number of bit errors in MSB, center bit,

and LSB, i=i +i,+i;+i,, j=j+j,+j+j,,and r=n+r,+r+r,.

3.3.2 Pair-wise Error Probability with Soft-Decision in Rayleigh Fading
Channels

In fading channels, we apply the Chernoff bound [18-20] to obtain

P w < [T 23)

2
- 1+SNR(X";WZ']

Therefore, PEP is upper-bounded by

Frow (dou, ) Sm™ Y27 22 Az ”Z Z H : (24)

2
xez//f wle i=1 1+ SNR(Xl ;W[ j

A’RE
where the average SNR = ma R
0

Again, by using the symmetry propetty, we have for.16-QAM

new > - n l P il f= jl -~ S 2 1+325NR 1+SNR

2RE,

where SNR = . And, for 64-QAM

0

d d-i d i =l i 1 —ly _i _i
S0 N 1) (B
prr 020 L,=0 =0 \ L
L 5t (G0 NG g VR (s s [ (26)
L2 LR
LS & r\ =R (= \"&(n+n
EE LI e

1 1 i+t 1 ih+v 1 i3+ ji+ jy—vts 1 iyt jy+ jy—ttr—s
5(1+7ZSNR) (1+52SNR] (1+32SNR) (1+SNRJ

RE,

where SNR =

0
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3.4 Numerical Results

BICM systems with different punctured convolutional codes and modulation
levels are analyzed with BICMyg, BICMEgx and the new BICMygw for both AWGN
and fading channels. Simulation results are also given to verify the tightness of the
performance upper bounds.
3.4.1 (2,1,6) Convoultional code

Numerical results for BICM-RLP based on (2,1,6) convolutional code
(constraint length & =7) with the generator polynomials (133,171) are given in this
section. Fig.9 and Fig.10 compare BICMyp, BICMgx and BICMygw for 16 QAM
over AWGN and Rayleigh fading channels, respectively. BICMyg is a quite a loose
bound. But, BICMEgx does provide an accurate approximation, although theoretically
it is not an upper bound. As expected, the new BICMngw is very tight for BER of
practical interest, as compared=to.the simulated BER. It is interesting to note that
BICMNew and BICMgx almost- ovetlap-with-each other for the example shown in
Fig.10. Fig.11 and Fig.12 give more numerical results, including those with 64QAM.

Again, BICMngw provides a very tight upper bound for all the cases.
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3.4.2 (2,1,2) Convoultional code

Numerical results for BICM-RLP based on (2,1,2) convolutional code (x =3)
with the generator polynomials (5,7) are given in this section. Fig.13 and Fig.14
compares BICMyg, BICMgx and BICMygw for 16QAM systems over AWGN and
Rayleigh fading channels, respectively. Similar results are observed: BICMyg is a
loose bound, BICMEgx provides a good approximation, and BICMngw is a very tight

bound. More numerical results for this case are shown in Fig.15 and Fig.16.

T N Y [ O

BER

Fig.13 Performance of BICM-RLP in AWGN channels (x =3, 16QAM)
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Chapter 4: Upper Bounds for BICM with Fixed

Label-position Mapping (BICM-FLP)

In BICM-FLP, there is a fixed mapping between a coded bit and label position of
signal x. Therefore, the average over S in (18) is no longer needed. From (18), the

upper bound becomes

| -
S D> W (d) fr (dou, 1) 27)

where
fnew (d’u’l) é E[P(g — é) Q:|

_ 2—d22—d(m/2—1) Z Z P(l _)v_v) (28)

xeyd wed3

On the other hand, the error probability of an-error event depends on the positions
where the error occurs. For example, depends on whether the MSB or LSB in errors
in the 16QAM case. The error positions-in-an etror event need to be taken into

account in the analysis.

4.1 Modified Error State Diagram and Transfer Function with no Puncturing
4.1.1 Modified Error State Diagram

The first step toward the performance analysis of BICM-FLP is to define a
modified error state diagram that can enumerate the error positions in an error event.
For simplicity, a (2,1,2) convoutional code of the generator polynomials (5,7) with
16- and 64-QAM constellations will be used as examples.

For the 16-QAM constellation, the modified state diagram is shown in Fig.17,
where a branch with label M'L’Y' is to denote that, associated with this branch,
there are i MSB and jLSB and [/ information bits in errors. The self-loop of state
zero is removed by splitting the zero state into two states S andS,. The remaining
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states are labeled S,, S,,and S, to represent the state 01, 10, and 11. The transfer

function therefore then is expressed as

T(M,LY)=) w, M'LY, (29)

i,j,l
ijl

where the coefficient w, ;, denotes the number of paths with i MSB, ; LSB

and [ information bits in error.

MY

LY L

Fig.17 Modified error state diagram of (2;1,2), rate-1/2 code with 16-QAM

The same idea is applicable to 64QAM. Then, we have the transfer function given by

T(M,C,LY)= > w,, MCLY' (30)

i,jrl

where C is to denote the center label position, and w,

i,J.r

, 1s  the number of paths

with i MSB, j centerbit, r LSB,and [ information bits in error.

33



4.1.2 Transfer Function [16]
The procedure in [16] will be used to find the transfer functions in (29) and (30). For

Fig. 17, the modified error state diagram is described by the matrix equation

S, 0 M L | 0
S, =Y O 0 || S, |+|MLY |S, 31)
S, 0 LY MY| S, 0
or
S=AS+BS,, (32)
where
S, 0 M L 0
S=|S,[,A=|Y 0 0 |,and B=|MLY
S, 0 LY MY 0 |
It follows that
S=[1-A]"BS, (33)
In addition,
S,=G'S (34)
with G' =[ML 0 0].
From (33) and (34), we have
S,=G"[I-A] " BS, (35)
and the transfer function is obtained as
T(M,LY)2S,/S,=G"[I-A]"'B (36)
By using
[[-A] =T+A+ A+ A +A% +... (37)
we get
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T(M,LY)=G'B+G"A'B+G"A’B+G"A’B +... (38)
In particular, for (2,1,2) convolutional code with 16-QAM in Fig. 17,
T(M,L,Y)is given by

T(M,LY)=

MY+ MY (P +M)+M’ LY’ G +M*) +

MIYH (L +6M* L +MYH+MCY’ (SL +10M*L + M *) +

MDY (> +15M*L' +15M > + M) +

MY (110 +35M°L' +21M* " + M ®) +

MPLDY3(L +28M°L° +70M L' +28M °L* + M®) + (39)
MY’ O +84M*I° +126M ‘L' +36M ° L + M *) +

MPLY'"(L° +45M°L +210M *L° + 210M ° L' + 45M° L + M ') +

MDYV (1L +165M L +462M *1° +330M ° L +55M L’ + M ') +

MY (L* +66M°L° +495M I} +924M °L° + 495M *L* + 66M "°L* + M %) +
MY (A3L% +286M*L° +1287M *I} +1716M °L° + 7T15M°L* + 78M "L’ + M *)...

From (39) the total weight coefficients, W, (i, Jj ) isrobtained as

T(M’L7Y) :ZWI (Z,J)MILJ:
) G

M’ +M°I(C+M)+M’ PG +M*)+

ML (L'+6M°L+M*)+M’L*(SL" +¥10M I+ M) +

ML +15M°L +15M°*C + M°) +

ML (L +35M°L +2IM*LC + M°) +

ML (L +28M*L° +70M L' +28M °I> + M ®) + (40)
M’ 9L +84M*L° +126M*L' +36M °L’ + M ®) +

ML (L° +45M°L +210M *L° +210M °L' +45M *L* + M '°) +

M’ (11L° +165M L + 462M *I° +330M °L* +55M *L* + M '°) +

M’ (L? +66M°L° +495M * I +924M °I° + 495M L' + 66M L’ + M *) +

M’ (1317 +286M°L° +1287M *L* +1716M °L° + T15M L' +18M L’ + M ?)...
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4.2. Modified Error State Diagram and Transfer Function with Puncturing

The error state diagram for punctured convolutional codes in [16] will be
extended to a modified error state diagram that is able to enumerate the error
positions in the m-bit labels. For example, with k/n=1/2 low rate encoder, the
punctured pattern is showed in Fig.1 and it’s size is 2xk. The format and size of
puncture pattern is the same in BICM-RLP system. But, in BICM-FLP labeling
procedure, there are fixed correspondence between the output bits of the encoder and

the label positions in turn. Therefore, the size of puncture pattern is changed to

2x(k-K), where K =[m/2,n]/n, and this change causes the elements in the

puncture pattern with equal number of different label positions. The puncture pattern
with 16-QAM modulation is shown in Table.2. Take 2/3 code-rate with 16-QAM as
an example, the size of puncture pattern. isichanged'to 2x4 and we have three MSB
and LSB. With this puncture pattern, then according-to [16], the modified error state

diagram is shown as in Fig. 18.

Code rate Puncture Pattern
12 M
L

2/3 M M L L

L X M X

3/4 M M X

L x L

Table.2 Puncture pattern for the 2/3-rate and 3/4 -rate codes with 16-QAM
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m MY +ML* Y +ML2Y*
@ ' ML+M’LY+L Y+M’LY?

LY’+M’LY’
+ML*Y*

MLY*2M?LY’
+ML*Y?

LY*+M’Y? MY? +L2Y*

MY?

MY+MLY*+M? LY S, ML+M LY+MLY2 S

» S

N
LY’ +M*Y*+MLY’ ;

ML>Y+M* Y +MAL2Y+MLYY? M 2ML*Y+M2L2Y?

b

MLY+M’L>Y*+ML*Y

Fig.18 Modified error state diagram of (2,1,2), rate-2/3 punctured code with 16-QAM

Its matrix equations are given.by

[ MLY>+ LY I2Y?+M*Y+ MLY OMLY? +M*LY?
A= MY? MLY? + MZLY’ LY+ MY’ 41)
MY} +I2Y* LY +M*LY? + MEY* "MY? + MI?Y? + M* 1Y

[ MIXY +M?Y? + M2I2Y? + MI2Y?
B = MY + MLY? + M*LY (42)
MLY?* +2M*LY? + ML'Y*

G = [ML+ M?LY + MLY*> M?+2MLY +M’I’Y* ML+M?LY + LY + M3LY2] 43)
h=M’L’Y + M*L’Y* + ML'Y (44)
where £ is the transition cost directly from S, to S,

As adding the parameter 4, the transfer function is changed to
T(M,LY)=S,/S,=h+G"[I-A]"'B (45)
and hence

T(M,LY)=h+G'"B+G"A'B+G"A’B+G"A’B+... (46)
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For (2,1,2)rate-3/4 puncture code with 16-QAM modulation, the state diagram is

in Fig.19, and the relative matrices are in following equations.

MLY*+MLY’ ‘ @ .
g ML+MLY

MY?

2_ _
3. LY+MLY 0 S ML+MLY /o

LY LY

MY+ML2Y? M +L°Y

M2LYY
Fig.19 Modified error state diagram-of (2,1,2), rate-3/4 punctured code with 16-QAM
LY* MIY*+MY M?’LY*+LY

A=| MY’ LY’ MY? 47)
Y MLY +MLY?> M?Y*+IY?

[ MY + MIPY?
B=| LY+M*LY? (48)
MLY? + MLY?
G’ :[ML+MLY M*+1Y ML+MLY] (49)
h=M?I?Y (50)
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We verify our result for 64-QAM modulation, and the similar calculation has
been applied to the (2,1,2) convolutional code. The puncture pattern with 64-QAM
modulation is in Table 3. With rate-1/2 code, the state diagram of the code is depicted

in Fig.20, and its matrix equation is given by
'MLY? CIY*+MCY  MIY*+CY

A=| LY® MCY? M?Y? (51)
MCY® C°’LY’+MLY> MCLY®+CLY?

[ McCLY + M*CLY?
B=| CLY+MCLY? (52)
MIY? + M*C*Y’
G = [MC+CL2Y M?L+MC*LY MCL+MZCLY] (53)
h=MC*L’Y (54)

With 64-QAM modulation, the transfer-function is:given by
T(M,C,L,Y)=S,/5,=h+G"[I-A]" B (55)

and hence

T(M,C,L,Y)=h+G"B+G"A'B+G"A’B+G"A’B+... (56)

Code rate Puncture Pattern
C M L
2/3 M L
C X
3/4 M L x C M x L C X
C x M L x C M x L

Table.3 Puncture pattern for the 2/3-rate and 3/4 -rate codes with 64-QAM
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ML?Y*+M’C*Y’ MCL+M2CLY

m MCLY*+CLY?
()

M2Y? MCY?

S \CLY+MCLY, 82 :

AN

CLY+MCLY> M’L+MC’L

S, MC+CL’ Y S,

MC’L’Y

Fig.20 Modified error state diagram of (2{1,2), rate-1/2 code with 64-QAM
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For (2,1,2) rate-2/3 puncture code with 64-QAM modulation, the state diagram

is in Fig.21, and the relative matrices are in following equations.

mMLYz

MCY2 CL
CY Y?
MY
S, LY (s, >( S MC o S,
CY \
MCLY ML

Fig.21 Modified error state diagram of(2§132), rate-2/3 punctured code with 64-QAM

(LY cCvy MY
A= 0 MY cY (57)
Y> CLY*> MLY*?

McCLY

B=| LY (58)
| MCY?

G' =[MC ML CL] (59)

It is easy to extend the scale punctured transfer function to higher QAM modulation

with gray labeling, such as 256-QAM or 1024-QAM.
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4.3 New Tighter Bound for QAM Constellation with Gray Labeling
The upper bound of BICM-FLP with scale transfer function is simpler. Since the

sequences of label positions S are determined in BICM-FLP system, the union bound

of probability of bit error for convolutional codes of rate k/n becomes

1 .. ..
D, Sk-_K W, (i,7.7) foow (is orsu, ) (60)
i,j,r

where
Fro (s o, ) 2 E[ P(c > 2)|U |

_ 2—d22—d(m/2—1) Z Z P(l _>V_V) (61)

reyd wedd

where W, (i, j,r)is the total weight of error events at Hamming distance d=i+j+r

with i MSB, j center bit, and » LSB for 64-QAM and with i MSB, j LSB and =0 for
16-QAM. Then, k-K is the column'number in, the punctured pattern, which means
the number of error events counted at one:transition branch on the state diagram.
4.3.1 Pairwise error probability with Seft-decision’in AWGN channel

For 16-QAM with gray labeling.in soft-decision decoding over AWGN channel,
the PEP becomes

. e[S (T ([
utidrz) =231 3 (152

ii=0 ji=0 5=0

(62)

4RE
Q({3il +iy+ j +[(G, =) +3s]} SdNb j

where (62) is similar with (22) without countering all possible label position.

For 64-QAM with gray labeling in soft-decision decoding, the PEP becomes
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fnew (i,j,r,u,}()

i—i \(i—i —1,
i2 i3
L, T I ] j_j1 j_jl_jZ] (J3] (]4]
AZ::‘)]'ZZ:;) %(]J{Jz j3 ;):tvzzolv
r r—=n r—n-n r_’,i r_rl_rz ntrt+ry r2+r3+r4
EE LT
7i1+5i2+3i3+i4+3j1+j2+[(j3—t)+7t]+ 2RE,
[3(j4 —V) +5v] + [(r —5) +3s] 7dN

where (63) is similar with (23) without countering all possible label position.

4.3.2 Pair-wise Error Probability with Soft-decision in Rayleigh Fading
Channels

For 16-QAM with soft-decision in Rayleigh.fading channel, The PEP is

f (l _— z < 9" Z Z]: ] i j2 l( 1 jiﬁré‘[ 1 jinr]'Hr]'zs (64)
new -] ll i jl oy o A i 32 SNR 1+ SNR

where (64) is similar with (25) without-countering all possible label position. And, for

64-QAM with soft-decision in Rayleigh fading channel, The PEP is

L (d ME=WEE i~i,~i,
210 bR N G )
i=0 j=0\ ! J 020 =0 i )
Zj: JZJ: J,(JJ(J JlJ(J—J{—JzJZS:[hJZ“:[L) (65)
320 =0 =0 \Ji J Js =\ I iso\ V
S S (r\(r=nR\(r—r—n \"&4 (1t tr
7=0 =0 =0 {J( h J( £ j ; [ § j
| . o+ . L ! i+ jymvs | iyt iy s—t+r=s
5(1+72SNRJ [1+52SNRJ [1+32SNRJ [1+SNRJ

where (65) is similar with (26) without countering all possible label position.
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BER

4.4 Numerical Results

Numerical results for BICM-FLP are presented in this section. The BICM-FLP
proposed in [3] is investigated specifically. Also, the performance comparison is
made of BICM-RLP and BICM-FLP .
4.4.1 (2,1,6) Convoultional code

Numerical results for BICM-FLP based on (2,1,6) convolutional code are given
in this section. Fig.22 and Fig.23 compare BICMyp, BICMgx and BICMngw for 16
QAM over AWGN and Rayleigh fading channels, respectively. Again, BICMyp is a
quite a loose bound, BICMgx provide an accurate approximation, and the new
BICMngw is very tight, to within 0.5 dB for fading channels, for BER of practical

interest. Fig.24 and Fig.25 give more numerical results, including those with 64QAM.

—— (BICM) R=1/2
—— (BICM ) R=1/2 |
— (BICM_5) R=1/2
A (Simulation) R=1/2 |
— (BICMg,)R=3/4
(
( ]
(

— (BICMg,) R=3/4
— (BICM, ;) R=3/4

* (Simulation) R=3/4

-+

4

\e}
w

Fig.22 Performance of BICM-FLP in AWGN channels (x =7, 16 QAM)
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4.4.2 (2,1,2) Convoultional code

Numerical results for BICM-FLP based on (2,1,2) convolutional code are given
in this section. Fig.26 and Fig.27 compares BICMyg, BICMgx and BICMngw for
16QAM systems over AWGN and Rayleigh fading channels, respectively. Similar
results are observed: BICMyp is a loose bound, BICMgx provides a good
approximation, and BICMngw is a very tight bound. More numerical results for this

case are shown in Fig.28 and Fig.29.

aw) R=2/3 -
BICMg) R=2/3 -
) R=23 -

L

BER

I T R

4

- L L

4

T

L

w
N

Fig.26 Performance of BICM-FLP in AWGN channels (x =3, 16QAM)
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4.4.3 Comparison of BICM-RLP and BICM-FLP

Figs.30, 31, and 32 show the performance comparisons between BICM-RLP and

BICM-FLP for different channel conditions and system parameters. BICM-FLP has

a slight better performance than BICM-RLP for all cases. This might be attributed to

the fact that for BICM-RLP, a long runs of the coded sequence may be mapped to the

less significant label bits of the m-bit label, and that degrades the system

performance.

BER

—— BICM-FLP R=1/2}
— — BICM-RLP R=2/3
— — BICM-FLP R=2/3}

EEREEHSES R SR\ Nl £ : :{ — - BICM-RLP R=3/4
2L NG :] — — BICM-FLP R=3/4f

Eb/No

Fig.30 Performance comparison between BICM-RLP and BICM-FLP systems in

AWGN channels (k' =3,7, 16QAM)
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—— BICM-FLP R=2/3
—-— BICM-RLP R=3/4
—-— BICM-FLP R=3/4

.........................

i i ! 1 I 1
6 8 10 12 14 16 18 20 22 24 26 28 30
Eb/No

Fig.31 Performance comparison ‘between BICM-RLP and BICM-FLP systems in

Rayleigh fading channels (x =3, 16-QAM).
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...................................................................

Fig.32 Performance comparison ‘between BICM-RLP and BICM-FLP systems in

Rayleigh fading channels (k' =7, 16-QAM).
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Chapter 5: Conclusions

In this thesis, we analyze the bit error rate performance of punctured
bit-interleaved coded modulation systems with random label-position mapping
(BICM-RLP) and fixed label-position mapping (BICM-FLP). New tighter BER
bounds are proposed for QAM modulation with gray labeling over additive white
Gaussian noise and Rayleigh fading channels. Both cases of soft and hard decoding
are considered. For BICM-RLP with soft decoding, the new upper bound is tighter
than the well-known BICM Union and the Expurgated Bound proposed in [4]. The
tight upper bounds for hard decision and for BICM-FLP with soft decision are newly

derived results.
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Appendix A

BER Upper Bounds for BICM with hard decision

A. System model of BICM with hard decision

The system model for BICM system with hard decision is in Fig.33, where we
replace bit metric calculation block with demodulation block. The coded bit error
probabilities after demodulation are shown in Table.4 and Table.5. In AWGN channel
and in Rayleigh fading channel, Table.5 and Table.6 shows the bit error probabilities
from different constellation points with 16-QAM and 64-QAM modulation, which

can be modeled as a combination of two orthogonal PAM signals.

Punctured < Interleaver 75(2) Modulator =
convolutional — T >
encoder H, X ‘
Channel
ACE
De-Interleaver )
Decoder  [<@— 1 ~&—— Demodulator
LL " Y

Fig.33 A block diagram of general BICM systems with hard decoding

B. Analytical model of BICM system with hard decision
We replace bitmetric calculation block with demodulation block in analytical
model. The analytical models of BICM with random label-position and BICM with

fixed label-position are shown in Fig.34 and Fig.35.
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Fig.34 BICM with random label-position mapping with hard decoding .

10

1o

encoder

I,

\

n —>| Binary éhannel m l—»
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—>| Binary Channel 2 I—>

De-

I~

—

modulator

Decoder

Fig.35 BICM with fixed label-position mapping with hard decoding

C. Decoding Rule

For total distinct coded bits, d, between the error sequence w and the correct

sequence Xx, the pairwise error probability is that one-half or more of d bits are in

error. Therefore, the correct path is abandoned.

D. Pairwise Error Probability of BICM-SI wit hard-decision

The upper bound of BICM with random label position is

1 o
pb_; Z Wl(d)‘fnew(d’u’l)
d=d ;,

And, the upper bound of BICM with fixed label position is

=

1
p < W i’j’r fnew i,j,r,u,Z
SR A 1 (0:4.7) fr ( )

Using 16-QAM with hard decision decoding, the PEP is that one-half or more of
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d transmitted bits are in error. Therefore, the correct path is abandoned. Thus, the PEP
with random label-position is shown in (68) and the PEP with fixed label-position is

shown in (69)
f‘new (d’ M, Z)

d min{ j,h} i ] . e -
2 2 oyl | P A=) (A= p )™ asd odd (68

h=(d+1)/2 v=u(h—i)*(h—i) -

1 min{id/2) i J) i i—d /2y v v
S 2 | A= p) R A=)

2 v=u(d/2-i)*(d/2-i)

d min{ j.h) i VAR e .
Z Z y Py A=p,,) " p,(1=p,) " asd even

hed 7241 veu(hye iy \P—V

f;iew(i’ j’r’u’l)

d min j,h} i AR . .
> > Py A=p)=" p,d=p)™ as d odd
h—v )y

_ h=(d+1)/2 v=u(h—i)*(h—i)

| min{dr2) i [ X i—d/2+v v v
- z v Pu (=py) pd=p)"+

2 utarsain-n\ @1 2=w

(69)

d min{ j,h} i ,] e e -,v
Z Z y Py A=py) """ p,(1=p,) " asd even

hed 241 veu(hyeheiy \ T

1 ifx=>0 P, +P P +P
where u(x)= ) , P, =M1 M2 and P = PRI
0 ifx<O 2 7

The distinct coded bits d =i+k between error sequence w and correct
sequence x are with | | combinations of such distinct coded bits with i coded
i

bits of MSB and j coded bits of LSB. For each case, we calculate & errors, which

consist of [ j combinations of i MSB with A-v errors and (‘]j combinations
v

h—v
of j LSB with v errors. Table.4 shows the parameters of BER in AWGN channel and
in Rayleigh fading channel.

Using hard decision decoding with 64-QAM, the PEP with random

label-position is in (70) and the PEP with fixed label-position is in (71).

58



i mi%rjh} min%—v} ( i }[lj(,»j
W= @12 vl s=uthoenrh-v-n \ =V =8 J\ S Y

= py )™ pel=pe) " pp (= p, )™ as d odd

1 minnzszz} mm{,-,fm ( i j[}j[r] (70)
2 (12~ 2 ) s (d] 2y (d ) 2vi) dl2—v—s)\s \v

Py (= py, pe=pc) " pA=p)™"

d min{r,h} min{ j,h-v} i JAIRA
UDIEEDY 2 '
h=d/2+1 v=u(h—i—-j)*(h—i—j) s=u(h—v—i)*(h—v—i) h’ —vV=_S S v

Py (A= pyy pe(=pc) " p(=p,)™  asd even

)i—d/2+v+s

)i*h+v+s

fnew(i’ j’ r,u,Z)

S5 IR ||
h=(d+1)/2 v=u(h—i—j)*(h—i—j) w=u(h—v—i)(h=v=i) h=v=s § v

p;’/[_v_s (1 - Py, )i—h+v+s Pé (1 A pc)j—s PZ (1 _ pL)r—v as d odd

1 min{r,d/2} min{ j,d/2-v} i ] r
s 5 - w
2 war—itnrarn-iojy seutarr—vnrarn—v-\d12=v—=s J{ s J\ v

p}atll/vafs (1_ pM Pé (1_ pc),/?s PZ(l— pL)rfv

d min{r,h} min{ j.h—v} 1 JY( T
P 2, |
h=d/2+1 v=u(h-i-jy*(h=i-j) s=u(h-v—iy*(h-v=i) h—=v—s)\s )\v

)i*d/2+v+s

Py A=p, )" pi(l-p) " pyd—p,)™  asd even
where P, :PM_1+PM_2+PM_3+PM_4 ’ pC:Pc_1+PC_2+PC_3+Pc_4  and
4 4
P +P +P .+P
=Ll L2 4 L3 L% The distinct coded bits d =i+ j+r between error

. (d)fd—i o
sequence w and correct sequence x are with (J( ) ] combinations of such
l J

distinct coded bits with i coded bits of MSB, j coded bits of center bit, and r coded
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i
bits of LSB. For each case, we calculate & errors, which consist of ( ]
—v—y
combinations of i MSB with A-v-s errors, (]j combinations of j LSB with s errors,
S

and (rj combinations of r LSB with v errors. Table.5 shows the parameters of BER
v

in AWGN channel and in Rayleigh fading channel.

Transmitted AWGN channel Rayleigh Fading channel
PAM signal
MSB *3 Q 4RE, | ols 4RE, 1, _ | 2RE ' 2RE, /5N, _10RE, /N,
b 00 01 5N, 5N, 2 1+2RE, /5N, 1+10RE, /N,
MSB *1 4RE, 4RE, 1  2RE, /SN, L1 18RE, /SN,
> 0| /= |+0|3 —l1- —1-
- 11 10 5N, 5N, 2 1+2RE, /5N, 2 1+18RE, /5N,
LSB £3 4RE, 1 18RE, /5N,
M_1 Q|3 Sl
- 00 01 5N, 2 1+18RE, /5N,
LSB *1 ARE, 1 2RE, /5N,
M_2 O\ = S 1=
11 10 SN, 2 1+2RE, /5N,

Table.4 Coded bit error probabilities table of 16-QAM modulation
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Transmitted

AWGN channel Rayleigh Fading channel
PAM signal
» MSB +7 of 7 [2RE: 1(,_ |_7RE,/N,
- 100 000 7N, 2" \1+7RE, /N,
» MSB *5 o 5. [2RE. L[, _ | _25RE, /TN,
Y2 1101 001 N, 2| \1+25RE, 7N,
b MSB *3 ol 3 [2FE. 1[,_ |_9RE, /7N,
Y on N, 2| \1+9RE, /7N,
» MSB *1 of [2RE, L[| |_RE,/TN,
M-d 110 010 N, 2 1+RE, /TN,
p Center bit 7 ol 3 2RE, o 11 2RE, 1 - 9RE, /7N, 1 1— 121RE, /1N,
! 100 000 N, 7N, 2 1+9RE, /7N, | 2 1+121RE, /7N,
p Center bit * 5 o PRE|_olo [2RE 1, [RE,/IN, | 1, | 8IRE,/7N,
-2 101 001 7N, 7N, 2 1+RE,/TN, | 2 1+81RE, /TN,
P Center bit 3 ol [2RE |, 0|7 [2RE, 1 RE, /TN, i 49RE, /TN,
€ 11 ol 7N, N, 2 1+RE, /TN, | 2 1+49RE, /TN,
p Center bit T 1 ol 3 2RE, |, ols 2RE, A, | 9RE,/IN, | 1(, | 25RE, /7N,
-4 110 010 7N, N, 2 14+9RE, /TN, | 2 1+25RE, /7N,
ol [2RE: ), oo |2RE: Ay '} RE,/IN, ) 1[, | 8IRE,/IN,
p LSB *7 7N, N, 2 1+RE,/IN, | 2 1+81RE, /TN,
L_1
100 000 _ol s [ZRE |_ o[ 13 [2RE, S [25RE, [N, | 1(, | 169RE,/N,
N, TN, 2 1+25RE, /TN, | 2 1+169RE, /TN,
0 2RE, +ol3 2RE, 1 RE,|TN, e 9RE, /TN,
» LSB +5 N, 7N, 2 1+RE, /TN, | 2 1+9RE, /TN,
L_2
101 001 vol 11 2RE, o7 2RE, 1 121RE, )TN, | 1 1 49RE, /TN,
N, N, 2 1+121RE, /TN, | 2 1+49RE, /7N,
0 2RE, ol 2RE, . RE, /1N, i 9RE, /TN,
p ILSB *3 7N, 7N, 2 1+REb/7N0 2 1+9REb/7N0
L_3
111 011 +ol9 2RE, o5 2RE, 1 81RE,/TN, | 1 I 25RE, /TN,
N, N, 2 1+81RE, /TN, | 2 1+25RE, /7N,
0 2RE, ol 2RE, 1 RE,|IN, L 9RE, /TN,
P LSB *+1 7N, 7N, 2 1+RE,/TIN, ) 2 1+9RE, /TN,
L_4
110 010 ol 5 [2REs || 7 [*RE, i 25RE, /TN, | 1 1 TRE,/N,
7N, 7N, 2 1+25RE, /1N, | 2 1+7RE, /N,

Table.5 Coded bit error probabilities table of 64-QAM modulation
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E. Numerical Results

Numerical results for BICM-FLP and BICM-RLP with hard decoding are
presented in this section.
E.1 (2,1,6) Convoultional code

Numerical results for BICM-RLP based on (6,1,2) convolutional code are given
in Fig.36 and Fig.37, which includes simulation results and BICMngw over AWGN
and Rayleigh fading channels, respectively. BICMngw is a very tight bound. The
same numerical results for BICM-FLP are shown in Fig.38 and Fig.39. We can find
that the coding gain of soft decision contrasting with hard decision is about 3dB with

16-QAM modulation, and about 3.5 dB with 64-QAM modulation.
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Fig.36 Performance of BICM-RLP with hard decoding in AWGN channels (x =7,

16,64 QAM).
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E.2 (2,1,2) Convoultional code
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for BICM-FLP are shown in Fig.42 and Fig.43.
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Fig.40 Performance of BICM-RLP with hard decoding in AWGN channels ( x
16,64 QAM).
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