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Abstract

Protein surface recognition provides an appealing tool to regulate protein—protein
interactions and enzymatic activities 'In the field. of ‘biological science. We are interested in
using nanoparticle (NP) to bind enzyme surfaces through multivalent interactions and then
engineer the protein properties. In this study, we have investigated the activity of the
enzyme—NP conjugates. and demonstrated -that -adsorbing enzyme onto NPs significantly
increased its enzymatic activity. We-ascribe this-event of the enzymatic reactions by kinetic
and thermodynamic studies, which provide a way of understanding and predicting the
catalytic behaviors of the enzyme-functionalized NPs. In addition, NPs are excellent systems
for modeling enzymes’ surfaces because they can be readily fabricated on size scales
comparable with those of their biomolecular targets. Therefore, we were curious to study
whether varying the dimensions of the NPs would affect their catalytic reactions. We have
developed a series of kinetic experiments to systematically analyze the NP size—dependent
enzymatic activities, and have developed a model to explain the phenomenon. Kinetic studies
revealed that association of enzyme with NPs did not influence the turnover number, but
smaller NPs did promote the catalytic efficiency of enzyme by increasing its kinetic affinity. A
shielding model, based on diffusion—collision theory, explains the correlation between the size
effects and the Kinetic responses of the enzyme—-NP conjugates. This size-effect model
provides chemical and physical meaning, leading to the observed substrate specificities and
catalytic constants. From the combined Kinetic and theoretical investigation of enzyme bound
to NPs, we found that these conjugates acted as a controllable and efficient factor for
modulating the activity of the enzyme. In nature, controllable modulation of enzyme activity
is a potent means of regulating several cellular processes (e.g., signal transduction,
biosynthesis, metabolism). The modulation of biocatalytic behavior is an attractive feature for

exploitation in the field of nanobiotechnology.
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