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Abstract

Consider a line of n nickels and n pennies with all nickels arranged to the left of all
pennies, where n > 3. The puzzle asks the player to rearrange the coins such that nickels
and pennies alternate in the line. In each move, the player is allowed to slide & > 2
adjacent coins to a new position without rotating.

We prove that it takes at least n moves to solve the puzzle, and present algorithms to
generate the optimal solutions for £k = 2 and £k = 3. We also propose a framework to
extend solutions, and apply it successfully to construct optimal solutions for £k = 4 and
k =5.
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Chapter 1

Introduction

1.1 Preliminary: an old puzzle

Sliding-coin puzzle is a solitary game, which has numerous variations. The goal is
to rearrange a configuration of coins into an other via a sequence of moves. The moves
should be as few as possible. A puzzle is defined by a pair of initial and final configurations
associated with a moving rule.

Let’s begin with a particular puzzle. Consider a configuration on the left of Figure 1.1,
with three nickels to the left of three pennies. We use white stone and black stone to
denote the nickel and penny, respectively. The player is allowed to slide a pair of adjacent
coins to unoccupied positions (without rotating) in each move. The goal is to reach either
configuration on the right of Figure 1.1, alternate nickels and pennies in the line. The
final configuration may not completely stay at the same positions along the line, i.e. it
may shift to the left or right.

000000 = O000O®r
| 0] O] @)

Figure 1.1: Rearrange the left configuration into either right configuration by sliding a pair of
adjacent coins in each move. We use white stone and black stone to denote the
nickel and penny, respectively.

This puzzle can be solved in three moves. We demonstrate a solution step by step in
Figure 1.2. We write (i — j) to denote a move such that the two coins are slid from 7 and
i+ 1 to 7 and j + 1, respectively. Note that the player cannot rotate the pair of coins in
transit. For example, we can slide 3 into 7 and 4 into 8, but we cannot slide 3 into 8 while

4 goes into 7.



12345678910

0C0000e
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3:3—6) [ J®] ]0] |0

Figure 1.2: A three-move solution to the puzzle described in Figure 1.1.

¢

Since all the coins are arranged in the line, we call this “vanilla” linear sliding-coin
puzzle. In fact, this is an old puzzle. It has been illustrated as “Sheep and goats” by
Mott-Smith [1], and as “empty and filled wine glasses” by Gardner [2]. Both puzzle books
were published over half a century ago.

Actually, there are many sliding-coin puzzles whose configurations of coins are arranged
on the plane. Two of the classic puzzles presented by Demaine et al. [4] are shown in

Figure 1.3 and Figure 1.4. For more sliding-coin puzzles, please refer to [3, 6, 7, 8.

55 - &P

Figure 1.3: Rearrange the rectangle into the circle in three moves. In each move, a coin can be
slid to a position adjacent to two other coins.

Fo W

Figure 1.4: Turn the pyramid upside down in three moves. In each move, a coin can be slid to
a position adjacent to two other coins.

Unlike the two-dimensional sliding-coin puzzles shown above, the linear one shown in
Figure 1.1 can be easily generalized by adding the same number of white and black coins
to the configuration or allowing the player to slide more coins in each move. These gen-
eralizations then form a family of puzzles. In this thesis, we study the linear sliding-coin
puzzle family in an algorithmic view. We will define the problem formally in the next

section.

1.2 Problem definition and notions

This section defines the linear sliding-coin puzzle family and other related concepts.
A board is a sequence of positions indexed with integers. A position can hold either a
nickel or a penny, or be unoccupied. A configuration is a set of coin type and position

pairs. We usually associate a configuration with its image, i.e. the arrangement of the



coins on the board. The position of a configuration is the position of the leftmost coin in
the configuration.

A walid move changes the positions of k adjacent coins to unoccupied positions without
rotating. More specifically, a valid move slides k adjacent coins on source positions 4,7 +
1,...,i4+ k — 1 to destination positions j,7 + 1,...,7 + k — 1, respectively. This move is
denoted (i — j). When the context is clear, a valid move is just called a “move.”

The problem we study is generalized from the puzzle in Figure 1.1. The initial con-
figuration is on the left of Figure 1.5, with n nickels to the left of n pennies for n > 3.
We use white stone and black stone to denote the nickel and penny, respectively. There
are two final configurations on the right of Figure 1.5, with alternate nickels and pennies
in the line. The final configuration is called white type if the first coin is a nickel (white
stone). Similarly, the final configuration is called black type if the first coin is a penny
(black stone).

The goal of the puzzle is to rearrange the initial configuration into either final configu-
ration via a sequence of valid moves. The final configuration does not need to stay at the
same positions as the initial configuration along the line.

__ = O0O@® - O@ (white type) or
QOO0 - @O (black type)

Figure 1.5: Rearrange the left configuration into either right configuration by sliding a fixed
number k£ > 2 adjacent coins in each move.

k and n are two parameters of the puzzle. Once both k£ and n are fixed, a concrete
puzzle is defined. For example, the puzzle shown in Figure 1.1 is defined by k£ = 2 and
n = 3. For a solvable puzzle, it is necessary that 2n > k, i.e. the number of coins in the
configuration must be greater than the number of coins which can be slid in each move.

A solution is a sequence of valid moves which rearranges the line of coins from initial
configuration to final configuration. An n-move solution is a solution consisting of n valid
moves. Given a solution and the position of the initial configuration, an image of moving
history can be generated, which consists of rows of configurations. For example, Figure
1.2 is an image of a solution for k = 2 and n = 3. We often refer to a solution by its
image. Therefore when we refer to a coin in a solution, we mean the coin in the image of
the solution.

A coin becomes stationary in a configuration of a solution if it is not slid by the rest of
the moves anymore, i.e. it has reached the correct position as in the final configuration.
For example, in Figure 1.2, the coin 5 in the initial configuration and the coin 8 in the
second configuration are both stationary. If we say a coin is stationary in a solution, it is

stationary from the beginning (in the initial configuration).



A solution is optimal if there is no other solution with fewer moves. It is common for a
puzzle to have many optimal solutions.
A k-block is k adjacent positions in a configuration. A pattern is the k adjacent coins

slid in a move. There are 2* patterns.

1.3 Results

To the best of our knowledge, linear sliding-coin puzzle has not been solved algorithmi-
cally. Some primitive results are illustrated without proof of optimality [5].

In this thesis, we study the lower bound on the number of moves required to solve the
puzzle. We divide the linear sliding-coin puzzle family by k£ and solve each sub-family for
any n algorithmically.

Chapter 2 studies some general properties which are independent of k including the lower
bound and the properties of n-move solutions. Chapter 3 studies a recursive algorithm for
k = 2 which generates optimal solutions. Chapter 4 studies two algorithms for k = 3, one
for odd n and the other for even n, since the behaviors of the two cases are different. In
Chapter 5, we propose a framework to construct optimal solutions, and apply it successfully

for k =4 and k = 5. Chapter 6 concludes with some open problems.



Chapter 2

Lower bound and properties

This section studies some general properties which are independent of k£, the number of

coins allowed to slide in each move.

2.1 Lower bound

We show the minimum number of moves required to solve a puzzle. We define a pair to

be a pair of adjacent white and black stones, i.e. O@ or @O.

Theorem 2.1.1. For n > 3, it takes at least n moves to solve any linear sliding-coin

puzzle.

Proof. We prove it by contradiction. Without loss of generality, suppose a puzzle can be
solved in n — 1 moves.

Observe that in the initial configuration, there is only one pair, i.e. the nth white stone
and the (n + 1)th black stone. The first move contributes at most one pair, and each
following move creates at most two more such pairs. Thus, in n — 1 moves, at most

1+ 14 2(n—2) =2n — 2 pairs can be created. However there are 2n — 1 such pairs in

either final configuration, which is a contradiction. [
1 n 2n
- 0000 - @0or
n n O000® - O®

Figure 2.1: The initial configuration has one pair of alternate coins. Either final configuration
has 2n — 1 pairs of alternate coins.

2.2 Necessity of n-move solutions

From Theorem 2.1.1, we know n moves are the minimum number of moves possible to

solve the puzzle. Actually, in many cases, the puzzle is often solvable in optimal n moves.



We will see this in the following sections. We are interested in the properties of an n-move
solution.

For example, suppose we are allowed to move k£ adjacent coins in each move. Then in
an n-move solution to a puzzle of size n, there are 2n coins, and the total number of coins
moved during the rearrangement is kn. Therefore each coin is moved kn/2n = k/2 times
on average.

The rest of this section studies some necessary conditions for an n-move solution. In
other words, if none of the conditions holds for a solution, the solution must have at least

n + 1 moves. We first investigate the pairs created by moves in an n-move solution.

Proposition 2.2.1. If a solution to a puzzle of size n has exactly n moves, then one of

the two following conditions holds:
1. The first move creates 0 pair, and each of the rest n — 1 mowves creates 2 pairs.

2. Two moves (including the first move) each creates 1 pair, and each of the rest n — 2

moves creates 2 pairs.

Proof. We know that the initial configuration has 1 pair and the final configuration has
2n — 1 pairs. If any moves destroys pairs, it must take more than n moves to solve the
puzzle. Therefore if the solution has exactly n moves, it has no move which destroys pairs.
According to the number of pairs created by the first move, there are two cases.

Case 1. Suppose the first move creates 0 pair. To achieve 2n — 1 pairs in n moves, each
of the rest n — 1 moves must create ((2n —1) — 1 —0)/(n — 1) = 2 pairs.

Case 2. Suppose the first move creates 1 pair. Then (2n — 1) — 1 — 1 = 2n — 3 pairs
must be created in n — 1 moves. Only one move is allowed to create 1 pair. Each of the

rest n — 2 move must create 2 pairs to achieve to goal. [

Next, we investigate the k-blocks used by an n-move solution. Let M be the 2n-block

occupied by the 2n coins in the initial configuration.

Proposition 2.2.2. In an n-move solution to a puzzle of size n, there is no gap between

M and the k-blocks used by moves during the rearrangement. (See Figure 2.2.)

1 n 2n

OO Je® - @ ¢ | 4 l

n n

Figure 2.2: The gap in the configuration described in Proposition 2.2.2.

Proof. We prove it by contradiction. Let A be a k-block to the right of M, and there is

a gap G between M and A, which consists of at least one positions. All the positions in



G are not used during the rearrangement. In the following paragraphs, the conditions to
which we refer are in Proposition 2.2.1.

Without loss of generality, assume A is used by the first move. Then the first move
creates 0 pair. There are the following two cases.

Case 1. Suppose at least two k-blocks are used during the rearrangement (including
A). Then the first time the move using the second k-block (other than A) creates at most
1 pair, violating condition 1.

Case 2. Suppose A is the only k-block used during the rearrangement. Then in the final
configuration, the 2n alternate coins must be at M. A cannot be a destination more than
once, otherwise there are more than one moves which create 0 pair, violating condition 1.
Let C' be the k coins slid by the first move. C' must be coins in alternating order in the
initial configuration, otherwise C' is unable to fit into the final configuration.

For k = 2, C' must be the pair at n and n + 1, i.e O®. However after moving C' to
A, all the pairs in M are of the same color. The second move creates at most one pair,
violating the condition 1. For k > 3, there are no coins in alternating order in the initial

configuration. ]

Proposition 2.2.3. An n-move solution to a puzzle of size n uses one of the following

k-block set during the rearrangement (see Figure 2.3):

1. Ry

2. Ly

3. Rl and Ll
4. Rl and R2
. L1 and Lg

1 n 2n
[ T Ls L L OO C@@® - @ R | R | Ry [ - ]
k k k k n n k k k k

Figure 2.3: The k-blocks in the initial configuration.

Proof. From Proposition 2.2.2, we know that there is no gap between M and the k-blocks
used during the rearrangement. Therefore if the solution uses at most two k-blocks, it can
use only one of the five k-block set listed above.

Then we show that the solution cannot use more than two k-blocks. Without loss of
generality, assume it uses three k-blocks, say Ry, Ry and L;. No matter what order the first
time the three k-block are used in the solution, neither of the conditions in Proposition
2.2.1 is satisfied. O



2.3 Symmetry of solutions

The initial configuration of linear sliding-coin puzzle is symmetric. What happens if the
moves in a solution are performed symmetrically?

For example, in Figure 2.4, the solution on the upper right is for £ = 2 and n = 3.
Imagine there is a mirror at the dashed line. The solution on the upper left is a mirror
image of the solution on the upper right. If we flip the type of the coins in the upper
left solution, it becomes a symmetric solution for £ = 2 and n = 3 on the bottom left.
Note that both final configurations on the upper right and the bottom left are of the same
type. The symmetric solution does not rearrange the coins into the other type of finial

configuration. This interesting property holds for any solution.

12345678910, 12345678910
000000 OCOO00®
o [ 1 1@ ! ol | | 0@
000 000 ! ce® OO0
0e000® 1 | 0] 0] @
12345678910
00000e
00000®
000 00O
| e/ ]0] |0

Figure 2.4: The solution on the upper left is a mirror image of the one for £k =2 and n = 3 on
upper right. The symmetric solution on the bottom left is obtained from the one
on the upper left by flipping the type of the coins.



Chapter 3

Sliding two adjacent coins in each

move

In this section we explore linear sliding-coin puzzle in an algorithmic view. We start
from the family with k& = 2.

We first show the optimal solutions for some small n in Section 3.1. Then we develop
a recursive algorithm which generates optimal solutions in Section 3.2. The idea of the

algorithm is to reduce the size of the puzzle by 4 and then solve the subproblem recursively.

3.1 Special cases and base cases

The solution for n = 3 has already been presented in Section 1.1, which is a special case.
The solutions for n = 4,5,6 and 7 are shown in the following theorem. Each solution has

exactly n moves, which is optimal.

Theorem 3.1.1. For k = 2, the following sequences are the optimal solutions for each

corresponding n.
o Forn=3:(1-=7),(6—9),(3—06).
o Forn=4:(2-9),(5—=2), (8—=5), (1 —=8).
o Forn=>5: (2—11), (8 = 2), (5—8), (10 = 5), (1 — 10).
o Forn=06:(2—13), (8 >2), (4—=8), (9—4), (12—9), (1 12).
o Forn="1:(2-15), (11 = 2), (5— 11), (10 = 5), (7 — 10), (14 = 7), (1 — 14).

Proof. Tt is easy to check the correctness and the optimality of the solutions in Figures
1.2 and 3.1. [



The optimal solutions for n = 4,5,6 and 7 will be used as base cases in the algorithm.
Note that their final configurations are black type and shifted to the right by two positions.
This property is useful to develop the algorithm.

12345678 9101112
12345678910 oeoeee e I I I I
eooee I I 1] 1 (2—11)0O 000000000

1(2—290 000000 00O :8—-2) 0000000 @O0

(6220000 [ 1 0@ (528 OO®O (10 1 ]O@)

:8-50000000 O (1025000000000 O

(1= 8) [ Jo! Jo] el @ (1 —10) [ Jo! Je] ol Jo! ]@

(a) n=14 (b) n="5

=W N =
T W N~

12345678 910111213141516
12345678 91011121314 OQOOOOCOLCe000000

OO00000000e 1:2-150 00000000000 00
1:2-130 00000000000 2: (11 220000000000 @000
2:(83-2 OOO0C0C00 00000 3: 6110000 0000000000
3:(4-8) 00 000000000 4:(10-5000000000 OO0O00
4:(9-4) C0000000 0000 5:(1- 100000000 00000000
5:(12-900000000000 O 6:(14->70000000000000® O
6:1-12) @UOOOOOOCOO®O T(1-14) V00000000

(c)n==6 (d)n="7

Figure 3.1: The optimal solutions for £ = 2 and each corresponding n.
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3.2 Algorithm

The following is the recursive algorithm which generates optimal solutions for k£ = 2.

1 function SlidingCoinK2 (start, n)

2 begin
// start is the starting position of the configuration.
// n is the number of each type of the coins.

3 ifn < 3 then

4 print “It is infeasible!”

5 elseifn=23,4,56 or7 then

6 foreach (p — q) in the corresponding solution in Theorem 3.1.1 do

7 print “(p + start — 1 — q + start — 1),”

8 end

9 else

10 print “(start 4+ 1 — 2n + start),”

11 print “(2n + start — 4 — start +1),”

12 SlidingCoinK2 (start+4, n-4)

13 print “(2n + start — 1 — start +4),”

14 print “(start — 2n + start — 1),”

15 end

16 end

Algorithm 3.1: S1idingCoinK2 generates optimal solutions for k = 2.

Theorem 3.2.1. S1idingCoinK2(1,n) generates the optimal solutions correctly forn > 3.
Moreover, each solution shifts the black type final configuration to the right by two positions

except for n = 3.

Proof. We prove it by induction on n. By Theorem 3.1.1, it is clear that the algorithm
generates the optimal solutions correctly for the special case n = 3 and the base cases
n=4,5,6,and 7.

Suppose the algorithm generates an optimal solution for size n. We prove that it gen-
erates an optimal solution as well for size n + 4. To further generalize the proof, assume
that the initial configuration for n + 4 starts at position i as shown in row (1) of Figure
3.2. After performing the two moves generated by Step 10 and 11 of the algorithm, the
configuration becomes (2) and (3), respectively.

Now the shaded sub-configuration in (3) is a subproblem of size n and starts at position

1+4. By induction hypothesis, the recursive call in Step 12 of the algorithm generates an n-

11



move solution for size n. Since the n-move solution shifts the black type final configuration

to the right by two positions, the shaded sub-configuration can be rearranged as shown in
(4).

Finally, by performing the two moves generated by Step 13 and 14 of the algorithm, the
black type final configuration is reached as shown in (6). It takes n+4 moves to solve the

puzzle of size n + 4, and it is optimal. O

i i+n+4 i+ 2n+7

Q00000000 -0 000000

O 000000 -0 00eeee o

OO0V e 000 0000

C000 @0 @0 ( 2o o] [ 100,

O] [ lo] o] IOK IGRIu 0000® O
000000 00 00000000

NSRS IS AN NI

(1
(2
3
(4
(5
(6

Figure 3.2: The inductive step in the proof of Theorem 3.2.1. The problem size is n + 4 and
the initial configuration starts at position ¢. Each row becomes the next row after
moving the coins in the frame.

The algorithm generates an n-move solution to the puzzle of size n, and each move can
be generated in constant time. Since the problem size is reduced by 4 in each recursion,
the running time of S1idingCoinK2 is O(n), which is proportional to the number of coins
in the puzzle.

Since the recursion depth of S1idingCoinK2 is O(n), the space complexity is O(nlgn).
However it can be reduced to O(lgn) by removing the recursive step. Algorithm 3.2 is
an iterative version of SlidingCoinK2. The variable ¢ and n initiated at Step 6 and 7
are used to mimic start and size_n respectively as on each recursion of Step 12 of the
recursive algorithm. The first while loop repeatedly does the job of Step 10 and 11 of the
recursive algorithm, and reduces the problem size. Once the problem size matches the size

of the base cases, the iterative algorithms print the solution of the base cases. Similarly,

12



the second while loop does the job of Step 13 and 14 of the recursive algorithm.

1 function SlidingCoinK2Iter (start, size_n)

2 begin
// start is the starting position of the configuration.
// sizen is the number of each type of the coins.

3 if n < 3 then

4 print “It is infeasible!”
5 else
6 1 4 start
7 n — sizen
8 while n > 7 do
9 print “(i+1—2n+1)”
10 print “2n+i—4—i+1)”
11 141+4
12 n<n—4
13 end
14 ifn=3,4,5,6 or 7 then
15 foreach (p — q) in the corresponding solution in Theorem 3.1.1 do
16 print “(p + start — 1 — q + start — 1),”
17 end
18 end
19 while n < size_n do
20 14 1—4
21 print “2n+i—1—i+4)”
22 print “(i = 2n+:—-1)"
23 n<n+4
24 end
25 end
26 end

Algorithm 3.2: An iterative version of SlidingCoinK?2.

13



Chapter 4

Sliding three adjacent coins in each

move

In this section we explore the family with &£ = 3 algorithmically. Our approach is similar
to the one in Chapter 3. We first show the optimal solutions for some small n in Section
4.1. However, we observe that the shapes of the solutions for odd n and for even n are
quite different. Therefore we develop two algorithms separately, one for odd n and the

other for even n, in Section 4.2.

4.1 Special cases and base cases

The solution for n = 3 will be used as a base case in the algorithm for odd n. As for
even n, n = 4,6 and 8 are special cases while n = 10,12 and 14 are base cases in the

algorithm for even n. Note that the initial configuration for even n starts at position 4.

Theorem 4.1.1. For k = 3, the following sequences are the optimal solutions for each

corresponding n.
e Form=3:(2—7), (6—2), (1—6).

o Forn=4:(6—12), (10 = 6), (5 = 10), (12 = 5).

Forn=6: (8= 16), (5 — 8), (14 — 5), (10 — 14), (6 — 10), (9 — 6), (16 — 9).

For n = 8: (10 — 20), (6 — 10), (14 — 6), (18 — 14), (12 — 18), (7 — 12),
(10 = 7), (5 — 10), (20 — 5).

Forn = 10: (19 — 1), (10 — 19), (20 — 24), (15 — 10), (3 — 20), (22 — 15),
(8—=3),(1—=28),(9—22), (4—9).
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o Forn =12: (23 — 1), (12 — 23), (24 — 28), (19 — 12), (3 — 24), (26 — 19),
(14 — 26), (8 — 14), (15 — 3), (1 — 15), (13 = 8), (4 — 13).

o Forn = 14: (27 — 1), (10 — 27), (28 — 32), (21 — 10), (14 — 21), (3 — 28),
(8 = 3), (19 = 8), (23 = 19), (1 — 23), (21 — 14), (30 — 21), (9 — 30), (4 — 9).

Proof. For n = 3,4,10,12 and 14, it is easy to check the correctness and the optimality of

the solutions in Figures 4.1. For n = 6 and 8, we have performed an exhaustive search for

the 6-move and 8-move solutions, respectively, but failed. The solutions in Figures 4.1(c)
and 4.1(d) are two of the best solutions that can be found. O
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Figure 4.1: The optimal solutions for £ = 3 and each corresponding n.
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4.2 Algorithms

4.2.1 Algorithm for odd n

The following is the recursive algorithm which generates optimal solutions for £ = 3 and

odd n.

1 function S1idingCoinK30dd (n, gap)
2 begin
// m is the number of each type of the coins.
// gap controls the number of positions separating the (n+ 1)th
coin and the (n+ 2)th coin in the configuration of size n.
3 ifn <3 then
4 print “It is infeasible!”

5 else if n = 3 then

6 print 2 = n+gap+4)”

7 print “(n+gap+3 — 2)”

8 print “(1 - n+gap+3)”

9 else
10 print “n—1—2n+gap+1)”7
11 print “2n+gap—1—>n—1)"
12 S1idingCoinK30dd (n-2, gap+2)
13 end
14 end

Algorithm 4.1: S1idingCoinK30dd generates optimal solutions for k = 3 and odd n.

Theorem 4.2.1. For oddn > 3, S1idingCoinK30dd (n,0) generates the optimal solutions

correctly. Moreover, each solution has the following three properties:
1. FEach solution shifts the white type final configuration to the right by three positions.
2. The two coins at positions n and n + 1 are both stationary after the second move.
3. The (n+ 2)th coin (the second penny) is stationary.

Before proving the correctness of the algorithm, let’s observe two more optimal solutions
generated by S1idingCoinK30dd(n,0 for n = 5 and n = 7 as shown in Figure 4.2. The
two solutions and the one for n = 3 in Figure 4.1(a) all satisfy the three properties in
Theorem 4.2.1.
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Suppose there is a gap between the (n + 1)th coin and the (n + 2)th coin in the initial
configuration. For example, there is gap between the first penny (at positions 6) and
the second penny (at position 7) in the initial configuration of Figure 4.2(a). Since the
(n + 2)th coins is stationary, we can still apply the solution to the new configuration by
properly shifting all the coins after the (n 4 2)th coin to the right by the size of the gap.
The gap in the configuration will not affect the moves in the solution. Thus the coins in
the final configuration are still in alternating order (but in two parts) as if the gap does

not exist.
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() n=5 (b)yn="1

Figure 4.2: Two optimal solutions generated by S1idingCoinK30dd.

Proof of Theorem 4.2.1. We prove it by induction on odd n. By Theorem 4.1.1, it is clear
that the algorithm correctly generates the optimal solution for the base case n = 3 (with
gap = 0), and the solution satisfies the three properties.

Suppose the algorithm generates an optimal solution for size n — 2 which satisfies the
three properties. We prove that it generates an optimal solution correctly for size n which
satisfies the three properties as well. Assume the initial configuration for n starts at
positions 1 as shown in row (1) of Figure 4.3. After performing the two moves generated
by Step 10 and 11 of the algorithm, the configuration becomes row (2) and row (3),
respectively.

Now the shaded sub-configuration in row (2) is a subproblem of size n — 2 in two parts,
separated by a gap of size 2 (positions n and n + 1). By the assumption and previous
observation, the shaded sub-configuration can be solved in n—2 moves even if there is a gap
between the first penny and the second penny of the shaded sub-configuration. Thus after
the recursive call in Step 12, the shaded sub-configuration becomes white type final sub-
configuration and shifts to the right by three positions as shown in row (4). The solution
uses total n moves, which is optimal. The two coins @O at positions n and n + 1 and the
two O@ at positions 2n + 2 and 2n + 3 integrate with the shaded sub-configuration. Thus
the 2n coins are rearranged correctly into the white type final configuration and shifted to
the right by three positions. The second property is satisfied since two coins at positions

n and n 4+ 1 are not moved by the solution to the subproblem of size n — 2. The third
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property is also satisfied since the second penny is not moved by the first two moves and

it is also the second penny of the subproblem of size n — 2. O

The running time of S1idingCoinkK30dd is O(n). The analysis of the time complexity

is similar to the analysis for S1idingCoinK2 on page 12.

2n

HOOOOO---0OCee - 00

2) QO o 000000
300000000 0® @ 0@
4) 0000000 00 e

Figure 4.3: The inductive step in the proof of Theorem 4.2.1. The problem size is n and the
initial configuration starts at position 1. Each row becomes the next row after
moving the coins in the frame.

4.2.2 Algorithm for even n

Although the difference between odd n and even n seems little, the shapes of the solu-
tions are quite different. The puzzle family for even n is not as easy as odd n, which can
not be solved by simple recursions. We need to use a different trick to tackle the puzzle
for even n.

Consider an auxiliary puzzle of size 6, where the solution is shown in Figure 4.4. Note
that the final configuration is different from the original puzzle, which is black type at
positions 1 to 6 and is white type at positions 7 to 12. This solution is specially designed
such that we can combine it with a known solution S which satisfies the conditions shown
in Lemma 4.2.2; resulting a solution to a puzzle of larger size.

Actually, the approach here is an application of a general framework. The ideas of the
framework will be explained later in Chapter 5. Let’s first accept the solution in Figure
4.4, and see how to use it to construct a solution to a puzzle of larger size. The detail
of the construction is shown in the proof of Lemma 4.2.2; which implies an algorithm for

even n shown in Algorithm 4.2.
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Figure 4.4: A solution to an auxiliary puzzle which can be used to derive the solutions for even
n. The coins in the shade are stationary.
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Lemma 4.2.2. Given a solution S to a puzzle of size n which satisfies the following

conditions:
1. There exists a nickel and a penny such that both coins are stationary.

2. Three patterns OO0, OO@ and @O® in this order are slid by three moves in S. (The
three patterns are the ones showing up during the rearrangement in the 3-block at
positions 13 to 15 in Figure 4.4.)

Then S can be extended to be a solution S’ to a puzzle of size n + 6m, m > 1.

Proof. Let S be a solution to a puzzle of size n which satisfies the conditions. Let C' be the
initial configuration for a puzzle of size n. Let a and b be the positions of the stationary
nickel and penny in C', respectively. We give a construction which extends S to be a
solution S’ to a puzzle of size n+ 6, and we argue that S’ still satisfies the two conditions.

First, we add six nickels and six pennies to the right of a and b in C, respectively. Let
C’ be the modified initial configuration. Let a’ and &’ be the positions in C’ corresponding
to the coins a and b in C, respectively. The added coins are shaded as shown in row (Init)
in Figure 4.5.

Let S’ be derived from S such that the moves consisting of the positions after a’ and &
are properly shifted right accordingly as in C’. By condition 1, the coins at positions a’
and O’ are both stationary of C” when performing S’. For now, after performing the moves
of §’, the original coins can be slid to reach the final configuration without touching the
added coins. Next, we need to further modify the moves of S’ such that the added coins
are in alternating order and integrated into the final configuration.

Let (1 — 1) be the move in S sliding OO0, which is guaranteed by condition 2. Let
(x} — ;) be the corresponding move in S’. We replace (] — y}) with the following three

moves as shown in Figure 4.5.

(A-1): (' +3 =)
(A-2): (V' +3 —d +3)
(A-3): (2} = b +3).

The net effect of the three moves on the original coins is the same as (2] — y1), i.e. OO0 is
slid to y1, and 2§ becomes unoccupied. The sub-configuration of the added coins is shown

in Figure 4.5.
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Similarly, let (x, — y5) be the move in S’ sliding OO@, and we replace (x, — y5) with

(B-1): (d' +1 — )
(B-2): (' +1—d +1)
(B-3): (zy, — b +1).

Also, let (2 — y53) be the move in S’ sliding @O®, and we replace (24 — y4) with

(C-1): (' +2 = )
(C-2): (V' +2—d+2)
(C-3): (af =V +2).

After the (C-3) move, the added nickels o’ +1,...,a’ + 6 and pennies ¥/ +1,...,0 + 6
are in alternating order as shown in Figure 4.5. Since S is a correct solution, after the last
move of S’, the coins at a’ +7 and ¥’ 4+ 7 are a penny and a nickel, respectively. The added
coins fit into the final configuration of S’. Hence, S’ is a correct solution as well, and has
exactly six more moves than S.

Observe Figure 4.5, the nickel at position a’ + 6 and the penny at position ¥ + 6 are
both stationary after performing S’. Three patterns OO0, OO@® and @O® in this order
are slid by the three move (A-1), (B-1) and (C-1) in S’. Therefore, S’ still satisfies the

two conditions. The construction can be applied repeatedly. Hence S can be extended to

be a solution to a puzzle of size n + 6m, m > 1. [
a 4
(Init)--- OOOO0000 9000000
(A-1)--- 000 O 0000000
A-2)- 0000000 000 o
A-3)- 0000000 000000 0®
B-1)-- 0 000 0000000
320000000 @ oo X8
33) - 0000000 000000
€1 0@ 00 0000000
c2) - 00000080 - @0 0@
0000000 - 0000000

Figure 4.5: The modifications of the three moves in condition 2 in the proof of Lemma 4.2.2.
The coins at @’ and b are stationary (in the shade). The added coins are in the

frame.
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See the solution for n = 16 in Figure 4.6 for a example. It is generated by the construc-
tion shown in the proof of Lemma 4.2.2, which uses the solution for n = 10 in Figure 4.1e
and the solution to the auxiliary puzzle in Figure 4.4. In Figure 4.1e, the coins at 7 and
18 are stationary. The three moves 2, 3 and 9 move the three patterns OO0, OO@ and
@0®, respectively. The moves in A, B and C' in Figure 4.6 are extended from the move
2,3 and 9 in Figure 4.1e.
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Figure 4.6: An optimal solution for £ = 3 and n = 16, which is extended from the solutions
for n = 10 in Figure 4.1e by using the construction in Lemma 4.2.2. The added
coins are in the solid frame. The moves in A, B and C (in the dashed frame) are
extended from the move 2,3 and 9 in Figure 4.1e, respectively.

Theorem 4.2.3. For evenn > 10, there exists an optimal solution which solves the puzzle

in exactly n mowves.

Proof. For n = 10,12 and 14, it is clear that each has an optimal solution by Theorem
4.1.1. Tt is easy to check that each solution satisfies the two conditions in Lemma 4.2.2
from Figure 4.1e, 4.1f and 4.1g. The construction in the proof of Lemma 4.2.2 implies that
if S has n moves, then S’ has n + 6m moves, m > 1. Hence the solutions for n = 10, 12
and 14 can be used as base cases, and can be extended to be the solutions for all even
n > 10. [

Algorithm 4.2 is a direct implementation of Theorem 4.2.3. Note that the initial con-
figuration starts at position 4. Since the solutions for base cases n = 10,12, 14 are known,

the extended moves to the solutions can be calculated in constant time. Thus, it takes
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O(n) time for the algorithm to generates a solution for even n.

1 function S1idingCoinK3Even(n)

2 begin

// m is the number of each type of the coins.

3 ifn < 3 then

4 print “It is infeasible!”

5 elseifn=4,6,810,12 or 14 then

6 foreach (p — q) in the corresponding solution in Theorem 4.1.1 do

7 print “(p — q),”

8 end

9 elseifn=10+6m,m > 1 then

10 Apply the construction in Lemma 4.2.2 by using the solution for n = 10 in
Figure 4.1e.

11 else ifn=1246m,m > 1 then

12 Apply the construction in Lemma 4.2.2 by using the solution for n = 12 in
Figure 4.1f.

13 else if n =144 6m, m > 1 then

14 Apply the construction in Lemma 4.2.2 by using the solution for n = 14 in
Figure 4.1g.

15 end

16 end

Algorithm 4.2: SlidingCoinK3Even generates optimal solutions for k = 3 and even n.
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Chapter 5

A framework for general cases

In this section we propose a framework to find the needed components which can be used
to develop algorithms generating optimal solutions. The framework can be regarded as a
meta-algorithm or a heuristic method to construct optimal solutions for k and sufficiently
large n.

Actually, the algorithm for £ = 3 and even n is a successful application of the framework.
We also apply the framework successfully to construct the optimal solutions for the family
with £ =4 and 5.

We introduce an auxiliary puzzle of size 2k as shown in Figure 5.1. The initial config-
uration has 2k nickels to the left of 2k pennies. In each move, k adjacent coins can be
slid. Note that the goal is different from the original puzzle. The first half of the final
configuration is black type while the second half is white type.

2k 2k

000 —O0ee @ £
200 08 OO0 &

Figure 5.1: The initial and final configuration of an auxiliary puzzle of size 2k. k adjacent coins
can be slid in each move.

Suppose we deal with the puzzle family with some k. Let S, be an optimal solution to

the puzzle of size n. The following is the framework. We explain the details of each phase

24



in the following section.

1 repeat

2 Phase 1. Perform exhaustive search for a solution A to the auxiliary puzzle of
size 2k which satisfies Requirement 5.1.1.

3 Phase 2. Perform exhaustive search for 2k solutions S, ..., S,1ot—1 to the
original puzzle of size in the range of n to n + 2k — 1, for some n. Each solution
must satisfy Requirement 5.1.2.

auntil A and S,, ..., S, 1op_1 are found.

5 Phase 3. 5, can be extended to be an optimal solution 5,12k, where m > 1.

Thus S, ..., S,ior_1 solve all the puzzles of size at least n.
Algorithm 5.1: The framework

The idea behind the framework is as follows. The solution A to the auxiliary puzzle can
be seen as a building block of size 2k, which can be piled onto S, (with some modifications).
The result is an optimal solution S,, ;9. The requirements in Phase 1 and 2 are used to

guarantee that A and 5, can be integrated successfully.

5.1 The framework

5.1.1 Phase 1

In Phase 1, we perform exhaustive search for a solution A to the auxiliary puzzle of size

2k. A must satisfy the following requirements.

Requirement 5.1.1.
1. Both the initial configuration and final configuration start at the same positions.
2. Only the k-block Ry is used during the rearrangement.
3. Both the kth and 2k-th coins are stationary.

4. The (3i41)th move must slide a pattern from the first 2k-block to Ry, and the (3i+3)th

move must slide a pattern from Ry to the second 2k-block, where 0 < i <k — 1.
5. It has 3k mowes.

By Requirement 1 and 2, A can be regarded as a quasi-solution to the original problem
of size 2k, which can be split into three parts, including the first 2k-block, the second

2k-block, and a temporary space R;. R; can be viewed as a buffer such that A uses it

25



in order to rearrange the coins in the first 2k-block and second 2k-block into alternating
order.

By Requirement 3, the number of coins which can be slid in the first 2k-block is 2k — 1,
so is it in the second 2k-block. Thus, by Requirement 4, the (37 + 2)th move must slide
a pattern from the second 2k-block to the first 2k-block, and the patterns slid in the
(3¢ + 1)th move and in the (3¢ + 3)th move are of the same. Let p and p’ be the patterns
slid by (37 + 1)th move and (37 + 2)th move, respectively. Note that p’ is the complement
to p, i.e. p’ is the pattern by flipping the coin types in p.

By Requirement 5, there are k patterns which are moved to R; in A. Let P =
{p1,-..,pr} be the sequence of the k patterns. Each pattern p; is different, and number
of pairs in each pattern p; is increasing. P can be viewed as the necessary intermediate
output to the buffer R; for A.

For example, Figure 4.4 is a solution to the auxiliary puzzle for k£ = 3. It satisfies all
the requirements. The three patterns in P are OO0, OO@® and @0@.

5.1.2 Phase 2

After Phase 1, we have P the sequence of k patterns, which will be used as one of
the requirements in Phase 2. In this phase, we also perform exhaustive search for the
2k optimal solutions S, ..., S,1or—1 to the original puzzles of size in the range of n to

n+2k—1, for some n. In addition, each solution S; must satisfy the following requirements.
Requirement 5.1.2.

1. There exists a nickel and a penny such that both coins are stationary in S;.

2. The patterns pq, ..., pr are moved by some k moves mq,...,my in S;, respectively.

The 2k optimal solutions are the bases, and each of which can be integrated with A by
the “connector” P in Phase 3.

For example, Lemma 4.2.2 is an instance of Requirement 5.1.2 for k = 3 with respect
to the solution to the auxiliary puzzle of size 6 in Figure 4.4.

Note that the search in Phase 2 depends on the solution A derived from Phase 1.
Therefore if the 2k optimal solutions can not be found, we go back to Phase 1 and conduct

a new search for another A’.

5.1.3 Phase 3

In this phase, we already have all the needed components: A and the 2k optimal solutions
Sny .-y Snrok—1. The following theorem generalizes Lemma 4.2.2 to any k, which can be

used to implement the algorithms generating optimal solutions.
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Theorem 5.1.1. Given a solution A to the auziliary puzzle of size 2k satisfying Re-
quirement 5.1.1 and an optimal solution S, satisfying Requirement 5.1.2, then S, can be

extended to be an optimal solution S, okm, m > 1.

Proof. The theorem generalizes Lemma 4.2.2 which is an instance for k£ = 3. For a concrete
result of the construction, please see Figure 4.6. We briefly review the idea as follows.

Let a and b be the positions of the stationary nickel and penny in S, respectively. We
add 2k nickels and 2k pennies to the right of a and b, respectively. The positions after a
and b in S should be properly shifted to the right by 2k and 4k, respectively.

Next, we modify the k& moves mq,...,m; which moves p;,...,p, in S. The moves
in A can be divided into k£ groups, say M, ..., M, such that each group M; has three
consecutive moves (3i + 1), (3i + 2) and (3i +3), 0 < i < k. We replace each m; in S
with M; with some modifications. Without loss of generality, we show how to modify m;.
Suppose my slides p; from position x to position y, denoted as = 2 y. We regard m, as

that x becomes unoccupied and y gets p;. Let the three moves in M; be

ggRl
hig
Ri & h,

where p] is the complement pattern of p;. We regard the three moves as that g has p; and
h has p), and they exchange p; and p} by using the buffer R;. Then we replace m; by the
following three moves such that the needs of x,y, g and h are all fulfilled:

95y
hig
x5 h.

my ..., my are modified similarly. Then S, can be extended to be an optimal solution
Snaor which also satisfies Requirement 5.1.2. Therefore this technique can be applied

repeatedly, resulting an optimal solution S, ogm, m > 1. [

By Theorem 5.1.1, the 2k optimal solutions S,,...,S,12r_1 can be extended to be
optimal solutions to the puzzles of size at least n+ 2k. Therefore they solve all the puzzles
of size at least n. For the puzzles of size less than n, we can perform exhaustive search for

the optimal solutions.
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5.2 Application for k =4 and k£ =5

To show that the framework actually applies for £ = 4 and k = 5, we present the valid
data found in Phase 1 and Phase 2.

5.2.1 k=14

Phase 1: a solution A. P contains OO00, @000, 0000, O80e.

12345678091011121314151617181920

0000000000000 d
1:(1—=17) 0000000000000
2:0-1) 00000000 00000000
3:(17-9) 0000000000000
4:4-17) 000 0000000000000
5:(12—-4) 00000000000 00000
6:(17-12) 0000000000000 0O®
72217 @ L J ool jeee I 1 o]
8:(10-2) @OOOOOO®OO el I 1 1e]
9: (17—~ 10) @OO00000000OOO®
10:(3—-17) @O 0000000000000
11:(11-3) @Ue0eV0e00® o o] o] J
12: (17> 1) @OO00000000 0000 0®

Figure 5.2: A solution to an auxiliary puzzle of size 8.

Phase 2: the 2k optimal solutions to the puzzles of size in the range of 13 to 20. Note
that each initial configuration starts at position 5. For the figures of the following solutions,
please see Appendix A.1 on page 34. By Theorem 5.1.1, we have the optimal solutions for
n > 13.

o For n = 13: (6 — 31), (17 = 1), (23 = 6), (30 — 17), (16 — 23), (3 — 16),
(11 — 3), (4 — 30), (28 = 4), (5 — 11), (13 — 28), (22 — 13), (1 — 22).

e For n = 14: (6 — 33), (23 — 6), (12 — 23), (25 — 1), (4 — 12), (20 — 25),
(11 — 20), (32 — 11), (13 — 4), (26 — 13), (1 — 26), (27 — 32), (14 — 27),
(5 — 14).

o For n = 15: (6 — 35), (19 — 1), (24 — 6), (34 — 19), (18 — 24), (29 — 18),
(12 — 29), (4 — 12), (27 = 4), (11 — 34), (3 — 11), (17 — 3), (5 — 27),
(28 — 17), (1 — 28).

e For n = 16: (6 — 37), (22 — 6), (11 — 22), (25 — 1), (31 — 11), (12 — 25),
(19 — 31), (4 — 19), (18 — 12), (36 — 18), (20 — 4), (26 — 20), (1 — 26),
(17 — 36), (28 — 17), (5 — 28).
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For n = 17: (6 — 39), (21 — 1), (26 — 6), (38 — 21), (11 — 26), (3 —
(19 — 3), (32 — 19), (4 — 38), (20 — 4), (27 — 20), (12 — 27), (17 —

(33 = 12), (5 — 17), (18 — 33), (1 — 18).

For n = 18: (6 — 41), (20 — 1), (25 — 6), (40 — 20), (13 — 25), (35 —
(22 — 35), (3 — 40), (32 — 3), (4 — 22), (19 — 32), (14 — 19), (27 —

(11 = 4), (17 — 11), (1 = 17), (14 — 27), (5 — 14).

For n = 19: (6 — 43), (23 — 1), (28 — 6), (42 — 23), (11 — 28), (37 —
(18 — 37), (3 — 18), (25 — 3), (4 — 42), (12 — 4), (31 — 12), (15 —

(36 — 31), (30 — 15), (5 — 30), (27 — 36), (14 — 27), (1 — 14).

5.2.2 k=5

For n = 20: (6 — 45), (22 — 1), (27 — 6), (44 — 22), (11 — 27), (39 —
(24 — 39), (3 — 44), (12 — 3), (29 — 12), (4 — 24), (13 — 4), (36 —
(31 = 13), (2 = 36), (16 — 2), (21 — 16), (1 — 31), (30 — 21), (5 — 30).

Phase 1: a solution A. P contains OO00, 000, OO0, O8OO® and @060@.

0 N O ULk W=

== = === O
T W N = O ..

12345678910111213141516171819202122232425
oooeoeeeeee | [ 1111111/

$(3=21) OO 0000000000000
(1323 000000000000 00000000
(212 13) OO0000000 00000000000

H(2=21) O L jooe | leeeee 1116 11 1
1(12-2) 000000000 000000000
(21 =12) O@O000O00000 00000000

((5=21) OO0 0000000000000 000
fw%m o oo [ o I o o 1) | Jole] 0@

2115 090000000000 0000000®
((1—21) 000000000000 0000000 e
(11=1) 9000000000 000000000 ®
(21 -11)0000000000000000000e®
(4-21) OO L Joje] ool el lee] I o] Ie] |
(14-4) 9000000000000 000000 0e
(21-14900000000000000000000

Figure 5.3: A solution to an auxiliary puzzle of size 10.

Phase 2: the 2k optimal solutions to the puzzles of size in the range of 14 to 23. Note

that each initial configuration starts at position 6. For the figures of the following solutions,

please see Appendix A.2 on page 40. By Theorem 5.1.1, we have the optimal solutions for

n > 14.

o For n = 14: (21 — 1), (9 — 21), (25 — 34), (3 — 25), (26 — 9), (18 — 26),
(27 — 3), (33 = 18), (10 — 27), (16 — 10), (1 — 16), (24 — 33), (17 — 24),

(6 — 17).
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e For n = 15 (22 = 1), (12 — 22), (26 — 36), (4 — 26), (27 — 12), (18 — 27),
(33 — 18), (24 — 33), (34 — 4), (2 — 34), (15 — 2), (6 — 15), (35 — 24),
(14 — 35), (1 — 14).

o For n = 16: (24 — 1), (16 — 24), (28 — 38), (35 — 16), (5 — 28), (12 — 5),
(3 = 12), (26 — 35), (13 — 26), (29 — 3), (23 — 29), (36 — 23), (26 — 13),
(1 = 36), (37 — 26), (6 — 37).

e For n = 17: (31 — 1), (14 — 31), (22 — 40), (4 — 22), (23 — 14), (16 — 23),
(24 — 4), (37 — 16), (30 — 24), (12 — 30), (2 — 12), (26 — 37), (39 — 2),
(13 = 26), (6 — 39), (38 — 13), (1 — 38).

o For n = 18 (25 — 1), (12 — 25), (29 — 42), (5 — 29), (33 — 5), (4 — 12),
(22 — 4), (39 — 22), (15 — 33), (32 — 39), (41 — 32), (31 — 15), (3 — 31),
(18 = 3), (1 — 18), (28 — 41), (19 — 28), (6 — 19).

e For n = 19: (26 — 1), (12 — 26), (27 — 44), (42 — 27), (28 — 12), (14 — 28),
(32 — 42), (4 — 32), (33 — 14), (16 — 33), (34 — 4), (2 — 34), (35 — 16),
(24 — 35), (41 — 24), (23 — 2), (6 — 23), (22 — 41), (1 — 22).

e For n = 20: (27 — 1), (12 = 27), (31 — 46), (43 — 12), (4 — 31), (23 — 43),
(37 — 23), (19 — 4), (13 — 19), (45 — 13), (5 — 37), (27 — 5), (3 — 45),
(44 — 27), (20 — 44), (34 — 20), (21 — 3), (1 — 21), (17 — 34), (6 — 17).

o For n = 21: (28 — 1), (12 — 28), (34 — 12), (20 — 34), (38 — 48), (45 — 20),
(4 — 38), (31 — 45), (16 — 31), (29 — 16), (17 — 4), (2 — 17), (46 — 2),
(39 — 29), (5 — 39), (13 = 5), (26 — 13), (6 — 46), (47 — 26), (32 — 47),
(1 — 32).

o For n = 22: (29 — 1), (12 — 29), (35 — 12), (19 — 35), (37 — 50), (5 — 37),
(41 = 5), (3 = 19), (26 — 3), (49 — 26), (20 — 41), (39 — 20), (13 — 39),
(4 — 13), (28 — 49), (48 — 4), (36 — 48), (47 — 28), (1 — 36), (16 — 47),
(37 — 16), (6 — 37).

e For n = 23: (30 — 1), (12 — 30), (36 — 12), (18 — 36), (40 — 52), (51 — 18),
(4 — 40), (34 — 51), (16 — 34), (26 — 16), (41 — 26), (28 — 41), (42 — 4),
(49 — 42), (17 — 49), (2 — 17), (13 = 28), (25 — 2), (50 — 13), (6 — 25),
(43 — 50), (24 — 43), (1 — 24).
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Chapter 6

Conclusion and open problems

We proved that n moves is the minimum number of moves required to solve a puzzle,
showed the properties of the n-move solutions, and designed the algorithms generating
optimal solutions for the puzzle families with £ = 2 and 3. Furthermore, we proposed
a framework to extend solutions, and applied it successfully to construct the optimal
solutions for k = 4 and 5. However, there are many issues which remain unclear. We state

them as open problems.

1. Does the framework proposed in Chapter 5 apply to any k > 67
2. Can the puzzle be solved in n moves for any k& and sufficiently large n?

3. What does the complexity class solving the puzzle belong given k£ and n as parame-

ters?
4. What is the minimum moving distance to solve a puzzle given k and n?

5. Can an arbitrary initial configuration of equal number of nickels and pennies be

rearranged to alternate coins? Can it be done in n moves?
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