

國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

P 2 P 實 況 / 移 時 串 流 系 統 之 實 作 與 分 析

Implementation and Analysis of P2P Live/Time-shift Streaming

System

研 究 生：李茂弘

指導教授：張明峰 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 九九九九 年年年年 七七七七 月月月月

P2P實況/移時串流系統之實作與分析

Implementation and Analysis of P2P Live/Time-shift

Streaming System

研 究 生：李茂弘 Student：Mao-Hung Lee

指導教授：張明峰 Advisor：Ming-Feng Chang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

i

P2P實況/移時串流系統之實作與分析

學生：李茂弘 指導教授：張明峰

博士

國立交通大學資訊科學與工程研究所

摘要
 隨著寬頻網路的普及，多媒體串流服務近年來已成為一蓬勃發展的網際網路

應用，但此類系統的可擃展性一直是個問題。點對點式架構已經是解決可擴展性

問題中最有潛力的方法之一，並應用在許多的多媒體實況串流服務以及隨選視訊

串流服務之中。

雖然目前已經有相當多的點對點影音串流研究，但是點對點的移時串流服

務，也就是提供使用者能夠在沒有預錄的情況下觀看任意過去時間點上的多媒體

串流服務，目前只有少數研究。

 於此篇論文中，我們將實作一點對點實況/移時串流系統，提出針對移時服務

串流資料塊的分散式的快取管理策略，以及在 PlanetLab平台上進行實驗，了解該

類系統的可行性及特性，以及所提出策列之效能。我們相信這將提供此類系統的

一般性了解，幫助我們進一步的發產這類型的多媒體串流服務。

ii

Implementation and Analysis of P2P Live/Time-shift

Streaming System

Student：Mao-Hung Lee Advisor：Dr. Ming-Feng

Chang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

With the increasing prevalence of broadband Internet access, multimedia streaming

services have been among the most popular Internet applications in recent years, but the

system scalability has always been an issue. P2P architecture has been one of the most

promising solutions addressing the scalability problem, and has been widely applied on

live streaming services and video-on-demand (VoD) services.

However, currently there are very few studies in P2P streaming systems that

provide time-shift streaming services, where users can watch video streaming programs

with an arbitrary offset of time. In this thesis, we design and implement a P2P

live/time-shift streaming system and propose two distributed cache management

strategies for time-shift video cache files. In addition, we study its performance and

characteristics on the PlanetLab experiment platform, Our experiment results show the

feasibility of P2P time-shift video streaming systems and the effectiveness of the

proposed strategies. We believe our work can provide valuable insightful knowledge

of P2P live/time-shift streaming systems for future developments on this kind of

streaming services.

iii

誌謝

首先我要感謝指導教授張明峰老師，於碩士班的這兩年中，老師的指導及教

誨，除了幫助我順利完成此篇論文外，更指引了我作研究應有的態度、縝密的思

考模式以及獨立思考的能力，實在是獲益匪淺。

我也要感謝實驗室的同學，祐村、岳廷，還有境余以及順胤學弟，你們不只

是一同努力的同伴，給予我碩士之路上奮鬥的動力，更為我在實驗室的生活增添

了許多色彩，在這裡獻上由衷的感謝。

最後我要感謝我親愛的家人，感謝你們在我求學期間全心全意的支持，我才

可以專心完成研究所的學業。

李 茂 弘 謹識於

國立交通大學資訊科學與工程研究所碩士班

中華民國九十九年七月

iv

Table of Contents
摘要 ... i

ABSTRACT ... ii

誌謝 ... iii

Table of Contents ... iv

List of Figures .. vi

List of Tables .. vii

List of Algorithms .. viii

Chapter 1 Introduction .. 1

1.1 Overview .. 1

1.2 Motivation .. 1

1.3 Objective ... 2

1.4 Summary ... 2

Chapter 2 Related Work .. 3

2.1 P2P streaming overlay .. 3

2.1.1 Tree-based .. 3

2.1.2 Mesh-based .. 4

2.2 P2P streaming data delivery mechanisms ... 4

2.2.1 Push mechanism .. 4

2.2.2 Pull mechanism ... 4

2.2.3 Hybrid push-pull mechanism .. 5

2.3 Current development .. 5

2.3.1 P2P live streaming ... 5

2.3.2 P2P VoD streaming .. 6

2.3.3 P2P live streaming with time-shift streaming support 8

2.4 Live streaming framework based on DONet/Coolstreaming 8

2.5 Kademlia DHT ... 12

Chapter 3 System Design & Implementation ... 13

3.1 System overview .. 13

3.2 System architecture... 14

3.3 Transmission unit in streaming ... 16

3.4 Distributed cache management strategy ... 17

v

3.5 Time-shift streaming ... 21

3.6 System Implementation .. 21

3.6.1 System Components .. 21

3.6.2 Message Format ... 22

3.6.3 Message Types ... 22

Chapter 4 Performance & Analysis ... 24

4.1 Experiment Environment .. 24

4.2 System Performance and Analysis ... 25

4.2.1 The live streaming ... 25

4.2.2 The Time-shift streaming ... 28

Chapter 5 Conclusion and Future Work .. 33

References .. 34

vi

List of Figures
Figure 2-1 Sub-streams dividing .. 9

Figure 2-2 Comparing sub-stream status in parent re-selection ... 11

Figure 3-1 System Architecture .. 14

Figure 3-2 System diagram of a node ... 15

Figure 3-3 Basic streaming ... 16

Figure 3-4 The structures of a block and a file ... 17

Figure 3-5 Getting file owner list from DHT and list structure .. 18

Figure 3-6 Message Format .. 22

Figure 4-1 The Distribution of Startup Delay ... 26

Figure 4-2 The Distribution of End-to-End Delay ... 27

Figure 4-3 Live Streaming - Continuity Index Diagram .. 27

Figure 4-4 Cache Results .. 29

Figure 4-5 Distribution of Replica Count ... 30

Figure 4-6 The Distribution of Nodes' Contribution to Time-shift Streaming Nodes 32

vii

List of Tables
Table 4-1 System Parameters ... 24

Table 4-2 The sources of time-shift streaming blocks in the first trial 30

Table 4-3 The sources of time-shift streaming blocks in the second trial 31

viii

List of Algorithms

Algorithm 3-1 Random Caching and Random Back-off .. 20

1

Chapter 1

Introduction

1.1 Overview
With the increasing prevalence of broadband Internet access, multimedia streaming

service has been a rising internet application in recent years, but the system scalability

has always been an issue. In the early stage of media streaming, client-server

architecture suffers from scalability problem; as the request increases, the system is

quickly overloaded [1]. Content delivery networks (CDNs) with strategically placed

proxies can balance the load, but it is too costly for general applications [2]. IP multicast

being probably the most efficient vehicle, its deployment, however, is very limited due

to many practical issues such as the lack of IP multicast supporting infrastructures and

incentives for them to carry the data traffic [3]. Application-level multicast, by

constructing an overlay network with unicast connections between nodes in the system,

has been proposed to deal with the scalability issue and used in many Internet

applications.

1.2 Motivation
Currently, there are mainly two types of streaming services: live streaming and

VoD (video on demand) streaming. Live streaming is similar to watching TV; users tune

to a selected channel, and the users tuning to the same channel synchronously receive

the same content. On the other hand, in VoD streaming, a user selects a video clip the

user wants to watch, at the time the user wants to start watching, so the contents

delivered to the users are asynchronous.

Another type of streaming service is time-shift streaming service, which provides

2

the ability for user to watch contents in the past, like a digital video recorder (DVR) but

user does not have to set which program should it record. P2P time-shift streaming can

be taken as a special case of P2P VoD streaming. In P2P VoD streaming, videos are

pre-generated and their lengths are known, which makes it possible for dedicated

servers to hold the whole video, while in P2P time-shift streaming, the contents are

generated in real-time with infinite length, thus making peer cache management strategy

an interesting problem.

1.3 Objective
To date, there are very few researches on streaming systems supporting both live

streaming and time-shifted streaming. In this thesis, we will implement a P2P system

supports both live streaming and time-shift streaming functionality and propose a

distributed cache management strategy. In addition, we will also perform experiments

on the PlanetLab platform to study the performance and characteristics of our system.

We believe our work may provide valuable knowledge of P2P live/time-shift streaming

system for further development on this kind of streaming services.

1.4 Summary
The remaining part of this thesis is organized as follows. Chapter 2 describes the

current work in P2P streaming studies related to our research. Chapter 3 presents the

idea, design and implementation of our system in details. Chapter 4 presents the

experiment setup, results, system performance and analysis. Finally, we give our

conclusions in Chapter 5.

3

Chapter 2

Related Work

There have been comprehensive studies on P2P systems. In this chapter, we will

fi rst briefly describe the current developments of P2P live streaming systems, P2P VoD

streaming systems, and P2P streaming systems with time-shift function, and then we

will discuss the overlay topologies used in P2P streaming systems and their data

delivery mechanisms.

2.1 P2P streaming overlay
P2P streaming technologies can be broadly divided into two classes: tree-based

approaches and mesh-based approaches, following is a brief description.

2.1.1 Tree-based

In tree-based overlay, nodes are connected to form a tree-shaped graph, with the

source node as the root and peer nodes as interior nodes or leaf nodes, establishing

parent-child relations. Parent nodes are responsible for sending the streaming data to

their children. Single-tree structure is the simplest form of this type of structures. The

advantage of the tree structure is that the transmission delay is usually shorter because

the streaming data is transmitted along the fixed paths. However, there are immediate

visible defects. First, when an interior node fails, its offspring nodes are disconnected

from the source and cannot receive streaming data immediately. The tree must be rebuilt,

causing extra overhead. Second, most nodes in the system are leaf nodes, but since they

have no children nodes, they cannot provide its uplink transmission capacity to the

system. To solve the mentioned problems, multiple-tree overlay has been proposed. By

transmitting part of the streaming content with independent multicast trees, the system

distributes the forwarding load on every node and hopefully minimizes the effect of

4

peer churn on the disruption of streaming data..

2.1.2 Mesh-based

In mesh-based overlay, each node is connected to partial nodes in the system

forming a mesh distribution graph. Since there is no parent-child relationship between

connected nodes, a common strategy is that connected nodes exchange the availability

information of the streaming data periodically, and then request their required data from

the nodes owning the missing data. Mesh-based systems may have longer setup delay

and need extra control messages, such as the data availability information and pull

messages for missing streaming data. However, the self-organizing characteristic makes

them robust to node failures and peer churn.

2.2 P2P streaming data delivery mechanisms
Three different data delivery mechanisms have been used in P2P streaming

systems: push mechanism, pull mechanism, and hybrid push-pull mechanism.

2.2.1 Push mechanism

Using push mechanism, when a node receives data, it pushes the data to other

nodes in the network without explicit requests from these nodes. Since this mechanism

has no requests for data, it reduces control message overhead and shortens the setup

delay, but it is also costly to recover from lost data or lost connection. For example, if

the connection between two nodes is broken, the streaming data cannot be transmitted

across the broken connection, and the topology must be rebuilt.

2.2.2 Pull mechanism

Using pull mechanism, a node pulls its required data by sending requests to other

nodes. With the capability to pull, the system is robust to lost data or lost connection,

but the message overhead in requesting every single data block has also make it suffer a

longer setup delay, and the pulling operations should be scheduled carefully to avoid

5

redundant data transmission. For example, a request is made with an overloaded node

and the requested data are not transmitted in time. The requester may make another

request with another node, and consequently receive duplicate data blocks.

2.2.3 Hybrid push-pull mechanism

The hybrid push-pull mechanism extracts the advantages from both the push

mechanism and the pull mechanism. This hybrid mechanism is used in GridMedia [4]

and the new version of CoolStreaming [5]. In GridMedia, the node first pulls the data it

needs. When it detects the pulling procedure is smooth, it then tells the sending peer to

push data to it. In the new version of CoolStreaming, when a node pulls data from

another node, a subscription-like contract is made, and the following data will be

pushed to the subscriber until the contract ends, for instance, if the subscriber

un-subscribes the streaming or the parent node has detected the connection with the

child node is broken.

2.3 Current development
2.3.1 P2P live streaming

In P2P live streaming service, peers requires the synchronized delivery of

streaming media content, so the issue here is to form the overlay structure and adopt a

content delivery mechanism. CoopNet [6] adopts a centralized model; the source node

is responsible to collect information from the joining nodes and maintain a multi-tree

structure. Using a multiple-description-coding (MDC) technique, each tree to transmit

different MDC descriptions. However, CoopNet is not a pure P2P system, but a

complement to a client-server framework; the multi-tree overlay is only invoked when

the server is unable to handle the load imposed by clients.

In SplitStream [7], the streaming content is split into multiple stripes and

independent multicast trees are constructed for delivering each stripe. By constructing a

6

forest of multicast trees such that an interior node in one tree is a leaf node in all the

remaining trees, the forwarding load can be evenly spread across all participating nodes,

but such node-disjointness is a property hard to achieve, especially in heterogeneous

environments [8]. In GridMedia, the bootstrap procedure uses a rendezvous point to

assist the bootstrap of the overlay. A newly joined node first contacts the rendezvous

point to obtain a list of nodes that already joined the overlay. Then, it measures the

end-to-end delay to each node in the list and selects a number of node as partners, with

the probability of a node is selected is in inverse to the end-to-end delay, thus making

nodes nearby more likely to be selected. In DONet/CoolStreaming [3], a newly joined

node first contacts an origin node and the origin node randomly selects a deputy and

redirects the new node to the deputy. The new node can obtain a list of partner

candidates from the deputy and establish partnership with these candidates. In the

system, the video stream is divided into segments of uniform length, and the availability

of segments in the buffer of a node is represented as a bitmap called Buffer Map (BM).

Each node continuously exchanges its BM with its partners and then schedules the

pulling operation accordingly. The scheduling algorithm took both availability and

partners’ upload ability into consideration; the block with least number of available

providers will be pulled first, from the partner with the highest available and sufficient

bandwidth among the multiple potential providers, if any.

2.3.2 P2P VoD streaming

Video-on-Demand (VoD) service provides users the functionality to watch

whatever and whenever they want. Here, the issue is what should a peer caches to

support the system, and how to find such cached content in the system. In P2Cast [9],

peers watching the same video clip within a time threshold form a session in single-tree

fashion, each peer caches the beginning part of the video and a newly joined peer can be

7

patched with the cached beginning part and its parent’s buffer contents. In P2Vod [10],

peers form generations, where in each generation, peers have synchronized buffer start.

A newly joined peer will try to join a generation, or form a new generation appended to

the older generation. Generations are numbered, from G1 as the oldest generation and

Gn as the youngest generation. Nodes in these generations excluding the server form a

video session. In a session, if there is no client that still has the first block of the video,

the session will be closed, and a new video session is needed for newly joined clients.

Both P2Cast and P2Vod only support start-from-beginning VoD viewing. oStream [11]

provides peers the ability to watch from arbitrary positions, but because the system

inserts new peers into the system, video disruption will be noticeable on the child nodes

of the new peers.

BASS [12] applied BitTorrent protocol to download video content, with the VoD

server to support emergency content, which is too close to the playback deadline but is

not arrived yet. The simulation result shows the mechanism helps reducing 34% of the

bandwidth of the serverwhen users’ average outgoing bandwidth is about the same as

video bit-rate. However, the required bandwidth from the server still still increases

lineraly as the number of users increases. PONDER [13] also applied mesh-based

approach similar to BitTorrent, and adopts new mechanisms to accommodate VoD

service. While BitTorrent treats all data unit, called chunks, with equal importance,

PONDER partitions the video into equal sized sub-clips, each of which contains

hundreds of chunks. The sub-clip close to the playback deadline is given a higher

download priority so that the urgent data can be downloaded first. PONDER also gives

up the tit-for-tat incentives; peers are served based only on their needs without

considering their contributions. This maximizes the amount of data that can be

downloaded before the playback time. PONDER achieves 70% saving of server

8

bandwidth with users’ average outgoing bandwidth being about 80% of video bit-rate,

and up to 93% saving for users’ average outgoing bandwidth being 112% of the video

bit-rate.

2.3.3 P2P live streaming with time-shift streaming support

To the best of our knowledge, P2TSS [14], LiveShift [15] and an IPTV variation

[16] are the few researches on providing both live streaming and time-shift streaming.

P2TSS presents two distributed cache algorithms: Initial Play-out Position Caching (IPP)

and Live Stream Position Caching (LSP). It allows peers to decide which video block to

be cached locally and shared with other peers. Their simulation results indicate that

P2TSS achieves low server stress by utilizing the peer resource.However, in IPP, the

availability is not uniform for each video block, while in LSP, though the availability is

uniform for each video block, it requires extra bandwidth and more connections for each

peer to fill its distributed streaming cache.

LiveShift is a software prototype. It is a live streaming system based on a multiple

tree overlay. As a peer watches the video and the video data reaches a predefined size,

the data is stored and the peer adds a reference to the segment in a DHT. Although they

have presented a demonstration scenario, there is no detailed analytic results of the

system.

IPTV is an integrated media delivery architecture that provides four basic

functionalities of video delivery: linear TV, video on demand (VoD), time-shifted TV

(tsTV) and network personal video recorder (nPVR). The system adopts native IP

multicast for linear TV, and distributed caching and P2P mechanism for VoD, tsTV and

nPVR services.

2.4 Live streaming framework based on
DONet/Coolstreaming

Since live streaming frameworks have been comprehensively studied, in the

9

system, we would not create a new one; instead, we adopted the new implementation of

DONet/Coolstreaming as the live streaming framework to deliver live contents. In the

following, we’ll introduce the characteristics of the new DONet/Coolstreaming.

1. Node hierarchy

For each node in the system, it maintains three levels of nodes: members, partners

and parents. Members give a partial view of currently active nodes in the system, and no

connection is established between the node and its known members. Connections

established between partners to exchange block availability information. Parent-child

relations are formed when connections are established for actual block

transmission.Apparently a node’s parents and children are a subset of its partners set.

2. Multiple Sub-Streams

The video stream is encoded and packed into continuous blocks and can be

decomposed into S sub-streams, by grouping blocks whose timestamps have the same

modulo of S. By dividing the stream into multiple sub-streams, each sub-stream can be

retrieved from different parent nodes independently, which means a node can retrieve

data from up to S nodes. Figure 2-1 shows a video stream divided into four sub-streams

with S=4.

Figure 2-1 Sub-streams dividing

3. Joining procedure

10

A newly joining node first contacts the bootstrap server and retrieves a list of

available channels. After selecting a channel, the node retrieves a partial list of the

currently active nodes in the channel, and put the nodes in the list to its membership

cache. Then the node randomly selects some nodes, with whom connections are

established so that they will (1) exchange their membership cache knowledge and (2)

exchange block availability information periodically. The exchanged information helps

the node to decide where it should start requesting data. Then again, the node randomly

selects some partners to establish a parent-child relationship, where actual data

transmission takes place. A parent can be subscribed with multiple sub-streams.

4. Hybrid push-pull mechanism

To form a parent-child relationship, the node subscribes a sub-stream with another

node. When a node receives a subscription message with a designated starting

timestamp, the node becomes the parent node of the subscriber node and stores the

subscriber’s information, including its IP, communication port number and data port

number in a sub-stream subscriber list. The parent node starts sending to the subscriber

all blocks in the subscribed sub-stream starting from the timestamp given. The parent

can be either the source or another node. In the source case, it pushes a block to the

subscribers whenever it finishes packing a new block, and in the another node case, it

pushes a block to subscribers whenever it receives a new block. The subscription

contract is ended when the subscriber sends an unsubscribing message, or when the

parent node is unable to push blocks to the subscriber because of underlying network

problems.

5. Parent re-selection

As the subscription increases, a node may be overloaded and starts to lag pushing

blocks to its subscribers. A node can detect such lagging by (1) comparing sub-stream

11

receiving status between parents, or (2) comparing sub-stream receiving status between

its own buffer and its partners’ buffer. As shown in the upper part of Figure 2-2, the

node compares the receiving status in its buffer, and can discover that sub-stream 2 is

lagging behind sub-stream 1 by three blocks. As shown in the lower part of figure 2-2,

the node compares the receiving status in its buffer with a partner’s buffer, and can

discover that its sub-stream 2 is lagging behind the partner’s sub-stream 2 by three

blocks. If the lagging range is larger than a certain threshold, which can potentially

indicates the node is overloaded, the parent re-selection is triggered, and a new parent

node will be selected to support the lagging sub-stream and the original subscription is

cancelled. The new parent node can be selected from the current partners if there’s any,

or from current parents with better buffering status, if there’s no available partners.

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

Current Node’s Buffer

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

Some Partner’s Buffer

Block not received

Block received

Figure 2-2 Comparing sub-stream status in parent re-selection

12

2.5 Kademlia DHT

To store the information of the cached contents distributedly, a distributed hash

table (DHT) is used. We adopted Kademlia for the purpose. Kademlia is a DHT system

based on XOR metric. Each Kademlia node has a 160-bit identifier; each node chooses

its identifier at random when joining the system. The keys used for the hash table

mapping are also 160-bit identifiers, which we use SHA-1 hash function on the name of

wanted file to generate. Given two identifiers x and y, the distance between them is the

bitwise XOR result interpreted as an integer. The detailed operation will not be

described here, but two major functions used in our system are PUT<key, value> and

GET<key>. PUT<key, value> function stores the <key, value> pair on K nodes closest

to the key, where K is a system parameter that can be adjusted. The GET<key> function

retrieves the value associated with the given id, i.e., PUT<key, value> had been

performed.

13

Chapter 3

System Design & Implementation

P2P time-shift streaming is similar to P2P VoD services, except that the size and

duration of a VoD program can be pre-calculated, while those of time-shift video

streaming can’t be done in advance. Therefore, caching mechanism is the major issue in

the system.

3.1 System overview
By studying related research on P2P live streaming and P2P VoD streaming

systems, we conclude that our system needs to cope with following issues: live

streaming, content caching, publishing, searching and fetching, which we sorted to three

major topics:

1. Live streaming framework

Live streaming framework provides a basis for this system, as time-shift streaming

contents are provided by the contents that live streaming viewers had watched and

cached in their local storage. The details of the applied live streaming framework based

on DONet/Coolstreaming had been presented in Section 2.4.

2. Caching strategy and cache replacement policy

Live streaming nodes cache the contents they had watched to support time-shift

streaming nodes, and thus the caching strategy is an important issue of the system

design. Two factors, cached data redundancy and time-shift service span, were

considered. It is clear that having all live streaming nodes caching all the contents they

had watched provides the most data redundancy, but the shortest service span, because

each node only has a limited storage space, and the time-shift service span hat a single

node can provide is equal to the node’s storage space. On the other hand, having only

14

one replica in the system provides a storage space equal to the sum of all nodes’ storage

space, but this provides poor data redundancy since the departure or failure of a node

means the lose of data. Therefore, a mechanism keeping a balance between them is

important, and thus we propose a probability algorithm to keep a desired number of

replicas in the system.

3. Time-shift content search/fetching mechanism

The cached content must be located before it can be retrieved, we adopted

Kademlia [17-18] distributed hash table (DHT) for content publishing and content

search. With the published knowledge collected from the DHT, time-shift contents can

be fetched from multiple sources in an efficient and load-balancing manner.

3.2 System architecture

Figure 3-1 System Architecture

15

Figure 3-1 depicts the architecture of our system. The system contains three types

of components: bootstrap server, provider and viewer. The bootstrap server maintains a

list of available channels and a list of participating nodes of each channel, in order to

bootstrap the newly joined nodes. A provider is also a source node in the live streaming

network and it registers its providing channel’s information with the bootstrap server.

Viewers first join the system with the help of the bootstrap server, and then retrieves the

desired video contents for live streaming playback or time-shift playback.

Figure 3-2 System diagram of a node

Figure 3-2 depicts the system diagram of a node; the node can be a channel

provider or viewer. The player-buffer relationship depends on the type of the node. For a

provider, the player encodes the original video stream in to packet stream, and the

stream data is put in its buffer for data transmission and genertaing its buffering status.

For a viewer, the video content is also put in its buffer for data transmission, generating

buffering status and playback. To share video content among peers, the buffered content

16

can be transmitted through either live streaming mechanism or time-shift streaming

mechanism. The live streaming part handles the content transmission for live streaming,

and cooperates with the time-shift streaming part to cache and publish the contents.

Transmissions are carried out on TCP connections to avoid network layer data losses.

Kademlia DHT is used to published the cahed content, and its messagesare transmitted

over UDP packets.

3.3 Transmission unit in streaming
The basic streaming flow of our system is depicted in Figure 3-3. The video stream

is generated from the video source. A video server encodes the video stream into

continuous packets and transmits to the viewer nodes. Each viewer node receives the

video packets, and the video player decodes the received packets back to video. It is

intuitive to replay the packets using a buffer-then-play scheme for both live and

time-shift P2P streaming. However, since packet encoding is synchronized with the

video, each generated packet will have its corresponding position on the timeline. The

packet receiving pattern also needs be recorded for packet replay to rebuild the original

video content, and thus each packet requires extra timing information. In our system, we

record the duration of each packet, so the relative receiving pattern can be rebuilt.

Figure 3-3 Basic streaming

At the video source, the video is encoded into UDP packets by a VLC media player

[19]. The UDP packets are then sent to the video server, which is a Provider node, via

local loopback interface. The video server measures each packet’s duration. Since it is

inefficient to track each packet individually, continuous packets received in a second are

17

packed into a block used in the system. Furthermore, in order to support time-shift

streaming, 10 consecutive blocks, with the starting block’s timestamp is aligned to 10’s

multiples, are packed into a file for local storage purpose. The file is named after the

information given by the channel provider, with a readable format of timestamp; for

example, file with name “ProviderName_Channel1_20100620182520” stands for 10

blocks of Channel 1 provided by ProviderName, with timestamp from 2010/06/20

18:25:20 to 2010/06/20 18:25:29. Figure 3-4 shows the structures of a block and a file.

Figure 3-4 The structures of a block and a file

3.4 Distributed cache management strategy
The goal of our distributed cache management strategy is to effectively keep a

desired number of replicas for the cached contents. The strategy is composed of two

parts: publishing/re-publishing policy and content caching based on probability.

1. Content publishing/re-publishing policy

After a video file is collected, the node will publish the cached content on the DHT.

However, the provider node works a little differently; it caches all contents but never

publishes the ownership information. The purpose is to use the provider node as a

backup node, and can only be accessed at emergency. For example, when a block is 5

seconds to the playback deadline but had not been received, or when there is no owner

of the wanted content. Since the system will keep multiple replicas for each video file,

the published record put into the DHT is a list of <IP, Port, Last_Update_Time> triples.

Fig.3-5 depicts the relation between a file name and its owner list found on the DHT

with the structure of the list.

When a node wants to update a list, it first tries to get the list from the DHT. If the

18

list does not exist, it creates a new list. Then the node removes the record of two types:

(1) the record put by itself in the past that the node will update later, and (2) the

out--of-date records that can be determined by comparing the records’

Last_Update_Time with the current time. In our system, we consider a record out-dated

if the record is last updated more than thirty minutes ago. This thirty-minute interval

could give the node enough time to do multiple updates, which we will mention later in

this section. After removing the record , the node checks the size of the list, if the size

has reach the desired number of replicas the system, the node deletes its cached file;

otherwise, it add its record to the list, and put the list back to the DHT. However, the

accesses of the DHT from the peers are not coordinated, which means a published

record may be overwritten by another node. Consider the following scenario. Node A

and node B both wants to update the published list for file F. A gets the list, updates the

list, and just before A put the list back to the DHT, B also gets the list, and updates the

list. After that, A puts the list back to the DHT, but the list will be overwritten when B

puts the list back to the DHT. As a result, A’s record is not stored in the list.

File name

IP Port Last_Update_TimeRecord 1

...

160-bit key

SHA-1

GET(key)

IP Port Last_Update_TimeRecord 2

IP Port Last_Update_TimeRecord 10

Figure 3-5 Getting file owner list from DHT and list structure

19

To deal the synchronization issue, each node will back-off for a random interval

before its publish operation to reduce such collisions, for the first time a node update a

list, it will have a random back-off time uniformly distributed in [0, 50), at a 5-second

stepping. A node also republishes its cached files. The republish operation is similar to

the initial publish operation, but is done periodically in order to keep the lists up to date

and to alleviate the effect of missed publishing. A node will periodically do the

republish operation with a random back-off time uniformly distributed in [600, 1200),

also at a 5-second stepping. As mentioned above, the records on DHT have a thirty

minute out-date threshold, so for our settings for the random back-off for publish and

republish operations, each file a node had cached will perform at least one republish

operation before the record is out-dated.

Algorithm for random caching and random back-off for publishing is listed as

following:

01 while(waitngForBlocks)

02 block = node.receiveBlock();

03 buffer.put(block);

04 if(block and nearby blocks can be dumped)

05 viewerKnowledge = MAX(parent.size()+partner.size(), viewerCount);

06 rand = a random integer generated between (0, viewerKnowledge]

07 if(rand < replicasRequired)

08 dump blocks to local storage;

09 random back-off for DHT publish;

10 fileOwnerList = DHT.get(filename);

11 remove out-dated entry and this node’s entry in fileOwnerList

12 if(DHT.get(filename).size() < replicasRequired)

13 FileOwnerList.add(this node);

14 DHT.put(filename, fIleOwnerList);

15 else

16 delete dumped file

17 end if

18 end if

20

19 end if

20 end while
Algorithm 3-1 Random Caching and Random Back-off

2. Caching based on probability

To distribute the responsibility of caching streaming contents and keep a desired

number of replicas in the system, we adopted a probability algorithm to decide whether

a file should be cached or not. Assume that the system wants to keep R replicas, and the

system has N viewers. It is clear that each node should cache the received content with a

probability of R/N. Since R is a constant, the discovery of N is the issue here.

To estimate N, first, a local knowledge based on the design of

DONet/Coolstreaming is used. Since each node keeps connections with its partners and

parents, these nodes must be active nodes in the system. Therefore, the node has the first

parameter as the value of the number of partners plus the number of parents. In addition,

the number of the current active viewers can be obtained by a modified node-startup

procedure. When a node joins the system, heartbeat messages are periodically sent to

the bootstrap server to update the membership cache, and the number of currently active

viewers is piggybacked to the node in the replying messages. With the two values, N is

selected as the larger one of the two. The local knowledge helps the node to react fast to

the change of active nodes, especially when the size of viewer is small, since they

would form an almost fully-connected mesh structure; and the number of the current

active viewers helps the node to make better decisions when the size of viewers

becomes larger.

Note that the content publishing/re-publishing policy can be done without the

probability caching mechanism. In this case, each node has the responsibility of

replica control totally based on the content publishing/re-publishing mechanism.

21

3.5 Time-shift streaming
In time-shift streaming, we applied per-block pulling mechanism for content

retrieval. After a node decides which channel it wants to watch, and where it wants to

start playback, the name of the file containing the required content is known. By

querying with the file name on the DHT, the node obtains the list of file owners. Then, a

timer is started and for each interval of 1 second, the node will try to pull up to 4 blocks,

each from a randomly selected owner in the list. The reason why there’s a limit on the

number pulling blocks in each interval is that the available content cached may be much

larger the buffer’s capacity, so that it is required to keep the pulling timestamp stay in a

distance with the playback timestamp. For emergency handling, contents close to

playback deadline but not received will be pulled directly from the provider.

3.6 System Implementation
We implemented the system in Java 1.6, based on request-reply model: node

communicates with each other with request messages, and the recipient will reply with

corresponding reply messages.

3.6.1 System Components

1. Bootstrap server

The bootstrap server creates a ServerSocket for incoming messaging

connections, Thread’s are created for each incoming connection and received

messages are handled and replied to the connecting node.

2. Provider/Viewer

Provider/Viewer node creates two ServerSocket’s, one for incoming messaging

connections and the other for block transmission connections, Thread’s are

created for each incoming connections. For incoming messaging connections,

received messages are handled and replied to the connecting node. And for

22

incoming block transmission connections, received blocks are then transferred

to this node’s buffer, where the block can be played or cached.

3.6.2 Message Format

Message contains its type and required options of that type of message. Fig 3-6

depicts basic message format. After a message has been generate, it is sent through TCP

with Java Socket.

Figure 3-6 Message Format

3.6.3 Message Types

(1) Channel Registration

Channel providers registers its information with the bootstrap server,

options including this node’s messaging port number, channel provider’s

name and channel description. Bootstrap server replies with whether the

registration is ok.

(2) Channel List

Viewer requests for available channels registered at bootstrap server,

options including this node’s messaging port number, channel provider’s

name and channel description. Bootstrap server replies with a list of available

channels’ provider name and channel description.

(3) Channel Join

In live streaming, this message is used for channel joining procedure,

which we had mentioned the joining procedure in 3.4.1, options including this

node’s control port number, channel provider’s name and channel description.

Bootstrap server replies with a list of currently active nodes in the channel.

And in time-shift streaming, the message is used for DHT joining procedure,

23

where bootstrap server replies a DHT bootstrap node for the DHT bootstrap

procedure.

(4) Buffermap Exchange

The message is used for buffer map information exchanges between

nodes, options including this node’s control port number and buffer map. The

recipient replies with its buffer map.

(5) Sub-stream Subscription

This message is used for sub-stream subscription, the options including

this node’s messaging port number, block transmission port number,

subscribing timestamp and its buffer map of subscribing sub-stream. The

recipient replies with the subscription result.

(6) Sub-stream Un-subscription

This message is used for sub-stream un-subscription, the options

including this node’s messaging port number and the index of the

un-subscribing sub-stream. The recipient replies with the un-subscription

result.

(7) Time-shift Block Request

This message is for time-shift streaming viewer nodes to request a block

from other nodes, the options including this node’s messaging port number,

block transmission port number and its requesting timestamp. The recipient

replies with the requested result and (1) if it has the block, the requested block

is sent to the requesting node, or (2) if it does not has the block, it tells the

node to ask the server.

24

Chapter 4

Performance & Analysis

To evaluate the system performance, we performed experiments on PlanetLab, an

open global research network [19].

4.1 Experiment Environment
The streaming server is located in the Internet Communication Laboratory, NCTU.

48 PlanetLab nodes were used as live streaming viewers, and 16 PlanetLab nodes were

used as time-shift streaming viewers; most of them are located in the United States. The

video is streamed at bit rate of 400 kbps, the number of sub-streams was set to be 8, and

each node can connect to up to 24 other nodes as partners. The buffer size of each node

is 120 blocks The random back-off time of first time publishing was uniformly

distributed in [0, 50), at a 5-second stepping. The random back-off for republishing was

uniformly distributed in [600, 1200), also at a 5-second stepping, 10 replicas would be

kept in the system. Time-shift nodes cache each received block with a probability of 0.5.

Table 4-1 lists the system parameters used in our system.

 Table 4-1 System Parameters

System Parameter Value

Video streaming bit-rate 400 kbps

The number of sub-streams 8

The maximum number of partners 24

The number of replicas to keep 10

Buffer size 120 blocks

Random back-off for the first time

publishing

0~50 second, stepping 5 seconds

The random back-off for re-publishing 10~20 minutes, stepping 5

seconds

25

In both trials, we first started the bootstrap server and streaming provider, and then

all 64 nodes joined the system as a Poisson process, with the inter-arrival time set to be

60 seconds. For live streaming nodes, after the exchange of block availability

information, our heuristic is to set the node’s starting timestamp for playback to be the

smallest timestamp in the received availability information plus the number of

sub-streams. For each time-shift node, it randomly selected a time between the time

when the streaming had started and the time it joined the system to start to playback.

The experiment lasted 2 hours, and we assumed no peer churn. We will examine the

performance of both proposed methods: without the information of the number of

currently active nodes in the system and with the information of the number of currently

active nodes in the system. The results will be placed on each figure’s upper side and

lower side, respectively.

4.2 System Performance and Analysis

4.2.1 The live streaming

 First, we examine three commonly used criterions in evaluating a streaming

service: startup delay, end-to-end delay and playback continuity. The startup delay is the

time between when a user tunes to a channel, and when the video content is visible.

End-to-end delay, also called playback delay, is the delay of the video content between

the viewer and the source. Continuity index is the number of segments that arrive before

or on playback deadlines over the total number segments a node should have received.

26

Figure 4-1 The Distribution of Startup Delay

27

Figure 4-2 The Distribution of End-to-End Delay

Figure 4-3 Live Streaming - Continuity Index Diagram

Figure 4-1 depicts the startup delay in our system. The average delay has an

28

average of 13.19 seconds in the first trial that is without the information of the number

of currently active nodes, and 15.75 in the secondtrial that uses the information of the

number of currently active nodes. The end-to-end delay, as depicted in Figure 4-2, has

an average of 94.33 seconds in the first trial, and 116.46 in the second trial. The

continuity index is 99.00% and 98.46%, as shown in fig. 4-3. However, there are two

nodes failed to join the system, because they were unable to contact with the bootstrap

server and thus received no block, we can also see 3 nodes perform poorly in the trials,

which was caused by the underlying TCP errors.

4.2.2 The Time-shift streaming

 For alleviate the effect of the initial node-joining procedures and unfinished

publishing and re-publishing procedures, we only examine the blocks generated

between 30 to 90 minutes of each trial. Fig. 4-4 shows the cache results at each node;

node index below 50 are results from the live streaming nodes, and node index above 50

are results from the time-shift streaming nodes. Note that there are nodes suffering from

DHT failures, which makes them unable to publish their file availability on the DHT. In

the trial without the information of the number of currently active nodes, each node

caches 67.86 files in average, with standard deviation of 56.39. and in the trial with the

information of the number of currently active nodes, each node caches 61.87 files in

average, with standard deviation of 35.54. We can also see from the figure that with the

help of the information of currently active nodes of the system, the caching

responsibility is more evenly distributed among nodes in the system.

29

Figure 4-4 Cache Results

Fig. 4-5 depicts the distribution of the number of replicas of each cached files

among all live streaming nodes and time-shift streaming nodes. The method without the

information of currently active nodes provides much more files that have ten replicas on

the DHT, but in this method, more files are first cached and then deleted with the

publish/republish mechanism. Note that files with more replicas would have more

records on the DHT. On the other hand, although the method with the information of

currently active nodes also provides ten replicas for most files on the DHT, but since

there are more files that have less owner information found on the DHT comparing to

the method without the information of the number of currently active nodes in the

30

system. The republishing processes may need a longer time to stabilize, in order to

provide the information of cached file owner status on the DHT.

Figure 4-5 Distribution of Replica Count

Table 4-2 The sources of time-shift streaming blocks in the first trial

Node Index TS 01 TS 02 TS 03 TS 04 TS 05 TS 06 TS 07 TS 08 TS 09 TS 10 TS 11 TS 12 TS 13 TS 14 TS 15 TS 16

From other nodes 3657 3484 4122 1187 3441 5903 4035 5816 5539 5788 3652 4999 1729 2614 2995 2940

From Server 72 116 122 1413 100 189 96 276 310 307 107 64 6 38 89 489

 Failed to Get 72 114 90 10 100 186 91 97 220 193 86 61 3 38 89 70

 Emergency 0 2 26 1381 0 3 5 19 90 114 21 3 3 0 0 279

 No Owner 0 0 6 22 0 0 0 160 0 0 0 0 0 0 0 140

31

Table 4-3 The sources of time-shift streaming blocks in the second trial

Node Index TS 01 TS 02 TS 03 TS 04 TS 05 TS 06 TS 07 TS 08 TS 09 TS 10 TS 11 TS 12 TS 13 TS 14 TS 15 TS 16

From other nodes 3227 2577 3789 0 4893 4830 4178 2742 6014 5356 2904 5330 2516 3524 3667 1796

From Server 68 40 48 0 203 276 119 61 167 113 25 417 14 106 15 18

 Failed to Get 54 31 32 0 55 23 66 37 75 43 22 20 13 25 12 14

 Emergency 14 0 6 0 148 244 53 8 92 70 3 397 1 1 3 4

 No Owner 0 9 9 0 0 9 0 16 0 0 0 0 0 80 0 0

 Table 4-1 and Table 4-2 lists the block counts from different sources for the

time-shift streaming nodes in each trial, respectively. With the help of the server as an

emergency handling node, both trials achieves 100% continuity index. In the first trial,

the TS nodes had received a total of 65695 blocks, and 61901 (94.22%) of them were

served by peer nodes. 3794 blocks were supported by the providing server, where 1946

of them were emergency handling, 1520 of them were unable to get from peers, and 328

of them have no file owner.Most of the requests to the providing server were by node

TS 04, that suffered from a temporary DHT failure, and thus during that failure period,

all blocks were supported by the server. In the second trial, the TS nodes had received a

total of 59033 blocks, and 57343 (97.14%) of them were served by peer nodes, or. 1690

blocks were supported by the providing server, where 1044 of them were emergency

handling, 522 of them were unable to get from peers, and 123 of them have no file

owner. The reason of failing to get from peers was because just after the time-shift node

acquires the owner list of its wanted file from the DHT, one of the owners in the list

detects there is more than 10 replicas of that file in the system and deletes the file it

cached, and thus the requests to the node that no longer has the file will all fail. Fig 4-8

depicts the distribution of each node’s contribution to the time-shift streaming nodes,

node index below 50 are live streaming nodes, and node index above 50 are time-shift

streaming nodes, and we can see the load is distributed through the nodes by the random

32

algorithm, and each node’s distribution is basically follows the number of its cached

files, as shown in Fig. 4-4.

Figure 4-6 The Distribution of Nodes' Contribution to Time-shift Streaming Nodes

33

Chapter 5

Conclusion and Future Work

In this thesis, we had implemented a P2P live/time-shift streaming system and

presented two distributed cache management strategies for time-shift video segments to

cache a desired number of replicas based on the DHT knowledge and

publishing/republishing mechanisms. We also studied the performance of the system on

PlanetLab. Our experiment results show the feasibility of live/time-shift systems. In our

experiments, the live streaming part achieved a startup delay of 16 seconds, an

end-to-end delay of 120 seconds and a continuity index over 98%. Moreover, for the

time-shift part, with the streaming server as an emergency handler, it achieved a

continuity index of 100%, with over 94% of the streaming data were from P2P peers.

Our proposed caching strategies effectively distribute the load of storing the time-shift

contents and provide ten replicas for most files.. The information of the number of

currently active nodes in the system also helps in distributing the load for storing the

time-shift contents more evenly among the nodes, as the standard deviation of the

number of files cached on the nodes was reduced. .

However, in this implementation, publishing on the DHT has synchronization

issues. Although random back-off publishing/republishing may alleviate this problem,

collisions still occur, which lead to the difference between the owner lists on the DHT

and the caching status in reality, and thus lowers the effectiveness of the cached files for

time-shift viewers. More investigation is need on this DHT issue and larger experiments

of the system would provide more insightful knowledge on P2P time-shift streaming

services.

34

References
[1] F. Douglis and M.F. Kaashoek, “Scalable Internet Services,” IEEE Internet

Computing, vol. 5, no. 4, 2001, pp. 36–37.

[2] Vakali, A.; Pallis, G., “Content delivery networks: status and trends” IEEE Internet

Computing, vol. 7, no. 6, 2003, pp. 68-74.

[3] Xinyan Zhang, et al., “CoolStreaming/DONet: a data-driven overlay network for

peer-to-peer live media streaming” INFOCOM 2005. 24th Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 3, pp.

2102-2111. Mar. 2005

[4] Li Zhao, et al., “Gridmedia: A Practical Peer-to-Peer Based Live Video Streaming

System” Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp. 1-4. Nov.

2005

[5] Bo Li, et al., “Inside the New Coolstreaming: Principles, Measurements and

Performance Implications” INFOCOM 2008. The 27th Conference on Computer

Communications. IEEE, pp. 1031-1039, Apr. 2008

[6] V. N. Padmanabhan, et al., “Distributing streaming media content using cooperative

networking,” in Proc. 12th international workshop on Network and operating systems

support for digital audio and video, pp. 177-186. Apr. 2002.

[7] M. Castro, et al., “Splitstream: High-bandwidth content distribution in a cooperative

environment,” in Proc. nineteenth ACM symposium on Operating systems principles,

pp. 292-303. Oct. 2003.

[8] Venkataraman, V. ; Yoshida, K. ; Francis, P., “Chunkyspread: Heterogeneous

Unstructured Tree-Based Peer-to-Peer Multicast” Network Protocols, 2006. ICNP '06.

Proceedings of the 2006 14th IEEE International Conference on, pp 2-11. Nov. 2006

[9] Yang Guo, et al., “P2Cast: Peer-to-peer Patching Scheme for VoD Service”

Multimedia Tools and Applications, vol. 33, pp. 109-129, 2007

[10] Do, T.T. ; Hua, K.A. ; Tantaoui, M.A., “P2VoD: providing fault tolerant

video-on-demand streaming in peer-to-peer environment” Communications, 2004 IEEE

International Conference on, vol. 3, pp. 1467-1472, Jun. 2004

[11] Yi Cui ; Baochun Li ; Nahrstedt, K., “oStream: asynchronous streaming multicast

35

in application-layer overlay networks” Selected Areas in Communications, IEEE

Journal on,

vol. 6, no. 1, Jan. 2004

[12] Dana, C. et al., “BASS: BitTorrent Assisted Streaming System for

Video-on-Demand” Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp.

1-4. Nov.2005

[13] Yang Guo et al., “PONDER: Performance Aware P2P Video-on-Demand Service”

Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE, pp. 225-230,

Nov. 2007

[14] Deshpande, S. ; Noh, J.,“P2TSS: Time-shifted and live streaming of video in

peer-to-peer systems” Multimedia and Expo, 2008 IEEE International Conference on,

pp.649-652. Jun. 2008

[15] Hecht, F.V. et al. “LiveShift: Peer-to-Peer Live Streaming with Distributed

Time-Shifting” Peer-to-Peer Computing , 2008. P2P '08. Eighth International

Conference on, pp. 187-188, Sept. 2008

[16] Gallo, D. et al. “A Multimedia Delivery Architecture for IPTV with P2P-Based

Time-Shift Support” Consumer Communications and Networking Conference, 2009.

CCNC 2009. 6th IEEE, pp. 1-2. Jan. 2009

[17] P. Maymounkov and D. Mazi`eres, “Kademlia: A peerto- peer information system

based on the XOR metric.” Electronic Proceedings for the 1st International Workshop

on Peer-to-Peer Systems, Mar. 2002

[18] Plan-x, http://www.thomas.ambus.dk/plan-x/routing/

[19] VideoLAN – VLC Media Player, http://www.videolan.org/vlc/

[19] PlanetLab, http://www.planetlab.org

	Thesis_Cover
	Thesis_Full_V2_LR

