

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

內 核 的 一 對 多 串 流 轉 送 技 術

In-kernel Relay for One-to-Many Streaming

研 究 生：洪家鋒

指導教授：林盈達 教授

中 華 民 國 九 十 九 年 六 月

內核的一對多串流轉送技術

In-kernel Relay for One-to-Many Streaming

研 究 生：洪家鋒 Student：Chia-Feng Hung

指導教授：林盈達 Advisor：Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2010

Hsinchu, Taiwan

中華民國九十九年六月

I

內核的一對多串流轉送技術

 學生：洪家鋒 指導教授：林盈達

國立交通大學資訊科學與工程研究所

摘要

在使用應用層群播技術的系統中，代理伺服器需要同時服務大量的串流轉送

連線並形成效能瓶頸的潛在因素。使用有效率的資料轉送路徑可以增加系統的最

大服務量，同時減少系統計算能力的需求。本論文提出了一個叫作一對多串流疊

合(OMSS)的內核一對多串流轉送服務。OMSS 藉由避免封包內容的複製來增加資

料路徑效率，並且藉由使用線程池設計來減少切換執行緒的負擔。此外，藉由優

先權工作排程技術來達成無關協定的服務品質保證。個人電腦平台上的實驗結果

顯示，在 UDP 的流量下，OMSS 因為將轉送路徑移到內核中以及使用封包內容共

用技術而分別減少了 41%及 15%的系統負載。在 TCP 的流量下則分別減少了 37%

及 15%。與在用戶空間實現一對多轉送相比，系統的最大服務量可以達到兩倍。

此外，即使是系統開始產生過載現象的時候，本服務可以確保高優先權轉送連線

的服務品質。

關鍵字：內核，串流，群播，加速

II

In-kernel Relay for One-to-Many Streaming

 Student: Chia-Feng Hung Advisor: Dr. Ying-Dar Lin

Institutes of Computer Science and Engineering

National Chiao Tung University

Abstract

Rendezvous nodes such as proxy relay servers may deal with a large amount of

concurrent sessions and potentially cause a bottleneck. An efficient relay data path

can increase the service capability and reduce the required computing power. In this

paper, we propose an in-kernel one-to-many relay solution, called One-to-Many

Streaming Splicing (OMSS), to reduce relay overheads. An in-kernel relay data path

is realized by a payload sharing mechanism and a worker pool processing model to

reduce memory copies and context switch overheads. Moreover, a priority-based task

scheduling is applied to achieve differentiated service. The experimental results on PC

platform demonstrate that OMSS reduces 41% and 15% CPU utilization by the

in-kernel implementation and the payload sharing mechanism, respectively, for UDP

traffic, while 37% and 15% CPU utilization is reduced by the two mechanisms for

TCP traffic. The service capability is doubled in comparison with the original daemon

solution. In addition, the QoS of high priority sessions can be guaranteed by the

priority-based task scheduling when a system starts to be overloaded.

Keywords: kernel, streaming, multicast, acceleration

III

Contents

Chapter 1 Introduction ... 1

Chapter 2 Background & Related Works .. 4

2.1. Overview of One-to-Many Streaming Systems .. 4

2.2. Relay Data Path Solutions .. 5

Chapter 3 One-to-Many Streaming Splicing ... 8

3.1. OMSS Architecture .. 8

3.2. One-to-Many Relay Data Path ... 9

3.3. Relay Engine .. 10

Chapter 4 System Implementation ... 13

4.1. Implementation Overview ... 13

4.2. One-to-Many Relay Data Path ... 13

4.3. Relay Engine .. 15

4.4. OMSS API ... 16

Chapter 5 Evaluation .. 18

5.1. Evaluation Environment .. 18

5.2. Bulk Fan-out Test ... 19

5.3. Payload Size Test .. 22

5.4. Overloading Test .. 23

Chapter 6 Conclusions and Future Works ... 26

References ... 27

IV

List of Figures

Figure 1: One-to-many streaming system topology with two streaming sessions. 5

Figure 2: Architecture of OMSS .. 9

Figure 3: Payload copy vs. payload sharing .. 10

Figure 4: Flow chart of source task and sink task .. 11

Figure 5: OMSS Implementation in Linux-based System ... 13

Figure 6: An 8-entry session buffer of a 1-to-5 relay session. .. 14

Figure 7: Two sk_buff with a shared payload. .. 15

Figure 8: Evaluation environments. .. 18

Figure 9: CPU utilization of UDP bulk fan-out test on PC. ... 20

Figure 10: CPU utilization of TCP bulk fan-out test on PC.. 21

Figure 11: CPU utilization of TCP bulk fan-out test on embedded platform. 22

Figure 12: Payload size test for UDP. ... 23

Figure 13: Payload size test for TCP .. 23

Figure 14: Average packet loss rate under overloaded test... 24

Figure 15: Average latency under overloaded test.. 25

V

List of Tables

Table 1: Relay data path solutions. ... 7

Table 2: The OMSS socket options and functionalities ... 16

Table 3: Evaluation Platforms ... 19

1

Chapter 1 Introduction

Applications of streaming media over Internet become popular due to the

wide-deployed broadband infrastructure and the rapid development of media

compression techniques. For one-to-many streaming applications such as Internet

radios and IPTVs, thousands of media consumers may access a popular channel

simultaneously. Because of the insufficient outbound bandwidth and the limited

computing power, a media provider cannot afford the fan-out burdens for such a large

number of media consumers.

A media provider can distribute the fan-out burdens with two kinds of techniques

with different implementation levels. The first one is IP multicast [1]. A media

provider distributes the burdens to intermediate routers and only sends one copy of

the media stream. However, IP multicast might be unavailable on the Internet level

due to the problems of group management, address allocation and security [2]. As an

alternative solution, overlay multicast [3-6] realizes the multicast capability with

multiple unicasts. Overlay multicast organizes peers and dedicated relay servers into

an overlay topology, instead of intermediate routers in a physical topology, to forward

media streams. Although overlay multicast performs less efficient than IP multicast

due to its unicast nature, the ease of deployment makes overlay multicast become the

mainstream of data delivery and streaming applications over Internet.

Although overlay multicast helps to disperse the fan-out burdens to the involved

nodes, the performance of a single node is still a key factor especially for: 1)

Overloaded rendezvous nodes such as proxy relay servers or super peers, which

forward a large number of streaming sessions and the fan-out burdens is large. 2)

Nodes with limited computing power due to the hardware capability or the system

policies. Therefore improving the performance of a critical node enhances the service

2

capability and the required computing power is smaller under the same relay loads.

Media stream forwarding suffers the overheads such as memory copies and

system calls. Previous works [7-10] use a system-wide unified buffer structure with

page-remapping and shared memory mechanisms to prevent cross domain memory

copies. However, they aggressively modify the underlying buffer structure of the

operating system. [11, 12] perform relay operations through the user space socket API

against altering the underlying buffer structure. But the system call and the memory

copy from user space to the kernel still occur. [15, 16], which intercept packets in the

IP layer and use the header-altering method to prevent memory copies and system

calls, support only one-to-one relay schemes and cause more maintenance overheads

when transport layer protocol evolves. [13] builds an in-kernel streaming relay data

path on top of I/O subsystems to prevent system calls and memory copies between the

user space and the kernel space. Nevertheless, memory copies of media streams are

still required for each sink connection.

This work proposes and implements One-to-Many Streaming Splicing (OMSS),

an in-kernel streaming relay service in Linux-based systems. OMSS provides a

one-to-many streaming relay mechanism which supports both UDP-based and

TCP-based streaming. By payload sharing mechanism, OMSS minimizes the number

of memory copies to improve one-to-many streaming relay performance and can

achieve large-scale service capability. In addition, a differentiated QoS is provided to

ensure the service quality of high priority relay sessions. The performance of OMSS

is evaluated in both general PC and embedded platforms.

The remainder of this thesis is organized as follows. In Chapter 2, we take an

overview of a one-to-many streaming system and then focus on the data path

implementation to point out the overheads. Chapter 3 describes the design of OMSS

and Chapter 4 is the implementation in Linux-based system. Chapter 5 illustrates the

3

evaluation environment and presents the evaluation results. Conclusion and some

future work are in Chapter 6.

4

Chapter 2 Background & Related Works

In this chapter, we first take an overview of a one-to-many streaming system and

address the situation of rendezvous nodes such as proxy relay servers to bring up the

need of an efficient relay data path. A survey and comparison of relay data path

solution are presented to point out the overhead of current relay data path solutions.

2.1. Overview of One-to-Many Streaming Systems

According to the deployment policy, three kinds of one-to-many streaming

systems exist: 1) peer-to-peer, 2) proxy-based and 3) hybrid. A peer-to-peer system

benefits from the low cost of deployment. A media provider multicasts its media

stream with the assistance of the overlay network formed by peers. Nevertheless, the

system is unstable because of the high variation of peers. Proxy-based systems such as

traditional content delivery networks (CDNs) use dedicated proxy relay servers to

provide more bandwidth and stability than a peer-to-peer system. However, it suffers

high deployment costs. For a CDN service provider, a hybrid solution using proxy

relay servers and super peers as the backbone could reach the balance and is a realistic

solution.

Figure 1 shows the topology of a hybrid one-to-many streaming system with two

streaming sessions. Once a peer wants to publish or subscribe a streaming session, it

connects to the proxy relay server which services the designated domain it belongs to.

If a media provider and its media consumers are not in the same designated domain,

an inter-proxy-relay connection is setup to forward media streams. With stability and

enough outbound bandwidth, a peer can become a super peer to alleviate the loads of

proxy relay servers.

In such a system, proxy relay servers are responsible to a large amount of fan-out

burdens and service a large number of streaming sessions simultaneously, while super

5

peers usually have limited computing power due to the hardware capability or system

policies. For these nodes, an efficient streaming relay data path can enhance the

single-node performance to provide large service capability while the bandwidth is

sufficient or to reduce the computing power requirement under the same relay loads.

2.2. Relay Data Path Solutions

A relay data path continuously forwards media streams from the source to the

sink(s). The media streams passing through different data access interfaces incur

different kinds of overheads. In summary, relay data paths can be classified into three

kinds of solutions as: solutions with socket API, solutions on IP layer hooks and

solutions on top of I/O subsystems.

Solutions with Socket API

Solutions with socket API relay media streams in the user space through the

socket interface. After the incoming media streams go through the network stack, they

are stored in the receiving queue of the source socket within the kernel space. The

Figure 1: One-to-many streaming system topology with two streaming sessions.

6

relay mechanism copies media streams to the user space buffer and then passes them

to the sending queue of the sink sockets inside the kernel space for further delivery.

Because media streams are copied across the user-kernel boundary, this kind of

solutions incurs a large amount of system calls and memory copies. Icecast [11] and

DSS [12] are the solutions using the socket API to implement one-to-many streaming

relay. The former is capable of TCP streaming whereas the latter considers UDP

streaming.

Solutions on IP Layer Hooks

An in-kernel relay data path can prevent the overheads of copying data across the

user-kernel boundary. To build an in-kernel relay data path, IP layer hooks such as

hooks provided by netfilter [17] in linux-based systems allow kernel modules to

register callback functions within the IP layer. Relaying media streams on IP layer

hooks prevents media streams from copied across the user-kernel boundary. Because

the media streams are not passed through the whole network stack, the tasks of

transport layer, especially TCP, should be handled by the relay solution. Therefore the

maintenance cost is high when the transport layer protocol evolves. TCPSP [15] and

Media Proxy [16] both build relay mechanisms on IP layer hooks with the

header-altering method, supporting only one-to-one relay scheme.

Solutions on top of I/O subsystems

Another kind of in-kernel relay data path solution is to build relay mechanisms

on top of I/O subsystems. This kind of solutions not only prevents the overheads of

copying data across the user-kernel boundary but also suffers less maintenance

overheads when the transport layer protocol evolves. KStreams [13] makes a data

abstraction layer on top of I/O subsystems. By the data abstraction layer, KStreams

can relay media streams between different kinds of I/O subsystems and supports

one-to-many relay schemes. However, the memory copy from the source to the sinks

7

is still needed.

Summary

According to the data access interface, a relay data path suffers different kinds of

overheads. Table 1 shows a comparison among different relay data path solutions.

In-kernel relay data paths such as the solutions on IP layer hooks and the solutions on

top of I/O subsystems do not suffer the crossing user-kernel overheads and perform

better than the solutions with socket API. Because of the lack of transport layer

protocol handling, the solutions on IP layer hooks need to handle transport layer

protocol by themselves. Hence the additional maintenance overheads are caused.

Although the solutions on top of I/O subsystems are better than the other solutions,

they still need in-kernel memory copies to sinks. The memory copy degrades the

performance of relay, especially in the one-to-many relay scheme.

Table 1: Relay data path solutions.

Data access
interface

Solution Relay scheme Protocol Cons/Overheads

Socket API
Icecast [11]

1-to-N
1 way

TCP
1+N memory copy

1+N system call
DSS [12]

1-to-N
1 way

UDP

IP layer hooks
TCPSP [15]

1-to-1
2 way

TCP L4 Protocol
handling by self –
hard to maintain

Media
Proxy [16]

1-to-1
1 way

UDP

On top of I/O
subsystem

KStreams
[13]

Configurable
1 way

Protocol
independent

1+N memory copy
in 1-to-N scheme

8

Chapter 3 One-to-Many Streaming Splicing

The design of OMSS is to provide an in-kernel one-to-many relay data path for

streaming applications. The three objectives of OMSS are: 1) reducing the overhead

caused by payload copy among sink connections. 2) Achieving large-scale service

capability. 3) Support differentiated QoS to guarantee the service quality of high

priority relay sessions. The architecture of OMSS is presented first. And the design of

each component is shown one after another.

3.1. OMSS Architecture

The architecture of OMSS is divided into two parts: the one-to-many relay data

path and the relay engine as shown in Figure 2. A one-to-many relay data path

consists of one source connection, multiple sink connections and a session buffer. A

source connection is a connection from which OMSS receives media streams while a

sink connection is a connection where the media streams are sent to the subscribers.

The media streams received from the source connection are stored in the session

buffer. When the session buffer is full, the head-drop policy is applied. OMSS

proposes a payload sharing mechanism to reduce the memory copies of media

streams for sink connections.

The reception and transmission of the media stream within a relay session are

treated as a source task and multiple sink tasks respectively. All tasks are scheduled

and handled by the relay engine. The relay engine adopts the worker pool processing

model to achieve large-scale service capability and a priority-based task scheduling to

provide the QoS guarantees for high priority relay sessions. Triggered by the socket

events, application requests or task processing results, source and sink tasks are

queued in the class queues and waiting to be fetched and assigned by the scheduler to

the worker pool. A worker thread within the worker pool processes the selected task

9

and queues the further tasks generated by the selected task. For example, a source task

queues the relevant sink tasks after storing the media stream in the session buffer for

further transmissions to the subscribers.

3.2. One-to-Many Relay Data Path

Head-drop Buffer Management

Due to the different connection status of each sink connection, the sending

progress varies. A slower sink connection may occupy buffer entries for a long time

and then cause the session buffer full. Algorithms of buffer management such as

tail-drop or random early detection (RED) drop the newest media stream. Therefore

all the sinks of that session miss the dropped media stream. In this work, a head drop

buffer management, which skips the transmission of the occupied buffer entries only

for slower sink connections, is applied to release the buffer entries when the session

buffer is full.

Payload Sharing

Figure 2: Architecture of OMSS

10

In a relay session, the same media stream is forwarded from the source

connection to multiple sink connections. In previous works [11-13], the transmission

of the same media streams needs to make duplications for each sink connection as

shown in Figure 3(a). Given a 1-to-N relay session, N memory copies are required. In

this work, the payload sharing is achieved with the help of network interface card

(NIC) which is capable of scatter-gather I/O. A NIC with scatter-gather I/O can

directly transmit a frame whose contents are located in discontinuous memory regions.

As shown in Figure 3(b), after extracting the transport layer payload from incoming

frames, OMSS reuses the payload for all the sink connections without duplicating the

payload.

3.3. Relay Engine

Worker Pool Processing Model

A task processing model is the type of process or thread model used to handle the

service operations. There are two common task processing models: 1) single-thread

model adopted by [13] and 2) per-session thread model adopted by [11]. The former

Figure 3: Payload copy vs. payload sharing

11

cannot utilize the computing power of a shared memory multiple processors (SMP)

systems, whereas the latter might incur large context switch overhead and memory

consumption of thread stacks when the session number grows. To achieve large-scale

service capability, OMSS divides the relay operation into two kinds of tasks: source

task and sink task and adopts the worker pool processing model used by [12] to

handle these tasks. A worker pool consists of a set of pre-spawned threads and a task

assigning interface, which assigns a given task to one of the idle threads in the worker

pool to handle. Because the threads are pre-spawned, there is no thread-creation

overhead at runtime. In addition, because all the tasks are handled by the threads in

the pool and the pool size is fixed, the context switch overhead is limited. Finally, the

computing power of SMP system can be utilized because of the multi-threaded nature

of worker pool processing model.

Figure 4 shows the flow chart of source tasks and sink tasks. When a source task

is handled by a worker thread of the worker pool, it checks the session buffer first. If

the session buffer is full, the head-drop buffer management mechanism is applied.

After receiving media streams into its session buffer, the source task schedule sink

Figure 4: Flow chart of source task and sink task

12

tasks in the same relay session to send media streams to every sink connection. The

procedure repeats to handle the remaining media streams until there is no media

stream to read in the source connection. When a sink task is handled, it repeats send

media streams to its sink connection until there is no media stream for its sink

connection to send.

Priority-Based Task Scheduling

OMSS provides a priority-based scheduling mainly to achieve a differentiated

QoS mechanism to guarantee the service quality of high priority relay sessions. A

priority value is assigned to a connection when the connection is added into a relay

session. The task of the connection is then queued into the class queue according to

the priority value. And the scheduler simply selects tasks from queues with higher

priority value to ensure the QoS of sessions with higher priority connections.

13

Chapter 4 System Implementation

4.1. Implementation Overview

OMSS is implemented in linux-based systems as an in-kernel service to provide

an efficient one-to-many streaming forwarding data path and an application

programming interface (API) to interact with user space relay daemon as illustrated in

Figure 5. A user space relay daemon uses the OMSS API to organize in-kernel relay

sessions and to get the status of ongoing in-kernel relay sessions. In the rest of this

chapter, we detail the implementation of OMSS components.

4.2. One-to-Many Relay Data Path

The one-to-many relay data path has the advantage of protocol independence by

building on top of the socket layer. Both UDP and TCP sockets can be organized as a

Figure 5: OMSS Implementation in Linux-based System

14

session source or sink. Media streams come from a session source is stored in the

session buffer and then sent with the payload sharing mechanism. The implementation

of the session buffer and the payload sharing mechanism is illustrated in the

following.

Session Buffer

The session buffer is implemented as a ring buffer whose buffer entries have a

user count to indicate if the entry is needed by sink tasks and a pointer of the memory

page where media streams is really stored. The source task and sink tasks also keep

the buffer entry they should access. Figure 6 shows an 8-entry session buffer of a

1-to-5 relay session. In Figure 6(a), a buffer is full due to the slower sink task. In

Figure 6(b), the head-drop mechanism is done by decreasing the user counts of all

buffer entries with the number of slower sink tasks (one, in this case).

Payload Sharing

In linux-based systems, a packet is represented by the sk_buff structure and its

auxiliary data structures. A scatter-gather I/O is performed while parts of frame

contents are stored in the memory pages which are appended to the frags array of a

Figure 6: An 8-entry session buffer of a 1-to-5 relay session.

15

sk_buff structure. Figure 7 illustrates two sk_buff with a shared transport layer

payload. The first frags entry of each sk_buff is used to point to the shared payload.

There is a socket layer function called sendpage, which can send the payload stored in

memory pages. By sendpage(), payload sharing in linux-based systems is as simple as

the following two steps: 1) extracting the payload from the incoming packet into a

memory page and 2) send out the payload to each sink connection with sendpage().

That is the reason why we use memory pages to implement the session buffer.

4.3. Relay Engine

The relay operation is triggered by the socket event of a source task when

incoming packets arrive. The source task is queued in the class queue according to its

priority value. After the source task is pick up by the scheduler and processed by one

of the worker threads in the worker pool, sink tasks of this session are queued and

handled.

Worker Pool

The worker pool implementation contains a common task assigning interface and

a set of worker threads which are implemented by kernel threads. Initially, each

worker thread sleeps on a wait queue until a task is assigned through the task

Figure 7: Two sk_buff with a shared payload.

16

assigning interface. Given a task, the task assigning interface chooses an idle worker

thread and assigns the task to the worker thread. At that time, the worker thread is

woken up and executes the assigned task.

Scheduler and Class Queues

The scheduler is implemented as a kernel thread which repeats getting task

objects to be handled through the dequeue function provided by the class queues.

After getting a task from the class queues, the scheduler assigns the task to the worker

pool through the task assigning interface mentioned above. If there is no task object in

class queues, the scheduler thread sleeps for 10 ms and then continues calling the

dequeue function to get task objects to be handled.

4.4. OMSS API

OMSS provides an interface to organize in-kernel one-to-many relay sessions

and to get the status of session members by adding four socket options. A user space

program can call the setsockopt() system call with the four socket options listed in

table 2 to interact with the OMSS module.

Table 2: The OMSS socket options and functionalities

Socket option Functionality

OMSS_SET_SOURCE Setup a relay session with the specified source socket.
OMSS_ADD_SINK Add a sink socket to a specified relay session.
OMSS_REMOVE_SINK Remove a sink socket from the specified relay session.
OMSS_GET_STATUS Get the status of the specified source/sink socket.

 For example, after the connection from media source is setup, a relay daemon

can call setsockopt() system call with the OMSS_SET_SOURCE option to setup a

relay session and set this connection as the session source. And then a relay daemon

uses the OMSS_ADD_SINK option to add session sinks. To check the status of each

session member, the OMSS_GET_STATUS option is used. If an error or timeout is

17

reported, a relay daemon can use the OMSS_REMOVE_SINK option to remove the

session member which is out of function.

18

Chapter 5 Evaluation

5.1. Evaluation Environments

The evaluation environments are shown in Figure 8. The media server (MS) and

the media client (MC) are in the same PC, while the relay in another PC. Streaming

flows is transmitted through a direct Ethernet link from MS to relay and back to MC

in the same PC. In the evaluation environment for relay-PC, a controller is connected

to these two PCs through an out-of-band link for separating the control flow from

streaming flows, while a controller is connected to the relay-embedded through a

console line instead of an Ethernet connection. Table 3 shows the details of the

evaluation platforms. The relay-PC is equipped with AMD Athlon 64 X2 CPU and

Intel 82574L gigabit adaptor which is capable of scatter-gather I/O for the payload

sharing mechanism. And the relay-embedded is equipped with RTL8186 SoC which

has a MIPS processor and a fast Ethernet interface which is capable of scatter-gather

I/O. The direct link throughputs of these two evaluation environments are 941 Mbps

and 40 Mbps separately, which are measured with Iperf.

Figure 8: Evaluation environments.

19

Table 3: Evaluation Platforms

 Media Server & Client Relay-PC Relay-embedded
Kernel 2.6.32.4 2.6.32.4 2.4.18

CPU Intel Core2 Duo E8400
@3GHz

AMD Athlon 64 X2
4000+

@2.1GHz

MIPS
@180MHz

Memory 2G 2G 16M

Ethernet
Interface

Marvell 88E8056
Gigabit adaptor

Intel 82574L
Gigabit adaptor RTL8168 Ethernet

The MS program is a multithreaded program which can emulate multiple media

sources to transmit streaming flows with different payload sizes and transmission

rates. The MC program is also a multithreaded program to emulate multiple MCs to

subscribe streaming flows and report statistics such as packet loss rates and

transmission latency. Three kinds of relay solutions can be requested by the MS at

session setup time: daemon, OMSS and OMSS-M. The daemon is a user space

one-to-many relay solution, which uses two threads, one for receive and one for send,

to serve one relay session. The reception and transmission of streaming flows is

through the socket API. OMSS and its memory copy version, OMSS-M, are

integrated into this daemon as alternative relay solutions.

5.2. Bulk Fan-out Test

In this test, the CPU utilization of the relay-PC and the relay-embedded is

measured for the three relay solutions. Only one relay session is setup by the MS and

then the number of MCs is added till the maximum link capacity or CPU utilization is

reached. The streaming source is 256 Kbps with the payload size of 1400 Bytes for

both UDP and TCP.

Bulk Fan-out Test on PC

Figure 9 shows the CPU utilization of the UDP bulk fan-out test on PC. After

reaching about 60% CPU utilization, the daemon solution cannot utilize the SMP

20

computing power to serve more MCs than 2200 because it has only a single sending

thread. Because of reducing both the system call overhead and the memory copies to

each sink connection, OMSS outperforms the daemon solution and OMSS-M.

The result of TCP bulk fan-out test is shown in Figure 10. The daemon solution

suffers the same situation mentioned above after reaching about 70% CPU utilization

and can serve at most 2000 MCs. OMSS also outperforms the other two in this test.

After the throughput reaches maximum link capacity, packets is dropped by the NIC.

Therefore, TCP starts retransmitting and cause the CPU utilization of OMSS and

OMSS-M to vibrate.

Figure 9: CPU utilization of UDP bulk fan-out test on PC.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

CP
U

 U
ti

liz
at

io
n(

%
)

Number of MCs

Daemon

OMSS-M

OMSS

Maximum link capacity

21

Bulk Fan-out Test on Embedded Platform

Because there is no UDP sendpage implementation in the linux 2.4 kernel, we

can do only TCP bulk fan-out test on the relay-embedded. Figure 11 shows the CPU

utilization of the TCP bulk fan-out test on the embedded platform. The daemon

solution, OMSS-M and OMSS service up to 45, 80 and 85 MCs separately. OMSS

still outperforms the other two in this test.

According to the evaluation results on these two platforms, we find that the

capability of the relay is not proportional to the computing powers of the CPUs. This

phenomenon is caused by the following reasons. First, the computation of checksum

is done by software on the embedded platform, while offloaded to the NIC on the PC

platform. Second, the embedded platform uses linux 2.4 kernel, while the PC platform

uses linux 2.6 kernel. Finally, the hardware architectures are different. We leave this

question as a future work to do.

Figure 10: CPU utilization of TCP bulk fan-out test on PC.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

CP
U

 U
ti

liz
at

io
n(

%
)

Number of MCs

Daemon

OMSS-M

OMSS

Maximum link capacity

22

5.3. Payload Size Test

The payload sharing mechanism prevents the copy of payloads for sink

connections. Therefore the payload size determines the avoided amount of memory

copy. In this test, given a 1-to-800 relay session with a 256 Kbps streaming source, we

evaluate how the payload size of the streaming flow affects the performance of the

payload sharing mechanism on UDP and TCP. Figure 12 and Figure 13 show the

testing results for UDP and TCP, respectively. Switching points are revealed at about

200 Bytes for UDP and 100 Bytes for TCP. When the payload is transmitted, the

payload sharing mechanism needs to append memory pages into sk_buff structures

and occupy two TX descriptors for DMA transfers than the original transmission

process. Below the switching point, the memory copy overheads are smaller than the

payload sharing overheads mentioned above. As the payload size grows, the memory

copy overhead also grows. Therefore, the performance gain of the payload sharing is

proportional to the payload size.

Figure 11: CPU utilization of TCP bulk fan-out test on embedded platform.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

CP
U

 U
ti

liz
at

io
n(

%
)

Number of MCs

Daemon

OMSS-M

OMSS

23

5.4. Overloading Test

In this test, three 1-to-150 relay sessions with 256 Kbps UDP streaming source is

assigned to the priority classes from 1 to 3. The CPU utilization of the relay PC is

72.04% at the beginning. To see the affect of priority-based task scheduling, we

control the background CPU loads at the relay PC and then observe the packet loss

rates and average latencies of these three sessions. The background CPU loads is

produced by the processes which are scheduled by the FIFO scheduling policy with

Figure 13: Payload size test for TCP

1.002
0.920

0.839
0.746

0.665

0

0.2

0.4

0.6

0.8

1

1.2

0

10

20

30

40

50

60

70

80

90

100 200 600 1000 1400

CP
U

 U
ti

lia
zt

io
n(

%
)

Payload Size(Bytes)

Ratio

OMSS-M

OMSS

Figure 12: Payload size test for UDP.

1.079 1.030

0.904
0.784

0.704

0

0.2

0.4

0.6

0.8

1

1.2

0

10

20

30

40

50

60

70

80

90

100 200 600 1000 1400

CP
U

 U
ti

lia
zt

io
n(

%
)

Payload Size(Bytes)

Ratio

OMSS-M

OMSS

24

the highest priority. One process produces 5% CPU loads and totally 20 processes are

executed to pile up the background CPU loads to 100%. Because the throughput does

not reach the maximum link capacity in this test, packet losses are caused by the

head-drop buffer management when the session buffer is full.

Figure 14 shows the average packet loss rates of the three classes under different

background CPU loads. Before the background CPU loads run out of the remaining

CPU resource, only the class 3 session suffers very slight packet losses. Once the

CPU is exhausted, the packet loss rate of class 3 session increases rapidly. The

high-priority sessions experiences almost no packet losses before the packet loss rate

of low-priority sessions reach 1. Finally, all the three session lose the streaming

packets after the whole CPU resource is occupied by the background CPU loads.

The result of average latency is shown in Figure 15. At the beginning, the three

sessions suffer different levels of average latency. And the average latency of a

certain priority class increases rapidly while the lower-priority sessions have lost all

their packets. These phenomena happen because tasks with lower priorities are

handled only when no task with higher priority value exists in class queues. Therefore

Figure 14: Average packet loss rate under overloaded test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 p
ac

ke
t L

os
s

Ra
te

(%
)

Background CPU loads(%)

Class1

Class2

Class3

25

the scheduler always sacrifices tasks form the lowest priority class.

Figure 15: Average latency under overloaded test

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 L
at

en
cy

(m
s)

Background CPU loads(%)

Class1

Class2

Class3

26

Chapter 6 Conclusions and Future Works

In this work, we propose an in-kernel one-to-many relay service called

One-to-Many Streaming Splicing (OMSS) which has three features. First, a

low-overhead one-to-many relay data path is carried out with the payload sharing

mechanism which prevents the payload copies to each sink connection. Second, a

large-scale service capability is achieved by dividing the relay operation into source

tasks and sink tasks and adopting the worker pool processing model to handle these

tasks. Finally, a differentiated QoS is realized with the priority-based task scheduling.

The evaluations of 256 Kbps streaming source with 1400 Bytes payload size

show that OMSS reduces the CPU utilization by 56% and 26% of that the daemon

solution and OMSS-M, respectively, for UDP in 1-to-2000 relay session; 52% and

24% for TCP in 1-to-1800 relay session. In addition, the priority-based task

scheduling succeeds to ensure the service quality of high priority relay sessions on the

overloaded situations.

In future works, because the payload sharing mechanism is now realized by

scatter-gather I/O and some low-end platforms may be not equipped with NICs

performing scatter-gather I/O, we intend to design a payload sharing mechanism

without scatter-gather I/O. Therefore, even on those low-end platforms, the relay data

path overheads caused by memory copies can also be reduced.

27

References

[1] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram internetworks

and extended LANs,” ACM Transactions on Computer Systems, vol. 8, no. 2, pp.

85-110, 1990.

[2] C. Diot, B. N. Levine, B. Lyles H. Kassem and D. Balensiefen, “Deployment

issues for the IP multicast service and architecture,” IEEE Network, vol. 14, no. 1, pp.

78-88, 2000.

[3] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming Live Media over a

Peer-to-Peer Network,” Technical Report, Stanford InfoLab, 2001.

[4] M. Castro, P. Druschel, A. M. Kermarrec and A. I. T. Rowstron, “SCRIBE: A

large-scale and decentralized application-level multicast infrastructure,” IEEE Journal

on Selected Areas in communications, vol. 20, no. 8, pp. 1489-1499, 2002.

[5] Y. Chu, S. G. Rao, S. Seshan and H. Zhang, “A case for end system multicast,”

IEEE Journal on Selected Areas in communications, vol. 20, no. 8, pp. 1456-1471,

2002.

[6] N. P. Venkata, J. W. Helen, A. C. Philip and S. Kunwadee, “Distributing

streaming media content using cooperative networking,” in Proceedings of the 12th

international workshop on Network and operating systems support for digital audio

and video, Miami, Florida, USA, 2002.

[7] D. Peter, and L. P. Larry, “Fbufs: a high-bandwidth cross-domain transfer facility,”

in Proceedings of the fourteenth ACM symposium on Operating systems principles,

Asheville, North Carolina, United States, 1993.

[8] J. Pasquale, E. Anderson, and P. K. Muller, “Container shipping: operating system

support for I/O-intensive applications,” IEEE Computer, vol. 27, no. 3, pp. 84-93,

1994.

28

[9] A. K. Yousef, and N. T. Moti, “An Efficient Zero-Copy I/O Framework for

UNIX,” Technical Report, Sun Microsystems, Inc., 1995.

[10] V. S. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A unified I/O buffering

and caching system,” ACM Transactions on Computer Systems, vol. 18, no. 1, pp.

37-66, 2000.

[11] Xiph open source community, Icecast, http://www.icecast.org/, 2008.

[12] Apple Inc., Darwin Streaming Server, http://dss.macosforge.org/, 2008.

[13] J. Kong and K. Schwan, “KStreams: kernel support for efficient data streaming

in proxy servers,” in Proceedings of the international workshop on Network and

operating systems support for digital audio and video, pp. 159-164, Stevenson,

Washington, USA, 2005.

[14] D. A. Maltza, and P. Bhagwata, “TCP Splice for application layer proxy

performance,” Journal of High Speed Networks, vol. 8, no. 3, pp. 225-240, 1999.

[15] LVS project, TCPSP Software – an open source TCP splicing implementation,

http://www.linuxvirtualserver.org/software/tcpsp/index.html, 2003

[16] AG Project, MeidaProxy, http://mediaproxy.ag-projects.com/, 2010.

[17] The netfilter.org project, http://www.netfilter.org/.

http://www.icecast.org/�
http://dss.macosforge.org/�
http://www.linuxvirtualserver.org/software/tcpsp/index.html�
http://mediaproxy.ag-projects.com/�
http://www.netfilter.org/�

