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程序層級上耗電預估參數與公式的校正 

 

學生: 尤云千                            指導教授: 林盈達 

國立交通大學資訊科學與工程研究所 

 

摘要 

搭載電池的移動式裝置經常受到能源上嚴格的限制。程序階級上的耗能分析

工具可以找出系統中最耗能源的程序，並且可以仔細地分析出個別硬體元件的耗

能情形。利用這樣的工具，軟體開發工程師可以分析與微調各程序的電能消耗，

藉此來提高電池的使用時間。不過這種耗能分析工具經常綁定特定的硬體，所以

需要為各個硬體平台來做耗能分析工具的校正。此外，對於新加入的硬體元件也

需為其創造新的耗能預估公式。這篇論文提出一個兩階段式的方法來校正產品上

的耗能分析工具。第一階段利用數位電表來重新建立屬於新產品的耗能功率表。

第二階段則是使用線性回歸分析來創造新的耗能預估公式。在五種情境下驗證的

結果顯示，經過我們校正之後耗能分析工具的預測錯誤率都低於 10%。此外，我

們發現 FTP上傳與下載的程序雖然消耗的電能不同，但是花在 CPU計算與網路傳

輸的耗能比例卻是一樣的。 

 

 

關鍵字: 耗能分析，耗能預估校正，Android 
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Calibrating Parameters and Formula for Process-level Energy 

Consumption Profiling 

 

Student: Yun-Chien Yo                   Advisor: Dr. Ying-Dar Lin 

Department of Computer and Information Science 

National Chiao Tung University 

 

Abstract 

The battery-powered mobile devices get tight constrains on energy resources. 

The process-level energy profiling tools can identify the most energy-consuming 

process and detail the energy usages of each hardware component. With the help of 

energy profiling tools, programmers can fine-tune the energy consumption of 

processes to improve the battery lifetime. However, the profiling tools are highly 

hardware dependent and therefore require to be calibrated for each hardware platform. 

Besides, new energy estimation formulas need to be created for new hardware 

components. In this thesis, a two-phase calibrating approach is proposed to handle the 

two issues on off-the-shelf product devices. The first phase reconstructs the power 

table with a power meter, and the second phase creates new energy estimation 

formulas with the linear regression analysis. The accuracy of the calibrated tool is 

evaluated under five scenarios with the error ratios proven below 10%. Moreover, the 

energy consumption of FTP upload and download processes is different but the ratio 

of CPU computing energy to networking energy is the same. 

 

Keywords: energy profiling, energy estimation calibration, Android 
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Chapter 1. Introduction 

The processing speed of microchips doubles every two years, i.e., Moore’s law 

[1], while the battery capacity only doubled in the last ten years [2]. Battery-powered 

mobile devices, such as smartphones, with plenty of computing-intensive applications, 

e.g. music play program and GPS navigation, and energy-hungry peripherals, e.g., 

screen and Wi-Fi module, especially suffer from the shortage of energy budgets. 

Because of the lack of accurate energy profiling tools on product devices, application 

programmers are usually good at performance optimization but relatively lack sense 

of energy fine-tuning. As the result, the energy profiling tools are demanded and 

studied over the past several years. 

Related works studying energy consumption of a system can be classified into 

three approaches: measurement approach, simulation approach, and estimation 

approach. Measurement approach measures energy consumption with digital power 

meters directly. One can either sample total power under different configuration 

factors, e.g. processor frequency, to identify the influence of such the factors on 

system power consumption [3], or probe all hardware components simultaneously to 

get energy consumption of each component in detail [4-6]. Furthermore, mapping the 

measured energy consumption onto running processes helps programmers detect 

energy-hungry code regions [7-10]. Simulation approach creates virtual hardware 

platforms to simulate energy consumption behavior for energy profiling [11-12]. 

Based on system resource utilization gathered from the hardware emulator, the energy 

consumption of the simulated platform can be calculated. Estimation approach is 

similar to simulation one except it collects the resource utilization information from 

kernel and log daemons at profiling time. Some researches based on this approach 

achieve software energy profiling [13-14] and online power-saving adaptation [15-16] 

without the need of power meters. 



 

2 

 

Measurement approach is intuitive and accurate. However, a product device for 

costing down and size reduction usually removes the reserved pins required for power 

meters. Developing an energy-aware simulator for every new hardware platform is 

also impractical. As a result, the estimation approach becomes a complementary 

solution for software energy profiling on product devices. 

  

    (a) Concept of energy estimation.         (b) Faulty energy estimation of file download. 

Fig. 1. Energy estimation overview. 

Fig. 1(a) depicts the profiling concept using the energy estimation model, which 

contains two components: energy estimation formulas and power table. The 

estimation formulas model energy consumption behaviors of hardware components, 

and the power table contains the power weight coefficients of the formulas. While the 

profiling time, each record of resource utilization is logged for calculating the energy 

consumption of each process on hardware components. For example, in Fig. 1(a), the 

CPU utilization, CPU_time, logged for the profiled process is 5 ms. According to the 

CPU energy estimation formula and the power weight coefficient, CPU_power, the 

CPU energy consumed by profiled process is 50 nJ. 

Although the estimation approach looks into process level on product devices 

without power meter support, the energy estimation formulas and the power table are 

heavily hardware dependent. Therefore, default power table in primitive source code 

of an energy estimation program, e.g. Android Battery Use (BU), has to be 

customized for a device under test (DUT) first. Besides, in a porting procedure, faulty 
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energy estimation formulas harming the estimating accuracy seriously also have to be 

addressed. Fig. 1(b) shows a dramatic discrepancy between the energy estimation of 

BU and the energy measurement of Data Acquisition (DAQ) [17], where X axis 

denotes the n-th minute and Y axis denotes aggregate energy consumed in the minute. 

The inaccurate estimation results from the faulty energy estimation formula for the 

Wi-Fi module in the primitive source code. 

In this work, on product devices, a two-phase calibration approach is proposed to 

calibrate the default power table parameters and the faulty energy estimation formulas. 

The first phase focuses on reconstructing the power table and the second phase details 

creating estimation functions for target hardware components. Our approach evaluates 

on Android smartphones, i.e. gphone, because of the open source characteristics of 

Linux kernel and Android application framework. 

The rest of this thesis is organized as follows. Chapter 2 reviews the ways to 

investigate energy consumption on variant devices and introduces the Android 

framework together with the built-in energy estimation program, Battery Use. Beside, 

the energy consumption studies about WLAN interface is included for the background 

of system implementation. Chapter 3 states terminologies and problem statements. 

Chapter 4 describes the concept of our approach, two- phase calibration, along with 

an example run. Chapter 5 shows the detail operation procedures and the system 

implementation on an Android product device. Chapter 6 presents the evaluation 

results, and finally, chapter 7 concludes the thesis. 
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Chapter 2. Background 

This chapter investigates the spectrum of energy consumption studies, introduces 

the energy consumption behaviors of WLAN interface, overviews the experiment 

Android platform together with our evaluation target, Battery Use. 

2.1 Spectrum of Energy Consumption Studies 

Seven methods of the measurement and estimation approaches are introduced. 

For distinction, hardware and software energy consumption are discussed separately. 

The relationship between software and hardware energy consumption is analogous to 

the commerce in a market, as shown in Fig. 2. DUT and hardware components on it 

are analogous to a market and stores in the market separately. Processes running on 

the DUT are likened to persons spending in the market. 

Total energy measurement

Hardware Software

Market revenue Personal spending

Power consumption

Daily life expense 

Component energy measurement

Subtractive method Counting resource utilization Hybrid estimation

Sampling CPU occupation Concurrent measurement

Total revenue statistic

Income of store Amount of spending

Count of spending

roughdetailed detailed

Measurement approach Estimation approach

Fig. 2. Spectrum of energy consumption studies. 

Hardware Energy Consumption 

Based on the resolution of energy breakdown, the three methods, total energy 

measurement, subtractive method, and component energy measurement, are 

generalized. 

Total energy measurement, which observes the energy consuming behaviors 

from the total energy consumption, is like examining the business status from the total 
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revenue of the market. On handheld computers, Assim [3] measured the total energy 

consumption in different system configurations, and showed that energy consumption 

of display, processor, and Wi-Fi module plays important roles in determining battery 

lifetime. 

Subtractive method roughly identifies the component-wide energy consumption 

by comparing energy consumption differences in variant hardware status. Component 

energy measurement simultaneously probes on each hardware component to sample 

the energy consumed by the components and can be illustrated with setting up invoice 

machines to keep track of incomes for each store. On portable computers, Bai and Lin 

[5] presented the energy measurement method for hardware components with the 

small resisters. Mahesri and Vardhan [6] measured energy consumption of main 

hardware components on IBM laptop. Mahesri and Vardhan’s study concluded that 

the power consumed by CPU and display, again, dominates the power consumption of 

laptop; and the hardware components, i.e. disk drivers, consume large energy only in 

the working state.  

Software Energy Consumption 

According to the accuracy of energy attribution, the methods for examining 

software power consumption are classified into four methods, i.e. sampling CPU 

occupation, counting resource utilization, hybrid estimation, and concurrent 

measurement. 

In practice, sampling CPU occupation samples total energy with an external 

power meter. In order to map the measured energy onto the processes running on the 

DUT, the meter also triggers the logs of a program counter (PC) and a process 

identifier (PID) for each energy record. In the analysis time, the energy record can be 

attributed to the exactly one process according to the PC and the PID. Because the 

energy-to-process mapping only depends on CPU occupation, the inaccurate energy 



 

6 

 

attribution is raised by concurrent energy consumption of hardware components. With 

this manner, PowerScope [7] is the most famous tool for discovering the 

energy-hungry code regions. Chang et al. [8] replaced the time-driven sampling 

approach of PowerScope with an energy-driven sampling approach to improve 

accuracy of energy attribution. ePRO [9] integrates energy and performance profiling 

into a convenient tool with well-defined user interface. 

In order to trace software energy consumption on each hardware component, 

counting resource utilization method counts resource requests for each process. The 

counts of resource requests can be translated into energy consumption using the 

energy estimation model mentioned in the chapter 1. For daily life analogy, the 

method works like counting each kind of receipts for personal spending estimation. In 

[15], pTop estimates component-wide energy consumption for each process on laptop 

and provides programming interface for designing energy-aware applications. 

ECOSystem [16] counts resource utilization and allocates energy budgets among 

competing tasks carefully to extend battery lifetime. 

Hybrid estimation method is a derivation of counting resource utilization and 

sampling CPU occupation. In practice, some of the resource utilization can be counted 

easily, e.g. disk I/O, while the other resource utilization is hard to be counted on the 

DUT, e.g. memory access. The energy consumed by the countable resources is easy to 

be estimated, while the residual energy escaped from estimation shall be shared 

proportionally according to the CPU occupation. Using the hybrid estimation method, 

PowerSpy [14] roughly distinguishes the battery energy consumed by threads and 

some hardware components. 

Concurrent measurement embeds energy sensors on hardware components to 

trace energy utilization simultaneously. For accurate energy attribution, it introduces a 

sophisticated manner for synchronizing the multisource energy samples and the 
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system events. For analogy, it is like keeping track of each spending for persons in the 

stores. The amount spending of a person can be calculated by summing up the price of 

his or her bills. Xian et al. [10] proposed an accurate energy attribution which raises 

the accuracy by up to 90% over sampling CPU occupation. Table 1 summarized the 

comparisons of tools for software energy profiling. This thesis focuses on calibrating 

the energy estimation tools of counting resource utilization method by handling the 

two hardware dependent drawbacks. 

Table 1. Comparison of software energy profiling tools. 

Method Tool Level Features Drawbacks 

Sampling CPU 

occupation 

PowerScope 

[7] 

Function   Energy hotspots 

detection. 

 High overhead when 

high sample rate. 

 Rough energy 

attribution. 

 No component-wide 

energy breakdown. 

ePRO [9] Function   Performance and 

energy profiling 

 Fine energy debugging 

UI. 

Counting 

resource 

utilization 

pTop [15] Process   Energy-sensitive 

process management 

 Hardware dependent 

power table. 

 Hardware component 

dependent estimation 

formulas. 

Battery Use Process   Many hardware 

components 

consideration.  

Hybrid method PowerSpy 

[14] 

Thread   Energy detection from 

battery. 

2.2 Energy Consumption of Wireless Network Interface 

The energy efficiency of WLAN interface is a significant issue especially for 

battery-powered mobile devices. Therefore, for a clean image of power consumption 

behaviors, M. Stemm and R. Katz [18] measured the power consumption on four 

distinct interfaces. They concluded that power consumption of receiving packets 

almost equals the power consumption of idle network interface, and sending packets 

cost more power consumption than receiving packets. Ebert et al. [19] further studied 

on the influence of packet size, transmission rate, and RF power level on power 

consumption of 802.11 standard network interfaces. In an identical RF channel, Ebert 

et al. showed that higher RF power level results in more power consumption on the 

interface. On the other hand, the packet size and the transmission rate play minor roles 
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in power consumption. For mathematical analysis, L. M. Feeney and M. Nilsson [20] 

characterize the energy consumption of an IEEE 802.11 wireless network interface 

operating in an ad hoc mode as simple linear formulas. However, the work did not 

include the discussion of power saving mechanism, which contains two distinct 

operation modes, power saving mode (PS) and active mode (AM). In PS, the interface 

awakes from the sleep state only for beacon packets periodically and consumes a little 

energy. On the contrary, in AM, the interface keeps active in the idle state for handling 

instantaneous packet transmission, so it consumes an additional power inherently. In 

[21], C. Rohl et al. simulate the power saving mechanism of an IEEE 802.11 ad hoc 

wireless network. From the simulation, they also identified the figures for optimum 

beacon intervals an ATIM window sizes. 

2.3 Battery Use in Android Systems 

At the end of 2008, Android, a new software platform for smartphones, was 

released by Google. The market share of Android is expected to keep growth in the 

next few years [22]. 

Android Framework 

Android takes Linux kernel as hardware abstraction because it provides lots of 

proven hardware drivers and sophisticated core operating system infrastructures 

especially in the networking layers. Upon the OS, lightweight libraries, e.g., Bionic 

libc, optimized for embedded system are exposed for native programming. Dalvik 

virtual machine and core libraries, which provide most of the functionality for Java 

programming, construct the runtime environment for Android applications. 

Application framework contains several services to serve the user applications. Take 

the advantage of Dalvik virtual machine and unified application framework, 

applications can migrate between platforms seamlessly. According to the functionality 

and performance consideration, each portion of Android is created in different 
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languages, as shown in Fig. 3.  

Browser Battery Use

Application Layer

Application Framework

View System Activity Manager

Libraries Aneroid Runtime

Core Librarieslibc

OpenGL/ES
Dalvik Virtual 

Machine

Binder Driver

Linux Kernel

Wifi Dirver
Power 

Management

Java

C/C++

C/C++/Java

C
 

Fig. 3. Architecture of Android system. 

Battery Use 

Battery Use is an energy consumption estimation program which belongs to 

counting resource utilization method and is embedded in Android system since 

version 1.6. During system booting, the application framework starts a special service, 

battery info, to take responsibility for the counting resource utilization. For the energy 

consumption calculating, Battery Use raises the inter process communication (IPC) to 

pull the data from the battery info service. 

Table 2 summarizes the default energy estimation formulas and power weight 

coefficients in Battery Use. In the table, each kind of the basic energy is energy 

consumption used for keeping hardware component active and each kind of the 

working energy results from that a hardware component works for one or many 

processes. In the basic energy estimation formulas, R
bP  is basic power consumption 

of hardware component R , and R
bT  is the time duration wherein the component is 

active. Because there are many brightness levels, backlight energy estimation is 

formulated in a summation form of multiple energy consumption instances. In the 

estimation formulas of working energy, R
wP  is working power and pR

wT ,  is the 
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duration wherein hardware component R  is working for process p . The 

networking energy estimation of process p  is defined as a product of per byte 

transmission energy byte
netE  and total traffic volume including receiving packets 

p
rcvV  and sending packets p

sndV . 

Table 2. Default energy estimation formulas in Battery Use. 

Energy Item Estimation Formulas Power Weight Coefficient 

Wi-Fi basic wifi
b

wifi
b TP   wifi

bP
 

Radio basic radio
b

radio
b TP   radio

bP  

Screen basic screen
b

screen
b TP   screen

bP  

Screen backlight 



I

ii

i
bt

i
bt TP  i

btP
 

CPU idle cpu
b

cpu
b TP 

 

cpu
bP

 

CPU working pcpu
w

cpu
w TP ,  cpu

wP
 

GPS working pgps
w

gps
w TP ,  gps

wP
 

Phone call radio
w

radio
w TP   radio

wP  

Networking )( p
snd

p
rcv

byte
net VVE   byte

netE
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Chapter 3. Problem Statement 

3.1 Terminologies 

Table 3 defines the common terminologies used in this thesis. Real energy 

consumption of target hardware component T  is TE  and is estimated by 
TÊ . 

TÊ  

is formulated by energy predictor variable 
kf  together with its power weight 

coefficient 
kc . For linear regression analysis, nI  is the n-th input data set which 

contains k values 
1,nf
 
to 

knf ,  
for the predictor variable 

1f  
to 

kf . Because 
TE  

is hard to be measured directly on product devices, apx
TE , the approximate value, is 

taken in the regression analysis for creating a new estimation formula. 

),,( 1 mtotal TTE   and ),,(ˆ
1 mest TTE 

 
denote the real energy and estimated energy of 

hardware components from 1T  to mT , respectively. 

Table 3. Terminology definitions. 

Term Definition 

TÊ  The energy estimation for the target hardware component T . 

TE  The real energy consumed by the target hardware component T . 

apx
TE

 
The approximate energy consumption of 

TE . 

kf  The energy predictor variable of 
TÊ . 

kc
 

The corresponding power weight coefficient of 
kf . 

nI
 

The n-th input data for the k energy predictor variables 
kff 1

. 

knf ,  
The variable value of 

kf  in input data
 nI . 

),,( 1 mtotal TTE   
The total energy measured by the power meter for the system where 

hardware components 
mTT 1  are active or working. 

),,(ˆ
1 mest TTE   The sum of calibrated energy estimation for mTT

EE ˆˆ 1 . 

3.2 Problem Description 

On produce devices, direct energy measurement on hardware component is not 

possible because there are not reserved pins for probing. Moreover, there is no reason 

to expect achievement of component-wide energy measurement which can only be 

completed with evaluation boards. Therefore, in this work, energy consumption 
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measurement is only performed for the system total energy at the battery, and the 

criterion for the evaluation procedures is based on the total energy instate of per 

component energy bias. With this constrain, the following describes the calibration 

problem statements. 

Let the consumed energy TE  for a component T  be modeled as a linear 

equation kk

T fcfccE  110.
ˆ

 
containing k energy predictor variables and k+1 

power weight coefficients. 0c  is the constant parameter and kc  is the corresponding 

coefficient of energy predictor variable kf . The thesis calibrates the faulty energy 

estimation by solving two problems: default power table parameters and faulty energy 

estimation formulas. 

Problem statement 1: Default Power Table Parameters 

The default power table parameters problem is to update the power weight 

coefficients stored in the default power table, such that the estimation error  

newc
TT

err EEE _
ˆ  

between estimated energy consumption 

kknewc
T fcfccE  110._

ˆ  

and real energy is minimized. 

Problem statement 2: Faulty Energy Estimation Formulas 

The faulty energy estimation formulas problem is to model the energy 

consumption for component T  by creating a linear equation with 

kknewf
T fcfccE  110._ 'ˆ , 

such that the estimation error 

newf
TT

err EEE _
ˆ  
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between estimated energy consumption newf
TE _

ˆ  and real energy is minimized. 
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Chapter 4. Two-phase Calibration Approach 

This chapter details the two-phase calibration methodology on product devices. 

The first phase reconstructs a power table for DUT and the second phase creates an 

energy estimation formula for hardware components with regression analysis. 

4.1 Calibration Approach Overview 

 

Fig. 4. Backlight energy consumption behaviors of smartphones. 

Most of similar DUTs contain similar hardware components. Taking the Android 

smartphones for instance, they usually contain LCD screen, Wi-Fi module, radio 

hardware and system on chip (SoC) processor with two cores, one is for radio signal 

processing and another is for user applications. Because energy consumption heavily 

depends on hardware components, equipping the similar hardware components 

usually makes the DUTs follow resemble energy consumption behaviors. For example, 

as shown in Fig. 4, the backlight power of the four smartphones keeps the similar 

linearity between brightness levels and consumes stable energy within the brightness 

levels. The main difference of the four lines is the slope which is related to the power 

weight coefficient, 𝑃𝑏𝑡
𝑖 , in the screen energy estimation formula mentioned in 

chapter 2. The observation above suggests that most of energy estimation models can 

adapt to similar DUTs by updating power weight coefficients for each estimation 

formula. 
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In practice of power table reconstructions, two categories of power consumption 

are generalized: system-basic power and process-related power. The system-basic 

power is used to activate hardware components. The process-related power is 

consumed by hardware components which are working for processes. In our 

definition, the energy consumption from the system-basic power belongs to the entire 

system, while the energy consumption from the process-related power shall be 

charged from the corresponding processes.  

Even if hardware components of DUTs are similar, some of the energy 

estimation formulas still cannot be successfully applied to the new DUT because of 

the variant specification of hardware component T . In order to create new energy 

estimation formulas to replace the faulty one, a linear regression analysis is 

introduced to help modeling power consumption behaviors of T . However, on the 

product DUT, real energy TE  consumed by T  is unable to be directly measured for 

the regression analysis because there are no longer reserved pins for measurement. 

Alternatively, approximate energy consumption apx
TE  is presented for the 

substitution of TE  in the regression analysis. Finally, for the programmers’ convince, 

the energy estimated by new formulas is mapped onto running processes for 

process-level energy profiling.  

Fig. 5 depicts the main flowchart of the two-phase calibration which contains the 

estimation evaluation and the two calibrating phases, i.e. power table reconstruction 

and new formula creation. The first phase, power table reconstruction, is divided into 

two function blocks measuring the system-basic power and the process-related power 

separately. Between the two phases, the estimation evaluation is used to feeding back 

calibrated results. There are predefined test scenarios and a threshold ( H ) for 

evaluation procedure. The calibrated tools will be tested by estimating energy 
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consumption of each test scenario. If one of the estimation errors is larger than the 

threshold H , the procedure of second phase will be performed for further calibration. 

In the thesis, the error ratio, defined in chapter 6, is chosen as the criteria. The second 

phase, new formula creation, includes the creating of new estimation formulas and a 

proportional manner used to distribute the estimated energy fairly.  

 

Fig. 5. Tow-phase calibrating flowchart. 

4.2 Power Table Reconstruction 

System-basic power coefficient measurement 

It is easy to obtain the system-basic power weight coefficient, e.g. 𝑃𝑏
𝑤𝑖𝑓𝑖 , by 

measuring the difference of total power consumption while the hardware component 

operates in different states. The most common case is to measure the power difference 

between on and off states of hardware components. In other cases, multiple power 

measurement is performed when the target component can be configured into several 
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operating states. For example, screen backlight can work in multiple brightness levels 

and results different power consumption in the each level, as shown in Fig. 4. 

Process-related power coefficient measurement 

Because the process-related power, e.g. pcpu
wT , , depends on the hardware 

resource utilization, a dedicated process is used to stress the hardware component. In 

practice, the dedicated process should be chosen or designed carefully for stressing 

only one hardware component at a time. For instance, the infinite for-loop can be used 

to stress CPU hardware component with minimized memory accesses. The 

process-related power can be refined by subtracting the total system-basic power from 

the measured total power consumption. It is the reason why the process-related power 

measurement shall follow the system-basic power measurement. 

4.3 New Formula Creation 

Discovering faulty formula 

From the feedback of estimation evaluation, there may be a faulty estimation 

formula which brings out the incorrect energy estimation results because of 

containing wrong energy predictor variables or omitting significant predictor 

variables, which characterize the unequal energy consumption behaviors for the new 

DUT. Therefore, the faulty estimation formula always makes the faulty results on T , 

no matter how the power weight coefficients are modified. The following presents a 

simple manner to discover the only one faulty formula on the DUT. Let there are m 

estimation formulas each for a hardware component and there is only one faulty 

formula among the estimation formulas. Under such situation, there can be 
m

kC  test 

scenarios each involving k hardware components, where k is arbitrary variable and 

smaller than m. During the evaluation under test scenarios, two false evaluations 

scenarios can be found and both of them involve the faulty estimation formula. With 
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the cross-matching manner, the m  joint formulas of both false evaluation scenarios 

can be extracted. Based on the m  formulas, the next loop is continued with 
m

kC


  

test scenarios until the only one joint formula is discovered. At the end of the 

discovering procedure, the only one joint formula is the faulty estimation formula. 

Identifying energy predictor variables  

For determining the energy predictor variables for T , a series of experiments 

shall be held to observe the significant effect of each candidate energy predictor 

variable 
kf

 
on energy consumption. In each experiment, only one energy predictor 

variable
 
can be examined with different variable values. Another possible way for 

finding out the energy predictor variables is to take the advantage of proven results 

from the papers which studied deeply on the power consumption behavior of T  on 

the similar hardware platform. However, this step is tough and requires the domain 

knowledge of T  for the energy predictor variable choice. 

Forming linear formulas 

As the assumption in [15, 23], it assumes that the linear property between hardware 

resource utilization and energy consumption of T  is held. Therefore, the estimation 

equation is formulated in a summation form,  

kk

T fcfccE  110.
ˆ ,                        

where 
kf   is the new energy predictor variable and 

kc  is its corresponding power 

weight coefficients. 

In order to train the unknown k+1 coefficients, the observation input data nI  is 

collected together with the instance of real energy consumption n
TE  consumed by 

T . For the convenience of regression analysis, the relationship of input data set F , 

the real energy consumption set  Tn
TTTT EEE 21E , and power weight 
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coefficient set  Tkccc 10C  are compiled in a vector form  

FCE T              

where the matrix of input data set F  is shown as  
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In practice, the influence of energy predictor variables on energy consumption 

shall not always be first-order. However, the leaner regression also can handle 

formulas containing higher than first-order predictor variables, such like  

      
2

22110.
ˆ fcfccET 

. 

The vector form for regression analysis can be denoted as 
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Launching linear regression analysis 

Unfortunately, because the reserved pins for component-wide energy 

measurement have been removed, the real energy TE  cannot be measured directly 

from hardware component T  with power meter. The alternative is applying the 

approximate energy consumption apx
TE

 
for TE . Assume there are totally m+1 

active or working components during measuring the total energy and energy 

estimation of m components performs well after the first phase calibrating. Therefore, 

the apx
TE  is calculated by a subtracting operation, 

),...(ˆ),,...( 11 mestmtotalapx
T TTETTTEE  ,                 

where ),...(ˆ
1 mest TTE  is estimated total energy of m hardware components and 
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),,,( 1 TTTE mtotal   is measured total energy of m+1 hardware components. 

In practice, the trick is that the calibrating procedure of T  only can be 

performed after the energy consumption of other involved hardware components can 

be estimated. For instance, before calibrating energy consumption of the networking 

module, the CPU energy consumption shall be estimated well because the networking 

packages always consume the energy on CPU for network protocol processing. 

Therefore, instate of T
E ,  

 Tnapx
T

apx
T

apx
T

apx
T EEE ,2,1, E

 
 

is taken as the energy consumed by T  for the regression analysis, where napx
TE ,  is 

approximate value for n
TE . The solution of C  is calculated as  

  apxTTT
EFFFC

1
                             

with the least square method [24]. 

Attributing energy proportionally 

The final work is to map the energy consumption onto the related processes 

causing it. Based on per-process information logging, each resource request on 

hardware component T  is counted in the profiling time. In the analysis time, the 

estimated energy of the new created formula can be proportionally shared among the 

corresponding processes fairly according to the request counts. 
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4.4 Example Run of Two-phase Calibration 

Evaluation

Result
Fail

Scenario 1   

T1

T

T2

T

T1

T2

Scenario 2  Scenario 3  

Fail Pass

Hardware component   

 

),,( 21 TTTEtotal

),(ˆ
21 TTEest

apxET

 
    (a) Evaluation results under three scenarios.          (b) Approximate energy consumption of T 

Fig. 6. Example run of two-phase calibration. 

Assume there are three hardware components, T , 1T , 2T , on a DUT which is a 

product device without reserved pins for component-wide energy measurement, and 

an energy estimation application is being calibrated for correct energy estimation on 

the DUT. The application contains three estimation formulas, fault
TÊ , 1ˆ T

E , 2ˆ T
E , and 

a default power table with null values. 1ˆ T
E  estimates the system-basic energy of 1T , 

while fault
TÊ  and 2ˆ T

E  predict the process-related energy of T  and 2T  

respectively. In the first phase of the calibration procedure, the system-basic power 

weight coefficient of 1ˆ T
E  is retrieved with the manner of switching on and off 1T . 

For the case of fault
TÊ  and 2ˆ T

E , the desired process-related power weight 

coefficients are measured with two dedicated programs stressing on  T  and 2T  

individually. 

 After the first phase, the calibrated tool is evaluated under three ( 3

2C ) scenarios. 

Each scenario involves different hardware components and the evaluation results are 

shown in Fig. 6(a). With the cross-matching manner, because T  appears on both of 

the two failure scenarios, the fault
TÊ  is identified as a faulty energy estimation 

formula. The correct energy predictor variables of T  are discovered from a series of 
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experiments and form a new formula new
TÊ . In order to regression analysis, the 

energy consumption of T  is on demand and approximated by apx
TE . In Fig. 6(b), 

the energy consumption of 1T  and 2T  are correctly estimated by ),(ˆ
21 TTEest  after 

the first phase calibration, and the total energy ),,( 321 TTTEtotal  can also be measured 

directly at the battery or the power supply. Finally, for the example of mapping 

estimated energy onto processes, if in a time interval the energy estimated by new
TÊ  

is Te  and the usage count of hardware component T  is 3 and 4 time units for the 

processes 1P  and 2P  respectively. Then, the energy consumed by 1P  on T  is 

estimated as  43/3 Te . 
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Chapter 5. Implementation on Android Dev 1 

In this work, the Android Dev Phone 1 (Dev 1) [25] is taken as the DUT. The 

goal of this chapter is to go through the two-phase calibration procedures for the 

correct energy estimation of Battery Use on Dev 1. 

5.1 Power Table Reconstruction on Dev 1 

Power consumption of eight hardware components is measured in the thesis and 

classified into the two categories, system-basic and process-related. The measurement 

procedures for each hardware component are summarized as follows.  

System-basic 

 Wi-Fi basic: The Wi-Fi basic power is easy to be obtained by switching on 

and off the Wi-Fi module with Android Setting application.  

 Radio basic: The Airplane mode, which closes every wireless interface 

including the phone radio, is utilized to switch the radio between on and off 

state.  

 Screen backlight: In the Android Linux, the sysfs file system [26], which is 

able to set values into the kernel variables, is used to configure the screen 

brightness. Because of the linearity of backlight power, as shown in Fig. 4, 

the power difference between the maximum and minimum screen 

brightness is measured and denoted as max
btP . Power consumption of other 

brightness levels is calculated with the linear interpolation.  

 Screen basic: The power consumed by LCD panel is obtained by measuring 

the power difference between the screen on and off state. In practice, there 

are two tricks of the screen basic power measurement. First, the screen 

backlight shall be turned off with the manner mentioned above for 

distinguishing the screen basic power from the backlight power. Second, in 

order to avoid the system coming into suspend mode when screen is closed, 



 

24 

 

the partial wakelock [27], which is a power management feature of Android 

system, should be acquired. The wakelock acquirement also can be done 

through the sysfs file system.  

 CPU idle: In the Battery Use, it is defined as the power consumed while 

screen is closed. With power button on the Dev 1, it is easy to turn off the 

screen. 

 Phone call: The power of making a call can be measured by the average 

power during the call and excluding the other basic power. 

Process-related 

 GPS working: For the purpose of getting the GPS working power, the 

Android application, GPSTest, is created to activate the GPS hardware 

resource. 

 CPU working: CPU_busy which contains the infinite for-loop is used to 

stress the CPU hardware resource separately. 

Table 4 compares the power tables from three sources. The default power table is 

the raw data from Android source code and the reconstructed table is rebuilt with our 

manner. The most energy consuming hardware is the radio component during the 

phone calls. Moreover, the screen backlight under maximum brightness level and the 

working GPS consume more power than the busy CPU.. 

Table 4. Power table values comparison. 

Category Energy Item Power Weight Coefficient 
Default 

(mA) 

Reconstructed 

(mA) 

System-basic 

Wi-Fi basic wifi
bP  0.1 22.68 

Radio basic radio
bP  0.1 3.27 

Screen backlight max
btP  0.1 134.87 

Screen basic screen
bP  0.1 38.48 

CPU idle cpu
bP  0.1 1.45 

Phone call radio
wP  1 204.94 

Process-related 

CPU working cpu
wP  0.2 84.08 

GPS working gps
wP  1 104.99 

Networking byte
netE  0.1 N/A 
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5.2 Wi-Fi Formulas Creation on Dev 1 

Form the evaluation results, the estimation errors of test scenarios involving 

Wi-Fi networking always exceed predefined error ratio threshold (10%). As the result, 

the original Wi-Fi estimation formula is recognized as the faulty formula. Therefore, 

the goal is to create the new estimation formula for the Wi-Fi module on Dev 1. 

 

(a) Power consumption while receiving a packet in PS.     (b) Power consumption in PS and AM.  

Fig. 7. Power consuming behavior of Wi-Fi interface. 

From observations on Dev 1, the energy consumed by the Wi-Fi module 

correlates closely with operation modes and packet transmission time ( txT ) standing 

for receiving time and sending time. In Fig. 7, the power consumption is captured 

from the power line of battery while receiving packets. The length of power pulse, in 

Fig. 7(a), closely depends on the time receiving a packet. Fig. 7(b) depicts dramatic 

difference in power consumption between power saving mode (PS) and active mode 

(AM) under the same data rate. The obviously difference is that, in AM, the Wi-Fi 

module consumes an active energy from active power ( acP ) inherently.  

In the experiment, txT  is taken as the energy predictor for the Wi-Fi module. 

The general regression equation of the module is formulated as  

tx

wifi TccE  10
ˆ .          

In order to produce different lengths of packet transmission time, user datagram 
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protocol (UDP) packets in different sizes are transmitted with several data rates, e.g. 

54 Mbps and 11 Mbps. The linear regression analysis is launched for sending and 

receiving packets in the two operation modes individually. The results are shown in 

Fig. 8 and summarized in Table 5. In Fig. 8, the high correlation coefficient ( r ) of 

each line proves the liner property between transmission time and energy 

consumption of the Wi-Fi module. 

 

(a) Regression of receiving and sending in PS.          (b) Regression of sending packet in AM. 

Fig. 8. Linear regression of Wi-Fi module in operation modes. 

In AM, because the receiving power approximately equals acP , receiving the 

packet consumes no additional energy on the Wi-Fi module excluding active energy. 

Therefore the receiving energy of AM is omitted from the regression analysis and 

estimated simply with Wi-Fi active energy ac
wifiÊ

 
shown in Table 5. The value of 

acP  is retrieved as 165.81 mA by measuring the power difference between the two 

modes. 

In Fig 8(a), because the sending slope is two times steeper than the receiving 

slope, it implies that sending one byte consumes more energy than receiving two 

bytes in PS. Moreover, additional energy for listening to the beacons and sending the 

polling control packet [19] (PS-Poll) makes the constant coefficient of the receiving 

line bigger than the sending line. Finally, the comparison between the sending line in 
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Fig. 8(a) and (b) suggests that sending packets consumes less energy in AM than in 

PS. 

Table 5. Linear regression results summarization. 

Mode  
 

Energy Estimation Function (uAh) 

PS recv 155057.022337.70ˆ
_  recvrecvps

wifi TE  

 
send  021450.025099.169ˆ

_  sendsendps
wifi TE  

AM recv  
acacac

wifi TPE ˆ
 

 

 
send  

acacac
wifi TPE ˆ

 

058923.0761373.54ˆ
_  sendsendac

wifi TE  

recvps
wifi

sendps
wifi EE __

ˆ/ˆ : The sending/receiving energy estimation in PS. 

sendrecv TT / : The sending/receiving time of a packet. 

ac
wifiÊ : The estimated energy consumed by acP . 

acT : The time duration while Wi-Fi module works in AM 

sendac
wifiE _

ˆ : The sending energy estimation in AM 

With per-process traffic logging, the estimated transmission energy, e.g. 

sendps
wifiE _

ˆ , easily relates to the corresponding processes transmitting the packets. 

Because the policy of switching into AM is related to packet count, the estimated 

active energy ac
wifiÊ

 
is shared propositionally according to the sending and receiving 

packet counts of processes. 

5.3 Wi-Fi Power Daemon Implementation on Dev 1 

For logging networking traffic, the socket layer of Android Linux kernel is 

modified slightly. In the layer, a list of recorders, which count traffic volume for each 

process, is created. In fact that some of the networking traffic does not consume the 

resource of the Wi-Fi module in the case of inter process communication (IPC). Thus, 

for excluding the IPC traffic from statistic, the packets with the local address, e.g. 

127.0.0.1, are filtered out by a blacklist. The translation between the traffic volume 

and desired transmission time is achieved through the data rate information retrieved 



 

28 

 

directly from the Wi-Fi driver. 

AppApp

Socket

TCP/UDP

IP

Data Link

Wi-Fi Driver

Wi-Fi Power 

Daemon

proc

Traffic Info

Pkt Count 

Info

Data Rate 

Info

Log Info

Network Traffic

Kernel Space

User Space

 Log File

 

Fig. 9. Wi-Fi power daemon implementation. 

In the Wi-Fi driver, the policy of switching the operation modes is the count of 

the packets transmitting through the Wi-Fi module. If the packet count is more than 

fifteen in a second, the Wi-Fi module automatically switches into AM. If the packet 

count is less than eight in a second, the module will return to PS from AM. Therefore, 

in order to predict the operation modes for Wi-Fi module, the packet count 

information is captured from the data link layer.  

In our implementation, as shown in Fig. 9, Wi-Fi power daemon is created in C 

language to reduce the performance overhead of Java virtual machine; the proc [28] 

files are created for shipping the information from kernel space to user space. The 

Wi-Fi power daemon calculates the energy consumption of the Wi-Fi module for each 

process and logs the results into a file once per second. In order to integrate the logs 

of Battery Use and Wi-Fi power daemon, a log parser is created to combine the two 

logs with the timestamps labeled on each energy record. 
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Chapter 6. Evaluation Studies 

In this chapter, an evaluation framework is designed to verify the correctness of 

the energy estimation result. Moreover, the energy consumption of five evaluation 

scenarios is profiled in process level for case studies. In all the scenarios, the 

processes or hardware components dominate the energy consumption will be found 

out. Moreover, the ratios of networking energy to computing energy are examined in 

networking related scenarios. 

6.1 Evaluation Framework 

DAQ

Energy Measurement

Result

Energy Estimation

Result

B
attery

Energy 

Sampler

Log Parser

Battery Use
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Power line

USB data line
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Log #2
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(802.11 b,g)

Web/File Server  

Fig. 10. Power consumption evaluation framework. 

In order to evaluate the energy estimation result, the energy measurement shall 

be performed for reference. In this work, DAQ, NI cDAQ-9172 [29], with a current 

probe, LEM PR30 [30], is chosen for measuring the energy consumption from the 

power line extended by us between the battery and Dev 1, as shown in Fig. 10. In our 

experiments, Dev 1 is configured in the minimum brightness level and the SIM card is 

omitted. For a clean networking environment, the Wi-Fi access point (AP) and the 

server with FTP, ProFTPD, and web, Apache, service forms a local network. Dev 1 is 

configured to transmit networking traffic only through the Wi-Fi module. 

On the host machine, the energy sampler logs two thousand energy records from 
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DAQ into the energy measurement result every second. On the other hand, the energy 

estimation result is produced from the energy estimation daemons, i.e. Battery Use 

and Wi-Fi power daemon, running on Dev 1. While the profiling time, the energy 

sampler and the energy estimation daemons generate the measurement and the 

estimation logs concurrently. In the analysis time, the log parser processes the energy 

estimation logs migrated from Dev 1 for the energy estimation result. The accuracy of 

the energy estimation result is judged with the error ratio ( err ), which is defined as  

%100/  meameaesterr , 

where est  is the energy estimation result, and mea  is the energy measurement 

result. The smaller err  is, the more accurate est  will be.  

For accuracy comparison, the full-system modeling solution presented in [23] is 

also implemented and the total system energy is estimated by  

netdiskmemcpudev uEuEuEuEP  )456.3()515.2()728.1()467.8(067.01
, 

where cpuu  is CPU utilization in percentage, memu  is sum of data and instruction 

cache miss count in kilo-time per second, disku  is number of read and write sectors, 

and netu  is sum of send and receive traffic volume in kilo-byte per second. However, 

the full-system modeling solution does not provide the energy consumption 

information of processes and hardware components. 

Table 6 summarizes the average error ratios and the standard deviations over five 

experiment iterations. In the table, full-system results are energy consumption 

estimated by the full-system modeling solution and the two-phase results are the 

energy estimation created by Battery Use and Wi-Fi power daemon. Because of 

different estimation errors of hardware energy estimation formulas, the error ratios of 

the two-phase result don’t keep consistent among the five scenarios. However, the 
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estimation accuracy of two-phase results is guaranteed because all the error ratios are 

below 10%. On the contrary, the full-system modeling solution only performances 

well in CPU intensive and FTP download scenarios. It may result from that the four 

predictor variables of full-system estimation formula can not exactly model the 

energy consumption behaviors of the embedded devices including plenty of hardware 

components. 

Table 6. Error ratio comparison under five scenarios. 

 

Without Networking With Networking 

System 

Idle 

CPU 

Intensive 

Web 

Browsing 

FTP 

Download 

FTP 

Upload 

Full-system Mean 24.60% 9.04% 25.80% 6.52% 34.78% 

Standard 

Deviation 
2.31 2.28 1.78 1.49 0.46 

Two-phase Mean 4.79% 7.39% 9.16% 2.82% 4.74% 

Standard 

Deviation 
2.47 1.10 1.84 1.07 0.72 

6.2 Evaluation Scenarios without Networking 

System Idle Scenario 

  

(a) Estimation evaluation in system idle scenario.  (b) Energy profiling in system idle scenario. 

Fig. 11. Energy consumption under system idle scenario. 

 In this scenario, the idle system of Dev 1 is measured for four minutes. Fig. 11(a) 

shows that the energy estimation accuracy of the two-phase result is guaranteed by a 

small average error ratio of 4.79%. Fig. 11(b), the pie chart depicts the energy 

decomposition in process level under the scenario. From the figure, the energy 

consumption of Dev 1 is dominated by display energy (97%) which includes the 
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energy consumed by the screen backlight and the LCD panel. According to the power 

table, Table 4, the backlight in minimum brightness is expected to consume 28% of 

display energy, while the screen panel consumes 72 % of the energy. However, the 

overhead of profiling tool is minute, because Battery Use denoted as BU only 

consumes 2% of total energy in Fig. 11(b). 

CPU Intensive Scenario 

  

(a) Estimation evaluation in CPU intensity scenario.  (b) Energy profiling in CPU intensity scenario. 

Fig. 12. Energy consumption under CPU intensity scenario. 

 BenchmarkPi, which calculates the approximate value of Pi, is a CPU intensive 

application installed from the Android market. In the experiment, the BenchmarkPi is 

executed once and twice separately in the first and the second minute. The accuracy of 

energy estimation is held with average error ratio of 7.39%. Fig. 12(b) shows that 

BencharmkPi consumes considerable energy (41%) on CPU and the display energy 

(54%) still dominates energy consumption of Dev 1 in the case. 
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6.3 Evaluation Scenarios with Networking 

Web Browsing Scenario 

  

(a) Estimation evaluation in web browsing scenario.  (b) Energy profiling in web browsing scenario. 

 

(c) CPU and Wi-Fi module energy consumption of browser and FTP client. 

Fig. 13. Energy consumption under web browsing scenario. 

 In the following and in the pie charts, the Wi-Fi power daemon is showed as 

WPD for short. The test web pages located in our web server are copied from the 

Yahoo Taiwan website. During five minute experiment, the web page is bowered by 

Android default browser every forty seconds. In the Fig. 13(a), the estimation result 

closely matches to the measurement result with an average error ratio of 9.16%. In Fig. 

13(b), again, the energy profiling tools consume negligible energy because BU 

together with WPD takes a small portion of energy consumption. The energy 

consumed by the browser is identical to the display energy. Besides, keeping the 

Wi-Fi module active also consumes 17% of total energy. Because the test web pages 
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contain JavaScript which busies the CPU, the browser consumes more energy on the 

CPU (58%) than on the Wi-Fi module (42%) in the scenarios, as shown in Fig. 13(c) 

File Transmission Scenarios 

  

(a) Estimation evaluation in FTP download scenario.  (b) Energy profiling in FTP download scenario. 

  

(c) Estimation evaluation in FTP upload scenario.    (d) Energy profiling in FTP upload scenario. 

Fig. 14. Energy consumption under file transmission scenarios. 

 In this experiments, a 90 MB file is transmitted between Dev 1 and the file server 

by a FTP client, AndFTP, Fig. 14(a) and (c) soundly shows the high accuracy of the 

two-phase results with average error ratios below 5%. Because sending packets 

consumes more energy than receiving packets, file upload application is more energy 

consuming than file download. From Fig. 14(b) and (d) the FTP client, andftp, is 

consumes about 70% energy of Dev 1 under the two scenarios. Counter to the web 

browser, the FTP client consumes more energy on Wi-Fi networking than on CPU 

computing, as shown in Fig. 13(c). 
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Chapter 7. Conclusion and Future Works 

This thesis proposes the two-phase calibration approach to adjust the faulty 

energy estimation results in process level on off-the-shelf product. The first phase 

reconstructs the power table for the DUT, and the second phase further creates the 

formula to replace faulty one with linear regression analysis.  

In all case studies, the accuracy of energy estimation is evaluated with the error 

average ratios proven below 10%. Even better, the average error ratios of our 

calibrated results exhibit less than 5% under the file transmission scenarios. Moreover, 

we further show that two-phase results are more accurate than full-system results from 

1.2 to 7.3 times 

From the case studies, we observed that the energy consumption of display 

energy takes a lot portion of total energy consumption especially when the system is 

idle; keeping the Wi-Fi module active also consumes a considerable energy. Besides, 

on Wi-Fi module, sending 1 byte consumes more energy than receiving 2 bytes in 

power saving mode. 

Finally, the overhead of our implementation, Wi-Fi power daemon and Battery 

Use, is proven with minor overhead below 3% upon the total energy consumption. 

Because of the lack of estimation formulas for video hardware decoder, the 

energy profiling of video applications are not included in the evaluation scenarios. 

Therefore, the future extension of this work includes taking energy hungry video 

hardware decoder into account and profiling the energy consumption of the video 

applications, e.g. YouTube. Besides, the problem for discovering multiple faulty 

formulas also has to be addressed because there are usually multiple faulty formulas 

on the DUT simultaneously. 
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