

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

程序層級上耗電參數與公式的校正

Calibrating Parameters and Formula for Process-level Energy

Consumption Profiling

研 究 生：尤云千

指導教授：林盈達 教授

中 華 民 國 九 十 九 年 六 月

程序層級上耗電預估參數與公式的校正

Calibrating Parameters and Formula for Process-level Energy

Consumption Profiling

研 究 生：尤云千 Student：Yun-Chien Yo

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2010

Hsinchu, Taiwan

中華民國九十九年六月

I

程序層級上耗電預估參數與公式的校正

學生: 尤云千 指導教授: 林盈達

國立交通大學資訊科學與工程研究所

摘要

搭載電池的移動式裝置經常受到能源上嚴格的限制。程序階級上的耗能分析

工具可以找出系統中最耗能源的程序，並且可以仔細地分析出個別硬體元件的耗

能情形。利用這樣的工具，軟體開發工程師可以分析與微調各程序的電能消耗，

藉此來提高電池的使用時間。不過這種耗能分析工具經常綁定特定的硬體，所以

需要為各個硬體平台來做耗能分析工具的校正。此外，對於新加入的硬體元件也

需為其創造新的耗能預估公式。這篇論文提出一個兩階段式的方法來校正產品上

的耗能分析工具。第一階段利用數位電表來重新建立屬於新產品的耗能功率表。

第二階段則是使用線性回歸分析來創造新的耗能預估公式。在五種情境下驗證的

結果顯示，經過我們校正之後耗能分析工具的預測錯誤率都低於 10%。此外，我

們發現 FTP上傳與下載的程序雖然消耗的電能不同，但是花在 CPU計算與網路傳

輸的耗能比例卻是一樣的。

關鍵字: 耗能分析，耗能預估校正，Android

II

Calibrating Parameters and Formula for Process-level Energy

Consumption Profiling

Student: Yun-Chien Yo Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

The battery-powered mobile devices get tight constrains on energy resources.

The process-level energy profiling tools can identify the most energy-consuming

process and detail the energy usages of each hardware component. With the help of

energy profiling tools, programmers can fine-tune the energy consumption of

processes to improve the battery lifetime. However, the profiling tools are highly

hardware dependent and therefore require to be calibrated for each hardware platform.

Besides, new energy estimation formulas need to be created for new hardware

components. In this thesis, a two-phase calibrating approach is proposed to handle the

two issues on off-the-shelf product devices. The first phase reconstructs the power

table with a power meter, and the second phase creates new energy estimation

formulas with the linear regression analysis. The accuracy of the calibrated tool is

evaluated under five scenarios with the error ratios proven below 10%. Moreover, the

energy consumption of FTP upload and download processes is different but the ratio

of CPU computing energy to networking energy is the same.

Keywords: energy profiling, energy estimation calibration, Android

III

Contents

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. BACKGROUND .. 4

2.1 Spectrum of Energy Consumption Studies .. 4

2.2 Energy Consumption of Wireless Network Interface .. 7

2.3 Battery Use in Android Systems .. 8

CHAPTER 3. PROBLEM STATEMENT .. 11

3.1 Terminologies .. 11

3.2 Problem Description .. 11

CHAPTER 4. TWO-PHASE CALIBRATION APPROACH ... 14

4.1 Calibration Approach Overview .. 14

4.2 Power Table Reconstruction .. 16

4.3 New Formula Creation .. 17

4.4 Example Run of Two-phase Calibration .. 21

CHAPTER 5. IMPLEMENTATION ON ANDROID DEV 1 ... 23

5.1 Power Table Reconstruction on Dev 1 .. 23

5.2 Wi-Fi Formulas Creation on Dev 1 ... 25

5.3 Wi-Fi Power Daemon Implementation on Dev 1 .. 27

CHAPTER 6. EVALUATION STUDIES ... 29

6.1 Evaluation Framework .. 29

6.2 Evaluation Scenarios without Networking .. 31

6.3 Evaluation Scenarios with Networking ... 33

CHAPTER 7. CONCLUSION AND FUTURE WORKS.. 35

IV

List of Figures

Fig. 1. Energy estimation overview. .. 2

Fig. 3. Architecture of Android system. .. 9

Fig. 4. Backlight energy consumption behaviors of smartphones. ... 14

Fig. 5. Tow-phase calibrating flowchart. .. 16

Fig. 6. Example run of two-phase calibration. ... 21

Fig. 7. Power consuming behavior of Wi-Fi interface. .. 25

Fig. 8. Linear regression of Wi-Fi module in operation modes. .. 26

Fig. 9. Wi-Fi power daemon implementation. .. 28

Fig. 10. Power consumption evaluation framework. ... 29

Fig. 11. Energy consumption under system idle scenario. ... 31

Fig. 12. Energy consumption under CPU intensity scenario. ... 32

Fig. 13. Energy consumption under web browsing scenario. .. 33

Fig. 14. Energy consumption under file transmission scenarios. .. 34

V

List of Tables

Table 1. Comparison of software energy profiling tools. ... 7

Table 2. Default energy estimation formulas in Battery Use. ... 10

Table 3. Terminology definitions. .. 11

Table 4. Power table values comparison. .. 24

Table 5. Linear regression results summarization. .. 27

Table 6. Error ratio comparison under five scenarios. .. 31

1

Chapter 1. Introduction

The processing speed of microchips doubles every two years, i.e., Moore’s law

[1], while the battery capacity only doubled in the last ten years [2]. Battery-powered

mobile devices, such as smartphones, with plenty of computing-intensive applications,

e.g. music play program and GPS navigation, and energy-hungry peripherals, e.g.,

screen and Wi-Fi module, especially suffer from the shortage of energy budgets.

Because of the lack of accurate energy profiling tools on product devices, application

programmers are usually good at performance optimization but relatively lack sense

of energy fine-tuning. As the result, the energy profiling tools are demanded and

studied over the past several years.

Related works studying energy consumption of a system can be classified into

three approaches: measurement approach, simulation approach, and estimation

approach. Measurement approach measures energy consumption with digital power

meters directly. One can either sample total power under different configuration

factors, e.g. processor frequency, to identify the influence of such the factors on

system power consumption [3], or probe all hardware components simultaneously to

get energy consumption of each component in detail [4-6]. Furthermore, mapping the

measured energy consumption onto running processes helps programmers detect

energy-hungry code regions [7-10]. Simulation approach creates virtual hardware

platforms to simulate energy consumption behavior for energy profiling [11-12].

Based on system resource utilization gathered from the hardware emulator, the energy

consumption of the simulated platform can be calculated. Estimation approach is

similar to simulation one except it collects the resource utilization information from

kernel and log daemons at profiling time. Some researches based on this approach

achieve software energy profiling [13-14] and online power-saving adaptation [15-16]

without the need of power meters.

2

Measurement approach is intuitive and accurate. However, a product device for

costing down and size reduction usually removes the reserved pins required for power

meters. Developing an energy-aware simulator for every new hardware platform is

also impractical. As a result, the estimation approach becomes a complementary

solution for software energy profiling on product devices.

 (a) Concept of energy estimation. (b) Faulty energy estimation of file download.

Fig. 1. Energy estimation overview.

Fig. 1(a) depicts the profiling concept using the energy estimation model, which

contains two components: energy estimation formulas and power table. The

estimation formulas model energy consumption behaviors of hardware components,

and the power table contains the power weight coefficients of the formulas. While the

profiling time, each record of resource utilization is logged for calculating the energy

consumption of each process on hardware components. For example, in Fig. 1(a), the

CPU utilization, CPU_time, logged for the profiled process is 5 ms. According to the

CPU energy estimation formula and the power weight coefficient, CPU_power, the

CPU energy consumed by profiled process is 50 nJ.

Although the estimation approach looks into process level on product devices

without power meter support, the energy estimation formulas and the power table are

heavily hardware dependent. Therefore, default power table in primitive source code

of an energy estimation program, e.g. Android Battery Use (BU), has to be

customized for a device under test (DUT) first. Besides, in a porting procedure, faulty

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5

En
e

rg
y(

u
A

h
)

Time(minute)

DAQ

BU

3

energy estimation formulas harming the estimating accuracy seriously also have to be

addressed. Fig. 1(b) shows a dramatic discrepancy between the energy estimation of

BU and the energy measurement of Data Acquisition (DAQ) [17], where X axis

denotes the n-th minute and Y axis denotes aggregate energy consumed in the minute.

The inaccurate estimation results from the faulty energy estimation formula for the

Wi-Fi module in the primitive source code.

In this work, on product devices, a two-phase calibration approach is proposed to

calibrate the default power table parameters and the faulty energy estimation formulas.

The first phase focuses on reconstructing the power table and the second phase details

creating estimation functions for target hardware components. Our approach evaluates

on Android smartphones, i.e. gphone, because of the open source characteristics of

Linux kernel and Android application framework.

The rest of this thesis is organized as follows. Chapter 2 reviews the ways to

investigate energy consumption on variant devices and introduces the Android

framework together with the built-in energy estimation program, Battery Use. Beside,

the energy consumption studies about WLAN interface is included for the background

of system implementation. Chapter 3 states terminologies and problem statements.

Chapter 4 describes the concept of our approach, two- phase calibration, along with

an example run. Chapter 5 shows the detail operation procedures and the system

implementation on an Android product device. Chapter 6 presents the evaluation

results, and finally, chapter 7 concludes the thesis.

4

Chapter 2. Background

This chapter investigates the spectrum of energy consumption studies, introduces

the energy consumption behaviors of WLAN interface, overviews the experiment

Android platform together with our evaluation target, Battery Use.

2.1 Spectrum of Energy Consumption Studies

Seven methods of the measurement and estimation approaches are introduced.

For distinction, hardware and software energy consumption are discussed separately.

The relationship between software and hardware energy consumption is analogous to

the commerce in a market, as shown in Fig. 2. DUT and hardware components on it

are analogous to a market and stores in the market separately. Processes running on

the DUT are likened to persons spending in the market.

Total energy measurement

Hardware Software

Market revenue Personal spending

Power consumption

Daily life expense

Component energy measurement

Subtractive method Counting resource utilization Hybrid estimation

Sampling CPU occupation Concurrent measurement

Total revenue statistic

Income of store Amount of spending

Count of spending

roughdetailed detailed

Measurement approach Estimation approach

Fig. 2. Spectrum of energy consumption studies.

Hardware Energy Consumption

Based on the resolution of energy breakdown, the three methods, total energy

measurement, subtractive method, and component energy measurement, are

generalized.

Total energy measurement, which observes the energy consuming behaviors

from the total energy consumption, is like examining the business status from the total

5

revenue of the market. On handheld computers, Assim [3] measured the total energy

consumption in different system configurations, and showed that energy consumption

of display, processor, and Wi-Fi module plays important roles in determining battery

lifetime.

Subtractive method roughly identifies the component-wide energy consumption

by comparing energy consumption differences in variant hardware status. Component

energy measurement simultaneously probes on each hardware component to sample

the energy consumed by the components and can be illustrated with setting up invoice

machines to keep track of incomes for each store. On portable computers, Bai and Lin

[5] presented the energy measurement method for hardware components with the

small resisters. Mahesri and Vardhan [6] measured energy consumption of main

hardware components on IBM laptop. Mahesri and Vardhan’s study concluded that

the power consumed by CPU and display, again, dominates the power consumption of

laptop; and the hardware components, i.e. disk drivers, consume large energy only in

the working state.

Software Energy Consumption

According to the accuracy of energy attribution, the methods for examining

software power consumption are classified into four methods, i.e. sampling CPU

occupation, counting resource utilization, hybrid estimation, and concurrent

measurement.

In practice, sampling CPU occupation samples total energy with an external

power meter. In order to map the measured energy onto the processes running on the

DUT, the meter also triggers the logs of a program counter (PC) and a process

identifier (PID) for each energy record. In the analysis time, the energy record can be

attributed to the exactly one process according to the PC and the PID. Because the

energy-to-process mapping only depends on CPU occupation, the inaccurate energy

6

attribution is raised by concurrent energy consumption of hardware components. With

this manner, PowerScope [7] is the most famous tool for discovering the

energy-hungry code regions. Chang et al. [8] replaced the time-driven sampling

approach of PowerScope with an energy-driven sampling approach to improve

accuracy of energy attribution. ePRO [9] integrates energy and performance profiling

into a convenient tool with well-defined user interface.

In order to trace software energy consumption on each hardware component,

counting resource utilization method counts resource requests for each process. The

counts of resource requests can be translated into energy consumption using the

energy estimation model mentioned in the chapter 1. For daily life analogy, the

method works like counting each kind of receipts for personal spending estimation. In

[15], pTop estimates component-wide energy consumption for each process on laptop

and provides programming interface for designing energy-aware applications.

ECOSystem [16] counts resource utilization and allocates energy budgets among

competing tasks carefully to extend battery lifetime.

Hybrid estimation method is a derivation of counting resource utilization and

sampling CPU occupation. In practice, some of the resource utilization can be counted

easily, e.g. disk I/O, while the other resource utilization is hard to be counted on the

DUT, e.g. memory access. The energy consumed by the countable resources is easy to

be estimated, while the residual energy escaped from estimation shall be shared

proportionally according to the CPU occupation. Using the hybrid estimation method,

PowerSpy [14] roughly distinguishes the battery energy consumed by threads and

some hardware components.

Concurrent measurement embeds energy sensors on hardware components to

trace energy utilization simultaneously. For accurate energy attribution, it introduces a

sophisticated manner for synchronizing the multisource energy samples and the

7

system events. For analogy, it is like keeping track of each spending for persons in the

stores. The amount spending of a person can be calculated by summing up the price of

his or her bills. Xian et al. [10] proposed an accurate energy attribution which raises

the accuracy by up to 90% over sampling CPU occupation. Table 1 summarized the

comparisons of tools for software energy profiling. This thesis focuses on calibrating

the energy estimation tools of counting resource utilization method by handling the

two hardware dependent drawbacks.

Table 1. Comparison of software energy profiling tools.

Method Tool Level Features Drawbacks

Sampling CPU

occupation

PowerScope

[7]

Function Energy hotspots

detection.

 High overhead when

high sample rate.

 Rough energy

attribution.

 No component-wide

energy breakdown.

ePRO [9] Function Performance and

energy profiling

 Fine energy debugging

UI.

Counting

resource

utilization

pTop [15] Process Energy-sensitive

process management

 Hardware dependent

power table.

 Hardware component

dependent estimation

formulas.

Battery Use Process Many hardware

components

consideration.

Hybrid method PowerSpy

[14]

Thread Energy detection from

battery.

2.2 Energy Consumption of Wireless Network Interface

The energy efficiency of WLAN interface is a significant issue especially for

battery-powered mobile devices. Therefore, for a clean image of power consumption

behaviors, M. Stemm and R. Katz [18] measured the power consumption on four

distinct interfaces. They concluded that power consumption of receiving packets

almost equals the power consumption of idle network interface, and sending packets

cost more power consumption than receiving packets. Ebert et al. [19] further studied

on the influence of packet size, transmission rate, and RF power level on power

consumption of 802.11 standard network interfaces. In an identical RF channel, Ebert

et al. showed that higher RF power level results in more power consumption on the

interface. On the other hand, the packet size and the transmission rate play minor roles

8

in power consumption. For mathematical analysis, L. M. Feeney and M. Nilsson [20]

characterize the energy consumption of an IEEE 802.11 wireless network interface

operating in an ad hoc mode as simple linear formulas. However, the work did not

include the discussion of power saving mechanism, which contains two distinct

operation modes, power saving mode (PS) and active mode (AM). In PS, the interface

awakes from the sleep state only for beacon packets periodically and consumes a little

energy. On the contrary, in AM, the interface keeps active in the idle state for handling

instantaneous packet transmission, so it consumes an additional power inherently. In

[21], C. Rohl et al. simulate the power saving mechanism of an IEEE 802.11 ad hoc

wireless network. From the simulation, they also identified the figures for optimum

beacon intervals an ATIM window sizes.

2.3 Battery Use in Android Systems

At the end of 2008, Android, a new software platform for smartphones, was

released by Google. The market share of Android is expected to keep growth in the

next few years [22].

Android Framework

Android takes Linux kernel as hardware abstraction because it provides lots of

proven hardware drivers and sophisticated core operating system infrastructures

especially in the networking layers. Upon the OS, lightweight libraries, e.g., Bionic

libc, optimized for embedded system are exposed for native programming. Dalvik

virtual machine and core libraries, which provide most of the functionality for Java

programming, construct the runtime environment for Android applications.

Application framework contains several services to serve the user applications. Take

the advantage of Dalvik virtual machine and unified application framework,

applications can migrate between platforms seamlessly. According to the functionality

and performance consideration, each portion of Android is created in different

9

languages, as shown in Fig. 3.

Browser Battery Use

Application Layer

Application Framework

View System Activity Manager

Libraries Aneroid Runtime

Core Librarieslibc

OpenGL/ES
Dalvik Virtual

Machine

Binder Driver

Linux Kernel

Wifi Dirver
Power

Management

Java

C/C++

C/C++/Java

C

Fig. 3. Architecture of Android system.

Battery Use

Battery Use is an energy consumption estimation program which belongs to

counting resource utilization method and is embedded in Android system since

version 1.6. During system booting, the application framework starts a special service,

battery info, to take responsibility for the counting resource utilization. For the energy

consumption calculating, Battery Use raises the inter process communication (IPC) to

pull the data from the battery info service.

Table 2 summarizes the default energy estimation formulas and power weight

coefficients in Battery Use. In the table, each kind of the basic energy is energy

consumption used for keeping hardware component active and each kind of the

working energy results from that a hardware component works for one or many

processes. In the basic energy estimation formulas, R
bP is basic power consumption

of hardware component R , and R
bT is the time duration wherein the component is

active. Because there are many brightness levels, backlight energy estimation is

formulated in a summation form of multiple energy consumption instances. In the

estimation formulas of working energy, R
wP is working power and pR

wT , is the

10

duration wherein hardware component R is working for process p . The

networking energy estimation of process p is defined as a product of per byte

transmission energy byte
netE and total traffic volume including receiving packets

p
rcvV and sending packets p

sndV .

Table 2. Default energy estimation formulas in Battery Use.

Energy Item Estimation Formulas Power Weight Coefficient

Wi-Fi basic wifi
b

wifi
b TP wifi

bP

Radio basic radio
b

radio
b TP radio

bP

Screen basic screen
b

screen
b TP screen

bP

Screen backlight

I

ii

i
bt

i
bt TP i

btP

CPU idle cpu
b

cpu
b TP

cpu
bP

CPU working pcpu
w

cpu
w TP , cpu

wP

GPS working pgps
w

gps
w TP , gps

wP

Phone call radio
w

radio
w TP radio

wP

Networking)(p
snd

p
rcv

byte
net VVE byte

netE

11

Chapter 3. Problem Statement

3.1 Terminologies

Table 3 defines the common terminologies used in this thesis. Real energy

consumption of target hardware component T is TE and is estimated by
TÊ .

TÊ

is formulated by energy predictor variable
kf together with its power weight

coefficient
kc . For linear regression analysis, nI is the n-th input data set which

contains k values
1,nf

to

knf ,
for the predictor variable

1f
to

kf . Because
TE

is hard to be measured directly on product devices, apx
TE , the approximate value, is

taken in the regression analysis for creating a new estimation formula.

),,(1 mtotal TTE and),,(ˆ
1 mest TTE

denote the real energy and estimated energy of

hardware components from 1T to mT , respectively.

Table 3. Terminology definitions.

Term Definition

TÊ The energy estimation for the target hardware component T .

TE The real energy consumed by the target hardware component T .

apx
TE

The approximate energy consumption of

TE .

kf The energy predictor variable of
TÊ .

kc

The corresponding power weight coefficient of
kf .

nI

The n-th input data for the k energy predictor variables
kff 1

.

knf ,
The variable value of

kf in input data
 nI .

),,(1 mtotal TTE
The total energy measured by the power meter for the system where

hardware components
mTT 1 are active or working.

),,(ˆ
1 mest TTE The sum of calibrated energy estimation for mTT

EE ˆˆ 1 .

3.2 Problem Description

On produce devices, direct energy measurement on hardware component is not

possible because there are not reserved pins for probing. Moreover, there is no reason

to expect achievement of component-wide energy measurement which can only be

completed with evaluation boards. Therefore, in this work, energy consumption

12

measurement is only performed for the system total energy at the battery, and the

criterion for the evaluation procedures is based on the total energy instate of per

component energy bias. With this constrain, the following describes the calibration

problem statements.

Let the consumed energy TE for a component T be modeled as a linear

equation kk

T fcfccE 110.
ˆ

containing k energy predictor variables and k+1

power weight coefficients. 0c is the constant parameter and kc is the corresponding

coefficient of energy predictor variable kf . The thesis calibrates the faulty energy

estimation by solving two problems: default power table parameters and faulty energy

estimation formulas.

Problem statement 1: Default Power Table Parameters

The default power table parameters problem is to update the power weight

coefficients stored in the default power table, such that the estimation error

newc
TT

err EEE _
ˆ

between estimated energy consumption

kknewc
T fcfccE 110._

ˆ

and real energy is minimized.

Problem statement 2: Faulty Energy Estimation Formulas

The faulty energy estimation formulas problem is to model the energy

consumption for component T by creating a linear equation with

kknewf
T fcfccE 110._ 'ˆ ,

such that the estimation error

newf
TT

err EEE _
ˆ

13

between estimated energy consumption newf
TE _

ˆ and real energy is minimized.

14

Chapter 4. Two-phase Calibration Approach

This chapter details the two-phase calibration methodology on product devices.

The first phase reconstructs a power table for DUT and the second phase creates an

energy estimation formula for hardware components with regression analysis.

4.1 Calibration Approach Overview

Fig. 4. Backlight energy consumption behaviors of smartphones.

Most of similar DUTs contain similar hardware components. Taking the Android

smartphones for instance, they usually contain LCD screen, Wi-Fi module, radio

hardware and system on chip (SoC) processor with two cores, one is for radio signal

processing and another is for user applications. Because energy consumption heavily

depends on hardware components, equipping the similar hardware components

usually makes the DUTs follow resemble energy consumption behaviors. For example,

as shown in Fig. 4, the backlight power of the four smartphones keeps the similar

linearity between brightness levels and consumes stable energy within the brightness

levels. The main difference of the four lines is the slope which is related to the power

weight coefficient, 𝑃𝑏𝑡
𝑖 , in the screen energy estimation formula mentioned in

chapter 2. The observation above suggests that most of energy estimation models can

adapt to similar DUTs by updating power weight coefficients for each estimation

formula.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 7 14 21

P
o

w
e

r
(A

)

Brightness Level

i7500

Hero

Dev 1

MileStone

15

In practice of power table reconstructions, two categories of power consumption

are generalized: system-basic power and process-related power. The system-basic

power is used to activate hardware components. The process-related power is

consumed by hardware components which are working for processes. In our

definition, the energy consumption from the system-basic power belongs to the entire

system, while the energy consumption from the process-related power shall be

charged from the corresponding processes.

Even if hardware components of DUTs are similar, some of the energy

estimation formulas still cannot be successfully applied to the new DUT because of

the variant specification of hardware component T . In order to create new energy

estimation formulas to replace the faulty one, a linear regression analysis is

introduced to help modeling power consumption behaviors of T . However, on the

product DUT, real energy TE consumed by T is unable to be directly measured for

the regression analysis because there are no longer reserved pins for measurement.

Alternatively, approximate energy consumption apx
TE is presented for the

substitution of TE in the regression analysis. Finally, for the programmers’ convince,

the energy estimated by new formulas is mapped onto running processes for

process-level energy profiling.

Fig. 5 depicts the main flowchart of the two-phase calibration which contains the

estimation evaluation and the two calibrating phases, i.e. power table reconstruction

and new formula creation. The first phase, power table reconstruction, is divided into

two function blocks measuring the system-basic power and the process-related power

separately. Between the two phases, the estimation evaluation is used to feeding back

calibrated results. There are predefined test scenarios and a threshold (H) for

evaluation procedure. The calibrated tools will be tested by estimating energy

16

consumption of each test scenario. If one of the estimation errors is larger than the

threshold H , the procedure of second phase will be performed for further calibration.

In the thesis, the error ratio, defined in chapter 6, is chosen as the criteria. The second

phase, new formula creation, includes the creating of new estimation formulas and a

proportional manner used to distribute the estimated energy fairly.

Fig. 5. Tow-phase calibrating flowchart.

4.2 Power Table Reconstruction

System-basic power coefficient measurement

It is easy to obtain the system-basic power weight coefficient, e.g. 𝑃𝑏
𝑤𝑖𝑓𝑖 , by

measuring the difference of total power consumption while the hardware component

operates in different states. The most common case is to measure the power difference

between on and off states of hardware components. In other cases, multiple power

measurement is performed when the target component can be configured into several

17

operating states. For example, screen backlight can work in multiple brightness levels

and results different power consumption in the each level, as shown in Fig. 4.

Process-related power coefficient measurement

Because the process-related power, e.g. pcpu
wT , , depends on the hardware

resource utilization, a dedicated process is used to stress the hardware component. In

practice, the dedicated process should be chosen or designed carefully for stressing

only one hardware component at a time. For instance, the infinite for-loop can be used

to stress CPU hardware component with minimized memory accesses. The

process-related power can be refined by subtracting the total system-basic power from

the measured total power consumption. It is the reason why the process-related power

measurement shall follow the system-basic power measurement.

4.3 New Formula Creation

Discovering faulty formula

From the feedback of estimation evaluation, there may be a faulty estimation

formula which brings out the incorrect energy estimation results because of

containing wrong energy predictor variables or omitting significant predictor

variables, which characterize the unequal energy consumption behaviors for the new

DUT. Therefore, the faulty estimation formula always makes the faulty results on T ,

no matter how the power weight coefficients are modified. The following presents a

simple manner to discover the only one faulty formula on the DUT. Let there are m

estimation formulas each for a hardware component and there is only one faulty

formula among the estimation formulas. Under such situation, there can be
m

kC test

scenarios each involving k hardware components, where k is arbitrary variable and

smaller than m. During the evaluation under test scenarios, two false evaluations

scenarios can be found and both of them involve the faulty estimation formula. With

18

the cross-matching manner, the m joint formulas of both false evaluation scenarios

can be extracted. Based on the m formulas, the next loop is continued with
m

kC

test scenarios until the only one joint formula is discovered. At the end of the

discovering procedure, the only one joint formula is the faulty estimation formula.

Identifying energy predictor variables

For determining the energy predictor variables for T , a series of experiments

shall be held to observe the significant effect of each candidate energy predictor

variable
kf

on energy consumption. In each experiment, only one energy predictor

variable

can be examined with different variable values. Another possible way for

finding out the energy predictor variables is to take the advantage of proven results

from the papers which studied deeply on the power consumption behavior of T on

the similar hardware platform. However, this step is tough and requires the domain

knowledge of T for the energy predictor variable choice.

Forming linear formulas

As the assumption in [15, 23], it assumes that the linear property between hardware

resource utilization and energy consumption of T is held. Therefore, the estimation

equation is formulated in a summation form,

kk

T fcfccE 110.
ˆ ,

where
kf is the new energy predictor variable and

kc is its corresponding power

weight coefficients.

In order to train the unknown k+1 coefficients, the observation input data nI is

collected together with the instance of real energy consumption n
TE consumed by

T . For the convenience of regression analysis, the relationship of input data set F ,

the real energy consumption set Tn
TTTT EEE 21E , and power weight

19

coefficient set Tkccc 10C are compiled in a vector form

FCE T

where the matrix of input data set F is shown as

knn

k

k

n
ff

ff

ff

,1,

,21,2

,11,1

2

1

1

1

1

I

I

I

F .

In practice, the influence of energy predictor variables on energy consumption

shall not always be first-order. However, the leaner regression also can handle

formulas containing higher than first-order predictor variables, such like

2

22110.
ˆ fcfccET

.

The vector form for regression analysis can be denoted as

2

1

0

2

2,1,

2

2,21,2

2

2,11,1

2

1

1

1

1

c

c

c

ff

ff

ff

E

E

E

nnn
T

T

T

.

Launching linear regression analysis

Unfortunately, because the reserved pins for component-wide energy

measurement have been removed, the real energy TE cannot be measured directly

from hardware component T with power meter. The alternative is applying the

approximate energy consumption apx
TE

for TE . Assume there are totally m+1

active or working components during measuring the total energy and energy

estimation of m components performs well after the first phase calibrating. Therefore,

the apx
TE is calculated by a subtracting operation,

),...(ˆ),,...(11 mestmtotalapx
T TTETTTEE ,

where),...(ˆ
1 mest TTE is estimated total energy of m hardware components and

20

),,,(1 TTTE mtotal is measured total energy of m+1 hardware components.

In practice, the trick is that the calibrating procedure of T only can be

performed after the energy consumption of other involved hardware components can

be estimated. For instance, before calibrating energy consumption of the networking

module, the CPU energy consumption shall be estimated well because the networking

packages always consume the energy on CPU for network protocol processing.

Therefore, instate of T
E ,

 Tnapx
T

apx
T

apx
T

apx
T EEE ,2,1, E

is taken as the energy consumed by T for the regression analysis, where napx
TE , is

approximate value for n
TE . The solution of C is calculated as

 apxTTT
EFFFC

1

with the least square method [24].

Attributing energy proportionally

The final work is to map the energy consumption onto the related processes

causing it. Based on per-process information logging, each resource request on

hardware component T is counted in the profiling time. In the analysis time, the

estimated energy of the new created formula can be proportionally shared among the

corresponding processes fairly according to the request counts.

21

4.4 Example Run of Two-phase Calibration

Evaluation

Result
Fail

Scenario 1

T1

T

T2

T

T1

T2

Scenario 2 Scenario 3

Fail Pass

Hardware component

),,(21 TTTEtotal

),(ˆ
21 TTEest

apxET

 (a) Evaluation results under three scenarios. (b) Approximate energy consumption of T

Fig. 6. Example run of two-phase calibration.

Assume there are three hardware components, T , 1T , 2T , on a DUT which is a

product device without reserved pins for component-wide energy measurement, and

an energy estimation application is being calibrated for correct energy estimation on

the DUT. The application contains three estimation formulas, fault
TÊ , 1ˆ T

E , 2ˆ T
E , and

a default power table with null values. 1ˆ T
E estimates the system-basic energy of 1T ,

while fault
TÊ and 2ˆ T

E predict the process-related energy of T and 2T

respectively. In the first phase of the calibration procedure, the system-basic power

weight coefficient of 1ˆ T
E is retrieved with the manner of switching on and off 1T .

For the case of fault
TÊ and 2ˆ T

E , the desired process-related power weight

coefficients are measured with two dedicated programs stressing on T and 2T

individually.

 After the first phase, the calibrated tool is evaluated under three (3

2C) scenarios.

Each scenario involves different hardware components and the evaluation results are

shown in Fig. 6(a). With the cross-matching manner, because T appears on both of

the two failure scenarios, the fault
TÊ is identified as a faulty energy estimation

formula. The correct energy predictor variables of T are discovered from a series of

22

experiments and form a new formula new
TÊ . In order to regression analysis, the

energy consumption of T is on demand and approximated by apx
TE . In Fig. 6(b),

the energy consumption of 1T and 2T are correctly estimated by),(ˆ
21 TTEest after

the first phase calibration, and the total energy),,(321 TTTEtotal can also be measured

directly at the battery or the power supply. Finally, for the example of mapping

estimated energy onto processes, if in a time interval the energy estimated by new
TÊ

is Te and the usage count of hardware component T is 3 and 4 time units for the

processes 1P and 2P respectively. Then, the energy consumed by 1P on T is

estimated as 43/3 Te .

23

Chapter 5. Implementation on Android Dev 1

In this work, the Android Dev Phone 1 (Dev 1) [25] is taken as the DUT. The

goal of this chapter is to go through the two-phase calibration procedures for the

correct energy estimation of Battery Use on Dev 1.

5.1 Power Table Reconstruction on Dev 1

Power consumption of eight hardware components is measured in the thesis and

classified into the two categories, system-basic and process-related. The measurement

procedures for each hardware component are summarized as follows.

System-basic

 Wi-Fi basic: The Wi-Fi basic power is easy to be obtained by switching on

and off the Wi-Fi module with Android Setting application.

 Radio basic: The Airplane mode, which closes every wireless interface

including the phone radio, is utilized to switch the radio between on and off

state.

 Screen backlight: In the Android Linux, the sysfs file system [26], which is

able to set values into the kernel variables, is used to configure the screen

brightness. Because of the linearity of backlight power, as shown in Fig. 4,

the power difference between the maximum and minimum screen

brightness is measured and denoted as max
btP . Power consumption of other

brightness levels is calculated with the linear interpolation.

 Screen basic: The power consumed by LCD panel is obtained by measuring

the power difference between the screen on and off state. In practice, there

are two tricks of the screen basic power measurement. First, the screen

backlight shall be turned off with the manner mentioned above for

distinguishing the screen basic power from the backlight power. Second, in

order to avoid the system coming into suspend mode when screen is closed,

24

the partial wakelock [27], which is a power management feature of Android

system, should be acquired. The wakelock acquirement also can be done

through the sysfs file system.

 CPU idle: In the Battery Use, it is defined as the power consumed while

screen is closed. With power button on the Dev 1, it is easy to turn off the

screen.

 Phone call: The power of making a call can be measured by the average

power during the call and excluding the other basic power.

Process-related

 GPS working: For the purpose of getting the GPS working power, the

Android application, GPSTest, is created to activate the GPS hardware

resource.

 CPU working: CPU_busy which contains the infinite for-loop is used to

stress the CPU hardware resource separately.

Table 4 compares the power tables from three sources. The default power table is

the raw data from Android source code and the reconstructed table is rebuilt with our

manner. The most energy consuming hardware is the radio component during the

phone calls. Moreover, the screen backlight under maximum brightness level and the

working GPS consume more power than the busy CPU..

Table 4. Power table values comparison.

Category Energy Item Power Weight Coefficient
Default

(mA)

Reconstructed

(mA)

System-basic

Wi-Fi basic wifi
bP 0.1 22.68

Radio basic radio
bP 0.1 3.27

Screen backlight max
btP 0.1 134.87

Screen basic screen
bP 0.1 38.48

CPU idle cpu
bP 0.1 1.45

Phone call radio
wP 1 204.94

Process-related

CPU working cpu
wP 0.2 84.08

GPS working gps
wP 1 104.99

Networking byte
netE 0.1 N/A

25

5.2 Wi-Fi Formulas Creation on Dev 1

Form the evaluation results, the estimation errors of test scenarios involving

Wi-Fi networking always exceed predefined error ratio threshold (10%). As the result,

the original Wi-Fi estimation formula is recognized as the faulty formula. Therefore,

the goal is to create the new estimation formula for the Wi-Fi module on Dev 1.

(a) Power consumption while receiving a packet in PS. (b) Power consumption in PS and AM.

Fig. 7. Power consuming behavior of Wi-Fi interface.

From observations on Dev 1, the energy consumed by the Wi-Fi module

correlates closely with operation modes and packet transmission time (txT) standing

for receiving time and sending time. In Fig. 7, the power consumption is captured

from the power line of battery while receiving packets. The length of power pulse, in

Fig. 7(a), closely depends on the time receiving a packet. Fig. 7(b) depicts dramatic

difference in power consumption between power saving mode (PS) and active mode

(AM) under the same data rate. The obviously difference is that, in AM, the Wi-Fi

module consumes an active energy from active power (acP) inherently.

In the experiment, txT is taken as the energy predictor for the Wi-Fi module.

The general regression equation of the module is formulated as

tx

wifi TccE 10
ˆ .

In order to produce different lengths of packet transmission time, user datagram

0

0.1

0.2

0.3

1 6 11 16 21 26 31 36 41 46 51 56 61

P
o

w
e

r
(A

)

Time (0.5 mS)

0

0.1

0.2

0.3

0.4

0.5

1 501 1001 1501 2001 2501

P
o

w
e

r
(A

)

Time (0.5 mS)

Power Saving Recv Time Active Mode

acP

Beacon & PS-Poll ACK

26

protocol (UDP) packets in different sizes are transmitted with several data rates, e.g.

54 Mbps and 11 Mbps. The linear regression analysis is launched for sending and

receiving packets in the two operation modes individually. The results are shown in

Fig. 8 and summarized in Table 5. In Fig. 8, the high correlation coefficient (r) of

each line proves the liner property between transmission time and energy

consumption of the Wi-Fi module.

(a) Regression of receiving and sending in PS. (b) Regression of sending packet in AM.

Fig. 8. Linear regression of Wi-Fi module in operation modes.

In AM, because the receiving power approximately equals acP , receiving the

packet consumes no additional energy on the Wi-Fi module excluding active energy.

Therefore the receiving energy of AM is omitted from the regression analysis and

estimated simply with Wi-Fi active energy ac
wifiÊ

shown in Table 5. The value of

acP is retrieved as 165.81 mA by measuring the power difference between the two

modes.

In Fig 8(a), because the sending slope is two times steeper than the receiving

slope, it implies that sending one byte consumes more energy than receiving two

bytes in PS. Moreover, additional energy for listening to the beacons and sending the

polling control packet [19] (PS-Poll) makes the constant coefficient of the receiving

line bigger than the sending line. Finally, the comparison between the sending line in

27

Fig. 8(a) and (b) suggests that sending packets consumes less energy in AM than in

PS.

Table 5. Linear regression results summarization.

Mode

Energy Estimation Function (uAh)

PS recv 155057.022337.70ˆ
_ recvrecvps

wifi TE

send 021450.025099.169ˆ

_ sendsendps
wifi TE

AM recv
acacac

wifi TPE ˆ

send

acacac
wifi TPE ˆ

058923.0761373.54ˆ
_ sendsendac

wifi TE

recvps
wifi

sendps
wifi EE __

ˆ/ˆ : The sending/receiving energy estimation in PS.

sendrecv TT / : The sending/receiving time of a packet.

ac
wifiÊ : The estimated energy consumed by acP .

acT : The time duration while Wi-Fi module works in AM

sendac
wifiE _

ˆ : The sending energy estimation in AM

With per-process traffic logging, the estimated transmission energy, e.g.

sendps
wifiE _

ˆ , easily relates to the corresponding processes transmitting the packets.

Because the policy of switching into AM is related to packet count, the estimated

active energy ac
wifiÊ

is shared propositionally according to the sending and receiving

packet counts of processes.

5.3 Wi-Fi Power Daemon Implementation on Dev 1

For logging networking traffic, the socket layer of Android Linux kernel is

modified slightly. In the layer, a list of recorders, which count traffic volume for each

process, is created. In fact that some of the networking traffic does not consume the

resource of the Wi-Fi module in the case of inter process communication (IPC). Thus,

for excluding the IPC traffic from statistic, the packets with the local address, e.g.

127.0.0.1, are filtered out by a blacklist. The translation between the traffic volume

and desired transmission time is achieved through the data rate information retrieved

28

directly from the Wi-Fi driver.

AppApp

Socket

TCP/UDP

IP

Data Link

Wi-Fi Driver

Wi-Fi Power

Daemon

proc

Traffic Info

Pkt Count

Info

Data Rate

Info

Log Info

Network Traffic

Kernel Space

User Space

 Log File

Fig. 9. Wi-Fi power daemon implementation.

In the Wi-Fi driver, the policy of switching the operation modes is the count of

the packets transmitting through the Wi-Fi module. If the packet count is more than

fifteen in a second, the Wi-Fi module automatically switches into AM. If the packet

count is less than eight in a second, the module will return to PS from AM. Therefore,

in order to predict the operation modes for Wi-Fi module, the packet count

information is captured from the data link layer.

In our implementation, as shown in Fig. 9, Wi-Fi power daemon is created in C

language to reduce the performance overhead of Java virtual machine; the proc [28]

files are created for shipping the information from kernel space to user space. The

Wi-Fi power daemon calculates the energy consumption of the Wi-Fi module for each

process and logs the results into a file once per second. In order to integrate the logs

of Battery Use and Wi-Fi power daemon, a log parser is created to combine the two

logs with the timestamps labeled on each energy record.

29

Chapter 6. Evaluation Studies

In this chapter, an evaluation framework is designed to verify the correctness of

the energy estimation result. Moreover, the energy consumption of five evaluation

scenarios is profiled in process level for case studies. In all the scenarios, the

processes or hardware components dominate the energy consumption will be found

out. Moreover, the ratios of networking energy to computing energy are examined in

networking related scenarios.

6.1 Evaluation Framework

DAQ

Energy Measurement

Result

Energy Estimation

Result

B
attery

Energy

Sampler

Log Parser

Battery Use

H
ar

d
w

ar
e

S
o

ft
w

ar
e

Device Under Test Host Machine
Measurement

Machine

USB data line

Current

Probe
Power line

USB data line

Wi-Fi power

daemon

Log #1

Log #2

Dev l

AP

(802.11 b,g)

Web/File Server

Fig. 10. Power consumption evaluation framework.

In order to evaluate the energy estimation result, the energy measurement shall

be performed for reference. In this work, DAQ, NI cDAQ-9172 [29], with a current

probe, LEM PR30 [30], is chosen for measuring the energy consumption from the

power line extended by us between the battery and Dev 1, as shown in Fig. 10. In our

experiments, Dev 1 is configured in the minimum brightness level and the SIM card is

omitted. For a clean networking environment, the Wi-Fi access point (AP) and the

server with FTP, ProFTPD, and web, Apache, service forms a local network. Dev 1 is

configured to transmit networking traffic only through the Wi-Fi module.

On the host machine, the energy sampler logs two thousand energy records from

30

DAQ into the energy measurement result every second. On the other hand, the energy

estimation result is produced from the energy estimation daemons, i.e. Battery Use

and Wi-Fi power daemon, running on Dev 1. While the profiling time, the energy

sampler and the energy estimation daemons generate the measurement and the

estimation logs concurrently. In the analysis time, the log parser processes the energy

estimation logs migrated from Dev 1 for the energy estimation result. The accuracy of

the energy estimation result is judged with the error ratio (err), which is defined as

%100/ meameaesterr ,

where est is the energy estimation result, and mea is the energy measurement

result. The smaller err is, the more accurate est will be.

For accuracy comparison, the full-system modeling solution presented in [23] is

also implemented and the total system energy is estimated by

netdiskmemcpudev uEuEuEuEP)456.3()515.2()728.1()467.8(067.01
,

where cpuu is CPU utilization in percentage, memu is sum of data and instruction

cache miss count in kilo-time per second, disku is number of read and write sectors,

and netu is sum of send and receive traffic volume in kilo-byte per second. However,

the full-system modeling solution does not provide the energy consumption

information of processes and hardware components.

Table 6 summarizes the average error ratios and the standard deviations over five

experiment iterations. In the table, full-system results are energy consumption

estimated by the full-system modeling solution and the two-phase results are the

energy estimation created by Battery Use and Wi-Fi power daemon. Because of

different estimation errors of hardware energy estimation formulas, the error ratios of

the two-phase result don’t keep consistent among the five scenarios. However, the

31

estimation accuracy of two-phase results is guaranteed because all the error ratios are

below 10%. On the contrary, the full-system modeling solution only performances

well in CPU intensive and FTP download scenarios. It may result from that the four

predictor variables of full-system estimation formula can not exactly model the

energy consumption behaviors of the embedded devices including plenty of hardware

components.

Table 6. Error ratio comparison under five scenarios.

Without Networking With Networking

System

Idle

CPU

Intensive

Web

Browsing

FTP

Download

FTP

Upload

Full-system Mean 24.60% 9.04% 25.80% 6.52% 34.78%

Standard

Deviation
2.31 2.28 1.78 1.49 0.46

Two-phase Mean 4.79% 7.39% 9.16% 2.82% 4.74%

Standard

Deviation
2.47 1.10 1.84 1.07 0.72

6.2 Evaluation Scenarios without Networking

System Idle Scenario

(a) Estimation evaluation in system idle scenario. (b) Energy profiling in system idle scenario.

Fig. 11. Energy consumption under system idle scenario.

 In this scenario, the idle system of Dev 1 is measured for four minutes. Fig. 11(a)

shows that the energy estimation accuracy of the two-phase result is guaranteed by a

small average error ratio of 4.79%. Fig. 11(b), the pie chart depicts the energy

decomposition in process level under the scenario. From the figure, the energy

consumption of Dev 1 is dominated by display energy (97%) which includes the

0

200

400

600

800

1000

1200

1 2 3 4

En
e

rg
y(

u
A

h
)

Time(minute)

DAQ two-phase
Display

97%

BU
2%

system
1%

others
0%

32

energy consumed by the screen backlight and the LCD panel. According to the power

table, Table 4, the backlight in minimum brightness is expected to consume 28% of

display energy, while the screen panel consumes 72 % of the energy. However, the

overhead of profiling tool is minute, because Battery Use denoted as BU only

consumes 2% of total energy in Fig. 11(b).

CPU Intensive Scenario

(a) Estimation evaluation in CPU intensity scenario. (b) Energy profiling in CPU intensity scenario.

Fig. 12. Energy consumption under CPU intensity scenario.

 BenchmarkPi, which calculates the approximate value of Pi, is a CPU intensive

application installed from the Android market. In the experiment, the BenchmarkPi is

executed once and twice separately in the first and the second minute. The accuracy of

energy estimation is held with average error ratio of 7.39%. Fig. 12(b) shows that

BencharmkPi consumes considerable energy (41%) on CPU and the display energy

(54%) still dominates energy consumption of Dev 1 in the case.

0

500

1000

1500

2000

2500

1 2

En
e

rg
y(

u
A

h
)

Time(minute)

DAQ two-phase

Display
54%BU

1%

Benchm
arkPi
41%

system
4%

others
0%

33

6.3 Evaluation Scenarios with Networking

Web Browsing Scenario

(a) Estimation evaluation in web browsing scenario. (b) Energy profiling in web browsing scenario.

(c) CPU and Wi-Fi module energy consumption of browser and FTP client.

Fig. 13. Energy consumption under web browsing scenario.

 In the following and in the pie charts, the Wi-Fi power daemon is showed as

WPD for short. The test web pages located in our web server are copied from the

Yahoo Taiwan website. During five minute experiment, the web page is bowered by

Android default browser every forty seconds. In the Fig. 13(a), the estimation result

closely matches to the measurement result with an average error ratio of 9.16%. In Fig.

13(b), again, the energy profiling tools consume negligible energy because BU

together with WPD takes a small portion of energy consumption. The energy

consumed by the browser is identical to the display energy. Besides, keeping the

Wi-Fi module active also consumes 17% of total energy. Because the test web pages

0

1000

2000

3000

4000

1 2 3 4 5

En
e

rg
y(

u
A

h
)

Time(minute)

DAQ two-phase

Display
40%

Wi-Fi
baisc
17%

browser
39%

BU
0%

system
2%

WPD
0% others

2%

58% 26.5% 26.5%

42%

73.5%

73.5%

0

3000

6000

9000

12000

15000

18000

21000

Web Browse FTP upload FTP download

En
e

rg
y(

u
A

h
)

CPU Wi-Fi module

34

contain JavaScript which busies the CPU, the browser consumes more energy on the

CPU (58%) than on the Wi-Fi module (42%) in the scenarios, as shown in Fig. 13(c)

File Transmission Scenarios

(a) Estimation evaluation in FTP download scenario. (b) Energy profiling in FTP download scenario.

(c) Estimation evaluation in FTP upload scenario. (d) Energy profiling in FTP upload scenario.

Fig. 14. Energy consumption under file transmission scenarios.

 In this experiments, a 90 MB file is transmitted between Dev 1 and the file server

by a FTP client, AndFTP, Fig. 14(a) and (c) soundly shows the high accuracy of the

two-phase results with average error ratios below 5%. Because sending packets

consumes more energy than receiving packets, file upload application is more energy

consuming than file download. From Fig. 14(b) and (d) the FTP client, andftp, is

consumes about 70% energy of Dev 1 under the two scenarios. Counter to the web

browser, the FTP client consumes more energy on Wi-Fi networking than on CPU

computing, as shown in Fig. 13(c).

0

2000

4000

6000

1 2 3 4 5

En
e

rg
y(

u
A

h
)

Time(minute)

DAQ two-phase

Display
18%

Wi-Fi
basic
8%

BU
0%

andftp
67%

system
1%

tiwlan_
wifi_wq

5%

WPD
0%

others
1%

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5

En
e

rg
y(

u
A

h
)

Time(minute)

DAQ two-phase

Display
16%

Wi-Fi
basic
7%

BU
0%

andftp
72%

system
1%

tiwlan_
wifi_wq

3%

WPD
0%

others
1%

35

Chapter 7. Conclusion and Future Works

This thesis proposes the two-phase calibration approach to adjust the faulty

energy estimation results in process level on off-the-shelf product. The first phase

reconstructs the power table for the DUT, and the second phase further creates the

formula to replace faulty one with linear regression analysis.

In all case studies, the accuracy of energy estimation is evaluated with the error

average ratios proven below 10%. Even better, the average error ratios of our

calibrated results exhibit less than 5% under the file transmission scenarios. Moreover,

we further show that two-phase results are more accurate than full-system results from

1.2 to 7.3 times

From the case studies, we observed that the energy consumption of display

energy takes a lot portion of total energy consumption especially when the system is

idle; keeping the Wi-Fi module active also consumes a considerable energy. Besides,

on Wi-Fi module, sending 1 byte consumes more energy than receiving 2 bytes in

power saving mode.

Finally, the overhead of our implementation, Wi-Fi power daemon and Battery

Use, is proven with minor overhead below 3% upon the total energy consumption.

Because of the lack of estimation formulas for video hardware decoder, the

energy profiling of video applications are not included in the evaluation scenarios.

Therefore, the future extension of this work includes taking energy hungry video

hardware decoder into account and profiling the energy consumption of the video

applications, e.g. YouTube. Besides, the problem for discovering multiple faulty

formulas also has to be addressed because there are usually multiple faulty formulas

on the DUT simultaneously.

36

Reference

[1] Intel, "Moore's Law: Made real by Intel® innovation." [Online]. Available:

http://www.intel.com/technology/mooreslaw/.

[2] N. Parmar, "Out of Juice: The Tyranny of the Battery." [Online]. Available:

http://www.smartmoney.com/spending/technology/Out-of-Juice-The-Tyranny-

of-the-Battery-20821/.

[3] S. Assim, "Power Consumption in Handheld Computers," in IEEE Asia

Pacific Conference on Circuits and Systems, 2006, pp. 1721-1724.

[4] S. Ruan and Y. Lai, "Development and Analysis of Power Behavior for

Embedded System Laboratory," ACM Workshop on Embedded System

Education, Oct. 2006, pp. 45-50.

[5] Y. Bai and Y. Lin, "Measurement and improvement of power consumption for

portable computers," IEEE International Symposium on Consumer Electronics,

2005, pp. 122-127.

[6] A. Mahesri and V. Vardhan, "Power consumption breakdown on a modern

laptop," Lecture Notes in Computer Science, 2005, vol. 3471, p. 165.

[7] J. Flinn and M. Satyanarayanan, "PowerScope: a tool for profiling the energy

usage of mobile applications," in Proceedings of the Second IEEE Workshop

on Mobile Computer Systems and Applications, 1999, pp. 2-10.

[8] F. Chang, K. Farkas, and P. Ranganathan, "Energy-driven statistical sampling:

Detecting software hotspots," Lecture Notes in Computer Science, 2003, pp.

110-129.

[9] W. Baek, Y. Kim, and J. Kim, "ePRO: A Tool for Energy and Performance

Profiler for Embedded Applications," in International SoC Design Conference,

Seoul, Korea, 2004, pp. 372-375.

[10] C. Xian, L. Cai and Y. Lu, "Power Measurement of Software Programs on

Computers With Multiple I/O Components," Instrumentation and

Measurement, IEEE Transactions on, 2007, vol. 56, pp. 2079-2086.

[11] T. L. Cignetti, K. Komarov, and C. S. Ellis, "Energy estimation tools for the

Palm," in Proceedings of the 3rd ACM International Workshop on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, Boston,

Massachusetts, United States, 2000, pp. 96-103.

[12] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, and M.

Kandemir, "Using complete machine simulation for software power estimation:

the SoftWatt approach," in High-Performance Computer Architecture, 2002.

Proceedings. Eighth International Symposium on, 2002, pp. 141-150.

[13] A. Kansal and F. Zhao, "Fine-grained energy profiling for power-aware

application design," SIGMETRICS Perform. Eval. Rev., 2008, vol. 36, pp.

http://www.intel.com/technology/mooreslaw/

37

26-31.

[14] K. S. Banerjee and E. Agu, "PowerSpy: fine-grained software energy profiling

for mobile devices," in Proc. of IEEE WirelessCom, 2005, pp. 1136-1141.

[15] T. Do, S. Rawshdeh, and W. Shi, "pTop: A Process-level Power Profiling

Tool," presented at the Workshop on Power Aware Computing and Systems,

2009.

[16] C. S. E. H. Zeng, A. R. Lebeck, and A. Vahdat, "Ecosystem: managing energy

as a first class operating system resource," presented at the SIGPLAN Not.,

2002.

[17] NI, "Data Acquisition (DAQ)." [Online]. Available:

http://www.ni.com/dataacquisition/.

[18] M. Stemm and R. Katz, "Measuring and reducing energy consumption of

network interfaces in hand-held devices," IEICE Transactions on

Communications, 1997, vol. 80, pp. 1125-1131.

[19] J. Ebert, B. Burns, and A. Wolisz, "A trace-based approach for determining the

energy consumption of a WLAN network interface," 2002, pp. 230-236.

[20] L. M. Feeney and M. Nilsson, "Investigating the energy consumption of a

wireless network interface in an ad hoc networking environment," in

INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, 2001, pp. 1548-1557

vol.3.[22] C. Rohl, H. Woesner, and A. Wolisz, "A short look on power

saving mechanisms in the wireless LAN standard draft IEEE 802.11," 1997.

[21] C. Rohl, H. Woesner, and A. Wolisz, "A short look on power saving

mechanisms in the wireless LAN standard draft IEEE 802.11," 1997.

[22] MIC, "Global Android Smartphone Shipment Volume Forecast to Reach 31.80

Million Units in 2013." [Online]. Available:

http://mic.iii.org.tw/english/press/en_5_press_room_1_1.asp?selyear5=&doc_

sqno=7494.

[23] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, "Full-system

power analysis and modeling for server environments," in Proceedings of the

Workshop on Modeling, Benchmarking, and Simulation, 2006.

[24] D. S. Paulson, "Handbook of Regression and Modeling: Applications for the

Clinical and Pharmaceutical Industries," 2006.

[25] Google, "Developing on a Device." [Online]. Available:

http://developer.android.com/guide/developing/device.html#dev-phone-1.

[26] P. Mochel, "The sysfs file-system," In Proceedings of the 2005 Linux

Symposium, 2005, pp. 313–326.

[27] Google, "Power Management." [Online]. Available:

http://www.ni.com/dataacquisition/
http://developer.android.com/guide/developing/device.html#dev-phone-1

38

http://pdk.android.com/online-pdk/guide/power_management.html.

[28] E. Mouw, "Linux Kernel Procfs Guide." [Online]. Available:

http://kernelnewbies.org/Documents/Kernel-Docbooks?action=AttachFile&do

=get&target=procfs-guide_2.6.29.pdf.

[29] NI, "NI cDAQ-9172 Legacy NI CompactDAQ Chassis." [Online]. Available:

http://sine.ni.com/nips/cds/view/p/lang/en/nid/202545.

[30] LEM, "LEM PR30 Oscilloscope AC/DC Current Probe." [Online]. Available:

http://www.tequipment.net/LEMPR30.html.

http://pdk.android.com/online-pdk/guide/power_management.html
http://sine.ni.com/nips/cds/view/p/lang/en/nid/202545

