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運用記憶體保護機制增進資料監控點檢查之效能 

學生：王士瑜           指導教授：黃世昆 

 

國立交通大學資訊與科學工程研究所碩士班 

摘 要       

利用資料監控點之機制檢查在記憶體上與控制流程相關位置，為保

護程式不被攻擊並執行惡意程式碼的方法之一，但是這樣的方法必須

常態性的檢查監控點的正確性。傳統的方法必須在程式執行中不斷的

去確認監控點是否有被修改，因此當監控點數量增加，即使它們完全

未被更動，我們仍要做非常多次的主動檢查，這也是此類方法效能低

落的原因。 

針對此類問題，我們提出利用現有硬體所提供之記憶體保護機制，

來實做非同步式的檢查。也就是只有當該監控點有被實際寫入修改，

我們才需要檢查其修改之正確性。這樣可以去除不必要的主動檢查，

使效能大幅提升。我們實做的方法稱之為 DupWrite，目標是減輕在動

態監控機制裡的運算負擔，並且可以有效率的檢查堆積上的記憶體目

標。 

在結果分析裡面我們用不同的角度，去探討以及證明我們所提出的

方法，對於寫入到程式堆疊以外記憶體位置比例較低的程式，有著顯

著的效能提升。我們同時提出具體改善方法，可以在未來去除執行一

般程式時的效能瓶頸，讓這個方法更為實用化。 

 

 

關鍵字：程式控制流程劫奪，資料監控點，記憶體分頁保護  
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National Chiao Tung University 

ABSTRACT 

Because of the heavy overhead introduced by the massive security related 

memory watchpoints during program execution, the runtime efficiency is greatly 

influenced and the deployment of such watchpoints is not applicable for real 

world applications. Current approaches utilize software solutions to dynamically 

instrument checking functions to the data watchpoints.  

We have developed a new method using existing hardware mechanisms 

such as page protection to achieve asynchronous detection of watchpoint 

modification and improve the overall performance. Our method is called 

DupWrite, which focuses on reducing the overhead in instrumentation and 

checking the targets on heap efficiently. 

The evaluation section is consist of various kind of analysis and proves that 

our method does very well when the memory reference percentage to the 

non-stack region is low, and it can be further improved to speed up the checking 

in general cases. 

Keywords: Control Hijacking, Memory Watchpoint, Page Protection 
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1 Introduction

1.1 Background

Many researchers work on detecting various bugs that cause memory

errors, e.g., buffer overflows, format string vulnerabilities, and integer over-

flows. However, they usually tackle one class of the bug, leaving others unde-

tected. We had implemented a tool on top of Valgrind [1], an instrumentation

framework for building dynamic analysis tools, to fulfill this purpose named

Beagle [2] . Beagle uses a “Backup and Verify” technique, which means to

backup every desired target when they are created, and verify the correctness

of the target constantly to achieve completeness, soundness, and immediacy.

1.2 Different Types of Memory Corruption

1.2.1 Stack Buffer Overflow

Stack buffer overflow, as known as stack smashing, has been a major

security risk since the 1990s [3] [4]. The cause of this kind of vulnerability

is that the saved registers including the return address is pushed onto the

stack, and buffer overrun on the stack will corrupt the saved registers. If

the saved register is control-related, like return address or last frame pointer,

then by designing the overflow input carefully, the control sequence can be

hijacked to execute arbitrary code.

1.2.2 Heap Buffer Overflow

Heap is where the dynamic allocated memory chunks are located at.

Most of the C Libraries’ dynamic memory allocator, like the well known

1



Table 1: Monitored Memory Targets

Frame on Stack Before Heap Memory Chunk on Heap
local function pointer and jmp buf .dtors section prevsize tag
other saved registers global offset table size tag
old frame pointer global function pointer and jmp buf forward pointer
return address backward pointer
function pointer and jmp buf

as parameters

dlmalloc [5], store the metadata in front of each chunk. Overflow on the

heap causes the metadata to be overwritten. Although it is not intuitive

that this could be a serious security risk, many research has been done to

explore the exploitability of the non-control data hijacks [6] [7] [8] [9].

1.3 Defining Memory Targets

Table 1 lists the critical targets which have been proven that can be

modified and led to arbitrary code execution. Most of the targets lie on the

stack, and the rest on and before the heap. .dtors section is called when a

program exits, and global offset table (GOT) is used as the entry points to

dynamically linked library functions. If they are modified, when the function

is called, the program can be redirected to execute the shellcode fed from

user input.

1.4 Performance Analysis of Beagle

By using OProfile [10] , a system-wide profiler for Linux systems, we

find out that Beagle spend most of its execution time verifying the correct-

ness of the heap targets. Around 95% of time maximum Beagle is running

the “checkHeap” function, which traverses and verifies every chunk’s meta-

data the program has allocated. So the actual overhead is greatly depending

2



Figure 1: An Overview of Beagle’s Framework

on how many memory chunks the program allocates via malloc-related func-

tions. The more chunks a program allocates, the more overhead we get. In

contrast, memory targets on stack like return address or saved frame pointer

are usually limited by the number of frames, which rarely exceeds 10 (except

for recursive functions).

1.5 Problem Description

Because of the heavy overhead introduced by the massive security re-

lated memory watchpoints during program execution, the runtime efficiency

is greatly downgraded and not capable of real world applications. Current ap-

proaches utilize software solutions to dynamically instrument checking func-

tions to the data watchpoints. Our primary objective is to develop a new

3



Figure 2: Beagle’s Evaluation Result

method using existing hardware mechanisms such as page protection and

debugging registers to achieve asynchronous detection of watchpoint modi-

fication and improve the overall performance. Thus, we can practically use

the tool in real world scenario to perform online-detection or to combine with

fuzzers for software testing.

The thesis is organized as follows. In chapter 2, we introduce the related

work in this field. Our method and implementation are covered in chapter 3

and 4. Chapter 5 contains the evaluation results, and finally, we present the

discussion and conclusion part in chapter 6 and 7.

4



2 Related Work

2.1 Memory Watchpoint

According to GNU’s GDB Debugger’s definition, a watchpoint is which

stops the program whenever the value of a variable or expression changes

[11]. And a breakpoint stops the program whenever a particular point in the

program is reached. So breakpoints are control-oriented, and watchpoints

are data-oriented. Data watchpoint is related to our work because when the

security targets we protect are changed, we have to stop the program and

examine if the alteration is legal or not.

Breakpoints can be easily registered with hardware support, because

we only have to watch the program counter. Data watchpoints in contrast,

has limited hardware support. For example, the x86 architecture has debug

registers to monitor at most four memory locations. GDB uses the debug

register feature to accelerate watchpoint monitoring under four sites, and in

older version it has to switch to single-step mode and lookup a watchpoint list

when there are more than four watchpoints, so the overhead will be relatively

high.

Researches have been done to extend the capability of hardware-assisted

data watchpoints. It is suggested that the page protection mechanism on

modern computer systems can be used to monitor the watchpoints. By set-

ting the watchpoint’s located page as read-only, we can be notified when it is

modified on page-level granularity [12] [13] [14] [15]. Newer version of GDB

on some systems like HP-UX and MAC OS X has implemented this feature

and the performance is better than single-stepping watchpoints.

5



2.1.1 How to Do A Million Watchpoints: Efficient Debugging

Using Dynamic Instrumentation (EDDI)

Our main idea of using memory protection mechanism comes from this

work by Zhao et al. [16]. It mainly describes how to implement efficient data

structures to hold the addresses of the watchpoints, and a few optimiza-

tion for software watchpoint via dynamic instrumentation to make watch-

point monitoring scalable. Their full instrumentation injects checkers to all

memory write operations, and the partial instrumentation is based on the

page protection mechanism. Asynchronous checking is triggered because the

watchpoint’s located page is read-only and the checking procedure is called

in the segmentation fault handler.

2.2 Memory Corruption Detection

Memory corruption detection aims at finding out invalid modification

to specific memory locations in a sound and complete manner, so it can be

treated as an application of memory watchpoint. This technique is usually

used to combat attacks on critical targets we defined in Table 1.

The detector must have the knowledge about whether the modification

is valid or not. For example, stack smashing modifies the saved frame pointer,

and after function epilogue, the location of the saved frame pointer of the

last frame will be reused and modified, so we have to differentiate an attack

from normal operations.

StackGuard [17] uses a canary approach. A canary is a word which

has a special value placed in front of the return address on the stack. The

canary will be overwritten before the saved registers are modified. Prior to
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function return, the canary is verified to see if the saved registers are safe.

Modern version of GCC has integrated the stack protector into itself and

provide an option to enable it, and the canary is place before the saved

registers. However, if the overwrite action is not sequential, the canary can

be bypassed easily.

Backup-and-verify is another approach to justify the correctness of saved

registers. When the registers are pushed onto stack, their value is also saved

to another safe region. Before the function returns, the saved register’s value

is compared to the backup value. Stack Shield [18] uses such method to

detect memory corruption.

2.2.1 Detection and Diagnosis of Control Interception (Beagle)

Our previous work Beagle also uses the backup-and-verify method to

detect the memory corruption errors. The difference is that Beagle uses

dynamic instrumentation and inserts checker calls at the end of each basic

block of the dynamic instrumentor’s intermediate representations. In this

way we can provide more accuracy with respect to the actual location of the

memory corruption site. It is useful for debugging because finding out that

the saved registers are corrupted at the end of a long function may be too

far away from the bug which causes the corruption.

2.2.2 Automated Security Debugging Using Program Structural

Constraints (CBones)

CBones is similar to Beagle, and the modification to memory targets

is a subset of CBones’ program structural constraints [19]. It implements a

two-stage approach: at the first level, insert the constraint checkers before
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function return like Stack Shield to reduce overhead. If any constraint vio-

lation is found, then re-run the program and instrument checkers after each

write operation to provide more accurate debugging information. Although

the coarse-to-fine manner helps on increasing the performance, if the pro-

gram input is from outside, like network programs, and not repeatable, then

it can only report the error spot at the end of the function where the checker

is. Also, CBones does not cover all the memory targets we defined in Table

1.

2.3 Combination

By combining data watchpoint optimization and memory corruption

detection together, we can build a robust and cost-effective detector for se-

curity or debugging purpose.
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3 Method

3.1 Memory Write Notification via Page Protection

by mprotect

The mprotect() function is used to change the protection status of a

designated memory region. Most machine architectures provide the memory

protection mechanism on page level. A memory page can be set to read-only,

write-only, read and write capable, or no access. When a page is read only,

any modification to it is treated as an invalid operation, and the hardware’s

memory management unit (MMU) will generate an exception to inform the

operating system. The kernel will send out a SIGSEGV signal to the access

violating process. If we install a SIGSEGV handler, then we can monitor the

memory modification to specific regions by setting the regions as read only.

3.1.1 Steps

We generalize our idea as the following steps:

1. In the malloc() function wrapper, use mprotect() to set the allocated

chunk’s page to read-only.

2. Write to the read-only page will cause a segmentation fault.

3. Verify the correctness of the metadata in the SIGSEGV signal handler.

4. In the signal handler:

- If the metadata is corrupted, halt the program execution and print

backtrace message for debugging.

- If the metadata is correct, pass the memory modification.
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3.1.2 Two Stage Signal Handling

When fault happens, typically the reason of the fault should be fixed

in the related signal handler. After the signal handler returns, the fault

instruction will be restarted. In the SIGSEGV handler, if we do not unprotect

the page, then the fault instruction will continue to generate a new fault,

which forms an endless loop. So we have to unprotect the page to make

it writable. But after the write instruction is executed, the following write

instructions to the same page will not generate faults anymore because the

page is now writable, and the asynchronous mechanism simply stops working.

Apparently the page should be again read only immediately after the

write operation is done. A way to achieve that is to put the CPU into single-

step mode. Single-step mode is usually used for debugging purpose. Many

CPU architectures support this feature. In x86 architecture, there is one bit

in the EFLAGS register indicating the on / off status of single-step mode

called TRAP flag. When TRAP flag is set, CPU will issue a SIGTRAP

signal after each instruction is executed. We can use this feature to reprotect

the page in the SIGTRAP handler, and then clear the TRAP flag to leave

single-step mode.

Two stage signal handling consists of the first stage’s SIGSEGV han-

dling, and the second stage’s SIGTRAP handling. Figure 3 shows the flow

chart of this method. Very similar method was proposed in VAX DEBUG

by Beander et al. [12] back in 1983, but it has not been popular and widely

implemented on mainstream debuggers until this decade when computing

power is faster enough to make the overhead from signal handling compara-

tively lower. For example, not until the release of Mac OS X 10.1 in 2001, the
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Figure 3: Working Flow of Method 3.1

page protection watchpoint has been implemented on Mac OS X’s gdb [20].

3.1.3 Pros and Cons

In the method proposed above, there are some good perspectives with

respect to other methods. First of all, we do not have to do read / write

redirection. In EDDI’s partial instrument, it creates shadow pages and in-

struments read / write operations to be redirected to access the shadow area.

And the memory usage overhead is twice. In contrast, our method do not

allocate extra memory space. Also, we can implement this method by using
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only function wrappers to replace the original malloc-related functions, and

we do not have to deal with the dirty assembly instrumentation job. So the

solution is pretty portable.

Though this method looks promising, it has several severe disadvantages.

The overhead in signal handling is too high, because one write operation

triggers two signals, and four context switches happen. Not to mention that

mprotect() is used twice in the signal handlers. Second, Valgrind just ignores

the trap flag set in the CPU’s context, so it is not easy for us to integrate

this method into our existing Beagle framework.
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3.2 Duplicated Write Operation to Trap Page

(DupWrite)

Instead of using mprotect() to protect the pages, we develop another

method to achieve asynchronous hardware-assisted checking, by playing a

trick based on the existing memory layout convention.

3.2.1 Assumption

Our method focuses on reducing the checking time on heap targets,

which accounts for most of the overhead in Beagle. The basic assumption

is that, typically a program access objects on stack more often than objects

on heap. We use a method to redirect the reference to heap to a trap area,

while reference to stack remains the same by the “Trap Address Encoding”

scheme. First, we take a look at an example of memory mapping.

3.2.2 Memory Layout Example

Figure 4 shows a process’s memory mapping ran by Valgrind with our

Beagle plug-in. The top section is for dynamically loaded libraries. In

this example we see libc.so there. The following space is an unmapped

gap between the dynamic library section and the program. The area af-

ter 0x08048000 is where we are familiar with: a program’s text section, data

section, bss section, and before the next gap, the heap section. A little differ-

ence here between this case and running normal applications is that an extra

section is mapped for our Valgrind plug-in. The process’s stack is located in

the bottom of the memory under 0xbfeb0000.
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Figure 4: Memory Layout Example

3.2.3 Trap Address Encoding

This is a simple and intuitive idea we proposed to redirect non-stack

references to unmapped regions. And we call the redirected address a “Trap

Address”, because any write to that unmapped address will trigger a seg-

mentation fault. Trap address encoding is done by logically ‘ORing’ the

upper byte of the target address with the upper address byte (UAB) of the

stack region. Any address pointed to the stack OR the UAB of the stack

region will produce the same address. Similar encoding method is proposed

by Wahbe et al. to isolate the fault in software-based manner [21]. In our

method, addresses pointed to heap or other region after encoding will point to

somewhere before the stack, and it is likely to be unmapped and inaccessible.

Figure 5 is an example of the encoding result. We derive the stack’s

starting address,which is 0xbfeb6000, from the memory map of Figure 4.

The most significant byte is 0xb, so we will OR all the write target ad-

dress with 0xb0000000. An address 0xbfbfec00 points to the stack, and
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Figure 5: Trap Address Encoding

0xbfbfec00 OR 0xb0000000 is still 0xbfbfec00 in a legal area. Another ex-

ample address 0x0804a000 points to the heap, and ORing it with 0xb0000000

produces 0xb804a000. Look up the address 0xb804a000 in Figure 4, and we

cannot find any mapped region covers that address. Obviously it points to

the gap in front of the stack region, so any non-stack target address will be

redirected to an unmapped area by the encoding process.

3.2.4 Steps

Now we can describe the steps needed to implement the DupWrite method:

1. Monitor all write-to-memory operations.

2. Before the write operation:

- Compute a new target address by the trap address encoding scheme.

- Insert a new write operation to the computed target address.

3. The new instruction will write to an unmapped page and trigger a seg-

mentation fault.

4. Check the correctness of heap targets in the segmentation fault handler.

5. Jump through the fault instruction and continue to execute the original

write instruction.
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Note that by the trap address encoding scheme, references to stack re-

mains the same, so we cannot deploy the asynchronous monitoring on stack

objects. This is all right because the major part of the overhead that we

want to reduce comes from checking the heap targets. The old method mon-

itoring the control-related targets on stack is fairly good enough. If we use

the DupWrite method to watch the stack targets, the total signal handling

penalty would be too high. It is also suggested that not to use page protection

watchpoints on stack or it will work very poorly.
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4 Implementation

During the evaluation stage of Beagle, a new version of implementation

is forked and named Beagle2. Beagle2 is a complete rewrite of Beagle. With

the experience we learned from Beagle, Beagle2 is better designed with signif-

icant performance increase, cleaner code and additional useful features. And

the DupWrite method for asynchronous heap target checking is integrated

into Beagle2.

4.1 Basis

Valgrind version 3.3.1 is our dynamic instrumentation back-end for

Beagle2. The up-to-date version of Valgrind is 3.4, which provides more

functionality. But in our implementation of Beagle2, the 3.3.1 version is

sufficient for our purpose.

4.2 DWARF Debugging Standard

DWARF is a debugging file format defined by the DWARF Standards

Committee [23]. The debugging information is generated by compilers when

compiling a program and stored in the debug * sections. It can be used by

debuggers to generate various useful information for debugging purpose. The

current version of DWARF is 3.0.

4.2.1 debug info

Beagle2 can use two classes of DWARF information: debug info’s LO-

CAL SYMBOLS and debug frame. In LOCAL SYMBOLS, we can derive
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the targets’ locations, like the offset to the frame pointer when a target is on

the stack, or the absolute address when the target is a global variable. Then

when the program is running and the function’s frame is created, our monitor

can know where exactly the protected targets’ locations are. It is primary

used for the variable targets such as function pointers, and jmp bufs.

4.2.2 Function Prologue and debug frame

Debug frame is the information about how compilers wind the activation

record. The sequence of pushing the return address, last frame pointer, and

other saved registers onto stack is called prologue. The info can be used for

debuggers to unwind the frame. In the past many checkers use the saved

frame pointers to traverse the frames. But nowadays many programs use

the omit frame pointer optimization option in the compiler, and the frame

pointer register can be used for general purpose. Without using the frame

pointer register, there are no saved frame pointers on the stack.

Fortunately the debug frame information provides a solution for us. We

treat the return address and the last frame pointer the same as other saved

registers. And in the debug frame section, their positions are all relative to a

virtual pointer named Call Frame Address (CFA). It provides an offset from

a fixed register to the CFA, and then we can find out the other saved regis-

ters’ locations. This is how we work to conquer the frame pointer omitting

situation. By backing-up the saved registers’ value after stack winding is

done, we can verify the correctness of them before they are poped.

4.2.3 Parsers

DWARF provides a set of API in library libdwarf, and it also has a
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< 0><0x8048484:0x8048545><multiply><fde offset 0x14 length: 0x14><eh offset none>
08048484: <off cfa=04(esp) > <off eip=-4(cfa) >
08048485: <off cfa=08(esp) > <off ebp=-8(cfa) > <off eip=-4(cfa) >
08048487: <off cfa=08(ebp) > <off ebp=-8(cfa) > <off eip=-4(cfa) >

Figure 6: Example debug frame Section of Dwarfdump

standalone program dwarfdump. Because the API is a little complicated to

use, instead we build a parser to parse the output from dwarfdump, and then

the result will be read during the initialization stage of Beagle2.

Figure 6 is how the dwarfdump’s debug frame section looks like. First

line provides the information about the function, which is multiply() in the

example. Under the first line is the stack winding process instruction by

instruction. We can see at first, the instruction pointer eip is pushed. Then

in the next instruction, the frame pointer ebp is pushed. The third step

moves the stack pointer by adding the frame’s size, so we can see that the

reference location of CFA changes from the stack pointer register esp to the

current frame pointer register ebp.

We fetch the function’s start address, the end address, and the address

where function prologue is done for Beagle2. When executing a program,

if Beagle2’s instrumentor meets an instruction after a function’s prologue is

done, Beagle2 inserts a dirty call to the backup function of Beagle. The

backup function will record the value of the saved registers according to the

offset information that we derived from dwarfdump before program execu-

tion, and save them in our backup saved register stack.
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4.3 Epilogue Scanner

We have the function prologue knowledge from the debugging info, with

the prologue’s start addresses. Every function will do exactly one prologue

process after it is invoked, but a function may have multiple exit points. The

stack unwinding process is called the epilogue of a function. In DWARF 3.0,

it is defined that a function epilogue’s start addresses should be written in

the debugging info.

Unfortunately gcc does not generate the epilogue info yet to meet the

standard, which is mentioned in a technical report Reversible Debugging [25].

Thus we build a epilogue scanner to scan through the disassembled code.

By recognizing special epilogue assembly patterns, we can find out where

epilogue happens in the function. MSDN Library has an article about the

software conventions on the x64 architecture, which includes x64’s prolog

and epilog convention [26]. The prolog and epilog convention on x64 is very

similar to the one on x86, and in the following section we describe different

types of common C language epilogue in the x86 architecture.

4.3.1 Epilogue Type 1

leave

ret

The ‘leave’ instruction does the inverse of the ‘enter’ instruction, which

adjust the stack pointer to the location of the saved frame pointer, and then

pop the saved frame pointer. It is equivalent to:

mov %ebp,%esp
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pop %ebp

ret

4.3.2 Epilogue Type 2

add $0x20,%esp

pop %ecx

pop %ebx

pop %ebp

lea -0x4(%ecx),%esp

ret

The first step of this type’s epilogue is to adjust the stack pointer to pop

all the fixed-allocation-size local variables in the current frame. Then pop the

saved registers in reverse order of the pushes in prologue. To recognize this

type of epilogue, we scan through the instruction from the ‘ret’ instruction.

Keep going upwards and ignore the ‘pop’ and ‘lea *,%esp’ stack adjusting

instructions until we reach the first step of epilogue, the ‘add *,%esp’ instruc-

tion. If we encounter instructions which are not related to ‘pop’ or stack

adjusting, the previous instruction of that is the start of the epilogue process

because sometimes there are no saved registers and only a ‘ret’ instruction

presents the whole epilogue.

4.3.3 Special Case: Thread Termination

When a thread terminates, it need not return to the thread creator

function, thus it does not have the epilogue action. But we still have to

know where the thread terminates in order to pop our own backup stack,
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so we use a pthread exit() wrapper to insert the stack-pop function after the

thread is terminated.

4.4 DupWrite

Here we describe the detail when we implement the DupWrite method.

Although the method looks straight forward, there are still some challenges

we have to conquer.

4.4.1 Code Instrumentation

Valgrind3 translates all host machine’s instructions in a basic block into

its VEX IRs (Intermediate Representations), and then convert them back to

the host instructions to execute. It provides us a window to peek at and

instrument on the translated VEX IRs.

All write-to-memory instructions are transformed into VEX’s store IR.

Because libVEX produces static single assignment (SSA) IRs, the IR writes

the data into the target address in a temporary register used only once in a

basic block allocated by Valgrind.

STle(t3)=t0

The example IR above means that: store (ST ) the value in the tempo-

rary register t0 to the target address in t3 in little endian order (le).

VEX library translates the x86 instruction

8048466: c6 00 6b movb $0x6b,(%eax)

into:

STle(t14) = 0x6B:I8
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1 if(bb->stmts[i]->tag==Ist_Store){
2 IRTemp trapAddrTmp=newIRTemp(newbb->tyenv,Ity_I32);
3 IRExpr* orExpr=IRExpr_Binop(Iop_Or32,\
4 bb->stmts[i]->Ist.Store.addr,\
5 IRExpr_Const(IRConst_U32(0xB0000000)));
6 IRStmt* orStmt=IRStmt_WrTmp(trapAddrTmp,orExpr);
7 addStmtToIRSB(newbb,orStmt);
8
9 IRStmt* trapStmt=deepCopyIRStmt(bb->stmts[i]);
10 trapStmt->Ist.Store.addr=IRExpr_RdTmp(trapAddrTmp);
11 addStmtToIRSB(newbb,trapStmt);
12
13 addStmtToIRSB(newbb,bb->stmts[i]);
14 }

Figure 7: Simplified DupWrite Instrument Code

The move-a-byte instruction is translated to storing a 8-bit immediate

which is 0x6b to the target address stored in temporary register t14.

Figure 7 is DupWrite’s code in Beagle2’s instrument function. On line

1 we check whether the current statement (bb->stmts[i]) is a store IR. If yes,

then we tell Valgrind to allocate a temporary register on line 2. From line 3

to line 7 we insert a logical OR statement to store the encoded trap address

to the newly allocated register. Line 9 duplicates the original write statement

by the deepCopyIRStmt() function, but instead write to the original target

address, we replace it with the encoded trap address stored in the new register

on line 10. Finally we insert the duplicated write statement in front of the

original write statement on line 11 and line 14, respectively. Figure 8 shows

the comparison between EDDI Partial Instrument’s reference redirection and

our DupWrite method. Apparently there are less instrumented instructions

in the DupWrite method.

4.4.2 Fault Skipping

In section 3.1.2 we have mentioned that why a signal is supposed to
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Figure 8: Code Instrumentation Comparison

be resolved in the signal handler, and the fault instruction will be restarted

after returning from the signal handler. But how do we fix the fault? There

are several registers that x86 write instructions use as the target index. We

have to do a lot of work to find out which register stores the target address

by looking at the machine code, and then directly modifies the value of the

target address to fix the fault.

The way to modify the target address requires too much effort, so we only

examine the length of the write instruction, and add the length as the jump

offset to the instruction pointer in the signal handler. Instead of restarting

the fault instruction, the modified instruction pointer now points to the next

instruction, which is the original write instruction before instrumentation.

The actual write action is done by the original instruction, and the fault

instruction we insert is only a trap, if the target points to a non-stack area.

On the other hand, if the target address points to the stack area, the write

to the same address happens twice with no side-effect and only negligible
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overhead.

4.4.3 Valgrind’s SIGSEGV Handling

When a SIGSEGV signal happens, Coregrind, which is the core part

of Valgrind, receives the signal from the host because the signal is caused

by a fault instruction. In Coregrind, the sync signalhandler() function is the

handler of SIGSEGV. It first calls the fault catcher function set in our Beagle2

plug-in, and provides the fault catcher various information just like the siginfo

structure does. We have to do the heap target checking in Beagle2’s fault

catcher. The reason that we cannot implement the checking in Coregrind’s

sync signalhandler() is that the code in Coregrind cannot access the data

structures in the Beagle2 plug-in.

After returning from the fault catcher, Coregrind checks that if the

segmentation fault is caused by the need to automatically growing the stack.

This is Valgrind’s implementation issue and results in some performance

overhead. After the checking is done, if the fault instruction is generated

by Valgrind, which means that it is the output after a program’s instruction

is translated and instrumented, then finally Coregrind delivers the signal to

the running program. We have to add the fault skipping part right before

SIGSEGV is delivered to the running program, or it will just halt execution

because there is no SIGSEGV handler in the running program and the default

action of SIGSEGV is abort.

4.4.4 Write Across Two Words

Under UNIX environment, it is defined that when a signal occurs, the

signal handler installed by sigaction() will receive a pointer to a siginfo t
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Figure 9: Write Across Two Words

structure. If the signal is SIGSEGV, the siginfo t structure will contain a

member named si addr, which is the address of the faulting memory refer-

ence.

From the previous section, we know that Coregrind’s signal handler will

first consult the fault catcher registered in our Beagle2 plug-in. Coregrind

will also send the faulting address to the fault catcher, and in our fault catcher

we use the faulting address to query if it points to a heap chunk’s metadata.

Derived from dlmalloc, GNU glibc’s malloc aligns a memory chunk’s

head to a multiple of 8, because the last three bits of a memory chunk’s

size tag are used for status flags, thus it is guaranteed that chunk heads

are aligned to 32-bit words [9]. A problem arises when writing memory of

different sizes. Figure 9 shows the scenarios of the problem.

The grey chunk starting from 0x8 in the figure is a chunk next to the

previous allocated chunk. The 32-bit word at 0x8 is the chunk’s prevSize
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tag. In our fault catcher, if we get a faulting address which is 0x7, it is not

overlapped with the next chunk, but we cannot differentiate how long the

instruction will write. If it is a move byte instruction, then it will not write

to the next chunk. If the write length is over a byte, for example, a short or

a word, then overflow occurs.

From another perspective, considering two instructions writing a word

to 0x4 and 0x5, the one write to 0x4 is safe, and the one write to 0x5 will

overflow to the next chunk. Both 0x4 and 0x5 is not in the range of the next

chunk, so we must add some information in the faulting address to inform

our heap target validator in the fault catcher about how long the instruction

is trying to write.

The solution comes from the same idea of using the last three bits of a

chunk’s size tag as status flags in various memory allocators. We use the last

bit of the faulting address only. If the last bit of the faulting address is set,

then the next word will be affected, and we will do an extra query to see if

the next word of the faulting address is in the range of metadata or not, and

the precision problem is solved.

4.4.5 Modification to Valgrind’s Signal Handling Function

Combining section 4.4.2 and 4.4.4 together, we patch the sync signalhandler()

function in Coregrind. The following code snippet is a simplified example to

show how our implementation works.

On line 1 of Figure 10, jmpOffset denotes the length of the fault instruc-

tion. Then writeSz is how long the instruction is trying to write. The default

write length is a 32-bit word, which is 4 bytes. We fetch the first byte of
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1 jmpOffset=0;
2 Int writeSz=4;
3 unsigned char fb=*(uc->uc_mcontext.eip);
4 if(fb==0x66){
5 writeSz=2;
6 jmpOffset++;
7 fb=*(unsigned char*)(uc->uc_mcontext.eip+1);
8 }
9 switch(fb){
10 case 0xc7:
11 jmpOffset+=6;
12 break;
13 case 0x88:
14 writeSz=1;
15 jmpOffset+=2;
16 break;
17 }

Figure 10: DupWrite’s Example Fault Skipping Code

the machine instruction in line 3. From line 4 to line 8, if the first byte is

0x66, it is a special opcode prefix to change the write length from 32-bit to

16-bit [27], and we have to set the writeSz from 4 bytes to 2 bytes accord-

ingly. The length of the instruction includes the prefix byte, so jmpOffset is

increased by one.

After checking the prefix byte, we look at the opcode byte. The instruc-

tion length varies between different kinds of operations. For instance, 0xc7

writes a 16-bit / 32-bit immediate to the target memory location, and the

whole instruction occupies 6 bytes. Another example is that 0x88 write the

8-bit section value of a register to a target byte. So we set the writeSz to 1

byte and the instruction’s length is two bytes.

We then use the information to call our fault catcher. Line 1 of Figure

11 checks if the faulting address is not a multiple of 4. If it is a multiple of

4, then it will not overflow to the next word no matter it writes a byte or a

word, so we can just simply call the fault catcher in line 10. Otherwise we

have to consider the write size and set the last bit.
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1 if((off=((Addr)info->VKI_SIGINFO_si_addr & 0x3))){
2 if((off+writeSz)>4)
3 (*fault_catcher)(sigNo,\
4 ((Addr)info->VKI_SIGINFO_si_addr & 0xFFFFFFFC)+1);
5 else
6 (*fault_catcher)(sigNo,\
7 ((Addr)info->VKI_SIGINFO_si_addr & 0xFFFFFFFC));
8 }
9 else
10 (*fault_catcher)(sigNo, (Addr)info->VKI_SIGINFO_si_addr);

Figure 11: Write Across Two Words Detection

Figure 12: Flowchart of Signal Handling

uc->uc_mcontext.eip+=jmpOffset;

After the fault catcher returns, we just add the offset to the instruction

pointer in the machine context and the fault skipping is done. Figure 12 is

the flowchart of the signal handling process. When the trap page is accessed,

the operating system sends a SIGSEGV signal to Coregrind asynchronously.

Then the fault address si addr is modified from the write-across-two-word

detection. The new fault address is sent to Beagle2’s checker. If the write

is legal, the instruction pointer is modified and the program will execute the

original instruction to write the target.
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5 Evaluation

This chapter is divided into four sections to evaluate Beagle2 with

our DupWrite method in different aspects. The experiment environment is

describe in Table 2.

5.1 Modifying Objects on Stack / Heap

We develop a small program that takes arguments to adjust the number

of memory chunk to allocate, the number of write operations to heap targets,

and the number of write operations to stack targets. Then we run the eval-

uation program with both Beagle and Beagle2, and compare the execution

time, which is the shorter, the better. The program’s source code is listed in

Appendix 1.

5.1.1 Modifying Objects on Stack Only

Figure 13 is the comparison result of modifying objects on stack only,

and the control variable is the number of allocated chunks. The none line

represents the result with the Nullgrind plug-in, which does no instrumenta-

tion. We can see that in this case, Beagle2 is as good as Nullgrind regardless

of the number of allocated chunks. But the execution time of Beagle, which

Table 2: Experiment Environment

CPU Intel(R) Pentium(R) 4 CPU 3.40GHz stepping 03
Memory 2GB
Linux Kernel 2.6.26
Linux Distribution Fedora Core 8
Compiler gcc 4.1.2
Valgrind Valgrind 3.3.1 Release
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Figure 13: Modifying Objects on Stack Only

uses a active checking mechanism on heap targets, grows linearly with the

amount of allocated chunks.

5.1.2 Signal Handler Overhead

Next, we run Beagle2 alone and adjust the number of write operations

on heap targets. As expected, when the percentage of non-stack writing is

high, the SIGSEGV handler is invoked more often and the overhead on signal

handling adds up to the total execution time. Figure 14 shows the impact

from signal handling.

5.1.3 Number of Chunks – Non-Stack Write-Op Relationship

Figure 15 is the result that we take the two sections above into consid-

eration. The right horizontal axis represents the number of allocated chunks,

and the left horizontal axis represents the non-stack writing percentage, in

logarithm scale. The vertical axis is the execution time, also in logarithm
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Figure 14: Signal Handler Overhead

scale. As we can see, when non-stack writing percentage is low, Beagle2 with

asynchronous checking outperforms Beagle. Only when the non-stack writ-

ing percentage is too high, Beagle2 spends more time on signal handing and

only does better than Beagle when there are a lot of allocated chunks to be

verified.

5.2 WsMp3d Webserver

WsMp3d is a media streaming daemon to broadcast mp3 music files,

and it also includes a small httpd to provide a web interface to access the

files. In this section we measure the average throughput to get a 12MB file

20 times and compute the average from the simple httpd ran by Beagle2 and

Beagle separately. The version of WsMp3 we use is 0.0.9.

5.2.1 Throughput

Figure 16 shows the result of this evaluation. The old Beagle has larger
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Figure 15: Number of Chunks – Non-Stack Write-Op Relationship

throughput, which means it performs better than Beagle2. In this experiment

Beagle2 is about two times slower. From the previous evaluation, we can

deduce that the overhead is mainly from signal handling.

5.2.2 Profiling

In this part we do profiling to examine the performance bottleneck of

Beagle and Beagle2. The profiler we use is OProfile 0.9.4. In Figure 17, the

right chart is the profiling result of Beagle, and the left chart is the result of

Beagle2.

We have indicated that the checkHeap() function accounts for 95% of

execution time in the introduction chapter. 95% is when we do instrumen-

tation to insert heap checking in library function’s basic blocks. We have

improved Beagle’s performance by assuming that the library function’s be-

havior is correct and we will do the verification upon returning from outside

33



Figure 16: Throughput Measurement

library functions, and there is no instrumentation during running library

functions.

Despite the fact that Beagle’s performance has been greatly improved

by the no-library instrumentation optimization, from Figure 17 we can notice

that the heaviest loading still comes from the checkHeap() function. About

half of the execution time Beagle is checking the heap targets.

In Beagle2’s profiling chart, sync signalHandler() is the signal handler

we patched in Coregrind, and handler() is the registered fault catcher which

does heap target checking in the Beagle2 plug-in. The checking function

is implemented efficiently and only introduces little overhead. The verify()

function provides the same functionality compared to Beagle’s epilog() func-

tion, which does the checking on stack objects. Running time in doRegister-

Allocation() slightly increases because of DupWrite’s Trap Encoding Scheme,

which need to allocate an extra register to store the encoded trap address.

Although the percentage of signal handling is less than 20% in the graph,
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Figure 17: Profiling Result

we believe that the extra overhead resides in the ‘other’ ’s slice.

1.4132% anon (tgid:13526 range:0x626bf000-0x634d2000)

The line above is from OProfile’s report. It states that 1.4132% of time

is in an anonymous code area ranging from 0x626bf000 to 0x634d2000. We

investigate Coregrind and find out that the area is where the JIT compiler

put the output native instruction transformed from the instrumented VEX

IRs. Different basic block’s output may be placed on different areas, so

the total amount of time of executing anonymous areas is the execution

time of the original program plus the instrumented operations. In this case,

the instrumented operations is the Trap Encoding and Duplicated Write

operations. And the overhead from context switching may be hidden as well.

There are too many anonymous areas being executed, and OProfile can-

not combine them altogether. We cannot directly get the total time of exe-

cuting the anonymous area but we can guess that the total amount of time is
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[BEAGLE2] attempt to write heap chunk 0x805D008’s prevSize tag!
[BEAGLE2] error encountered: thread 1’s stack:
==32088== at 0xA6EE39: _IO_default_xsputn (in /lib/libc-2.7.so)
==32088== by 0x804943F: recv_ayt (telnetd.c:1161)
==32088== by 0x804BCEB: telrcv (state.c:176)
==32088== by 0x804E2BA: ttloop (utility.c:122)
==32088== by 0x804A2B4: main (telnetd.c:429)

Figure 18: Fault Detection of NetKit Telnetd

remarkable. Because this evaluation continuously pull files from the httpd,

and it does write operations a lot and duplicating the write operations will

enlarge the overhead. If a program only does write instructions, the over-

head will be at least twice because of the write operations are twice. As a

matter of fact, in write-intensive programs, Beagle2’s runtime overhead will

also increase, so the throughput slowdown is reasonable.

5.3 NetKit Telnetd

NetKit Telnetd is a telnet daemon derived from BSD source code. It has

a heap overflow vulnerability according to CERT Advisory CA-2001-21 [28].

The code size is about 6300 lines.

5.3.1 Fault Detection

We run a exploit code to trigger the heap overflow vulnerability in

NetKit Telnetd. Figure 18 is the output result from Beagle2. Beagle2 founds

that an allocated chunk at 0x0805D008’s prevSize tag is being overwritten

and go to the backtrace function. The backtrace function uses the saved re-

turn addresses information stored in our backup stack to print the complete

backtrace. The first instruction at 0xA6EE39 is the faulting instruction which

causes the overflow.
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Table 3: Corrupt-Crash Distance

Tool Distance
Beagle2 0
Beagle 230

5.3.2 Corrupt-Crash Distance

Table 3 is the distance between the corrupt site and the crash site. The

corrupt site is where the target we protect to be corrupted, and the crash

site is where the data corruption cause the program to crash. The distance

is how many instructions are executed between the two sites.

As shown in Table 3, the distance of Beagle is 230 instructions. Because

Beagle only calls the checker at the end of a basic block, a few instructions

will still be executed until the checker finds out that the target is corrupted.

Beagle2 on the other hand, identifies the corruption immediately in the signal

handler. It is useful that the immediacy will provide the accuracy in the

backtrace for user debugging.

5.4 NxN Matrix Multiplication

In section 5.2, we evaluate Beagle2’s writing performance by measuring

the throughput of a write-intensive program. In this section, we run a N

by N Square Matrix Multiplication program to evaluate the computing per-

formance when running Beagle2. The program computes C = AB, where

matrices A,B, and C are dynamically allocated on the heap. The simplified

source code is listed in Appendix 2.

5.4.1 NxN Matrix Multiplication Time

37



Figure 19: NxN Matrix Multiplication Time

Figure 19’s horizontal axis is the array’s width. Only when N is

less than 10, Beagle does better than Beagle2. When N increases, Beagle’s

execution time grows dramatically, while Beagle2’s execution time only rises

a little. The main reason is that the program allocate a chunk for each

column of a matrix. When N becomes larger, more chunks are allocated and

their metadata needs to be verified after each basic block in Beagle.

Beagle2’s asynchronous checking only does the verification upon finish-

ing computing an element of matrix C and writing it to the heap storage.

The row to column multiplication’s temporary value are all stored on the

stack. Our DupWrite method is specially optimized for memory reading and

stack writing, so the performance difference between Beagle2 and Beagle is

huge.
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6 Discussion

In this chapter, we will talk about the limitations of the DupWrite

method and some possible solutions of them.

6.1 Architecture Dependancy

Beagle2 lies on top of Valgrind. By now, Valgrind supports linux with

four different architectures: x86, x86-64, PPC32, and PPC64. OSX and BSD

support are under development. Currently Beagle2 cannot run on platforms

other than the x86 architecture because the epilogue scanner and the instruc-

tion skipping calculation we mentioned in the implementation chapter refer

to x86 instructions. However, the algorithms we described are generic and

can be easily ported to other architectures as long as the instruction sets of

different architecture are studied carefully.

6.2 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is a security technique

developed to prevent the injected shellcode being executed [29]. Without

ASLR, every time a program is executed, the variables’ locations are fixed,

so there are tools, like the Metasploit Project [30], can easily generate an

exploit input. With ASLR, the buffer’s location will be different all the

time and the target shellcode address cannot be predicted. This makes the

ordinary exploit scheme useless.

Figure 20 is an example memory layout of two running instances of the

same program. The mapping is slightly different. However, it does not make
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$ cat /proc/20436/maps |grep stack
bf8d1000-bf8e6000 rw-p bffeb000 00:00 0 [stack]

$ cat /proc/20436/maps |grep heap
090da000-090fb000 rw-p 090da000 00:00 0 [heap]

$ cat /proc/20437/maps |grep stack
bff50000-bff65000 rw-p bffeb000 00:00 0 [stack]

$ cat /proc/20437/maps |grep heap
09077000-09098000 rw-p 09077000 00:00 0 [heap]

Figure 20: ASLR Activated

a big difference and the most significant byte does not change at all. If it

really changes, given that stack still remains at the bottom of the memory,

and heap on the top, we can extract the UAB (Upper Address Byte) after the

memory mapping is done by querying the proc filesystem’s maps information

of the process.

ASLR is implemented and enabled on linux systems since the 2.6.12

kernel. Windows Vista, OpenBSD, and Mac OS X also has some support for

ASLR. Note that Valgrind manages the memory layout by itself and bypasses

ASLR, so the stack position is fixed and we do not have to deal with this

problem as long as our tool is depend on Valgrind.

6.3 Signal Handling Overhead

From Figure 14 in section 5.1.2, we learned that the overhead from

signal handling is proportional to the number of non-stack write operations.

It seems inevitable that not all programs write to stack at a higher rate than

to heap or other areas. For instance, if the program uses a lot of global

variable to record its states, then the modification to the global variables

will generate heavy overhead.
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6.3.1 Write Target Analysis

We do a little modification to Beagle2 to classify the write target ad-

dresses while running a real program. There are three categories: stack, heap,

and other. The ‘other’ section is when we write a value to areas like global

data, library buffers, or other mapped areas. We run the modified version of

Beagle2 to record the target classification result. The analysis chart is shown

in Figure 21.

First we inspect the result of running WsMp3d Webserver introduced

in section 5.2. Even though the heap writing percentage is only 4.22%, the

other area’s writing percentage is 34.72%, and the two kinds of writing both

trigger segmentation faults. Only stack writing will not cause a segmentation

fault. Around 40% of non-stack writing will cause signal handler to be called

more often. Recall in Figure 15, we can find the fact that 40% of non-stack

writing’s performance is not too good.

Finally, we look at the analysis result when running a 10x10 matrix

multiplication. Almost all of the write targets reference variables on stack.

Thus the segmentation fault happens rarely. The larger the matrix is, the

higher the percentage of stack writing is, and we can overlook the overhead

generated from signal handling. This is the optimal situation in asynchronous

checking by the DupWrite method.

6.3.2 Merged Checking

Another issue is that, programs usually write many bytes sequentially

to buffers. Writing a 32 byte long string to a buffer will generate 8 segmenta-

tion faults, assuming that the compiler or the library function called divide
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Figure 21: Write Target Analysis

the 32-byte write operation into 8 32-bit word write operations. Thus it is

not efficient to check the sequential write operations. If we can predict the

consecutive memory reference behavior and get the range out of it, then the

checks can be merged together and the overhead can be reduced substantially.

Merged checking is an optimization technique mentioned in LIFT by Qin

et al. [31]. It scans through the whole program to perform memory reference

analysis. By building a data dependency graph (DD Graph) and examine

it, unnecessary checking to the same or consecutive reference area can be

eliminated. For sure we can apply this technique to reduce the redundant

checking, but then we cannot benefit from the clean and straightforward

lower overhead instrumentation of our Trap Address Encoding and DupWrite

method, because querying which write operations ought to be instrumented

and which should not will be time consuming.
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6.3.3 Hybrid Solution

A hybrid solution may exist to solve the problem. Currently the Dup-

Write method instruments all memory write accesses no matter that the write

operation is in user’s program, libc function or other external library’s func-

tions. The hybrid method means that, we do not instrument the duplicated

write in external library function functions including libc functions, and use

a function wrapper to do the write range validation beforehand.

It is relatively easy for us to accomplish this method, and there is no

demand to do an analysis on data dependency in advance. In the instru-

mentor, we can look at the current instrumenting instruction. If the write

instruction’s code address is not located in the program’s .text section, then

we do not instrument it. This is the method we used for the no-library in-

strumentation optimization back in Beagle. From Figure 2 in chapter 1, we

can see the impact on performance from no-library instrumentation.

Without the instrumentation, any write operations happen in the exter-

nal library will not generate a segmentation fault. The asynchronous mecha-

nism thus is not deployed on external libraries, and we need active checking

to make sure that the operation will not overwrite the protected targets.

A possible way to achieve that is to use function wrappers to wrap critical

and widely used library functions, for example, strcpy() and memset(), and

do a bound checking to see whether the write region is overlapped with the

protected targets or not, before the function is actually called. This method

is very similar to Libsafe, proposed by Baratloo et al. [32], which also does

bound checking before the function is executed.

It will take a lot of effort to implement the hybrid optimization because
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Figure 22: Beagle2 No-Library Instrumentation Optimization

there are many library functions to be wrapped to do bound checking. Al-

though we do not implement this method, we redo the throughput evaluation

of WsMp3d in section 5.2.1, and this time without instrumenting the library

functions to show the possible performance enhancement from the hybrid

solution. The evaluation result is shown in Figure 22.

Beagle2’s original throughput is about 24.5 MB/s. After removing the

library write instrumentation, the transmission rate is approximately twice

faster, to 51.34 MB/s. Beagle-all is the throughput when running Beagle with

instrumentation in library functions, so we can see that actually Beagle2 is

only a bit slower than Beagle. The extra overhead between Beagle2 and

Beagle comes from the segmentation faults generated from writing global

variables in user program. The performance of Beagle2 will be slower if

bound checking is implemented, but it will still be faster than entering signal

handlers all the time.

Furthermore, we discover that running the webserver and poll files from
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Table 4: Trap Address Conflict

Original Address Encoded Trap Address
0x08048a00 0xb8048a00
0x18048a00 0xb8048a00
0x48048a00 0xf8048a00
0x88048a00 0xb8048a00
0xb8048a00 0xb8048a00
0x0fbfed00 0xbfbfed00
0xbfbfed00 0xbfbfed00

it continuously after an amount of time, the throughput become lower and

lower. By running memcheck provided by Valgrind, it reports that there

are many memory leak spots in the webserver. Appendix 3 is the output

record from memcheck to prove that the memory leakage problem in WsMp3d

Webserver exists. Beagle spends more and more time on checking the unfreed

garbage on the heap, which is the reason of the slowdown. On the other hand,

the asynchronous method we use in Beagle2 does not suffer from memory

leakage, because the garbage chunks will not be modified at all. This is

another good aspect to support asynchronous checking.

6.4 Trap Address Conflict

Trap address encoding is not a one-to-one mapping operation. It “com-

presses” a 32-bit address range into 28-bit range. Table 4 shows that dif-

ferent addresses can be encoded into the same address. A typical address

0x08048a00 to the heap is redirected to 0xb8048a00. If the UAB ORing

operation produces the same result, then the addresses will overlap, and

we cannot derive the original reference address to perform target checking

because there are many possible choices.

If the heap or stack grows too large, the conflict situation will happen.

That is why Valgrind places its and the plug-in’s code and data section on
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00400000-00402000 r-xp 00000000 fd:03 21749773 /root/test/a.out
00601000-00602000 r--p 00001000 fd:03 21749773 /root/test/a.out
00602000-00603000 rw-p 00002000 fd:03 21749773 /root/test/a.out
2b82a4a98000-2b82a4ab3000 r-xp 00000000 fd:03 50733174 /lib64/ld-2.6.1.so
2b82a4ab3000-2b82a4ab4000 rw-p 2b82a4ab3000 00:00 0
2b82a4ac0000-2b82a4ac1000 rw-p 2b82a4ac0000 00:00 0
2b82a4cb2000-2b82a4cb3000 r--p 0001a000 fd:03 50733174 /lib64/ld-2.6.1.so
2b82a4cb3000-2b82a4cb4000 rw-p 0001b000 fd:03 50733174 /lib64/ld-2.6.1.so
2b82a4cb4000-2b82a4dea000 r-xp 00000000 fd:03 50733061 /lib64/libc-2.6.1.so
2b82a4dea000-2b82a4fe9000 ---p 00136000 fd:03 50733061 /lib64/libc-2.6.1.so
2b82a4fe9000-2b82a4fed000 r--p 00135000 fd:03 50733061 /lib64/libc-2.6.1.so
2b82a4fed000-2b82a4fee000 rw-p 00139000 fd:03 50733061 /lib64/libc-2.6.1.so
2b82a4fee000-2b82a4ff4000 rw-p 2b82a4fee000 00:00 0
7fff05ffc000-7fff06012000 rw-p 7fff05ffc000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vdso]

Figure 23: 64-bit Example Memory Layout

the 0x6******* and 0x3******* region, to avoid overlapping with heap and

stack when they grow. When running programs with Beagle2, the conflict

situation will not happen only if the heap’s bottom is not over 0x0f000000,

because 0x0f000000 OR 0xb0000000=0xbf000000 is probably mapped by

the stack. Similarly, stack cannot grow too large (large buffer allocation

/ recursive calls) or it will bump into the trap area. Heap’s size cannot

exceed approximate 100MB in our experiment environment, which may be

insufficient for memory-consuming programs.

6.4.1 64-bit Environment Memory Layout

Although Valgrind supports the x86-64 architecture, Beagle2 currently

runs on 32-bit x86 machines only. But there is no restriction that forbid us to

port it to the 64-bit architecture. Figure 23 is a memory layout example from

a x86-64 Gentoo Linux machine. The difference between Figure 23 (64-bit)

and Figure 4 (32-bit) is that the dynamic libraries are placed after the heap

section in the 64-bit memory layout. And due to larger addressing space,

memory mapping becomes very sparse.
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6.4.2 Common Factor of the Most Significant Bytes

How can we benefit from the sparse memory in the 64-bit environment?

Apparently the large gap below the heap section will allow the heap to grow

larger without the trap address conflict problem, so we can run some large

and memory-consuming programs. And because the dynamic loaded libraries

are now placed much more close to the stack, we can AND the stack and the

library section’s most significant common byte together. The AND result

will be the UAB we use in the trap address encoding process. Addresses

pointed to the dynamic library and the stack OR with the UAB will remain

the same, which means that they will not write to trap pages.

6.4.3 Write to Library Page Fault Elimination

In current version of 32-bit Beagle2, write to the locations in the dy-

namic libraries will cause segmentation faults. That is because the libraries

are located at lower memory part, and we cannot find a common UAB from

the stack and the library section. In Figure 21, which we have analyzed in

section 6.3.1, the ‘other’ part of running WsMp3d Webserver is around 36%.

A few of the write operations access the global data before the heap and most

of them write to the buffers in libraries. If we can use the technique men-

tioned above in the 64-bit environment, then we can eliminate the redundant

segmentation faults from writing the library section, which accounts for most

of the overhead.
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7 Conclusion

We propose a simple and novel method to redirect non-stack memory

reference to trap areas to achieve asynchronous memory modification veri-

fication. The overhead of our reference redirection is relatively lower than

other mechanisms, which must perform a table look-up. The overall perfor-

mance enhancement is remarkable when objects on stack region are accessed

more often than other area. To reduce the signal handling overhand when

accessing non-stack area, a hybrid solution exists which can do active bound

checking with external library functions and bypass the redundant segmen-

tation faults. In addition, with asynchronous checking, memory leakage of

dynamic allocated chunks will not slow the whole process down. This proves

that the control interception detection tool with our optimization applied is

suitable for online detection, fuzz testing, or being configured as a monitor

to filter successful penetration exploit data.
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A Appendix

A.1 Evaluation 1’s Simplified Code

1 int heapChunkNum=atoi(argv[1]);
2 int heapWrite=atoi(argv[2]);
3 int localWrite=10000000-heapWrite;

4 for(i=0;i<heapChunkNum-1;i++)
5 malloc(100);

6 for(i=0;i<heapWrite;i++)
7 *heap=’k’;

8 for(i=0;i<localWrite;i++)
9 local=’k’;
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A.2 Evaluation 4: Matrix Multiplication’s Simplified

Code

1 int wid;
2 int **matA,**matB,**matC;

3 void multiply(){
4 int i,j;
5 for(i=0;i<wid;i++){
6 for(j=0;j<wid;j++){
7 int elem=0;
8 int n;
9 for(n=0;n<wid;n++)
10 elem+=matA[i][n]*matB[n][j];
11 matC[i][j]=elem;
12 }
13 }
14 }

15 int main(int argc,char* argv[]){
16 if(argc!=2)
17 exit(-1);
18 wid=atoi(argv[1]);

19 matA=(int**)malloc(wid*sizeof(int*));
20 matB=(int**)malloc(wid*sizeof(int*));
21 matC=(int**)malloc(wid*sizeof(int*));
22 int i;
23 for(i=0;i<wid;i++){
24 matA[i]=(int*)malloc(wid*sizeof(int));
25 matB[i]=(int*)malloc(wid*sizeof(int));
26 matC[i]=(int*)malloc(wid*sizeof(int));
27 }
28
29 multiply();
30 return 0;
31 }
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A.3 Evaluation 2: WsMp3d Webserver Memory Leak-

age

==11635==
==11635== ERROR SUMMARY: 20 errors from 1 contexts (suppressed: 14 from 1)
==11635== malloc/free: in use at exit: 191,390 bytes in 201 blocks.
==11635== malloc/free: 436 allocs, 235 frees, 314,001 bytes allocated.
==11635== For counts of detected errors, rerun with: -v
==11635== searching for pointers to 201 not-freed blocks.
==11635== checked 199,136 bytes.
==11635==
==11635==
==11635== 30 bytes in 1 blocks are definitely lost in loss record 1 of 5
==11635== at 0x4005898: malloc (vg_replace_malloc.c:207)
==11635== by 0x804F83A: mytime (web_server.c:2019)
==11635== by 0x804DBAC: main (web_server.c:1483)
==11635==
==11635==
==11635== 1,024 bytes in 1 blocks are possibly lost in loss record 2 of 5
==11635== at 0x4005898: malloc (vg_replace_malloc.c:207)
==11635== by 0x804AAFD: gimme_line (web_server.c:628)
==11635== by 0x804AA54: parse_request (web_server.c:611)
==11635== by 0x804E0D0: main (web_server.c:1592)
==11635==
==11635==
==11635== 20,480 bytes in 20 blocks are definitely lost in loss record 4 of 5
==11635== at 0x4005898: malloc (vg_replace_malloc.c:207)
==11635== by 0x804ABC3: gimme_content (web_server.c:651)
==11635== by 0x804AABE: parse_request (web_server.c:617)
==11635== by 0x804E0D0: main (web_server.c:1592)
==11635==
==11635==
==11635== 162,816 bytes in 159 blocks are definitely lost in loss record 5 of 5
==11635== at 0x4005898: malloc (vg_replace_malloc.c:207)
==11635== by 0x804AAFD: gimme_line (web_server.c:628)
==11635== by 0x804A8C5: parse_request (web_server.c:589)
==11635== by 0x804E0D0: main (web_server.c:1592)
==11635==
==11635== LEAK SUMMARY:
==11635== definitely lost: 183,326 bytes in 180 blocks.
==11635== possibly lost: 1,024 bytes in 1 blocks.
==11635== still reachable: 7,040 bytes in 20 blocks.
==11635== suppressed: 0 bytes in 0 blocks.
==11635== Reachable blocks (those to which a pointer was found) are not shown.
==11635== To see them, rerun with: --leak-check=full --show-reachable=yes
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