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Chapter 1 Introduction

1.1. Background and motivation 

The genetic algorithm (GA) is a stochastic optimization method based on selecting 

fitter solutions and exchanging information between selected solutions. In a simple 

GA, a solution is represented using a variable vector. Variable vectors are transformed 

into binary strings, called individuals or chromosomes. Each decision variable of 

solutions is linked to a substring of chromosomes, called a gene. Figure 1-1 shows the 

flow chart of a simple GA, and figure 1-2 shows the data flow of a simple GA. First, 

an even number of random variable vectors are generated to form an initial population. 

The fitness values of the variable vectors are calculated by a predefined fitness 

function, and the variable vectors are transformed into chromosomes. Second, a 

selection operator is adopted to copy the same number of chromosomes from the 

population. A chromosome with a large fitness values has high probability of being 

copied one or more times. Third, every two copied chromosomes reproduce two new 

chromosomes, called offspring, to form the next generation of a population. A 

crossover operator and a mutation operator play the major roles in reproduction. 

Fourth, the fitness values of offspring are calculated by the same fitness function used 

in step 1. If stopping criteria are met, then the computation of GA is stopped; 

otherwise, step 2, 3 and 4 are repeated. 

The genetic algorithm (GA) is a commonly used method for solving discrete 

valued truss structural optimization problems [1-6]. However, GAs often spend a 

significant amount of computational time in searching for the optimal solution of 

discrete structural optimization problems, especially when the search space has 

enormous number of potential solutions. The reason is that the GA continuously 



2 

 

balances exploitation and exploration [7]. Exploitation is the search strategy of 

exploiting the best solution, and exploration is the search strategy of exploring the 

search space. According to the literatures, various strategies have been developed to 

strengthen GAs [8-15]. Among the strategies include the greedy notion. For example, 

Fanni et al. [8] applied a greedy genetic algorithm to electromagnetic optimization 

problems. Their algorithm obeyed the following three criteria: acceptable quality of 

an initial population, reserve of the best chromosome in the population, and an 

immigration strategy for selection. The first two criteria were expected to improve the 

exploitative capability of GAs, and the last criterion was designed to enhance the 

explorative capability of GAs. Pyrz and Zawidzka [9] used a heuristic algorithm and a 

GA to solve the discrete structural optimization problems. The heuristic algorithm was 

responsible for producing a good initial population for the GA. According to their 

results, the heuristic initialization leads to a better search for structural optimization 

problem than random initialization. Chen et al. [10] developed a self-tuning method 

for multi-objective of assembly planning problems to correct the infeasible 

chromosomes in the GA population. Their conclusion indicated that the condition of 

full-feasible chromosomes helps GAs in searching for the optimal solution of 

optimization problems. 

 Another strategy for improving the genetic search is to adapt the value of 

parameters of GAs. For example, Hwang and He [11] used the simulated annealing 

algorithm to dynamically update the crossover and mutation probabilities of GAs. In 

their GA, the crossover and mutation probabilities were maintained at initial values 

when the best chromosome was continuously improved. Otherwise, the probability 

ratios were gradually increased to extend the explorative capability of GAs. Velley 

[12] proposed using a dynamic population size for GAs to solve database query 
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optimization problems. His notion was based on the biology evolution concept. The 

population size of a species is increased when the species fit an abundant environment. 

Therefore, the dynamic population size GA increased its population size when the 

most chromosomes of populations had similar fitness values, and decreased the 

population size when a few chromosomes were obviously stronger than the others. 

The third strategy for improving the genetic search is that GAs use the 

multi-population strategy to process the evolution. For example, Perry et. al. [13] 

applied a multi-population GA to structural identification problems. In their GA, all 

populations had the same population size; in addition, the fitter chromosomes were 

forced to migrate to a dominant population. Ma and Gong [14] proposed using a large 

core population and several small colony populations to process the evolution. The 

core population was responsible for exploiting the optimal solution, and the colony 

populations was responsible for exploring the search space for finding new promising 

search regions. The operation between the two kinds of populations was that the 

stronger chromosomes of the colony populations were continuously sent to the core 

population. The fourth strategy for improving the genetic search is to hybrid an 

improved model from GAs and local search algorithms. Lee et. al. [15] proposed 

using a greedy eugenics strategy to augment GAs. The augmented GA used the 

simulated annealing algorithm to refine the chromosomes of offspring populations. 

Their notion was that the locally optimal offspring provide valuable information to 

search for the optimal solution of optimization problems.  

The fifth strategy for improving the genetic search is the technique of reduction 

of the search space. Perry et. al. [13] used statistic methods to reduce the search space 

for GAs. First, their GA ran within the small number of iterations. Second, the 

average value and standard deviation of variables of survival solutions were 
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calculated. Third, the sets of legal values of variables were narrowed down to some 

values that were near the average value of variables. Moreover, if the standard 

deviation of a variable is smaller than a threshold value, the variable will set to the 

average value. Finally, if there are two or more elements in any set of legal values of 

variables, the above three steps will repeat.   

 

1.2. Objective 

This work proposes a high performance GA by incorporating a hill-climbing 

strategy and two greedy notions to a simple GA, and is applied to the optimal design 

of truss structures with discrete sizing variables. The hill-climbing strategy is 

integrated into the GA to reduce the search space, and the greedy notions, including 

heuristic initialization and hybrid selection, are expected to help the GA to explore the 

search space for identifying the most promising search region. In the hill-climbing 

strategy, the best chromosome is assumed to be located at the center of the most 

promising search region. Notably, the best solution is used as the most important hit 

for the next search directions can also be found in another stochastic optimization 

method, particle swarm optimization [16]. The hill-climbing strategy obviously differs 

from Perry’s reduction technique [13]. Reducing the search space of each variable 

depends on all variables in the hill-climbing strategy. Each variable uses the same 

reduction speed to narrow down its promising search range. However, the reduction 

of search space of each variable is independent of each other in the Perry’s reduction 

method. Some variables may be converged too early when an approximated optimal 

solution is found.  

 

1.3. Organization of the dissertation  
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The rest of this dissertation is organized as follows: 

Chapter 2: introduce the GAs, including a simple GA, greedy GAs, adaptive GAs and 

multi-population GAs.   

Chapter 3 explains the hill-climbing and greedy GA. The hill-climbing strategy is 

based on the reduction of search space, and the greedy notions include the 

heuristic initialization and a hybrid selection. 

Chapter 4 briefly defines the problem and shows the performance of tests of the 

proposed GA. The testing examples include a 10-bar plane truss structure, 

a 25-bar space truss structure, a 72-bar space truss structure, and a 160-bar 

space truss structure. 

Chapter 5 summarizes the conclusions.  
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Chapter 2 Genetic algorithms 

2.1. Simple GA 

2.1.1. Chromosomes(or called individuals) 

The genetic algorithm (GA) is a stochastic optimization method based on selecting 

fitter solutions and exchanging information between selected solutions. In a simple 

GA, a solution is represented using a variable vector. Variable vectors are transformed 

into binary strings, called individuals or chromosomes. Each decision variable of 

solutions is linked to a substring of chromosomes, called a gene. For example, the 

vector (V[2], V[7], V[13], V[3]) is a solution of an optimization problem, and V is a 

feasible value array. If the feasible value array contains 16 possible values, then the 

corresponding chromosome can be represented as follow: 

 (2, 7, 13, 3)10 => 00102 01112 11012 00112 

Each chromosome has a fitness value that is estimated by a predefined fitness 

function. A chromosome with a large fitness value means that the chromosome has a 

higher probability to alive in the latter competing. On the other hand, a chromosome 

with a small fitness value means that it possibly dies in the latter competing.  

2.1.2. Random initialization  

The advantage of the genetic algorithm for optimization problems is that it can 

overcome the local minimum problem which is generally a challenge for other 

optimization methods. One reason is that, the genetic algorithm uses a population of 

start points to exploit the solutions. In the simple genetic algorithm, the initial 

population is composed of an even number (called population size) of random 

variable vectors. 

2.1.3. Roulette wheel selection 

Selection operators are designed for GAs to save strong chromosomes of parent 
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population so as to improve the offspring population. The basic notion is that a 

chromosome with a larger fitness value has the higher probability to be copied one or 

more times. The roulette wheel selection is the most commonly used selection method, 

and is illustrated in figure 2-1. The selection method randomly selects chromosomes 

from the previous generation, and the selection probability of any chromosome is 

positively proportional to its fitness value.  

Suppose C1, C2, …, Ck are the chromosomes in the population, and their fitness 

values are f1, f2, …, fk, respectively. First the selection probability of each 

chromosome is calculated as follows: 
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Then k random values (r1, r2, …, rk) in the interval of [0, 1] are generated for selecting 

the chromosomes from the population. The selection rule is shown as follows: 
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For example, a population has 4 chromosomes C1, C2, C3, C4, and their fitness 

values are 1, 9, 3, 7, respectively. Now, four random values 0.73, 0.24, 0.49, 0.64 are 

generated for the roulette wheel selection. The selection results are shown as follows: 

Chromosomes in the population  C1      C2      C3      C4 

Fitness values       1    9    3       7     ∑= 20  

Selection probability   0.05     0.45     0.15     0.35 

Accumulated probability        0.05     0.5      0.65     1.00 

Selection rules: 

 IF 05.00 <≤ r  then C1 

 IF 5.005.0 <≤ r  then C2 
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 IF 65.05.0 <≤ r  then C3 

 IF 0.165.0 ≤≤ r  then C4 

Selection results: 

 r=0.73 => C4 

 r=0.24 => C2 

 r=0.49 => C2 

 r=0.64 => C3 

2.1.4. Crossover  

After the selection procedure is finished, GAs use a crossover operator to rebuilt the 

copied chromosomes. Basically, every two copied chromosomes can produce two new 

chromosomes. Figure 2-2 illustrates three commonly used crossover operators, and 

the detail of the crossover operators is introduced in the following. 

(1) Single-point crossover 

For example, two chromosome instances are used for a single-point crossover 

operator. They are defined as follows: 

 C1=0110110011101000110100110 

 C2=1001100101100101110111001 

First a random integer number is generated. Suppose the random number is 5, then the 

above two chromosomes are divided into two blocks at the location of 5, respectively. 

   C1=01101 10011101000110100110 

 C2=10011 00101100101110111001 

Finally, the two chromosomes exchange their right blocks to produce two new 

chromosomes. 

 C’1=01101 00101100101110111001 

 C’2=10011 10011101000110100110 
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(2) Multi-point crossover 

The chromosome instances used in (1) also used to explain the multi-point 

crossover operator. The multi-point crossover operator divided the chromosomes into 

three or more blocks. The two chromosomes exchange their even blocks to produce 

new chromosomes. Suppose 5, 13, 18 are randomly generated integer numbers. 

Chromosomes C1 and C2 are divided into four blocks, respectively.  

 C1=01101 10011101 00011 0100110 

 C2=10011 00101100 10111 0111001 

The two chromosomes exchanges their second and forth blocks to produce the new 

chromosome, and the new chromosomes are listed as follows: 

C’1=01101 00101100 00011 0111001 

 C’2=10011 10011101 10111 0100110 

(3) Uniform crossover 

The uniform crossover always exchange even positions of binary between two 

chromosomes. The chromosome instances used in (1) and (2) is adopted to explain the 

uniform crossover operator again. The results are listed as follows:  

 C’1=0011100111101101110101100 

 C’2=1100110001100000110110011 

2.1.5. Mutation 

 The operator is designed to change some genes of individuals for preventing the 

population of individuals from becoming too similar to each other. Mutation operator 

is also a random operator, and is defined as follows: 
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where i=1 to the length of a individual, r is a random number in the interval of [0, 1], 
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and mr is the mutation ratio. 

 For example, mr=0.1 

 I=0   1    1    0    1    1    0   

 r=0.70 0.24  0.03  0.48  0.56  0.93  0.25 

 I’=0  1  0  0  1  1  0 

 Generally, the mutation ratio should be small. If the mutation ratio is too large, 

the GA is like a random search algorithm. 

2.1.6. Stop criteria 

If stopping criteria are met, then the computation of GA is stopped; otherwise, 

selection, crossover and mutation operating are repeated. Basically, the stopping 

criteria of GA are decided by the users. The simplest stopping criterion is to stop a GA 

when the iteration number exceeds the upper bound. Another stopping criterion is that 

the GA is stopped if the best individual does not improved for a certain amount of 

iterations.   

 

2.2. Greedy GA 

The difference between a simple GA and a greedy GA is that the latter considers 

eugenics. In this section, three eugenic strategies for GAs are described. 

2.2.1. Heuristic initialization 

The heuristic initialization can speed up the GA to find solutions, especially for 

the large scale problems [7 and 9]. The notion of heuristic initialization is that the 

good start points can help GA in exploring the search space because their locations are 

generally far from valueless regions of the search space. The only drawback for 

applying the heuristic initialization to GAs is that the extra knowledge of problem for 

modifying random chromosome should exist. 
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2.2.2. Always save the best chromosome 

According to eugenics, the best chromosome has the largest opportunity to 

produce the strongest chromosome. However, the roulette wheel selection is possible 

to lose the best chromosome due to its random feature. On the other hand, the 

( )λµ +  selection method based on eugenics ensures that the best chromosome is 

always saved [7]. The feature of the ( )λµ +  selection method is that the best k 

chromosomes are selected form parent and offspring populations as both populations 

have k chromosomes, respectively. First the 2k chromosomes of parent and offspring 

populations are ranked according to their fitness values. Then the first k chromosomes 

are saved, and the others are died.  

2.2.3. Immigration for population 

IF a GA uses eugenic strategies, inbreeding problems should be considered. The 

inbreeding problem means that the GA exploits solutions in some small regions of the 

search space only, and ignores the importance of exploring the other regions of the 

search space. The simplest way to avoid inbreeding is to add immigration into the 

population. The immigration can be generated in any way, but they should be 

independent on the parent population. 

 

2.3. Adaptive GA 

The simple GA is based on the Darwin’s theory of evolution. Actually, biological 

evolution is very slow. Therefore, some GAs use dynamic working parameter to 

enhance their performances.  

2.3.1. Dynamic population size 

 In biological word, a population grows up because the chromosome fit their 

environment and the environment is abundant in nature resource. Back to GAs, the 
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simple GA always uses the same number of population size. This design is far from 

the natural world. Therefore, using dynamic population sizes for GAs is reasonable. 

Velley [12] proposed the population size is increased when the most chromosomes of 

populations had similar fitness values, and is decreased when a few chromosomes 

were obviously stronger than the others (Figure 2-3). Velly’s notion can be considered 

as an eugenic strategy. If a few chromosomes are obviously stronger than the others in 

a population, then the GA strongly limits the bad chromosomes to reproduce their 

offspring (Figure ). In addition, Koumousis and Katsaras [18] proposed that the GA 

uses a bigger population size and the smaller final population size in an evolution 

process (Figure 2-4). Their notation is that the selection probability of a chromosome 

is independent of the population size if the most chromosomes are very similar in a 

population.  

2.3.2. Dynamic mutation ratio 

 The mutation ratios of GAs are generally small because the nature mutation 

probability is very low. A large mutation ratio may cause the GA to be like a random 

search algorithm. However, this situation seems to be a disadvantage but is sometimes 

useful. As the most chromosomes of a population are very similar, the selection and 

crossover operators are difficult to produce brand-new chromosomes. Increase the 

mutation ratio can force the GA to explore another region of the search space. 

Therefore, the GA can reduce the risk of the local minimum problem.  

 

2.4. Multi-population GA 

If a problem has a lot of local minimum over different region of the search space, then 

the multi-population GA can perform the better performance than a simple GA. There 

are several types of multi-population GA. Perry et. al. [13] emphasized that all 
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populations of a multi-population GA had the same population size, and the fitter 

chromosomes were forced to migrate to a dominant population (Figure 2-5). Their 

notion is that the GA keeps balance between exploration and exploitation in 

populations, except the dominant population. The dominant population is a eugenic 

population which is expected to produce the optimal solution. Ma and Gong [14] 

proposed using a large core population and several small colony populations to 

process the evolution (Figure 2-6). The core population should keep balance between 

exploration and exploitation. Therefore, the immigration is continuously from the 

colony populations. The number of colony populations can be large because each 

colony population consists of a few chromosomes. It is possible that each colony 

population locates at different region of the search space. 

 

2.5. Hybrid GA 

Local search algorithms are generally very effective for optimization problems if a 

good start point is given. Therefore, the notion of hybrid GA is that using GA as a 

global search method to find valuable regions of the search space, and using a local 

search algorithm to exploit solutions in the valuable regions which is found by the GA 

[7]. Moreover, the solution found by the local search algorithms can be used as the 

parent population for the GA to reproduce the offspring population [15]. Figure 2-7 

shows two examples of hybrid GAs. 
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Chapter 3 Hill-climbing and greedy genetic algorithms 

(HGGA) for structural optimization problems 

3.1. Statement of problems 

According to design variables, structural optimization problems can be classified into three 

sub-problems. One sub-problem is the sizing structural optimization problem. The goal of the 

sizing structural optimization is to find the values of a set of cross-sectional areas of members 

that lead to the minimum weight of structures and satisfy all design constraints. Another 

sub-problem is the topology structural optimization problem. The topology structural 

optimization problem is similar to the sizing structural optimization problem, except for that 

the value of cross-sectional areas of members can not be zero in sizing structural optimization, 

yet can be zero in topology structural optimization. The other sub-problem is the shape 

optimization problem. The shape optimization problem simultaneously considers sizing and 

geometry variables to search for the minimum weight structure.  

 In this dissertation, only the sizing structural optimization problem is considered. The 

sizing structural optimization of truss structures with discrete sizing variables can be 

expressed as follows: 

Find   X  where iix Z∈  

Minimize  ∑
=

=
m

j

jj ALF
1

γ             (3-1) 

Subject to 0)(,1 ≤XG j  for j=1 to m 

   0)(,2 ≤XG k  for k=1 to n 

where X is a design variable vector, ix  is the i-th element of X, iZ  is a set of 

predefined values (legal values) corresponding to ix , F is the non-constraint 

objective function, γ  is the unit weight of material, jL  and jA  are the length and 
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the cross-sectional area of j-th member, respectively, )(,1 XG j  is the stress constraint 

function of j-th member, )(,2 XG k  is the displacement constraint function of k-th 

coordinate, m is the number of members, and n is the number of degree of freedoms. 

Penalty function and Lagrange multipliers are two conventional methods of 

combining the non-constrained objective function and the constraints as a constrained 

objective function. Herein, a penalty function is employed to punish infeasible 

solutions for increasing the objective function. Additionally, equation (3-1) should 

work together with a structural analysis procedure. The structural analysis procedure 

is responsible for calculating the member forces and nodal displacements of potential 

structural designs. Figure 3-1 shows the flow chart of the structural optimization. 

 

3.2. HGGA 

3.2.1. Heuristic initialization 

    The optimal solution of truss structural optimization problems is always located 

on the boundary between feasible and infeasible search regions. Therefore, a 

randomly generated structural design can be refined simply by moving it directly to 

the boundary. The refining process has two levels of modifications: randomly 

generated truss structural designs to transition truss structural design and transition 

truss structural design to heuristically generated truss structural designs. The 

corresponding formulas are defined as follows: 

Raa jj ×=′ (R)
  for j=1 to m             (3-2) 
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where ja′  is the j-th sizing variable of transition truss structural designs, )(R

ja  is the 

j-th sizing variable of randomly generated truss structural designs (R)X , R is a change 

ratio, ( ))(R

k Xd  is the nodal displacement of k-th coordinate corresponding to (R)X , 

akd ,  is the allowable displacement of k-th coordinate, 
)(H

ja  is the j-th sizing 

variable of heuristically generated truss structural designs, ( ))(R

j Xσ  is the actual 

stress corresponding to )(R

ja , and ( )
jaj a′

,σ  is the allowable stress corresponding to 

ja′ .  

Equations (3-2) and (3-3) are designed to modify randomly generated truss 

structural designs in order to correct their maximum displacements from any value to 

the allowable value. Equation (3-2) indicates that the same change ratio modifies all 

sizing variables. Utilizing the same change ratio to modify the cross-sectional areas of 

members is characterized by the fact that the member forces of modified structures 

are the same as those of original structures. Restated, if the values of sizing variable 

of randomly generated truss structural designs are magnified k times, the member 

stresses of transition truss structural designs are 1/k that of randomly generated truss 

structural designs. Therefore, the member stresses of transition truss structural designs 

can be accurately estimated directly from those of randomly generated truss structural 

designs. Equation (3-4) is expected to repair the stress constraints of transition truss 

structural designs. The calculation of equation (3-4) is required only when the sizing 

variables of transition truss structural designs correspond to a yielding situation. 
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Moreover, regardless of whether or not the allowable stresses of members are varied 

with the change of sizing variables, the refining of stress constraints runs for one time 

only. Notably, the fitness values of heuristically generated solutions consider only the 

structural weight when attempting to reduce the computational burden of structural 

analysis.  

3.2.2. Encoding 

    In the GA, encoding is a process that transforms variable vectors into 

chromosomes. Several encoding methods are available for the mapping from the 

solution space to the chromosome space, including binary encoding, real number 

encoding, integral encoding and literal permutation encoding. The selection of 

encoding method generally depends on the desired problems to be solved. This work 

selects binary encoding for the hill-climbing and greedy GA. For example, 

Variable vector: ...) ),( ),(( 2211 azazX =  

Assigned number vector: ...) , ,( 21 aaANX =  

Chromosome: ...21ssCX =  

where )( ii az  represents the ia -th element of set of legal values corresponding to the 

i-th variable of X, ia  is the assigned number of i-th variable of X, and is  is the 

binary string corresponding to ia . 

3.2.3. Hybrid selection 

   Selection of GAs focused on gradually improving populations. The roulette wheel 

selection is a commonly used selection method. The selection method randomly 

selects chromosomes from the previous generation, and the selection probability of 

any chromosome is positively proportional to its fitness value. The weakness of the 

selection method is that the best chromosome is possible to be lost due to the random 
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selection scheme. The ( )λµ +  selection is another conventionally adopted selection 

method. The selection method is characterized by its capability to always reserve the 

fitter chromosomes. However, valuable information for identifying the new promising 

search regions may be lost if the bad chromosomes are always died. This work uses 

hybrid methods to select chromosomes from the previous generation. The selection 

rules are listed in the following: 

10%  chromosomes copied from the best chromosome 

70%  chromosomes selected by roulette wheel selection 

20%  immigration 

Chromosomes for immigration should be produced independently of the parent 

population. Random generation is the most commonly used method for producing 

immigration for GAs. However, this work uses heuristic initialization to produce 

immigration in the initial stage of the genetic search (first 20 iterations) and random 

immigration in a later stage.  

3.2.4. Crossover and Mutation 

    After the selection is finished, crossover and mutation operators are used to 

generate next generation of populations. The crossover operator is used to exchange 

information between two chromosomes. The notion of crossover is that the new 

chromosome may be better than both of the parents if it takes the best characteristics 

from each of the parents. The mutation operator is used to add some changes to 

offspring chromosomes. The aim of mutation is to allow the GA to avoid local 

minima by preventing the population of chromosomes from becoming too similar to 

each other. In this work, the uniform crossover operator and the point mutation 

operator are adopted.  

3.2.5. Hill-climbing strategy and modulus decoding method 
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    Most GAs generally use the same coding method to encoding variable vectors to 

chromosomes and decoding chromosomes to variable vectors. However, this work 

uses different encoding and decoding methods because a hill-climbing strategy is 

integrated into the GA. Hill-climbing search methods emphasize extreme exploitation. 

The kind of search methods assume that the optimal solution is located at somewhere 

between the visiting location and the location of current best solution. Hill-climbing 

search methods always have an extremely high convergence speed because they 

ignore exploring the search space. However, the search results by the hill-climbing 

search methods highly depend on the start point.  

The GA always keeps balance between exploitation and exploration. That is why 

the GA can overcome local minimum problems. Also, that is why the GA often 

requires a long computational time to search for the optimal solution of optimization 

problems. This work attempts to integrate a hill-climbing strategy into the GA to 

reduce the computational time for finding the optimal solution of discrete truss 

structural optimization problems. The hill-climbing strategy assumes that the center of 

the most promising search region is located at the location of current best solution; in 

addition, the most promising search region is gradually reduced whenever the best 

solution is improved. Figure 3-2 uses an example to further explain the hill-climbing 

strategy. Suppose a discrete optimization problem has p variables, and the i-th 

variable of the problem is linked to a set of 11 ranked discrete values ( iZ ). The fat 

solid circle represents the search space, the thin solid circle represents the most 

promising search region at the k-iteration, and the dashed circle represents the most 

promising search region at the (k+1)-iteration. Additionally, windows k

iW  and 1+k

iW  

are designed to produce the subset of discrete values corresponded to the i-th variable 

at the k-iteration and (k+1)-iteration, respectively. At the k-iteration, the value of the 
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i-th variable is selected from { 2,iz , 3,iz , 4,iz , 5,iz , 6,iz , 7,iz }, where the middle 

element 5,iz  is corresponded to the value of the i-th variable of the best solution (
k

x1 , 

k
x2 , …, 5,i

k

i zx = ,…, 
k

px ), and the window size is 6 

( =
2

k

iW
2

)0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,0( =6). If the best solution is moved from the old 

location to a new location (
1

1

+k
x , 

1

2

+k
x , …, 7,

1

i

k

i zx =
+

 ,
1+k

px ) after the k-th iteration, 

the following subset { 5,iz , 6,iz , 7,iz , 8,iz , 9,iz } is proposed for the i-th variable at 

the (k+1)-iteration. The middle element 7,iz  of the new subset of discrete values is 

corresponded to the value of i-th variable of the new best solution, and the window 

size is decreased from 6 to 5 (
2

1+k

iW =
2

)0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0( =5). 

How to decrease the number of element of subsets for variables is an important 

issue for the hill-climbing GA. The solution may converge to a locally optimum if the 

hill-climbing strategy reduces the search space too fast. Herein, a three-level window 

size rule is proposed to handle the window size. 

If iteration number of genetic search is smaller than a lower bound value (δ ), then 

max)( WskWsize =              (3-5) 

Else if min)( WsRound k ≥φ , then 

)()( kRoundkWsize φ=             (3-6) 
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Else if min)( WsRound k <φ , then 

min)( WskWsize =              (3-8) 
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where α  is a real number in the interval of [0.9, 1], β  is a positive integer number 

for forcing kφ  to be modified, maxWs  is the maximum window size, and minWs  is 

the minimum window size. Basically, the more complex the optimization problems, 

the larger the value of α . By the three-level window size rule, the reduction speed 

for narrowing down search space can be easily adapted by changing the parameter 

α . 

Due to the reduced search space, some chromosomes are possible to be outside 

the most promising search region. For example, a chromosome selected from the 

parent population is inside the previous most promising search region, but may be 

outside the new most promising search region. Moreover, the crossover and mutation 

operators are possible to produce offspring to be outside the most promising search 

region. To overcome the problem, a modulus decoding method is developed to map 

offspring from the chromosome space into the solution space. Figure 3-3 uses an 

example to illustrate the decoding method. The 2nd, 3rd and 4th elements are 1 and 

others are 0 in the window Wi. The set of legal values is ranked from small to large. 

The set of promising values is generated by Wi and the set of legal values. As 

indicated from figure 2, the (2+3a)-th elements are set as )2(iz , the (3+3a)-th 

elements are set as )3(iz , and the (4+3a)-th elements are set as )4(iz  in the set of 

promising values of i-th variable, where a is an integer. Therefore, no matter what 

value of i-th gene is, the gene is always mapped into the promising values. The 

following formulas are defined for modular decoding: 

Suppose that, 
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)1,mod( +−−+= leftrightleftleft wwwjwl          (3-11) 

where leftw  is the assigned number corresponded to the first element 1 of window Wi, 

rightw  is the assigned number corresponded to the last element 1 of window Wi, pi is 

the number legal values of i-th variable, gpromi

iZ
sin  is the set of promising values of 

i-th variable, iZ  is the set of legal values of i-th variable. 

3.2.6. Flow chart of the hill-climbing and greedy GA 

 Figure 3-4 shows the flow chart of the hill-climbing and greedy GA. The 

hill-climbing and greedy GA starts form the process of heuristic initialization. The 

window size is then set to the maximum values, and an even number of heuristically 

generated truss structural designs forms an initial population. Next, the fitness values 

of heuristically generated truss structural designs are calculated by the evaluation 

process, and the heuristically generated truss structural designs are then transformed 

into chromosomes by the encoding process. The hybrid selection process produces the 

same number of chromosomes by selecting from the population and immigration. The 

survival chromosomes then exchange information by the crossover process, and some 

genes of modified chromosomes from the crossover process are changed by the 

mutation process. After the two processes are calculated, an offspring population is 

generated. The chromosomes of the offspring population should be transformed into 

variable vectors by the modulus decoding process to evaluate their fitness values. If 

the best solution is improved, the window size is adapted according to the three-level 

window size rule, and the centers of windows of variables are moved along with the 

value of variables corresponding to the best solution. However, if the best solution is 

unchanged for a certain number ( β ) of generations, the window adaption process is 

forced to update windows. The computation for searching the optimal solution will 
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stop if the stopping criteria are met. Otherwise, the offspring population is sent to the 

encoding process to repeat the next iteration of genetic search.    
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Chapter 4 Numerical examples 

A greedy GA (GGA, greedy notions includes the heuristic initialization and the 

hybrid selection) and a hill-climbing and greedy GA (HGGA) were tested by several 

examples to discuss their search performance, and a simple GA (SGA) was used as a 

reference model to solve the same problems. Several working parameters were set to 

the same values for the three GAs. The maximum iteration number was 500; the 

population size was 50; the crossover probability is 100% for each chromosome; the 

mutation probability is 5% for each gene. Additionally, each GA was run 10 times by 

using 10 sets of independent initial weights to obtain more observations. 

4.1. 10-bar plane truss structure 

A 10-bar plane truss structure was adopted as an example for the performance 

test of the GGA and HGGA, and the example has been discussed in references [1, 5 

and 17]. Figure 4-1 shows the topology of the truss structures. The elastic modulus 

was 410  Ksi ( 41089.6 ×  MPa); the weight per unit volume was 0.1lb (2774 kgw/m
3
); 

the allowable tension and compression stresses were 25 Ksi (172.25 MPa) and -25 Ksi 

(-172.25 MPa), respectively; the allowable displacements in both x and y directions 

were 0.0508 m (2 in); 100 kips (4.5 kN) concentrated loads were imposed on pin-2 

and pin-4 in y-direction. Additionally, each member of the 10-bar plane truss structure 

was linked to an individual cross-sectional area. That is, this example has 10 sizing 

variables. 

Case I: 

The value of sizing variables was selected from the set Z={0.1, 0.5, 1.0,1.5, 

2.0,…,29.5, 30.0, 30.5, 31.0, 31.5} (in
2
). Therefore, the search space of this case 

contains 64
10

 data points. The working parameters of the hill-climbing strategy for 

this case were set as follows: the maximum window size was 32; the minimum 
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window size was 7; the values of α , β  and δ  for three-level window size rule are 

0.95, 20 and 20, respectively. Table 1 lists the computational results of this example. 

The HGGA shows the best search performance. The weight of the best solution found 

by the HGGA is 5067.33 lb. However, the weights of the best solutions found by the 

SGA and GGA are 5221.86 lb and 5092.79 lb, respectively. The average weight and 

the standard deviation are used as tools to estimate the stability of the three GAs. The 

average weights of 10-run solutions corresponding to the SGA, GGA, and HGGA are 

5635.40 lb, 5266.88 lb and 5077.64 lb, respectively. The standard deviations of 10-run 

solutions corresponding to the SGA, GGA, and HGGA are 359.08 lb, 186.50 lb and 

4.58 lb, respectively. The HGGA obviously has the best stability. Figure 4-2 shows the 

comparison of convergence rates for this case. The three GAs have the similar 

convergence speed in the early stage of search. After 70 iterations, the search 

performance of the SGA is obviously slow down. On the other hand, the GGA and 

HGGA continuously improve their best solutions in the later stage of search. Table 2 

shows the comparison of the optimal design results of this case. The solutions 

corresponding to the HGGA and reference [5] have the lightest weight. 

Case II: 

For obtaining more observations, a new set of legal discrete values was used for 

all variables to test the three GAs again. The new set was Z
*
={0.1, 0.5, 1.0, 3.0, 4.0, 

5.5, 7.0, 7.5, 8.0, 8.5, 10.0, 12.0, 13.5, 14.0, 14.5, 15.5, 17.0, 19.0, 20.0, 20.5, 21.0, 

21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 26.0, 29.0, 30.0, 31.0}. The number of data 

points of the search space in case I was 1024 times than that of the new search space, 

and the new search space still contains the best solution that was found in case I. The 

working parameters of the hill-climbing strategy for this case were set as follows: the 

maximum window size was 32; the minimum window size was 7; the values of α , 
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β  and δ  for three-level window size rule are 0.95, 20 and 20, respectively. Table 1 

and 2 also lists the computational results of this case. The best solutions found by the 

SGA, GGA and HGGA are 5088.42 lb, 5089.70 lb and 5067.33 lb, respectively. The 

search result of the SGA is obviously better than that in case I. However, the SGA still 

has a poor stability, even if the search space is smaller. Figure 4-3 shows the 

comparison of convergence rates for this case. The weight curves corresponding to 

three GAs are similar each other. 

 

4.2. 25-bar space truss structure 

A 25-bar space truss structure shown in figure 4-4 was adopted as an example for 

the performance test of the GGA and HGGA, and the example has been discussed in 

references [1, 2 and 17]. In the example, the elastic modulus was 410  Ksi ( 41089.6 ×  

MPa); the weight per unit volume was 0.1lb (2774 kgw/m
3
); the allowable tension and 

compression stresses were 40 Ksi (275.6 MPa) and -40 Ksi (-275.6 MPa), 

respectively; the allowable displacements in x, y and z directions were 0.35 inch 

(0.00889 m). 

Case I: 

Four joint loads were imposed to the 25-bar space truss structure. Joint loads: (1 

Kip, -10 Kips, -10 Kips) at node 1, (0 Kip, -10 Kips, -10 Kips) at node 2, (0.5 Kip, 0 

Kip ,0 Kip) at node 3, and (0.6 Kip, 0 Kips ,0 Kips) at node 6. Table 3 shows the sizing 

variables. The 25 structural members were divided into 8 groups. The value of sizing 

variables was selected from the set Z={0.1, 0.2, 0.3,…, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 

3.4} (in
2
). Therefore, the search space of this case contains 30

8
 data points. The 

working parameters of the hill-climbing strategy for this case were set as follows: the 

maximum window size was 30; the minimum window size was 7; the values of α , 



27 

 

β  and δ  for three-level window size rule are 0.95, 20 and 20, respectively. Table 4 

lists the computational results of this case. The best solutions found by the SGA, GGA 

and HGGA are 487.07 lb, 485.05 lb, and 484.85 lb, respectively. The average weight 

of 10-run solutions corresponding to the SGA, GGA, and HGGA are 504.37 lb, 

488.39 lb and 485.99 lb, respectively. The standard deviation of 10-run solutions 

corresponding to the SGA, GGA, and HGGA are 12.75 lb, 4.80 lb and 1.44 lb, 

respectively. The HGGA has the best search performance and stability. Figure 4-5 

shows the comparison of convergence rates for this case. The convergence speeds of 

the GGA and HGGA are obviously better than that of the SGA. The GGA found an 

approximate optimal solution in the early stage search. The solution, however, was 

not improved in the later stage of search. On the other hand, the HGGA successfully 

fond the optimal solution in the early stage of search. Table 5 shows the comparison 

of the optimal design results of this case. The solutions corresponding to the reference 

[17] and HGGA have the lightest weight. 

Case II: 

The 25-bar space truss structure was subjected to another load conditions. Load 

condition 1: (0 Kip, 20 Kips, -5 Kips) at node 1 and (0 Kip, -20 Kips, -5 Kips) at node 

2; load condition 2: (1 Kip, 10 Kips, -5 Kips) at node 1, (0 Kip, 10 Kips, -5 Kips) at 

node 2, (0.5 Kip, 0 Kip ,0 Kip) at node 3, and (0.5 Kip, 0 Kips ,0 Kips) at node 6. The 

value of sizing variables is selected from the set Z={0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 

2.8, 3.2, 3.6, 4.0, 4.8, 5.2, 5.6, 6.0} (in
2
). Therefore, the search space of the example 

contains 16
8
 data points. The working parameters of the hill-climbing strategy for this 

case were set as follows: the maximum window size was 16; the minimum window 

size was 7; the values of α , β  and δ  for the three-level window size rule are 0.95, 

20 and 20, respectively. Table 4 also lists the computational results of this example. 
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The best solutions found by the SGA, GGA and HGGA are 576.24 lb, 560.59 lb, and 

560.59 lb, respectively. The average weights of 10-run solutions corresponding to the 

SGA, GGA, and HGGA are 650.91 lb, 564.25 lb and 561.40 lb, respectively. The 

GGA and HGGA found the same solution. The standard deviation of 10-run solutions 

corresponding to the SGA, GGA, and HGGA are 72.13 lb, 4.40 lb and 2.56 lb, 

respectively. The HGGA has the best stability. Figure 4-6 shows the comparison of 

convergence rates for this case. The convergence speeds of the GGA and HGGA are 

obviously better than that of the SGA. Table 5 also shows the comparison of the 

optimal design results of this case. The solutions corresponding to the reference [17], 

GGA and HGGA have the lightest weight. 

Case III 

 This case considered the buckling problem. The load condition, the set of 

discrete legal values and the working parameters for the hill-climbing strategy were 

the same as that in case I. The buckling stress function was defined as follows: 

2,

5.12

j

j

crj
L

A−
=σ  j=1 to 25           (4-1) 

Table 4 also lists the computational results of this case. The best solutions found 

by the SGA, GGA and HGGA are 525.11 lb, 514.30 lb, and 514.30 lb, respectively. 

The average weights of 10-run solutions corresponding to the SGA, GGA, and HGGA 

are 540.35 lb, 520.15 lb and 518.42 lb, respectively. The standard errors of 10-run 

solutions corresponding to the SGA, GGA, and HGGA are 12.76 lb, 4.20 lb and 4.28 

lb, respectively. The search performance and stability of the GGA and HGGA are 

better than that of the SGA. Additionally, figure 4-7 shows the comparison of 

convergence rates for this case, and table 5 also lists the comparison of the optimal 

design results of this case. 
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4.3. 72-bar space truss structure 

A 72-bar space truss structure shown in figure 4-8 was adopted as an example for 

the performance test of the GGA and HGGA, and the example has been discussed in 

the reference [17]. In the example, the elastic modulus was 410  Ksi ( 41089.6 ×  

MPa); the weight per unit volume was 0.1lb (2774 kgw/m
3
); the allowable tension and 

compression stresses were 25 Ksi (172.25 MPa) and -25 Ksi (-172.25 MPa), 

respectively; the allowable displacements in x, y and z directions were 0.25 inch 

(0.00635 m). The 72-bar space truss structure was subjected to two load conditions. 

Load condition 1: (5 Kip, 5 Kips, -5 Kips) at node 17; load condition 2: (0 Kip, 0 Kips, 

-5 Kips) at node 17, 18, 19 and 20. Table 6 shows the sizing variables. The 72 

structural members were divided into 16 groups. The value of sizing variables is 

selected from the set Z={0.1, 0.2, 0.3, 0.4, 0.5, …, 2.8, 2.9, 3.0, 3.1, 3.2} (in
2
). 

Therefore, the search space of the example contains 32
16

 data points. 

The working parameters of the hill-climbing strategy for this example were set 

as follows: the maximum window size was 32; the minimum window size was 7; the 

values of α , β  and δ  for the three-level window size rule are 0.95, 20 and 20, 

respectively. Table 7 lists the computational results of this example. The best solutions 

found by the SGA, GGA and HGGA are 406.02 lb, 388.08 lb, and 385.54 lb, 

respectively. The average weights of 10-run solutions corresponding to the SGA, 

GGA, and HGGA are 432.93 lb, 400.73 lb and 390.69 lb, respectively. The standard 

deviations of 10-run solutions corresponding to the SGA, GGA, and HGGA are 17.65 

lb, 12.21 lb and 4.03 lb, respectively. The HGGA has the best search performance and 

stability. Figure 4-9 shows the comparison of convergence rates for this example. The 

weight curves corresponding to the GGA and HGGA are very much closed. Table 8 



30 

 

also shows the comparison of the optimal design results of this example. The solution 

corresponding to the HGGA has the lightest weight.  

 

4.4. 160-bar space truss structure 

A 160-bar space truss structure shown in figure 4-10 was adopted as the last 

example for the performance test of the GGA and HGGA, and the example has been 

discussed in the reference [3]. In the example, the elastic modulus was 4103×  Ksi 

( 41005.2 ×  MPa); the weight per unit volume was 0.28 lb (7850 kgw/m
3
); the 

allowable tension and compression stresses were 21.36 Ksi (147.15 MPa) and -21.36 

Ksi (-147.15 MPa), respectively; a displacement limit of 3.94 in (0.1 m) was imposed 

on nodes E, F, G and D in x, y and z directions. The 160-bar space truss structure was 

subjected load as follows: (-2.4 Kip, 0 Kips, -1.2 Kips) at node E, (-2.4 Kip, 0 Kips, 

-1.2Kips) at node F, (-2.2 Kip, 0 Kips, -1.2 Kips) at node G, (-1.9 Kip, 0 Kips, -1.1Kips) 

at node D. The 160 structural members were classified into 16 groups. Group 1: the 

24 members belonging to the four columns as shown in Figure 13 by AB; group 2: the 

12 members belonging to the four columns (BC); group 3: the 12 members belonging 

to the four columns which make the cone of the tower; group 4: the 8 members which 

are the two wings; group 5: the 4 members belonging to the upper left wing; group 

6~16: cross bars building-up each level. The value of sizing variables is selected from 

the set Z={0.234, 0.266, 0.434, 0.484, 0.563, 0.517, 0.621, 0.688, 0.715, 0.813, 0.938, 

1.15, 1.36, 0.902, 1.09, 1.19, 1.44, 1.46, 1.69, 1.73, 1.78, 1.94, 2.09, 2.11, 2.25, 2.40, 

2.43, 2.48, 2.75, 2.86, 2.87, 3.25} (in
2
). Therefore, the search space of the example 

contains 32
16

 data points. 

The working parameters of the hill-climbing strategy for this example were set 

as follows: the maximum window size was 32; the minimum window size was 7; the 
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values of α , β  and δ  for the three-level window size rule are 0.95, 20 and 20, 

respectively. Table 9 lists the computational results of this example. The best solutions 

found by the SGA, GGA and HGGA are 1363.37 lb, 1265.05 lb, and 1265.05 lb, 

respectively. Galante’s paper [3] indicated that their best solution had the weight of 

1281.75 lb. The weights of best solution corresponding to the GGA and HGGA are 

lighter than that of the reference [3]. The average weights of 10-run solutions 

corresponding to the SGA, GGA, and HGGA are 1433.33 lb, 1270.30 lb and 1270.06 

lb, respectively. The standard deviations of 10-run solutions corresponding to the 

SGA, GGA, and HGGA are 63.19 lb, 2.21 lb and 6.63 lb, respectively. Figure 4-11 

shows the comparison of convergence rates for this example. The HGGA show the 

fastest convergence speed. 
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Chapter 5 Conclusions 

This work presents a hill-climbing and greedy GA (HGGA) for the optimal 

design of truss structures with discrete sizing variables. Four benchmark problems 

have been used to test the performance of HGGA. Based on the above results, the 

following is the conclusions: 

1. The heuristic initialization and the hybrid selection are useful strategies to 

improving SGA for the optimal design of truss structures. 

2. The hill-climbing strategy effectively helps GAs to perform strong stability. 
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 Table 1 The computational results of three GAs for the 10-bar plane truss structure 

 

Run 10 times 
           Case I                       Case II            

SGA GGA HGGA SGA GGA HGGA 

Best  5221.86 5092.79 5067.33 5088.42 5089.70 5067.33 

Average 5635.40 5266.88 5077.64 5437.367 5289.793 5084.303 

Standard 

deviation 
359.08 186.50 4.58 393.65 270.07 13.55 

The weight unit is lb. 
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Table 2 The comparison of the optimal designs for the 10-bar plane truss structure 

 

Sizing 

variable 

(in
2
) 

               Case I                        Case II       

     Reference            This work          This work      

[5] [17] GGA HGGA GGA HGGA 

A1 30.0 31.5 30.5 30.0 30.0 30.0 

A2 0.1 0.1 0.1 0.1 0.1 0.1 

A3 23.5 24.5 21.0 24.0 23.0 24.0 

A4 15.0 15.5 16.5 14.5 14.0 14.5 

A5 0.1 0.1 0.1 0.1 0.1 0.1 

A6 0.5 0.5 1.0 0.5 0.5 0.5 

A7 7.5 7.5 8.0 7.5 8.0 7.5 

A8 21.5 20.5 21.0 21.0 21.0 21.0 

A9 21.5 20.5 22.0 22.0 23.0 22.0 

A10 0.1 0.1 0.1 0.1 0.1 0.1 

Weight (lb) 5067.33 5073.51 5092.79 5067.33 5089.70 5067.33 
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Table 3 The sizing variables for the 25-bar space truss structure 

 

Sizing 

Variable 

Members 

(End-End) 

A1 (1-2) 

A2 (1-4), (1-5), (2-3), (2-6) 

A3 (1-3), (1-6), (2-4), (2-5) 

A4 (3-6), (4-5) 

A5 (3-4), (5-6) 

A6 (3-10), (4-9), (5-8), (6-7) 

A7 (3-8), (4-7), (5-10), (6-9) 

A8 (3-7), (4-8), (5-9), (6-10) 
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Table 4 The computational results of three GAs for the 25-bar space truss structure  

 

Run 10 times 
             Case I                             Case II                            Case III             

SGA GGA HGGA SGA GGA HGGA SGA GGA HGGA 

Best 487.07 485.05 484.85 576.24 560.59 560.59 525.11 514.30 514.30 
Average 504.37 488.39 485.99 650.91 564.25 561.40 540.35 520.15 518.42 
Standard 

deviation 
12.75 4.08 1.44 72.13 4.40 2.56 12.76 4.20 4.28 

The weight unit is lb. 
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Table 5 The comparison of optimal designs for the 25-bar space truss structure 

 

Sizing 

variable 

(in
2
) 

                      Case I                                   Case II                        Case III          

           Reference                 This work         Reference        This work    Reference     This work    

[1] [4] [5] [17] GGA HGGA [2] [17] GGA HGGA [2] GGA HGGA 

A1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.01 0.01 0.01 0.3 0.1 0.1 

A2 1.8 1.2 0.4 0.3 0.5 0.3 2.0 2.0 2.0 2.0 0.9 0.7 0.7 

A3 2.3 3.2 3.4 3.4 3.4 3.4 3.6 3.6 3.6 3.6 3.0 3.2 3.2 

A4 0.2 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.4 0.1 0.1 

A5 0.1 1.1 2.2 2.1 1.9 2.1 0.01 0.01 0.01 0.01 1.0 0.8 0.8 

A6 0.8 0.9 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 1.1 1.1 1.1 

A7 1.8 0.4 0.4 0.5 0.4 0.5 2.0 1.6 1.6 1.6 1.2 1.2 1.2 

A8 3.0 3.4 3.4 3.4 3.4 3.4 2.4 2.4 2.4 2.4 3.0 3.0 3.0 

Weight 

(lb) 
546.01 493.80 484.33 484.85 485.05 484.85 563.52 560.59 560.59 560.59 525.20 514.30 514.30 

 

 

 



40 

 

Table 6 The sizing variables of the 72-bar space truss structure 

 

Sizing 

Variable 

Member 

 (End-End) 

A1 (1-5), (2-6), (3-7), (4-8) 

A2 (1-6), (1-8), (2-5), (2-7), (3-6), (3-8), (4-7), (5-12) 

A3 (5-6), (5-8), (6-7), (7-8) 

A4 (5-7), (6-8) 

A5 (5-9), (6-10), (7-11), (8-12) 

A6 (5-10), (5-12), (6-9), (6-11), (7-10), (7-12), (8-11), (9-16) 

A7 (9-10), (9-12), (10-11), (11-12) 

A8 (9-11), (10-12) 

A9 (9-13), (10-14), (11-15), (12-16) 

A10 (9-14), (9-16), (10-13), (10-15), (11-14), (11-16), (12-15), (13-20) 

A11 (13-14), (13-16), (14-15), (15-16) 

A12 (13-15), (14-16) 

A13 (13-17), (14-18), (15-19), (16-20) 

A14 (13-18), (13-20), (14-17), (14-19), (15-18), (15-20), (16-19), (17-24) 

A15 (17-18), (17-20), (18-19), (19-20) 

A16 (17-19), (18-20) 
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Table 7 The computational results of three GAs for the 72-bar space truss structure 

 

Run 10 times SGA GGA HGGA 

Best  406.02 388.08 385.54 

Average 432.93 400.73 390.69 

Standard deviation 17.65 12.21 4.03 

The weight unit is lb. 
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Table 8 The comparison of the optimal designs for the 72-bar truss structure 

 

Sizing variable 

(in
2
) 

         Reference                   This work          

[2] [17] GGA HGGA 

A1 1.5 2.1 1.8 2.0 

A2 0.7 0.6 0.5 0.5 

A3 0.1 0.1 0.1 0.1 

A4 0.1 0.1 0.1 0.1 

A5 1.3 1.4 1.3 1.3 

A6 0.5 0.5 0.6 0.5 

A7 0.2 0.1 0.1 0.1 

A8 0.1 0.1 0.1 0.1 

A9 0.5 0.5 0.5 0.5 

A10 0.5 0.5 0.6 0.5 

A11 0.1 0.1 0.1 0.1 

A12 0.2 0.1 0.1 0.1 

A13 0.2 0.2 0.2 0.2 

A14 0.5 0.5 0.5 0.6 

A15 0.5 0.3 0.4 0.4 

A16 0.7 0.7 0.5 0.6 

Weight (lb) 400.66 388.94 388.08 385.54 
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Table 9 The computational results of three GAs for the 160-bar space truss structure 

 

Run 10 times SGA GGA HGGA 

Best  1363.67 1265.05 1265.05 

Average 1433.33 1270.03 1270.26 

Standard deviation 63.19 2.21 6.63 

The weight unit is lb. 
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Figure 1-1 The Flow chart of a simple GA 
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Figure 1-2 Data flow of a simple GA 
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Figure 2-1 Illustration of the roulette wheel selection 
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Figure 2-2 Illustration of three commonly used crossover operators 
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Figure 2-3  Illustration of Velley’s dynamic population size GA  
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Figure 2-4  Dynamic population size for GA proposed by Koumousis and Katsaras  
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Figure 2-5 Illustration of the same size multi-population GA 
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Figure 2-6 Illustration of the core/colony multi-population GA 
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Figure 2-7a An example of the hybrid GA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7b Another example of the hybrid GA 
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Figure 3-1 The flow chart of the structural optimization  
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Figure 3-2 Illustration of the hill-climbing strategy 
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Figure 3-3 Illustration of modulus decoding 
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Figure 3-4 The flow chart of the hill-climbing and greedy genetic algorithm 
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Figure 4-1 A 10-bar plane truss structure 
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Figure 4-2 The comparison of convergence rates for the 10-bar plane truss structure 

(Case I) 
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Figure 4-3 The comparison of convergence rates for the 10-bar plane truss structure 

(Case II) 
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Figure 4-4 A 25-bar space truss structure 
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Figure 4-5 The comparison of convergence rates for the 25-bar space truss structure 

(case I) 
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Figure 4-6 The comparison of convergence rates for the 25-bar space truss structure 

(case II) 
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Figure 4-7 The comparison of convergence rates for the 25-bar space truss structure 

(case III) 

 



63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8 A 72-bar space truss structure 
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Figure 4-9 The comparison of convergence rates for the 72-bar space truss structure 
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Figure 4-10 A 160-bar truss structure 
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Figure 4-11 The comparison of convergence rates for the 160-bar space truss structure 

 


