
1

Chapter 1 Introduction

1.1. Background and motivation

The genetic algorithm (GA) is a stochastic optimization method based on selecting

fitter solutions and exchanging information between selected solutions. In a simple

GA, a solution is represented using a variable vector. Variable vectors are transformed

into binary strings, called individuals or chromosomes. Each decision variable of

solutions is linked to a substring of chromosomes, called a gene. Figure 1-1 shows the

flow chart of a simple GA, and figure 1-2 shows the data flow of a simple GA. First,

an even number of random variable vectors are generated to form an initial population.

The fitness values of the variable vectors are calculated by a predefined fitness

function, and the variable vectors are transformed into chromosomes. Second, a

selection operator is adopted to copy the same number of chromosomes from the

population. A chromosome with a large fitness values has high probability of being

copied one or more times. Third, every two copied chromosomes reproduce two new

chromosomes, called offspring, to form the next generation of a population. A

crossover operator and a mutation operator play the major roles in reproduction.

Fourth, the fitness values of offspring are calculated by the same fitness function used

in step 1. If stopping criteria are met, then the computation of GA is stopped;

otherwise, step 2, 3 and 4 are repeated.

The genetic algorithm (GA) is a commonly used method for solving discrete

valued truss structural optimization problems [1-6]. However, GAs often spend a

significant amount of computational time in searching for the optimal solution of

discrete structural optimization problems, especially when the search space has

enormous number of potential solutions. The reason is that the GA continuously

2

balances exploitation and exploration [7]. Exploitation is the search strategy of

exploiting the best solution, and exploration is the search strategy of exploring the

search space. According to the literatures, various strategies have been developed to

strengthen GAs [8-15]. Among the strategies include the greedy notion. For example,

Fanni et al. [8] applied a greedy genetic algorithm to electromagnetic optimization

problems. Their algorithm obeyed the following three criteria: acceptable quality of

an initial population, reserve of the best chromosome in the population, and an

immigration strategy for selection. The first two criteria were expected to improve the

exploitative capability of GAs, and the last criterion was designed to enhance the

explorative capability of GAs. Pyrz and Zawidzka [9] used a heuristic algorithm and a

GA to solve the discrete structural optimization problems. The heuristic algorithm was

responsible for producing a good initial population for the GA. According to their

results, the heuristic initialization leads to a better search for structural optimization

problem than random initialization. Chen et al. [10] developed a self-tuning method

for multi-objective of assembly planning problems to correct the infeasible

chromosomes in the GA population. Their conclusion indicated that the condition of

full-feasible chromosomes helps GAs in searching for the optimal solution of

optimization problems.

 Another strategy for improving the genetic search is to adapt the value of

parameters of GAs. For example, Hwang and He [11] used the simulated annealing

algorithm to dynamically update the crossover and mutation probabilities of GAs. In

their GA, the crossover and mutation probabilities were maintained at initial values

when the best chromosome was continuously improved. Otherwise, the probability

ratios were gradually increased to extend the explorative capability of GAs. Velley

[12] proposed using a dynamic population size for GAs to solve database query

3

optimization problems. His notion was based on the biology evolution concept. The

population size of a species is increased when the species fit an abundant environment.

Therefore, the dynamic population size GA increased its population size when the

most chromosomes of populations had similar fitness values, and decreased the

population size when a few chromosomes were obviously stronger than the others.

The third strategy for improving the genetic search is that GAs use the

multi-population strategy to process the evolution. For example, Perry et. al. [13]

applied a multi-population GA to structural identification problems. In their GA, all

populations had the same population size; in addition, the fitter chromosomes were

forced to migrate to a dominant population. Ma and Gong [14] proposed using a large

core population and several small colony populations to process the evolution. The

core population was responsible for exploiting the optimal solution, and the colony

populations was responsible for exploring the search space for finding new promising

search regions. The operation between the two kinds of populations was that the

stronger chromosomes of the colony populations were continuously sent to the core

population. The fourth strategy for improving the genetic search is to hybrid an

improved model from GAs and local search algorithms. Lee et. al. [15] proposed

using a greedy eugenics strategy to augment GAs. The augmented GA used the

simulated annealing algorithm to refine the chromosomes of offspring populations.

Their notion was that the locally optimal offspring provide valuable information to

search for the optimal solution of optimization problems.

The fifth strategy for improving the genetic search is the technique of reduction

of the search space. Perry et. al. [13] used statistic methods to reduce the search space

for GAs. First, their GA ran within the small number of iterations. Second, the

average value and standard deviation of variables of survival solutions were

4

calculated. Third, the sets of legal values of variables were narrowed down to some

values that were near the average value of variables. Moreover, if the standard

deviation of a variable is smaller than a threshold value, the variable will set to the

average value. Finally, if there are two or more elements in any set of legal values of

variables, the above three steps will repeat.

1.2. Objective

This work proposes a high performance GA by incorporating a hill-climbing

strategy and two greedy notions to a simple GA, and is applied to the optimal design

of truss structures with discrete sizing variables. The hill-climbing strategy is

integrated into the GA to reduce the search space, and the greedy notions, including

heuristic initialization and hybrid selection, are expected to help the GA to explore the

search space for identifying the most promising search region. In the hill-climbing

strategy, the best chromosome is assumed to be located at the center of the most

promising search region. Notably, the best solution is used as the most important hit

for the next search directions can also be found in another stochastic optimization

method, particle swarm optimization [16]. The hill-climbing strategy obviously differs

from Perry’s reduction technique [13]. Reducing the search space of each variable

depends on all variables in the hill-climbing strategy. Each variable uses the same

reduction speed to narrow down its promising search range. However, the reduction

of search space of each variable is independent of each other in the Perry’s reduction

method. Some variables may be converged too early when an approximated optimal

solution is found.

1.3. Organization of the dissertation

5

The rest of this dissertation is organized as follows:

Chapter 2: introduce the GAs, including a simple GA, greedy GAs, adaptive GAs and

multi-population GAs.

Chapter 3 explains the hill-climbing and greedy GA. The hill-climbing strategy is

based on the reduction of search space, and the greedy notions include the

heuristic initialization and a hybrid selection.

Chapter 4 briefly defines the problem and shows the performance of tests of the

proposed GA. The testing examples include a 10-bar plane truss structure,

a 25-bar space truss structure, a 72-bar space truss structure, and a 160-bar

space truss structure.

Chapter 5 summarizes the conclusions.

6

Chapter 2 Genetic algorithms

2.1. Simple GA

2.1.1. Chromosomes(or called individuals)

The genetic algorithm (GA) is a stochastic optimization method based on selecting

fitter solutions and exchanging information between selected solutions. In a simple

GA, a solution is represented using a variable vector. Variable vectors are transformed

into binary strings, called individuals or chromosomes. Each decision variable of

solutions is linked to a substring of chromosomes, called a gene. For example, the

vector (V[2], V[7], V[13], V[3]) is a solution of an optimization problem, and V is a

feasible value array. If the feasible value array contains 16 possible values, then the

corresponding chromosome can be represented as follow:

 (2, 7, 13, 3)10 => 00102 01112 11012 00112

Each chromosome has a fitness value that is estimated by a predefined fitness

function. A chromosome with a large fitness value means that the chromosome has a

higher probability to alive in the latter competing. On the other hand, a chromosome

with a small fitness value means that it possibly dies in the latter competing.

2.1.2. Random initialization

The advantage of the genetic algorithm for optimization problems is that it can

overcome the local minimum problem which is generally a challenge for other

optimization methods. One reason is that, the genetic algorithm uses a population of

start points to exploit the solutions. In the simple genetic algorithm, the initial

population is composed of an even number (called population size) of random

variable vectors.

2.1.3. Roulette wheel selection

Selection operators are designed for GAs to save strong chromosomes of parent

7

population so as to improve the offspring population. The basic notion is that a

chromosome with a larger fitness value has the higher probability to be copied one or

more times. The roulette wheel selection is the most commonly used selection method,

and is illustrated in figure 2-1. The selection method randomly selects chromosomes

from the previous generation, and the selection probability of any chromosome is

positively proportional to its fitness value.

Suppose C1, C2, …, Ck are the chromosomes in the population, and their fitness

values are f1, f2, …, fk, respectively. First the selection probability of each

chromosome is calculated as follows:

∑
=

=
k

j

j

i

i

f

f
Cp

1

)(for i=1 to k (2-1)

Then k random values (r1, r2, …, rk) in the interval of [0, 1] are generated for selecting

the chromosomes from the population. The selection rule is shown as follows:

If ∑∑
+

==

<≤
1

11

)()(
l

i

ij

l

i

i CprCp then Cl

For example, a population has 4 chromosomes C1, C2, C3, C4, and their fitness

values are 1, 9, 3, 7, respectively. Now, four random values 0.73, 0.24, 0.49, 0.64 are

generated for the roulette wheel selection. The selection results are shown as follows:

Chromosomes in the population C1 C2 C3 C4

Fitness values 1 9 3 7 ∑= 20

Selection probability 0.05 0.45 0.15 0.35

Accumulated probability 0.05 0.5 0.65 1.00

Selection rules:

 IF 05.00 <≤ r then C1

 IF 5.005.0 <≤ r then C2

8

 IF 65.05.0 <≤ r then C3

 IF 0.165.0 ≤≤ r then C4

Selection results:

 r=0.73 => C4

 r=0.24 => C2

 r=0.49 => C2

 r=0.64 => C3

2.1.4. Crossover

After the selection procedure is finished, GAs use a crossover operator to rebuilt the

copied chromosomes. Basically, every two copied chromosomes can produce two new

chromosomes. Figure 2-2 illustrates three commonly used crossover operators, and

the detail of the crossover operators is introduced in the following.

(1) Single-point crossover

For example, two chromosome instances are used for a single-point crossover

operator. They are defined as follows:

 C1=0110110011101000110100110

 C2=1001100101100101110111001

First a random integer number is generated. Suppose the random number is 5, then the

above two chromosomes are divided into two blocks at the location of 5, respectively.

 C1=01101 10011101000110100110

 C2=10011 00101100101110111001

Finally, the two chromosomes exchange their right blocks to produce two new

chromosomes.

 C’1=01101 00101100101110111001

 C’2=10011 10011101000110100110

9

(2) Multi-point crossover

The chromosome instances used in (1) also used to explain the multi-point

crossover operator. The multi-point crossover operator divided the chromosomes into

three or more blocks. The two chromosomes exchange their even blocks to produce

new chromosomes. Suppose 5, 13, 18 are randomly generated integer numbers.

Chromosomes C1 and C2 are divided into four blocks, respectively.

 C1=01101 10011101 00011 0100110

 C2=10011 00101100 10111 0111001

The two chromosomes exchanges their second and forth blocks to produce the new

chromosome, and the new chromosomes are listed as follows:

C’1=01101 00101100 00011 0111001

 C’2=10011 10011101 10111 0100110

(3) Uniform crossover

The uniform crossover always exchange even positions of binary between two

chromosomes. The chromosome instances used in (1) and (2) is adopted to explain the

uniform crossover operator again. The results are listed as follows:

 C’1=0011100111101101110101100

 C’2=1100110001100000110110011

2.1.5. Mutation

 The operator is designed to change some genes of individuals for preventing the

population of individuals from becoming too similar to each other. Mutation operator

is also a random operator, and is defined as follows:

≤=>=

≤=>=
=′

) 1)(() and 0)((

) 0)(() and 1)((

0

1
)(

rr

rr

mriIiformriIif

mriIiformriIif
iI (2-2)

where i=1 to the length of a individual, r is a random number in the interval of [0, 1],

10

and mr is the mutation ratio.

 For example, mr=0.1

 I=0 1 1 0 1 1 0

 r=0.70 0.24 0.03 0.48 0.56 0.93 0.25

 I’=0 1 0 0 1 1 0

 Generally, the mutation ratio should be small. If the mutation ratio is too large,

the GA is like a random search algorithm.

2.1.6. Stop criteria

If stopping criteria are met, then the computation of GA is stopped; otherwise,

selection, crossover and mutation operating are repeated. Basically, the stopping

criteria of GA are decided by the users. The simplest stopping criterion is to stop a GA

when the iteration number exceeds the upper bound. Another stopping criterion is that

the GA is stopped if the best individual does not improved for a certain amount of

iterations.

2.2. Greedy GA

The difference between a simple GA and a greedy GA is that the latter considers

eugenics. In this section, three eugenic strategies for GAs are described.

2.2.1. Heuristic initialization

The heuristic initialization can speed up the GA to find solutions, especially for

the large scale problems [7 and 9]. The notion of heuristic initialization is that the

good start points can help GA in exploring the search space because their locations are

generally far from valueless regions of the search space. The only drawback for

applying the heuristic initialization to GAs is that the extra knowledge of problem for

modifying random chromosome should exist.

11

2.2.2. Always save the best chromosome

According to eugenics, the best chromosome has the largest opportunity to

produce the strongest chromosome. However, the roulette wheel selection is possible

to lose the best chromosome due to its random feature. On the other hand, the

()λµ + selection method based on eugenics ensures that the best chromosome is

always saved [7]. The feature of the ()λµ + selection method is that the best k

chromosomes are selected form parent and offspring populations as both populations

have k chromosomes, respectively. First the 2k chromosomes of parent and offspring

populations are ranked according to their fitness values. Then the first k chromosomes

are saved, and the others are died.

2.2.3. Immigration for population

IF a GA uses eugenic strategies, inbreeding problems should be considered. The

inbreeding problem means that the GA exploits solutions in some small regions of the

search space only, and ignores the importance of exploring the other regions of the

search space. The simplest way to avoid inbreeding is to add immigration into the

population. The immigration can be generated in any way, but they should be

independent on the parent population.

2.3. Adaptive GA

The simple GA is based on the Darwin’s theory of evolution. Actually, biological

evolution is very slow. Therefore, some GAs use dynamic working parameter to

enhance their performances.

2.3.1. Dynamic population size

 In biological word, a population grows up because the chromosome fit their

environment and the environment is abundant in nature resource. Back to GAs, the

12

simple GA always uses the same number of population size. This design is far from

the natural world. Therefore, using dynamic population sizes for GAs is reasonable.

Velley [12] proposed the population size is increased when the most chromosomes of

populations had similar fitness values, and is decreased when a few chromosomes

were obviously stronger than the others (Figure 2-3). Velly’s notion can be considered

as an eugenic strategy. If a few chromosomes are obviously stronger than the others in

a population, then the GA strongly limits the bad chromosomes to reproduce their

offspring (Figure). In addition, Koumousis and Katsaras [18] proposed that the GA

uses a bigger population size and the smaller final population size in an evolution

process (Figure 2-4). Their notation is that the selection probability of a chromosome

is independent of the population size if the most chromosomes are very similar in a

population.

2.3.2. Dynamic mutation ratio

 The mutation ratios of GAs are generally small because the nature mutation

probability is very low. A large mutation ratio may cause the GA to be like a random

search algorithm. However, this situation seems to be a disadvantage but is sometimes

useful. As the most chromosomes of a population are very similar, the selection and

crossover operators are difficult to produce brand-new chromosomes. Increase the

mutation ratio can force the GA to explore another region of the search space.

Therefore, the GA can reduce the risk of the local minimum problem.

2.4. Multi-population GA

If a problem has a lot of local minimum over different region of the search space, then

the multi-population GA can perform the better performance than a simple GA. There

are several types of multi-population GA. Perry et. al. [13] emphasized that all

13

populations of a multi-population GA had the same population size, and the fitter

chromosomes were forced to migrate to a dominant population (Figure 2-5). Their

notion is that the GA keeps balance between exploration and exploitation in

populations, except the dominant population. The dominant population is a eugenic

population which is expected to produce the optimal solution. Ma and Gong [14]

proposed using a large core population and several small colony populations to

process the evolution (Figure 2-6). The core population should keep balance between

exploration and exploitation. Therefore, the immigration is continuously from the

colony populations. The number of colony populations can be large because each

colony population consists of a few chromosomes. It is possible that each colony

population locates at different region of the search space.

2.5. Hybrid GA

Local search algorithms are generally very effective for optimization problems if a

good start point is given. Therefore, the notion of hybrid GA is that using GA as a

global search method to find valuable regions of the search space, and using a local

search algorithm to exploit solutions in the valuable regions which is found by the GA

[7]. Moreover, the solution found by the local search algorithms can be used as the

parent population for the GA to reproduce the offspring population [15]. Figure 2-7

shows two examples of hybrid GAs.

14

Chapter 3 Hill-climbing and greedy genetic algorithms

(HGGA) for structural optimization problems

3.1. Statement of problems

According to design variables, structural optimization problems can be classified into three

sub-problems. One sub-problem is the sizing structural optimization problem. The goal of the

sizing structural optimization is to find the values of a set of cross-sectional areas of members

that lead to the minimum weight of structures and satisfy all design constraints. Another

sub-problem is the topology structural optimization problem. The topology structural

optimization problem is similar to the sizing structural optimization problem, except for that

the value of cross-sectional areas of members can not be zero in sizing structural optimization,

yet can be zero in topology structural optimization. The other sub-problem is the shape

optimization problem. The shape optimization problem simultaneously considers sizing and

geometry variables to search for the minimum weight structure.

 In this dissertation, only the sizing structural optimization problem is considered. The

sizing structural optimization of truss structures with discrete sizing variables can be

expressed as follows:

Find X where iix Z∈

Minimize ∑
=

=
m

j

jj ALF
1

γ (3-1)

Subject to 0)(,1 ≤XG j for j=1 to m

 0)(,2 ≤XG k for k=1 to n

where X is a design variable vector, ix is the i-th element of X, iZ is a set of

predefined values (legal values) corresponding to ix , F is the non-constraint

objective function, γ is the unit weight of material, jL and jA are the length and

15

the cross-sectional area of j-th member, respectively,)(,1 XG j is the stress constraint

function of j-th member,)(,2 XG k is the displacement constraint function of k-th

coordinate, m is the number of members, and n is the number of degree of freedoms.

Penalty function and Lagrange multipliers are two conventional methods of

combining the non-constrained objective function and the constraints as a constrained

objective function. Herein, a penalty function is employed to punish infeasible

solutions for increasing the objective function. Additionally, equation (3-1) should

work together with a structural analysis procedure. The structural analysis procedure

is responsible for calculating the member forces and nodal displacements of potential

structural designs. Figure 3-1 shows the flow chart of the structural optimization.

3.2. HGGA

3.2.1. Heuristic initialization

 The optimal solution of truss structural optimization problems is always located

on the boundary between feasible and infeasible search regions. Therefore, a

randomly generated structural design can be refined simply by moving it directly to

the boundary. The refining process has two levels of modifications: randomly

generated truss structural designs to transition truss structural design and transition

truss structural design to heuristically generated truss structural designs. The

corresponding formulas are defined as follows:

Raa jj ×=′ (R)
 for j=1 to m (3-2)

() () ()

=

an

R

n

a

R

a

R

d

Xd

d

Xd

d

Xd
MaxR

,

)(

,2

)(

2

,1

)(

1 ,,, L (3-3)

16

()

()

()

′

×
×′

′≤×′

=

else
a

R
X

a

a
R

Xifa

a

jaj

R

j

j

jaj

R

jj

H

j

,

)(

,

)(

)(1

1
)(

σ

σ

σσ

 for j=1 to m (3-4)

where ja′ is the j-th sizing variable of transition truss structural designs,)(R

ja is the

j-th sizing variable of randomly generated truss structural designs (R)X , R is a change

ratio, ())(R

k Xd is the nodal displacement of k-th coordinate corresponding to (R)X ,

akd , is the allowable displacement of k-th coordinate,
)(H

ja is the j-th sizing

variable of heuristically generated truss structural designs, ())(R

j Xσ is the actual

stress corresponding to)(R

ja , and ()
jaj a′

,σ is the allowable stress corresponding to

ja′ .

Equations (3-2) and (3-3) are designed to modify randomly generated truss

structural designs in order to correct their maximum displacements from any value to

the allowable value. Equation (3-2) indicates that the same change ratio modifies all

sizing variables. Utilizing the same change ratio to modify the cross-sectional areas of

members is characterized by the fact that the member forces of modified structures

are the same as those of original structures. Restated, if the values of sizing variable

of randomly generated truss structural designs are magnified k times, the member

stresses of transition truss structural designs are 1/k that of randomly generated truss

structural designs. Therefore, the member stresses of transition truss structural designs

can be accurately estimated directly from those of randomly generated truss structural

designs. Equation (3-4) is expected to repair the stress constraints of transition truss

structural designs. The calculation of equation (3-4) is required only when the sizing

variables of transition truss structural designs correspond to a yielding situation.

17

Moreover, regardless of whether or not the allowable stresses of members are varied

with the change of sizing variables, the refining of stress constraints runs for one time

only. Notably, the fitness values of heuristically generated solutions consider only the

structural weight when attempting to reduce the computational burden of structural

analysis.

3.2.2. Encoding

 In the GA, encoding is a process that transforms variable vectors into

chromosomes. Several encoding methods are available for the mapping from the

solution space to the chromosome space, including binary encoding, real number

encoding, integral encoding and literal permutation encoding. The selection of

encoding method generally depends on the desired problems to be solved. This work

selects binary encoding for the hill-climbing and greedy GA. For example,

Variable vector: ...)),(),((2211 azazX =

Assigned number vector: ...) , ,(21 aaANX =

Chromosome: ...21ssCX =

where)(ii az represents the ia -th element of set of legal values corresponding to the

i-th variable of X, ia is the assigned number of i-th variable of X, and is is the

binary string corresponding to ia .

3.2.3. Hybrid selection

 Selection of GAs focused on gradually improving populations. The roulette wheel

selection is a commonly used selection method. The selection method randomly

selects chromosomes from the previous generation, and the selection probability of

any chromosome is positively proportional to its fitness value. The weakness of the

selection method is that the best chromosome is possible to be lost due to the random

18

selection scheme. The ()λµ + selection is another conventionally adopted selection

method. The selection method is characterized by its capability to always reserve the

fitter chromosomes. However, valuable information for identifying the new promising

search regions may be lost if the bad chromosomes are always died. This work uses

hybrid methods to select chromosomes from the previous generation. The selection

rules are listed in the following:

10% chromosomes copied from the best chromosome

70% chromosomes selected by roulette wheel selection

20% immigration

Chromosomes for immigration should be produced independently of the parent

population. Random generation is the most commonly used method for producing

immigration for GAs. However, this work uses heuristic initialization to produce

immigration in the initial stage of the genetic search (first 20 iterations) and random

immigration in a later stage.

3.2.4. Crossover and Mutation

 After the selection is finished, crossover and mutation operators are used to

generate next generation of populations. The crossover operator is used to exchange

information between two chromosomes. The notion of crossover is that the new

chromosome may be better than both of the parents if it takes the best characteristics

from each of the parents. The mutation operator is used to add some changes to

offspring chromosomes. The aim of mutation is to allow the GA to avoid local

minima by preventing the population of chromosomes from becoming too similar to

each other. In this work, the uniform crossover operator and the point mutation

operator are adopted.

3.2.5. Hill-climbing strategy and modulus decoding method

19

 Most GAs generally use the same coding method to encoding variable vectors to

chromosomes and decoding chromosomes to variable vectors. However, this work

uses different encoding and decoding methods because a hill-climbing strategy is

integrated into the GA. Hill-climbing search methods emphasize extreme exploitation.

The kind of search methods assume that the optimal solution is located at somewhere

between the visiting location and the location of current best solution. Hill-climbing

search methods always have an extremely high convergence speed because they

ignore exploring the search space. However, the search results by the hill-climbing

search methods highly depend on the start point.

The GA always keeps balance between exploitation and exploration. That is why

the GA can overcome local minimum problems. Also, that is why the GA often

requires a long computational time to search for the optimal solution of optimization

problems. This work attempts to integrate a hill-climbing strategy into the GA to

reduce the computational time for finding the optimal solution of discrete truss

structural optimization problems. The hill-climbing strategy assumes that the center of

the most promising search region is located at the location of current best solution; in

addition, the most promising search region is gradually reduced whenever the best

solution is improved. Figure 3-2 uses an example to further explain the hill-climbing

strategy. Suppose a discrete optimization problem has p variables, and the i-th

variable of the problem is linked to a set of 11 ranked discrete values (iZ). The fat

solid circle represents the search space, the thin solid circle represents the most

promising search region at the k-iteration, and the dashed circle represents the most

promising search region at the (k+1)-iteration. Additionally, windows k

iW and 1+k

iW

are designed to produce the subset of discrete values corresponded to the i-th variable

at the k-iteration and (k+1)-iteration, respectively. At the k-iteration, the value of the

20

i-th variable is selected from { 2,iz , 3,iz , 4,iz , 5,iz , 6,iz , 7,iz }, where the middle

element 5,iz is corresponded to the value of the i-th variable of the best solution (
k

x1 ,

k
x2 , …, 5,i

k

i zx = ,…,
k

px), and the window size is 6

(=
2

k

iW
2

)0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,0(=6). If the best solution is moved from the old

location to a new location (
1

1

+k
x ,

1

2

+k
x , …, 7,

1

i

k

i zx =
+

 ,
1+k

px) after the k-th iteration,

the following subset { 5,iz , 6,iz , 7,iz , 8,iz , 9,iz } is proposed for the i-th variable at

the (k+1)-iteration. The middle element 7,iz of the new subset of discrete values is

corresponded to the value of i-th variable of the new best solution, and the window

size is decreased from 6 to 5 (
2

1+k

iW =
2

)0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0(=5).

How to decrease the number of element of subsets for variables is an important

issue for the hill-climbing GA. The solution may converge to a locally optimum if the

hill-climbing strategy reduces the search space too fast. Herein, a three-level window

size rule is proposed to handle the window size.

If iteration number of genetic search is smaller than a lower bound value (δ), then

max)(WskWsize = (3-5)

Else if min)(WsRound k ≥φ , then

)()(kRoundkWsize φ= (3-6)

×

×

=
−

−

−

1

1

1

else

sgenerationforunchangedissolutionbesttheifelse

improvedissolutionbesttheif

k

k

k

k β

φ

αφ

αφ

φ ,

(max

1
W=φ) (3-7)

Else if min)(WsRound k <φ , then

min)(WskWsize = (3-8)

21

where α is a real number in the interval of [0.9, 1], β is a positive integer number

for forcing kφ to be modified, maxWs is the maximum window size, and minWs is

the minimum window size. Basically, the more complex the optimization problems,

the larger the value of α . By the three-level window size rule, the reduction speed

for narrowing down search space can be easily adapted by changing the parameter

α .

Due to the reduced search space, some chromosomes are possible to be outside

the most promising search region. For example, a chromosome selected from the

parent population is inside the previous most promising search region, but may be

outside the new most promising search region. Moreover, the crossover and mutation

operators are possible to produce offspring to be outside the most promising search

region. To overcome the problem, a modulus decoding method is developed to map

offspring from the chromosome space into the solution space. Figure 3-3 uses an

example to illustrate the decoding method. The 2nd, 3rd and 4th elements are 1 and

others are 0 in the window Wi. The set of legal values is ranked from small to large.

The set of promising values is generated by Wi and the set of legal values. As

indicated from figure 2, the (2+3a)-th elements are set as)2(iz , the (3+3a)-th

elements are set as)3(iz , and the (4+3a)-th elements are set as)4(iz in the set of

promising values of i-th variable, where a is an integer. Therefore, no matter what

value of i-th gene is, the gene is always mapped into the promising values. The

following formulas are defined for modular decoding:

Suppose that,

+=

=

−=

=

pitoWj

wtowj

wtoj

jW

right

rightleft

left

i

 1

1 1

0

1

0

)((3-9)

)()(sin
lZjZ i

gpromi

i = (3-10)

22

)1,mod(+−−+= leftrightleftleft wwwjwl (3-11)

where leftw is the assigned number corresponded to the first element 1 of window Wi,

rightw is the assigned number corresponded to the last element 1 of window Wi, pi is

the number legal values of i-th variable, gpromi

iZ
sin is the set of promising values of

i-th variable, iZ is the set of legal values of i-th variable.

3.2.6. Flow chart of the hill-climbing and greedy GA

 Figure 3-4 shows the flow chart of the hill-climbing and greedy GA. The

hill-climbing and greedy GA starts form the process of heuristic initialization. The

window size is then set to the maximum values, and an even number of heuristically

generated truss structural designs forms an initial population. Next, the fitness values

of heuristically generated truss structural designs are calculated by the evaluation

process, and the heuristically generated truss structural designs are then transformed

into chromosomes by the encoding process. The hybrid selection process produces the

same number of chromosomes by selecting from the population and immigration. The

survival chromosomes then exchange information by the crossover process, and some

genes of modified chromosomes from the crossover process are changed by the

mutation process. After the two processes are calculated, an offspring population is

generated. The chromosomes of the offspring population should be transformed into

variable vectors by the modulus decoding process to evaluate their fitness values. If

the best solution is improved, the window size is adapted according to the three-level

window size rule, and the centers of windows of variables are moved along with the

value of variables corresponding to the best solution. However, if the best solution is

unchanged for a certain number (β) of generations, the window adaption process is

forced to update windows. The computation for searching the optimal solution will

23

stop if the stopping criteria are met. Otherwise, the offspring population is sent to the

encoding process to repeat the next iteration of genetic search.

24

Chapter 4 Numerical examples

A greedy GA (GGA, greedy notions includes the heuristic initialization and the

hybrid selection) and a hill-climbing and greedy GA (HGGA) were tested by several

examples to discuss their search performance, and a simple GA (SGA) was used as a

reference model to solve the same problems. Several working parameters were set to

the same values for the three GAs. The maximum iteration number was 500; the

population size was 50; the crossover probability is 100% for each chromosome; the

mutation probability is 5% for each gene. Additionally, each GA was run 10 times by

using 10 sets of independent initial weights to obtain more observations.

4.1. 10-bar plane truss structure

A 10-bar plane truss structure was adopted as an example for the performance

test of the GGA and HGGA, and the example has been discussed in references [1, 5

and 17]. Figure 4-1 shows the topology of the truss structures. The elastic modulus

was 410 Ksi (41089.6 × MPa); the weight per unit volume was 0.1lb (2774 kgw/m
3
);

the allowable tension and compression stresses were 25 Ksi (172.25 MPa) and -25 Ksi

(-172.25 MPa), respectively; the allowable displacements in both x and y directions

were 0.0508 m (2 in); 100 kips (4.5 kN) concentrated loads were imposed on pin-2

and pin-4 in y-direction. Additionally, each member of the 10-bar plane truss structure

was linked to an individual cross-sectional area. That is, this example has 10 sizing

variables.

Case I:

The value of sizing variables was selected from the set Z={0.1, 0.5, 1.0,1.5,

2.0,…,29.5, 30.0, 30.5, 31.0, 31.5} (in
2
). Therefore, the search space of this case

contains 64
10

 data points. The working parameters of the hill-climbing strategy for

this case were set as follows: the maximum window size was 32; the minimum

25

window size was 7; the values of α , β and δ for three-level window size rule are

0.95, 20 and 20, respectively. Table 1 lists the computational results of this example.

The HGGA shows the best search performance. The weight of the best solution found

by the HGGA is 5067.33 lb. However, the weights of the best solutions found by the

SGA and GGA are 5221.86 lb and 5092.79 lb, respectively. The average weight and

the standard deviation are used as tools to estimate the stability of the three GAs. The

average weights of 10-run solutions corresponding to the SGA, GGA, and HGGA are

5635.40 lb, 5266.88 lb and 5077.64 lb, respectively. The standard deviations of 10-run

solutions corresponding to the SGA, GGA, and HGGA are 359.08 lb, 186.50 lb and

4.58 lb, respectively. The HGGA obviously has the best stability. Figure 4-2 shows the

comparison of convergence rates for this case. The three GAs have the similar

convergence speed in the early stage of search. After 70 iterations, the search

performance of the SGA is obviously slow down. On the other hand, the GGA and

HGGA continuously improve their best solutions in the later stage of search. Table 2

shows the comparison of the optimal design results of this case. The solutions

corresponding to the HGGA and reference [5] have the lightest weight.

Case II:

For obtaining more observations, a new set of legal discrete values was used for

all variables to test the three GAs again. The new set was Z
*
={0.1, 0.5, 1.0, 3.0, 4.0,

5.5, 7.0, 7.5, 8.0, 8.5, 10.0, 12.0, 13.5, 14.0, 14.5, 15.5, 17.0, 19.0, 20.0, 20.5, 21.0,

21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 26.0, 29.0, 30.0, 31.0}. The number of data

points of the search space in case I was 1024 times than that of the new search space,

and the new search space still contains the best solution that was found in case I. The

working parameters of the hill-climbing strategy for this case were set as follows: the

maximum window size was 32; the minimum window size was 7; the values of α ,

26

β and δ for three-level window size rule are 0.95, 20 and 20, respectively. Table 1

and 2 also lists the computational results of this case. The best solutions found by the

SGA, GGA and HGGA are 5088.42 lb, 5089.70 lb and 5067.33 lb, respectively. The

search result of the SGA is obviously better than that in case I. However, the SGA still

has a poor stability, even if the search space is smaller. Figure 4-3 shows the

comparison of convergence rates for this case. The weight curves corresponding to

three GAs are similar each other.

4.2. 25-bar space truss structure

A 25-bar space truss structure shown in figure 4-4 was adopted as an example for

the performance test of the GGA and HGGA, and the example has been discussed in

references [1, 2 and 17]. In the example, the elastic modulus was 410 Ksi (41089.6 ×

MPa); the weight per unit volume was 0.1lb (2774 kgw/m
3
); the allowable tension and

compression stresses were 40 Ksi (275.6 MPa) and -40 Ksi (-275.6 MPa),

respectively; the allowable displacements in x, y and z directions were 0.35 inch

(0.00889 m).

Case I:

Four joint loads were imposed to the 25-bar space truss structure. Joint loads: (1

Kip, -10 Kips, -10 Kips) at node 1, (0 Kip, -10 Kips, -10 Kips) at node 2, (0.5 Kip, 0

Kip ,0 Kip) at node 3, and (0.6 Kip, 0 Kips ,0 Kips) at node 6. Table 3 shows the sizing

variables. The 25 structural members were divided into 8 groups. The value of sizing

variables was selected from the set Z={0.1, 0.2, 0.3,…, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2,

3.4} (in
2
). Therefore, the search space of this case contains 30

8
 data points. The

working parameters of the hill-climbing strategy for this case were set as follows: the

maximum window size was 30; the minimum window size was 7; the values of α ,

27

β and δ for three-level window size rule are 0.95, 20 and 20, respectively. Table 4

lists the computational results of this case. The best solutions found by the SGA, GGA

and HGGA are 487.07 lb, 485.05 lb, and 484.85 lb, respectively. The average weight

of 10-run solutions corresponding to the SGA, GGA, and HGGA are 504.37 lb,

488.39 lb and 485.99 lb, respectively. The standard deviation of 10-run solutions

corresponding to the SGA, GGA, and HGGA are 12.75 lb, 4.80 lb and 1.44 lb,

respectively. The HGGA has the best search performance and stability. Figure 4-5

shows the comparison of convergence rates for this case. The convergence speeds of

the GGA and HGGA are obviously better than that of the SGA. The GGA found an

approximate optimal solution in the early stage search. The solution, however, was

not improved in the later stage of search. On the other hand, the HGGA successfully

fond the optimal solution in the early stage of search. Table 5 shows the comparison

of the optimal design results of this case. The solutions corresponding to the reference

[17] and HGGA have the lightest weight.

Case II:

The 25-bar space truss structure was subjected to another load conditions. Load

condition 1: (0 Kip, 20 Kips, -5 Kips) at node 1 and (0 Kip, -20 Kips, -5 Kips) at node

2; load condition 2: (1 Kip, 10 Kips, -5 Kips) at node 1, (0 Kip, 10 Kips, -5 Kips) at

node 2, (0.5 Kip, 0 Kip ,0 Kip) at node 3, and (0.5 Kip, 0 Kips ,0 Kips) at node 6. The

value of sizing variables is selected from the set Z={0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4,

2.8, 3.2, 3.6, 4.0, 4.8, 5.2, 5.6, 6.0} (in
2
). Therefore, the search space of the example

contains 16
8
 data points. The working parameters of the hill-climbing strategy for this

case were set as follows: the maximum window size was 16; the minimum window

size was 7; the values of α , β and δ for the three-level window size rule are 0.95,

20 and 20, respectively. Table 4 also lists the computational results of this example.

28

The best solutions found by the SGA, GGA and HGGA are 576.24 lb, 560.59 lb, and

560.59 lb, respectively. The average weights of 10-run solutions corresponding to the

SGA, GGA, and HGGA are 650.91 lb, 564.25 lb and 561.40 lb, respectively. The

GGA and HGGA found the same solution. The standard deviation of 10-run solutions

corresponding to the SGA, GGA, and HGGA are 72.13 lb, 4.40 lb and 2.56 lb,

respectively. The HGGA has the best stability. Figure 4-6 shows the comparison of

convergence rates for this case. The convergence speeds of the GGA and HGGA are

obviously better than that of the SGA. Table 5 also shows the comparison of the

optimal design results of this case. The solutions corresponding to the reference [17],

GGA and HGGA have the lightest weight.

Case III

 This case considered the buckling problem. The load condition, the set of

discrete legal values and the working parameters for the hill-climbing strategy were

the same as that in case I. The buckling stress function was defined as follows:

2,

5.12

j

j

crj
L

A−
=σ j=1 to 25 (4-1)

Table 4 also lists the computational results of this case. The best solutions found

by the SGA, GGA and HGGA are 525.11 lb, 514.30 lb, and 514.30 lb, respectively.

The average weights of 10-run solutions corresponding to the SGA, GGA, and HGGA

are 540.35 lb, 520.15 lb and 518.42 lb, respectively. The standard errors of 10-run

solutions corresponding to the SGA, GGA, and HGGA are 12.76 lb, 4.20 lb and 4.28

lb, respectively. The search performance and stability of the GGA and HGGA are

better than that of the SGA. Additionally, figure 4-7 shows the comparison of

convergence rates for this case, and table 5 also lists the comparison of the optimal

design results of this case.

29

4.3. 72-bar space truss structure

A 72-bar space truss structure shown in figure 4-8 was adopted as an example for

the performance test of the GGA and HGGA, and the example has been discussed in

the reference [17]. In the example, the elastic modulus was 410 Ksi (41089.6 ×

MPa); the weight per unit volume was 0.1lb (2774 kgw/m
3
); the allowable tension and

compression stresses were 25 Ksi (172.25 MPa) and -25 Ksi (-172.25 MPa),

respectively; the allowable displacements in x, y and z directions were 0.25 inch

(0.00635 m). The 72-bar space truss structure was subjected to two load conditions.

Load condition 1: (5 Kip, 5 Kips, -5 Kips) at node 17; load condition 2: (0 Kip, 0 Kips,

-5 Kips) at node 17, 18, 19 and 20. Table 6 shows the sizing variables. The 72

structural members were divided into 16 groups. The value of sizing variables is

selected from the set Z={0.1, 0.2, 0.3, 0.4, 0.5, …, 2.8, 2.9, 3.0, 3.1, 3.2} (in
2
).

Therefore, the search space of the example contains 32
16

 data points.

The working parameters of the hill-climbing strategy for this example were set

as follows: the maximum window size was 32; the minimum window size was 7; the

values of α , β and δ for the three-level window size rule are 0.95, 20 and 20,

respectively. Table 7 lists the computational results of this example. The best solutions

found by the SGA, GGA and HGGA are 406.02 lb, 388.08 lb, and 385.54 lb,

respectively. The average weights of 10-run solutions corresponding to the SGA,

GGA, and HGGA are 432.93 lb, 400.73 lb and 390.69 lb, respectively. The standard

deviations of 10-run solutions corresponding to the SGA, GGA, and HGGA are 17.65

lb, 12.21 lb and 4.03 lb, respectively. The HGGA has the best search performance and

stability. Figure 4-9 shows the comparison of convergence rates for this example. The

weight curves corresponding to the GGA and HGGA are very much closed. Table 8

30

also shows the comparison of the optimal design results of this example. The solution

corresponding to the HGGA has the lightest weight.

4.4. 160-bar space truss structure

A 160-bar space truss structure shown in figure 4-10 was adopted as the last

example for the performance test of the GGA and HGGA, and the example has been

discussed in the reference [3]. In the example, the elastic modulus was 4103× Ksi

(41005.2 × MPa); the weight per unit volume was 0.28 lb (7850 kgw/m
3
); the

allowable tension and compression stresses were 21.36 Ksi (147.15 MPa) and -21.36

Ksi (-147.15 MPa), respectively; a displacement limit of 3.94 in (0.1 m) was imposed

on nodes E, F, G and D in x, y and z directions. The 160-bar space truss structure was

subjected load as follows: (-2.4 Kip, 0 Kips, -1.2 Kips) at node E, (-2.4 Kip, 0 Kips,

-1.2Kips) at node F, (-2.2 Kip, 0 Kips, -1.2 Kips) at node G, (-1.9 Kip, 0 Kips, -1.1Kips)

at node D. The 160 structural members were classified into 16 groups. Group 1: the

24 members belonging to the four columns as shown in Figure 13 by AB; group 2: the

12 members belonging to the four columns (BC); group 3: the 12 members belonging

to the four columns which make the cone of the tower; group 4: the 8 members which

are the two wings; group 5: the 4 members belonging to the upper left wing; group

6~16: cross bars building-up each level. The value of sizing variables is selected from

the set Z={0.234, 0.266, 0.434, 0.484, 0.563, 0.517, 0.621, 0.688, 0.715, 0.813, 0.938,

1.15, 1.36, 0.902, 1.09, 1.19, 1.44, 1.46, 1.69, 1.73, 1.78, 1.94, 2.09, 2.11, 2.25, 2.40,

2.43, 2.48, 2.75, 2.86, 2.87, 3.25} (in
2
). Therefore, the search space of the example

contains 32
16

 data points.

The working parameters of the hill-climbing strategy for this example were set

as follows: the maximum window size was 32; the minimum window size was 7; the

31

values of α , β and δ for the three-level window size rule are 0.95, 20 and 20,

respectively. Table 9 lists the computational results of this example. The best solutions

found by the SGA, GGA and HGGA are 1363.37 lb, 1265.05 lb, and 1265.05 lb,

respectively. Galante’s paper [3] indicated that their best solution had the weight of

1281.75 lb. The weights of best solution corresponding to the GGA and HGGA are

lighter than that of the reference [3]. The average weights of 10-run solutions

corresponding to the SGA, GGA, and HGGA are 1433.33 lb, 1270.30 lb and 1270.06

lb, respectively. The standard deviations of 10-run solutions corresponding to the

SGA, GGA, and HGGA are 63.19 lb, 2.21 lb and 6.63 lb, respectively. Figure 4-11

shows the comparison of convergence rates for this example. The HGGA show the

fastest convergence speed.

32

Chapter 5 Conclusions

This work presents a hill-climbing and greedy GA (HGGA) for the optimal

design of truss structures with discrete sizing variables. Four benchmark problems

have been used to test the performance of HGGA. Based on the above results, the

following is the conclusions:

1. The heuristic initialization and the hybrid selection are useful strategies to

improving SGA for the optimal design of truss structures.

2. The hill-climbing strategy effectively helps GAs to perform strong stability.

33

Reference

[1] Rajeev S, Krishnamoorthy C. Discrete optimization of structures using genetic

algorithm. Journal of Structural Engineering 1992; 118(5): 1233-50.

[2] Wu S, Chow P. Integrated discrete and configuration optimization of truss using

genetic algorithms, Computers & Structures 1995; 55(4): 695-702.

[3] Galante M. Genetic algorithms as an approach to optimize real world trusses,

International Journal for Numerical Methods in Engineering 1996; 39: 361-82.

[4] Erbatur F, Hasancebi O, Tutuncu I, Kilic H. Optimal design of planae and space

structures with genetic algorithms, Computers & Structures 2000; 75(2000):

209-24.

[5] Kaveh A, Kalatjari V. Genetic algorithm for discrete-sizing optimal design f

trusses using the force method, International Journal for Numerical Methods in

Engineering 2002; 55: 55-72.

[6] Tang W, Tong L, Gu Y. Improved genetic algorithm for design optimization of

truss structures with sizing, shape and topology variables, International Journal

for Numerical Methods in Engineering 2005; 62: 1737-62.

[7] Gen M, Cheng R, Lin L. Network models and optimization multiobjective

genetic algorithm approach. London: Springer-Verlag, 2008.

[8] Fanni A, Marchesi M, Serri A, Usai M. A Greedy genetic algorithm for

continuous variables electromagnetic optimization problems, IEEE Transactions

on Magnetics 1997; 33(2): 1900-3.

[9] Pyrz M, Zawidzka J. Optimal discrete truss design using improved sequential

and genetic algorithm, Engineering Computations 2001; 18(8): 1078-90.

[10] Chen R, Lu K, Yu S. A hybrid genetic algorithm approach on multi-objective of

assembly planning problem, Engineering Applications of Artificial Intelligence

34

2002, 15: 447–57.

[11] Hwang D, He R. Improving real-parameter genetic algorithm with simulated

annealing for engineering problems, Advances in Engineering Software 2006; 37:

406–18.

[12] Vellev S. An a adaptive genetic algorithm with dynamic population size for

optimizing join queries, International Book Series Information Science and

computing Book 2-Advanced Research in Artificial Intelligence, ITHEA press,

Sofia Bulgaria; 82-8.

[13] Perry M, Koh C, Choo Y. Modified genetic algorithm strategy for structural

identification, Computers and Structures 2006;84(2006): 529-40.

[14] Ma H, Gong D. Research on modified shifting balance Genetic Algorithms,

Journal of China University of Mining & Technology 2007; 17(2): 188-92.

[15] Lee S, Su S, Lee C. Efficiently solving general weapon-target assignment

problem by genetic algorithms with greedy eugenics, IEEE Transactions on

Systems, Man, and Cybernetics—Part B: Cybernetics 2003; 33(1): 113-21.

[16] Kennedy J, Eberhart R. Particle swarm optimization. IEEE international

Conference on Neural Networks, vol. 4, IEEE Press; 1995. 1942-8.

[17] Li L, Huang Z, Liu F. A heuristic particle swarm optimization method for truss

structures with discrete variables. Computers & Structures 2009; 87(2009):

435-43.

[18] Koumousis V, Katsaras C. A saw-tooth genetic algorithm combining the effects

of variable population size and reinitialization to enhance performance. IEEE

transaction s on Evolutionary Computation 2006; 10(1): 19-28.

35

 Table 1 The computational results of three GAs for the 10-bar plane truss structure

Run 10 times
 Case I Case II

SGA GGA HGGA SGA GGA HGGA

Best 5221.86 5092.79 5067.33 5088.42 5089.70 5067.33

Average 5635.40 5266.88 5077.64 5437.367 5289.793 5084.303

Standard

deviation
359.08 186.50 4.58 393.65 270.07 13.55

The weight unit is lb.

36

Table 2 The comparison of the optimal designs for the 10-bar plane truss structure

Sizing

variable

(in
2
)

 Case I Case II

 Reference This work This work

[5] [17] GGA HGGA GGA HGGA

A1 30.0 31.5 30.5 30.0 30.0 30.0

A2 0.1 0.1 0.1 0.1 0.1 0.1

A3 23.5 24.5 21.0 24.0 23.0 24.0

A4 15.0 15.5 16.5 14.5 14.0 14.5

A5 0.1 0.1 0.1 0.1 0.1 0.1

A6 0.5 0.5 1.0 0.5 0.5 0.5

A7 7.5 7.5 8.0 7.5 8.0 7.5

A8 21.5 20.5 21.0 21.0 21.0 21.0

A9 21.5 20.5 22.0 22.0 23.0 22.0

A10 0.1 0.1 0.1 0.1 0.1 0.1

Weight (lb) 5067.33 5073.51 5092.79 5067.33 5089.70 5067.33

37

Table 3 The sizing variables for the 25-bar space truss structure

Sizing

Variable

Members

(End-End)

A1 (1-2)

A2 (1-4), (1-5), (2-3), (2-6)

A3 (1-3), (1-6), (2-4), (2-5)

A4 (3-6), (4-5)

A5 (3-4), (5-6)

A6 (3-10), (4-9), (5-8), (6-7)

A7 (3-8), (4-7), (5-10), (6-9)

A8 (3-7), (4-8), (5-9), (6-10)

38

Table 4 The computational results of three GAs for the 25-bar space truss structure

Run 10 times
 Case I Case II Case III

SGA GGA HGGA SGA GGA HGGA SGA GGA HGGA

Best 487.07 485.05 484.85 576.24 560.59 560.59 525.11 514.30 514.30
Average 504.37 488.39 485.99 650.91 564.25 561.40 540.35 520.15 518.42
Standard

deviation
12.75 4.08 1.44 72.13 4.40 2.56 12.76 4.20 4.28

The weight unit is lb.

39

Table 5 The comparison of optimal designs for the 25-bar space truss structure

Sizing

variable

(in
2
)

 Case I Case II Case III

 Reference This work Reference This work Reference This work

[1] [4] [5] [17] GGA HGGA [2] [17] GGA HGGA [2] GGA HGGA

A1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.01 0.01 0.01 0.3 0.1 0.1

A2 1.8 1.2 0.4 0.3 0.5 0.3 2.0 2.0 2.0 2.0 0.9 0.7 0.7

A3 2.3 3.2 3.4 3.4 3.4 3.4 3.6 3.6 3.6 3.6 3.0 3.2 3.2

A4 0.2 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.4 0.1 0.1

A5 0.1 1.1 2.2 2.1 1.9 2.1 0.01 0.01 0.01 0.01 1.0 0.8 0.8

A6 0.8 0.9 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 1.1 1.1 1.1

A7 1.8 0.4 0.4 0.5 0.4 0.5 2.0 1.6 1.6 1.6 1.2 1.2 1.2

A8 3.0 3.4 3.4 3.4 3.4 3.4 2.4 2.4 2.4 2.4 3.0 3.0 3.0

Weight

(lb)
546.01 493.80 484.33 484.85 485.05 484.85 563.52 560.59 560.59 560.59 525.20 514.30 514.30

40

Table 6 The sizing variables of the 72-bar space truss structure

Sizing

Variable

Member

 (End-End)

A1 (1-5), (2-6), (3-7), (4-8)

A2 (1-6), (1-8), (2-5), (2-7), (3-6), (3-8), (4-7), (5-12)

A3 (5-6), (5-8), (6-7), (7-8)

A4 (5-7), (6-8)

A5 (5-9), (6-10), (7-11), (8-12)

A6 (5-10), (5-12), (6-9), (6-11), (7-10), (7-12), (8-11), (9-16)

A7 (9-10), (9-12), (10-11), (11-12)

A8 (9-11), (10-12)

A9 (9-13), (10-14), (11-15), (12-16)

A10 (9-14), (9-16), (10-13), (10-15), (11-14), (11-16), (12-15), (13-20)

A11 (13-14), (13-16), (14-15), (15-16)

A12 (13-15), (14-16)

A13 (13-17), (14-18), (15-19), (16-20)

A14 (13-18), (13-20), (14-17), (14-19), (15-18), (15-20), (16-19), (17-24)

A15 (17-18), (17-20), (18-19), (19-20)

A16 (17-19), (18-20)

41

Table 7 The computational results of three GAs for the 72-bar space truss structure

Run 10 times SGA GGA HGGA

Best 406.02 388.08 385.54

Average 432.93 400.73 390.69

Standard deviation 17.65 12.21 4.03

The weight unit is lb.

42

Table 8 The comparison of the optimal designs for the 72-bar truss structure

Sizing variable

(in
2
)

 Reference This work

[2] [17] GGA HGGA

A1 1.5 2.1 1.8 2.0

A2 0.7 0.6 0.5 0.5

A3 0.1 0.1 0.1 0.1

A4 0.1 0.1 0.1 0.1

A5 1.3 1.4 1.3 1.3

A6 0.5 0.5 0.6 0.5

A7 0.2 0.1 0.1 0.1

A8 0.1 0.1 0.1 0.1

A9 0.5 0.5 0.5 0.5

A10 0.5 0.5 0.6 0.5

A11 0.1 0.1 0.1 0.1

A12 0.2 0.1 0.1 0.1

A13 0.2 0.2 0.2 0.2

A14 0.5 0.5 0.5 0.6

A15 0.5 0.3 0.4 0.4

A16 0.7 0.7 0.5 0.6

Weight (lb) 400.66 388.94 388.08 385.54

43

Table 9 The computational results of three GAs for the 160-bar space truss structure

Run 10 times SGA GGA HGGA

Best 1363.67 1265.05 1265.05

Average 1433.33 1270.03 1270.26

Standard deviation 63.19 2.21 6.63

The weight unit is lb.

44

Figure 1-1 The Flow chart of a simple GA

Start

End

Encoding

Selection

Crossover

Calculate fitness value

Random Initialization

Mutation

Stopping ?

Yes

No

Calculate fitness value

45

Figure 1-2 Data flow of a simple GA

(Encode) (Select) (Crossover)

V1=(x11,x12,…)

V2=(x21,x22,…)

V3=(x31,x32,…)

V4=(x41,x42,…)

…

Vk=(xk1,xk2,…)

C1=100101…

C2=110110…

C3=001101…

C4=111110…

…

Ck=001011…

C’1=100101…

C’2=111110…

C’3=100101…

C’4=010100…

…

C’k=101010…

C”1

C”2

C”3

C”4

…

C”k

…

C
*
1

C
*
2

C
*
3

C
*
4

…

C
*

k

(Mutation)

(Update)

46

Figure 2-1 Illustration of the roulette wheel selection

C1

C2

C3

C4
C5

C7

C8

C9

C10

Random

47

Figure 2-2 Illustration of three commonly used crossover operators

Single-point

Multi-point

Uniform

48

Figure 2-3 Illustration of Velley’s dynamic population size GA

s

Figure 2-4 Dynamic population size for GA proposed by Koumousis and Katsaras

Population

size

Number of Iteration

(max)

(min)

49

Figure 2-5 Illustration of the same size multi-population GA

GA

Population 1 Population 2

Save the fitter chromosomes

…
Dominant

Population

(Immigration move) (Immigration move)

50

Figure 2-6 Illustration of the core/colony multi-population GA

GA1

(Immigration move)

…

Core

Population

GA2

Population 1

(Colony)

Population 2

(Colony)

51

Figure 2-7a An example of the hybrid GA

Figure 2-7b Another example of the hybrid GA

GA

Local search algorithm

…

Initial population

…

…

Solutions by the GA

Refined solutions

(Feedback)

GA

Local search algorithm

…

Initial population

…

…

Solutions by the GA

Refined solutions

52

Figure 3-1 The flow chart of the structural optimization

Start

End

Optimizer

Matrix analysis of

structure

Initial designs

Stopping ?

Yes
No

Matrix analysis of

structure

53

Figure 3-2 Illustration of the hill-climbing strategy

(x1
k
 , x2

k
 ,…xi

k
 ,…, xp

k
)

xi
k

(x1
k+1

 , x2
k+1

 ,…xi
k+1

 ,…, xp
k+1

)

0

zi(8) zi(9) zi(6) zi(7) zi(10) zi(11)

xi
k+1

zi(2) zi(3) zi(1) zi(4) zi(5)

0 0 0 1 1 1 1 1 1 0

0 0 1 1 1 1 1 0 0 0 0

Zi

W
k

W
k+1

Search space

The most promising search

region at k-iteration

The most promising search

region at (k+1)-iteration

Zi A set of sequentially discrete values for xi

W
k

 Window at k-iteration

W
k+1

 Window at(k+1)-iteration

The best solution at k-iteration

(The center of the thin solid circle)

The best solution at (k+1)-iteration

(The center of the dashed circle)

54

Figure 3-3 Illustration of modulus decoding

… 0 0 0 0 1 1 1 0 Window Wi

zi(8) … zi(6) zi(7) zi(2) zi(3) zi(1) zi(4) zi(5) Legal value

zi(2) … zi(3) zi(4) zi(2) zi(3) zi(4) zi(4) zi(2) Promising

value

8 … 6 7 2 3 1 4 5 Assigned

 number

(x1 , x2 ,…xi ,…)

55

Figure 3-4 The flow chart of the hill-climbing and greedy genetic algorithm

Start

End

Encoding

Modulus Decoding

Hybrid Selection

Crossover

Adapt windows

Calculate fitness value

Heuristic Initialization

Is the best solution

improved?

Is the best solution

unchanged over β

generations ?

Mutation

Stopping ?

Yes

Yes

Yes

No No

No

Calculate fitness value

New process

Traditional process

56

Figure 4-1 A 10-bar plane truss structure

A1 A2

A3 A4

A6

A7

A5

P=100 Kips

360 in 360 in

360 in

P=100 Kips

A8 A9 A10

2 4

5 3 1

6

57

5000

5500

6000

6500

7000

7500

8000

0 100 200 300 400 500

Number of iterations

W
e
ig

h
t

(l
b

)

SGA

GGA

HGGA

Figure 4-2 The comparison of convergence rates for the 10-bar plane truss structure

(Case I)

58

5000

5500

6000

6500

7000

7500

0 100 200 300 400 500

Number of generations

W
ei

g
h
t

(l
b

)

SGA

GGA

HGGA

Figure 4-3 The comparison of convergence rates for the 10-bar plane truss structure

(Case II)

59

Figure 4-4 A 25-bar space truss structure

100 in

100 in

75 in
75 in

200 in

200 in

x

y

z

1

2

3

4

5

6

7

8

9

10

60

470

490

510

530

550

570

0 100 200 300 400 500

Number of iterations

W
ei

g
h
t

(l
b

)

SGA

GGA

HGGA

Figure 4-5 The comparison of convergence rates for the 25-bar space truss structure

(case I)

61

550

570

590

610

630

650

670

690

0 100 200 300 400 500

Number of iterations

W
e
ig

h
t

(l
b

)

SGA

GGA

HGGA

Figure 4-6 The comparison of convergence rates for the 25-bar space truss structure

(case II)

62

510

525

540

555

570

0 100 200 300 400 500

Number of iterations

W
e
ig

h
t

(l
b

)

SGAGGAHGGA

Figure 4-7 The comparison of convergence rates for the 25-bar space truss structure

(case III)

63

Figure 4-8 A 72-bar space truss structure

1

2

3

4
5

9

13

17

7

11

15

19

6

10

14

18

8

12

16

20

60 in

60 in

60 in

60 in

120 in

120 in
x

y

z

64

350

450

550

650

750

850

950

0 100 200 300 400 500

Number of iterations

W
e
ig

h
t

(l
b

)

SGA

GGA

HGGA

Figure 4-9 The comparison of convergence rates for the 72-bar space truss structure

65

Figure 4-10 A 160-bar truss structure

E

G

F

C

D

A

B

0

1750 in

3500 in

5350 in

7100 in

8725 in

10275 in

11055 in

12565 in

13465 in

14365 in

15265 in

16150 in

2100 in

x

z

y

z

2100 in

500 in 500 in

4280 in

2070 in

66

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500

Number of iterations

W
e
ig

h
t

(l
b

)

SGA

GGA

HGGA

Figure 4-11 The comparison of convergence rates for the 160-bar space truss structure

