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A Load-Aware Scheduler for MapReduce Framework in

Heterogeneous Environments

Student: Hsin-Han You Advisor: Dr.Jiun-Long Huang

Institutes of Computer Science and Engineering
National Chao Tung University

ABSTRACT

MapReduce is becoming a trendy programming model for large-scale data processing such

as data mining, log processing, web indexing and scientific research. MapReduce framework

is a batch distributed data processing framework that disassembles a job into smaller map tasks

and reduce tasks. In MapReduce framework, master node distributes tasks to worker nodes to

complete the whole job. Hadoop MapReduce is the most popularopen-source implementation

of MapReduce framework. Hadoop MapReduce comes with a pluggable task scheduler inter-

face and a default FIFO job scheduler. Performance of MapReduce jobs and overall cluster

utilization rely on how the tasks being assigned and processed. In practice, there are some is-

sues such as dynamic loading, heterogeneity of nodes, multiple job scheduling needs to be taken

into account. We find that current Hadoop scheduler suffers from performance degradation due

to the above problems. We propose a new scheduler named Load-Aware Scheduler to address

these issues, and improve the overall performance and utilization. Experimental results show

that we could improve 10% to 20% of utilization on average by avoid unnecessary speculative

tasks.

Keywords: Cloud Computing, Hadoop MapReduce, Scheduling algorithm
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Chapter 1

Introduction

Data are becoming larger and larger everyday and in every field. Google claims that in 2008,

they obtain 20 petabytes of raw data everyday[1], while Facebook claims that they have pro-

cessed over 12 terabytes of compressed raw data per day[2]. This phenomenon happened not

only in web applications. For example, NYSE (New York Stock Exchange) generates 1 terabyte

of data per day and LHC (Large Hadron Collider) in Geneva produce 15 petabytes of data every

year[3]. These data are huge, hard to be stored, maintained,even processed. To address such

problems, Google proposed a pack of distributed solution, including Google File System[4]

which is a distributed file system that scales and automatically handles failure, MapReduce[1]

which is a distributed programming framework that handles partial failure, recoverability, scal-

ability and monitoring and BigTable[5] which is a distributed storage for structured data.

MapReduce framework have been widely discussed since [6] being published. Some re-

searches leverage MapReduce to obtain scalability and performance enhancement for their

applications. [7] discusses machine learning algorithms on MapReduce framework. [8] im-

plements a co-clustering algorithm on MapReduce and pointsout that data mining algorithms

need a good framework for large-scale data processing. Other papers like [9] and [10] see

MapReduce as a good framework for data warehouse or storage base. There are also researches

that implement MapReduce framework on special environments like GPU[11] or multi-core

chips[12].

MapReduce is currently the most popular framework for large-scale data processing. MapRe-

duce program adopts functional programming’s paradigm so that it can be paralleled easily.

Every MapReduce job has to implement two functions: map and reduce, according to the exe-

cution flow described in [1]. Given some input data, the framework will automatically partition

1
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Figure 1.1: Example of unnecessary speculative task

the input data into several splits, and these splits are thenprocessed by different instances of

map function. Map function parses input data into key/valuepairs, and for each pair, map func-

tion will output some or no intermediate key/value pair(s).All intermediate key/value pairs will

be sorted so that values correspond to the same key will be aggregated together and processed

by the same instance of reduce function. Each instance of reduce function will iterate over its

value set, and output some or no key/value pair(s). Map function instances and reduce function

instances are assigned to worker nodes by a master. If any node performs badly or crashes, the

master will assign its current tasks to other worker nodes. This type of task is called ”specula-

tive task”. It has been shown in [1] that using speculative task is able to reduce about 44% of

response time.

In a practical cluster, there are two aspects to be concernedat MapReduce scheduling, ”Job-

wise” and ”Task-wise”. ”Job-wise” scheduling decides which job or which job’s task should be

scheduled next, whether multiple jobs is able to run at the same time and how many resources a

job or a groups of jobs can consume. ”Job-wise” scheduling isnecessary when jobs should be

prioritized. Open source implementation Hadoop[13], which is the most popular open source

implementation of MapReduce, provides a TaskScheduler interface for cluster administers to

design their own schedulers. Facebook and Yahoo! both contribute their schedulers named

2



FairScheduler[14] and CapacityScheduler[15] and the details will be given in Chapter 2. On

the other hand, ”Task-wise” scheduling decides which task to be ran and which worker node

should the task be ran at. How tasks are being scheduled will greatly influence job’s finish time.

When some worker nodes perform poorly, speculative tasks can be launched to improve a job’s

response time. Previous study[16] has shown that Hadoop’s heuristic of speculative tasks do not

perform well in heterogeneous environment. As a result, theauthors in [16] proposed a LATE

scheduler to choose more suitable tasks to speculatively executed. The experimental result of

[16] shows that job response time can improve up to factor of 2.

However, we observe that a MapReduce job might launch many unnecessary speculative

tasks in the last wave of tasks. Consider the example in Figure 1.1. We have a MapReduce

cluster with one master node and two worker nodes with different hardware. Worker one is 1.5

faster than worker two. A user submits two jobs, one with 4 tasks and the other with 2 tasks.

Job one’s task will run 1 minute on worker one and 1.5 minute onworker two. We can see in

Figure 1.1, that at minute 2, we have reached a point to decidewhether to launch a speculate

task for job one, or to launch an ordinary task for job two. It is easy to tell that not to speculate

the task is a better choice since launching a speculative task for job one will not make job one

finish earlier. Our resources for such speculative task is totally wasted. Also, in this case, it is

obvious to see that we could improve cluster utilization by scheduling job two’s task to worker

one at minute 2. If we could avoid unnecessary speculate tasks, we can finish more task in

the same time. Moreover, some applications might leverage special hardware for optimization.

For example, [17] points out that using CUDA GPU to do MRI reconstruction is 263 times

faster than ordinary CPUs. We argue that MapReduce jobs should be able to specify their own

job information, such as special hardware needed, special computing resources needed or rack

restriction and master should schedule tasks according to the information it provides in order to

gain better performance.

Default scheduler in Hadoop provides a FIFO queue for users.Hadoop MapReduce’s imple-

mentation of master is called JobTracker and worker node is called TaskTracker. Jobs submitted

by users are queued on JobTracker. JobTracker will not schedule any map tasks for the next job

if all map tasks of the previous job are already scheduled andrunning. JobTracker will launch

a speculative task if an active task’s progress is a threshold behind the average task progress of

that job. Hadoop MapReduce also does not provide any TaskTracker information to a job, an

user cannot specify which TaskTracker its task should be ranat.

To summarize, we could improve the utilization of a MapReduce cluster by the following

3
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two ways:

• Avoid unnecessary speculative tasks and schedule other active job’s task instead.

• Schedule tasks according to its job’s description, in orderto assign tasks to suitable

worker nodes.

We propose an add-on component that can be merged into MapReduce framework, and imple-

ment it on Hadoop MapReduce. The master in MapReduce framework is called JobTracker

in Hadoop MapReduce. The worker node in MapReduce frameworkis called TaskTracker in

Hadoop MapReduce. Map function instance in MapReduce framework is called mapper in

Hadoop MapReduce. Reduce function instance in MapReduce framework is called reducer in

Hadoop MapReduce. For further readability, aboves words are used interchangeably in follow-

ing chapters.

This thesis is organized as follows: Chapter 2 will introduce some preliminaries for MapRe-

duce Scheduling and related work. Chapter 3 gives a formal definition to our problem and

describes our proposed solution. Experimental results aregiven in Chapter 4. Finally gives a

conclusion in Chapter 5.

4



Chapter 2

Preliminary

2.1 Hadoop Architecture

Hadoop MapReduce is an open source implementation of MapReduce programming framework

in the Apache Hadoop project. Hadoop MapReduce supports jobs to read input from many

sources like HDFS, databases or ordinary file systems. Generally, MapReduce job tents to read

its input from a distributed file system where MapReduce jobscan leverage data locality to

process vest data. HDFS is an open-source implementation ofGFS, and consists of one master

NameNode and some slave DataNodes. When HDFS client needs toissue a read or write

command, it first contacts the NameNode for meta informationsuch as the block locations

of its request file and the DataNodes where those blocks reside at. The client then issues the

command to one DataNode holding the block, and transfers theblock from the DataNode. Since

data blocks are transferred directly from DataNode, masterNameNode will not be a network

bottleneck. HDFS has larger block size (64M by default) thanordinary file systems. Since

the objective of HDFS is to read data sequentially from disk,using larger block size is able

to reduce seek time resulting from data fragmentation. HDFSreplicates data blocks to several

DataNodes (3 by default), to use extra storage to trade for recoverability and data locality.

Figure 2.1 illustrates a simple architecture of how HDFS client communicates with NameNode

and DataNodes. Hadoop MapReduce consists of one JobTrackerand some slave TaskTrackers.

Users submit jobs to JobTracker, and every Hadoop MapReducejob contains a compiled jar file

and a job configuration file. Job configuration can be specifiedby JobConf API or Configuration

API in source code which the configuration file will be automatically generated. Users can also

5
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Figure 2.1: HDFS architecture

specify another XML file contains the configuration. JobTracker will parse the input path given

in the configuration to several input splits based on the input block size and the number of map

tasks specified in job configuration.

At map stage, we call every map instance a mapper, at reduce stage, we call every reduce

instance a reducer. Every input split will be parsed by a class named RecordReader into many

key/value pairs. Taking plain text file for example, each line will become a value, and its

corresponding key is the offset of the original file. Mapper processes all the key/value pairs

in its input splits and output some intermediate key/value pairs. These intermediate key/value

pairs will be sorted, then all pairs with same key will be shipped to the same reducer as in Figure

2.3. The Combiner class can be used to reduce network communication if mappers tend to give

out keys that appears more than once and local aggregation are feasible. Figure 2.4 shows how

combiner can reduce the amount of data transfer on network after local aggregation. Reducers

process input key/value pairs and output some or none key/value pairs. Users can also specify

their own output format by overwriting RecordWriter class.Default RecordWriter write one

key/value pair each line and key/value are tab-separated.

2.1.1 Hadoop MapReduce Scheduling

JobTracker is the core of Hadoop MapReduce scheduling. TaskTrackers will periodically send

heartbeats to JobTracker. Heartbeat not only notifies the JobTracker that this TaskTracker is still

alive, but also contains many important messages such as thenumber of empty working slots for

mappers and for reducers that this TaskTracker has, or the progress of current active tasks this

TaskTracker is processing. When a heartbeat is received, JobTracker will send back a heartbeat

6
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response. Hadoop MapReduce provides a TaskScheduler interface for administers to specify

how to assign tasks by overwriting some classes or methods. The default scheduler is called

JobQueueTaskScheduler. All submitted jobs are in a FIFO queue and JobQueueTaskScheduler

will later assign their tasks accordingly. All tasks that have failed before will be scheduled first.

If there are tasks that reach the threshold of 0.2 below average progress, a speculative task will

be scheduled.

2.1.2 Fair Scheduler and Capacity Scheduler

FairScheduler is an implementation of Hadoop MapReduce’s TaskScheduler interface con-

tributed by Facebook. FairScheduler categorizes jobs intopools, and shares resources fairly

among these pools. By default, each user owns a pool when his/her job is submitted to Job-

Tracker. Administers can also redefine pools to aggregate some groups of users’ jobs into the

same pool. Pools can be dynamically configured, and FairScheduler will reload pool configura-

tion every 15 seconds. Every job is considered active when submitted. Administers can specify

maximum running jobs per pool, and all jobs in the same pool will share the resources fairly.

Pools can also be defined with priorities, and every pool can have a weight value showing the

percentage of resources should FairScheduler be given to. Whenever some resources are un-

used, excess resources are evenly split between pools. FairScheduler provides three extensible

classes, WeightAdjuster, LoadManager and TaskSelector. WeightAdjuster is used to adjust the

8
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Figure 2.5: Bad speculative task choice

weight of running jobs. Given some weight boost to new comingjob is proven to be effective

for cluster running a lot of small jobs[18]. LoadManager is used to dynamically determine how

many maps and reduces can run on a given TaskTracker. TaskSelector is used to determine if

some tasks can run on a specific TaskTracker.

CapacityScheduler is another implementation of Hadoop MapReduce’s TaskScheduler in-

terface contributed by Yahoo!. CapacityScheduler categorizes jobs into queues. All queues

must be predefined with a percentage as their share of the whole resource capacity. All jobs in

the same queue are in a FIFO order, and only one job is active atany time. Like FairScheduler,

free resources can be given to queues beyond its capacity to improve utilization. CapacitySched-

uler supports memory intensive jobs. A job can specify memory requirements, and the tasks

of the job will only run on TaskTrackers that can meet the memory requirement of the job.

Memory based scheduling is currently only supported in Linux platform.

2.2 Related Work

2.2.1 LATE Scheduler

The importance of speculative execution in MapReduce framework is discussed and improved

in [16]. [16] points out that the original Hadoop heuristic toward speculative execution be-

9



comes a disappointment in heterogeneous environments. Default Hadoop scheduler assumes

that nodes are homogeneous and tasks tend to finish in waves. Heuristic built on this assump-

tion will result in some bad choices in choosing which tasks to be speculatively executed. We

use the following example to illustrate how the default scheduler speculates the wrong task.

Suppose we have a MapReduce job with 5 tasks and a cluster with3 TaskTrackers. Each Task-

Tracker has different process rates: 3000MHz, 1000MHz and 1666MHz as in Figure 2.5. At

first, task 1, 2 and 3 are assigned to 3 TaskTrackers and estimated to finish in 1, 3 and 1.8 min-

utes. After one minute, TaskTracker one finishes its task andtask 4 is assigned by JobTracker.

0.8 minute later, TaskTracker three finishes its task and task 5 is assigned by JobTracker. 0.2

minute later, TaskTracker one finishes its task, so it has an empty working slot. Task 2 and

task 5 are both qualified to launch speculative tasks. It is obvious that launching a speculative

task for task 5 can help the job finish within 3 minutes while launching speculative task for task

2 will not help at all. In above case, default scheduler mightspeculatively executed task 2 at

minute 2. [16] designed the LATE scheduler to avoid this sortof speculation by the following

three principles:

• Given task speculative priorities, LATE scheduler always speculates the task of the longest

estimated time to finish.

• LATE scheduler only launches speculative tasks on fast nodes.

• Limit the number of concurrent speculative tasks to preventthrashing.

LATE scheduler can significantly improve a single job’s response time. However, LATE did

not consider the fact that there might be some unnecessary speculative tasks. Consider the

example in Figure 2.6, TaskTracker one will not be helpful neither speculating task 2 nor task 5.

LATE scheduler also did not consider the fact that node performance might vary from time to

time. LATE scheduler uses a heuristic to evaluate node performance by the sum of its previous

working progress. This heuristic might misjudge some nodesas slow nodes if those nodes

happened to have some short, non-MapReduce, high-load process running.

2.2.2 Heterogeneous Workloads

[19] tried to improve hardware utilization by distinguishing different kinds of workloads of

MapReduce jobs. When CPU-bound and I/O-bound jobs run in parallel, both CPU and I/O

10



� � � � �

� � �

�

�

�

���	 
����

�

�

�

������� �

��!������ �"�#

$%%%&'(

��!������ �")#

�%%%&'(

��!������ �"$#

�*+%&'(

Figure 2.6: Another example of unnecessary speculative task

devices can contribute to the jobs. [19] proposed an MR-Predict mechanism to predict whether

a job is CPU-bound or I/O-bound. Figure 2.7 shows the architecture of [19]. [19] designed

a triple-queue scheduler that maintains three queues: waitqueue, CPU-bound queue and I/O-

bound queue. When a new job being submitted, the scheduler put the job into the wait queue.

For jobs in the wait queue, the scheduler will schedule one ofits task. After the task finishes,

the MR-Predict mechanism will predict whether the job is CPU-bound or I/O-bound based on

its running status. For jobs predict as CPU-bound, it will beput into the CPU-bound queue. For

jobs predict as I/O-bound, it will be put into the I/O-bound queue. Both CPU-bound queue and

I/O-bound queue are FCFS. Jobs in CPU-bound queue and I/O-bound queues run parallelly,

thus improving hardware utilization.
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Chapter 3

Load-Aware Scheduler

This chapter describes our optimization target and clusterenvironment. Our goal is to improve

the overall utilization of a MapReduce cluster. Default Hadoop MapReduce scheduler and [16]

do not take multiple job scheduling and dynamic cluster status into account. Our computing

environment is heterogeneous. Every computing node can have different computing capability.

Every computing node can run MapReduce and other services simultaneously. Our proposed

scheduler will try to improve utilization by distributing tasks according to the working nodes’

status at any given time.

3.1 Objectives

We further list three objectives of our scheduler:

• For tasks whom might be considered to be speculatively executed, evaluate whether

launching this speculative task will shorten its job finish time. If the original task will

finish before the speculative task or other ongoing tasks of this job will not finish after

this speculative task. We should not speculatively executethe task and leave the available

resources to other active jobs.

• Choose fast nodes to speculate tasks. We should acquire moreinformation about a Task-

Tracker when we judge how this node will perform. There mightbe other processes on

the same node compete for the resources with MapReduce tasks. It is important to have

an interface to fetch the information on a given TaskTracker. With that information, we

13



can further tell if this TaskTracker could outperform itself at a given past timet or if it

could outperform another TaskTracker.

• Information from MapReduce jobs is as important as information about a TaskTracker.

Users may list the requirements that will benefit the job, andJobTracker should try to

meet these requirements in order to make the job run smoother.

3.2 Proposed Scheme

To achieve the above objectives, we propose our Load-Aware scheduler. It consists of two

components: Data collection module and task scheduling module. Our scheduler follows the

following two guidelines:

• When a TaskTracker has an empty working slot, assign a task tothe TaskTracker only

when assigning this task could make its job finish earlier.

• For any active job, only TaskTrackers that are not overloaded and can fulfill the job’s

requirements (if any) can be assigned the job’ task to.

Our scheduling idea works simply as follow: For running jobsand tasks, our scheduler will

use the information collected by data collection module to compute their estimated finish time.

When a TaskTracker is available and asks for tasks, our scheduler iterates over the active job

list. For each job, we applied the following steps:

• Step 1: Check if the TaskTracker can fulfill the requirementslisted in job’s configuration.

If the TaskTracker cannot, continue to next job.

• Step 2: Check if there are tasks of the job need to be scheduled(including fail tasks,

non-running tasks and tasks need to speculate). If there is none, continue to next job.

• Step 3: Estimate the task running time on the TaskTracker, check if schedule this task can

shorten the job’s finish time. If it cannot, continue to next job.

• Step 4: Assign a task of current job to the TaskTracker.

Figure 3.1 shows our proposed architecture. We implement our two modules on JobTracker.

Data collection module communicates with TaskTrackers andprovides information for task

scheduling module. Task scheduling module makes scheduling decisions based on information

from JobTracker and data collection module.

14
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Figure 3.1: Load-Aware scheduler architecture

3.2.1 Data Collection Module

Data collection module provides an interface for JobTracker to gather necessary information of

TaskTracker for later scheduling decisions. We need information about a TaskTracker to see if

it can meet the requirements of a job. We also need information about TaskTrackers to evaluate

the running time of a task. Any attribute that might affect the performance of a TaskTracker

can be put into the collection list on data collection module. CPU frequency, system loading,

I/O rate and memory usage are some general attributes that might be selected as our evaluation

metrics. Other than that, CPU core number, special hardwareinformation and network usage

can be useful from time to time. Other miscellaneous information such as task progress, task

status, task starting time and task finishing time are also needed to be collected by the module.

Data collection module mainly works on JobTracker, and datacollection should run periodically

to collect information about all TaskTrackers. Further implementation details will be given in

Section 3.3.

15



3.2.2 Task Scheduling Module

While data collection module gathers information, task scheduling module maintains informa-

tion and makes scheduling decisions when empty working slots are available. There are two

stages in task scheduling module: information maintenancestage and task assignment stage.

Information maintenance stage is responsible for the estimation of running task execution time.

We need to give an estimation of running tasks in order to estimate the finish time of the whole

job. With the estimation, we can further decide whether scheduling another task could not be

a waste. Finished tasks and running tasks can be an importantreference for future estimation.

We need to keep track of the dynamic attributes to make more accurate estimation. Taking sys-

tem loading for example, system loading could be an important factor to the performance of a

TaskTracker and it changes dynamically. TaskTracker mightperforms differently when other

processes on the same node compete for its resources. Systemloading can help us distinguish

the status of a TaskTracker.

Algorithm 1 : Information maintenance stage
Input:

M : JobTracker of MapReduce cluster

Q : active job queue on JobTrackerM

Periodically:

1: for each job j,j in Q on M do

2: for each task t,t in j on TaskTrackerW do

3: Update progress fort.

4: Calculate estimated finish time fort.

4: Update and record dynamic attributes status fort onW .

5: end for

6: Calculate estimated finish time forj.

7: end for

Whenever an empty working slot is available on a TaskTracker, JobTracker will iterate over

active jobs. For each job, JobTracker needs to evaluate the task execution time on the Task-

Tracker if the TaskTracker meets the jobs’ requirements. Weshould iterate over all attributes

that affect the performance of a TaskTracker, and adjust thefinish time according to the differ-

ence between past and current situations. Note that to complete a MapReduce job is to complete

a series of tasks of that job. When a job is about to finish, someof its tasks must have finished

before. So there are always some task finish time references for us. In order to make adjust-
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ments for each attribute, some adjustment functions are needed. We use CPU-intensive jobs as

our experiment applications. In Section 4, we will demonstrate how to estimate task finish time

by observing system loading and CPU frequency.

Algorithm 2 : Task assignment stage
Input:

M : JobTracker of MapReduce cluster

Q : active job queue on JobTrackerM

R : requirements list of a job

L : list of attributes

Whenever a TaskTrackerN have an empty working slot:

1: Task assignTask( TaskTrackerN) do

2: for each job j,j in Q do

3: for each requirement r,r in R do

4: if ( N cannot meetr ) then

5: Next job.

6: end if

7: end for

8: for each attributes a,a in L do

9: Estimate task execute timeT on N overa.

10: end for

11: if ( T > estimate finish time ofj) then

12: Next job.

13: else

14: Assign task ofj to N.

15: end if

16: end for

17: end assignTask

3.3 Implementation

We choose Hadoop MapReduce as our implementation platform.To make our scheduler more

flexible and extensible, we merge our two modules into FairScheduler, which is pluggable from

Hadoop.

We modified FairScheduler to achieve above objectives. Our scheduler still retains the fair-

ness characteristic of FairScheduler since we only avoid unnecessary speculative tasks. We

schedule tasks based on the configuration of the job itself.

17



��������	
�

����� ���

��������������������� �

������ ��

��������������������� �

������	�	�

Figure 3.2: SNMP query scheme

For data collection module, we need an information exchangeapproach between JobTracker

and TaskTracker. We can design our own protocol to exchange information. This approach

might lead the scheduler to inflexible and hard to implement.Taking an attribute we might

want to collect for example. We want to obtain system loadingon a TaskTracker. Different

operating systems might need different system calls or different programs to obtain. For each

operating system we want to support, we will need a set of codes dealing with local data extrac-

tion in TaskTracker. Not only did we need the effort to write extra codes, if there are any new

platforms we want to support, we have to re-compile the source codes and restart the service.

To avoid these disadvantages, we choose SNMP[20] as our datacollection protocol. SNMP

(Simple Network Management Protocol) is a protocol designed for network management and

network monitoring. SNMP defines a structure of management information and the manage-

ment information base[21]. Figure 3.2 shows an example of a SNMP query flow. We choose

Net-SNMP[22] as our SNMP server on TaskTracker. Net-SNMP isoriginally developed by

University of California, Davis and is now an open-source project. Data collection module

in JobTracker will send SNMP query to TaskTracker periodically. There is much informa-

tion already defined in management information base (MIB). Taking previous system loading

for example, query iso.org.dod.internet.private.enterprise.ucdavis.laTable.laEntry.laLoad (MIB

number 1.3.6.1.4.1.2021.10.1.3) can obtain the system loading of a TaskTracker when using

Net-SNMP. Net-SNMP defines a extTable (MIB number 1.3.6.1.4.1.2021.8) for administrators

to specify self-defined commands. Given a program, Net-SNMPwill run the program and re-
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Figure 3.3: System loading versus Task execution time experiment

turn its output as the result of an MIB entry. We leverage the extTable to construct our structure

to do jobs’ requirement checking. MapReduce jobs can set a special flag expressing that they

need some checking for TaskTracker. Only if all the results of SNMP query fit the job’s require-

ments will the JobTracker assign tasks to the TaskTracker. To add a new checking attribute for

MapReduce jobs, we applied following three steps:

• Add the corresponding program on TaskTracker.

• Restart the SNMP daemon on TaskTracker.

• Notify users the MIB number of the attribute.

We do not have to restart our MapReduce service thus no activejobs and users are influence

by this process.

For task scheduling module, we leave the speculation threshold unchanged and focus on

avoiding unnecessary speculative tasks. Our work needs an estimation approach toward task

execution time. Our target application is CPU-intensive. We analyze two attributes that we think

have the most effect on task execution time: system loading and CPU frequency. System loading

gives a global view of CPU usage about a TaskTracker. High loading means fewer resources can

be obtained by one process. We need an estimation function that gives task estimated execution

time based on previous task executing experience. Given current loading and previous loading

plus running time, we can predict how long the task might elapse on this TaskTracker. We

perform an experiment to observe the relation between loading and task execution time. The
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Figure 3.4: System loading versus Task execution time (a) node are not overloaded (b) node are
overloaded

results are shown in Figure 3.3. Multi-core computers are common nowadays. We found that

the growing curve differs when system loading grows larger than system core number.

Our experiment node has 8 cores. We can see in Figure 3.3 that when x-axis reached beyond

8, the curve grows exponentially. When system loading lowerthan 8, the curve linearly grows.

We split the experimental result in half, and analyze the changes before and after system loading

reaches core number in Figure 3.3.

Base on the experiment, we have two estimation functions of system loading:

• Time′ = 17700∗ (Load′
−Load)∗Time when node are not overloaded.

• Time′ = Time∗ e0.12∗(Load′
−Load) when node are overloaded.

We use the same technique for CPU frequency. We perform an experiment to observe the

relation between CPU frequency and task execution time. Theresults are shown in Figure 3.5.

Base on the experiment, we have an estimation function of CPUfrequency:

• Time′ = Time∗Freq′/Freq

When task scheduling module needs an estimation of some task, following steps are taken:

• Select an executed task of the same job.

• Estimate the finish time based on system loading adjustment function if selected task is

processed by the same TaskTracker.

• Estimate the finish time based on CPU Frequency and system loading adjustment func-

tions if selected task is not processed by the same TaskTracker.
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Figure 3.5: CPU frequency versus Task execution time experiment

3.4 Discussion

While Hadoop MapReduce was designed to use on large-scale cluster, its elegant framework

design has made many small organizations push their applications on top of it. Smaller scale

clusters are common in campus to support courses and researches. Companies that are not

web-based can also store and analyze data on top of Hadoop MapReduce. Heartbeat plays an

important role on the architecture of Hadoop MapReduce. JobTracker and TaskTracker mainly

communicate over heartbeats and its responses. JobTrackerneeds to process heartbeats and

gives proper responses. To avoid overwhelming the JobTracker, current Hadoop MapReduce

has a 3 seconds lower-bound for heartbeat interval. Heartbeat interval grows linearly when

cluster size increases. In our experience, a 3 seconds lower-bound for heartbeat interval seems

quite much for small cluster. Jobs submitted in cluster cannot be scheduled until next heartbeat

was sent by a TaskTracker who has available working slots. Small jobs that take less than

1 minute might waste over 10% of time waiting for heartbeats.There are some discussions

about dynamic adjustment of heartbeat interval on Hadoop MapReduce. Issue number 5784[23]

discusses about configurable heartbeat interval. [24] lowers the minimum heartbeat threshold

on small cluster. The experiment of [24] receives quite a stunning performance burst of 100%

on a small cluster.

Heartbeat between JobTracker and TaskTracker carries muchinformation around. If the in-

formation that data collection module needed can be padded on heartbeat, it will be undoubtfully

be an enhancement of performance. There are issues [25] [26]that discussed about padding ex-
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tra information on heartbeats. In the future, our data collection module can leverage the extra

information already carried by heartbeat.
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Chapter 4

Performance Evaluation

In this chapter, we evaluate our scheduler in a real-world environment. We create some sce-

narios including multiple jobs and dynamic loading. We extend a local sudoku game solver to

a MapReduce version that solves multiple sudoku games as ourtest application. Input sudoku

games are randomly generated in advanced by our soduku game generator.

Our testbed is a local cluster with 8 nodes. Each node has 1 Xeon CPU with 4 cores sup-

porting Hyper-Threading, 12GB of RAM and a 500GB SATA drive.All nodes are connected

on a gigabit Ethernet channel. Solving 9000 games on one of our machines locally takes about

500 seconds. Solving 9000 games on 8 nodes using Hadoop MapReduce takes only 80 seconds,

each mapper takes about 60 seconds.

Our experiment scenario consists of a set of jobs and the status of each TaskTracker. Status

of a TaskTracker might vary from time to time in order to observe the effect of dynamic loading.

Two performance metrics are used in our experimental result, the total execution time of a set

of jobs and the number of speculative tasks these jobs launched.

In the following sections, we refer our scheduler as LA, scheduler of [16] as LATE and

default Hadoop MapReduce scheduler in version 0.20.2 as default.

4.1 Unnecessary Speculative Tasks

Speculative tasks always launch at the last wave of tasks. Tospeculatively execute a task means

a part of the resources of this cluster is unable serve other jobs. We want to observe the effect

of unnecessary speculative tasks hogging resources, whichcause performance degradation.
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We create heterogeneous environments by two ways: increasesystem loading and adjust

CPU frequency on TaskTracker.

We increase system loading by running several other CPU-bound processes on one of our

TaskTrackers. TaskTracker’s loading will remain 6 when processing new coming tasks. We

submit two jobs into our cluster. Each job takes 9000 sudoku games as their input. When the

first job is close to finish, some speculative tasks might be launched when LATE or default

Hadoop scheduler are applied. Figure 4.1 (a) shows the totalexecution time of this experiment.

LA outperforms the other schedulers 25% on average.

With the same job setting, we adjust one of our TaskTracker’sCPU Frequency from 2268MHz

to 1416MHz but without the extra loading. Figure 4.1 (b) shows the total execution time of this

experiment. LA outperforms the other schedulers 20% on average.

Without checking whether the speculative tasks are necessary, TaskTrackers waste their

CPU time on speculative tasks that never finish before original tasks. LATE scheduler chooses

the better task to speculatively executed. Speculative tasks are prioritized but the number of

speculative tasks is not decreased. All tasks that meet the threshold of speculation are specula-

tively executed if there are enough free resources. LA evaluates which speculative task might

finish after the original task and not to launch these tasks. Figure 4.1 (c) shows the number of

speculative tasks launched for each scheduler in this experiment. LA launches less speculative

tasks and re-schedules these resources to the second job.

4.2 Dynamic Loading

Dynamic loading is common when the same group of hardware runs multiple services. Equal

hardware capability does not mean equal performance. One machine can be busy at this minute,

but load-free at the next minute. We use system loading as a reference of current TaskTracker’s

status. By keeping track of the system loading of TaskTrackers, we can estimate whether the

same task will run faster or slower. We create a dynamic loading scenario as follow. We submit

4 jobs into our cluster. The first job processes 30000 sudoku games. The second job processes

20000 sudoku games. The third job processes 10000 sudoku games. The last job processes

10000 sudoku games. 4 out of 8 TaskTrackers are swamped by other processes with loading 4

at the beginning. 2 out of 4 TaskTrackers are given extra loadto loading 8 after three minutes;

the other 2 TaskTrackers are freed from loading.
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Figure 4.1: Unnecessary speculative tasks avoided (a) total execution time (b) total execution
time (c) number of speculative tasks
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Figure 4.2: Dynamic loading detection (a) total execution time (b) number of speculative tasks
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Default Hadoop scheduler pays no attention to a node’s status. If an active task performs

badly, a speculative task will be launched. LATE scheduler records the history of how the node

performed, and launches speculative tasks only on nodes which performs better in the past. 2 out

of 4 TaskTrackers are load-free after three minutes, and canbe scheduled some speculative task

to help finish second or third job faster. LATE will still see these nodes as bad performer. LATE

stops scheduling any speculative tasks on these nodes. LATEperforms better than original

Hadoop scheduler since it has a SpeculativeCap. Maximum speculative tasks can be launched

at the same time are limited by this parameter. In our experiment, we set SpeculativeCap to

2. Because of SpeculativeCap, LATE avoids some unnecessaryspeculative tasks. LA detects

system loading on TaskTrackers. When TaskTrackers ask for tasks, LA fetches its current

loading and estimates task finish time. If the speculative task can shorten the finish time of the

job, LA will schedule it. Figure 4.2 (a) shows the total execution time of this dynamic loading

scenario. We can see that LA can improve up to 15% of executiontime. Figure 4.2 (b) shows

that we avoid launching 90% of speculative tasks.

4.3 Impact of Job Number

[1] and [16] shown that launching speculative tasks can improve job response time. LA stops

speculatively execute some tasks at some point. We need to know that tasks that need to be

speculatively executed are launched so that job’s responsetime is not hurt. We are also curious

about whether our scheduler could achieve same improvementwhen user submit more jobs.

We vary the number of jobs submitted into our cluster. Each job takes 9000 sudoku games. We

increase system loading of one of our TaskTracker to 6. The results are shown in Figure 4.3.

We can see that when there is only one job, LA performs just like default scheduler and LATE.

Figure 4.3 (c) shows that we avoid more speculative tasks when number of jobs increase. Figure

4.3 (a) shows that while number of jobs increase, the difference of total execution time between

LA and other two schedulers are almost the same. Meaning thatthe improvement percentage

become lower when number of jobs increase. Total execution time of a set of MapReduce jobs

is determined by the last finish task of last job. If we are lucky enough that the working slots

for the unnecessary speculative tasks we avoided are filled and finish some other active jobs,

we could have more improvement on total execution time. On the other hand, LA could seem

no improvement on total execution time like the case where there is only one MapReduce job.
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Figure 4.3: Impact of job number (a) total execution time (b)average tasktracker idle time (c)
number of speculative tasks 28
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Figure 4.4: Impact of total task number

By avoiding unnecessary speculative tasks, TaskTracker becomes idle and ready to serve other

tasks. We observe the idle time of our TaskTrackers in the same experiment. The results are

shown in Figure 4.3 (b). We can see that the difference between speculative tasks launched is

directly related to the difference between TaskTracker idle time. The more unnecessary spec-

ulative tasks we avoid, the more time TaskTrackers idles. Ifthere are other tasks we could

schedule while TaskTrackers idles, the overall utilization becomes higher.

4.4 Total Tasks Number

Speculative tasks only launched at last wave. There are lessrooms for us to improve if the job is

disassembled into more tasks. LA can still estimate task finish time and avoid some unnecessary

speculative tasks. Since non-running tasks will be schedule first, time consumed by speculative

tasks take less portion of total execution time. We analyze this effect by adjusting the ratio

of total task number over the number of TaskTrackers. If the number of tasks becomes larger,

the ratio becomes bigger and there are more waves of tasks. Ifthe number of tasks becomes

smaller, the ratio becomes smaller and there are fewer wavesof tasks. We use the same scenario

as 4.1, and we change the mapper number to observe the effect on LA. Experimental results are

shown in Figure 4.4. Though we did successfully avoid some speculative tasks, we do not have

that much of improvement when ratio of total task number overthe number of TaskTrackers

becomes larger. Reasons are explained above.

29



Chapter 5

Conclusion and Future Work

MapReduce programming framework provides a new way for programmers dealing with large

datasets. Programmers who use MapReduce framework need notto worry about the detail

of task distribution, scalability and fault tolerance. MapReduce framework handles all those

details in order to make programmers focus on their high-level algorithm. Current MapReduce

framework have not yet forms a perfect scheduler. New features and flaws are presented by

researchers and developers. We have discovered some flaws about how MapReduce framework

schedules tasks. We propose a scheduling scheme for MapReduce to improve the utilization by

avoiding unnecessary speculative tasks. Our scheduler canbe easily merged into MapReduce

framework and we implement it on Hadoop MapReduce. By scheduling on jobs demand and

avoiding unnecessary speculative tasks, we can improve theutilization up to 25%.

Good estimation of a computing task is an important factor toour scheduler. Estimation

of different attributes can be discussed and studied in the future. Hadoop MapReduce uses

heartbeats as the task assigning/reporting mechanism. Short jobs that take only few minutes

can lose large fraction of time waiting for heartbeats. Dynamic heartbeat interval adjustment

can also be another worthy topic to study, further improvingthe performance of MapReduce.
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