5 17 A% 38 N EE

EAREETIENIEA

"t m X

£ % MapReduce HH 7 hj L5 w42 %

A Load-Aware Scheduler for MapReduce Framework in
Heterogeneous Environments

TPERB Aht+thENA

£ § MapReduce #H # ¢ o f + g v # &£ F
A Load-Aware Scheduler for MapReduce Framework in Heterogeneous
Environments

N AR CR 75 Student : Hsin-Han You
dhERE R %A Advisor : Jiun-Long Huang
K = < i = g
. - - A S
AL o#wm oz
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
August 2010

Hsinchu, Taiwan, Republic of China

PoER R4 L4 E AN

2% MapReducer3n ¥ 49 & S R s P2 H

e M S /R R L

B 2 5 ik 4 AR R DAL AT

RS

MapReduceZ & & B AT R Z A E B4 6 — A £ o ThEHRD ~ RE L&A
REHEA R AEMTZRE TAREGFAZ R » A 7T 58 MapReduced 2| 47 69 #2
KNIk ML B HAT 2 F > MapReduced — 2 # X4tk H AR A2 X4E R » MapReduce
A — 18 TAE 5 72 B 35 %) 89 mapdEds XL & reducefE # o A8 TAE & B 4 5 7ok — &
map £ # & reduceft # & 7 % 8l TA4E ° “Hadoop-MapReduceé: B a7 5z 2 P 49 MapRe-
duce Kl 27 4 #5 F # - Hadoop MapReducer — {8 74 4 69 3k 42 4)- @ TaskScheduler 7
REGPEAL B A TAE A S Sk AT R o

PR B Lo 7242 T4E » 4B map/reducd® 5 § % % MapReduceL 1F # $h47 2 % 42

HERIAESEGERAE - AERGRE T > KMBAAFZHNEN TR LEPLEFL R
IR m TAE R B H R AR - THHBOEIHNE - ANEEF S T
FHiEFE o KAV B AT89 Hadoop MapReducét 74is PR b 4 A % &R » L H x40

BMegtE T » ARG TR o KM AR E T RMG ML > AR Hadoop
MapReducek & # 7 & 1149 Load-Awaredf 2 & K42 7 858 TAEaAk o KM 89T BT A
f— Mty % TARE DT - B8 % LR B RS - RT3 10% & 20% 89 5L AE o

MégF : £ H » Hadoop MapReduce BE42 7% F- ik

A Load-Aware Scheduler for MapReduce Framework in

Heterogeneous Environments
Student: Hsin-Han You Advisor: Dr.Jiun-Long Huang

Institutes of Computer Science and Engineering
National Chao Tung University

ABSTRACT

MapReduce is becoming a trendy programming model for laggde data processing such
as data mining, log processing, web indexing and scieng8earch. MapReduce framework
is a batch distributed data processing framework that siésables a job into smaller map tasks
and reduce tasks. In MapReduce framework; master nodédists tasks to worker nodes to
complete the whole job. Hadoop MapRedueé is'the most popplam-source implementation
of MapReduce framework. Hadoop-MapReduce comes with a phlggask scheduler inter-
face and a default FIFO job scheduler.“Performance of Map&egbbs and overall cluster
utilization rely on how the tasks-being assighéd and prackesk practice, there are some is-
sues such as dynamic loading, heterogeneity-of nodes pieybb scheduling needs to be taken
into account. We find that current Hadoop scheduler suffers performance degradation due
to the above problems. We propose a new scheduler namedAveaid Scheduler to address
these issues, and improve the overall performance andatidn. Experimental results show
that we could improve 10% to 20% of utilization on average Wyihunnecessary speculative
tasks.

Keywords: Cloud Computing, Hadoop MapReduce, Scheduling algorithm

S5t

BAZRHBRREABTAFROEE > RTHERARORRE HREARLE
THRBRGE GE > BRTALBA—TILA WIEL > 34 A = kI8 E 58I - 4
BEREHMORXERM TR TR - BXERBE ARG TR > £ 0 RFRER
FEARAGTRLRFN » ARG F LG LAY L5 o

EEEHTREOBHEN > BA2R T4 LR - RYLR TRLR &% 2
R~ EMREGHE > BARE—REFIORE BARSEHM -

A ERHAE Z T W B K TAEBHM | LHE & chwong, chiahung, Iwhsu,
liuyh 2 &AM » AR £ KA LA EF L RF S 15T H B o travisyd 518 8 va 0%, L 69 5% 5
B SRR T AR R LER > BRESE TH S LaTeXsBik » ATHZ T AR -

RBEBBEHEGEAN > UBRLMEARARE S RO o A THM 2 sE
NAA] 7 AR IE A o LAY o

Contents

BE i
Abstract i
BH iii
Table of contents iv
List of figures Vi
1 Introduction 1
2 Preliminary
2.1 Hadoop Architecture e 5
2.1.1 Hadoop MapReduce Scheduling 6
2.1.2 Fair Scheduler and Capacity Scheduler 8
2.2 Related Work e
2.21 LATEScheduler
2.2.2 Heterogeneous Workloads 10
3 Load-Aware Scheduler 13
3.1 Objectives e 3
3.2 ProposedScheme. 14
3.2.1 DataCollectionModule 15
3.2.2 Task SchedulingModule 6
3.3 Implementation. 17

3.4 Discussion

4 Performance Evaluation
4.1 Unnecessary Speculative Tasks

4.2 DynamiclLoading

4.3 Impact of Job Number
4.4 Total Tasks Number

5 Conclusion and Future Work

List of Figures

11
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4

3.5

4.1

4.2

4.3

4.4

Example of unnecessary speculativetask
Example of special hardwarerequest

HDFES architecture
Hadoop scheduling architecture
MapReduce WordCountexample
MapReduce WordCount example-withx=Combiner

Bad speculative task choice=x . .\ N . o . .
Another example of unnecessary speculative task

Scheduling scheme for heterogeneous workload

Load-Aware scheduler architecture <<, L
SNMP queryscheme oo
System loading versus Task execution time experiment
System loading versus Task execution time (a) node a@edoaded (b) node
areoverloaded
CPU frequency versus Task execution time experiment

Unnecessary speculative tasks avoided (a) total aredirmne (b) total execu-
tion time (c) number of speculativetasks
Dynamic loading detection (a) total execution time (bjnver of speculative

Impact of job number (a) total execution time (b) aver@g&tracker idle time

(c) number of speculativetasks
Impact of total task number L oL

Vi

25

Chapter 1

Introduction

Data are becoming larger and larger everyday and in eved; fl@bogle claims that in 2008,
they obtain 20 petabytes of raw data everyday[1], while Baok claims that they have pro-
cessed over 12 terabytes of compressed-raw data per dayi®]pfienomenon happened not
only in web applications. For example, NYSE(New, York StosicBEange) generates 1 terabyte
of data per day and LHC (Large Hadren Collider) in'Geneva peedl5 petabytes of data every
year[3]. These data are hugeyhard to bé stored, maintaned,processed. To address such
problems, Google proposed a‘pack of distributed.solutioduding Google File System][4]
which is a distributed file system that:scales-and autonibticandles failure, MapReduce[1]
which is a distributed programming framework that handkesial failure, recoverability, scal-
ability and monitoring and BigTable[5] which is a distriledtstorage for structured data.

MapReduce framework have been widely discussed since j6yhmiblished. Some re-
searches leverage MapReduce to obtain scalability andmpeathce enhancement for their
applications. [7] discusses machine learning algorithm®@apReduce framework. [8] im-
plements a co-clustering algorithm on MapReduce and poimt$shat data mining algorithms
need a good framework for large-scale data processing. r @tqeers like [9] and [10] see
MapReduce as a good framework for data warehouse or stoeasge Dhere are also researches
that implement MapReduce framework on special environmbéke GPU[11] or multi-core
chips[12].

MapReduce is currently the most popular framework for lesgale data processing. MapRe-
duce program adopts functional programming’s paradigmhatit can be paralleled easily.
Every MapReduce job has to implement two functions: map addaee, according to the exe-
cution flow described in [1]. Given some input data, the fravor will automatically partition

1

1 T -
1 s |
_ I
1 2, e .
- -
1
\ 4 Worker(1) Worker(2)
Time (min)

Figure 1.1: Example of unnecessary speculative task

the input data into several splits, and these splits are phecessed by different instances of
map function. Map function parses input data into key/vglaies, and for each pair, map func-
tion will output some or no intermediate key/value'pair@).intermediate key/value pairs will
be sorted so that values correspond to the same key will begafgd together and processed
by the same instance of reduce function. Each instance ateefiinction will iterate over its
value set, and output some or no key/value pair(s). Map iomatstances and reduce function
instances are assigned to worker nodes by a master. If arypetbrms badly or crashes, the
master will assign its current tasks to other worker nodéss fype of task is called "specula-
tive task”. It has been shown in [1] that using speculatigk tia able to reduce about 44% of
response time.

In a practical cluster, there are two aspects to be concertiddpReduce scheduling, "Job-
wise” and "Task-wise”. "Job-wise” scheduling decides whjab or which job’s task should be
scheduled next, whether multiple jobs is able to run at theesame and how many resources a
job or a groups of jobs can consume. "Job-wise” schedulimgessary when jobs should be
prioritized. Open source implementation Hadoop[13], wh&the most popular open source
implementation of MapReduce, provides a TaskSchedulerfade for cluster administers to
design their own schedulers. Facebook and Yahoo! bothibatdrtheir schedulers named

FairScheduler[14] and CapacityScheduler[15] and theildetall be given in Chapter 2. On
the other hand, "Task-wise” scheduling decides which tadiet ran and which worker node
should the task be ran at. How tasks are being scheduledredtlyg influence job’s finish time.
When some worker nodes perform poorly, speculative taskbedaunched to improve a job’s
response time. Previous study[16] has shown that Hadoepisgtic of speculative tasks do not
perform well in heterogeneous environment. As a resultatitbors in [16] proposed a LATE
scheduler to choose more suitable tasks to speculativelyuégd. The experimental result of
[16] shows that job response time can improve up to factor. of 2

However, we observe that a MapReduce job might launch mangagssary speculative
tasks in the last wave of tasks. Consider the example in Eiguk. We have a MapReduce
cluster with one master node and two worker nodes with @ffehardware. Worker one is 1.5
faster than worker two. A user submits two jobs, one with 4gand the other with 2 tasks.
Job one’s task will run 1 minute on worker one and 1.5 minutevorker two. We can see in
Figure 1.1, that at minute 2, we hayveireached.a point to dedmiher to launch a speculate
task for job one, or to launch an«Ordinary.taskiforjeb twosleasy to tell that not to speculate
the task is a better choice since/launching-a speculatikeddagob one will not make job one
finish earlier. Our resources for such speculative tasktalyovasted. Also, in this case, it is
obvious to see that we could improve Cluster utilization tlyexluling job two’s task to worker
one at minute 2. If we could avoid-unnecessary speculate tagk can finish more task in
the same time. Moreover, some applications might leverpgeial hardware for optimization.
For example, [17] points out that using CUDA GPU to do MRI mestouction is 263 times
faster than ordinary CPUs. We argue that MapReduce jobdadbewable to specify their own
job information, such as special hardware needed, spami@bating resources needed or rack
restriction and master should schedule tasks accordirgetimformation it provides in order to
gain better performance.

Default scheduler in Hadoop provides a FIFO queue for ustadoop MapReduce’s imple-
mentation of master is called JobTracker and worker noo&lisccTaskTracker. Jobs submitted
by users are queued on JobTracker. JobTracker will not stdedy map tasks for the next job
if all map tasks of the previous job are already scheduledranding. JobTracker will launch
a speculative task if an active task’s progress is a thredbethind the average task progress of
that job. Hadoop MapReduce also does not provide any Task&@iranformation to a job, an
user cannot specify which TaskTracker its task should batan

To summarize, we could improve the utilization of a MapRedalister by the following

3

Worker(1) Worker(2) Worker(3) | | Worker(4) Worker(5)

FIVIBA TIVIBUA.

SPU Computing S5 Computing

CUDA CUDA

Figure 1.2: Example of special hardware request

two ways:
e Avoid unnecessary speculative tasks and schedule othee gai’s task instead.

e Schedule tasks according to its job’s description, in oftdeassign tasks to suitable
worker nodes.

We propose an add-on component that can be merged into Map&&amework, and imple-
ment it on Hadoop MapReduce. The master in MapReduce frarkewealled JobTracker
in Hadoop MapReduce. The worker node in MapReduce frameigsaréilled TaskTracker in
Hadoop MapReduce. Map function instance in MapReduce frameis called mapper in
Hadoop MapReduce. Reduce function instance in MapRedaogefrork is called reducer in
Hadoop MapReduce. For further readability, aboves woresised interchangeably in follow-
ing chapters.

This thesis is organized as follows: Chapter 2 will introelsome preliminaries for MapRe-
duce Scheduling and related work. Chapter 3 gives a fornfatitien to our problem and
describes our proposed solution. Experimental resultgiass in Chapter 4. Finally gives a
conclusion in Chapter 5.

Chapter 2

Preliminary

2.1 Hadoop Architecture

Hadoop MapReduce is an open source-implementation of Mapfegatogramming framework
in the Apache Hadoop projects Hadoop MapReduce supporsstiibead input from many
sources like HDFS, databases:orordinary file systems. @énevapReduce job tents to read
its input from a distributed file-system“where MapReduce jcdns leverage data locality to
process vest data. HDFS is an Open-<sourceimplementati@f 8f and consists of one master
NameNode and some slave DataNodes:=When HDFS client neadsum a read or write
command, it first contacts the NameNode for meta informasioch as the block locations
of its request file and the DataNodes where those blocksaedidThe client then issues the
command to one DataNode holding the block, and transfetsitto& from the DataNode. Since
data blocks are transferred directly from DataNode, mdstaneNode will not be a network
bottleneck. HDFS has larger block size (64M by default) tbeadinary file systems. Since
the objective of HDFS is to read data sequentially from disging larger block size is able
to reduce seek time resulting from data fragmentation. HBfp8cates data blocks to several
DataNodes (3 by default), to use extra storage to trade fmvegability and data locality.
Figure 2.1 illustrates a simple architecture of how HDF8mdlicommunicates with NameNode
and DataNodes. Hadoop MapReduce consists of one JobTiau#aome slave TaskTrackers.
Users submit jobs to JobTracker, and every Hadoop MapRgdb@®ntains a compiled jar file
and a job configuration file. Job configuration can be spediyetbbConf API or Configuration
API in source code which the configuration file will be autoitelty generated. Users can also

Rack 1 Rack 2

DataNode DataNode DataNode DataNode DataNode

O O Q o 00

Block transfer

Metadata (Name, replicas, ...)
/tmp/data, 3, ...

o7 e [Nomeniode

Read /tmp/data

Figure 2.1: HDFS architecture

specify another XML file contains the configuration. JobKeaawill parse the input path given
in the configuration to several input splits based on thetibfack size and the number of map
tasks specified in job configuration.

At map stage, we call every map instance a mapper, at redage, ste call every reduce
instance a reducer. Every input split will be parsed by asctesned RecordReader into many
key/value pairs. Taking plain.textfile.for-example; eactle linill become a value, and its
corresponding key is the offset of the original file. “Mappesgesses all the key/value pairs
in its input splits and output some intermediate key/valaiesp These intermediate key/value
pairs will be sorted, then all pairs withtsame-key'will be gfed to the same reducer as in Figure
2.3. The Combiner class can be used to reduce network coroatiam if mappers tend to give
out keys that appears more than once and local aggregaédeasible. Figure 2.4 shows how
combiner can reduce the amount of data transfer on netwteklatal aggregation. Reducers
process input key/value pairs and output some or none Keg/yirs. Users can also specify
their own output format by overwriting RecordWriter clad3efault RecordWriter write one
key/value pair each line and key/value are tab-separated.

2.1.1 Hadoop MapReduce Scheduling

JobTracker is the core of Hadoop MapReduce scheduling. Traskers will periodically send
heartbeats to JobTracker. Heartbeat not only notifies thi&rdcker that this TaskTracker is still
alive, but also contains many important messages such asthiger of empty working slots for
mappers and for reducers that this TaskTracker has, or tuyggss of current active tasks this
TaskTracker is processing. When a heartbeat is receivbdrdcker will send back a heartbeat

JobTracker

[JobQueueTaskScheduler

A A V\
7 ’ Heartbéat/ Heartbe'atResponse \
¥ ¥ ¥ N
Worker Worker Worker Worker

MapReduce -
oFs D

2 1 s |

l \ 1 |

\ - ~ ~a _ /7 _ /

Figure 2.2: Hadoop scheduling architecture

Input file
| saw a|[saw saw|a saw Input splits
Worker Worker Worker
:1 saw:1 a:l saw: 1 saw: 1 a:l saw: 1l Intermediate value
Network
Worker Worker
- - Reduce phase
:1a:2 saw: 4 Result value

Figure 2.3: MapReduce WordCount example

Input file

| saw a|[saw saw|a saw Input splits

| | |

Worker Worker Worker

|

11 saw:1 a:l saw: 1 saw: 1 a:1l saw:1 Intermediate value

11 saw:1 a:1 saw: 2 a:1l saw:1 Local combiner

% Network

Worker Worker
- _ Reduce phase

l:1a:2 saw: 4 Result value

Figure 2.4: MapReduce WordCount example with Combiner

response. Hadoop MapReduce provides a/TaskScheduldaggdor administers to specify
how to assign tasks by overwriting_some ielasses*or methols.d&fault scheduler is called
JobQueueTaskScheduler. All submitted jobs-are in-a FIFQeaad JobQueueTaskScheduler
will later assign their tasks accordingly. Alltasks thavéfailed before will be scheduled first.
If there are tasks that reach thé.threshold of:0:2 below gegueogress, a speculative task will
be scheduled.

2.1.2 Fair Scheduler and Capacity Scheduler

FairScheduler is an implementation of Hadoop MapReduca&kScheduler interface con-
tributed by Facebook. FairScheduler categorizes jobspotus, and shares resources fairly
among these pools. By default, each user owns a pool whemehigb is submitted to Job-
Tracker. Administers can also redefine pools to aggregae ggoups of users’ jobs into the
same pool. Pools can be dynamically configured, and Faidsdéewill reload pool configura-
tion every 15 seconds. Every job is considered active whbmgted. Administers can specify
maximum running jobs per pool, and all jobs in the same pobliskiare the resources fairly.
Pools can also be defined with priorities, and every pool @ la weight value showing the
percentage of resources should FairScheduler be given ten@&er some resources are un-
used, excess resources are evenly split between pool&chaniuler provides three extensible
classes, WeightAdjuster, LoadManager and TaskSelecteighAdjuster is used to adjust the

JobTracker

T T -3- Hadoop: speculate
: |
1 a4 L

I 5 LATE: speculate

A :
1 . . .
1 5

v
Time (min) | TaskTracker(1) TaskTracker(2) TaskTracker(3)
3000MHz 1000MHz 1666MHz

Figure 2.5: Bad speculative task choice

weight of running jobs. Given some.-weight boostto new conjitgis proven to be effective

for cluster running a lot of small jobs[t8]. LoadManager $&d to dynamically determine how
many maps and reduces canxun on agiven TaskTracker. Task8abk used to determine if
some tasks can run on a specific TaskTracker:

CapacityScheduler is another implementation of HadoopRéajice’s TaskScheduler in-
terface contributed by Yahoo!. CapacityScheduler categsrobs into queues. All queues
must be predefined with a percentage as their share of thewdsburce capacity. All jobs in
the same queue are in a FIFO order, and only one job is actagyaime. Like FairScheduler,
free resources can be given to queues beyond its capaaitptove utilization. CapacitySched-
uler supports memory intensive jobs. A job can specify mgmequirements, and the tasks
of the job will only run on TaskTrackers that can meet the mgnrequirement of the job.
Memory based scheduling is currently only supported in kiplatform.

2.2 Related Work

2.2.1 LATE Scheduler

The importance of speculative execution in MapReduce fraorieis discussed and improved
in [16]. [16] points out that the original Hadoop heuristeward speculative execution be-

9

comes a disappointment in heterogeneous environmentaubDéfadoop scheduler assumes
that nodes are homogeneous and tasks tend to finish in waeesistit built on this assump-
tion will result in some bad choices in choosing which taskbé speculatively executed. We
use the following example to illustrate how the default stthler speculates the wrong task.
Suppose we have a MapReduce job with 5 tasks and a clusteBWikkTrackers. Each Task-
Tracker has different process rates: 3000MHz, 1000MHz &&bWHz as in Figure 2.5. At
first, task 1, 2 and 3 are assigned to 3 TaskTrackers and éstinmafinish in 1, 3 and 1.8 min-
utes. After one minute, TaskTracker one finishes its taskiaskl4 is assigned by JobTracker.
0.8 minute later, TaskTracker three finishes its task arkl3ds assigned by JobTracker. 0.2
minute later, TaskTracker one finishes its task, so it hasngotyeworking slot. Task 2 and
task 5 are both qualified to launch speculative tasks. It soois that launching a speculative
task for task 5 can help the job finish within 3 minutes whilenehing speculative task for task
2 will not help at all. In above case, default scheduler mggeculatively executed task 2 at
minute 2. [16] designed the LATE schédulér to avoid this sbgpeculation by the following
three principles:

e Giventask speculative priorities, LATE scheduler alwagyscilates the task of the longest
estimated time to finish.

e LATE scheduler only launches speculative tasks on fastsode
e Limit the number of concurrent speculative tasks to preteratshing.

LATE scheduler can significantly improve a single job’s @sge time. However, LATE did
not consider the fact that there might be some unnecessanulspive tasks. Consider the
example in Figure 2.6, TaskTracker one will not be helpfuthes speculating task 2 nor task 5.
LATE scheduler also did not consider the fact that node perémce might vary from time to
time. LATE scheduler uses a heuristic to evaluate node paeoce by the sum of its previous
working progress. This heuristic might misjudge some naeslow nodes if those nodes
happened to have some short, non-MapReduce, high-loadggoenning.

2.2.2 Heterogeneous Workloads

[19] tried to improve hardware utilization by distinguishi different kinds of workloads of
MapReduce jobs. When CPU-bound and I/O-bound jobs run iallpgrboth CPU and 1/0

10

JobTracker

1. (2, (3] (4 (s,

1 i. _ 2 b34
T —
1 1 5
A !
1 . . -
a - .
1
v
Time (min) | TaskTracker(1) TaskTracker(2) TaskTracker(3)
3000MHz 1000MHz 1980MHz

Figure 2.6: Another example of unnecessary speculatike tas

devices can contribute to the jobs. [19] proposed an MRiBratechanism to predict whether
a job is CPU-bound or I/0-bound.“Figure 2.7 shows the archite of [19]. [19] designed
a triple-queue scheduler that maintains three:queues:quaiie, CPU-bound queue and 1/O-
bound queue. When a new job being submitted; the scheduléngijob into the wait queue.
For jobs in the wait queue, the scheduler will schedule oniesdask. After the task finishes,
the MR-Predict mechanism will predict whether the job is GBadind or 1/0O-bound based on
its running status. For jobs predict as CPU-bound, it wilpbeinto the CPU-bound queue. For
jobs predict as 1/0-bound, it will be put into the I/O-boungege. Both CPU-bound queue and
I/0-bound queue are FCFS. Jobs in CPU-bound queue and U@dbgueues run parallelly,
thus improving hardware utilization.

11

JobTracker
CPU-bound Queue

1/0-bound Queue

Wait Queue

-

Figure 2.7: Scheduling scheme for heterogeneous workload

12

Chapter 3

Load-Aware Scheduler

This chapter describes our optimization target and clusteironment. Our goal is to improve
the overall utilization of a MapReduce cluster. Default Bag MapReduce scheduler and [16]
do not take multiple job scheduling, and-dynamic clusterustaito account. Our computing
environment is heterogeneous. Every computing.node candifierent computing capability.

Every computing node can ruil MapReduce.and other serviomdtaneously. Our proposed
scheduler will try to improve utilization by-distributingsks according to the working nodes’

status at any given time.

3.1 Objectives

We further list three objectives of our scheduler:

e For tasks whom might be considered to be speculatively égdcievaluate whether
launching this speculative task will shorten its job finighd. If the original task will
finish before the speculative task or other ongoing tasksisfjpb will not finish after
this speculative task. We should not speculatively exeth@éask and leave the available
resources to other active jobs.

e Choose fast nodes to speculate tasks. We should acquiremhamaation about a Task-
Tracker when we judge how this node will perform. There migétother processes on
the same node compete for the resources with MapReduce tagkgmportant to have
an interface to fetch the information on a given TaskTrackéith that information, we

13

can further tell if this TaskTracker could outperform ifsg a given past time or if it
could outperform another TaskTracker.

¢ Information from MapReduce jobs is as important as inforamabout a TaskTracker.
Users may list the requirements that will benefit the job, doldTracker should try to
meet these requirements in order to make the job run smoother

3.2 Proposed Scheme

To achieve the above objectives, we propose our Load-Aweredsiler. It consists of two
components: Data collection module and task schedulinguteodOur scheduler follows the
following two guidelines:

e When a TaskTracker has an empty working slot, assign a tastetdaskTracker only
when assigning this task could makeits job finish earlier.

e For any active job, only TaskTrackers that@are not overldaated can fulfill the job’s
requirements (if any) cansbe.assigned. the jobtask to.

Our scheduling idea works simply as-fellow:*For/running j@vel tasks, our scheduler will
use the information collected by-data collection.moduleampute their estimated finish time.
When a TaskTracker is available and asksifor tasks, our stdreiterates over the active job
list. For each job, we applied the following steps:

e Step 1: Check if the TaskTracker can fulfill the requiremdisted in job’s configuration.

If the TaskTracker cannot, continue to next job.

e Step 2: Check if there are tasks of the job need to be schediniedding fail tasks,
non-running tasks and tasks need to speculate). If themis, icontinue to next job.

e Step 3: Estimate the task running time on the TaskTrackeglct schedule this task can
shorten the job’s finish time. If it cannot, continue to neti.

e Step 4: Assign a task of current job to the TaskTracker.

Figure 3.1 shows our proposed architecture. We implementvo modules on JobTracker.
Data collection module communicates with TaskTrackers @nodides information for task

scheduling module. Task scheduling module makes schepddioisions based on information
from JobTracker and data collection module.

14

JobTracker

Job

Job

3 3

Job

\ETe]

Job

mScheduler

L Dat

L‘ ollg
aCollection 1

Module

Feed attributes

.] ~ o

VVV

TaskScheduling

Module

)

\
\ Make scheduling decision /

TaskTracker

TaskTracker

TaskTracker

Figure 3.1: Load-Aware scheduler architecture

3.2.1 Data Collection Module

Data collection module provides'an.nterface fordobTratkgather necessary information of
TaskTracker for later scheduling decisions."We need inébion about a TaskTracker to see if
it can meet the requirements of a job. We also need informatimut TaskTrackers to evaluate
the running time of a task. Any attribute that might affeat frerformance of a TaskTracker
can be put into the collection list on data collection modu@#U frequency, system loading,
I/O rate and memory usage are some general attributes tght be selected as our evaluation
metrics. Other than that, CPU core number, special hardimézemation and network usage
can be useful from time to time. Other miscellaneous infdaimmasuch as task progress, task
status, task starting time and task finishing time are alsdee to be collected by the module.
Data collection module mainly works on JobTracker, and dali@ction should run periodically
to collect information about all TaskTrackers. Further iempentation details will be given in

Section 3.3.

15

3.2.2 Task Scheduling Module

While data collection module gathers information, taskesithing module maintains informa-
tion and makes scheduling decisions when empty working sl available. There are two
stages in task scheduling module: information maintenatege and task assignment stage.
Information maintenance stage is responsible for the esitom of running task execution time.
We need to give an estimation of running tasks in order toredg the finish time of the whole
job. With the estimation, we can further decide whether dahieg another task could not be
a waste. Finished tasks and running tasks can be an impogtan¢nce for future estimation.
We need to keep track of the dynamic attributes to make mangrate estimation. Taking sys-
tem loading for example, system loading could be an impoftator to the performance of a
TaskTracker and it changes dynamically. TaskTracker npghtorms differently when other
processes on the same node compete for its resources. Sgatting can help us distinguish
the status of a TaskTracker.

Algorithm 1 : Information maintenance stage
Input:

M : JobTracker of MapReduce cluster

Q: active job queue on JobTracker

Periodically:

1: for each job j,j in QonM do

2: for each task t in j on TaskTrackew do
Update progress far

Calculate estimated finish time for

end for

3
4
4: Update and record dynamic attributes status fmrW.
5
6 Calculate estimated finish time for

7

: end for

Whenever an empty working slot is available on a TaskTradkdyTracker will iterate over
active jobs. For each job, JobTracker needs to evaluateatikeeixecution time on the Task-
Tracker if the TaskTracker meets the jobs’ requirements.sWiild iterate over all attributes
that affect the performance of a TaskTracker, and adjudinisi time according to the differ-
ence between past and current situations. Note that to esegMapReduce job is to complete
a series of tasks of that job. When a job is about to finish, soinits tasks must have finished
before. So there are always some task finish time referewcaessf In order to make adjust-

16

ments for each attribute, some adjustment functions ardetkeéVe use CPU-intensive jobs as
our experiment applications. In Section 4, we will demaaisthow to estimate task finish time
by observing system loading and CPU frequency.

Algorithm 2 : Task assignment stage
Input:

M : JobTracker of MapReduce cluster

Q: active job queue on JobTracker

R: requirements list of a job

L : list of attributes

Whenever a TaskTrackerN have an empty working slot:
1: Task assignTask(TaskTrackat) do

2: for each job j,j in Q do

3: for each requirementr,in Rdo

4: if (N cannot meet) then

5: Next job.

6: end if

7 end for

8: for each attributes & in L do

9: Estimate task execute tinfeon N overa.
10: end for

11: if (T > estimate finish time of)then
12: Next job.

13: else

14: Assign task of to N.

15: end if

16: end for

17: end assignTask

3.3 Implementation

We choose Hadoop MapReduce as our implementation platféormake our scheduler more
flexible and extensible, we merge our two modules into Faie8aler, which is pluggable from
Hadoop.

We modified FairScheduler to achieve above objectives. Cheduler still retains the fair-
ness characteristic of FairScheduler since we only avorteoessary speculative tasks. We
schedule tasks based on the configuration of the job itself.

17

SNMP Client

Query for Resut of
iso.org.dod.internet. ... iso.ofg.dod.internet. ...

SNMP Server

Figure 3.2: SNMP query scheme

For data collection module, we need an information exchapgeoach between JobTracker
and TaskTracker. We can design our own protocol to exchamfgemation. This approach
might lead the scheduler to inflexible and hard to implemélraking an attribute we might
want to collect for example. We want to obtain system loadinga TaskTracker. Different
operating systems might need different system calls oedifft programs to obtain. For each
operating system we want to support, we will need a set ofcddaling with local data extrac-
tion in TaskTracker. Not only did we need the effort to writéra codes, if there are any new
platforms we want to support, we have to re-compile the sonodes and restart the service.
To avoid these disadvantages, we choose SNMP[20] as ourcdégation protocol. SNMP
(Simple Network Management Protocol) is a protocol desigioe network management and
network monitoring. SNMP defines a structure of managem#otmation and the manage-
ment information base[21]. Figure 3.2 shows an example dfislB query flow. We choose
Net-SNMP[22] as our SNMP server on TaskTracker. Net-SNMBriginally developed by
University of California, Davis and is now an open-sourcej@ct. Data collection module
in JobTracker will send SNMP query to TaskTracker peridéiicaThere is much informa-
tion already defined in management information base (MIBkiAg previous system loading
for example, query iso.org.dod.internet.private.enteepucdavis.laTable.laEntry.laLoad (MIB
number 1.3.6.1.4.1.2021.10.1.3) can obtain the systedirigaof a TaskTracker when using
Net-SNMP. Net-SNMP defines a extTable (MIB number 1.3.6112921.8) for administrators
to specify self-defined commands. Given a program, Net-SNMIRun the program and re-

18

x 10

1.5}

0.5}

Task Execution Time (second)
(BN

0 5 10 15 20
System Load

Figure 3.3: System loading versus Task execution time @xjeeit

turn its output as the result of an MIB entry. We leverage #ti&able to construct our structure
to do jobs’ requirement checking. MapReduce jobs can seeaaflag expressing that they
need some checking for TaskTracker. ©nly:if all the resdl&IMP query fit the job’s require-
ments will the JobTracker assigh tasks to the TaskTrackeadtd a new checking attribute for
MapReduce jobs, we applied following three.steps:

e Add the corresponding program.en-Faskiracker.
e Restart the SNMP daemon on FaskFracker.
¢ Notify users the MIB number of the attribute.

We do not have to restart our MapReduce service thus no gobgeand users are influence
by this process.

For task scheduling module, we leave the speculation tbtésimchanged and focus on
avoiding unnecessary speculative tasks. Our work needstamation approach toward task
execution time. Our target application is CPU-intensive. aalyze two attributes that we think
have the most effect on task execution time: system loadidg#U frequency. System loading
gives a global view of CPU usage about a TaskTracker. Higtihgameans fewer resources can
be obtained by one process. We need an estimation functigitres task estimated execution
time based on previous task executing experience. Giveeruoading and previous loading
plus running time, we can predict how long the task might stapn this TaskTracker. We
perform an experiment to observe the relation between hggaaind task execution time. The

19

—~~ 5] 6

© X 10 ° x 10

5 2 5 2

(8} (8}

(] (]

N2 X2

(] () L

E 15 e

~ =

c c

= S 1

S o}

g 1 o)

x x

Y Yos;

8 R 3 ‘ ‘

= 0 2 4 6 8 [10 15 20
System Load System Load

(a) (b)
Figure 3.4: System loading versus Task execution time (d¢ moe not overloaded (b) node are
overloaded

results are shown in Figure 3.3. Multi-core computers ararnon nowadays. We found that
the growing curve differs when system loading grows largantsystem core number.

Our experiment node has 8 coresWe cansée in Figure 3.3 lilegit xvaxis reached beyond
8, the curve grows exponentially."When system laading Iaven 8, the curve linearly grows.
We split the experimental result in‘half, and analyze thenglea before and after system loading
reaches core number in Figuré-3.3.

Base on the experiment, we have two estimation functiongsiém loading:

e Time = 17700« (Load’ — Load) « Time'when node are not overloaded.

o Time = Timex g®12+(Load’-Load) \yhen node are overloaded.

We use the same technique for CPU frequency. We perform agriexgnt to observe the
relation between CPU frequency and task execution time.r@sgts are shown in Figure 3.5.
Base on the experiment, we have an estimation function of f£&juiency:

e Time =TimexFreq /Freq
When task scheduling module needs an estimation of somgftdiekving steps are taken:

e Select an executed task of the same job.

e Estimate the finish time based on system loading adjustnueiction if selected task is
processed by the same TaskTracker.

e Estimate the finish time based on CPU Frequency and systafim{padjustment func-
tions if selected task is not processed by the same Taskdirack

20

x 10

2.5}

1.5}

Task Execution Time (second)

500 1000 1500 2000 2500
CPU Frequency (MHz)

Figure 3.5: CPU frequency versus Task execution time exysari
3.4 Discussion

While Hadoop MapReduce was desighed-to‘use on large-saateglits elegant framework
design has made many small arganizationsipush’their apiphsaon top of it. Smaller scale
clusters are common in campusgto-suppori-courses and ressar€ompanies that are not
web-based can also store and-analyze-data on top-of HadooRedape. Heartbeat plays an
important role on the architecture\of Hadoop-MapReduceTaalker and TaskTracker mainly
communicate over heartbeats and/iiS:responses. JobTnaekds to process heartbeats and
gives proper responses. To avoid overwhelming the Job&rackrrent Hadoop MapReduce
has a 3 seconds lower-bound for heartbeat interval. Hesrtheerval grows linearly when
cluster size increases. In our experience, a 3 seconds-tmyerd for heartbeat interval seems
quite much for small cluster. Jobs submitted in cluster oabe scheduled until next heartbeat
was sent by a TaskTracker who has available working slotsallJobs that take less than
1 minute might waste over 10% of time waiting for heartbedibere are some discussions
about dynamic adjustment of heartbeat interval on HadogpRéauce. Issue number 5784[23]
discusses about configurable heartbeat interval. [24]dewe minimum heartbeat threshold
on small cluster. The experiment of [24] receives quite arsitug performance burst of 100%
on a small cluster.

Heartbeat between JobTracker and TaskTracker carries miacmation around. If the in-
formation that data collection module needed can be padubdartbeat, it will be undoubtfully
be an enhancement of performance. There are issues [283hg@G]iscussed about padding ex-

21

tra information on heartbeats. In the future, our data ctib@ module can leverage the extra
information already carried by heartbeat.

22

Chapter 4

Performance Evaluation

In this chapter, we evaluate our scheduler in a real-worldrenment. We create some sce-
narios including multiple jobs and dynamic loading. We exta local sudoku game solver to
a MapReduce version that solves multiple sudoku games aestapplication. Input sudoku
games are randomly generatedin-advanceddby our soduku garmaeagpr.

Our testbed is a local cluster with-8 nodes.*Each node has fh K& with 4 cores sup-
porting Hyper-Threading, 12GB of RAM“and a 500GB SATA drivdl nodes are connected
on a gigabit Ethernet channel. "Solving 9000-games on onerahaahines locally takes about
500 seconds. Solving 9000 games on-8.nodesUsing Hadoop Map&takes only 80 seconds,
each mapper takes about 60 seconds.

Our experiment scenario consists of a set of jobs and thesstdieach TaskTracker. Status
of a TaskTracker might vary from time to time in order to olveghe effect of dynamic loading.
Two performance metrics are used in our experimental rethdttotal execution time of a set
of jobs and the number of speculative tasks these jobs la&ahch

In the following sections, we refer our scheduler as LA, sicher of [16] as LATE and
default Hadoop MapReduce scheduler in version 0.20.2 asildef

4.1 Unnecessary Speculative Tasks

Speculative tasks always launch at the last wave of taskspdculatively execute a task means
a part of the resources of this cluster is unable serve otfst We want to observe the effect
of unnecessary speculative tasks hogging resources, waige performance degradation.

23

We create heterogeneous environments by two ways: incsgasem loading and adjust
CPU frequency on TaskTracker.

We increase system loading by running several other CPWxbpuocesses on one of our
TaskTrackers. TaskTracker’s loading will remain 6 whencpssing new coming tasks. We
submit two jobs into our cluster. Each job takes 9000 sudaues as their input. When the
first job is close to finish, some speculative tasks might n@dhed when LATE or default
Hadoop scheduler are applied. Figure 4.1 (a) shows thee¢glution time of this experiment.
LA outperforms the other schedulers 25% on average.

With the same job setting, we adjust one of our TaskTrack&#?Y Frequency from 2268MHz
to 1416MHz but without the extra loading. Figure 4.1 (b) shake total execution time of this
experiment. LA outperforms the other schedulers 20% oreaner

Without checking whether the speculative tasks are neggstaskTrackers waste their
CPU time on speculative tasks that never finish before aldasks. LATE scheduler chooses
the better task to speculatively executed.' Speculatiestase prioritized but the number of
speculative tasks is not decreased:” All tasksdthat meehthshold of speculation are specula-
tively executed if there are engugh free resources.ZL A evafuwhich speculative task might
finish after the original task and not to launch these-taskgure 4.1 (c) shows the number of
speculative tasks launched for-each scheduler in‘this empet. LA launches less speculative
tasks and re-schedules these resourges to.the second job.

4.2 Dynamic Loading

Dynamic loading is common when the same group of hardware murtiple services. Equal
hardware capability does not mean equal performance. Onkingcan be busy at this minute,
but load-free at the next minute. We use system loading aereree of current TaskTracker’s
status. By keeping track of the system loading of TaskTnackee can estimate whether the
same task will run faster or slower. We create a dynamic laadcenario as follow. We submit
4 jobs into our cluster. The first job processes 30000 sudakueg. The second job processes
20000 sudoku games. The third job processes 10000 sudokesgahme last job processes
10000 sudoku games. 4 out of 8 TaskTrackers are swamped éymticesses with loading 4
at the beginning. 2 out of 4 TaskTrackers are given extralodoading 8 after three minutes;
the other 2 TaskTrackers are freed from loading.

24

S 350
[

S Il Default
o 300] BLATE ||
W, 250t [JLA
)
£ 200
F 150}
c
2 100}
o ol
S 50
Qg o

Average Best Worst

(a)

© 350 ‘ ‘ :
S Il Default
o 300/ BELATE |
W 250t [ILA
)
g 200
F 150
c
2 100
o
3 50
X
L

Average Best Worst

(b)

4 ‘
Il Default
B LATE
3 [LA

[ERN

Number of Speculative Tasks
N

o

Scheduling Scheme

(©)

Figure 4.1: Unnecessary speculative tasks avoided (d)ex¢aution time (b) total execution
time (c) number of speculative tasks
25

T 1200 ‘
g Il Default
S 1000y B LATE
o LA
GE) 800}
= 600
S 400
o 200f
()
n
Average Best Worst
()
gl Bl Default||
B LATE
[JLA

Number of Speculative Tasks

Scheduling Scheme

(b)

Figure 4.2: Dynamic loading detection (a) total executioret(b) number of speculative tasks

26

Default Hadoop scheduler pays no attention to a node’ssstdtan active task performs
badly, a speculative task will be launched. LATE schedwdeords the history of how the node
performed, and launches speculative tasks only on nodefwkrforms better in the past. 2 out
of 4 TaskTrackers are load-free after three minutes, antbeacheduled some speculative task
to help finish second or third job faster. LATE will still sdeese nodes as bad performer. LATE
stops scheduling any speculative tasks on these nodes. pAffBrms better than original
Hadoop scheduler since it has a SpeculativeCap. Maximuoukia/e tasks can be launched
at the same time are limited by this parameter. In our expartmve set SpeculativeCap to
2. Because of SpeculativeCap, LATE avoids some unnecespacylative tasks. LA detects
system loading on TaskTrackers. When TaskTrackers askasist LA fetches its current
loading and estimates task finish time. If the speculatigk tan shorten the finish time of the
job, LA will schedule it. Figure 4.2 (a) shows the total extéon time of this dynamic loading
scenario. We can see that LA can improve up to 15% of exectititm Figure 4.2 (b) shows
that we avoid launching 90% of spegculative'tasks.

4.3 Impact of Job Number

[1] and [16] shown that launching.speculative-tasks can awpiob response time. LA stops
speculatively execute some tasks‘at-seme-point. We needote #trat tasks that need to be
speculatively executed are launched so that job’s respgansas not hurt. We are also curious
about whether our scheduler could achieve same improvewiseh user submit more jobs.
We vary the number of jobs submitted into our cluster. Eabhtgées 9000 sudoku games. We
increase system loading of one of our TaskTracker to 6. Thelteeare shown in Figure 4.3.
We can see that when there is only one job, LA performs justdiéfault scheduler and LATE.
Figure 4.3 (c) shows that we avoid more speculative tasks\whenber of jobs increase. Figure
4.3 (a) shows that while number of jobs increase, the diffezeof total execution time between
LA and other two schedulers are almost the same. Meaninghbamprovement percentage
become lower when number of jobs increase. Total executiomaf a set of MapReduce jobs
is determined by the last finish task of last job. If we are juekough that the working slots
for the unnecessary speculative tasks we avoided are fillddiaish some other active jobs,
we could have more improvement on total execution time. @mother hand, LA could seem
no improvement on total execution time like the case whegeetis only one MapReduce job.

27

2 500 ‘
S -e-Default
2 400/ =-LATE
g ——-LA
i= 300
c
(@]
‘= 2001
>
(&)
%
100
g
o O ‘ ‘
= 1 2 3 4
Number of job instances
(a)
2 100 ‘
9 -©-Default
()
£ 80f -8-LATE
o —-LA
£ 60
= I]
o)/9/9\0
s 4
5 4% ,
X
(&]
S 20; 5
|_
X7
2 | |
| 2 3 4

Number of job instances

(b)

10 ‘
-o-Default
gl —=-LATE |
——-LA O

Number of speculative tasks

Number of job instances

(©)

Figure 4.3: Impact of job number (a) total execution timedgrage tasktracker idle time (c)
number of speculative tasks 28

400 :
—-©-Default

350¢ = LATE
——-LA

W
o
o

2007

Total Execution Time (second)
o
o

1 1.5 2 2.5 3
Number of job instances

Figure 4.4: Impact of total task number

By avoiding unnecessary speculative tasks; TaskTracleamnbes idle and ready to serve other
tasks. We observe the idle time«0f‘our TaskTrackers in theesaxperiment. The results are

shown in Figure 4.3 (b). We can see-that the difference betwpeculative tasks launched is

directly related to the difference between-TaskTrackes fothe. The more unnecessary spec-
ulative tasks we avoid, the more timesTaskilrackers idleshdfe are other tasks we could

schedule while TaskTrackers idles;the overalldtihzatiecomes higher.

4.4 Total Tasks Number

Speculative tasks only launched at last wave. There aredesss for us to improve if the job is
disassembled into more tasks. LA can still estimate tas&tfitime and avoid some unnecessary
speculative tasks. Since non-running tasks will be sclesfitgk, time consumed by speculative
tasks take less portion of total execution time. We analhie éffect by adjusting the ratio
of total task number over the number of TaskTrackers. If tinalmer of tasks becomes larger,
the ratio becomes bigger and there are more waves of taskse tfumber of tasks becomes
smaller, the ratio becomes smaller and there are fewer vadivasks. We use the same scenario
as 4.1, and we change the mapper number to observe the effest &xperimental results are
shown in Figure 4.4. Though we did successfully avoid soneegative tasks, we do not have
that much of improvement when ratio of total task number dkernumber of TaskTrackers
becomes larger. Reasons are explained above.

29

Chapter 5

Conclusion and Future Work

MapReduce programming framework provides a new way forjarogners dealing with large
datasets. Programmers who use MapReduce framework nedd natrry about the detalil
of task distribution, scalability and fault tolerance. NRgmluce framework handles all those
details in order to make programmers foeus.on their higktlalgorithm. Current MapReduce
framework have not yet forms-a perfect.scheduler.- New featand flaws are presented by
researchers and developers. We have discovered some flautshalw MapReduce framework
schedules tasks. We propose a.scheduling scheme' for Map&exumprove the utilization by
avoiding unnecessary speculativeitasks. Our-scheduldoeaasily merged into MapReduce
framework and we implement it on Hadoop MapReduce. By sdireglon jobs demand and
avoiding unnecessary speculative tasks, we can improugilimation up to 25%.

Good estimation of a computing task is an important factaoup scheduler. Estimation
of different attributes can be discussed and studied in uh&rd. Hadoop MapReduce uses
heartbeats as the task assigning/reporting mechanismt j8he that take only few minutes
can lose large fraction of time waiting for heartbeats. Dyitaheartbeat interval adjustment
can also be another worthy topic to study, further improthegperformance of MapReduce.

30

Bibliography

[1]

J. Dean, S. Ghemawat, and G. Inc, “Mapreduce: Simplifege gprocessing on large clus-
ters,” Communications of the ACM, vol. 51, no. 1, 2008.

[2] A. Thusoo and N. Jain, “Facebook’s petabyte scale datarelwase us-

[3]

[4]

[5]

ing hive and hadoop.” [Online]. Available: http://www.d.com/presentations/
Facebook-Hive-Hadoop

R. Varela, “Slide of introduetion to_data ‘processingrngsihadoop and pig.” [Online].
Available: http://www.slideshare.net/phobeo/introtioic-to-data-processing-using-%
hadoop-and-pig

S. Ghemawat, H. Gobioff,"and"S.-T."Letung;“The google $ystem,” inProceedings of
the 19th ACM Symposium on Operating-Systems Principles, 2003.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Walla¢hBurrows, T. Chan-
dra, A. Fikes, and R. E. Gruber, “Bigtable: A distributedratge system for structured
data,” in Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, 2006.

[6] J. Dean, S. Ghemawat, and G. Inc, “Mapreduce: simplifetd ¢processing on large clus-

[7]

ters,” in Proceedings of the 6th Conference on Symposium on Opearting Systems Design
and Implementation, 2004.

C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski, A. Y. Ngnd K. Olukotun, “Map-
reduce for machine learning on multicore,”Pnoceedings of the 20th Annual Conference
on Neural Information Processing Systems, 2006.

31

[8]

S. Papadimitriou and J. Sun, “Disco: Distributed cost&ring with map-reduce: A case
study towards petabyte-scale end-to-end miningPrioceedings of the 8th |EEE Interna-
tional Conference on Data Mining, 2009.

[9] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silbarsatz, and A. Rasin,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

“Hadoopdb: An architectural hybrid of mapreduce and dbnehrielogies for analyti-
cal workloads,” inProceedings of the 35th International Conference on Veery Large Data
Bases, 2009.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S$hafyt H. Liu, P. Wyckoff, and
R. Murth, “Hive - a warehousing solution over a map-redueenework,” 2009.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, ‘i#laa mapreduce framework
on graphics processors,” Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, 2008.

C. Ranger, R. Raghuraman;”A. Penmetsa,;»G. Bradski, ango@yrakis, “Evaluating
mapreduce for multi-corezand multiprocessor-systemsPrioceedings of the 13th In-
ternational Symposium on High Performance Computer Architecture, 2007.

“Apache hadoop project.” [Online]. Availablei httfhadoop.apache.org

“Hadoop fairscheduler.” [Online]. Available: httfhadoop.apache.org/common/docs/
current/fairscheduler.html

“Hadoop capacityscheduler.” [Online]. Available: tprt/hadoop.apache.org/common/
docs/current/capacitgcheduler.html

M. Zaharia, A. Konwinski, A. D. Joseph, Y. Katz, and .o, “Improving mapreduce
performance in heterogeneous environmentsPrioceedings of the 8th USENIX Sympo-
sium on Operating Systems Design and Implementation, 2008.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Sdala Parallel Programming with
CUDA,” ACM Queueg, vol. 6, no. 2, 2008.

Z. Dadan, W. Xieqin, and J. Ningkang, “Distributed sdbkng extension on hadoop,” in
Proceedings of the 1st IEEE International Conference on Cloud Computing, 2009.

32

[19] Y. H. C. Tian, H. Zhou and L. Zha, “A dynamic mapreduce exthler for heterogeneous
workloads,” inProceedings of the 8th International Conference on Grid and Cooperative
Computing, 20009.

[20] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simlketwork Management Protocol
(SNMP),” RFC 1157, Internet Engineering Task Force, May@9®nline]. Available:
http://www.ietf.org/rfc/rfc1157.txt

[21] K. McCloghrie and M. Rose, “Management Information Bdsr network management
of TCP/IP-based internets,” RFC 1156, Internet Engingefiask Force, May 1990.
[Online]. Available: http://www.ietf.org/rfc/rfc1156xt

[22] “Net-SNMP Project.” [Online]. Available: http://nesnmp.sourceforge.net/

[23] “Hadoop project issue number 5784.” [Online]. Availabhttps://issues.apache.org/jira/
browse/HADOOP-5784

[24] “Improve performance on-smal-hadoop clusters.” [@a]i Available: http://pero.blogs.
aprilmayjune.org/2009/11/30/improve-performancesonioall-hadoop-clusters/

[25] “Hadoop map/reduce isstde \number 961." [Online]. Aablé: https://issues.apache.org/
jira/browse/MAPREDUCE-961

[26] “Hadoop map/reduce issue number 220.” [Online]. Asllé: https://issues.apache.org/
jira/browse/MAPREDUCE-220

33

