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Abstract

We proposed a multiresolutional brain extraction framework which utilize graph cuts

technique to classify head magnetic resonance (MR) images into brain and non-brain re-

gions. Our goal is to achieve both high sensitivity and specificity results of brain extrac-

tion. Started with an extracted brain with high sensitivity and low specificity, we refine

the segmentation results by trimming non-brain regions in a coarse-to-fine manner. The

extracted brain at the coarser level will be propagated to the finer level to estimate fore-

ground/background seeds as constraints. The short-cut problem of graph cuts is reduced

by the proposed pre-determined foreground from the coarser level. In order to consider

the impact of the intensity inhomogeneities, we estimated the intensity distribution locally

by partitioning volume images of each resolution into different numbers of smaller cubes.

The graph cuts method is individually applied for each cube. The proposed method was

compared to four existing methods, Brain Surface Extractor, Brain Extraction Tool, Hybrid

Watershed algorithm, and ISTRIP, by using four data sets, the first and the second IBSR

data set of the Internet Brain Segmentation Repository, BrainWeb phantom images from the

Montreal Neurological Institute, and healthy subjects collected by Taipei Veterans General

Hospital. The performance evaluation for brain extraction, our method outperforms others

for the first/second IBSR data set and BrainWeb phantom data set, and performs compara-

bly with the BET and ISTRIP methods when using the VGHTPE data set.
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Chapter 1

Introduction



2 Introduction

1.1 Brain extraction

Human brain majorly contains three tissues: white matter (WM), gray matter (GM), and

cerebral spinal fluid (CSF), as shown in Figure 1.1. In central nervous system, GM con-

sists of neuronal cell bodies and is responsible for achieving sensory, motor or information

processing. WM consists of myelinated axons and is responsible for delivering message

between different brain regions of GM. The function of CSF, which is a transparent bodily

fluid inside the brain and ventricle, is to protect the brain.

Accurate brain extraction is important to voxel-based morphology (VBM) [1] and neu-

roimaging studies. VBM of magnetic resonance (MR) image is a powerful and non-

invasive method to investigate human brain in vivo, it compares the concentration of GM or

WM regionally in cross-sectional (the same time between groups) or longitudinal (the same

group at different times) manner to describe ageing [2] or diseases, such as schizophrenia,

bipolar disorder, and Alzheimer’s [3] [4]. The VBM procedure can be separated into fol-

lowing steps: brain extraction, intensity inhomogeneity correction, tissue segmentation,

registration, and voxel based analysis. Brain extraction is the work of excluding non-brain

tissues such as skull, muscle, and fat, as shown in Figure 1.2. Accurate brain extraction

can improve the above procedures. Intensity inhomogeneity correction is to correct the

intensity variation due to magnetic inhomogeneity. Theoretically, the intensity of the same

tissue in brain should be similar. However, the same tissue may brighten or darken at dif-

ferent parts because of magnetic inhomogeneity, as shown in Figure 1.3, and may affect

intensity based method in the following sequence. Tissue segmentation is to separate WM,

GM and CSF. Registration is to warp each subject into the same stereotactic space. In

this way, VBM can analysis the difference of specific tissue between inter-subjects in the

same space. The accuracy of above processes is important to neuroimaging studies, such

as cortical thickness analysis [5]. Intensity inhomogeneity correction, tissue segmentation,

registration, and voxel based analysis are all benefit from brain extraction.
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Figure 1.1: Anatomical image from left to right are original image, GM, WM and CSF.

Figure 1.2: An example of brain extraction.

Figure 1.3: The demonstration of intensity inhomogeneity. Intensity of GM and WM in

red window is dark than other parts.
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1.1.1 Related works of brain extraction

Many methods have been proposed to solve the brain extraction problem. These meth-

ods can be classified into four classifications: intensity-based approaches, edge-based ap-

proaches, deformable approaches, and hybrid approaches.

Intensity-based approaches

Intensity-based approaches use the threshold of brain/non-brain to achieve brain extrac-

tion. This method is sensitive to noise or intensity inhomogeneity.

Watershed (WAT) assumes that brain anatomy is the connectivity of WM and WM

is rounded by GM and CSF. This method describes the high intensities as hill and the

low intensities as valley, as shown in left of Figure 1.4. If a valley between two regions

then they are separated. But watershed may results in over-segmentation caused by noise

that separate brain into too many regions. To solve over-segmentation, it’s necessary to

merge those regions that belong to the same structure by postprocess [7]. Pre-flooded WAT

[7] proposed a pre-flooding approach to tackle the problem of over-segmentation. They

inverted the original data, as shown in Figure 1.5, and merged basin with height less than

certain intensity value, Figure 1.6 show the pre-flooding manner. The result is shown in the

right of Figure1.4. The disadvantage of this method is that sometimes the results contain

some eye skull or exclude parts of the cerebellum.
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Figure 1.4: Illustration of watershed. The gray value is transferred to height information.

Left: the original image. Right: the skull stripped with pre-flooding manner. (The figure is

cited from [7].)

Figure 1.5: Illustration of pre-flooded watershed. The gray level of Figure 1.4 is inverted.

Hills in the Figure 1.4 are now represented by basins. Left: axial view. Right: sagittal view.

(The figure is cited from [7].)
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Figure 1.6: Illustration of pre-flooding. A basin is merged into a deeper basin, if and only

if its depth relative to the current voxel intensity is less than or equal to the preflooding

height. (The figure is cited from [9].)

Edge-based approaches

Edge-based approaches use gradient to locate the boundary between brain/non-brain,

but may cause some errors in temporal since there are strong gradient to separate temporal

and cerebellum, Figure 1.7 show the location of temporal and cerebellum).

Brain Surface Extractor (BSE) [8] uses anisotropic diffusion filtering to smooth noise,

Marr-Hildreth edge detector to produce closed contours, and refines the result by mathe-

matical morphology. The steps of BSE shown in Figure 1.8.

Deformable approaches

Deformable approaches is a method of brain extraction by deforming a rough surface

to the brain surface.
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temporal

cerebellum

Figure 1.7: Temporal and Cerebellum in T1-weighted MRI. The region of yellow narrow

is temporal. The region of green narrow is cerebellum.

BET [6] finds a brain/non-brain threshold, initial a triangular tessellation of a sphere’s

surface at center of gravity (COG), and finally iteratively deforms to the brain surface.

ISTRIP [25] initializes an ellipsoid by finding the effective intensity range, then uses

Wendland’s radial basis function (RBFs) deforming to the brain surface.

Hybrid approaches

Hybrid approaches combine methods of different types to segment brain/non-brain.

For the purpose of correcting the method of WAT, HWA combines pre-flooded WAT and

deformable surface model to get better accuracy of brain extraction. HWA first perform the

pre-flooded WAT to obtain an rough brain extraction and this brain as initial of deformable

surface model, then warp a accurately segmented brain atlas to the result of the pre-flooded

WAT by rigid registration and deform to the accurate surface in the end, as shown in Figure

1.9. HWA is benefits of robust by using the pre-flooded WAT and geometric constraints of

deformable surface model but is too conservative and still containing lots of non-brain.
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Figure 1.8: BSE: Skull Stripping Stages. (a) A slice from the initial volume. (b) The same

slice after anisotropic diffusion filtering three iterations with diffusion parameter 15. (c)

The edge map following application of the MarrVHildreth operator. (d) The same slice

from the extracted brain, following morphological processing of the edge map. (The figure

is cited from [8].)

Figure 1.9: Illustration of HWA. The yellow surface is the initial template deformed to the

segmented volume. The red line is the result after using deformable surface model. (The

figure is cited from [9].)
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1.2 Max-flow and min-cut

Max-flow min-cut theorem means that the value of max-flow is equal to the value of

min-cut in the flow network. A flow networkG = (V,E) is a graph that each edge (u, v)εE

has capacity c(u, v) ≥ 0 and with two specific vertices: a source s and a sink t. We can

image each edge as a tube and compute maximum flow from source s to sink t per unit time.

The min-cut presents the cut cross the edges whose summation is the minimum capacity to

separate source s and sink t. Removing edges crossed by min-cut lead to no flow can pass

from source s to sink t.

1.2.1 Ford and Fulkerson max-flow algorithm

Ford and Fulkerson proposed a method to find the value of max-flow and meanwhile

find a min-cut. Below is the algorithm and Figure1.10 demonstrates the Ford and Fulkerson

method.

Algorithm Ford and Fulkerson

Inputs Graph G with flow capacity c, a source node s, and a sink node t

Output A flow f from s to t which is a maximum

1.f(u, v)← 0 for all edges (u, v)

2.While there is a path p from s to t in Gf , such that cf (u, v) > 0 for all edges

1.Find cf (p) = min{cf (u, v) | (u, v)εp}

2.For each edge (u, v)εp

1.f(u, v)← (u, v) + cf (Send flow along the path)

2.f(v, u)← (v, u)− cf (p) (The flow might be ”returned” later)

(from http://en.wikipedia.org/wiki/Ford-Fulkerson)
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Figure 1.10: The example of Ford and Fulkerson max-flow algorithm.
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1.2.2 Graph cuts

Graph cuts is a method for separating foreground and background and is similar to

max-flow min-cut theorem. The difference is that in graph cuts, each vertices has an edge

(t-link) connected to source S, an edge connected to sink T and an edge (n-link) between

neighboring vertices.

When we use graph cuts, the first step is to select foreground seeds and background

seeds. And then we assign edge weights as capacity. The weight of n-link is according

the difference of gray value or color between neighboring points. The weight of t-link

is according the similarity to foreground seeds and background seeds. If the intensity of

a node is like to foreground seeds than the weight of t-link connected to source S is big

that means this node has more chance be classified as foreground and vise versa. Finally,

according to the weights of t-link and n-link, we can get a cut to partition foreground and

background by graph cuts algorithm. Figure1.11 demonstrates the graph cuts.

Short-cut is a well-known problem in graph cuts and mostly occur in thin and long

region. Short-cut problem means that the cost of desired boundary is bigger than the short-

cut path that misclassification happened. Figure1.12 is an example of the short-cut problem.

This problem can be solved by combining geodesic information and graph cuts algorithm

[12].

Graph cut in general image and video

Based on [11], many applications of graph cuts were published. Whatever no methods

are perfect, therefore, user interactive tools often come with graph cuts [13][14].

Lazy Snapping [13], the picture is pre-segmented by watershed and user only need

to use mouse to stroke off about foreground and background regions to define the seeds.

Because the pre-segmented picture takes a watershed region as a node, therefore, nodes in
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Figure 1.11: An example of graph cuts. (a) An Image with foreground/background seeds.

(b) The constructed graph for graph cuts. The blue lines are t-links and the green lines are

n-links. The thickness presents the weight of each link. (c) According to the weight of

t-link and n-link, graph cut algorithm will find an optimal path to segment foreground and

background. (d) The classified image.
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Foreground seeds

 Background seeds

S2

S1

 Goal of boundary S1

Short-cut S2

Figure 1.12: Short-cut problem of graph cuts. S1 is the goal of boundary and S2 is the

short-cut path. Although the edge weights of n-links on the goal of boundary boundary S1

are smaller than those on the short-cut path S2, however, the boundary S1 is to long cause

the cost is bigger than short-cut S2. Therefore, graph cuts may result in short-cut S2 instead

of boundary S1.
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Figure 1.13: Lazy Sanpping. (a)The original image. (b)User roughly define the foreground

seeds (yellow line) and background seeds (blue line). (c) The blue polygon is the instant

visual feedback and have UI tool to edit. (d) Synthesis the graph cuts result and another

picture. (The figure is cited from [13].)

graph cuts is reduced. So Lazy Snapping can offer instant visual feedback and polygon

tool to refine the result, as shown in Figure1.13. Furthermore, [15], [16], and [17] are also

the segmentation methods using graph cuts and watershed.

Video Snap Cut [18] mentioned that graph cuts with global statistics can’t handle com-

plexity scene therefore they segment with localized classifiers. The user will roughly define

the foreground and background on key frame, and get a initial result. The localized clas-

sifiers then surround along the initial result. Each localized classifiers will combine local

information to get a segmentation, as shown in Figure1.14. These localized classifiers will

propagate to next frame based on optical flow and update their local statistic. For refining

the result of graph cuts, [16] also provides a tool to compute local color distribution.

Graph cuts in medical image

Multilevel banded graph cuts (BGC) [19] and [21] are two graph cuts applications in

medical image. Multilevel banded graph cuts (BGC) [19] run full grid graph cuts with the

coarsest image and get an initial object , then refine the initial object in a coarse-to-fine
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Figure 1.14: Video Snapping Cut. Illustration of local classifiers. (a) Overlapping clas-

sifiers (yellow squares) are initialized along the object boundary (red curve) on frame t.

(b) These classifiers are then propagated onto the next frame by motion estimation. (c)

Each classifier contains a local color model and shape model, they are initialized on frame

t and updated on frame t+1. (d) Local classification results are then combined to generate

a global foreground probability map. (e) The final segmented foreground object on frame t

+ 1. Original video courtesy of Artbeats. (The figure is cited from [18].)
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Figure 1.15: Multilevel Banded Graph Cuts.

manner and graph cuts only operate in a band which between eroded and dilated the object,

as shown in Figure1.15. In this way, we can decrease memory usage and time cost but

might exclude some thin structures such as blood vessels showed in the experiment of 3-D

heart and pulmonary artery CT volume. To tackle the problem of BGC, [20] presented a

accurate multilevel BGC by identifying thin structures and adding to BGC system when

fining the lower resolution object.

In brain extraction topic, [21] first finding white matter (WM) by region growing and

regarding as foreground seeds. Second, decide a threshold mask as background seeds. key

point is that the threshold need to cause narrow connection between brain and non-brain

tissue. For the graph cuts result, if the threshold is too low, it will lead to residual non-

brain. On the contrary, choosing a too high value will exclude brain volume, Figure 1.16
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Figure 1.16: Illustration the influence of different threshold values on the quality of initial

mask for skull stripping using graph cuts. Too low threshold (second column) leads to in-

sufficient separation between brain and non-brain structures, high threshold (right column)

results in brain loss. (The figure is cited from [21].)

show the selection of threshold. The disadvantage of this method is the threshold mask

may contains some partial brain voxels, hence after apply graph cuts algorithm the method

performing closing operation (10mm voxel dilation and 10mm voxel erosion), however we

always don’t know how much brain volume is included in background seeds and how much

volume need to be recovered.

1.3 Motivation of this work

In the existing brain extraction methods, some have high sensitivities whereas some

have high specificities. The high sensitivity stands for extracting large percent of the brain

region, and the high specificity value rejects large percent of the non-brain region. The

pursuits of high sensitivity and high specificity are generally conflicting. How to comprise

between high sensitivity and high specificity is essential to accurate brain extraction. HWA

method has the advantage of high sensitivity, but the disadvantage is its low specificity. In

this work, we planned to develop an accurate brain extraction algorithm by using the brain

region estimated by HWA method as the initial. While maintaining high sensitivity, our

algorithm achieves high specificity by trimming non-brain regions from the initials with
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multiresolutional graph cuts.

The proposed method is an intensity based approach and can segment the brain regions

from T1-weighted MR images. Previous graph cuts methods require manual specifica-

tion of foreground and background seeds. Since a fully automatic brain extraction is more

preferable, we use a roughly extracted brain region by HWA because of its high sensitivity

in brain region determination, and to automatically specify both the foreground and back-

ground seeds. The proposed multiresolutional graph cuts method extracts brain volume in

a coarse-to-fine manner, The extracted brain at coarser level will propagate to finer level

and as a constraint to estimate foreground seeds. To measure local histogram of brain tissue

intensities, we partition volume images of each resolutions to different number of smaller

cubes. The graph cuts method is individually performed for each cube at the same level and

the results of these cubes are integrated to obtain the whole brain volume. Furthermore, we

use a pre-determined foreground form coarser level to tackle the short-cut problem.



Chapter 2

Multiresolutional graph cuts for brain

extraction
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2.1 Flowchart of multiresolutional brain extraction

The proposed brain extraction method is composed of three major steps, as shown in

Figure 2.1. First, we apply the HWA method to initialize the brain region as the roughly

extracted brain. In the image of the roughly extracted brain, we remove non-WM voxels

with high intensities by segmenting the WM tissue with region growing and excluding those

voxels brighter than the segmented WM tissue. This volume is denoted by V L, where V L

represents that this volume is at level L, in this thesis. The deleted voxels are usually

non-brain voxels, such as fat.

The second step is the multiresolutional graph cuts and the advantage of multiresolu-

tional framework to this work is that we can use the result of coarser levels as constraints to

finer levels. We downsample V L image into lower-resolution ones, and from fine to coarse

levels are V L−1, V L−2, . . . , V 0, as shown in Figure 2.2. The eight voxels in L − l level (a

2∗2∗2 cube) are combined into one voxel in L− (l+1) level, l = 0, 1, . . . , L−1. We start

the multiresolutional graph cuts from the coarsest level. The shape of brain in this level is

much easier to obtain, because of the brighter voxels not belonging to brain are blurred. To

prevent short-cut problem in graph cut, the best foreground seeds should cover the object as

much as possible. Hence, we take the WM as our foreground seeds at the level 0. And the

estimation of foreground/background seeds at finer levels are constrained by upper level

extraction results.

At the final step, we fill holes, which are background areas surrounded by foreground

areas in coronal view. Since the darker voxels in the ventricles might be classified as back-

ground by the graph cuts algorithm and the deleted voxels in the first step might include

some voxels of WM, and resulting in scattered holes.

There will be more details of removing the bright voxels in non-WM regions, multires-

olutional graph cut and the final step in the following sections for the above steps.
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Figure 2.1: Flowchart of the proposed brain extraction method.
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Figure 2.2: The multilevel image pyramid.

2.2 Removal of bright voxels in non-WM regions

The foreground seeds are determined by intensity distribution, which may be affected

by the voxels with high intensities. Therefore, before application of graph cuts algorithm,

we delete those bright voxels according to the estimated WM intensity distribution. We use

3-D region growing and Otsu’s [24] method to estimate the WM tissue in the way similar

to [21]. The other reason of removing bright voxels in non-WM regions is that they may be

classified as foreground by graph cuts algorithm, because the intensities in non-WM brain

regions should not be larger than those of WM regions.

To estimate WM, in our observation, we can partition the results of rough brain extrac-

tion into four categories from darker to brighter with three thresholds which were found

using Otsu’s method. The first category is composed of voxels with gray values like CSF

and non-head voxels as shown in Figure 2.3 (c). The second category is composed of vox-

els with gray valuess between those of CSF and GM as shown in Figure 2.3 (d). The third
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category is majorly composed of voxels with gray values of GM as shown in Figure 2.3 (e).

The fourth category is majorly composed of voxels with gray values of WM as shown in

Figure 2.3 (f). When gathering statistics of the distribution of gray values, we only consider

voxels with gray values lower than T , where T is the gray value higher than 98 percent of

total nonzero voxels (similar to [6]). The reason to exclude those voxels with particularly

high values is that they may dominate the third threshold of Otsu’s [24] method.

For each slice, we apply the Otsu’s method described above to determine the three

thresholds and the largest threshold is used to segment WM voxels. We start 3-D region

growing to find WM with voxels higher than the threshold between WM and GM for each

slices located between 2/5 and 3/5 middle transverse slices. These starting points of region

growing locate at the center region of each slices as shown in Figure 2.4. The center

region at superior and inferior transverse slices may be non-brain region, therefore we limit

start points between 2/5 and 3/5 middle transverse slices. Since the connectivity of 3-D

region growing is higher than that of 2-D region growing, we use a strict threshold t as

the stopping criterion of region growing, to avoid from growing WM region to brighter

non-brain region. Thus threshold t represents the maximum intensity difference between

3-D neighboring voxels. To improve the accuracy of WM segmentation, we perform 2-D

region growing starting from the results of 3D region growing, and uses the third threshold

of Otsu’s method and T as the stopping criterion. Figure 2.5 demonstrates the results of

WM segmentation.

To avoid the influence of bright voxels in non-WM region on the intensity distribution,

we remove those voxels with gray values larger than the average of estimated WM sub-

tracted by the estimated WM standard deviation. We call this volume V L, as shown in the

middle row of Figure 2.6. The reason why we remove those voxels with high gray values is

that those voxels most likely belong to a non-brain region, such as fat . These kind of voxels

are determined as foregrounds while doing the graph cut. Removal of the brighter voxels

in the non-WM areas can improve the estimation of WM as well as the brain extraction
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(a)

(b)

(c) (d) (e) (f)

threshold 1

threshold 2

threshold 3

Figure 2.3: The four categories by Otsu’s method of the initial brain extraction. (a) The

result of initial brain extraction. (b) The histogram of single slice and can be classified

into four category by threshold 1, threshold 2 and threshold 3. The horizontal axis is the

gray value and the vertical axis is the number of voxels. (c) The first category is below

threshold 1 and composed of voxels with gray values like CSF and non-head voxels. This

image is shown the nonzero voxels with gray value below threshold 1. (d) The second

category is between threshold 1 and threshold 2 and composed of voxels with gray values

between those of CSF and GM. (e) The third category is between threshold 2 and threshold

3 and composed of voxels with gray values of GM. (f) The fourth category is greater than

threshold 3 and composed of voxels with gray values of WM.
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Figure 2.4: Voxels overlaid with warm colors are the starting points at the center region for

3-D region growing. The background image is the result of rough brain extraction.

result, and the result can be more accurate.

2.3 Graph cuts for brain extraction

2.3.1 Edge weights in the graph cuts method

The proposed method construct a graph at each level and apply the graph cuts algorithm

to extract the brain region. In the constructed graph, neighboring voxels have a connected

edge, which is denoted by n-link. Besides, each voxel has edges, denoted by t-link, con-

nected to two specific vertices: foreground terminal S and background terminal T as shown

in Figure 2.7. There are two kinds of n-links that need to be assigned with weights, one is

the inter-n-link and the other is the intra-n-link. Inter-n-link connects voxels in consecutive

slices, shown as black lines in Figure 2.7, and the intra-n-link connects voxels in the same

slice, shown as orange lines in Figure 2.7. For segmentation of foreground and background,

we need to assign edge weight for each edge in the constructed graph and apply graph cut
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Figure 2.5: The results of segmented white matter tissue in coronal slice. The subject is in

the second IBSR data set. Top row are the results of the initial brain extraction. Bottom

row are the results of the segmented white matter tissue.



2.3 Graph cuts for brain extraction 27

Figure 2.6: The result of deleting non-WM voxels with gray values higher than estimated

WM. Top row: the results of initial brain extraction. Bottom row: the result of deleting the

voxels with gray values higher than estimated WM.
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algorithm. According to the weights of t-link and n-link, the graph cuts algorithm will

find a global optimal path to classify foreground and background by minimizing the energy

function:

E =
∑

(xi,xj)εN

A(xi, xj) +
∑

(xi,S)εN,or(xi,T )εN

B(xi) . (2.1)

The xi is a voxel in the image. N is a set of the neighboring voxels xi and xj in the path

of the graph cut, and A(xi, xj)/B(xi) is the function to assign the weight of n-link/t-link,

respectively.

The finest level has different equation of edge weights from other levels. To assign the

weight of n-link at coarser levels, the edge weight is assigned as:

A(xi, xj) = wn × exp(−
(Ixi
− Ixj

)2

2α2
) , (2.2)

where wn is a parameter representing the importance of n-link, Ixi
and Ixj

are the intensity

of two adjacent voxels, xi and xj , connected by this link. If the difference between Ixi
and

Ixj
is large, then the weight of this link becomes small. Thus, the cut path is more likely to

go through this link.

The weight of n-link at the finest level is assigned as:

A(xi, xj) = wn × exp(−
(Ixi
− Ixj

)2

2α2
) + wd × (

D(xi) +D(xj)

2
) . (2.3)

In the finest level, we add a distance term D(x) to Eq. (2.2). The D(x) is defined as the

least-squares distance from x to the contour of the extracted brain which is upsampled from

the coarser level to the finest level. In this work we use a library which is based on kd-trees

and box-decomposition trees for approximate nearest neighbor searching (ANN) [23] to

estimate the distance term.

The parameter value of wn and wd for inter slice is half of the value in intra slice, in

order to keep the relationship of different slices but not too strong.



2.3 Graph cuts for brain extraction 29

For the weight of t-link connected to foreground terminal is defined as:

B(xi) = wt ×
PF (xi)

PF (xi) + PB(xi)
, (2.4)

where wt stands for the importance of this term in contrast to n-link. For each voxel x,

PF (xi) and PB(xi) are its likelihood functions to foreground seeds and background seeds,

respectively:

PF (xi) =
1√

2πσf
exp(
−(Ixi

− µf )2

2σ2
f

) , (2.5)

PB(xi) =
1√

2πσb
exp(
−(Ixi

− µb)2

2σ2
b

) . (2.6)

The σf is the standard deviation of foreground seeds, whereas and σb is set as twice the

standard deviation of background seeds for increasing the separability of foreground and

background by increasing the background range. The µf and µb are the average of fore-

ground seeds and background seeds. If voxel Ixi
is more likely a background seed, then

the t-link connected to the foreground terminal is much easier to be cut, then x has more

chance to be classified as a background. The weights of foreground seeds connecting to

foreground terminal are set to be infinity and they will be classified as foreground. Simi-

larly, t-link connected to background terminal is defined as:

B(xi) = wt ×
PB(xi)

PF (xi) + PB(xi)
. (2.7)

The weights of background seeds connecting to background terminal are set to be infin-

ity and they will be classified as background. The edge weight calculation functions from

Eq. (2.1) to Eq. (2.7) were modified from those in [11]. We added a distance term in Eq.

(2.3) at the original resolution level. We use the graph cuts algorithm proposed in [22] and

the implementation can be found in http://www.cs.ucl.ac.uk/staff/V.Kolm

ogorov/software.html.
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Figure 2.7: Demonstration of n-link and t-link. Blue lines are the t-link connecting to

background terminal. Green lines are the t-link connecting to foreground terminal. Orange

lines are the intra slice n-link (link in the same slice). Black lines are the inter slice n-link

(link in different slices).

2.3.2 Multiresolutional graph cuts for brain extraction

For the purpose of multiresolutional graph cut, we downsample the V L (the highest res-

olution) at level L into coaser levels, V L−1, V L−2, . . . , V 0. The equation of downsampling

is defined as:

V L−l
x,y,z =

1

8

1∑
i=0

1∑
j=0

1∑
k=0

V
L−(l−1)
2x+i,2y+j,2z+k , for 1 ≤ l ≤ L . (2.8)

The V L−l
x,y,z is the intensity at coordinate (x, y, z) and at level L− l. The number of voxels at

L− (l − 1) level are 8 times of voxels at L− l level.

Graph cuts at the coarsest level

To get the shape of brain, we start running graph cut with V 0, which is at the lowest

resolution. At this level, the shape of brain is much easier to obtain, because of the brighter

voxels that are not belonging to brain were blurred. On the other hand, the brighter voxels
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(WM) belonging to the brain area are set as foreground seeds, which always be classified

as foreground. We use the region growing method, describe in Section 2.1, to segment

the WM tissue in V 0 as foreground seeds, as voxels overlaid with warm colors in the

middle row of Figure 2.8. On the other hand, we use the voxels with non-zero gray values

and below the lowest threshold as background seeds, as shown as voxels overlaid with

cool colors in the middle row of Figure 2.8. After the graph cut of the entire brain was

completed, we get a foreground object, O0, as show in bottom row of Figure 2.8. Then

erode O0 one voxel to get a smaller volume, E0, as a constraint to the middle resolution

level.

Graph cuts at the middle levels

The graph cuts at middle levels is to refine the extracted brain from the lowest resolution

level. At middle dimension level l, 0 < l < L, to get a pre-determined foreground area

we first upsample the eroded brain region, El−1, at coarser level l − 1 to level l the pre-

determined foreground area El. The upsampling equation of the eroded volume is defined

as:

E ′lx,y,z = El−1
x
2
, y
2
, z
2
, (2.9)

where E ′lx,y,z is the intensity at coordinate (x, y, z) and at level l. The weights of t-link

connecting to foreground terminal in E ′l, as shown in third row of Figure 2.9, are set to be

infinity. This ensures E ′l must be classified as foreground. The pre-determined foreground

area can reduce the short-cut problem and prevent cut at WM/GM boundary.

Considering local gray value distribution, we partition V l into 2l × 2l × 2l cubes (each

dimension is divided into smaller overlapping region, as shown in Figure 2.10. Then we

perform graph cuts algorithm for each cube individually. Each cube has 1/4 in length

overlapped with its adjacent cubes, this reduce the inconsistent border between two cubes.

Each cube has its own foreground and background seeds. We estimate the three thresholds
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with each cube by Otsu’s method. If the voxel is brighter than the third threshold and

contains in E ′l then it is be defined as foreground seed, as shown as voxels overlaid with

warm colors in the second row of Figure 2.9. If the voxel intensity is nonzero and smaller

than the first threshold then it will be defined as background seed, as shown as voxels

overlaid with cool colors in the second row of Figure 2.9. The bottom row of Figure 2.9

is the extracted brain at this resolution and we denote this volume as Ol. The eroded Ol

is defined as El. For the overlapped region between neighboring cubes, we integrate the

results by logical OR operation.

Graph cuts at the finest level

Graph cuts applied at the finest level is to get the final extracted brain. At the finest level,

the pre-determined foreground area is the upsampled EL−1, as shown in the third row of

Figure 2.11. We partition V L into 2L×2L×2L cubes individually. Then we perform graph

cut with each cube. The way of finding foreground seeds and background seeds is the same

as in the middle levels, as shown in the second row of Figure 2.11. We also upsampling

OL−1 to this level, called O′L, as shown in top row cool colors of Figure2.11. The equation

of upsampling OL−1 is defined as:

O′Lx,y,z =

∑1
k=−1O

L−1
x
2
, y
2
, z
2
+k

3
, (2.10)

where O′Lx,y,z is the intensity at coordinate (x, y, z) and at level L. Different from middle and

the coarsest levels, we add a distance term: wd × (D(xi)+D(xj)

2
), in Eq. (2.3). The distance

term D(x) is defined as the least-squares distance from x to contour of O′L. The reason

is that, the brighter voxels belonging to non-brain region are similar to foreground seeds,

so they might be classified as foreground. But in the middle and the coarsest levels, those

brighter voxels are blurred, hence those voxels can be judged as background seeds. There-

fore, we use the contour of O′L as a factor of the edge weight in this level because when

the n-link is closer to the contour, it should has more chance to be cut. For the overlapped
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region between neighboring cubes, we integrate the results by logical OR operation.

2.4 Postprocessing to fill holes that dark brain region be

classified as background by graph cuts

The final step is to fill holes which are the dark brain areas classified as background

regions by graph cuts algorithm, such as ventricles, as shown in Figure 2.12. The voxels

surrounded by foreground regions, as shown in the yellow circle of Figure 2.13 also need to

be filled, because these voxels were wrongly deleted in Step 1 of the system flowchart, since

they failed to be included in WM region growing process due to their irregular intensities.

The postprocessing is illustrated in Figure 2.13. We find the contour of the extracted brain

from the highest resolution level, including the removed dark brain region, as shown in

Figure 2.13 (b). Then we take the outermost contour, as shown in Figure 2.13 (c), and

incorporate the voxels inside the contour to fill dark brain regions. Figure 2.13 (d) shows

the result of postprocessing. Notice that this postprocessing is applied on coronal slices.
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Figure 2.8: Demonstration of foreground seeds, background seeds and results at the lowest

resolution level. The volumes are in the second IBSR data set. Top row: the volumes are

V 0, individually. Middle row: the warm colors are foreground seeds and cool colors are

background seeds. Bottom row: the extracted brain at the lowest resolution level.
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Figure 2.9: Demonstration of foreground seeds, background seeds and results at middle

levels. Top row: the volume at middle levels. Second row: the warm color is foreground

seeds and cool color is background seeds. Third row: the pre-determined foreground which

is eroded and upsampled the result at the lowest resolution level. Bottom row: the extracted

brain at middle levels.
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Figure 2.10: Demonstration the unit of graph cut at level 1. The region surrounded by

yellow, purple, green, and blue dotted line are the unit of graph cut, individually. Each unit

perform graph cut once. The left image of this figure is the view in 2-D and the right one

is the view in 3-D.
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Figure 2.11: Demonstration of foreground seeds, background seeds and results at the finest

level. Top row: the volume at the highest level and the cool color is contour of O′L. Second

row: the warm color is foreground seed and cool color is background seed. Third row: the

pre-determined foreground which is eroded and upsampled the result at the middle level.

Bottom row: the extracted brain which is at the finest level.
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Figure 2.12: The red circle is the dark volume may be classified as background that need

to be post-processed
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Figure 2.13: (a) The red circle is the dark voxels in brain but be classified as background,

and yellow circle is the voxels deleted in step1of flowchart but belong to brain region, that

both need to be post-processed. (b) We find contour of the extracted brain from the highest

resolution level. (c) Take the outermost contour. (d) Fill the voxels which are inside the

outermost contour and the dark voxels in brain are filled.
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Chapter 3

Results for brain extraction
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3.1 Image data sets for performance evaluation

We applied four data sets to compare the accuracy of brain region extracted by using the

existing methods, HWA [9], BSE [8], BET [6], ISTRIP [25], and the proposed method. The

four data sets are the first and the second Internet Brain Segmentation Repository (IBSR)

data set, Taipei Veterans General Hospital (VGATPE) data set, and BrainWeb phantom data

set.

The first IBSR data set consist of 20 MR images, each with around 60 coronal slices,

matrix size 256 mm× 256 mm, FOV 256 mm× 256 mm, and slice thickness 3.1 mm. The

most images in this data set involve apparent intensity inhomogeneity and the large region

of neck. The large region of neck may bias the estimation of parameters in the HWA and

BET method. Therefore, the large region of neck were manually removed before estimation

[25].

The second IBSR data set is composed of 18 MR images, each with around 128 coronal

slices, matrix size 256 mm × 256 mm, FOV 240 mm × 240 mm, and slice thickness 1.5

mm. Each image has brain region determined by manual segmentation. The IBSR data

sets as well as the brain region images are from the Montreal Neurological Institute and are

available at http://www.cma.mgh.harvard.edu/ibsr.

The VGATPE data set contains 18 MR volumes of healthy subjects collected by Taipei

Veterans General Hospital, each with around 124 coronal slices, matrix size 256 mm ×

256 mm, FOV 260 mm × 260 mm, and slice thickness 1.5 mm. The ages of these subjects

are between 22 and 57 years old. The brain region images of all subjects are segmented

manually.

BrainWeb phantom images from the Montreal Neurological Institute are simulated by

various levels of noise and intensity non-uniformity. The noise levels are 0%, 1%, 3%, 5%,

7%, and 9%. Each noise level contains three levels of intensity non-uniformity, which are
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0%, 20%, and 40%. Each image with around 217 coronal slices, matrix size 181 mm ×

181 mm, FOV 181 mm × 181 mm, and slice thickness 1mm.

3.2 Evaluation metrics for brain extraction

This work used five coefficients to compare the accuracy of the brain regions extracted

from existing methods.

The Jaccard similarity coefficient (JSC) is to measure the similarity of ground truth A

and the extracted brain B by the following equation:

JSC(A,B) =
|A ∩B|
|A ∪B|

, (3.1)

where |x| denotes the voxel number of x. The value of JSC is between 0 and 1 and the

larger JSC value means the better overlap of A and B.

The higher sensitivity Se and higher specificity Sp means more accurate extraction of

brain region. Sensitivity Se is to measure the ratio of extracted brain region to total brain

region:

Se =
TP

TP + FN
. (3.2)

If more brain voxels are obtained, the Se value will be higher. Specificity Sp is to measure

the ratio of rejected non-brain region to total non-brain region:

Sp =
TN

TN + FP
. (3.3)

If more non-brain voxels are rejected the Sp value will be higher. The true positive rate,

TP, is the number of voxels extracted as brain correctly. The number of voxels incorrectly

extracted as brain is denoted by FP. The true negative rate, TN, is the number of voxels

extracted as non-brain correctly. The number of voxels incorrectly extracted as non-brain

region is denoted by FN.
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Figure 3.1: The left column is the discrete anatomical model of WM and GM. The right

column is the discrete anatomical model of WM , GM and CSF.

Two probabilities of miss rate, pm and pf , were defined in [8]. The probability of missed

detection of the brain voxels is defined as:

pm =
|A−B|
|A ∪B|

. (3.4)

The probability of miss rejection of the non-brain voxels is defined as:

pf =
|B − A|
|A ∪B|

. (3.5)

The lower these two miss rates means the better brain extraction.

BrainWeb provides discrete anatomical model to label tissues and the CSF region pro-

vided by BrainWeb contains ventricle areas as well as peripheral CSF areas, which are

generally considered as non-brain regions. Therefore, we evaluate the brain extraction al-

gorithms with this data set according to two criteria. One only considers WM and GM, as

shown in left image of Figure 3.1, the other considers WM, GM, and CSF as the total brain

region as shown in the right image of Figure 3.1.
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3.3 Experimental results

Tables 3.1, 3.2, 3.2, 3.3, 3.4, 3.5, and 3.6 list the performance evaluation results of

BET, BSE, HWA, ISTRIP and the proposed method for different data sets. In addition to

the Table 3.1, in other cases, although HWA has the highest Se, its poor performance of Sp

results in its worse performance of JSC.

Since some of the brain volumes in the first IBSR data set has apparent intensity inho-

mogeneity and artifacts, as shown in the Figure 3.2. Therefore, not all brain volumes have

the satisfied result. As [25], Table 3.1 excludes the extracted brains which the JSC value

is below 0.6 or the result is blank. The number of excluded brains are four, three, and five

for the BSE, HWA, and the proposed method, respectively. Performance evaluation using

the first IBSR data set without including all the failure cases as shown in Table 3.2, and

the number of excluded cases is seven. In Table 3.1 and Table 3.2 we has the similar JSC

value with ISTRIP, In terms of Se and Sp, the proposed method has better sensitivity than

ISTRIP. However, ISTRIP can extract the all brain volumes in the first IBSR data set.

The proposed method outperforms others for the second IBSR set, in terms of JSC, Se,

and Sp. As listed in Table 3.3, compared to HWA, our method maintains the high sensitivity

of HWA as much as possible and improves the low specificity of HWA to the highest one.

Our method achieves the highest JSC, the second highest Se, and the highest Sp. In this

data set, the total amount of voxels in an MR volume is 8388168, and the brain region is

about one-eighth of the total voxels. Therefore, 0.01 voxels Se of the value means there

are about 10000 of the extracted brains overlapped with the ground truth. The 0.01 voxels

Sp of the value means there are about 70000 of the extracted non-brain regions overlapped

with the non-brain regions of the ground truth. The 0.01 voxels JSC of the value means

there are more than 10000 of the extracted brains overlapped with the ground truth.

When using the VGHTPE data set, although BSE has the highest Sp and JSC values,
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it has the lowest Se. This means BSE may exclude many brain voxles. Comparison of

BET, ISTRIP, and the proposed method, BET has the highest Sp and the lowest Se. On

the contrary, ISTRIP has the highest Se and the lowest Sp. The proposed method has the

intermediate values of Sp and Se. The results of performance evaluation for VGHTPE data

set are listed in Table 3.4.

The performance evaluation using the BrainWeb phantom data set and only considering

WM and GM is listed in Table 3.5. Although BSE has the highest Sp, but has the lowest

Se. The proposed method has the best performance compared with BET and ISTRIP, in

terms of JSC, Se, and Sp.

Since the ground truth of the CSF region provided by BrainWeb contains peripheral

CSF area, the values of Sp when considering CSF, as listed in Table 3.6, higher than those

in Table 3.5. In Table 3.6, the higher Se means that the segmentation result may contain

more peripheral CSF voxels. Therefore, we only concern the Sp value with this data set,

and we have the similar Sp of BET which has the highest value.

The parameters of the second IBSR data set are as same as those used in [25]. For

each brain extraction method, except BSE, the parameters of the VGHTPE and BrainWeb

phantom data sets are the same. The fractional intensity threshold of BET was set as 0.7;

the parameters of HWA were set to the default values with surface-shrink option turned

on; the intensity contrast of ISTRIP was set as 0.08 with ”further remove non-brain tissues

with high intensity” option turned on; the weight of intra n-link was set as 0.35, t-link

was set as 0.65 and the distance term was set as 0.07 in the proposed method. The edge

constant, diffusion iteration, and diffusion constant, erosion size of BSE when using the

VGHTPE (BrainWeb phantom) data set were set to be 25 (increased with the degree of

non-uniformity), 3 ,0.62 and 1 (2), respectively.

The extracted brain images using the proposed method with the subject in the first/second

IBSR data set, VGHTPE, and BrainWeb phantom image are shown in Figure 3.3, Figure
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Figure 3.2: The example of brain volumes with apparent intensity inhomogeneity and arti-

facts in the first IBSR data set.
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Table 3.1: Performance evaluation using the first IBSR data set and excluding the

failure results of each brain extraction method.

Method JSC Se Sp Pm Pf

BET 0.878 (0.017) 0.983 (0.023) 0.987 (0.004) 0.016 (0.022) 0.107 (0.021)

BSE4 0.900 (0.025) 0.954 (0.035) 0.993 (0.003) 0.044 (0.034) 0.055 (0.017)

ISTRIP 0.910 (0.018) 0.986 (0.013) 0.991 (0.005) 0.013 (0.013) 0.077 (0.027)

HWA3 0.752 (0.037) 0.974 (0.068) 0.970 (0.008) 0.022 (0.056) 0.226 (0.026)

Our method5 0.910 (0.021) 0.989 (0.012) 0.991 (0.003) 0.010 (0.011) 0.079 (0.020)

The superscripts in the first column indicate the excluded cases.

Table 3.2: Performance evaluation using the first IBSR data set without including all

the failure cases.

Method JSC Se Sp Pm Pf

BET7 0.881 (0.017) 0.981 (0.026) 0.988 (0.003) 0.017 (0.024) 0.102 (0.021)

BSE7 0.905 (0.025) 0.954 (0.035) 0.994 (0.002) 0.044 (0.034) 0.051 (0.010)

ISTRIP7 0.911 (0.014) 0.988 (0.015) 0.991 (0.004) 0.012 (0.014) 0.077 (0.023)

HWA7 0.762 (0.012) 0.999 (0.001) 0.967 (0.008) 0.001 (0.001) 0.237 (0.014)

Our method7 0.910 (0.021) 0.991 (0.008) 0.991 (0.003) 0.009 (0.007) 0.081 (0.020)

The superscripts in the first column indicate the excluded cases.

3.4, Figure 3.5, and Figure 3.6, respectively. In our method we bring up three points, dis-

tance term at the highest level, pre-determined foreground and application of graph cuts

algorithm localized by using smaller cubes to local estimation of intensity histogram. The

left column of Figure 3.7 illustrations the extracted brains without using the distance term,
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Table 3.3: Performance evaluation using the second IBSR data set.

Method JSC Se Sp Pm Pf

BET 0.891 (0.052) 0.959 (0.042) 0.989 (0.005) 0.038 (0.038) 0.071 (0.031)

BSE 0.838 (0.083) 0.957 (0.042) 0.973 (0.030) 0.041 (0.041) 0.119 (0.104)

ISTRIP 0.915 (0.018) 0.978 (0.011) 0.990 (0.003) 0.021 (0.011) 0.064 (0.022)

HWA 0.814 (0.040) 0.9997 (0.0003) 0.965 (0.016) 0.0002 (0.0002) 0.186 (0.040)

Our method 0.930 (0.011) 0.981 (0.016) 0.991 (0.005) 0.018 (0.015) 0.052 (0.017)

Table 3.4: Performance evaluation using the VGHTPE data set.

Method JSC Se Sp Pm Pf

BET 0.921 (0.009) 0.971 (0.013) 0.994 (0.001) 0.028 (0.012) 0.051 (0.011)

BSE 0.933 (0.008) 0.958 (0.011) 0.997 (0.001) 0.041 (0.011) 0.026 (0.008)

ISTRIP 0.915 (0.011) 0.984 (0.012) 0.991 (0.002) 0.015 (0.011) 0.07 (0.015)

HWA 0.847 (0.019) 0.998 (0.002) 0.979 (0.003) 0.002 (0.002) 0.151 (0.019)

Our method 0.920 (0.010) 0.982 (0.009) 0.992 (0.002) 0.017 (0.009) 0.063 (0.017)

and the right column is the extracted brain using distance term. The difference is obvi-

ous, the border of the extracted brains in the right column are more smooth. Figure 3.8

shows the extracted brain of the proposed method overlaid by another without considering

pre-determined foreground. The brain region of proposed method is larger than the one

without using pre-determined foreground. Some brain extraction methods segment brain

volume in a slice-by-slice manner, however we use smaller cubes to do this work. The

left column of Figure 3.9 shows the extracted brain of the proposed method overlaid with

a brain extracted by graph cuts algorithm in a slice-by-slice manner, and the right column
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Table 3.5: Performance evaluation using the BrainWeb phantom data set and only

considering only WM and GM.

Method JSC Se Sp Pm Pf

BET 0.832 (0.010) 0.994 (0.002) 0.945 (0.005) 0.005 (0.001) 0.163 (0.011)

BSE 0.855 (0.041) 0.989 (0.005) 0.954 (0.018) 0.010 (0.004) 0.136 (0.044)

ISTRIP 0.811 (0.005) 0.998 (0.0003) 0.934 (0.002) 0.001 (0.0003) 0.188 (0.005)

HWA 0.696 (0.005) 0.9995 (0.0001) 0.876 (0.003) 0.0003 (9.00947E-05) 0.304 (0.005)

Our method 0.840 (0.025) 0.997 (0.001) 0.946 (0.011) 0.003 (0.001) 0.157 (0.026)

Table 3.6: Performance evaluation using the BrainWeb phantom data set and consid-

ering WM, GM and CSF.

Method JSC Se Sp Pm Pf

BET 0.928 (0.009) 0.944 (0.011)) 0.993 (0.001) 0.055 (0.011) 0.017 (0.003)

BSE 0.870 (0.031) 0.897 (0.009) 0.988 (0.018) 0.0999 (0.012) 0.030 (0.041)

ISTRIP 0.934 (0.001) 0.963 (0.004) 0.988 (0.001) 0.036 (0.004) 0.031 (0.003)

HWA 0.850 (0.003) 0.993 (0.002) 0.936 (0.002) 0.006 (0.002) 0.144 (0.004)

Our method 0.912 (0.007) 0.934 (0.017) 0.991 (0.005) 0.064 (0.0178) 0.024 (0.013)

shows the extracted brain of proposed method. The brain region of proposed method is

larger than the one using the slice-by-slice manner. Since the upper part of the image in

the right column of Figure 3.9 is darker than the bottom part of image in transverse view,

therefore, applying graph cuts algorithm localized by using the local estimated histogram

is preferable than slice-by-slice manner.

The performance evaluations of the proposed method without distance term/predetermined

term and in a slice-by-slice manner using the second IBSR data set are listed in Table 3.7.

Although the proposed method without predetermined term has the highest JSC value and

specificity, but it has lower sensitivity than the proposed method with the three factors.
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According to the value of JSC, Se, and Sp, distance term, pre-determined foreground and

application of graph cuts algorithm localized by using smaller cubes to local estimated

intensity histogram are important factors in our method.

Table 3.7: Performance evaluation of the proposed method without distance

term/predetermined term and in a slice-by-slice manner using the second IBSR data

set.

Method JSC Se Sp Pm Pf

Our method 0.930 (0.011) 0.981 (0.016) 0.991 (0.005) 0.018 (0.015) 0.052 (0.017)

Our method without distance term 0.911 (0.023) 0.975 (0.017) 0.989 (0.007) 0.024 (0.016) 0.066 (0.026)

Our method in slice-by-slice manner 0.904 (0.020) 0.953 (0.024) 0.991(0.006) 0.045 (0.023) 0.051 (0.022)

Our method without predetermined term 0.933 (0.012) 0.979 (0.016) 0.992 (0.004) 0.020 (0.016) 0.047 (0.016)
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Figure 3.3: The extracted brain images of subject in the first IBSR data set and using the

proposed method are shown in (a) transverse, (b) coronal and (c) sagittal views.
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Figure 3.4: The extracted brain images of subject in the second IBSR data set and using

the proposed method are shown in (a) transverse, (b) coronal and (c) sagittal views.
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Figure 3.5: The extracted brain images of subject in the VGHTPE data set and using the

proposed method are shown in (a) transverse, (b) coronal and (c) sagittal views.
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Figure 3.6: The extracted brain images of subject in the BrainWeb phantom data set and

using the proposed method are shown in (a) transverse, (b) coronal and (c) sagittal views.
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Figure 3.7: The result of extracted brain without using distance term at the highest level.

The left column is the extracted brain without considering the contour factor. The right

column is the extracted brain and consider the contour factor corresponding to the left

column.
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Figure 3.8: The extracted brain of proposed method overlaid by another without consider-

ing pre-determined foreground factor.

Figure 3.9: The left column shows the extracted brain of proposed method overlaid with

a brain extracted by graph cuts algorithm in a slice-by-slice manner, and the right column

shows the extracted brain of proposed method.
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Figure 4.1: The left column is the extracted brain with excluded cerebellum voxels by

HWA and the right column is the corresponding ground truth volume segmented manually.

In this work we use an initial brain with high sensitivity and low specificity segmented

by HWA and trim the brain into a more accurate one. If the initial brain extraction fails

then our method fails too. In most cases HWA is a method with high sensitivity for brain

extraction, but it sometimes excludes parts of the cerebellum, The example is shown in

Figure. 4.1.

The program execution speed of the existing methods for brain extraction which com-

pared in this work are fast (less than a minute). The program execution speed of the pro-

posed method is about 5 minutes for an MR volume. Regarding to the performance eval-

uation for brain extraction, our method outperforms others for the second IBSR data set.

Therefore, the time cost of the proposed method is not expensive. The compared method
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Figure 4.2: An example of the possible disadvantage by using localized graph cuts. The

red window shows the inconsistent border.

in this work, BET, HWA, and ISTRIP are performed on Genuine Intel CPU 2.93GHz×16

processor running Linux, BSE and our method are performed on Intel Core2 Quad XP

2.83GHz processor on Windows system. Most of the running time of our method spent

on the Otsu’s method, since it was performed frequently. Although the speed of multires-

olutional graph cuts with narrow band should be faster, but we use multiresolutional graph

cuts to extracted brain instead of using multiresolutional graph cuts with narrow band. The

reason is that the multiresolutional graph cuts with narrow band will limit the refinement

of the results in a band and may miss the thin structure.

In our method we perform graph cuts algorithm individually for each cube, the advan-

tage is to consider the influence of the intensity inhomogeneity. In the finest level, when

the cube contains only a small portion of brain region. The intensity of foreground seeds

may be similar to the non-brain region. Therefore the results may contain non-brain and

have irregular border, as shown in the red window of Figure. 4.2. The distance term can

correct this problem, but if the distance term is too big then the result may not be smooth.

According to our experiences, the result of adding the WM voxels to the pre-determined

foreground will be better than pre-determined foreground only. Because the pre-determined

foreground is eroded and upsampled from the extracted brain at the coarser level, in the
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Figure 4.3: An example of the possible disadvantage by using the distance term in the finest

level. (a) The extracted brain at the highest level and the red windows show the non-brain

voxles. (b) The yellow line shows the contour used in distance term at the highest level,

and the positions corresponding to the red windows in (a) are inconsistent with the brain

area. (c) The extracted brain at middle levels. (a) and (b) are shrunk as the size of (c).

process of erosion may lose some thin structure or other details. But considering the time

cost of WM region growing, we did not apply the WM region as pre-determined foreground

at middle levels.

The advantage of the distance term at the finest level is its capability to constrain the

shape of brain boundary. However, it has disadvantages. In some cases the extracted brain

at middle levels are better than that at the highest level. Since the contour used in distance

term is upsampled from the coarser level, the contour may not be entirely consistent with

the border of the brain at the highest level, as illustrated in Figure 4.3.
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We have proposed an automatic method based on multiresolutional graph cuts tech-

nique to segment the head MR images into brain and non-brain regions.

The contributions of this work are 1) using distance term at the highest level to con-

strain the brain contour, 2) using pre-determined foreground from the coarser level to avoid

excluding the brain voxels, 3) and applying graph cuts algorithm individually for smaller

cubes to tackle the intensity inhomogeneity problem.

We have compared to the existing methods and compared with our method by using

four data sets. Regarding the performance evaluation for brain extraction, our method

outperforms others for the first/second IBSR data set and BrainWeb phantom data set, and

comparably with the BET and ISTRIP methods for the VGHTPE data sets.
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