S
-
N
S
—
!||/|
d4—>
A
‘Y

R 5E A

I
Eg’l‘_l'lll
>
i
pi

Light-Weight CSRF Protection by Labeling User-Created

Contents

G R S E R

PR E AT R
TERHE At AEARA

FI* IR Y) F R ORI S G & R T

Light-Weight CSRF Protection by Labeling User-Created Contents

Student : Yin-Chang Song

R MY Advisor : Dr. Shiuhpyng Shieh

A Thesis
Submitted to Institute of Computer Science-and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science

June 2010

Hsinchu, Taiwan, Republic of China

PEARA L4 EA

FIr AR F P FFRIER B G R R
PR

—_

SRS Il AT B L

K> 2 x5

FRAPE S 1A AT

% 2
1245 OWASP 2010 TOP 10 shsiat » Bshifd & i e S hfpbmA ¢ R

D ET Lood WAL RerbardiaR RAF- AR dﬂzﬁ,;_:fg PIREZ G T e

]

BN HTEAL D A ANAGEE R R I L EL PRERERREL R
ﬁ?ﬁﬁ*o%%ﬁ?%%?AMX%%@@%Qﬁﬁﬁ’ﬁﬁﬁW@%ﬂ%
i A o7 2 A

MmN - B s T R fRAATA G R E & Rt oA PR
B LB KRR R0 0 L R IR B B0 BA
F g :‘@‘J},%E‘?'fﬁ LEATHE JavaScript 07 2 o @ LAY R Y KAtk 2 F
PRES NP ERpl P T P Op FLRTEEZIFRE JL N F R
3 M & K(HTTP request)FF » ¥ & A B RR > R RIR B2 7 M Rpige
BRI E RETEG e R RBERIRNTRE L BRHE LT ¢
A RPIRBAREEL G EFTRAIRIE R AR RELT L B R Rt F o perph
EE R R ETETNIEIS SRR R TN 3 R R S RO

BB ITNTBAT Y R H 2T RFEP U327 Ao
|

Light-Weight CSRF Protection by Labeling
User-Created Contents

Student: Yin-Change Song Advisor: Dr. Shiuhpyng Shieh

Department of Computer Science and Engineering
National Chiao-Tung University

ABSTRACT

Interactive website is the current trend of:the Internet, but it has also created
another opportunity for Cross-site request forgery (CSRF/CSRF). According to
OWASP 2010 Top 10[1], CSRF/CSRF was listed as one of the most serious web
vulnerability. Unfortunately, current protection approaches are not suitable when
CSRF attack can use AJAX (Asynchronous JavaScript and XML) under the same
website.

This paper presents a light-weight CSRF protection approach by introducing
quarantine and inspecting suspicious scripts to the server-side. Instead of filtering and
rewriting, our solution is based on labeling mechanism which helps web server to
distinguish malicious requests from harmless requests. Once the administrator of the
website indicates the critical services, the services that contain sensitive data or
privacy information about users, labeling mechanism can prevent CSRF attack
effectively without changing user-created contents (UCC). At the end of this paper,
we implemented the proposed scheme and evaluated the performance of the

implementation.

A FF”Q’F SRIFF S - FIARl RGEEYY 2 R R ‘hﬂlﬁﬁkﬁﬁﬁmﬁu
Hr fﬁﬁ*ﬁ &jj‘ﬁl% (VSRR > T 2 S A AEEO 15 A
L ‘ﬂ’"WJDIH NP o AR B VESHE R SN~ Vie S
=~ Mashi S5~ FERGSHT ~ SRS ERESS T R BT R S B
pugEE = fLag » = o ?J%ﬁﬁzﬁl? PR P PR B ARk
TR R UL Sy = G RS E VT -

SPFCTRISHP - Fallman > fl2 o @y 47 - ALAN > I 50 2 2puse ok -
B e S & “Fﬁ’ﬂ FURE (S RV TSR A PR R T,
7 YN =R PR~ o @«iﬂ[ﬁﬁﬁij Call In -

[FUIFR 2 for Gt (8 X RIZE 2RI S ~ RS~ By Hgp s ST
Michael ~ SKY ~ Pokei ~ §i fif. .. 5757 FRIG B[bgw;f S S SRE

M VRS~ AR Eﬁiﬁfﬁ' !

R 5 T e FY PRI R ERVE] s R TR A

BORITEA PV R > RURLZY 57 2O AL » A Sap s (] - 2 FIHD
RLfRpY > Nl B L

R TR S @R H e iﬁl*’ﬁ‘&/‘h%“ Hipag=
FAE T FROIRE S R AR SRR BT S MR
T -

Table of Content

jfg] El ... |
ABSTRACT ..uitteuiiitrenierteeeiereresiererssieressseressssssessssssssssssressssssesssssssnssssssnssssssnssssssnsssssanssssesnsssssanssessnnssesee 1
Sk SR]
TABLE OF CONTENT ..eeeutetteeeiereeneiereensereenssersenssesssnssesssnssesssnssssssnssesssnssssssnssssssnssssssnssessnnsssssnnssssennssseee v
LIST OF TABLES ... iteeuiiitteierteeeieteresieresssesresssessessssssenssssssnssssssnssessanssssssnssssssnssesessssesennssesennssessnnssssanne Vi
LIST OF FIGURES.cttuuiiitteeiertenniereensierennseerensseressssssensssssenssssssnssssssnssssssnssssssnsssssansssssanssssesnssessanssnee Vil
CHAPTER 1 INTRODUCTION ...ccccuiiiiennieirennieinenniersnnsieissssssssssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnnnns 1
1.1 USER-CREATED CONTENT ..uuuuuuuuuussnnsnnnnnnnnns 1
1.2 CROSS-SITE REQUEST FORGERY ... eitttieeeitieeetiteeestieeetaneeeesteeessnneesssneessnneesssneeessnneesssnesesssnneessnnnens 2
1.3 (0] N 121110 o 4
CHAPTER 2 BACKGROUND......c.cittetiiiieenieriensissiteioeisdseiieimeseessnnssessassssssnssssssnssssssnssssssnssssssnssssssnssssssnnsns 6
2.1 CROSS-SITE SCRIPTING .evvvvuunrestitestnnnnnseeesnnnnnnsnseessbessstnsioessessssmnmeseesssssssnmiesessssssmsmmeeessssssssnneeesens 6
2.2 SAME ORIGIN POLICY ..cevvvs it iiiiieessee b teseesatin b e s tastenssanneseeesessrsnnsesessssssssneseeesssssssnnneeesens 7
2.3 HYPERTEXT TRANSFER PROTOCOL. 1uuuevruuneeesuneeersineiinneesannneesssiitennnneessuenesssnneessneeesssnesessnneeessnneesennns 7
2.4 DOCUMENT OBJECT MODEL (DOM) .uurcittaitieeuneasieeereeeeessainsessseessseesssesssssesssessssessssessssessssessees 8
CHAPTER 3 RELATED WORK......citeeitimietncisiasisneensseisnssierssnssetsndessnssionessnssssssnssssssnssssssnssssssnssssssnssssssnnsns 9
3.1 INO SCRIPT POLICY cvvtevereeeeeeeeeeessedessas taumnnsssssssnnssss sassasessesssssssssssesssssssssssssesssssssssssnsesssssssssssssernrnns 9
3.2 HTTP HEADER MODIFICATION. . .ettuutettteerttuieeertneeersurerssneeesssneessssnserssneesssneesssneesssseeesssnneessneesens 10
3.3 SECRET VALIDATION TOKEN ...uietettiuueieseeeeetutnieaeeeeeeeenuanaseseesnssnnnnsesessnssnnnsessesssssnnssesessssnnnnnseeseees 11
3.4 JAVASCRIPT RESTRICTION ..evvtuteiirieeettneeersneeresneeresneeessnnsesssneesssneesssnnsessssnessssnesesssnsesssnneessnneesens 13
CHAPTER 4 PROPOSED SCHEMIEcccccotttuuiiiinnnieriennieinensieisensiersanssessansssssnssssssnssssssnssssssnnsssssnnsssssnne 14
4.1 YY1 0 =N 14
4.2 OBSERVATION ..vtuuteeeeeettuueieseeereretnueaeesersensnneseeeseensnnsasessssssssnnsesesensssssnesesessnssnnseesessesnnnnnseeseees 15
4.3 LABELING ..ttt eeeeeetuuueseeeeeeetauuaeeeeeeeeassnanaseeeseasssnnsnseeesnssnnnsseeessnssnnsssseeenssnnnnnseseesnssnnnnseesesennnnn 16
4.4 EXTENDING LABELS c.eevvereeeeerereeerererereeeeerereseeesessseseresssesesesesssssssssssssessssssresssessssssssssserssesssessresnrens 18
4.5 DETERMINE CSREF ATTACK .vvvvvvrererererereeereeereeeseseseresesssssesesesesssssssssesesssssssesesessssssssseserssesrsesersrmren 20
CHAPTER 5 SECURITY ANALYSIS ..couiiiiteniiiienniettenniertensiersenssersenssesssnssessanssssssssssssnssssssnnsssssnnsssssnnssssanns 21
5.1 NOTATION OF RBAC ...ceveeveiieeeeerereeeeereeereeeeeeererererereseseresesereresssesssesessressreserersserersrssersreresererereren 21
5.2 PROPERTIES ANALYSIS vvvvvererererererereeeseeesesssesesssssesssesssssesssesesssssssssssssssssssesssssssssssessssrssssesesessrsrene 23
5.3 INTEGRITY PROPERTY .evvvevererereeeeereeeeeseeesesesesesssssesssesssesesesesesssssssssssssssssssssssesssssesessssrssssesssessnssens 24
CHAPTER 6 IMPLEIMENTATION ...cccuiiittunieiienniernenniersanssersanssessanssessanssessansssssssssssssnsssssansssssnnsssssansssssnne 26

6.1 LABELING FUNCTION 11uuuueeeeetitttiieeeeeeeeetttteeeeesessssnneeeessssssannesessssssnnnnsesesssssssnnnsesesssssnnnneeessssesnen 26

6.2 IDENTIFY PAGE SESSIONceieiiiiiieeeeeieeetitieeeeereettataeeeessssstanaeeesssesstannesesssssssnnaseeessssssnnnseesssessnen 30
6.3 CHECK POLICY ctttuuieeeeeeetitieeeeeeeettteee e e e e eesaba e eeeeeesesabaaaeeessessasanseaessesranaseessssssanaeeessessnnnnneeeeees 30
CHAPTER 7 EVALUATIONcccteuiiieietenerenneeencreenerescsenserssssensersssssssesssssssssssnsessssssnsessssesnsessssssnsessnsssnnsns 32
7.1 ENVIRONMENT OF EXPERIMENT ..eituniiiiieeeiiiieeetiiee ettt eerttieeestnneeessnneesanneeessnneessnneessnneesssneeessnneesens 32
7.2 PAGE GENERATION OVERHEAD ...uuuueeeieetttttieeeeererersnaeeeessssstsnaesessssssmansesessesssnnaeeessssssssnaeeesssessnes 33
7.3 IMEEMORY CONSUMPTION .. ettuutettueettueesstueeetuneeetsnneesstneeessnneessssnsessnnseessnneesssneeessnneesssnneessnneesens 34
7.4 DEFENSE EFFECTIVENESS «..eeeetvvtttieeeeereeersneeseeersesssneaeeeesssssssnnaesessssssmsnnsesessssssssnesesessssssnnneeesssessnes 35
CHAPTER 8 CONCLUSIONceeueiiuieeenerenneeencreencrescsenserassssnsersssesnsesssssssssssnsessssssnsesassssnsessnsssnsessnsssnnsns 37
CHAPTER 9 REFERENCEcccuiiiteeniiiiennieiiennieiiensiensensierssnsesssnssssssnssssssnsssssssssssssnsssssnnsssssnssssssnnsssssnne 38

List of Tables

TABLE 1, DESCRIPTION OF SYMBOLS...evutuuuieeeeerersnuueeeeessrrsssneeesessssssnniesessssssssnneseesssssssnaesessssssmsmeesessssssssnneeseees 22
TABLE 2, MODIFIED FUNCTIONS AND PROPERTIES ...vuuuuuuuuunusunnnnnnnnnnnnnnnnsnnnnnnnnnnsnnsnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 28
TABLE 3, BROWSERS SUPPORT HTTPONLY ...uuuutuuuutuiuiuiuiuiuttitiittnaaaeaaaa s nnnnsanannsnnnnnnnnnnnnnnnnnnnnnnn 29
TABLE 4, ENVIRONMENT OF EVALUATION ...utuuuuuuuuueunnnnnnnnnnnsnnnnsnnnnnnnnnnnssnnnssnsnnnnnsnsssnsnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 32
TABLE 5, PROCESSING TIME OF EACH ACCESS ..vuvuuuuuuuuuuunnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnsnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 34
TABLE 6, MEMORY CONSUMPTION OF ACCESSING SERVICES ...uuuuuuuuuuuuunnns 34

Vi

List of Figures

FIGURE 1, THE DIFFERENCE OF WEB 1.0 AND. WEB 2.0 [25] 1uutiieieiiiieiiiiee e iiiee ettt site e sttee s st e e ssavaeeesaneee s 10
FIGURE 2, CUSTOM HTTP HEADER ...cccutteiutieeteeiteeeteesteesteesateesseesateaesseessteaanseesnseasssessnsessssessnsensnsessnsessnsensns 11
FIGURE 3, A SAFER SUBSET OF JAVASCRIPT ...vvvvvtvttueseesesesseessesesssssesssesssssssssssssesssssssesssesssessseresesesememermmmm. 13
FIGURE 4, MAIN IDEA ...uevteeeetiteeestteesstteeeesutteesssseeesauseeessstaeessssseeesansaeessnseeessnssesssnnsseessnsseessnssnessnsseessnsseeen 15
FIGURE 5, BROWSER AND COOKIE 1..uuvvtterutrteeesureeessueeeesaseessssseeessssseeessnsseessssesesssssesesssssesssssseessssseessssnsessnseees 15
FIGURE 6, A WEB PAGE WITH LABELS ...eteeuvteeesuteeesssureeesauseeesssseeessssseesssssseessssesessnssesessssseessssssessssseesssssssessnseees 17
FIGURE 7, TRANSITION PATH OF A SERVICE ..veeteuutreeesureeesauueessssteeessssseeesssneesssseeesssssesessssseesssssessssssssessssssessnseess 19
FIGURE 8, ALL TRANSITION PATHS OF WEBSITEvveeeeuureeesaureeessureeesssuseeesssneesssseeesssssesessssseesssssessssssssessssseessnseess 19
FIGURE 9, LABELING MECHANISM WITH RBAGCciiiiiiiiiiiiiiiiteitieieseesesesesessssseseessesesesesssssssssssessseseresersrerersmmrereren 23
FIGURE 10, DESIGN OVERVIEW OF LABELING MECHANISMeeteiutieeeesureeesnureeeessueeessasesesssseesssssessssssseessnsnsessnnseees 26
FIGURE 11, PUT RULE.JS IN HEADER SECTIONutteeeauereeesaueeesessreeesssnseeesnssnessssseeessnssessssnsssesssssesssnssssessnsneessnsseees 28
FIGURE 12, CRITICAL POLICY FORMAT ..e.uuuvteeeruteeesasseeesauseesesssseessssseesssssnesssssssesssssesssssssesssssseessnsseessnssseessnsseees 31
FIGURE 13, PAGE GENERATION OVERHEAD ...cceeutteeeeereeesaueeesesssueessssseeesnssnessssseeesssssessssnsseesssssesssnssssessnsnsessnsseees 33
FIGURE 14, MEMORY CONSUMPTION OF IFRAME ... st o o Lo H i i et esitee e sttt e e et e e seeane e s stteeeenntaeessnsnnassnnneaens 35

Vil

Chapter 1

Introduction

Cross-Site Request Forgery (CSRF/XSRF) is listed among the top 10 web
vulnerabilities in 2010[1]. Although CSRF attack is not as well-known as XSS attack,
it might cause more serious impact in Web 2.0 [2][3]. Social network websites combine
many services together and any members can make contribution to the website's
contents. Once CSRF can be used in conjunction with XSS (Cross-Site Scripting), the

whole website could be compromised in a short time.

1.1 User-Created Content

For social network website, the interactions between users and web server become
more complicated. According to'the concept of web 2.0, website allows users modify
website’s content, as called User-created contents (UCC). Users can create, adjust, or
delete the content of the web pages by themselves. Therefore, browser cannot
distinguish UCC from the content provided by administrator of website and trust in all
data from web server. Sometimes, members hope that they can create dynamic
contents, so JavaScript is required for creating dynamic HTML. JavaScript helps users
enrich the effects of their web pages and improve the communication ability among
users, but it also leads to unauthorized script injection attack. In order to ensure the
safety of web pages, administrator has to filter user input and eliminate suspicious
strings. As a result, filtering policies must not be too strict; otherwise members cannot
fully build web pages on their willing.

Secondly, a social network website merges services together, including album,
blog, guestbook, online shop, and Web ATM (Automatic Teller Machine) service.

Because services are integrated into one website, attacker can invade all services only
1

if one of services can be compromised [41] [43]. In the past, a successful attack
scenario is always from a malicious server to another website. If there are many web
services, attacker cannot breach all services at one time. But now, services are
combined together. Consequently, attackers take this advantage to inject malicious
scripts as UCC into victim’s website and wait for members to browse. This action
means that vulnerability is no longer “cross-site”. Thus, the detection mechanism in the
past is not suitable for social network websites.

It should be noted that JavaScript provided by UCC is not always malicious. Part
of scripts just show some animation or provide a better experience on user interaction.
Despite of these scripts are harmless, current solutions would block or modify them
due to the potential threat. These protection approaches are in conflict with the concept

of web 2.0.

1.2 Cross-Site Request Forgery

Cross-site request forgery (CSRF/XSRF).is one of web application attacks. It has
caused serious damage to famous websites [2][3]. Because the defense approaches of
XSS are more robust [15][26][31][34][39][37][43], stealing cookie becomes
impossible. Instead of stealing cookie, attackers take the feature of browser cookie
adding which called session riding. In cookie-based management, once user logins a
server and session key is not expired, the browser embeds cookie into HTTP request
header automatically. Attacker can spoof the payload of HTTP request and then
browser transmits request to the server [29]. With session riding, server cannot
determine whether the request is made by user or not. CSRF can do anything that user
can do, for example, send email, post article, modify profile, transfer money from an

account, or other services. Generally speaking, CSRF can imitate the user’s identity to

achieve services which is provided by server.

According to the browser-side language which is used by CSRF, the types of
attack can be classified into two types.

With HTML, CSRF can only send one HTTP request to server and cannot obtain
secret information in web pages. Due to the property of browser, HTML and JavaScript
will be dismissed once a HTTP request is issued. But HTML is not restricted by Same
Origin Policy (SOP). This property will cause that attacker can be launched from
another website instead of website which victims is browsing. And this kind of attack
can be triggered without JavaScript. Therefore, the defense of XSS cannot detect or
block it. For example, attacker can create a form with prefilled parameters and lure
users to click. The server cannot distinguish the request which is made by user or
attacker.

This kind of attack can be easily solved. Take apart a service into many steps and
each step needs browser to send a HTTP request. Attack will fail because HTML can
generate only one HTTP request. Another approach is to use additional information.
The additional information is generated ‘dynamically and cannot be obtained in
advance, thus attacker must send multiple requests.

With AJAX (Asynchronous JavaScript and XML), attackers can send multiple
HTTP request, as called multi-stage CSRF attack. AJAX is a new client-side technique
which combines HTML, CSS, DOM (Document Object Model), XML, JSON
(JavaScript Object Notation), and JavaScript together. HTTP requests can be sent
asynchronously in the background without being noticed. AJAX can also customize
part of HTTP request headers and read the whole HTTP response. These capabilities
make AJAX as a tiny browser which can obtain all secret information in the web page
and HTTP response header. As long as the malicious scripts can be designed well,

attackers can pretend to be a normal user and achieve anything they want in a website
3

[28][30][40][42]. Even more, once the malicious scripts can be stored in the server’s
database, CSRF can acquire self-propagation ability.

In the current solutions, JavaScript filtering or rewriting is the best way to defeat
multi-stage CSRF attack. AJAX belongs to JavaScript, so JavaScript restriction is
equivalent to limit ability of AJAX. However, filtering or rewriting costs high
overhead while translating from original JavaScript to safer JavaScript. Another
disadvantage is that functions must be provided by server. In conclusion, these

approaches decrease the functionality of original JavaScript.

1.3 Contribution

Due to the prevalence of vulnerability of web pages, websites need an effective
and flexible protection mechanism. This paper presents.a labeling mechanism which is
a server-side CSRF protection approach with light-weight access control mechanism.
Based on the concept of user-centered design and inspired by [34][37][45], server will
affix labels to each HTTP request invoked by user-created contents. Administrator can
monitor HTTP requests at server-side and decide whether these requests are malicious
or not. The most important this is that labels will not touch user-created contents.

We observe that existing websites are tired of filtering or rewriting user-created
contents because of unpredictable or unexpected parsing behavior. Therefore, we
propose a novel protection approach without sanitization. We ensures that UCC are
isolated correctly and server-side can know exactly all HTPP requests from UCC. To
be compatible with original JavaScript defined by ECMAScript [18], labeling
mechanism allows JavaScript syntax with little limitation instead of filtering or
rewriting. Since fine-grained protection policies, labeling mechanism can also

accurately block CSRF attack until sensitive data are accessed. We also formalize the

labeling mechanism by RBAC (Role-Based Access Control) [22] for integrity.
Labeling mechanism can help both administrator and members maximize the

utilization of resources from website.

Chapter 2
Background

2.1 Cross-Site Scripting

Cross-site scripting (XSS) is the most common vulnerability in the web
application. It makes use of the flaw in the web pages and attackers can inject malicious
scripts into web pages which served by trust web server. When surfing these pages,
browser will automatically execute malicious scripts in the page without victims’
permission. Since the script has the same privilege as the users, attackers can acquire
sensitive data from victims. XSS vulnerability has been classified into two categories.

One is called “Reflected XSS.”” This vulnerability has “non-persistent” feature,
because it depends on user to.trigger a series of attack. For example, the content of
dynamic web pages depends on‘the user input. Attackers often inject the codes they
want into the input field andlure the users to activate. Once users click on the link, or
button, the malicious code executes immediately-and reflects back to the users. The
most common situation is that attackers send some messages which contain dangerous
links or content to victims.

Another is called “Store XSS.” Malicious script stores in the database and
executes whenever users request data which is polluted. This kind of attack can be more
significantly than reflected XSS because malicious script is rendered more than once
and all visitors become victims while browsing the web page. And the most important
thing is that attacker does not need to face to victims. For example, attackers post a
message containing malicious scripts on the forum. As long as the malicious content

has not been removed, every visitor will execute scripts when watching this page.

2.2 Same Origin Policy

To prevent XSS vulnerability, the most common method is to filter user’s input. It
is effective in the traditional web site. Netscape also introduced “Same Origin Policy”
(SOP) to enhance the resistance of XSS. This policy restricts a script to can only access
the attribute and method from the same site. It prevents any information from one origin
to another, but it has not limitation in the same origin.

An origin is composed of application layer protocol, domain name, and TCP port.
Same origin policy means that these three values must be the same; otherwise,
browser-side programming language, such as JavaScript, cannot access the method or

properties of the website.

2.3 HyperText Transfer Protocol

HyperText Transfer Protocol (HTTP) is an application layer protocol between
browser and web server. It is based on request-response standard. Once browser wants
to transmit data to web server or obtain information from web server, a HTTP request is
issued by browser and a HTTP response comes from web server.

In a HTTP request, there are usually two methods for transferring data in the
modern web application. GET requests a specific resource on the web server. If GET is
used for operations, it would cause side-effect, such as information leaking, cross-site
request forgery. Attackers can make use of HTML sending HTTP request with GET.
Because of HTML is not restricted by any policies, browser would send requests as
attackers expect. The second method is POST. POST can submit data to update
resource in the web server. In the HTML, HTTP request with POST is harder to forge
than GET. It can be generated by HTML form tag only, but AJAX can simply generate

a HTTP request with POST or GET.

2.4 Document Object Model (DOM)

Document Object Model (DOM) is an important structure of HTML, XHTML,
and XML. As W3C speaking [4],

“The Document Object Model is a platform- and language-neutral interface that
will allow programs and scripts to dynamically access and update the content,
structure and style of documents.”

In other words, all objects in the web page are DOM elements. For convenient,
JavaScript can access DOM freely, including events, HTML tags, and CSS
(Cascading Style Sheets), etc. Moreover, JavaScript can transform a static web page

into a dynamic web page by modifying DOM immediately.

Chapter 3

Related Work

In recent years, there are many solutions to prevent CSRF attack [33][39]. CSRF
is an attack that tricks victims into browsing a web page that contains malicious scripts
which can forge HTTP requests. At the server’s point of view, establishing a
well-defined access control mechanism to a service is the most important thing.

According to this concept, solutions can be simply classified into following categories:

3.1 No Script Policy

Website usually does not believe scripts which are composed by users. Therefore,
UCC are considered as suspicious.and.administrators.do not allow users to upload
scripts. Users are only allowed to write some text on the web page. Whenever
JavaScript is going to upload, the:server eliminates or blocks them by sanitization
method on strings [15]. On the basis of this approach, any client-side script language
will be blocked, including HTML, JavaScript, and AJAX. Hence, it is good to defeat

any client-side scripts attack.

Web 1.0 Web 2.0

“the mosthy read-onhy Web” the wildly read-write Web”

250,000 sites 80,000,000 sites

S
e publizhed
publifhf;l:l generated content Lser
conten content generated

content

it gttt

Tid LA B kg

g AL LA LA
il b ks Dt f i

45 million glolxal users 1 billion+ global users
1996 2006

Figure 1, the difference of Web.1.0-and. Web 2.0 [25]

But in the web 2.0, the user interaction and experience is very important factor to a
social network website. With too-much.limitation on the client-side script language,
users cannot enrich their web pages; moreover the whole website is just like going back

to web 1.0. Everything in the web page is static and lifeless.

3.2 HTTP Header Modification

Based on the behavior of “cross-site”, CSRF attack is launched from a malicious
website to intrude another website. Hence, the solution is how to detect “cross-site”
behavior. Without modifying client and server, Server can depend on HTTP Referrer
header which stands for the previous URL browser surfed.

The potential problem is that HTTP Referrer header might leak the sensitive

information that impinges on the privacy of users when cross website. An URL
10

sometimes contains GET parameters, for example:

® http://www.google.com.tw/search?hl=zh-TW&aq=secret

From the URL, we can know that user just enter http://www.google.com.tw/ and search

a keyword “secret.”

Time Duration Total Duration Size Method Status URL Load Flags 2]
174229897 O 0 1 k0w GET pending ++ hitpsfimedl. google comimail/Pui=24i+ LOAD_BACKGROUND
3 LOAD E H--r

174229909 Dms (I uknown GET pending ++ hittps:medl google comimadl/Pi=23 -+ LOAD_BACKGROUND

174220912 Oms (ms wknown GET pending ++ hitps:mail google.com/mail/Mi=24i+ LOAD_BACKGROUND
Request Header Name Request Header Value Response Header Hame Response Header Valug

Host 1mail google com Status 0K - 200

ser- A gent Mazilla/5.0 {Windows; T; Windows NT 5.1; zh-TW ;v | ||| Content-Type teact/pladn; chersst=ut -8

Lecept text/htmlapplication’diml+xnlappl hanlyy=0 9,4+ | || Cache-Control na-cache, no-store, macc-age=ll, must-revalidate

Lecept-Language sh-twyen-usy=0. 7,enyy=0.3 Pragma no-cache

Lecept-Encoding gzip,deflate Expires Fri, 01 Jan 1990 00:00:00 GMT

Lecept-Charsst UTE-B* Date Mo, 17 May 2010 09:43:14 GMT

Keep-Alive 15 ~Frame-Oplions ELTOWALL

Connection keep-alive E-Content Type-Options nosniff

Content-Type appliationse-wyw-form-ulencoded; charsst=1 TE-8 H-ER5-Protection 1; mode=hlock

Referer httpa:timadl poogle commailMui=2&view=isfname=jsée || || Content-Length 11

Content-Length 8l Server GEE

Conkie S=gmail=_ZPTbISSGOFDMpAHTE v gmproncy=I VLA

Pragima no-cache

Cache-Contral no-cache

POSTDATA comnt=] dofs=THreql_type=tedereqD_valve=simonssiinn-+

Figure/2,-custom HTTP Header

Some papers propose custom HTTP header to figure out this problem [32][38]. For
example, “Origin Header” prevents cross-site request forgery by modifying browser.
This header only appears while sending .a HTTP request with POST method. In the
content of origin header, there does not contain sensitive data, like GET parameters or
the path after domain name. Server can follow this header to verify that whether the
source URL is dangerous or not.

This approach cannot apply to attack under the same website. Because the
content of origin header has information about domain name, server cannot recognize
who create the scripts and decide whether scripts should be block or execute.
Furthermore, it is not convenient for users installing extra add-on or plug-in in order

to browse a specific website.

3.3 Secret Validation Token

11

http://www.google.com.tw/search?hl=zh-TW&q=secret
http://www.google.com.tw/

Instead of modifying HTTP request header, some researches implement a secret
token mechanism to verify the legality of HTTP request, such as NoForge [5], CSRFx
[6], and CSRFGuard [7]. When a client connects to server, this mechanism will
generate and dispatch secret token to each other. That is both server and client have the
same session key. Every time the client wants to communicate with server, secret token
in the client-side will be verified by server. Secret token is useful for blocking forged
HTTP request, but the location of secret token is a severity problem. In the client-side,
browser embed secret token in the HTML tag, as following:

o <>

® <form>

® <iframe>

® <button>

® <meta http-equiv="refresh” >

To modify these tags will cause some problems. First of all, it’s hard to cooperate
with DHTML. Dynamic HTML means the content.of web page could be changed in the
runtime. If a HTML form is generated at runtime, server cannot generate and send to
browser immediately. As the result, the secret in client and server are asynchronous.
Secondly, secret token will be embedded into “src” attribute which is equivalent to
URL. But, URL is not protected well. Attacker can know the full URL by setting up a
malicious website or using document.URL in JavaScript. Lastly, the most common
problem is that all of these tags are DOM elements. In DHTML, JavaScript can access
whole DOM tree. Thus, JavaScript will be prohibited when secret token exist in the

same page.

12

3.4 JavaScript Restriction

As mentioned above, we can know that JavaScript is the biggest problem.
Therefore, some researchers want to build a better JavaScript. These approaches
depend on filtering or rewriting the dangerous functions or properties in the original

JavaScript [36].

ECMA-262

Figure 3,'a safer subset-of JavaScript

By doing this, define a much safer subset of original JavaScript. But there are
some disadvantages in filtering or rewriting. For the user, functions are provided by
server’s API. Users cannot create new functions as they want. As a result, the freedom
of JavaScript is restricted. To meet the security, although these papers always provide a
formalization of safer-JavaScript, it can be broken sometimes. In [8], authors find
vulnerabilities in FBJS [9] and ADSafe [10].

Rewriting is a hard work because of the properties of JavaScript. The most severe
problem is the overhead of translation. In a client-server communication, time is the
critical factor for users. However, filtering or rewriting is a time-consuming matter.

Although its defense is very effective, users always hope for faster processing time.

13

Chapter 4

Proposed Scheme

To prevent CSRF attack, we establish a labeling function and construct UCC
quarantine policy. The function is used to isolate user-created content and the policy
can propagate labels with request from user-created content. CSRF attack is
discovered when a request is labeled with untrusted and tries to access critical services
which contain sensitive data or privacy information about users. In order to proof the
integrity of proposed scheme, we use RBAC (Role-Based Access Control) to

formalize and verify.

4.1 Main ldea

Browser always believes contents of the web page from web server even if
authors of contents are not trusted by viewer. Once an attack can inject malicious
scripts into web page, browser executes malicious scripts automatically without
viewer’s permission. This behavior causes severity problems, including CSRF attack.
To prevent CSRF attack, we want to distinguish untrusted contents from trusted
contents and prohibit untrusted contents from accessing web services which contain

sensitive data, as show in Figure 4.

14

Web Server Browser Web Page

f Service 1 «—o(Trusted \u ox -
a. Content -%Qr —

Service 2
g T
a T~

. Untrusted — |
Service 3 Content — = 1
| N |
Service n

Figure 4, main idea

4.2 Observation

While surfing Internet, browser plays an important role between users and server.
It has to manage session key which is called-“cookie” and ensure the same origin
policy is applied correctly. Server displays the content of web pages upon cookie. For
example, if users want to see-a web page with private information, they must provide
relative session key which has enough-rights. To-avoid rights confusion, browser uses

one cookie at a time in a website.

Web
Server

Oh, you are Simon!

Figure 5, browser and cookie

Browser embeds cookie into HTTP requests automatically because of convenient,
like Figure 5. Web server receives HTTP request and generates response which

depends on cookie. In the process of communication, information which is acquired

15

by web server comes from HTTP request instead of web page. Therefore, web server
cannot exactly know the status of web page in the browser and attacker can just focus
on how to build a flawless HTTP request rather than the whole web page.

Another observation focuses on the features of CSRF attack. The most important
feature of CSRF attack is session riding. CSRF attack needs session to make a forge
request with victim’s identity. If the victim does not login website and web server
does not know the identity of victim, CSRF attack is meaningless and cannot be

successful.

4.3 Labeling

In a web page, contents can be classified into two types. One is created by
administrator of web server, another is-created by users. Contents created by users, as
called “User-Created Content” (UCC), are the source problem of CSRF attack. But
parts of UCC are harmless, such as contents which are created by viewer or does not
contain malicious scripts. This kind of UCC should be classified into trust contents.
The reason is that a CSRF attack:is - meaningless when both identity of attacker and
victim are the same. Website can determine whether contents belong to current user or
not by session, such as cookies. According to session, we can divide contents into two

categories:

® Trusted: contents are created by administrator of website or current viewer

® Untrusted: contents are created by other users

Therefore, a labeling function is used to separate contents and ensure labels cannot be
disrupted. The goal of labeling function is that every HTTP request must be labeled

from browser, too. However, there may appear non-labeled HTTP request in some

16

situation, such as user login, open new window, cross-site request, etc. These
situations sometimes do not have session in HTTP request header, so web server
should help them obtain cookies. But, if there exists session in HTTP request header,
it can be considered as cross-site attack. In [11], the author proposed a simple and
effective method for preventing cross-site attack. To build an essential page without
any user’s input can defeat cross-site attack before accessing normal web pages. We
can extend this idea for blocking unknown HTTP request. Once a non-labeled HTTP
request appears, server should redirect it to a non-UCC web page and take no
parameters (GET or POST). By doing this, the page will not suffer CSRF attack from
unpredictable user input and server can assign new cookie and label to browser. A
cookie might contain following objects:

® User information: verify the identity of user

® Secret token: a temporary session key to valid freshness

® Session key: the commonkey used to keep login status

For different labels, cookies should'not be the same.

Trusted
Trusted /= e
=
C
41
) 3
Untrusted

Figure 6, a web page with labels

17

In addition to labeling contents of web page, we also have to establish access
control mechanism for labels. In a web page, there are many trusted and untrusted
labels in Figure 6. If contents of trusted can be interfered by untrusted, attacker can
inject malicious scripts into benign scripts. As a result, malicious scripts can issue
HTTP requests with trusted label. In order to prevent this situation, labels have
following restriction:

® Trusted label can access trusted and untrusted label freely.

® Untrusted label can only access contents with untrusted label.

® Once contents of trusted label are polluted by untrusted label, its label

becomes untrusted, too.

Although labeling function can help server distinguish UCC from trusted contents,
there are many challenges in implementation. Because of modifying server-side only,
we must properly use JavaScript and built-in-functionalities to reach restrictions and
dispatch different secret tokens to:eachlabel. We will discuss these challenges in

section 6 in detail.

4.4 Extending Labels

For multi-stage CSRF attack, labeling function is insufficient and needs more
defense mechanisms. Because attacker and victim are under the same website, web
server cannot depend on same origin policy or source information embedded into
HTTP request. Because a multi-stage service requires a sequence of HTTP requests,
as show in Figure 7, label should be the same during the process of accessing service.
The process of accessing a web services is called transition path. Labeled transition
path can help server determine that a series of requests are going to launch attack or

just harmless.

18

Options

New Topic
. HI He Ih es

M <uhecribe
LATEST POST B subscribe

FORUM TOOLS

Submit] THES

Figure 7, transition path of a service

HTTP defines lots of useful header and methods which can obtain information
about browser status. Referrer header, GET and POST method in HTTP request can
help web server know exactly the current URL and the next URL of browser.

® Referrer header: an URL stands for previous web page which issue this

request

® GET method: retrieve information from URL

® POST method: upload resource to URL

If two URL are session-dependant, they should be considered as a minimum
transition path. Session-dependant means that two pages share the same session. To
build a complete transition path, web server connects these minimum transition paths
upon sessions. By this way, we can-catalog requests to build all transition paths, such
as Figure 8.

PPN
oro

Figure 8, all transition paths of website

Once we have all transition paths, another challenge is to decide which transition
path is multi-stage CSRF attack. By observation, attackers inject malicious scripts
into UCC and wait for victim browsing. Therefore, we can know that a transition path

invoked by a HTTP request with untrusted label should be noticed; nevertheless, parts
19

of them are harmless.

To defeat CSRF attack accurately, administrator of website should define a subset
of web services which will access sensitive data or privacy information about users.
When an HTTP request is issued, web server should check the label of request every

time to guarantee the integrity of critical services.

45 Determine CSRF Attack

As mentioned above, attacker injects malicious scripts into honest website and
waits for victims to browse the vulnerability web page. Labeling mechanism can
quarantine UCC and separate the untrusted part of contents. Once the malicious
scripts launch attack, all requests are-tagged with. untrusted labeled. Furthermore,
administrator creates the protection-policies. of critical services and stores them in
database. Therefore, we can block CSRF attack effectively without modifying UCC if

an HTTP request is tagged with untrusted label-and wants to access critical services.

20

Chapter 5

Security Analysis

As mentioned above, our proposed scheme describes the concept of CSRF
protection approach. To prove the integrity, we use role-based access control model
(RBAC) to verify labeling mechanism. Although there are many good information
flow access control model [12][13][27][35][43], our concept of preventing CSRF
attack is simpler than system level access control. We focus on separating contents by
trusted and untrusted authors instead of treating content as a unit. Hence we choose a
role-based access control model.

First of all, we introduce notations in RBAC and than these symbols are
connected with labeling mechanism. We discuss.the properties of security information,
confidentiality, integrity, and availability in RBAC. In‘the end, we formalize CSRF

attack and our proposed scheme by RBAC.

5.1 Notation of RBAC

RBAC (Role-Based Access Control) is a well-known access control model [31]
and ensure the integrity and confidentiality of a system. In this section, we will
introduce symbols of RBAC in Table 1.

There are three basic components in RBAC, Subject, Roles, and Objects. Subjects
represent user, program or a basic unit, even a network computer. In our scheme,
subjects are contents in a web page and contents can be classified by the identity of
author. A role is a collection of job functions and dispatches permissions to each
subject. We divide contents into two roles, trusted and untrusted, by authors’ and
current viewer’s identity. The procedure of separating subjects is written as AR(S).

RA(s) means that one subject can perform one or more roles, but it can only use one
21

role at a time.
Obijects stand for the target of a program or the destination of execution path.
Web services can be considered as objects because contents make use of browser for

accessing resources in a website.

Symbol Description
Subjects (S) User, program, computer, or a basic unitin a system
Roles (R) Job function or title which defines an authority level
Objects (0) The resources in a system
Transaction (T) Atransformation procedure to access resources
AR(s) The active role is the one that the subject s is current using
RA(s) A subject s can be authorized to perform one or more roles
TA(r) Arole r can be authorized to perform one or more transactions
exec(s, t) true if subjects s can execute transaction t at the current time,

otherwise it is false

Table 1, description-of symbols

Transaction is a transformation procedure plus a set of associated data items. To
speak simply, it’s a transition path of web pages for reaching an object. Each role may
be authorized to perform one or more transactions, TA(r). In addition, roles can be
composed of roles. In other words, a higher level role can control all transactions of
lower role. The most important symbol is “exec” which describes that whether a
subject can execute a transaction or not under basic rules. Our proposed scheme can

be drawn as Figure 9.

22

Objects (0) Roles (R) Subjects (S)

Web services Authors Contentsin web page
Service 1 -— @ - — L
Service 2 / [

S201A49S paziwinda

Service 3 C——
———1

Transaction
Authorized

Servicen

Figure 9, labeling mechanism with RBAC

5.2 Properties Analysis
In information security, there are three security goals: confidentiality, integrity,
and availability. Now, we discuss the relationship between the three properties with
role-based access control in ‘our proposed scheme. As mentioned above, “exec” does
not provide the rules of decision whether a procedure of accessing is legal or not.

Therefore each transaction and subject is restricted with three basic rules:

* Role assignment:
— Vs:subject t: transaction,(exec(s,t)=AR(s) = D).

Role assignment rule complete the confidentiality property. Confidentiality means
that the secret information should not be accessed by unauthorized individuals or
systems. In RBAC, each subject must be assigned to a role or roles. That is to say,

contents cannot access web services if browser does not have session with the

website.

23

* Role authorization:
— Vs:subject, (AR(S) € RA(S)).
Role authorization rule can give the flexible ability to the system. In the reality
environment, the active role of a subject changes frequently and this rule defines the
changing is in scope. For labeling mechanism, the role of UCC depends on current

viewer’s and authors’ identity. The changing of current viewer’s identity affects the

result of dispatching role for contents.

* Transaction authorization:
— & subject, t: transaction,(exec(s,t)=t e TA(AR(S)).

Transaction authorization rule ensure the integrity property. Integrity is the term
used to prevent authorized roles from executing improper transactions. For example,
CSRF attack disrupts the victim’s session with website and mimics the victim’s
identity to access web services. In RBAC, transaction authorization rule ensures that

all transaction must be executed with‘proper authorized role.

Availability assures that resources on the website should be available when they
are needed. Administrator should give a guarantee of web services operating normally
in any situation, including power outages, hardware failures, and system upgrades.

However, this property is not in RBAC and CSRF attack does not break availability.

5.3 Integrity Property

In a CSRF attack, victim’s browser will be forced to send requests to website by

malicious scripts, as if requests were part of the victim’s interaction with the website.

24

Browser leverages the session, such as cookies, and malicious scripts disrupt the
integrity of the victim’s session with website. To formalize CSRF attack by RBAC,

the result shows as following:

® CSRF :=exec(st) is true only if t ¢ TA(AR(s)), where sesubjects, te

fransaction

Obviously, CSRF attack violates transaction authorization rule. According to
labeling mechanism, untrusted contents will be tagged with untrusted label and cannot
access critical services. For current viewer, malicious scripts which can invoke CSRF
attack are always embedded in untrusted contents. As long as we can ensure that
malicious scripts cannot change or escape from the label, CSRF attack will never
appear. Thus, the most important thing is to implement labeling mechanism with

transaction authorization rule;

25

Chapter 6

Implementation

In section 4, we discuss that how to effective defeat CSRF attack with JavaScript
functionality preserving at server-side. In order to prove that the proposed scheme is
operable, this section will discuss the overview of labeling mechanism and focus on
the challenges of implementation.

Labeling mechanism can be divided into two components in implementation,
labeling function and quarantine policies. In Figure 10, we can see the position of
components in reality situation. Note that, the labeling function and labels are

generated from server-side.

Client-side Server-side
Trusted Untrusted | =——————
Contents Contents h Services

Labeling Function —_— Quarantine Policies

Figure 10, design overview of labeling mechanism

6.1 Labeling Function

Labeling function has three requirements. The first one is to distinguish untrusted
contents from trusted contents. And the second is to ensure that this relationship will
not be broken by untrusted contents. The third requirement is to enforce every HTTP
request must be tagged with corresponded label.

About the first requirement, web server can preprocess the content of response.

According to the discussion in section 4.3, if there are any data uploaded by other

26

users, they should be tagged with untrusted label at first. In current website, web
server stores data with author’s identity, uploading time, and extra information in
database. When a web page is requested by browser, web server can quarantine UCC
by analyzing the identity of data. For untrusted part of UCC, web server should isolate
untrusted contents by HTML iframe tag. In other words, untrusted contents are placed
into iframes. The properties of iframe make sure that communication between trusted
and untrusted label is still alive and all requests will be affixed with the same HTTP
referrer header from iframe. Even if untrusted contents generate elements dynamically,
HTTP referrer header will not be affected. Therefore, web server can dynamically
generate response with iframe depend on identity provided by browser.

The second requirement is to restrict the access ability of UCC. Because iframe
can communicate with parent node under the same website, we must setup a series of
rules to restrict communication ability of UCC at client-side. Because our proposed
scheme does not modify browser, we have to take use of JavaScript properties for
restriction. JavaScript allows functions overriding-and property redefine. For a
configurable function or property, we can just assign a new object to override it. But
some properties are non-configurable. In [14], authors use _ defineGetter_,
__defineSetter__, and Function.apply for changing the behavior of function and
property. Redefining getter and setter is a useful skill for hiding non-configurable

property, for example, “document.referer.”

Functions

XMLHttpRequest.open Function override
XMLHttpRequest.send Function override
Property

27

document.cookie Hide property
document.referrer Hide property
window.parent Assign new object
window.top Assign new object
window.opener Assign new object
window.self Assign new object
document.parentNode Return null by default

Table 2, modified functions and properties

In Table 2, there are four elements of window should be reconfigured because
these elements let iframe access parent node’s resource. As long as trusted label is
parent of untrusted label, untrusted fabel has no chance to access trusted label. To
make sure that UCC is restricted by our rules, we can create a rule.js which is placed
at <head> section [14] [15]) and put other UCC in <body> section. Although the
javascript file might be loaded many times, browser has cache mechanism for
reducing the overhead of loading the same-file. With this method, there is no way to

access trusted label in an iframe.

E«:html}
—|<head:>

1

2

3 <zacript src="rule.js" ¥ LfScripts
4 <title> Test Page </title>

5 - </ head>

3

7 [H<hody:

g Contents. ..

=]

- </ hody>
10 -/ htmls

Figure 11, put rule.js in header section

But, here comes another problem — if untrusted label include a frame which

contains trusted label, untrusted label can access trusted label. In reality situation,

28

untrusted label can create another window object, an iframe object, and include
trusted label page without any restriction. Because of no limitation on child node,
untrusted label can access trusted label without obstruction. HTTP referrer header and
function overriding can simply figure out this problem. To include a trusted label
window means that browser has to send HTTP request and retrieve the sensitive data.
Once a HTTP request is issued, browser will automatically embed current URL as
HTTP referrer header and server can know whether request is trusted or not depend
on referrer header. Current browser supports HTTP referrer header which cannot be
modified by AJAX [16]. For privacy concern, we setup a rule for disable JavaScript
access to document.referer. To avoid potential threat, web server should make use of

HTTPonly [16] [17] for protecting cookie. HTTPonly disallow JavaScript access to a

cookie.
Browser Version Prevents Prevents
Reads Writes
Internet Explorer | 7 + YES YES
Internet Explorer | 6(SP1) YES No
Mozilla Firefox 3.0.0.6+ YES YES
Opera 9.50 YES NO
Safari 4.0 YES NO
Google Chrome | Beta YES NO

Table 3, browsers support HTTPonly

To meet the third requirement, we must know all methods that can send HTTP
request to web server. With HTML, every tag which contains URL can be treated as a
HTTP request, for example, <a>, , <meta>, and <form>, etc. All of them will
send HTTP request with referrer header. Hence, we can use referrer header to verify

its label. By changing the path of URL, web server can easily know the label of

29

request. Apache modules support “AliasMatch Directive” which can map URL-path
to local files. With this module, administrator does not need really change all paths.

AJAX has customizing HTTP header ability, so we can override
XMLHttpRequest function and attach a label on AJAX HTTP request. Overriding
XMLHttpRequest function guarantees that the label cannot be overridden. Although
referrer header can help us, customized header can ease off the overhead of
server-side processing.

JavaScript defined “delete” operator can erase a function or property. When a
built-in function or property is deleted, the function overriding loses efficacy and
built-in function or property goes back. To prevent this situation, ECMAScript 5

edition [18] introduce “strict mode”_ [19] which can disable delete operator.

6.2 ldentify Page Session

Now, all browsers have tab function. Each tab stands for a window and they do
not interfere with each other. However, web-server only recognizes HTTP request
which does not contain information about tab. If we identify the session without
considering tab, different tab requests cause false positive sometimes. In order to
avoid this situation, cookie path can solve this problem. Different path can setup
different cookie. This method is compatible with the 3™ requirement of labeling

mechanism using the path of referrer header.

6.3 Check Policy

At server-side, administrator of website should define policies which describe
critical services. In popular social network websites, they have self-checking

mechanism between each web page. In other words, we only need to tag correct label
30

on begin page and check end page. A policy format sketches as Figure 12.

The database of critical services is very convenient for administrator to add, delete,
or adjust. Administrator only needs to setup the final web page of a service and the
parameter of GET and POST. Once an untrusted label request is going to access one

of web pages in critical database, the request should be block immediately.

URL GET POST
/trust/post.php Opt=submit; *
Critical | /trust/mail.php ; Name=;value=;
Services
[trust/mesg.php ; Content=;

Figure 12, critical policy format

When a CSRF attack is detected, the result of detection is forwarded to web server.
Administrator can acquire the result by calling “begin_check()” function implemented
in labeling mechanism. Therefore, this'scheme can be deployed easily by adding three

lines to each web page with PHR and construct untrusted iframe elements.

31

Chapter 7

Evaluation

We conducted experiments to evaluate performance overhead of our proposed
scheme. Result of the evaluation fall into three categories: time overhead, memory

usage overhead and defense effectiveness.

7.1 Environment of Experiment

First of all, we show the environment of evaluation. The server-side and

client-side environment are described in Table 4.

Server-side:
CPU Intel(R) Xeon(R) 3050 @ 2.13GHz
Memory 1024 MB

Operating system<| FreeBSD 8.0-RELEASE #1

Web server Apache 2.2

PHP 5.2.12 + MySQL 5.2

Client-side
CPU AMD Athlon 64 X2 4200 @ 2.2 GHz
Memory 2048 MB

Operating system | Windows XP SP3

Browser Firefox 3.6.3

Table 4, environment of evaluation

Each test web page includes “check.php,” an 8.8KB file without compression.

And the untrusted iframe has to include a JavaScript policy file, rule.js. The size of

32

rule.js is 4.4KB and the line of code is 146. It is also uncompressed.

7.2 Page Generation Overhead

To evaluation page generation overhead, we modify the web pages of Facebook
[20] and MySpace [21] by ourselves. These social network website are very popular
now. We create a service which contains four essential web pages. And browser surf
the service over one thousand times.

The page generation overhead of modified Facebook service is range from 1.3%
to 2.0%, but averaging a modest 1.6%. The modified MySpace service cost 1.8 % on
average. The communication between browser and server is affected by the status of

network connections, so we eliminate some irrational data which take less than 0.1%

of result.
12500
12000
M Original
11500
11000 - M Proposed
Scheme
10500 -
m Facebook MySpace

Figure 13, page generation overhead

We also measure the exact time of each access between labels and services. We
can see that the execution time is very low and users will not feel the latency in Table
5. The execution time consists of enforcing JavaScript rule file, PHP execution at

server-side and database query. But the last one, database query time, depends on the

33

architecture and the size of the website. The database’s size of popular social network
website could be very huge and a data needs more time for querying, but database
cluster system [23] and cloud computing technology [24] can decrease execution time

effectively and make database query in real time.

Tnitiator Service | Frocessing Time
(ms)
Trusied Critical 20
Content |\ Critical 29
. Critical 35
C
oment | Non-Critical 57

Table 5, processing time.of each access

7.3 Memory consumption

To calculate the memory usage, PHP provides memory_get_usage function for
measuring the amount of memory allocated to PHP. We calculate the difference

between memory usage of original architecture and policy-enforced in Table 6.

. . Memory Consumption
Imitiator Service (Kbytes)
Trusted Critical 89.07031
Conmtent | \1on-Critical 88.36719

atrustad Crifical 91.07813
Content | \on-Critical 91.36719

Table 6, memory consumption of accessing services

34

Another memory usage is HTML iframe tag. Because of our proposed scheme,
iframe is used to quarantine untrusted labels and a web page might contain many
iframe tags. Therefore, we calculate the memory consumption of an iframe in Figure
14. Each iframe costs 0.15MB on average. And the number of iframe inside a web

page needs 10 at most by our observation in current websites.

200

—_
s
e
7;150 _/'
0o
P
> 100
>
1Sy
o
€ 50
(]
b
0
SN ON AN DO A NN AN DO A NOOOOWN A NM
NN MNOMWMOOWOMmUWOWOW-ETMmUOUOOOAd S OoOOANSN~NONWLNO
T AN AN AN AN OO N TS DD DN O O O
of iFrame

Figure 44, memory-consumption of iframe

However, parts of memory consumption sometimes are affected by the content of
web pages and the structure of website, especially in social network websites. In

conclusion, memory consumption of both server-side and client-side are acceptable in

current environment.

7.4 Defense effectiveness

The goal of our defense is to be effective against a variety of CSRF attacks. This
section will discuss all situations about the preventing CSRF attack.

CSRF attack in different websites: A traditional CSRF attack means that victims
must visit the malicious website first, the malicious script can forge an HTTP request
and the browser of victim is forced to send this HTTP request. In our labeling
mechanism, we can detect login CSRF by examining HTTP referrer header. In current

browser, HTTP referrer header cannot be modified by JavaScript or HTML. Therefore,

35

we can use HTTP referrer header to detect all forged HTTP requests from different
websites, for example, [44] makes use of the flaw of Ebay. In this case, labeling
mechanism can easily block forged requests by checking HTTP referrer header.

There is a similar CSRF attack called “Login CSRF attack [32].” Its concept is to
override the cookie of the victims. By observation, login page is the most dangerous
page of a website because it often lacks protection. However, HTTP referrer header is
a built-in header, so the login page is protected as well.

CSRF attack in the same website: This kind of attack often cooperates with XSS
and attacker does not need to set up a website. Attacker uploads malicious scripts to
honest website’s database at first. When victims surf the polluted web page, victim’s
browser will execute malicious scripts automatically. Attacker takes advantages of
AJAX which can create HTTP.request and customize HT TP request headers for
forging HTTP requests. To prevent multi-stage CSRF attack, labeling function ensures
that UCC is isolated and every HT TP request is tagged with corresponded label. Once

all forged requests are captured,.CSRF attack can be blocked easily.

36

Chapter 8

Conclusion

In this paper, we pointed out the root problem of CSRF attack and introduced the
severity of CSRF attack in current social network websites. After surveying current
solutions, we found a novel approach that could defeat multi-stage CSRF attack
effectively.

According to the root of the problem about CSRF attack, we proposed a
light-weight labeling mechanism protection approach. This approach takes advantage
of built-in methods and properties to reduce performance overhead instead of filtering
or rewriting the suspicious strings. The administrator only needs establish policies for
critical services and inserts suspicious_contents. into iframe tag. To fully utilize
benefits of web 2.0, we maximize the usability of JavaScript and AJAX with little
restriction. Users can still “use the original JavaScript and AJAX syntaxes and
semantics under labeling mechanism. For convenient (in convenience), we provide a
safety website without altering the ‘browser. The members do not need to install any
plug-in or add-on for a specific website. In conclusion, the proposed scheme could

prevent CSRF attack without blocking website’s interactive contents.

37

[1]

[2]

3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Chapter 9

Reference

OWASP, “OWASP Top Ten Project,” 2010. Available:
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Petko D. Petkov, “Google GMail E-mail Hijack Technique,” 2007. Available:
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/

S. Kamkar, “I’'m popular,” 2005, description and technical explanation of the
JS.Spacehero (a.k.a. “Samy”) MySpace worm. Available: http://namb.la/popular
World Wide Web Consortium, “Document object model (DOM) level 2 core
specification,” 2000. Available: http://www.w3.org/TR/DOM-Level-2-Core/

N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request forgery
attacks,” Securecomm and Workshops, 2006, pp. 1-10.

Mario Heiderich. CSRFx, 2007. Available: http://php-ids.org/category/csrfx/.
Eric Sheridan. OWASP CSRFGuard Project; 2008. Available:
http://www.owasp.org/index.php/CSRF_Guard.

S. Maffeis and A. Taly, “Language-based isolationof untrusted Javascript,” IEEE
Computer Security Foundations Symposium, 2009, pp. 77-91.

Facebook, “Facebook JavaScript.” Available:
http://wiki.developers.facebook.com/index.php/FBJS

D. Crockford, “ADsafe: Making JavaScript safe for-advertising,” 2008. Available:
http://www.adsafe.org/

F. Kerschbaum, “Simple cross-site attack prevention,” International ICST
Conference on Security and Privacy in Communication Networks, 2007, pp.
464-472.

S.P. Shieh and V.D. Gligor, “On a pattern-oriented model for intrusion
detection,” IEEE Transactions on Knowledge and Data Engineering, vol. 9, 1997,
pp. 661-667.

S.P. Shieh, “A pattern-oriented intrusion-detection model and its applications,”
Research in Security and Privacy, 1991, pp. 327 -342.

P.H. Phung, D. Sands, and A. Chudnov, “Lightweight self-protecting JavaScript,”
Proceedings of the 4th International Symposium on Information, Computer, and
Communications Security, 2009, pp. 47-60.

V.N. Mike Ter Louw, “Blueprint: Robust prevention of cross-site scripting
attacks for existing browsers,” IEEE Symposium on Security and Privacy, 2009,
pp. 331-346.

World Wide Web Consortium, “XMLHttpRequest,” 2009. Available:

38

http://www.w3.0org/TR/XMLHttpRequest/
[17] OWASP, “HttpOnly - OWASP,” 2002. Available:

http://www.owasp.org.tw/index.php/HttpOnly

[18] Ecma International, “Fifth Edition of ECMA-262, ECMAScript,” 2009. Available:
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[19] John Resig, “ECMAScript 5 Strict Mode, JSON, and More,” 2009. Available:
http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/

[20] Facebook, “Facebook.” Available: http://www.facebook.com/

[21] MySpace, “MySpace.” Available: http://www.myspace.com/

[22] D. Ferraiolo, DR. Kuhn, and R. Chandramouli, “Role-Based Access Controls,”
In Proceedings of the 15th Annual Conference on National Computer Security,
1992, pp. 554-563.

[23] Oracle Corporation, “MySQL Cluster.” Available:
http://www.mysql.com/products/database/cluster/

[24] The apache software foundation, “Apache Hadoop.” Available:
http://hadoop.apache.org/

[25] Resnumerica, “Web 1.0 Vs Web-2.0,” 2006. Available:
http://resnumerica.free.fr/nouveau-blog/?category/web1.0/

[26] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: precise dynamic prevention of
cross-site scripting attacks,” Detection of Intrusions and Malware, and
Vulnerability Assessment, 2008, pp. 23-43.

[27] X. Lin, P. Zavarsky, R. Ruhl, ‘and D. Lindskog, “Threat Modeling for CSRF
Attacks,” Proceedings of the 2009 International Conference on Computational
Science and Engineering-Volume 03, 2009, pp. 486—491.

[28] A.A. Al-Tameem, “The Impact of AJAX Vulnerability in Web 2.0 Applications,”
Journal of Information Assurance and Security, 2008, pp. 240-244.

[29] D. Ahmad, “the Confused deputy and the domain hijacker,” IEEE Security and
Privacy, 2008.

[30] H. Volos and H. Teonadi, “Study of security vulnerabilities in Web 2.0,” 2007.

[31] S Ravi, JC Edward, LF Hal, and EY Charles, “Role-based access control models,”
IEEE Computer, 1996.

[32] A. Barth, C. Jackson, and J.C. Mitchell, “Robust defenses for cross-site request
forgery,” Proceedings of the 15th ACM conference on Computer and
communications security, 2008, pp. 75-88.

[33] M. Johns and J. Winter, “RequestRodeo: Client side protection against session
riding,” Proceedings of the OWASP Europe 2006 Conference, refereed papers
track, Report CW448, pp. 5-17.

39

[34] A. Yip, N. Narula, M. Krohn, and R. Morris, “Privacy-preserving browser-side
scripting with bflow,” Proceedings of the 4th ACM European conference on
Computer systems, 2009, pp. 233-246.

[35] J. Conallen, “Modeling Web application architectures with UML,”
Communications of the ACM, vol. 42, 1999, p. 70.

[36] S. Maffeis, J. Mitchell, and A. Taly, “Isolating JavaScript with filters, rewriting,
and wrappers,” Computer Security—-ESORICS 2009, pp. 505-522.

[37] C. Karlof, U. Shankar, J.D. Tygar, and D. Wagner, “Dynamic pharming attacks
and locked same-origin policies for web browsers,” Proceedings of the 14th ACM
conference on Computer and communications security, 2007, p. 71.

[38] Z. Mao, N. Li, and 1. Molloy, “Defeating Cross-Site Request Forgery Attacks with
Browser-Enforced Authenticity Protection,” Financial Cryptography and Data
Security, 2009, pp. 238-255.

[39] W. Zeller and E.W. Felten, Cross-site request forgeries: Exploitation and
prevention, Citeseer, 2008.

[40] C. Jackson and A. Barth, “Beware of finer-grained origins,” Web 2.0 Security and
Privacy, 2008.

[41] A. Barth, C. Jackson, and W. Li, “Attacks on JavaScript Mashup Communication,”
Proceedings of the Web:.

[42] B. Hoffman, “Ajax security,” 2006. Available: http://www.spidynamics.
com/assets/documents/AJAXdangers.pdt

[43] J. Magazinius, A. Askarov, and A. Sabelfeld, “A Lattice-based Approach to
Mashup Security,” ASIAN ACM Symposium on Information, Computer and
Communications Security, 2010.

[44] Brian Prince, “eBay Security Vulnerabilities Found by Researcher.” Available at:
http://www.eweek.com/c/a/Security/Researcher-Uncovers-eBay-Security-Vulner
abilities-684970/

40

