OMP20OCL #4 % : ¥ p # #&3 OpenMP #&3;¢
3 OpenCL #23' chfd 3 =

OMP20OCL Translator: A Translator for Automatic
Translation of OpenMP Programs into OpenCL Programs

S

o
IRy

s HAE Bl

Nk

PEAR 4 L4 &L

OMP20OCL Translator : ¥ p # &3 OpenMP #g ;%
3] OpenCL #2.3" e 4% =B

OMP20OCL Translator: A Translator for Automatic

Translation of OpenMP Programs into OpenCL Programs

Boyod L RRE Student: Tsung-Chan Tsali
ks Hg: #L Advisor: Dr. Jyh-Jiun Shann
B o= 2« F

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
November 2010

Hsinchu, Taiwan, Republic of China

SEARL L EL -

OMP20OCL Translator : ¥ p # &3 OpenMP #g3\
| OpenCL #23\ e 3% B

4
|
i
BV
bl

gy Ha BL

Rl - FFApFE1 877 “T LT

&

I B AT R B S AJRET S50 - BARR - KA 0 BRET S A

B

WEL St > BF S AST BT S it F S i o Knronos Group if# %k 1
OpenCL ## » v icd 7 B 5 @ BT Sqe8env 3h1d > Am 2 * OpenCL £ 8 £ 7
PR ET Sz AT B NS BEAKI PN O AP R FLG
OMP20OCL translator =i 3 ® » v p # #& 4% OpenMP #2 ;%] OpenCL #23;% - %
OMP20CL translator j » 2% ae % ¥ 2 ecdp AT 7 p P v > kiR e ken
OpenCL #%3% - OMP20OCL translator & z_1) OpenMP #2 ;% p % R 8 0 (TP &
B i OpenCL 7w izt > 2 @ % i ke 4) ko eh OpenCL #7358 o gt #b > 24 i
W od Ap BT g B 0k o CUDA 425% fod OMP20OCL translator # 3% 1 %
OpenCL #z35¢ - B2 2% 22 #-4+ NVIDIA GPU ship B #2 % 4p+ » OMP20CL translator 3 »%
fedf 4 > & OMP20OCL translator :# 2 %3 * » %] 5 $& 4 3 ke OpenCL A25% & 72 "L 2_
#* NVIDIAGPUs 2382k % -

OMP20OCL Translator: A Translator for Automatic

Translation of OpenMP Programs into OpenCL Programs

Student: Tsung-Chan Tsai Advisor: Dr. Jyh-Jiun Shann

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Heterogeneous multiprocessor platforms have become trends due to the need for high-
performance systems. However, it is harder to program them than homogeneous
multiprocessor platforms and there are various heterogeneous multiprocessor platforms in the
world. Although newly-released OpenCL (Open Computing Language) standard from
Khronos Group offers improves portability among heterogeneous multiprocessor platforms,
programming such platforms using OpenCL is still complex and error-prone. In this thesis, we
have designed and implemented a translator, called OMP2OCL Translator, which is for
automatic source-to-source translation of OpenMP programs into OpenCL programs, in
addition, we have reused and modified if necessary the optimizations from the related work to
improve the OpenCL programs output from OMP2OCL translator. The translator identifies
kernel regions of OpenMP programs, transforms and outlines the regions into OpenCL kernel
functions, and does some optimization to improve the performance of the translated OpenCL
programs. Moreover, we have compared the CUDA programs and the OpenCL programs
output from the related work and OMP2OCL translator, respectively. Although there are
performance losses for OMP20OCL translator compared to the related work designed
dedicatedly for NVIDIA GPUs, it is still promising that the translated OpenCL programs can

use other devices as compute devices other than NVIDIA GPUs.

R

FPAR#HAN G L B2t bied 257 2R A0 4FL o mA LT
+£ﬁ%’%Wﬁﬁﬁiﬁﬁﬁﬁﬁ’@wﬁ%ﬁﬁ&’%ﬂﬁ?ﬂ%@a%W%’
R e SRR R A B AT g 4 o»ﬁ.:h&q R 0 LR R -
[Ea A = mﬁ_g;.,t:‘mn—\:,_ﬂ_,rﬁ,gj,z, » TEP B s g A ;ﬁiﬁmigﬁo [
SRHMUTELAR AEFRE PRRBEFLT R d P i

1 REMREHE gﬁ;{ﬁf.jﬁ’i? o KU 4 WMBR SR E Y - R YR K

WA EE SR FEEE RS FEFApAE~ JIM 2 Compiler A% > 2 BE R
ALipA Ay b eE R RS VA EAREOR S o A REFAFY PAPH
BT RAPFAT o R FHRENELE B HEIE RS AiE- A2R Rk
P e IR AR P s (B A2 FEET 4P SR

g“m
>‘k
HE
bl
S

LE

“1\1\'

Bofs o HWADRA N QA BN KPREES BT

Table of Contents

BB s i
AADSTIACT. ...t i
= P SPRRUPRSUR v
Table OF CONTENLS ... bbbt %
LISE OF FIQUIES. ...t bbbttt b e bbb vii
LISE OF TADIES ...t b bbbttt viii
Chapter 1 INEFOTUCTIONoouviiiiiiecciee et 1
1.1 ReSEArCH MOTIVALIONoviiiiiiiieiee e 1
1.2 RESEAICH ODJECTIVE ..o 2
1.3 Organization of the ThESIScccii i 2
Chapter 2 Background and Related WOrKcccccooviiiiiiiiciiccecc e 3
2.1 OPENMP ... 3
A © 14 o[RSP RPR 5
221 Platform MOGEL........cooiiieiiee e 6
2.2.2 EXECULION MOUEI ... 7
2.2.3 MemMOrY MOUEL ..ot 8
2.2.4 Programming MOGEL..........cooiiiiiii e 10
2.2.5 The OpenCL FrameWOrK...........coiiiiiiiiieieiesie sttt 11

2.3 CUD A ettt h e b bt et aeeenee 12
2.3.1 PIAtform MOEl........coviiee 12
2.3.2 EXECULION MOTEI ..o 13
2.3.3 MEmMOIY MOUEL ..o 14

2.4 RElAted WOTK ... 14
Chapter 3 Design and Implementation of OMP2OCL Translatorcccccccvvevveeieevinennn, 16
3.1 OPENMP OPLIMIZEL ceciiiiiie ittt e e e e e be e sreearaeas 17

3.1.1 Parallel LOOP-SWAP ...cooeiiiiiieiiee sttt 18

3.2 020 Baseling TranSIAtOrcceiiiiiiiiiiiisieee e 20
3.2.1 OpenMP Program ANAIYSIS ..ot 21
3.2.2 Kernel Regions 1dentifiCation..............cooiviiiiiiieieniiesisses e 23
3.2.3 Kernel Regions Transformation and OUtliniNgc.ccocvviviiieieiiniinenee 25

3.3 OPENCL OPLIMIZEL ..viiiiecieee ettt et e e be e sreeeeenee e 27
3.3.1 Caching Frequently Accessed Global Data............ccccceeveeviveiieiieie e 27
3.3.2 Memory Transfer REAUCLIONcccviiiiieiicc e 29

3.4 Limitations of OMP20OCL Translator..........ccccoviireiiniieieise e 30

Chapter 4 EXPEIIMENTcviiiiie ettt te e e re et e e e s be e te e e e nneens 31

A1 JACOBI .. 32

A2 SPIMIUL ettt te e ne e 34

i T T T TSR TUTURRTPPRRTIN 35

A4 DISCUSSIONueiuiititeite sttt sbesb bt bbb et et e bt b e bt b e e b e e bt e e et et e nb e bt nbeabeene e 36

Chapter5 Conclusion and FULUIre WOIK..........ccoeiiiiieiieiie s 37
RETEIBICES ...ttt b bbbt bbbt e et e bbb bbb 38

Vi

List of Figures

Figure 2-1 The Execution Model of OPENMP..........ccoiiiiiiiiii s 4
Figure 2-2 The Memory Model of OPENMPccoiiiiiiii e 4
Figure 2-3 A Simple Example of an OpenMP Program..........ccccecvvveeivenesieseese e 5
Figure 2-4 The Platform Model of OpenCL..........cccoiieiiiiiiicce e 6
Figure 2-5 The Platform Example of OpenCL.........ccooiiiiiiiiiieiieee s 7
Figure 2-6 The Execution Model 0f OPeNnCLcccoiiiiiiiiieee s 8
Figure 2-7 The Memory Model 0f OPeNCL..........cccoviiiiiieieie e 10
Figure 2-8 The CUDA-capable GPU architeCturecccccveveiieieiiicieece e 13
Figure 2-9 The Thread Hierarchy of CUDA ...t 14
Figure 2-10 The Framework of The Related WOrK...........cccoeiiiiiiiiiiniiccnec s 15
Figure 3-1 The Framework of OMP20OCL translator............cccccovvveveiiieiieiie e 16
Figure 3-2 The Example OpenMP Program..........cccooveieieeieiiieieesesieesieese e sra e snesnaenne s 17
Figure 3-3 A Simple Loop Nest Without Applying Parallel Loop-Swapcccccocervrnnnnns 19
Figure 3-4 A Region of the Kernel Function Transformed from Figure 3-3c.cooeee. 19
Figure 3-5 The Simple Loop Nest After Applying Parallel Loop-Swap........c.ccccccevvvveiinennnne 20
Figure 3-6 The Region of the Kernel Function Transformed from Figure 3-5..................... 20
Figure 3-7 A Simple Example with A Simple Loop NESt..........cciiiiiiiiiiiieee s 22
Figure 3-8 The Simple Loop Nest with Additional Data-Sharing Attribute Clauses............ 23
Figure 3-9 The Algorithm for Identifying Kernel RegIONScoovevveieeiiiic i 24
Figure 3-10 The Parallel Region with Split Points Shown by Dash Lines............ccccccven... 25
Figure 3-11 The Parallel Regions After SPHLtING........ccooeveiiniiiiiniseeee e 25

Figure 3-12 The OpenCL Kernel Function Translated From the First Parallel Region in
FIGUIE 3= oottt e e e e et e et e e ae e sbeeteeseesbeeateeaeesbeetesneenreeneens 26
Figure 3-13 The OpenCL Kernel Function with Variable b Cached in the Local Memory

REGIONS ...t bbbt b et b b bbbt Rttt b bbb benre s 29
Figure 4-1 Experiment Results for JACOBIccovviiiiiie i 32
Figure 4-2 Experiment Results for SPMULcccooiiiiiiiiicie e 34
Figure 4-3 Experiment ReSUItS fOr EP........c.cccoviiiiiiic e 35

vii

file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928033
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928034
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928044
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928045
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928046
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928047
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928048
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928049
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928050
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928051
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928052
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928053
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928054
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928054
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928055
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928055
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928056
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928057

Table 2-1
Table 2-2
Table 2-3
Table 3-1
Table 4-1
Table 4-2

List of Tables

Type of Allocation to Each Memory Regions for Hosts and Devices.................... 9
Access Allowed to Each Memory Regions for Hosts and Devices...........cc.ccceue.... 9
Lifetime of Variables Defined in Each Memory Regionsccccceecvvveivcviesieenne. 9
The Caching Strategies for Global Data with Different Attributes....................... 28
Descriptions of the BenChmarks ... 31
Optimizations Implemented by the Related Work and OMP20OCL Translator.... 32

viii

Chapter 1 Introduction

Multiprocessor platforms are ubiquitous, ranging from embedded devices, mobile devices
to workstations and high-end servers. Chip multiprocessors [1], as known as multi-core
processors, are one kind of homogeneous multiprocessor platforms and have become the
important trend in contemporary computer architectures by major microprocessor vendors, as
these vendors could not overcome some problems related to physical constraints (e.g., power,
thermal, and signaling) and limited instruction-level parallelism. In addition, heterogeneous
multiprocessor platforms play an important role in the computer industry, and they could be
found in mobile devices and workstations with CPU plus GPU or CPU plus DSP, for instance,
iPhone 4 is powered by the Apple A4 chip, which is a system-on-a-chip and composed of a
Cortex-A8 CPU integrated with a PowerVR SGX 535 GPU.

1.1 Research Motivation

Heterogeneous multiprocessor platforms especially have much potential regarding
performance gain than homogeneous multiprocessor platforms, by partitioning programs into
different properties of tasks and scheduling the tasks on suitable processors; hence, they are
widely used in some dedicated systems. Nevertheless, heterogeneous multiprocessor
platforms are harder to program, and there are various heterogeneous multiprocessor
platforms in the world. To alleviate these issues, many parallel programming standards have

been proposed, and one of them is OpenCL (Open Computing Language) [2].

OpenCL is an open industry standard from the Khronos group supported by AMD, IBM,
Intel, NVIDA and others. It models heterogeneous multiprocessor platforms, consisting of a
host and one or several devices, which can be CPU, GPU, DSP, Cell/B.E. processor, etc.
Targeting for various devices from vendors makes OpenCL programs portable. In other words,
once an OpenCL program is written, it can be compiled if necessary and run on any

heterogeneous multiprocessor platform with OpenCL environments.

Despite of being portable, OpenCL is more complex to use than OpenMP [3]. OpenMP is
yet another open industry standard maintained by the OpenMP Architecture Review Board,

mainly targeting for homogeneous multiprocessor platforms with shared memory [4]. By

using its directives to annotate structured blocks that could be paralleled and to insert some

auxiliary annotations, among others, OpenMP is pretty simple to use.

1.2 Research Objective

In order to program heterogeneous multiprocessor platforms with the benefits of both
OpenMP and OpenCL, which are ease-of-use and portability respectively, we design and
implement a translator for automatic translation of OpenMP programs into OpenCL programs.

The translation roughly consists of the following four steps:
i. Analyzing the OpenMP program under the models of OpenCL.
ii. Identifying kernel regions, i.e., regions executed on OpenCL devices.

iii. Transforming and outlining kernel regions into OpenCL kernel functions.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 describes OpenMP, OpenCL,
CUDA, and the related work; Chapter 3 presents the design and implementation of
OMP20CL translator; Chapter 4 discusses and compares the performance of the OpenCL
programs output by OMP2OCL translator and that of the CUDA programs output by the
related work’s translator; finally, Chapter 5 dedicates to the conclusions we draw and the

future work plan.

Chapter 2 Background and Related Work

This chapter first introduces several parallel programming models including OpenMP,
OpenCL, and CUDA. OpenMP and OpenCL are different in nature, from the models behind
the scenes to the language constructs that developers use commonly. In contrast, OpenCL and
CUDA are similar to each other, with just some names of components changed, some
components removed, and some components added. This chapter then presents “OpenMP to
GPGPU: a compiler framework for automatic translation and optimization” as a related work,
the authors of which designed and implemented an automatic source-to-source translator of

OpenMP programs into CUDA programs.

2.1 OpenMP
OpenMP is an open industry standard maintained by the OpenMP Architecture Review
Board, mainly targeting for homogeneous multiprocessor platforms with shared memory [4].

The execution model of OpenMP is a fork-join model of parallel execution as shown in
Figure 2-1. In Figure 2-1, an OpenMP program has only one thread initially, called the initial
thread. When the initial thread encounters a parallel directive, it forks a team of itself and
zero or more additional threads, and becomes the master of the new team. After finishing the
parallel region, the team of threads joins together, and, as a result, only the master thread
which is the initial thread continues execution. Furthermore, there are implicit
synchronizations before and after the parallel regions in order to maintain program

correctness.

The memory model of OpenMP is shared memory with each thread having its own private
memory as shown in Figure 2-2. Data can be shared or private, shared data are accessible by
all threads; in contrast, private data can only be accessed by the thread owning it.

Initial

~ Thread Synchronization
Parallel Directive A 4
Parallel Region Team of
Threads
y y v A A
Master Synchronization
Thread Synchronization
Parallel Directive \ 4 y
Parallel Region Team of
Threads
\ v \ 4 \ 2
Master Synchronization

Thread
A

Figure 2-1 The Execution Model of OpenMP

Private Private
Memory Memory
Shared
Memory
Private Private
Memory Memory

T: Thread

Figure 2-2 The Memory Model of OpenMP

Core elements of OpenMP standard consist of directives, runtime library routines, and
environment variables, and directives are at the core of OpenMP standard. Parallel directive
is used to annotate structured blocks that could be paralleled, and work-sharing directive is
used to annotate works which could be divided and distributed to threads. In C/C++, OpenMP
directives are specified by using the #pragma mechanism provided by the C/C++ standards. A

simple example of an OpenMP program example is shown in Figure 2-3, and it uses both a

parallel directive and a work-sharing directive. In line 10 of Figure 2-3, the parallel directive
Is used to indicate that the following structured block is fit for being paralleled; likewise, in
line 12, the for directive, which belongs to work-sharing directives, indicate that the iterations

of the following for loop should be divided and distributed to threads.

#include <stdio.h>
#define N 1024

int a[N][N], b;

int main ()

{

O ~J o U W

int i, 9;

=
[@3Ne]

#fpragma omp parallel
{

o
N

#pragma omp for private(j)
for (i = 0; 1 < N; i++) {
for (7 = 0; 7 < N; Jj++) {
ali]ll3] = b + 1;

e S
o U1 W

}

[
~J

}

=
© @

#pragma omp single

{

NN
= O

puts ("XD") ;

N
N

}

N
w

}

NN
(G2 RSN

return O;
26 }

Figure 2-3 A Simple Example of an OpenMP Program

2.2 OpenCL

OpenCL is an open industry standard from the Khronos group supported by AMD, IBM,
Intel, NVIDA and others [5]. Thus it is vendor-neutral, and it models heterogeneous
multiprocessor platforms, consisting of a host and one or more devices, which can be CPU,
GPU, DSP, Cell/B.E. processor, etc. OpenCL specifies four models as its architecture:
platform model, execution model, memory model, and programming model [6].

2.2.1 Platform Model

In the platform model, one host connects to one or more OpenCL devices (compute
devices) on a platform as shown in Figure 2-4 [6]. One or more processing elements (PES)
compose a compute unit (CU), and one or more compute units compose an OpenCL device.

Processing elements within a device are the workers doing computations.

An OpenCL program runs on a host in compliance with the native models of the host
platform, and sends commands from the host to processing elements within a device for
executing computations. The processing elements within a compute unit execute an
instruction stream as SIMD units (each PE has its own data and a shared program counter) or

as SPMD units (each PE has its own data and its own program counter).

Figure 2-5 shows a platform example with an Intel Core 2 as the host and a NVIDIA’s
OpenCL platform. The platform has only one compute device, which is NVIDIA GeForce
GTX 280 in this example. The device has totally 240 shader processors grouped into 30 sets,
each set having 8 shader processors. As a consequence, when mapped to the OpenCL
platform model, the device has 30 compute units, each of which composes 8 processing

elements.

Compute Device
PE: Processing Element \ PlatfornJ

Figure 2-4 The Platform Model of OpenCL

Compute Device (NVIDIA GeForce GTX 280)

PE: Processing Element &’Iatform (NVIDIA's ocl implementatioru/

Figure 2-5 The Platform Example of OpenCL

2.2.2 Execution Model
An OpenCL program is comprised of two parts: a host program executing on host and
kernels executing on one or more OpenCL devices [6]. The host program defines the context

for the kernels and manages their execution.

The way how a kernel should be executed on an OpenCL device is the heart of the
OpenCL execution model as shown in Figure 2-6. When a kernel is executed on an OpenCL
device, an index space is formed, and each point in the index space stand for a kernel instance,
which is named as a work-item and identified by its position in the index space. Although
each work-item executes the same code, it can have its own data and its own program counter;
in other words, control flow through the code can vary per work-item. Work-items are further
organized into work-groups, which provide a more coarse-grained decomposition of the index
space; in addition, the work-items in a given work-group execute concurrently on the

processing elements of a single compute unit.

The index space within OpenCL is called an NDRange, which is an N-dimensional index
space, where N is one, two or three. An NDRange is defined by an integer array of length N
specifying the extent of the index space in each dimension starting at an offset index (zero by
default).

Work-group

Work-item

Work-item

Work-item

Work-item

=
-..,_....-
-y

Figure 2-6 The Execution Model of OpenCL

2.2.3 Memory Model
Work-item(s) executing a kernel may access four distinct memory regions [6]:

Global Memory:

This memory region permits read/write access to all work-items in all work-groups,
so work-items can read from or write to any element of a memory object. Reads
and writes to global memory may be cached depending on the capabilities of the

device.
Constant Memory:

This memory region is a region of global memory that remains constant during the
execution of a kernel. The host allocates and initializes memory objects placed into

constant memory.
Local Memory:

This memory region is local to a work-group. This memory region can be used to

allocate variables that are shared by all work-items in that work-group. It may be

implemented as dedicated regions of memory on the OpenCL device. Alternatively,

the local memory region may be mapped onto sections of the global memory.

e Private Memory:

This memory region is private to a work-item. Variables defined in one work-

item’s private memory are not visible to another work-item.

Table 2-1 describes whether the host or the device can allocate from a memory region or
not and the type of allocation (static, i.e., compile time vs. dynamic, i.e., runtime). Table 2-2
describes the type of access allowed, i.e., whether the host or the device can read and/or write
to a memory region; moreover, Table 2-3 describes lifetime of variables defined in ach

memory regions.

Table 2-1 Type of Allocation to Each Memory Regions for Hosts and Devices

Dynamic Dynamic Dynamic
No Static Static Static

Table 2-2 Access Allowed to Each Memory Regions for Hosts and Devices

L B D I
Read/write Read-only Read/write Read/write

Table 2-3 Lifetime of Variables Defined in Each Memory Regions

From allocation = From allocation

-)) As work-group’s As work-item’s

Lifetime to deallocation to deallocation L -
lifetime lifetime

by host program by host program

The memory regions and how they relate to the platform model and the execution model
are described in Figure 2-7.

Compute Device (NDRange)

Compute Unit 1 Compute Unit N
(Work-group 1) (Work-group N)

PE 1 PEM PE 1 PEM
(Work- (Work- (Work- (Work-
item 1) item M) item 1) item M)
Private Private Private Private

Memory Memory Memory Memory
1 M 1 M
? £ 3 ? £ 3%
Local Local
Memory 1 Memory N
\ 4 h 4
Global Memory

Constant Memory

Figure 2-7 The Memory Model of OpenCL

2.2.4 Programming Model

The OpenCL execution model supports data parallel and task parallel programming

models as well as the hybrids of these two models [6]. The primary model driving the design

of OpenCL is data parallel programming model.

10

Data Parallel Programming Model

A data parallel programming model defines a computation in terms of a sequence
of instructions applied to multiple elements of a memory object. The index space
associated with the OpenCL execution model defines the work-items and how the
data maps onto the work-items. In a strictly data parallel programming model,
there is a one-to-one mapping between the work-item and the element in a memory
object over which a kernel can be executed in parallel. However, OpenCL
implements a relaxed version of the data parallel programming model where a

strict one-to-one mapping is not a requirement.
Task Parallel Programming Model

The OpenCL task parallel programming model defines a model in which a single
kernel instance is executed independently of any index space. It is logically
equivalent to executing a kernel on a compute unit with a work-group containing a
single work-item. Under this model, users may express parallelism by one of the

following schemes.
i. Using vector data types implemented by the device.
ii. Enqueuing multiple kernels.

iii. Enqueuing native kernels developed using a programming model other
than that of OpenCL.

2.2.5 The OpenCL Framework

The framework inside OpenCL provides developers a way to develop an OpenCL

program and manipulate the behavior of the program. The framework includes the following

components:

OpenCL Platform Layer

The platform layer implements platform-specific features that allow programs to
create contexts, manage contexts, query OpenCL devices, and query device

configuration information.

11

e OpenCL Runtime

The runtime supports numerous API calls that manage OpenCL objects such as
command-queues, memory objects, program objects, and kernel objects for
__kernel functions in a program object; it also supports API calls that allow you to
enqueue commands to a command-queue for executing a kernel, and reading or

writing a memory object.
e OpenCL Compiler

The OpenCL standard defines a language for programming kernels as a subset of
the ISO C99 language with extensions for parallelism. Therefore, it is necessary to
have a compiler supporting such language, which creates program executables

containing OpenCL kernels.

2.3 CUDA

NVIDIA’s CUDA [7] is a parallel programming standard released in 2007. It extends the
standard C/C++ programming language with some restrictions for parallel GPU computing.
Via CUDA APIs, developers can program GPUs without tricky programming techniques
which are required when developers programs GPUs with graphics APIs such as OpenGL and
DirectX. Logically, CUDA could be viewed as a specialization of OpenCL for NVIDIA’s
GPUs in some extent because of many similarities between them. The similarities will be
discussed in the following Subsections.

2.3.1 Platform Model

The platform model of CUDA, i.e., the CUDA-capable GPU architecture, is shown in
Figure 2-8. One or more CUDA cores (CCs) compose a multiprocessor, and one or more
multiprocessors compose a GPU which is connected to a CPU via the system bus. A CUDA
core is a basic computation unit as a processing element in OpenCL, and a multiprocessor is
analogous to a compute unit in OpenCL that both play the same role in CUDA and OpenCL

respectively.

12

CC: CUDA Core

Figure 2-8 The CUDA-capable GPU architecture

2.3.2 Execution Model

The execution model or the thread hierarchy of CUDA as shown in Figure 2-9 is a grid of
thread blocks, each of which contains a batch of threads. A grid in CUDA and an NDRange in
OpenCL are alike that both of them are index space of basic computation units. However, a
grid is two-dimensional, whereas an NDRange is three-dimensional. As expected, a thread
block is just like a work-group in OpenCL, and a thread in CUDA plays the same role as a

work-item in OpenCL

13

Grid K4

Thread block

Thread

Thread

Thread

Thread

=
-..,_....-
-y

Figure 2-9 The Thread Hierarchy of CUDA

2.3.3
As mentioned in the first paragraph of Section 2.3 that CUDA could be viewed as a

Memory Model

specialization of OpenCL, in contrast, OpenCL could be viewed as a generalization of CUDA.
Thus, registers and local memory in CUDA are generalized as private memory in OpenCL
which is a memory region per work-item. Shared memory in CUDA is generalized as local
memory in OpenCL which is a memory region shared by a work-group. Likewise, global
memory both in CUDA and OpenCL function alike. However, texture memory in CUDA
which is a particular memory region for graphics processing is missing from OpenCL.

2.4 Related Work

Lee et al designed and implemented a translator for automatic translation of OpenMP
programs into CUDA programs [8], which was released in Cetus [9] 1.2 on May 21, 2010.
The translator consists of two phases as shown in Figure 2-10. Phase 1 contains an OpenMP

optimizer. Phase 2 contains an O,C baseline translator and a CUDA optimizer.

14

Optimized

OpenMP OpenMP O2C Baseli CUDA
Program | OpenMP Pro%mfork ;ran_cj:ic;?e Program >
. imi CUDA]
Optimizer + CUDA Optimizer

Phase1 Phase 2

Figure 2-10 The Framework of The Related Work

First, the OpenMP optimizer optimizes the input OpenMP programs for CUDA. OpenMP
mainly targets for homogeneous multiprocessor platforms with shared memory, such as a
platform with single-core CPUs or multi-core CPU(s) sharing memory regions and having the
same ISA. In contrast, CUDA targets for heterogeneous multiprocessor platforms that now
can only be one or more CPUs plus one or more NVIDIA GPUs. Because of these
architectural differences, the optimizer is used to alleviate the effect of the differences and to
make the resulted OpenMP programs more suitable for executing on heterogeneous

multiprocessor platforms that CUDA targets.

Second, the O,C baseline translator translates the optimized OpenMP programs of the
OpenMP optimizer into CUDA programs directly. The translation mainly consists of the

following three steps:
i. Analyzing the OpenMP program under the models of CUDA.
ii. Identifying kernel regions, i.e., regions executed on GPUSs.
iii. Transforming and outlining kernel regions into CUDA kernel functions

Finally, since the OpenMP optimizer only makes use of the constructs of the C
programming language, which is the selected base language of the OpenMP programs, the
CUDA optimizer optimizes the resulted CUDA programs of the O,C baseline translator for
performance by utilizing CUDA-specific features such as low-latency memory regions,

coalesced global memory accesses, and persistent data in global memory.

15

Chapter 3 Design and Implementation of
OMP20OCL Translator

Based on the source code of the related work, we designed and implemented OMP20CL
translator, which is a translator for automatic translation of OpenMP programs into OpenCL
programs, according to the syntax, the semantics and the APIs of OpenCL. By the way, both
of OpenMP programs and OpenCL programs are written in C programming language. The
translator consists of two phases as shown in Figure 3-1. Phase 1 contains an OpenMP
optimizer. Phase 2 contains an O20 baseline translator and an OpenCL optimizer. The details
of these components will be discussed in the following sections.

Optimized
OpenMP OpenMP T Opencl
Program | OpenMP Program for Oigfj;ic;rne Program_
> _ _O CL j
Optimizer pen + OpenCL Optimizer

Phase1 Phase 2

Figure 3-1 The Framework of OMP2OCL translator

The example OpenMP program as shown in Figure 3-2 is used to demonstrate the concept
of OMP20CL.

16

#include <stdio.h>
#define N 1024

int a[N][N], b;

int main ()

{

O ~Jo Ul W

int i, 37

Y
[@Ne]

fpragma omp parallel
{

=
N

#pragma omp for private (j)
for (i = 0; i < N; i++) {
for (7 = 0; 7 < N; j++) {
alil (il = b + 1;

el
o U1 W

}

[
~J

}

=
©

#pragma omp single

{

NN
= O

puts ("XD") ;

N
N

}

N
w

}

NN
(G2 1N

return 0;
26 }

Figure 3-2 The Example OpenMP Program

3.1 OpenMP Optimizer

The OpenMP optimizer optimizes the input OpenMP programs for OpenCL. With the
reason that OpenMP and OpenCL target for different multiprocessor platforms, which is
similar to the reason mentioned in the second paragraph of Section 2.4, the optimizer is used
to alleviate the effect of the architectural differences and to make the resulted OpenMP
programs more suitable for executing on heterogeneous multiprocessor platforms that

OpenCL supports.

Concerning spatial data locality, CPUs, target devices of OpenMP, prefer intra-thread
locality to inter-thread locality; whereas GPUs, devices supported by OpenCL, prefer both
localities. In CPUs, intra-thread locality increases cache utilization, thus reducing memory
access latency. However, inter-thread locality among threads on different CPUs of
homogeneous multiprocessor platforms with shared memory may encounter false-sharing and
hence increase memory access latency. Therefore, iterations of omp for loops in OpenMP
programs are usually block-distributed rather than cycle-distributed. In GPUs, intra-thread
locality within a thread also increases cache utilization. But most importantly, inter-thread
locality among GPU threads has great effect on global memory access latency; that is, if

17

adjacent threads concurrently access to adjacent data in global memory region, these accesses
can be coalesced into fewer global memory accesses, and consequently, the memory access

latencies are reduced.

This optimizer provides one optimization, Parallel Loop-Swap, to enhance inter-thread
locality of OpenMP programs for executing on heterogeneous multiprocessor platforms with
GPUs as OpenCL devices. The optimization can be turn on and turn off by the command line
options of OMP20CL translator.

3.1.1 Parallel Loop-Swap

Parallel Loop-Swap is an optimization to enhance the inter-thread locality of OpenMP
programs with regular data accesses in loop nests. For each perfect loop nest that has multiple
loops and contains no function call, the optimization rearranges the loops within the loop nest

using following strategies:

i. For each loop with index variable which has less effect on values of subscript
expressions of array accesses within the loop body, move it to outer level as far as

possible.

ii. For each loop with index variable which has larger effect on values of subscript
expressions of array accesses within the loop body, move it to inner level as far as

possible.

iii. The rearrangement of loops within a loop nest should not break the dependencies

among initial statements, condition expressions and step expressions of loops.

iv. For points i and ii, when there are ties among loops which have the same effect on
values of subscript expressions of array accesses within the loop body, the loop
with more iterations has higher priority to be rearranged.

A simple loop nest without applying Parallel Loop-Swap is shown in Figure 3-3. After the
loop nest with the associated omp parallel is translated into a kernel function, a region of the
kernel function as shown in Figure 3-4 contains an if statement, which in turn contains a

singly nested for loop. The if statement is derived from L;, the loop with index variable i in

18

Figure 3-3, and the for loop comes from L;, the loop with index variable j in Figure 3-3. In
Figure 3-4, each GPU thread accesses a row of each array via the array accesses a [wiid] [J]
and b [wiid] [j], and, as a consequence, these memory accesses create uncoalesced global

memory accesses, and thus increase memory access latencies.

Array accesses a[i][j] and b[i] [j] could be expressed as a[i * N + j] and
b[i * N + j], respectively. For expression i * N + 7, increment of i will increases
the value of the expression more than that of j. For this reason, in Figure 3-3, the index
variable of L;, j, has less effect on the values of the subscript expressions of the array accesses
alil[j] and b[1] [J] than the index variable of L;, i. Therefore, L; is moved up to the
outer level of the loop nest in Figure 3-5 after applying Parallel Loop-Swap. In Figure 3-6,
each GPU thread accesses a column of each array via the array accesses a[i] [wiid] and
b[i] [wiid], and at every iteration of L;, the accesses of all GPU threads fall within a row
of each array. Accordingly, these memory accesses can be coalesced into fewer global

memory accesses, and the memory access latencies are reduced.

10 #pragma omp parallel

11 {

12 #pragma omp for private (j)

13 for (1 = 0; 1 < N; i++) {

14 for (J = 0; J < N; J++) {
15 alil[j] = b + 1;

16 }

17 }

Figure 3-3 A Simple Loop Nest Without Applying Parallel Loop-Swap

if (wiid < N) {
for (j = 0; 3 < N; j++) {
alwiid] [j] = b[wiid][j] + 1;
}

g w N

}

Figure 3-4 A Region of the Kernel Function Transformed from Figure 3-3

19

10 fpragma omp parallel

11 {

12 #pragma omp for private (j)

13 for (j = 0; 3 < N; j++) {

14 for (1 = 0; 1 < N; i++) {
15 alil[j] = b + 1;

16 }

17 }

Figure 3-5 The Simple Loop Nest After Applying Parallel Loop-Swap

if (wiid < N) {
for (i = 0; i < N; i++) {
ali] [wiid] = b[i] [wiid] + 1;
}

g w N

}

Figure 3-6 The Region of the Kernel Function Transformed from Figure 3-5

OpenMP is the source parallel programming standard of OMP2OCL translator, and
Parallel Loop-Swap transforms the input OpenMP program into another OpenMP program.
With the 020 baseline translator in Phase 2, the optimized loop nest with the associated omp

parallel will be translated into an OpenCL kernel function.

3.2 020 Baseline Translator
The 020 baseline translator translates the possibly optimized OpenMP programs by the
OpenMP optimizer in Phase 1 into OpenCL programs directly. The translation mainly

consists of the following three steps:
i. Analyzing the OpenMP program under the models of OpenCL.
ii. Identifying kernel regions, i.e., regions executed on OpenCL devices.
iii. Transforming and outlining kernel regions into OpenCL kernel functions.

The execution model of OpenMP is a fork-join model, and the translated OpenCL
program has two parts: the host code and the kernels for the device. The serial region of
OpenMP is mapped to the host code execution, and the parallel regions of OpenMP are
mapped to the kernel executions. In addition, the memory model of OpenMP is shared

memory with each thread having its own private memory. Accordingly, omp shared data are

20

mapped into global memory region of OpenCL, whereas omp private data are mapped into
private memory regions of OpenCL.

3.2.1 OpenMP Program Analysis
As mentioned in Section 2.1, directives are at the core of OpenMP standard. So in this
Subsection, the discussion is focused on the interpretation of the directives and the data-

sharing attribute clauses.

For parallel directive, since it is used to annotate structured blocks that could be paralleled,
the translator identifies these structured blocks as candidate kernel regions, outlines them
from the original functions, transforms them into OpenCL kernel functions, and inserts kernel

execution command calls into the position where the structured blocks reside originally.

With respect to work-sharing directives, which are used to annotate works that could be
divided and distributed to threads, there are for directive, sections directive, and single
directive specified in OpenMP specification [10]. Each iteration of an omp for loop is mapped
to an OpenCL work-item, and accesses to the index variable of the omp for loop are replaced
by accesses to the work-item id variable. Each section of an omp sections is assigned to an
OpenCL work-item. Omp single structured block is left on the host and executed by one host

thread in current implementation.

Concerning combined parallel work-sharing directives, they could be expressed as a
parallel directive which annotates a structured block where a work-sharing directive and its
associated region are contained. As a result, they can be mapped by the principles mentioned

above.

About synchronization directives, they create split points where a candidate kernel region
must be split into two sub-regions. If the resulted two sub-regions become kernel regions, and
after the two kernel regions are outlined and transformed, the generated two kernel execution
command calls ensure global synchronization among work-items. The split is necessary,
because there is no global synchronization mechanism among work-items executing in an

OpenCL device.

Finally, with regard to data-sharing attribute clauses and threadprivate directive, they are

used to map data into OpenCL memory regions. OpenMP shared data are shared by all

21

threads, they are copied to variables in global memory region for being used by all work-
items after an OpenMP program is translated into an OpenCL program. OpenMP private data
are private to each thread, and, therefore, they are mapped to variables in private memory
regions. Threadprivate data specified by threadprivate directives are also private to each
thread with static lifetime, that is, threadprivate data live across parallel regions, so they are
expanded in variables in global memory region. For variables not explicitly determined,
which are not listed in data-sharing attribute clauses, the translator appends them into data-
sharing attribute clauses of appropriate directives. For instance, as shown in Figure 3-7, a
simple loop nest has only one data-sharing attribute clause in line 12, and variables a, b, and
i are not explicitly determined. For ease of translation, the translator analyzes the program
and appends the three variables into data-sharing attribute clauses of the appropriate directives
as shown in Figure 3-8. Variables a and b are static and in file scope so that they are shared
in the parallel region. Variable i is the index variable of the loop Li, and, accordingly, it is
appended in the private clause in line 12. Since the parallel directive in line 10 annotates the
structured block where only one for directive and its associated for loop are contained, the
data-sharing attribute clauses of the parallel directive include those of the for directive; thus,

private (i, 7) isincluded in both directives.

4 int a[N] [N], b;

5

6 int main ()

7 A

8 int i, Jj;

9

10 #pragma omp parallel
11 {
12 #pragma omp for private(j)
13 for (1 = 0; 1 < N; 1i++) {
14 for (7 = 0; 7 < N; J++) {
15 alillj] = b + 1;
16 }
17 }

Figure 3-7 A Simple Example with A Simple Loop Nest

22

10 #pragma omp parallel shared(a, b) private(i, 3Jj)
11 {

12 #pragma omp for private (i, 7J)

13 for (i = 0; i < N; i++) {

14 for (j = 0; 7 < N; Jj++) {

15 alil[j] = b + 1;

16 }

17 }

Figure 3-8 The Simple Loop Nest with Additional Data-Sharing Attribute
Clauses

This step analyzes the semantics of the input OpenMP program. With kernel regions
transformation and outlining of the O20 baseline translator, for instance, shared data
analyzed in this step will be copied into an OpenCL buffer object for the device before a
kernel execution by OpenCL API. After the kernel execution, the shared data will be copied
from the OpenCL buffer object back into main memory by the API.

3.2.2 Kernel Regions Identification

The translator targets OpenMP parallel regions as candidate kernel regions. As mentioned
in the fifth paragraph of Subsection 3.2.1, synchronization directives result in split points,
where a candidate kernel region must be split into two sub-regions in order to ensure global
synchronization. In addition, at entry to and exit from a parallel region, and at exit from a
work-sharing region, there are implicit flush synchronization directives. Moreover, most
OpenMP directives annotate on a structured block which is an executable statement and
possibly compound, with a single entry at the top and a single exit at the bottom. The
translator must consider that the splits should not break the control flow semantics of
OpenMP; in other words, the split points should not locate in the middle of a structured block
to prevent creating unstructured blocks.

The overall algorithm derived from the related work [8] for identifying kernel regions is
shown in Figure 3-9. This top-down split approach is for splitting candidate kernel regions as

less as possible.

23

Input: R /* a set of OpenMP parallel regions */

Output: KR /* a set of identified GPU kernel regions */

Foreach R(i1i) in R
Foreach split point in R (1)
Divide R(i) into two sub-regions at the split point
Build CFG, a control flow graph for R (1)
Foreach sub-region SR(j) in R(i)

Foreach entry/exit points other than the one at the

top/bottom of SR(7J)

Divide SR(j) into two sub-sub-regions at such

entry/exit points
Foreach sub-sub-region SSR(k) in SR (J)

If SSR(k) contains an OpenMP work-sharing

directive

Figure 3-9 The Algorithm for Identifying Kernel Regions

The parallel region as shown in Figure 3-10 has four split points, which are shown by
dash lines. The first and the last split points are at entry to and exit from the parallel region
respectively, the second and the third split points are at exit from work-sharing regions. After
splitting, the parallel region is split into two parallel regions as shown in Figure 3-11. The
first region will be translated into an OpenCL kernel function, whereas the second region will

not due to lack of global synchronization mechanism among work-items in OpenCL.

24

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#fpragma omp parallel shared(a, b) private (i, 7J)
{
#pragma omp for private (i, 7J)
for (i = 0; 1 < N; i++) {
for (j = 0; J < N; j++) {
alil[j] = b + 1;

Figure 3-10 The Parallel Region with Split Points Shown by Dash Lines

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#fpragma omp parallel shared(a, b) private (i, 7J)
{
#pragma omp for private (i, 7J)
for (i = 0; 1 < N; i++) {
for (j = 0; j < N; J++) {
alill[j] = b + 1;
}

#pragma omp parallel
{
#pragma omp single
{
puts ("XD") ;
}

Figure 3-11 The Parallel Regions After Splitting

3.2.3 Kernel Regions Transformation and Outlining

The kernel regions identified should be transformed before outlined into OpenCL kernel
functions. The transformation includes two stages: work partitioning and data mapping.
Firstly, for work-partitioning, each iteration of an omp for loop is mapped to an OpenCL
work-item, and each section of an omp sections is assigned to an OpenCL work-item. As a
consequence, the total number of work-items could be calculated by the number of iterations

for an omp for loop or the number of sections for an omp sections. Secondly, for data mapping,

25

using the interpretation results from Subsection 3.2.1 that all variables referenced in a kernel
region are listed in data-sharing attribute clauses, the translator inserts memory transfer
command calls to read data from or write data to OpenCL buffer objects for shared and
threadprivate data (threadprivate data are transferred only when the corresponding variables
are listed in copyin clauses of parallel directives). A basic strategy is to copy data used by
kernel functions from main memory into memory objects and copy modified data from
memory objects back to main memory. However, not all memory transfer command calls are
necessary, since the modified data might not be used by the host and data in global memory
region are persistent across kernel executions. The optimization for reducing memory transfer

command calls will be discussed in Subsection 3.3.2.

After being transformed, the kernel regions are outlined and replaced with kernel

execution command calls.

When the first parallel region in Figure 3-11 is transformed and outlined, the resulted
OpenCL kernel function is shown in Figure 3-12. Variables a and b are shared so that they
are mapped to OpenCL global memory region, and before the kernel execution, they are
copied into an OpenCL buffer object which is passed as an argument to the kernel function.
Variables i and 7 are private so that they are mapped to OpenCL private memory regions,
and, accordingly, they are defined as local variables in the kernel function. For line 7 to line
11 in Figure 3-12, each work-item does an iteration of the omp for loop L; in Figure 3-11.

1 kernel void main kernelO(_ global int a[N][N], global int
*b)

2 A

3 int i

4 int j;

5 i = wiid;

6 ;

7 ;

8 if (1 < N) {

9 for (7 = 0; 7 < N; J++) {
10 alil[3] = *b + 1;
11 }

12 }

13 e
14 e
15}

Figure 3-12 The OpenCL Kernel Function Translated From the First Parallel
Region in Figure 3-11

26

API and the extended C language for kernel functions of CUDA are different from those
of OpenCL with some similarities, so some changes are necessary. For instance, OpenCL
kernel functions must be in a string to be compiled by clBulidProgram, so the transformed
and outlined kernel functions must be appended into a string. In addition, the OpenCL kernel
functions in the string cannot access information such as macros in the host code, and,

consequently, the necessary information must be also included in the string.

3.3 OpenCL Optimizer

Since the OpenMP optimizer in Phase 1 only makes use of the constructs of the C
programming language, which is the selected base language of the OpenMP programs, the
OpenCL optimizer optimizes the resulted OpenCL programs of O20 baseline translator for
performance by utilizing features of OpenCL and some OpenCL devices like low-latency

memory regions and persistent data in global memory.

This optimizer provides three optimizations, which are caching frequently accessed global
data and memory transfer reduction. The optimizations can be turn on and turn off by the

command line options of OMP20OCL translator.

3.3.1 Caching Frequently Accessed Global Data

In some OpenCL devices such as GPUs, global memory region is mapped to an off-chip
memory which might not has cache depending on the capabilities of the OpenCL device, and
other memory regions such as private memory region, local memory region, and constant
memory region are either mapped to an on-chip memory or equipped with caches. In addition,
an on-chip memory usually has higher bandwidth and lower latency than an off-chip memory
for the same device. Hence, in order to reduce memory access latency, frequently accessed

data in global memory region should be cached on low-latency memory regions.

Concerning temporal data locality, the hardware automatically exploits intra-thread
locality and inter-thread locality on CPUs. Whereas using OpenCL on GPUs, the software
must exploit both intra-thread locality and inter-thread locality (or intra-work-item and inter-

work-item) by itself for global memory region.

27

This optimization performs data flow analysis to identify temporal locality of global data,
and inserts necessary caching codes. The caching strategies for global data with different
attributes are shown in Table 3-1. The O20 baseline translator maps shared data into global
memory region; however, this optimization caches global data into different memory regions
according to their attributes.

Table 3-1 The Caching Strategies for Global Data with Different Attributes

Temporal Locality

Intra-work-item Inter-work-item
R/O scalar Private, Local Local
R/W scalar Private, Local Local
R/O array Local Local
R/W array Local Local

In Figure 3-12, the data pointed by the variable b belongs to read-only scalar global data,
and work-items share the data. Therefore, variable b will be cached in the local memory
regions as shown in Figure 3-13. A variable declaration locates in line 5 with local
specifier, which is used to indicate that the variable is resided in the local memory regions. In
line 7, the data pointed by the variable b is cached into the local memory regions. In line 12,

the access to the data in the local memory regions substitutes the access to the global data.

28

1 kernel void main kernelO(global int a[N][N], global int
*b)

2

3 int i;

4 int j;

5 __local int lo_ b;

6 i = wiid;

7 lo b = *b;

8 cees

9 ceed
10 if (1 < N) {
11 for (j = 0; J < N; J++) {
12 alil[j] = lo_b + 1;
13 }
14 }
15 ceed
16 e
17 1}

Figure 3-13 The OpenCL Kernel Function with Variable b Cached in the Local
Memory Regions

As mentioned in Subsection 2.2.3, shared memory in CUDA is generalized as local
memory in OpenCL which is shared by a work-group. In CUDA, passing the data as an
argument to a kernel function has an effect of caching the data into shared memory regions.
Nevertheless, in OpenCL, to cache the data into local memory regions, it is necessary to insert
a variable declaration and an assignment statement as shown in Figure 3-13 since parameters

of a kernel function with specifier 1ocal cannot be initialed from the host.

3.3.2 Memory Transfer Reduction

An important stage of transforming kernel regions into OpenCL kernel functions is the
insertion of memory transfer command call. The 020 baseline translator inserts memory
transfer calls for all shared and threadprivate data. However, not all memory transfer
command calls are necessary since the modified data might not be used by the host and since

data in global memory region are persistent across kernel executions.

To remove the unnecessary memory transfer command calls, this optimization performs

data flow analysis in four steps:
i. Finding a set of shared data read in the kernel region as UseSet.

ii. Finding a set of shared data written in the kernel region as DefSet.

29

iii. For each variable in UseSet, if its reaching definition locates outside the kernel
region, then the variable should be transferred from the host before the kernel

execution.

iv. For each variable in DefSet, if it is used outside the kernel region, then the variable

should be transferred back to the host after the kernel execution.

In Figure 3-12, after the kernel execution, the host transfers the data pointed by variable a
and b back into the main memory. With this optimization, these memory transfers are

removed because the data will be useless after the kernel execution.

3.4 Limitations of OMP20OCL Translator

Some limitations of OMP2OCL translator are listed as follows:

e OMP20CL translator assumes that there is only one device in the platform and

only one kernel executes at a time.

e OMP20OCL translator can only translate simple OpenMP programs now. For

instance, it does not support omp task.

e OMP20CL translator has three optimizations now. For the performances of the
translated OpenCL programs, it is necessary to develop more optimizations for
OMP20CL translator.

30

Chapter 4 Experiment

The experiment platform has one Intel Core 2 Quad Q6600 as the host and one NVIDIA
GeForce 9800 GT as the device. Using oclBandwidthTest from NVIDIA GPU Computing
SDK, the bandwidth from the host to the device is around 2330 MB/s, and the bandwidth
from the device to the host is about 1900 MB/s.

Our experiment is based on two important kernels (JACOBI and SPMUL) and one NAS
OpenMP Parallel Benchmark (EP). Table 4-1 describes these three benchmarks, sorted from
top to down according to the increasing order of the numbers of source lines. The following

sections present the experiment results with respect to each benchmark.

Table 4-1 Descriptions of the Benchmarks

Benchmark

Description

of Source

Lines

of Kernel

Lines

of Omp

Parallel

JACOBI

An algorithm for determining the solutions
of a system of linear equations with largest
absolute values in each row and column

dominated by the diagonal elements

92

14

SPMUL

Sparse matrix multiplication, which is an
algorithm for sparse matrices, where most

elements of the matrices are zero

250

44

EP

Embarrassingly parallel, which is an
algorithm for generating independent
Gaussian random variates using the

Marsaglia polar method

614

79

Table 4-2 describes five optimizations implemented by the related work and the three

optimizations included in OMP2OCL translator. As a result, three optimizations, Parallel

Loop-Swap (PLS), Caching of Frequently Accessed Global Data (Caching), and Memory

Transfer Reduction (MTR) are conducted in the experiments.

31

Table 4-2 Optimizations Implemented by the Related Work and OMP20OCL

Translator
The Related Work OMP20CL
Translator
Parallel Loop-Swap (PLS) V \
Loop Collapsing (LC) \
Caching of Frequently Accessed Global Data (Caching) \ \
Matrix Transpose of Threadprivate Array (MT) V
Memory Transfer Reduction (MTR) V \

M No Optimization M ParallelLoopSwap ® MemoryTransferReduction HPLS + MTR
45
40
35
)
2
£ 30 |
[5)
1]
n
< 25
E
e 20 -
.0
s
g 15 -
&
10
5 -
0 -
original omp omp2cuda omp2ocl
B No Optimization 34.143 41.711 42.051
M ParallelLoopSwap 23.829 24.109
= MemoryTransferReduction 41.667 41.995
mPLS + MTR 23.764 24.101

Figure 4-1 Experiment Results for JACOBI

Without any optimization, both the CUDA program and the OpenCL program output by
the related work and OMP20OCL translator, respectively, perform worse than the original
OpenMP program because of the uncoalesced global memory accesses in the kernel functions.
The uncoalesced global memory accesses are resulted from the fact that each work-item
accesses arrays in row-wise scheme. Accordingly, Parallel Loop-Swap in Phase 1 can be used

to overcome these situations.

32

Using Parallel Loop-Swap in Phase 1, the performances of both the CUDA program and
the OpenCL program increase substantially and their execution time are around 57.13% and
57.33% compared to the OpenMP program and the OpenCL program with no optimization

respectively.

Using Memory Transfer Reduction in Phase 2, the performances of both the CUDA
program and the OpenCL program improve just very little due to the small amount of memory
transfers between the host and the device. Before optimization, the sizes of memory transfers
are around 32 MB for each direction. After optimization, the size of memory transfers is
reduced to around 16 MB for the direction from the host to the device, whereas the size of

memory transfer is remained the same for the direction from the device to the host.

Using both Parallel Loop-Swap in Phase 1 and Memory Transfer Reduction in Phase 2,
the combined effect of the optimizations are as expected that the execution time of both the
CUDA program and the OpenCL program are the shortest in programs output by the

translator of the related work and OMP2OCL translator respectively.

For JACOBI, Caching Frequently Accessed Global Data in Phase 2 has no effect on both
the CUDA program and the OpenCL program, since there are no temporal data locality
regarding to global memory accesses .Accordingly, the execution times after applying this
optimization are not showed in Figure 4-1.

33

4.2 SPMUL

B No Optimization mCaching ® MemoryTransferReduction ® Caching + MTR
18
16 -
14 |
™
2
5 12 -
o
(1]
28
p 10
£
= 8
2
'S
3 6 -
£
d
4 ,
2 -
0 -
original omp omp2cuda omp2ocl
B No Optimization 16.958 11.135 11.403
m Caching 10.067 10.287
= MemoryTransferReduction 11.13 11.365
m Caching + MTR 10.055 10.277

Figure 4-2 Experiment Results for SPMUL

Without any optimization, both the CUDA program and the OpenCL program output by
the related work and OMP20OCL translator, respectively, perform better than the original
OpenMP program because of the little uncoalesced global memory accesses and the large

amount of computation.

By Caching Frequently Accessed Global Data in Phase 2, some array elements are cached
in registers and private memories of the CUDA program and the OpenCL program,
respectively. As a consequence, the memory accesses to global memory region are reduced,
and, thus the performances of both the CUDA program and the OpenCL program increase a

few.

Using Memory Transfer Reduction in Phase 2, the performances of both the CUDA
program and the OpenCL program just increase very little due to the small amount of memory
transfer reduction. Before optimization, the sizes of memory transfers are around 85.64 MB
from the host to the device and about 7.87 MB from the device to the host. After optimization,
the size of memory transfers is reduced to around 77.77 MB from the host to the device,

whereas the size of memory transfer is remained the same from the device to the host.

34

Using both Caching Frequently Accessed Global Data in Phase 2 and Memory Transfer
Reduction in Phase 2, the combined effect of the optimizations are as expected that the
execution time of both the CUDA program and the OpenCL program are the shortest in

programs output by the related work and OMP2OCL translator respectively.

For SPMUL, Parallel Loop-Swap in Phase 1 has no effect because suitable loop nest
described in Subsection 3.1.1 for optimization does not exist, and, as a consequence, the
execution times after applying this optimization are not showed in Figure 4-2.

43 EP
B No Optimization m Caching
18
16
) 14
c
S
9 12
£
w 10
E
+ 8
c
2
= 6
(S
£ 4
wl
2
0
OpenMP CUDA OpenCL
B No Optimization 16.84 4,58 4,90
B Caching 4.30 4.67

Figure 4-3 Experiment Results for EP

Without any optimization, both the CUDA program and the OpenCL program output by
the related work and OMP2OCL translator, respectively, perform better than the original
OpenMP program because of the characteristics of EP, which has little uncoalesced global

memory accesses and large amount of parallelizable computation.

By Caching Frequently Accessed Global Data in Phase 2, some array elements are cached
in shared memories and local memories of the CUDA program and the OpenCL program,

35

respectively. As a consequence, the memory accesses to global memory region are reduced,
and, thus the performances of both the CUDA program and the OpenCL program increase a

few.

For EP, Parallel Loop-Swap in Phase 1 and Memory Transfer Reduction in Phase 2 have
no effect on both the CUDA program and the OpenCL program; in other words, there is no
suitable loop nest for Parallel Loop-Swap and no suitable global data for Memory Transfer
Reduction. Consequently, the execution times after applying this optimization are not showed

in Figure 4-3.

4.4 Discussion

Parallel Loop-Swap in Phase 1 resolves uncoalesced global memory accesses in a loop
nest with regular data accesses. Coalesced global memory accesses are significant in both
CUDA programs and OpenCL programs with GPUs as the devices. In our experiment
platform, there is a GPU. Therefore, for JACOBI, both the CUDA program and the OpenCL
program while applying this optimization perform well compared to those without this
optimization and the original OpenMP program. However, with devices rather than GPUs

such as CPUs, this optimization might decrease the performance instead.

In the experiment platform, caching frequently accessed global data in private memories
and local memories of OpenCL has benefits to the performance of both the CUDA program
and the OpenCL program, because the latencies to private memories and local memories are
shorter than that to global memory. Nevertheless, with devices rather than GPUs such as

CPUs, the latency reduction by Caching might not be significant.

Memory Transfer Reduction in Phase 2 removes unnecessary memory transfers. If the
memory transfers locate in a loop nest with many iterations, then the performance
improvement could be substantial. However, this situation is not present in the experiments.
Thus, for JACOBI and SPMUL, the performances of both the CUDA program and the
OpenCL program while applying this optimization improve a little compared to those without

applying this optimization.

36

Chapter 5 Conclusion and Future Work

We designed and implemented a translator for automatic translation of OpenMP programs
into OpenCL programs. Although there are performance losses for OMP2OCL translator
compared to the related work designed dedicatedly for NVIDIA GPUs, it is still promising
that the translated OpenCL programs can use other devices as compute devices other than
NVIDIA GPUs. In addition, we have constructed an infrastructure for automatic translation of
OpenMP programs into OpenCL programs. Researchers can use this infrastructure as a basis
to develop more device-independent and device-dependent optimizations. Moreover,
programmers can use this translator to translate existed or newly-developed OpenMP
programs into OpenCL programs, in order to make the OpenMP programs as programs of
heterogeneous multiprocessor platforms.

The future work listed in the following might be considered to extend our OMP20OCL

translator:

e Currently, our OMP20OCL translator assumes that there is only one device in the
platform and only one kernel executes at a time. Whenever there are multiple
devices in the platform and multiple kernels in the OpenCL program, these kernels
have the potential to execute simultaneously. However, there are some conditions
for the simultaneous execution, i.e., two kernels executed simultaneously should
not have data and control dependencies between each other; otherwise, the
translated OpenCL program would have different behaviors from the original
OpenMP program. We plan to do necessary dependency analysis on kernels and

let independent kernels execute on multiple devices in the future.

e Our OMP20OCL translator can translate only simple OpenMP programs now. For
instance, it does not support omp task. We plan to map omp task into task parallel

programming model of OpenCL in the future.

e OMP20OCL translator has three optimizations now. For the performances of the
translated OpenCL programs, it is necessary to develop more optimizations for
OMP20OCL translator. We plan to analyze and port Loop Collapsing and Matrix
Transpose of the related work into OMP20OCL translator in the future.

37

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

References

L. Hammond, B. A. Nayfeh, and K. Olukotun, “A Single-Chip Multiprocessor,”
Computer, vol. 30, no. 9, pp. 79-85, 1997.

R. Tsuchiyama, T. Nakamura, T. lizuka, A. Asahara, S. Miki, and S. Tagawa, The
OpenCL Programming Book, 1st ed. Fixstars Corporation, 2010.

L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory
programming,” Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46-55,
1998.

W. Michael, “OpenMP on Accelerators—A Position Paper.” [Online]. Available:
http://www.pgroup.com/lit/articles/insider/v2n2a5.htm.

Khronos OpenCL Working Group, “OpenCL.” [Online]. = Available:
http://www.khronos.org/opencl/.

Khronos OpenCL Working Group, The OpenCL Specification 1.1. 2010.

NVIDIA Corporation, “CUDA Zone.” [Online]. Available:
http://www.nvidia.com/object/cuda_home_new.html.

S. Lee, S. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler framework for
automatic translation and optimization,” SIGPLAN Not., vol. 44, no. 4, pp. 101-110,
2009.

C. Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, R. Eigenmann, and S. Midkiff,
“Cetus: A Source-to-Source Compiler Infrastructure for Multicores,” Computer, vol. 42,
no. 12, pp. 36-42, 2009.

OpenMP Architecture Review Board, OpenMP 3.0 API Specifications - OpenMP

Application Program Interface. .

38

	摘要
	Abstract
	致謝
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Research Motivation
	1.2 Research Objective
	1.3 Organization of the Thesis

	Chapter 2 Background and Related Work
	2.1 OpenMP
	2.2 OpenCL
	2.2.1 Platform Model
	2.2.2 Execution Model
	2.2.3 Memory Model
	2.2.4 Programming Model
	2.2.5 The OpenCL Framework

	2.3 CUDA
	2.3.1 Platform Model
	2.3.2 Execution Model
	2.3.3 Memory Model

	2.4 Related Work

	Chapter 3 Design and Implementation of OMP2OCL Translator
	3.1 OpenMP Optimizer
	3.1.1 Parallel Loop-Swap

	3.2 O2O Baseline Translator
	3.2.1 OpenMP Program Analysis
	3.2.2 Kernel Regions Identification
	3.2.3 Kernel Regions Transformation and Outlining

	3.3 OpenCL Optimizer
	3.3.1 Caching Frequently Accessed Global Data
	3.3.2 Memory Transfer Reduction

	3.4 Limitations of OMP2OCL Translator

	Chapter 4 Experiment
	4.1 JACOBI
	4.2 SPMUL
	4.3 EP
	4.4 Discussion

	Chapter 5 Conclusion and Future Work
	References

