

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

OMP2OCL 轉換器︰可自動轉換 OpenMP 程式

到 OpenCL 程式的轉換器

OMP2OCL Translator: A Translator for Automatic

Translation of OpenMP Programs into OpenCL Programs

研 究 生：蔡宗展

 指導教授：單智君 博士

中 華 民 國 九 十 九 年 十一 月

i

OMP2OCL Translator︰可自動轉換 OpenMP 程式

到 OpenCL 程式的轉換器

OMP2OCL Translator: A Translator for Automatic

Translation of OpenMP Programs into OpenCL Programs

 研 究 生：蔡宗展 Student: Tsung-Chan Tsai

 指導教授：單智君 博士 Advisor: Dr. Jyh-Jiun Shann

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

November 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年十一月

ii

OMP2OCL Translator︰可自動轉換 OpenMP 程式

到 OpenCL 程式的轉換器

學生︰蔡宗展 指導教授：單智君 博士

國立交通大學資訊科學與工程研究所碩士班

摘要

由於對高效能系統的需求，異質多處理器平台成為了一個趨勢。然而，跟同質多處

理器平台相比，異質多處理器平台難以程式化且多樣化。Knronos Group 近年來釋出了

OpenCL 標準，它改善了異質多處理器平台程式的可攜性，然而使用 OpenCL 撰寫異質

多處理器平台程式依然複雜且易出錯。在這篇論文內，我們設計且實作名為

OMP2OCL translator 的轉換器，它自動轉換 OpenMP 程式到 OpenCL 程式。在

OMP2OCL translator 內，我們延用且修改相關研究內的優化，來優化轉換出來的

OpenCL 程式。OMP2OCL translator 鑒定出 OpenMP 程式內的核心區域，改變該核心區

域成為 OpenCL 核心函式，且使用優化來改善轉換出來的 OpenCL 程式。此外，我們

比較了由相關研究轉換出來的 CUDA 程式和由 OMP2OCL translator 轉換出來的

OpenCL 程式。雖然與針對 NVIDIA GPU 的相關研究相比，OMP2OCL translator 有效

能損失，但 OMP2OCL translator 還是很有用，因為轉換出來的 OpenCL 程式並不限定

使用 NVIDIA GPUs 為計算設備。

iii

OMP2OCL Translator: A Translator for Automatic

Translation of OpenMP Programs into OpenCL Programs

Student: Tsung-Chan Tsai Advisor: Dr. Jyh-Jiun Shann

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Heterogeneous multiprocessor platforms have become trends due to the need for high-

performance systems. However, it is harder to program them than homogeneous

multiprocessor platforms and there are various heterogeneous multiprocessor platforms in the

world. Although newly-released OpenCL (Open Computing Language) standard from

Khronos Group offers improves portability among heterogeneous multiprocessor platforms,

programming such platforms using OpenCL is still complex and error-prone. In this thesis, we

have designed and implemented a translator, called OMP2OCL Translator, which is for

automatic source-to-source translation of OpenMP programs into OpenCL programs, in

addition, we have reused and modified if necessary the optimizations from the related work to

improve the OpenCL programs output from OMP2OCL translator. The translator identifies

kernel regions of OpenMP programs, transforms and outlines the regions into OpenCL kernel

functions, and does some optimization to improve the performance of the translated OpenCL

programs. Moreover, we have compared the CUDA programs and the OpenCL programs

output from the related work and OMP2OCL translator, respectively. Although there are

performance losses for OMP2OCL translator compared to the related work designed

dedicatedly for NVIDIA GPUs, it is still promising that the translated OpenCL programs can

use other devices as compute devices other than NVIDIA GPUs.

iv

致謝

首先感謝我的指導老師 單智君教授，在這兩年當中不論是正式報告，亦或是平日

小組討論，老師對於學生的諄諄教誨，細心指導與勉勵，使我學習到如何面對問題，

以及如何克服問題，並培養獨立研究的能力。有幸跟著老師做研究，觀察老師對於一

件事情的執著與細膩，耳濡目染，並從中學習，最後完成了研究與碩士學位。同時，

也感謝口試委員，鍾葉青教授、楊武教授與游逸平教授，由於教授們的指導與建議，

才使得此篇論文更加完整與充實。另外，也謝謝實驗室的另一位老師，鍾崇斌教授，

在一次次的報告之中給予學生指導與建議。

裕生學長、奕緯學長，感謝兩位學長帶領我進入 JVM 與 Compiler 領域，不僅僅只

是給予我研究上的建議與討論，同時也常是鼓勵我前進的動力，才使得我學習到相關

知識並完成此研究。同時，實驗室的學長姐、同儕以及學弟妹，在這一起渡過的時光

中，你們不僅僅是我記憶中的好夥伴，更是人生道路上的貴人們，謝謝。

最後，對於我的家人以及總是在我低潮時給予鼓勵並且陪伴著我的親友，宗展也

在此獻上最誠摯的謝意。

v

Table of Contents

摘要 .. ii

Abstract .. iii

致謝 ... iv

Table of Contents ... v

List of Figures ... vii

List of Tables ... viii

Chapter 1 Introduction .. 1

1.1 Research Motivation .. 1

1.2 Research Objective .. 2

1.3 Organization of the Thesis ... 2

Chapter 2 Background and Related Work .. 3

2.1 OpenMP ... 3

2.2 OpenCL .. 5

2.2.1 Platform Model ... 6

2.2.2 Execution Model .. 7

2.2.3 Memory Model ... 8

2.2.4 Programming Model ... 10

2.2.5 The OpenCL Framework .. 11

2.3 CUDA .. 12

2.3.1 Platform Model ... 12

2.3.2 Execution Model .. 13

2.3.3 Memory Model ... 14

2.4 Related Work ... 14

Chapter 3 Design and Implementation of OMP2OCL Translator 16

3.1 OpenMP Optimizer .. 17

vi

3.1.1 Parallel Loop-Swap .. 18

3.2 O2O Baseline Translator ... 20

3.2.1 OpenMP Program Analysis .. 21

3.2.2 Kernel Regions Identification ... 23

3.2.3 Kernel Regions Transformation and Outlining .. 25

3.3 OpenCL Optimizer .. 27

3.3.1 Caching Frequently Accessed Global Data .. 27

3.3.2 Memory Transfer Reduction .. 29

3.4 Limitations of OMP2OCL Translator .. 30

Chapter 4 Experiment ... 31

4.1 JACOBI ... 32

4.2 SPMUL .. 34

4.3 EP ... 35

4.4 Discussion .. 36

Chapter 5 Conclusion and Future Work .. 37

References .. 38

vii

List of Figures

Figure 2-1 The Execution Model of OpenMP ... 4

Figure 2-2 The Memory Model of OpenMP ... 4

Figure 2-3 A Simple Example of an OpenMP Program .. 5

Figure 2-4 The Platform Model of OpenCL .. 6

Figure 2-5 The Platform Example of OpenCL .. 7

Figure 2-6 The Execution Model of OpenCL ... 8

Figure 2-7 The Memory Model of OpenCL .. 10

Figure 2-8 The CUDA-capable GPU architecture ... 13

Figure 2-9 The Thread Hierarchy of CUDA ... 14

Figure 2-10 The Framework of The Related Work ... 15

Figure 3-1 The Framework of OMP2OCL translator .. 16

Figure 3-2 The Example OpenMP Program .. 17

Figure 3-3 A Simple Loop Nest Without Applying Parallel Loop-Swap 19

Figure 3-4 A Region of the Kernel Function Transformed from Figure 3-3 19

Figure 3-5 The Simple Loop Nest After Applying Parallel Loop-Swap 20

Figure 3-6 The Region of the Kernel Function Transformed from Figure 3-5 20

Figure 3-7 A Simple Example with A Simple Loop Nest ... 22

Figure 3-8 The Simple Loop Nest with Additional Data-Sharing Attribute Clauses 23

Figure 3-9 The Algorithm for Identifying Kernel Regions ... 24

Figure 3-10 The Parallel Region with Split Points Shown by Dash Lines 25

Figure 3-11 The Parallel Regions After Splitting ... 25

Figure 3-12 The OpenCL Kernel Function Translated From the First Parallel Region in

Figure 3-11 ... 26

Figure 3-13 The OpenCL Kernel Function with Variable b Cached in the Local Memory

Regions ... 29

Figure 4-1 Experiment Results for JACOBI ... 32

Figure 4-2 Experiment Results for SPMUL .. 34

Figure 4-3 Experiment Results for EP ... 35

file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928033
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928034
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928044
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928045
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928046
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928047
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928048
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928049
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928050
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928051
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928052
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928053
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928054
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928054
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928055
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928055
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928056
file://Webdrive/Keroro/Lab/Research/thesis.docx%23_Toc277928057

viii

List of Tables

Table 2-1 Type of Allocation to Each Memory Regions for Hosts and Devices 9

Table 2-2 Access Allowed to Each Memory Regions for Hosts and Devices 9

Table 2-3 Lifetime of Variables Defined in Each Memory Regions 9

Table 3-1 The Caching Strategies for Global Data with Different Attributes....................... 28

Table 4-1 Descriptions of the Benchmarks ... 31

Table 4-2 Optimizations Implemented by the Related Work and OMP2OCL Translator 32

1

Chapter 1 Introduction

Multiprocessor platforms are ubiquitous, ranging from embedded devices, mobile devices

to workstations and high-end servers. Chip multiprocessors [1], as known as multi-core

processors, are one kind of homogeneous multiprocessor platforms and have become the

important trend in contemporary computer architectures by major microprocessor vendors, as

these vendors could not overcome some problems related to physical constraints (e.g., power,

thermal, and signaling) and limited instruction-level parallelism. In addition, heterogeneous

multiprocessor platforms play an important role in the computer industry, and they could be

found in mobile devices and workstations with CPU plus GPU or CPU plus DSP, for instance,

iPhone 4 is powered by the Apple A4 chip, which is a system-on-a-chip and composed of a

Cortex-A8 CPU integrated with a PowerVR SGX 535 GPU.

1.1 Research Motivation

Heterogeneous multiprocessor platforms especially have much potential regarding

performance gain than homogeneous multiprocessor platforms, by partitioning programs into

different properties of tasks and scheduling the tasks on suitable processors; hence, they are

widely used in some dedicated systems. Nevertheless, heterogeneous multiprocessor

platforms are harder to program, and there are various heterogeneous multiprocessor

platforms in the world. To alleviate these issues, many parallel programming standards have

been proposed, and one of them is OpenCL (Open Computing Language) [2].

OpenCL is an open industry standard from the Khronos group supported by AMD, IBM,

Intel, NVIDA and others. It models heterogeneous multiprocessor platforms, consisting of a

host and one or several devices, which can be CPU, GPU, DSP, Cell/B.E. processor, etc.

Targeting for various devices from vendors makes OpenCL programs portable. In other words,

once an OpenCL program is written, it can be compiled if necessary and run on any

heterogeneous multiprocessor platform with OpenCL environments.

Despite of being portable, OpenCL is more complex to use than OpenMP [3]. OpenMP is

yet another open industry standard maintained by the OpenMP Architecture Review Board,

mainly targeting for homogeneous multiprocessor platforms with shared memory [4]. By

2

using its directives to annotate structured blocks that could be paralleled and to insert some

auxiliary annotations, among others, OpenMP is pretty simple to use.

1.2 Research Objective

In order to program heterogeneous multiprocessor platforms with the benefits of both

OpenMP and OpenCL, which are ease-of-use and portability respectively, we design and

implement a translator for automatic translation of OpenMP programs into OpenCL programs.

The translation roughly consists of the following four steps:

i. Analyzing the OpenMP program under the models of OpenCL.

ii. Identifying kernel regions, i.e., regions executed on OpenCL devices.

iii. Transforming and outlining kernel regions into OpenCL kernel functions.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 describes OpenMP, OpenCL,

CUDA, and the related work; Chapter 3 presents the design and implementation of

OMP2OCL translator; Chapter 4 discusses and compares the performance of the OpenCL

programs output by OMP2OCL translator and that of the CUDA programs output by the

related work’s translator; finally, Chapter 5 dedicates to the conclusions we draw and the

future work plan.

3

Chapter 2 Background and Related Work

This chapter first introduces several parallel programming models including OpenMP,

OpenCL, and CUDA. OpenMP and OpenCL are different in nature, from the models behind

the scenes to the language constructs that developers use commonly. In contrast, OpenCL and

CUDA are similar to each other, with just some names of components changed, some

components removed, and some components added. This chapter then presents “OpenMP to

GPGPU: a compiler framework for automatic translation and optimization” as a related work,

the authors of which designed and implemented an automatic source-to-source translator of

OpenMP programs into CUDA programs.

2.1 OpenMP

OpenMP is an open industry standard maintained by the OpenMP Architecture Review

Board, mainly targeting for homogeneous multiprocessor platforms with shared memory [4].

The execution model of OpenMP is a fork-join model of parallel execution as shown in

Figure 2-1. In Figure 2-1, an OpenMP program has only one thread initially, called the initial

thread. When the initial thread encounters a parallel directive, it forks a team of itself and

zero or more additional threads, and becomes the master of the new team. After finishing the

parallel region, the team of threads joins together, and, as a result, only the master thread

which is the initial thread continues execution. Furthermore, there are implicit

synchronizations before and after the parallel regions in order to maintain program

correctness.

The memory model of OpenMP is shared memory with each thread having its own private

memory as shown in Figure 2-2. Data can be shared or private, shared data are accessible by

all threads; in contrast, private data can only be accessed by the thread owning it.

4

Core elements of OpenMP standard consist of directives, runtime library routines, and

environment variables, and directives are at the core of OpenMP standard. Parallel directive

is used to annotate structured blocks that could be paralleled, and work-sharing directive is

used to annotate works which could be divided and distributed to threads. In C/C++, OpenMP

directives are specified by using the #pragma mechanism provided by the C/C++ standards. A

simple example of an OpenMP program example is shown in Figure 2-3, and it uses both a

Team of

Threads

Team of

Threads

Synchronization

Synchronization

Synchronization

Synchronization

Parallel Region

Initial

Thread

Parallel Region

Parallel Directive

Parallel Directive

Master

Thread

Master

Thread

Shared

Memory

T
Private

Memory

T T

T
Private

Memory

Private

Memory

Private

Memory
T: Thread

Figure 2-1 The Execution Model of OpenMP

Figure 2-2 The Memory Model of OpenMP

5

parallel directive and a work-sharing directive. In line 10 of Figure 2-3, the parallel directive

is used to indicate that the following structured block is fit for being paralleled; likewise, in

line 12, the for directive, which belongs to work-sharing directives, indicate that the iterations

of the following for loop should be divided and distributed to threads.

Figure 2-3 A Simple Example of an OpenMP Program

2.2 OpenCL

OpenCL is an open industry standard from the Khronos group supported by AMD, IBM,

Intel, NVIDA and others [5]. Thus it is vendor-neutral, and it models heterogeneous

multiprocessor platforms, consisting of a host and one or more devices, which can be CPU,

GPU, DSP, Cell/B.E. processor, etc. OpenCL specifies four models as its architecture:

platform model, execution model, memory model, and programming model [6].

 1 #include <stdio.h>

 2 #define N 1024

 3

 4 int a[N][N], b;

 5

 6 int main()

 7 {

 8 int i, j;

 9

 10 #pragma omp parallel

 11 {

 12 #pragma omp for private(j)

 13 for (i = 0; i < N; i++) {

 14 for (j = 0; j < N; j++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18

 19 #pragma omp single

 20 {

 21 puts("XD");

 22 }

 23 }

 24

 25 return 0;

 26 }

6

2.2.1 Platform Model

In the platform model, one host connects to one or more OpenCL devices (compute

devices) on a platform as shown in Figure 2-4 [6]. One or more processing elements (PEs)

compose a compute unit (CU), and one or more compute units compose an OpenCL device.

Processing elements within a device are the workers doing computations.

An OpenCL program runs on a host in compliance with the native models of the host

platform, and sends commands from the host to processing elements within a device for

executing computations. The processing elements within a compute unit execute an

instruction stream as SIMD units (each PE has its own data and a shared program counter) or

as SPMD units (each PE has its own data and its own program counter).

Figure 2-5 shows a platform example with an Intel Core 2 as the host and a NVIDIA’s

OpenCL platform. The platform has only one compute device, which is NVIDIA GeForce

GTX 280 in this example. The device has totally 240 shader processors grouped into 30 sets,

each set having 8 shader processors. As a consequence, when mapped to the OpenCL

platform model, the device has 30 compute units, each of which composes 8 processing

elements.

Figure 2-4 The Platform Model of OpenCL

7

Figure 2-5 The Platform Example of OpenCL

2.2.2 Execution Model

An OpenCL program is comprised of two parts: a host program executing on host and

kernels executing on one or more OpenCL devices [6]. The host program defines the context

for the kernels and manages their execution.

The way how a kernel should be executed on an OpenCL device is the heart of the

OpenCL execution model as shown in Figure 2-6. When a kernel is executed on an OpenCL

device, an index space is formed, and each point in the index space stand for a kernel instance,

which is named as a work-item and identified by its position in the index space. Although

each work-item executes the same code, it can have its own data and its own program counter;

in other words, control flow through the code can vary per work-item. Work-items are further

organized into work-groups, which provide a more coarse-grained decomposition of the index

space; in addition, the work-items in a given work-group execute concurrently on the

processing elements of a single compute unit.

The index space within OpenCL is called an NDRange, which is an N-dimensional index

space, where N is one, two or three. An NDRange is defined by an integer array of length N

specifying the extent of the index space in each dimension starting at an offset index (zero by

default).

8

Figure 2-6 The Execution Model of OpenCL

2.2.3 Memory Model

Work-item(s) executing a kernel may access four distinct memory regions [6]:

 Global Memory:

This memory region permits read/write access to all work-items in all work-groups,

so work-items can read from or write to any element of a memory object. Reads

and writes to global memory may be cached depending on the capabilities of the

device.

 Constant Memory:

This memory region is a region of global memory that remains constant during the

execution of a kernel. The host allocates and initializes memory objects placed into

constant memory.

 Local Memory:

This memory region is local to a work-group. This memory region can be used to

allocate variables that are shared by all work-items in that work-group. It may be

9

implemented as dedicated regions of memory on the OpenCL device. Alternatively,

the local memory region may be mapped onto sections of the global memory.

 Private Memory:

This memory region is private to a work-item. Variables defined in one work-

item’s private memory are not visible to another work-item.

Table 2-1 describes whether the host or the device can allocate from a memory region or

not and the type of allocation (static, i.e., compile time vs. dynamic, i.e., runtime). Table 2-2

describes the type of access allowed, i.e., whether the host or the device can read and/or write

to a memory region; moreover, Table 2-3 describes lifetime of variables defined in ach

memory regions.

Table 2-1 Type of Allocation to Each Memory Regions for Hosts and Devices

Allocation Global Constant Local Private

Host Dynamic Dynamic Dynamic No

Device No Static Static Static

Table 2-2 Access Allowed to Each Memory Regions for Hosts and Devices

Access Global Constant Local Private

Host Read/write Read/write No No

Device Read/write Read-only Read/write Read/write

Table 2-3 Lifetime of Variables Defined in Each Memory Regions

 Global Constant Local Private

Lifetime

From allocation

to deallocation

by host program

From allocation

to deallocation

by host program

As work-group’s

lifetime

As work-item’s

lifetime

10

The memory regions and how they relate to the platform model and the execution model

are described in Figure 2-7.

Figure 2-7 The Memory Model of OpenCL

2.2.4 Programming Model

The OpenCL execution model supports data parallel and task parallel programming

models as well as the hybrids of these two models [6]. The primary model driving the design

of OpenCL is data parallel programming model.

11

 Data Parallel Programming Model

A data parallel programming model defines a computation in terms of a sequence

of instructions applied to multiple elements of a memory object. The index space

associated with the OpenCL execution model defines the work-items and how the

data maps onto the work-items. In a strictly data parallel programming model,

there is a one-to-one mapping between the work-item and the element in a memory

object over which a kernel can be executed in parallel. However, OpenCL

implements a relaxed version of the data parallel programming model where a

strict one-to-one mapping is not a requirement.

 Task Parallel Programming Model

The OpenCL task parallel programming model defines a model in which a single

kernel instance is executed independently of any index space. It is logically

equivalent to executing a kernel on a compute unit with a work-group containing a

single work-item. Under this model, users may express parallelism by one of the

following schemes.

i. Using vector data types implemented by the device.

ii. Enqueuing multiple kernels.

iii. Enqueuing native kernels developed using a programming model other

than that of OpenCL.

2.2.5 The OpenCL Framework

The framework inside OpenCL provides developers a way to develop an OpenCL

program and manipulate the behavior of the program. The framework includes the following

components:

 OpenCL Platform Layer

The platform layer implements platform-specific features that allow programs to

create contexts, manage contexts, query OpenCL devices, and query device

configuration information.

12

 OpenCL Runtime

The runtime supports numerous API calls that manage OpenCL objects such as

command-queues, memory objects, program objects, and kernel objects for

__kernel functions in a program object; it also supports API calls that allow you to

enqueue commands to a command-queue for executing a kernel, and reading or

writing a memory object.

 OpenCL Compiler

The OpenCL standard defines a language for programming kernels as a subset of

the ISO C99 language with extensions for parallelism. Therefore, it is necessary to

have a compiler supporting such language, which creates program executables

containing OpenCL kernels.

2.3 CUDA

NVIDIA’s CUDA [7] is a parallel programming standard released in 2007. It extends the

standard C/C++ programming language with some restrictions for parallel GPU computing.

Via CUDA APIs, developers can program GPUs without tricky programming techniques

which are required when developers programs GPUs with graphics APIs such as OpenGL and

DirectX. Logically, CUDA could be viewed as a specialization of OpenCL for NVIDIA’s

GPUs in some extent because of many similarities between them. The similarities will be

discussed in the following Subsections.

2.3.1 Platform Model

The platform model of CUDA, i.e., the CUDA-capable GPU architecture, is shown in

Figure 2-8. One or more CUDA cores (CCs) compose a multiprocessor, and one or more

multiprocessors compose a GPU which is connected to a CPU via the system bus. A CUDA

core is a basic computation unit as a processing element in OpenCL, and a multiprocessor is

analogous to a compute unit in OpenCL that both play the same role in CUDA and OpenCL

respectively.

13

Figure 2-8 The CUDA-capable GPU architecture

2.3.2 Execution Model

The execution model or the thread hierarchy of CUDA as shown in Figure 2-9 is a grid of

thread blocks, each of which contains a batch of threads. A grid in CUDA and an NDRange in

OpenCL are alike that both of them are index space of basic computation units. However, a

grid is two-dimensional, whereas an NDRange is three-dimensional. As expected, a thread

block is just like a work-group in OpenCL, and a thread in CUDA plays the same role as a

work-item in OpenCL

14

Figure 2-9 The Thread Hierarchy of CUDA

2.3.3 Memory Model

As mentioned in the first paragraph of Section 2.3 that CUDA could be viewed as a

specialization of OpenCL, in contrast, OpenCL could be viewed as a generalization of CUDA.

Thus, registers and local memory in CUDA are generalized as private memory in OpenCL

which is a memory region per work-item. Shared memory in CUDA is generalized as local

memory in OpenCL which is a memory region shared by a work-group. Likewise, global

memory both in CUDA and OpenCL function alike. However, texture memory in CUDA

which is a particular memory region for graphics processing is missing from OpenCL.

2.4 Related Work

Lee et al designed and implemented a translator for automatic translation of OpenMP

programs into CUDA programs [8], which was released in Cetus [9] 1.2 on May 21, 2010.

The translator consists of two phases as shown in Figure 2-10. Phase 1 contains an OpenMP

optimizer. Phase 2 contains an O2C baseline translator and a CUDA optimizer.

15

Figure 2-10 The Framework of The Related Work

First, the OpenMP optimizer optimizes the input OpenMP programs for CUDA. OpenMP

mainly targets for homogeneous multiprocessor platforms with shared memory, such as a

platform with single-core CPUs or multi-core CPU(s) sharing memory regions and having the

same ISA. In contrast, CUDA targets for heterogeneous multiprocessor platforms that now

can only be one or more CPUs plus one or more NVIDIA GPUs. Because of these

architectural differences, the optimizer is used to alleviate the effect of the differences and to

make the resulted OpenMP programs more suitable for executing on heterogeneous

multiprocessor platforms that CUDA targets.

Second, the O2C baseline translator translates the optimized OpenMP programs of the

OpenMP optimizer into CUDA programs directly. The translation mainly consists of the

following three steps:

i. Analyzing the OpenMP program under the models of CUDA.

ii. Identifying kernel regions, i.e., regions executed on GPUs.

iii. Transforming and outlining kernel regions into CUDA kernel functions

Finally, since the OpenMP optimizer only makes use of the constructs of the C

programming language, which is the selected base language of the OpenMP programs, the

CUDA optimizer optimizes the resulted CUDA programs of the O2C baseline translator for

performance by utilizing CUDA-specific features such as low-latency memory regions,

coalesced global memory accesses, and persistent data in global memory.

16

Chapter 3 Design and Implementation of

OMP2OCL Translator

Based on the source code of the related work, we designed and implemented OMP2OCL

translator, which is a translator for automatic translation of OpenMP programs into OpenCL

programs, according to the syntax, the semantics and the APIs of OpenCL. By the way, both

of OpenMP programs and OpenCL programs are written in C programming language. The

translator consists of two phases as shown in Figure 3-1. Phase 1 contains an OpenMP

optimizer. Phase 2 contains an O2O baseline translator and an OpenCL optimizer. The details

of these components will be discussed in the following sections.

Figure 3-1 The Framework of OMP2OCL translator

The example OpenMP program as shown in Figure 3-2 is used to demonstrate the concept

of OMP2OCL.

17

3.1 OpenMP Optimizer

The OpenMP optimizer optimizes the input OpenMP programs for OpenCL. With the

reason that OpenMP and OpenCL target for different multiprocessor platforms, which is

similar to the reason mentioned in the second paragraph of Section 2.4, the optimizer is used

to alleviate the effect of the architectural differences and to make the resulted OpenMP

programs more suitable for executing on heterogeneous multiprocessor platforms that

OpenCL supports.

Concerning spatial data locality, CPUs, target devices of OpenMP, prefer intra-thread

locality to inter-thread locality; whereas GPUs, devices supported by OpenCL, prefer both

localities. In CPUs, intra-thread locality increases cache utilization, thus reducing memory

access latency. However, inter-thread locality among threads on different CPUs of

homogeneous multiprocessor platforms with shared memory may encounter false-sharing and

hence increase memory access latency. Therefore, iterations of omp for loops in OpenMP

programs are usually block-distributed rather than cycle-distributed. In GPUs, intra-thread

locality within a thread also increases cache utilization. But most importantly, inter-thread

locality among GPU threads has great effect on global memory access latency; that is, if

 1 #include <stdio.h>

 2 #define N 1024

 3

 4 int a[N][N], b;

 5

 6 int main()

 7 {

 8 int i, j;

 9

 10 #pragma omp parallel

 11 {

 12 #pragma omp for private(j)

 13 for (i = 0; i < N; i++) {

 14 for (j = 0; j < N; j++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18

 19 #pragma omp single

 20 {

 21 puts("XD");

 22 }

 23 }

 24

 25 return 0;

 26 }

Figure 3-2 The Example OpenMP Program

18

adjacent threads concurrently access to adjacent data in global memory region, these accesses

can be coalesced into fewer global memory accesses, and consequently, the memory access

latencies are reduced.

This optimizer provides one optimization, Parallel Loop-Swap, to enhance inter-thread

locality of OpenMP programs for executing on heterogeneous multiprocessor platforms with

GPUs as OpenCL devices. The optimization can be turn on and turn off by the command line

options of OMP2OCL translator.

3.1.1 Parallel Loop-Swap

Parallel Loop-Swap is an optimization to enhance the inter-thread locality of OpenMP

programs with regular data accesses in loop nests. For each perfect loop nest that has multiple

loops and contains no function call, the optimization rearranges the loops within the loop nest

using following strategies:

i. For each loop with index variable which has less effect on values of subscript

expressions of array accesses within the loop body, move it to outer level as far as

possible.

ii. For each loop with index variable which has larger effect on values of subscript

expressions of array accesses within the loop body, move it to inner level as far as

possible.

iii. The rearrangement of loops within a loop nest should not break the dependencies

among initial statements, condition expressions and step expressions of loops.

iv. For points i and ii, when there are ties among loops which have the same effect on

values of subscript expressions of array accesses within the loop body, the loop

with more iterations has higher priority to be rearranged.

A simple loop nest without applying Parallel Loop-Swap is shown in Figure 3-3. After the

loop nest with the associated omp parallel is translated into a kernel function, a region of the

kernel function as shown in Figure 3-4 contains an if statement, which in turn contains a

singly nested for loop. The if statement is derived from Li, the loop with index variable i in

19

Figure 3-3, and the for loop comes from Lj, the loop with index variable j in Figure 3-3. In

Figure 3-4, each GPU thread accesses a row of each array via the array accesses a[wiid][j]

and b[wiid][j], and, as a consequence, these memory accesses create uncoalesced global

memory accesses, and thus increase memory access latencies.

Array accesses a[i][j] and b[i][j] could be expressed as a[i * N + j] and

b[i * N + j], respectively. For expression i * N + j, increment of i will increases

the value of the expression more than that of j. For this reason, in Figure 3-3, the index

variable of Lj, j, has less effect on the values of the subscript expressions of the array accesses

a[i][j] and b[i][j] than the index variable of Li, i. Therefore, Lj is moved up to the

outer level of the loop nest in Figure 3-5 after applying Parallel Loop-Swap. In Figure 3-6,

each GPU thread accesses a column of each array via the array accesses a[i][wiid] and

b[i][wiid], and at every iteration of Li, the accesses of all GPU threads fall within a row

of each array. Accordingly, these memory accesses can be coalesced into fewer global

memory accesses, and the memory access latencies are reduced.

 1 if (wiid < N) {

 2 for (j = 0; j < N; j++) {

 3 a[wiid][j] = b[wiid][j] + 1;

 4 }

 5 }

 10 #pragma omp parallel

 11 {

 12 #pragma omp for private(j)

 13 for (i = 0; i < N; i++) {

 14 for (j = 0; j < N; j++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18

 Figure 3-3 A Simple Loop Nest Without Applying Parallel Loop-Swap

Figure 3-4 A Region of the Kernel Function Transformed from Figure 3-3

20

OpenMP is the source parallel programming standard of OMP2OCL translator, and

Parallel Loop-Swap transforms the input OpenMP program into another OpenMP program.

With the O2O baseline translator in Phase 2, the optimized loop nest with the associated omp

parallel will be translated into an OpenCL kernel function.

3.2 O2O Baseline Translator

The O2O baseline translator translates the possibly optimized OpenMP programs by the

OpenMP optimizer in Phase 1 into OpenCL programs directly. The translation mainly

consists of the following three steps:

i. Analyzing the OpenMP program under the models of OpenCL.

ii. Identifying kernel regions, i.e., regions executed on OpenCL devices.

iii. Transforming and outlining kernel regions into OpenCL kernel functions.

The execution model of OpenMP is a fork-join model, and the translated OpenCL

program has two parts: the host code and the kernels for the device. The serial region of

OpenMP is mapped to the host code execution, and the parallel regions of OpenMP are

mapped to the kernel executions. In addition, the memory model of OpenMP is shared

memory with each thread having its own private memory. Accordingly, omp shared data are

 10 #pragma omp parallel

 11 {

 12 #pragma omp for private(j)

 13 for (j = 0; j < N; j++) {

 14 for (i = 0; i < N; i++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18

 1 if (wiid < N) {

 2 for (i = 0; i < N; i++) {

 3 a[i][wiid] = b[i][wiid] + 1;

 4 }

 5 }

Figure 3-5 The Simple Loop Nest After Applying Parallel Loop-Swap

Figure 3-6 The Region of the Kernel Function Transformed from Figure 3-5

21

mapped into global memory region of OpenCL, whereas omp private data are mapped into

private memory regions of OpenCL.

3.2.1 OpenMP Program Analysis

As mentioned in Section 2.1, directives are at the core of OpenMP standard. So in this

Subsection, the discussion is focused on the interpretation of the directives and the data-

sharing attribute clauses.

For parallel directive, since it is used to annotate structured blocks that could be paralleled,

the translator identifies these structured blocks as candidate kernel regions, outlines them

from the original functions, transforms them into OpenCL kernel functions, and inserts kernel

execution command calls into the position where the structured blocks reside originally.

With respect to work-sharing directives, which are used to annotate works that could be

divided and distributed to threads, there are for directive, sections directive, and single

directive specified in OpenMP specification [10]. Each iteration of an omp for loop is mapped

to an OpenCL work-item, and accesses to the index variable of the omp for loop are replaced

by accesses to the work-item id variable. Each section of an omp sections is assigned to an

OpenCL work-item. Omp single structured block is left on the host and executed by one host

thread in current implementation.

Concerning combined parallel work-sharing directives, they could be expressed as a

parallel directive which annotates a structured block where a work-sharing directive and its

associated region are contained. As a result, they can be mapped by the principles mentioned

above.

About synchronization directives, they create split points where a candidate kernel region

must be split into two sub-regions. If the resulted two sub-regions become kernel regions, and

after the two kernel regions are outlined and transformed, the generated two kernel execution

command calls ensure global synchronization among work-items. The split is necessary,

because there is no global synchronization mechanism among work-items executing in an

OpenCL device.

Finally, with regard to data-sharing attribute clauses and threadprivate directive, they are

used to map data into OpenCL memory regions. OpenMP shared data are shared by all

22

threads, they are copied to variables in global memory region for being used by all work-

items after an OpenMP program is translated into an OpenCL program. OpenMP private data

are private to each thread, and, therefore, they are mapped to variables in private memory

regions. Threadprivate data specified by threadprivate directives are also private to each

thread with static lifetime, that is, threadprivate data live across parallel regions, so they are

expanded in variables in global memory region. For variables not explicitly determined,

which are not listed in data-sharing attribute clauses, the translator appends them into data-

sharing attribute clauses of appropriate directives. For instance, as shown in Figure 3-7, a

simple loop nest has only one data-sharing attribute clause in line 12, and variables a, b, and

i are not explicitly determined. For ease of translation, the translator analyzes the program

and appends the three variables into data-sharing attribute clauses of the appropriate directives

as shown in Figure 3-8. Variables a and b are static and in file scope so that they are shared

in the parallel region. Variable i is the index variable of the loop Li, and, accordingly, it is

appended in the private clause in line 12. Since the parallel directive in line 10 annotates the

structured block where only one for directive and its associated for loop are contained, the

data-sharing attribute clauses of the parallel directive include those of the for directive; thus,

private(i, j) is included in both directives.

 4 int a[N][N], b;

 5

 6 int main()

 7 {

 8 int i, j;

 9

 10 #pragma omp parallel

 11 {

 12 #pragma omp for private(j)

 13 for (i = 0; i < N; i++) {

 14 for (j = 0; j < N; j++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18

 Figure 3-7 A Simple Example with A Simple Loop Nest

23

This step analyzes the semantics of the input OpenMP program. With kernel regions

transformation and outlining of the O2O baseline translator, for instance, shared data

analyzed in this step will be copied into an OpenCL buffer object for the device before a

kernel execution by OpenCL API. After the kernel execution, the shared data will be copied

from the OpenCL buffer object back into main memory by the API.

3.2.2 Kernel Regions Identification

The translator targets OpenMP parallel regions as candidate kernel regions. As mentioned

in the fifth paragraph of Subsection 3.2.1, synchronization directives result in split points,

where a candidate kernel region must be split into two sub-regions in order to ensure global

synchronization. In addition, at entry to and exit from a parallel region, and at exit from a

work-sharing region, there are implicit flush synchronization directives. Moreover, most

OpenMP directives annotate on a structured block which is an executable statement and

possibly compound, with a single entry at the top and a single exit at the bottom. The

translator must consider that the splits should not break the control flow semantics of

OpenMP; in other words, the split points should not locate in the middle of a structured block

to prevent creating unstructured blocks.

The overall algorithm derived from the related work [8] for identifying kernel regions is

shown in Figure 3-9. This top-down split approach is for splitting candidate kernel regions as

less as possible.

 10 #pragma omp parallel shared(a, b) private(i, j)

 11 {

 12 #pragma omp for private(i, j)

 13 for (i = 0; i < N; i++) {

 14 for (j = 0; j < N; j++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18

 Figure 3-8 The Simple Loop Nest with Additional Data-Sharing Attribute

Clauses

24

The parallel region as shown in Figure 3-10 has four split points, which are shown by

dash lines. The first and the last split points are at entry to and exit from the parallel region

respectively, the second and the third split points are at exit from work-sharing regions. After

splitting, the parallel region is split into two parallel regions as shown in Figure 3-11. The

first region will be translated into an OpenCL kernel function, whereas the second region will

not due to lack of global synchronization mechanism among work-items in OpenCL.

Input: R /* a set of OpenMP parallel regions */

Output: KR /* a set of identified GPU kernel regions */

Foreach R(i) in R

Foreach split point in R(i)

Divide R(i) into two sub-regions at the split point

Build CFG, a control flow graph for R(i)

Foreach sub-region SR(j) in R(i)

Foreach entry/exit points other than the one at the

top/bottom of SR(j)

Divide SR(j) into two sub-sub-regions at such

entry/exit points

Foreach sub-sub-region SSR(k) in SR(j)

If SSR(k) contains an OpenMP work-sharing

directive

Figure 3-9 The Algorithm for Identifying Kernel Regions

25

3.2.3 Kernel Regions Transformation and Outlining

The kernel regions identified should be transformed before outlined into OpenCL kernel

functions. The transformation includes two stages: work partitioning and data mapping.

Firstly, for work-partitioning, each iteration of an omp for loop is mapped to an OpenCL

work-item, and each section of an omp sections is assigned to an OpenCL work-item. As a

consequence, the total number of work-items could be calculated by the number of iterations

for an omp for loop or the number of sections for an omp sections. Secondly, for data mapping,

 10 #pragma omp parallel shared(a, b) private(i, j)

 11 {

 12 #pragma omp for private(i, j)

 13 for (i = 0; i < N; i++) {

 14 for (j = 0; j < N; j++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18 }

 19

 20

 21 #pragma omp parallel

 22 {

 23 #pragma omp single

 24 {

 25 puts("XD");

 26 }

 27 }

 10 #pragma omp parallel shared(a, b) private(i, j)

 11 {

 12 #pragma omp for private(i, j)

 13 for (i = 0; i < N; i++) {

 14 for (j = 0; j < N; j++) {

 15 a[i][j] = b + 1;

 16 }

 17 }

 18

 19 #pragma omp single

 20 {

 21 puts("XD");

 22 }

 23 }

Figure 3-10 The Parallel Region with Split Points Shown by Dash Lines

Figure 3-11 The Parallel Regions After Splitting

26

using the interpretation results from Subsection 3.2.1 that all variables referenced in a kernel

region are listed in data-sharing attribute clauses, the translator inserts memory transfer

command calls to read data from or write data to OpenCL buffer objects for shared and

threadprivate data (threadprivate data are transferred only when the corresponding variables

are listed in copyin clauses of parallel directives). A basic strategy is to copy data used by

kernel functions from main memory into memory objects and copy modified data from

memory objects back to main memory. However, not all memory transfer command calls are

necessary, since the modified data might not be used by the host and data in global memory

region are persistent across kernel executions. The optimization for reducing memory transfer

command calls will be discussed in Subsection 3.3.2.

After being transformed, the kernel regions are outlined and replaced with kernel

execution command calls.

When the first parallel region in Figure 3-11 is transformed and outlined, the resulted

OpenCL kernel function is shown in Figure 3-12. Variables a and b are shared so that they

are mapped to OpenCL global memory region, and before the kernel execution, they are

copied into an OpenCL buffer object which is passed as an argument to the kernel function.

Variables i and j are private so that they are mapped to OpenCL private memory regions,

and, accordingly, they are defined as local variables in the kernel function. For line 7 to line

11 in Figure 3-12, each work-item does an iteration of the omp for loop Li in Figure 3-11.

 1 __kernel void main_kernel0(__global int a[N][N], __global int

*b)

 2 {

 3 int i;

 4 int j;

 5 i = wiid;

 6 ...;

 7 ...;

 8 if (i < N) {

 9 for (j = 0; j < N; j++) {

 10 a[i][j] = *b + 1;

 11 }

 12 }

 13 ...;

 14 ...;

 15 }

Figure 3-12 The OpenCL Kernel Function Translated From the First Parallel

Region in Figure 3-11

27

API and the extended C language for kernel functions of CUDA are different from those

of OpenCL with some similarities, so some changes are necessary. For instance, OpenCL

kernel functions must be in a string to be compiled by clBulidProgram, so the transformed

and outlined kernel functions must be appended into a string. In addition, the OpenCL kernel

functions in the string cannot access information such as macros in the host code, and,

consequently, the necessary information must be also included in the string.

3.3 OpenCL Optimizer

Since the OpenMP optimizer in Phase 1 only makes use of the constructs of the C

programming language, which is the selected base language of the OpenMP programs, the

OpenCL optimizer optimizes the resulted OpenCL programs of O2O baseline translator for

performance by utilizing features of OpenCL and some OpenCL devices like low-latency

memory regions and persistent data in global memory.

This optimizer provides three optimizations, which are caching frequently accessed global

data and memory transfer reduction. The optimizations can be turn on and turn off by the

command line options of OMP2OCL translator.

3.3.1 Caching Frequently Accessed Global Data

In some OpenCL devices such as GPUs, global memory region is mapped to an off-chip

memory which might not has cache depending on the capabilities of the OpenCL device, and

other memory regions such as private memory region, local memory region, and constant

memory region are either mapped to an on-chip memory or equipped with caches. In addition,

an on-chip memory usually has higher bandwidth and lower latency than an off-chip memory

for the same device. Hence, in order to reduce memory access latency, frequently accessed

data in global memory region should be cached on low-latency memory regions.

Concerning temporal data locality, the hardware automatically exploits intra-thread

locality and inter-thread locality on CPUs. Whereas using OpenCL on GPUs, the software

must exploit both intra-thread locality and inter-thread locality (or intra-work-item and inter-

work-item) by itself for global memory region.

28

This optimization performs data flow analysis to identify temporal locality of global data,

and inserts necessary caching codes. The caching strategies for global data with different

attributes are shown in Table 3-1. The O2O baseline translator maps shared data into global

memory region; however, this optimization caches global data into different memory regions

according to their attributes.

Table 3-1 The Caching Strategies for Global Data with Different Attributes

Temporal Locality

Intra-work-item Inter-work-item

R/O scalar Private, Local Local

R/W scalar Private, Local Local

R/O array Local Local

R/W array Local Local

In Figure 3-12, the data pointed by the variable b belongs to read-only scalar global data,

and work-items share the data. Therefore, variable b will be cached in the local memory

regions as shown in Figure 3-13. A variable declaration locates in line 5 with __local

specifier, which is used to indicate that the variable is resided in the local memory regions. In

line 7, the data pointed by the variable b is cached into the local memory regions. In line 12,

the access to the data in the local memory regions substitutes the access to the global data.

29

As mentioned in Subsection 2.2.3, shared memory in CUDA is generalized as local

memory in OpenCL which is shared by a work-group. In CUDA, passing the data as an

argument to a kernel function has an effect of caching the data into shared memory regions.

Nevertheless, in OpenCL, to cache the data into local memory regions, it is necessary to insert

a variable declaration and an assignment statement as shown in Figure 3-13 since parameters

of a kernel function with specifier __local cannot be initialed from the host.

3.3.2 Memory Transfer Reduction

An important stage of transforming kernel regions into OpenCL kernel functions is the

insertion of memory transfer command call. The O2O baseline translator inserts memory

transfer calls for all shared and threadprivate data. However, not all memory transfer

command calls are necessary since the modified data might not be used by the host and since

data in global memory region are persistent across kernel executions.

To remove the unnecessary memory transfer command calls, this optimization performs

data flow analysis in four steps:

i. Finding a set of shared data read in the kernel region as UseSet.

ii. Finding a set of shared data written in the kernel region as DefSet.

 1 __kernel void main_kernel0(__global int a[N][N], __global int

*b)

 2 {

 3 int i;

 4 int j;

 5 __local int lo__b;

 6 i = wiid;

 7 lo__b = *b;

 8 ...;

 9 ...;

 10 if (i < N) {

 11 for (j = 0; j < N; j++) {

 12 a[i][j] = lo__b + 1;

 13 }

 14 }

 15 ...;

 16 ...;

 17 }

Figure 3-13 The OpenCL Kernel Function with Variable b Cached in the Local

Memory Regions

30

iii. For each variable in UseSet, if its reaching definition locates outside the kernel

region, then the variable should be transferred from the host before the kernel

execution.

iv. For each variable in DefSet, if it is used outside the kernel region, then the variable

should be transferred back to the host after the kernel execution.

In Figure 3-12, after the kernel execution, the host transfers the data pointed by variable a

and b back into the main memory. With this optimization, these memory transfers are

removed because the data will be useless after the kernel execution.

3.4 Limitations of OMP2OCL Translator

Some limitations of OMP2OCL translator are listed as follows:

 OMP2OCL translator assumes that there is only one device in the platform and

only one kernel executes at a time.

 OMP2OCL translator can only translate simple OpenMP programs now. For

instance, it does not support omp task.

 OMP2OCL translator has three optimizations now. For the performances of the

translated OpenCL programs, it is necessary to develop more optimizations for

OMP2OCL translator.

31

Chapter 4 Experiment

The experiment platform has one Intel Core 2 Quad Q6600 as the host and one NVIDIA

GeForce 9800 GT as the device. Using oclBandwidthTest from NVIDIA GPU Computing

SDK, the bandwidth from the host to the device is around 2330 MB/s, and the bandwidth

from the device to the host is about 1900 MB/s.

Our experiment is based on two important kernels (JACOBI and SPMUL) and one NAS

OpenMP Parallel Benchmark (EP). Table 4-1 describes these three benchmarks, sorted from

top to down according to the increasing order of the numbers of source lines. The following

sections present the experiment results with respect to each benchmark.

Table 4-1 Descriptions of the Benchmarks

Benchmark Description
of Source

Lines

of Kernel

Lines

of Omp

Parallel

JACOBI

An algorithm for determining the solutions

of a system of linear equations with largest

absolute values in each row and column

dominated by the diagonal elements

92 14 2

SPMUL

Sparse matrix multiplication, which is an

algorithm for sparse matrices, where most

elements of the matrices are zero

250 44 1

EP

Embarrassingly parallel, which is an

algorithm for generating independent

Gaussian random variates using the

Marsaglia polar method

614 79 1

Table 4-2 describes five optimizations implemented by the related work and the three

optimizations included in OMP2OCL translator. As a result, three optimizations, Parallel

Loop-Swap (PLS), Caching of Frequently Accessed Global Data (Caching), and Memory

Transfer Reduction (MTR) are conducted in the experiments.

32

Table 4-2 Optimizations Implemented by the Related Work and OMP2OCL

Translator

The Related Work

OMP2OCL

Translator

Parallel Loop-Swap (PLS) √ √

Loop Collapsing (LC) √

Caching of Frequently Accessed Global Data (Caching) √ √

Matrix Transpose of Threadprivate Array (MT) √

Memory Transfer Reduction (MTR) √ √

4.1 JACOBI

Without any optimization, both the CUDA program and the OpenCL program output by

the related work and OMP2OCL translator, respectively, perform worse than the original

OpenMP program because of the uncoalesced global memory accesses in the kernel functions.

The uncoalesced global memory accesses are resulted from the fact that each work-item

accesses arrays in row-wise scheme. Accordingly, Parallel Loop-Swap in Phase 1 can be used

to overcome these situations.

Figure 4-1 Experiment Results for JACOBI

33

Using Parallel Loop-Swap in Phase 1, the performances of both the CUDA program and

the OpenCL program increase substantially and their execution time are around 57.13% and

57.33% compared to the OpenMP program and the OpenCL program with no optimization

respectively.

Using Memory Transfer Reduction in Phase 2, the performances of both the CUDA

program and the OpenCL program improve just very little due to the small amount of memory

transfers between the host and the device. Before optimization, the sizes of memory transfers

are around 32 MB for each direction. After optimization, the size of memory transfers is

reduced to around 16 MB for the direction from the host to the device, whereas the size of

memory transfer is remained the same for the direction from the device to the host.

Using both Parallel Loop-Swap in Phase 1 and Memory Transfer Reduction in Phase 2,

the combined effect of the optimizations are as expected that the execution time of both the

CUDA program and the OpenCL program are the shortest in programs output by the

translator of the related work and OMP2OCL translator respectively.

For JACOBI, Caching Frequently Accessed Global Data in Phase 2 has no effect on both

the CUDA program and the OpenCL program, since there are no temporal data locality

regarding to global memory accesses .Accordingly, the execution times after applying this

optimization are not showed in Figure 4-1.

34

4.2 SPMUL

Without any optimization, both the CUDA program and the OpenCL program output by

the related work and OMP2OCL translator, respectively, perform better than the original

OpenMP program because of the little uncoalesced global memory accesses and the large

amount of computation.

By Caching Frequently Accessed Global Data in Phase 2, some array elements are cached

in registers and private memories of the CUDA program and the OpenCL program,

respectively. As a consequence, the memory accesses to global memory region are reduced,

and, thus the performances of both the CUDA program and the OpenCL program increase a

few.

Using Memory Transfer Reduction in Phase 2, the performances of both the CUDA

program and the OpenCL program just increase very little due to the small amount of memory

transfer reduction. Before optimization, the sizes of memory transfers are around 85.64 MB

from the host to the device and about 7.87 MB from the device to the host. After optimization,

the size of memory transfers is reduced to around 77.77 MB from the host to the device,

whereas the size of memory transfer is remained the same from the device to the host.

Figure 4-2 Experiment Results for SPMUL

35

Using both Caching Frequently Accessed Global Data in Phase 2 and Memory Transfer

Reduction in Phase 2, the combined effect of the optimizations are as expected that the

execution time of both the CUDA program and the OpenCL program are the shortest in

programs output by the related work and OMP2OCL translator respectively.

For SPMUL, Parallel Loop-Swap in Phase 1 has no effect because suitable loop nest

described in Subsection 3.1.1 for optimization does not exist, and, as a consequence, the

execution times after applying this optimization are not showed in Figure 4-2.

4.3 EP

Figure 4-3 Experiment Results for EP

Without any optimization, both the CUDA program and the OpenCL program output by

the related work and OMP2OCL translator, respectively, perform better than the original

OpenMP program because of the characteristics of EP, which has little uncoalesced global

memory accesses and large amount of parallelizable computation.

By Caching Frequently Accessed Global Data in Phase 2, some array elements are cached

in shared memories and local memories of the CUDA program and the OpenCL program,

36

respectively. As a consequence, the memory accesses to global memory region are reduced,

and, thus the performances of both the CUDA program and the OpenCL program increase a

few.

For EP, Parallel Loop-Swap in Phase 1 and Memory Transfer Reduction in Phase 2 have

no effect on both the CUDA program and the OpenCL program; in other words, there is no

suitable loop nest for Parallel Loop-Swap and no suitable global data for Memory Transfer

Reduction. Consequently, the execution times after applying this optimization are not showed

in Figure 4-3.

4.4 Discussion

Parallel Loop-Swap in Phase 1 resolves uncoalesced global memory accesses in a loop

nest with regular data accesses. Coalesced global memory accesses are significant in both

CUDA programs and OpenCL programs with GPUs as the devices. In our experiment

platform, there is a GPU. Therefore, for JACOBI, both the CUDA program and the OpenCL

program while applying this optimization perform well compared to those without this

optimization and the original OpenMP program. However, with devices rather than GPUs

such as CPUs, this optimization might decrease the performance instead.

In the experiment platform, caching frequently accessed global data in private memories

and local memories of OpenCL has benefits to the performance of both the CUDA program

and the OpenCL program, because the latencies to private memories and local memories are

shorter than that to global memory. Nevertheless, with devices rather than GPUs such as

CPUs, the latency reduction by Caching might not be significant.

Memory Transfer Reduction in Phase 2 removes unnecessary memory transfers. If the

memory transfers locate in a loop nest with many iterations, then the performance

improvement could be substantial. However, this situation is not present in the experiments.

Thus, for JACOBI and SPMUL, the performances of both the CUDA program and the

OpenCL program while applying this optimization improve a little compared to those without

applying this optimization.

37

Chapter 5 Conclusion and Future Work

We designed and implemented a translator for automatic translation of OpenMP programs

into OpenCL programs. Although there are performance losses for OMP2OCL translator

compared to the related work designed dedicatedly for NVIDIA GPUs, it is still promising

that the translated OpenCL programs can use other devices as compute devices other than

NVIDIA GPUs. In addition, we have constructed an infrastructure for automatic translation of

OpenMP programs into OpenCL programs. Researchers can use this infrastructure as a basis

to develop more device-independent and device-dependent optimizations. Moreover,

programmers can use this translator to translate existed or newly-developed OpenMP

programs into OpenCL programs, in order to make the OpenMP programs as programs of

heterogeneous multiprocessor platforms.

The future work listed in the following might be considered to extend our OMP2OCL

translator:

 Currently, our OMP2OCL translator assumes that there is only one device in the

platform and only one kernel executes at a time. Whenever there are multiple

devices in the platform and multiple kernels in the OpenCL program, these kernels

have the potential to execute simultaneously. However, there are some conditions

for the simultaneous execution, i.e., two kernels executed simultaneously should

not have data and control dependencies between each other; otherwise, the

translated OpenCL program would have different behaviors from the original

OpenMP program. We plan to do necessary dependency analysis on kernels and

let independent kernels execute on multiple devices in the future.

 Our OMP2OCL translator can translate only simple OpenMP programs now. For

instance, it does not support omp task. We plan to map omp task into task parallel

programming model of OpenCL in the future.

 OMP2OCL translator has three optimizations now. For the performances of the

translated OpenCL programs, it is necessary to develop more optimizations for

OMP2OCL translator. We plan to analyze and port Loop Collapsing and Matrix

Transpose of the related work into OMP2OCL translator in the future.

38

References

[1] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A Single-Chip Multiprocessor,”

Computer, vol. 30, no. 9, pp. 79-85, 1997.

[2] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, S. Miki, and S. Tagawa, The

OpenCL Programming Book, 1st ed. Fixstars Corporation, 2010.

[3] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory

programming,” Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46-55,

1998.

[4] W. Michael, “OpenMP on Accelerators—A Position Paper.” [Online]. Available:

http://www.pgroup.com/lit/articles/insider/v2n2a5.htm.

[5] Khronos OpenCL Working Group, “OpenCL.” [Online]. Available:

http://www.khronos.org/opencl/.

[6] Khronos OpenCL Working Group, The OpenCL Specification 1.1. 2010.

[7] NVIDIA Corporation, “CUDA Zone.” [Online]. Available:

http://www.nvidia.com/object/cuda_home_new.html.

[8] S. Lee, S. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler framework for

automatic translation and optimization,” SIGPLAN Not., vol. 44, no. 4, pp. 101-110,

2009.

[9] C. Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, R. Eigenmann, and S. Midkiff,

“Cetus: A Source-to-Source Compiler Infrastructure for Multicores,” Computer, vol. 42,

no. 12, pp. 36-42, 2009.

[10] OpenMP Architecture Review Board, OpenMP 3.0 API Specifications - OpenMP

Application Program Interface. .

	摘要
	Abstract
	致謝
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Research Motivation
	1.2 Research Objective
	1.3 Organization of the Thesis

	Chapter 2 Background and Related Work
	2.1 OpenMP
	2.2 OpenCL
	2.2.1 Platform Model
	2.2.2 Execution Model
	2.2.3 Memory Model
	2.2.4 Programming Model
	2.2.5 The OpenCL Framework

	2.3 CUDA
	2.3.1 Platform Model
	2.3.2 Execution Model
	2.3.3 Memory Model

	2.4 Related Work

	Chapter 3 Design and Implementation of OMP2OCL Translator
	3.1 OpenMP Optimizer
	3.1.1 Parallel Loop-Swap

	3.2 O2O Baseline Translator
	3.2.1 OpenMP Program Analysis
	3.2.2 Kernel Regions Identification
	3.2.3 Kernel Regions Transformation and Outlining

	3.3 OpenCL Optimizer
	3.3.1 Caching Frequently Accessed Global Data
	3.3.2 Memory Transfer Reduction

	3.4 Limitations of OMP2OCL Translator

	Chapter 4 Experiment
	4.1 JACOBI
	4.2 SPMUL
	4.3 EP
	4.4 Discussion

	Chapter 5 Conclusion and Future Work
	References

