
 

 

國 立 交 通 大 學 

 

資訊科學與工程研究所 

 

碩 士 論 文 

 

OMP2OCL 轉換器︰可自動轉換 OpenMP 程式 

到 OpenCL 程式的轉換器 

 

OMP2OCL Translator: A Translator for Automatic 

Translation of OpenMP Programs into OpenCL Programs 

 

研 究 生：蔡宗展 

         指導教授：單智君  博士 

 

 

中 華 民 國  九 十 九 年 十一 月



 

i 

OMP2OCL Translator︰可自動轉換 OpenMP 程式 

到 OpenCL 程式的轉換器 

 

OMP2OCL Translator: A Translator for Automatic 

Translation of OpenMP Programs into OpenCL Programs 

 

        研  究  生：蔡宗展                                     Student:  Tsung-Chan Tsai 

        指導教授：單智君  博士                           Advisor:  Dr. Jyh-Jiun Shann 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

November 2010 

 

Hsinchu, Taiwan, Republic of China 

 

中華民國九十九年十一月 



 

ii 

OMP2OCL Translator︰可自動轉換 OpenMP 程式 

到 OpenCL 程式的轉換器 

 

學生︰蔡宗展       指導教授：單智君  博士 

 

國立交通大學資訊科學與工程研究所碩士班 

摘要 

由於對高效能系統的需求，異質多處理器平台成為了一個趨勢。然而，跟同質多處

理器平台相比，異質多處理器平台難以程式化且多樣化。Knronos Group 近年來釋出了 

OpenCL 標準，它改善了異質多處理器平台程式的可攜性，然而使用 OpenCL 撰寫異質

多處理器平台程式依然複雜且易出錯。在這篇論文內，我們設計且實作名為 

OMP2OCL translator 的轉換器，它自動轉換  OpenMP 程式到  OpenCL 程式。在 

OMP2OCL translator 內，我們延用且修改相關研究內的優化，來優化轉換出來的 

OpenCL 程式。OMP2OCL translator 鑒定出 OpenMP 程式內的核心區域，改變該核心區

域成為 OpenCL 核心函式，且使用優化來改善轉換出來的 OpenCL 程式。此外，我們

比較了由相關研究轉換出來的  CUDA 程式和由  OMP2OCL translator 轉換出來的 

OpenCL 程式。雖然與針對 NVIDIA GPU 的相關研究相比，OMP2OCL translator 有效

能損失，但 OMP2OCL translator 還是很有用，因為轉換出來的 OpenCL 程式並不限定

使用 NVIDIA GPUs 為計算設備。 
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Abstract 

Heterogeneous multiprocessor platforms have become trends due to the need for high-

performance systems. However, it is harder to program them than homogeneous 

multiprocessor platforms and there are various heterogeneous multiprocessor platforms in the 

world. Although newly-released OpenCL (Open Computing Language) standard from 

Khronos Group offers improves portability among heterogeneous multiprocessor platforms, 

programming such platforms using OpenCL is still complex and error-prone. In this thesis, we 

have designed and implemented a translator, called OMP2OCL Translator, which is for 

automatic source-to-source translation of OpenMP programs into OpenCL programs, in 

addition, we have reused and modified if necessary the optimizations from the related work to 

improve the OpenCL programs output from OMP2OCL translator. The translator identifies 

kernel regions of OpenMP programs, transforms and outlines the regions into OpenCL kernel 

functions, and does some optimization to improve the performance of the translated OpenCL 

programs. Moreover, we have compared the CUDA programs and the OpenCL programs 

output from the related work and OMP2OCL translator, respectively. Although there are 

performance losses for OMP2OCL translator compared to the related work designed 

dedicatedly for NVIDIA GPUs, it is still promising that the translated OpenCL programs can 

use other devices as compute devices other than NVIDIA GPUs. 
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Chapter 1 Introduction 

Multiprocessor platforms are ubiquitous, ranging from embedded devices, mobile devices 

to workstations and high-end servers. Chip multiprocessors [1], as known as multi-core 

processors, are one kind of homogeneous multiprocessor platforms and have become the 

important trend in contemporary computer architectures by major microprocessor vendors, as 

these vendors could not overcome some problems related to physical constraints (e.g., power, 

thermal, and signaling) and limited instruction-level parallelism. In addition, heterogeneous 

multiprocessor platforms play an important role in the computer industry, and they could be 

found in mobile devices and workstations with CPU plus GPU or CPU plus DSP, for instance, 

iPhone 4 is powered by the Apple A4 chip, which is a system-on-a-chip and composed of a 

Cortex-A8 CPU integrated with a PowerVR SGX 535 GPU. 

 

1.1 Research Motivation 

Heterogeneous multiprocessor platforms especially have much potential regarding 

performance gain than homogeneous multiprocessor platforms, by partitioning programs into 

different properties of tasks and scheduling the tasks on suitable processors; hence, they are 

widely used in some dedicated systems. Nevertheless, heterogeneous multiprocessor 

platforms are harder to program, and there are various heterogeneous multiprocessor 

platforms in the world. To alleviate these issues, many parallel programming standards have 

been proposed, and one of them is OpenCL (Open Computing Language) [2]. 

OpenCL is an open industry standard from the Khronos group supported by AMD, IBM, 

Intel, NVIDA and others. It models heterogeneous multiprocessor platforms, consisting of a 

host and one or several devices, which can be CPU, GPU, DSP, Cell/B.E. processor, etc. 

Targeting for various devices from vendors makes OpenCL programs portable. In other words, 

once an OpenCL program is written, it can be compiled if necessary and run on any 

heterogeneous multiprocessor platform with OpenCL environments. 

Despite of being portable, OpenCL is more complex to use than OpenMP [3]. OpenMP is 

yet another open industry standard maintained by the OpenMP Architecture Review Board, 

mainly targeting for homogeneous multiprocessor platforms with shared memory [4]. By 



 

2 

using its directives to annotate structured blocks that could be paralleled and to insert some 

auxiliary annotations, among others, OpenMP is pretty simple to use.  

 

1.2 Research Objective 

In order to program heterogeneous multiprocessor platforms with the benefits of both 

OpenMP and OpenCL, which are ease-of-use and portability respectively, we design and 

implement a translator for automatic translation of OpenMP programs into OpenCL programs. 

The translation roughly consists of the following four steps: 

i. Analyzing the OpenMP program under the models of OpenCL. 

ii. Identifying kernel regions, i.e., regions executed on OpenCL devices. 

iii. Transforming and outlining kernel regions into OpenCL kernel functions. 

 

1.3 Organization of the Thesis 

The rest of the thesis is organized as follows: Chapter 2 describes OpenMP, OpenCL, 

CUDA, and the related work; Chapter 3 presents the design and implementation of 

OMP2OCL translator; Chapter 4 discusses and compares the performance of the OpenCL 

programs output by OMP2OCL translator and that of the CUDA programs output by the 

related work’s translator; finally, Chapter 5 dedicates to the conclusions we draw and the 

future work plan. 
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Chapter 2 Background and Related Work 

This chapter first introduces several parallel programming models including OpenMP, 

OpenCL, and CUDA. OpenMP and OpenCL are different in nature, from the models behind 

the scenes to the language constructs that developers use commonly. In contrast, OpenCL and 

CUDA are similar to each other, with just some names of components changed, some 

components removed, and some components added. This chapter then presents “OpenMP to 

GPGPU: a compiler framework for automatic translation and optimization” as a related work, 

the authors of which designed and implemented an automatic source-to-source translator of 

OpenMP programs into CUDA programs. 

 

2.1 OpenMP 

OpenMP is an open industry standard maintained by the OpenMP Architecture Review 

Board, mainly targeting for homogeneous multiprocessor platforms with shared memory [4].  

The execution model of OpenMP is a fork-join model of parallel execution as shown in 

Figure 2-1. In Figure 2-1, an OpenMP program has only one thread initially, called the initial 

thread. When the initial thread encounters a parallel directive, it forks a team of itself and 

zero or more additional threads, and becomes the master of the new team. After finishing the 

parallel region, the team of threads joins together, and, as a result, only the master thread 

which is the initial thread continues execution. Furthermore, there are implicit 

synchronizations before and after the parallel regions in order to maintain program 

correctness. 

The memory model of OpenMP is shared memory with each thread having its own private 

memory as shown in Figure 2-2. Data can be shared or private, shared data are accessible by 

all threads; in contrast, private data can only be accessed by the thread owning it.  

 



 

4 

 

 

 

 

Core elements of OpenMP standard consist of directives, runtime library routines, and 

environment variables, and directives are at the core of OpenMP standard. Parallel directive 

is used to annotate structured blocks that could be paralleled, and work-sharing directive is 

used to annotate works which could be divided and distributed to threads. In C/C++, OpenMP 

directives are specified by using the #pragma mechanism provided by the C/C++ standards. A 

simple example of an OpenMP program example is shown in Figure 2-3, and it uses both a 
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Figure 2-1    The Execution Model of OpenMP 

Figure 2-2    The Memory Model of OpenMP 
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parallel directive and a work-sharing directive. In line 10 of Figure 2-3, the parallel directive 

is used to indicate that the following structured block is fit for being paralleled; likewise, in 

line 12, the for directive, which belongs to work-sharing directives, indicate that the iterations 

of the following for loop should be divided and distributed to threads. 

 

 

Figure 2-3    A Simple Example of an OpenMP Program 

 

2.2 OpenCL 

OpenCL is an open industry standard from the Khronos group supported by AMD, IBM, 

Intel, NVIDA and others [5]. Thus it is vendor-neutral, and it models heterogeneous 

multiprocessor platforms, consisting of a host and one or more devices, which can be CPU, 

GPU, DSP, Cell/B.E. processor, etc. OpenCL specifies four models as its architecture: 

platform model, execution model, memory model, and programming model [6]. 

 

    1 #include <stdio.h> 

    2 #define N 1024 

    3  

    4 int a[N][N], b; 

    5  

    6 int main() 

    7 { 

    8  int i, j; 

    9  

   10  #pragma omp parallel 

   11  { 

   12   #pragma omp for private(j) 

   13   for (i = 0; i < N; i++) { 

   14    for (j = 0; j < N; j++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  

   19   #pragma omp single 

   20   { 

   21    puts("XD"); 

   22   } 

   23  } 

   24  

   25  return 0; 

   26 } 
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2.2.1 Platform Model 

In the platform model, one host connects to one or more OpenCL devices (compute 

devices) on a platform as shown in Figure 2-4 [6]. One or more processing elements (PEs) 

compose a compute unit (CU), and one or more compute units compose an OpenCL device. 

Processing elements within a device are the workers doing computations. 

An OpenCL program runs on a host in compliance with the native models of the host 

platform, and sends commands from the host to processing elements within a device for 

executing computations. The processing elements within a compute unit execute an 

instruction stream as SIMD units (each PE has its own data and a shared program counter) or 

as SPMD units (each PE has its own data and its own program counter). 

Figure 2-5 shows a platform example with an Intel Core 2 as the host and a NVIDIA’s 

OpenCL platform. The platform has only one compute device, which is NVIDIA GeForce 

GTX 280 in this example. The device has totally 240 shader processors grouped into 30 sets, 

each set having 8 shader processors. As a consequence, when mapped to the OpenCL 

platform model, the device has 30 compute units, each of which composes 8 processing 

elements. 

 

 

Figure 2-4    The Platform Model of OpenCL 
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Figure 2-5    The Platform Example of OpenCL 

 

2.2.2 Execution Model 

An OpenCL program is comprised of two parts: a host program executing on host and 

kernels executing on one or more OpenCL devices [6]. The host program defines the context 

for the kernels and manages their execution. 

The way how a kernel should be executed on an OpenCL device is the heart of the 

OpenCL execution model as shown in Figure 2-6. When a kernel is executed on an OpenCL 

device, an index space is formed, and each point in the index space stand for a kernel instance, 

which is named as a work-item and identified by its position in the index space. Although 

each work-item executes the same code, it can have its own data and its own program counter; 

in other words, control flow through the code can vary per work-item. Work-items are further 

organized into work-groups, which provide a more coarse-grained decomposition of the index 

space; in addition, the work-items in a given work-group execute concurrently on the 

processing elements of a single compute unit. 

The index space within OpenCL is called an NDRange, which is an N-dimensional index 

space, where N is one, two or three. An NDRange is defined by an integer array of length N 

specifying the extent of the index space in each dimension starting at an offset index (zero by 

default). 
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Figure 2-6    The Execution Model of OpenCL 

 

2.2.3 Memory Model 

Work-item(s) executing a kernel may access four distinct memory regions [6]: 

 Global Memory: 

This memory region permits read/write access to all work-items in all work-groups, 

so work-items can read from or write to any element of a memory object. Reads 

and writes to global memory may be cached depending on the capabilities of the 

device. 

 Constant Memory: 

This memory region is a region of global memory that remains constant during the 

execution of a kernel. The host allocates and initializes memory objects placed into 

constant memory. 

 Local Memory: 

This memory region is local to a work-group. This memory region can be used to 

allocate variables that are shared by all work-items in that work-group. It may be 
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implemented as dedicated regions of memory on the OpenCL device. Alternatively, 

the local memory region may be mapped onto sections of the global memory. 

 Private Memory: 

This memory region is private to a work-item. Variables defined in one work-

item’s private memory are not visible to another work-item. 

 

Table 2-1 describes whether the host or the device can allocate from a memory region or 

not and the type of allocation (static, i.e., compile time vs. dynamic, i.e., runtime). Table 2-2 

describes the type of access allowed, i.e., whether the host or the device can read and/or write 

to a memory region; moreover, Table 2-3 describes lifetime of variables defined in ach 

memory regions. 

 

Table 2-1    Type of Allocation to Each Memory Regions for Hosts and Devices 

Allocation Global Constant Local Private 

Host Dynamic Dynamic Dynamic No 

Device No Static Static Static 

 

Table 2-2    Access Allowed to Each Memory Regions for Hosts and Devices 

Access Global Constant Local Private 

Host Read/write Read/write No No 

Device Read/write Read-only Read/write Read/write 

 

Table 2-3    Lifetime of Variables Defined in Each Memory Regions 

 Global Constant Local Private 

Lifetime 

From allocation 

to deallocation 

by host program 

From allocation 

to deallocation 

by host program 

As work-group’s 

lifetime 

As work-item’s 

lifetime 
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The memory regions and how they relate to the platform model and the execution model 

are described in Figure 2-7. 

 

 

Figure 2-7    The Memory Model of OpenCL 

 

2.2.4 Programming Model 

The OpenCL execution model supports data parallel and task parallel programming 

models as well as the hybrids of these two models [6]. The primary model driving the design 

of OpenCL is data parallel programming model. 
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 Data Parallel Programming Model 

A data parallel programming model defines a computation in terms of a sequence 

of instructions applied to multiple elements of a memory object. The index space 

associated with the OpenCL execution model defines the work-items and how the 

data maps onto the work-items. In a strictly data parallel programming model, 

there is a one-to-one mapping between the work-item and the element in a memory 

object over which a kernel can be executed in parallel. However, OpenCL 

implements a relaxed version of the data parallel programming model where a 

strict one-to-one mapping is not a requirement. 

 Task Parallel Programming Model 

The OpenCL task parallel programming model defines a model in which a single 

kernel instance is executed independently of any index space. It is logically 

equivalent to executing a kernel on a compute unit with a work-group containing a 

single work-item.  Under this model, users may express parallelism by one of the 

following schemes. 

i. Using vector data types implemented by the device. 

ii. Enqueuing multiple kernels. 

iii. Enqueuing native kernels developed using a programming model other 

than that of OpenCL. 

 

2.2.5 The OpenCL Framework 

The framework inside OpenCL provides developers a way to develop an OpenCL 

program and manipulate the behavior of the program. The framework includes the following 

components: 

 OpenCL Platform Layer 

The platform layer implements platform-specific features that allow programs to 

create contexts, manage contexts, query OpenCL devices, and query device 

configuration information. 
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 OpenCL Runtime 

The runtime supports numerous API calls that manage OpenCL objects such as 

command-queues, memory objects, program objects, and kernel objects for 

__kernel functions in a program object; it also supports API calls that allow you to 

enqueue commands to a command-queue for executing a kernel, and reading or 

writing a memory object. 

 OpenCL Compiler 

The OpenCL standard defines a language for programming kernels as a subset of 

the ISO C99 language with extensions for parallelism. Therefore, it is necessary to 

have a compiler supporting such language, which creates program executables 

containing OpenCL kernels. 

 

2.3 CUDA 

NVIDIA’s CUDA [7] is a parallel programming standard released in 2007. It extends the 

standard C/C++ programming language with some restrictions for parallel GPU computing. 

Via CUDA APIs, developers can program GPUs without tricky programming techniques 

which are required when developers programs GPUs with graphics APIs such as OpenGL and 

DirectX. Logically, CUDA could be viewed as a specialization of OpenCL for NVIDIA’s 

GPUs in some extent because of many similarities between them. The similarities will be 

discussed in the following Subsections. 

 

2.3.1 Platform Model 

The platform model of CUDA, i.e., the CUDA-capable GPU architecture, is shown in 

Figure 2-8. One or more CUDA cores (CCs) compose a multiprocessor, and one or more 

multiprocessors compose a GPU which is connected to a CPU via the system bus. A CUDA 

core is a basic computation unit as a processing element in OpenCL, and a multiprocessor is 

analogous to a compute unit in OpenCL that both play the same role in CUDA and OpenCL 

respectively. 
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Figure 2-8     The CUDA-capable GPU architecture 

 

2.3.2 Execution Model 

The execution model or the thread hierarchy of CUDA as shown in Figure 2-9 is a grid of 

thread blocks, each of which contains a batch of threads. A grid in CUDA and an NDRange in 

OpenCL are alike that both of them are index space of basic computation units. However, a 

grid is two-dimensional, whereas an NDRange is three-dimensional. As expected, a thread 

block is just like a work-group in OpenCL, and a thread in CUDA plays the same role as a 

work-item in OpenCL 
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Figure 2-9    The Thread Hierarchy of CUDA 

 

2.3.3 Memory Model 

As mentioned in the first paragraph of Section 2.3 that CUDA could be viewed as a 

specialization of OpenCL, in contrast, OpenCL could be viewed as a generalization of CUDA. 

Thus, registers and local memory in CUDA are generalized as private memory in OpenCL 

which is a memory region per work-item. Shared memory in CUDA is generalized as local 

memory in OpenCL which is a memory region shared by a work-group. Likewise, global 

memory both in CUDA and OpenCL function alike. However, texture memory in CUDA 

which is a particular memory region for graphics processing is missing from OpenCL. 

 

2.4 Related Work 

Lee et al designed and implemented a translator for automatic translation of OpenMP 

programs into CUDA programs [8], which was released in Cetus [9] 1.2 on May 21, 2010. 

The translator consists of two phases as shown in Figure 2-10. Phase 1 contains an OpenMP 

optimizer. Phase 2 contains an O2C baseline translator and a CUDA optimizer. 
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Figure 2-10    The Framework of The Related Work 

 

First, the OpenMP optimizer optimizes the input OpenMP programs for CUDA. OpenMP 

mainly targets for homogeneous multiprocessor platforms with shared memory, such as a 

platform with single-core CPUs or multi-core CPU(s) sharing memory regions and having the 

same ISA. In contrast, CUDA targets for heterogeneous multiprocessor platforms that now 

can only be one or more CPUs plus one or more NVIDIA GPUs. Because of these 

architectural differences, the optimizer is used to alleviate the effect of the differences and to 

make the resulted OpenMP programs more suitable for executing on heterogeneous 

multiprocessor platforms that CUDA targets. 

Second, the O2C baseline translator translates the optimized OpenMP programs of the 

OpenMP optimizer into CUDA programs directly. The translation mainly consists of the 

following three steps: 

i. Analyzing the OpenMP program under the models of CUDA. 

ii. Identifying kernel regions, i.e., regions executed on GPUs. 

iii. Transforming and outlining kernel regions into CUDA kernel functions 

Finally, since the OpenMP optimizer only makes use of the constructs of the C 

programming language, which is the selected base language of the OpenMP programs, the 

CUDA optimizer optimizes the resulted CUDA programs of the O2C baseline translator for 

performance by utilizing CUDA-specific features such as low-latency memory regions, 

coalesced global memory accesses, and persistent data in global memory. 
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Chapter 3 Design and Implementation of 

OMP2OCL Translator 

Based on the source code of the related work, we designed and implemented OMP2OCL 

translator, which is a translator for automatic translation of OpenMP programs into OpenCL 

programs, according to the syntax, the semantics and the APIs of OpenCL. By the way, both 

of OpenMP programs and OpenCL programs are written in C programming language. The 

translator consists of two phases as shown in Figure 3-1. Phase 1 contains an OpenMP 

optimizer. Phase 2 contains an O2O baseline translator and an OpenCL optimizer. The details 

of these components will be discussed in the following sections. 

 

 

Figure 3-1    The Framework of OMP2OCL translator 

 

The example OpenMP program as shown in Figure 3-2 is used to demonstrate the concept 

of OMP2OCL. 
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3.1 OpenMP Optimizer 

The OpenMP optimizer optimizes the input OpenMP programs for OpenCL. With the 

reason that OpenMP and OpenCL target for different multiprocessor platforms, which is 

similar to the reason mentioned in the second paragraph of Section 2.4, the optimizer is used 

to alleviate the effect of the architectural differences and to make the resulted OpenMP 

programs more suitable for executing on heterogeneous multiprocessor platforms that 

OpenCL supports. 

Concerning spatial data locality, CPUs, target devices of OpenMP, prefer intra-thread 

locality to inter-thread locality; whereas GPUs, devices supported by OpenCL, prefer both 

localities. In CPUs, intra-thread locality increases cache utilization, thus reducing memory 

access latency. However, inter-thread locality among threads on different CPUs of 

homogeneous multiprocessor platforms with shared memory may encounter false-sharing and 

hence increase memory access latency. Therefore, iterations of omp for loops in OpenMP 

programs are usually block-distributed rather than cycle-distributed. In GPUs, intra-thread 

locality within a thread also increases cache utilization. But most importantly, inter-thread 

locality among GPU threads has great effect on global memory access latency; that is, if 

    1 #include <stdio.h> 

    2 #define N 1024 

    3  

    4 int a[N][N], b; 

    5  

    6 int main() 

    7 { 

    8  int i, j; 

    9  

   10  #pragma omp parallel 

   11  { 

   12   #pragma omp for private(j) 

   13   for (i = 0; i < N; i++) { 

   14    for (j = 0; j < N; j++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  

   19   #pragma omp single 

   20   { 

   21    puts("XD"); 

   22   } 

   23  } 

   24  

   25  return 0; 

   26 } 

Figure 3-2    The Example OpenMP Program 
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adjacent threads concurrently access to adjacent data in global memory region, these accesses 

can be coalesced into fewer global memory accesses, and consequently, the memory access 

latencies are reduced. 

 

This optimizer provides one optimization, Parallel Loop-Swap, to enhance inter-thread 

locality of OpenMP programs for executing on heterogeneous multiprocessor platforms with 

GPUs as OpenCL devices. The optimization can be turn on and turn off by the command line 

options of OMP2OCL translator. 

 

3.1.1 Parallel Loop-Swap 

Parallel Loop-Swap is an optimization to enhance the inter-thread locality of OpenMP 

programs with regular data accesses in loop nests. For each perfect loop nest that has multiple 

loops and contains no function call, the optimization rearranges the loops within the loop nest 

using following strategies: 

i. For each loop with index variable which has less effect on values of subscript 

expressions of array accesses within the loop body, move it to outer level as far as 

possible. 

ii. For each loop with index variable which has larger effect on values of subscript 

expressions of array accesses within the loop body, move it to inner level as far as 

possible. 

iii. The rearrangement of loops within a loop nest should not break the dependencies 

among initial statements, condition expressions and step expressions of loops. 

iv. For points i and ii, when there are ties among loops which have the same effect on 

values of subscript expressions of array accesses within the loop body, the loop 

with more iterations has higher priority to be rearranged. 

A simple loop nest without applying Parallel Loop-Swap is shown in Figure 3-3. After the 

loop nest with the associated omp parallel is translated into a kernel function, a region of the 

kernel function as shown in Figure 3-4 contains an if statement, which in turn contains a 

singly nested for loop. The if statement is derived from Li, the loop with index variable i in 
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Figure 3-3, and the for loop comes from Lj, the loop with index variable j in Figure 3-3. In 

Figure 3-4, each GPU thread accesses a row of each array via the array accesses a[wiid][j] 

and b[wiid][j], and, as a consequence, these memory accesses create uncoalesced global 

memory accesses, and thus increase memory access latencies. 

Array accesses a[i][j] and b[i][j] could be expressed as a[i * N + j] and 

b[i * N + j], respectively. For expression i * N + j, increment of i will increases 

the value of the expression more than that of j. For this reason, in Figure 3-3, the index 

variable of Lj, j, has less effect on the values of the subscript expressions of the array accesses 

a[i][j] and b[i][j] than the index variable of Li, i. Therefore, Lj is moved up to the 

outer level of the loop nest in Figure 3-5 after applying Parallel Loop-Swap. In Figure 3-6, 

each GPU thread accesses a column of each array via the array accesses a[i][wiid] and 

b[i][wiid], and at every iteration of Li, the accesses of all GPU threads fall within a row 

of each array. Accordingly, these memory accesses can be coalesced into fewer global 

memory accesses, and the memory access latencies are reduced. 

 

 

 

 

 

    1 if (wiid < N) { 

    2  for (j = 0; j < N; j++) { 

    3   a[wiid][j] = b[wiid][j] + 1; 

    4  } 

    5 } 

 

   10  #pragma omp parallel 

   11  { 

   12   #pragma omp for private(j) 

   13   for (i = 0; i < N; i++) { 

   14    for (j = 0; j < N; j++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  

 Figure 3-3    A Simple Loop Nest Without Applying Parallel Loop-Swap 

Figure 3-4    A Region of the Kernel Function Transformed from Figure 3-3 
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OpenMP is the source parallel programming standard of OMP2OCL translator, and 

Parallel Loop-Swap transforms the input OpenMP program into another OpenMP program. 

With the O2O baseline translator in Phase 2, the optimized loop nest with the associated omp 

parallel will be translated into an OpenCL kernel function. 

 

3.2 O2O Baseline Translator 

The O2O baseline translator translates the possibly optimized OpenMP programs by the 

OpenMP optimizer in Phase 1 into OpenCL programs directly. The translation mainly 

consists of the following three steps: 

i. Analyzing the OpenMP program under the models of OpenCL. 

ii. Identifying kernel regions, i.e., regions executed on OpenCL devices. 

iii. Transforming and outlining kernel regions into OpenCL kernel functions. 

The execution model of OpenMP is a fork-join model, and the translated OpenCL 

program has two parts: the host code and the kernels for the device. The serial region of 

OpenMP is mapped to the host code execution, and the parallel regions of OpenMP are 

mapped to the kernel executions. In addition, the memory model of OpenMP is shared 

memory with each thread having its own private memory. Accordingly, omp shared data are 

   10  #pragma omp parallel 

   11  { 

   12   #pragma omp for private(j) 

   13   for (j = 0; j < N; j++) { 

   14    for (i = 0; i < N; i++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  

 

    1 if (wiid < N) { 

    2  for (i = 0; i < N; i++) { 

    3   a[i][wiid] = b[i][wiid] + 1; 

    4  } 

    5 } 

 

Figure 3-5    The Simple Loop Nest After Applying Parallel Loop-Swap 

Figure 3-6    The Region of the Kernel Function Transformed from Figure 3-5 
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mapped into global memory region of OpenCL, whereas omp private data are mapped into 

private memory regions of OpenCL. 

 

3.2.1 OpenMP Program Analysis 

As mentioned in Section 2.1, directives are at the core of OpenMP standard. So in this 

Subsection, the discussion is focused on the interpretation of the directives and the data-

sharing attribute clauses. 

For parallel directive, since it is used to annotate structured blocks that could be paralleled, 

the translator identifies these structured blocks as candidate kernel regions, outlines them 

from the original functions, transforms them into OpenCL kernel functions, and inserts  kernel 

execution command calls into the position where the structured blocks reside originally. 

With respect to work-sharing directives, which are used to annotate works that could be 

divided and distributed to threads, there are for directive, sections directive, and single 

directive specified in OpenMP specification [10]. Each iteration of an omp for loop is mapped 

to an OpenCL work-item, and accesses to the index variable of the omp for loop are replaced 

by accesses to the work-item id variable. Each section of an omp sections is assigned to an 

OpenCL work-item. Omp single structured block is left on the host and executed by one host 

thread in current implementation. 

Concerning combined parallel work-sharing directives, they could be expressed as a 

parallel directive which annotates a structured block where a work-sharing directive and its 

associated region are contained. As a result, they can be mapped by the principles mentioned 

above. 

About synchronization directives, they create split points where a candidate kernel region 

must be split into two sub-regions. If the resulted two sub-regions become kernel regions, and 

after the two kernel regions are outlined and transformed, the generated two kernel execution 

command calls ensure global synchronization among work-items. The split is necessary, 

because there is no global synchronization mechanism among work-items executing in an 

OpenCL device.  

Finally, with regard to data-sharing attribute clauses and threadprivate directive, they are 

used to map data into OpenCL memory regions. OpenMP shared data are shared by all 
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threads, they are copied to variables in global memory region for being used by all work-

items after an OpenMP program is translated into an OpenCL program. OpenMP private data 

are private to each thread, and, therefore, they are mapped to variables in private memory 

regions. Threadprivate data specified by threadprivate directives are also private to each 

thread with static lifetime, that is, threadprivate data live across parallel regions, so they are 

expanded in variables in global memory region. For variables not explicitly determined, 

which are not listed in data-sharing attribute clauses, the translator appends them into data-

sharing attribute clauses of appropriate directives. For instance, as shown in Figure 3-7, a 

simple loop nest has only one data-sharing attribute clause in line 12, and variables a, b, and 

i are not explicitly determined. For ease of translation, the translator analyzes the program 

and appends the three variables into data-sharing attribute clauses of the appropriate directives 

as shown in Figure 3-8. Variables a and b are static and in file scope so that they are shared 

in the parallel region. Variable i is the index variable of the loop Li, and, accordingly, it is 

appended in the private clause in line 12. Since the parallel directive in line 10 annotates the 

structured block where only one for directive and its associated for loop are contained, the 

data-sharing attribute clauses of the parallel directive include those of the for directive; thus, 

private(i, j) is included in both directives. 

 

 

 

    4 int a[N][N], b; 

    5  

    6 int main() 

    7 { 

    8  int i, j; 

    9  

   10  #pragma omp parallel 

   11  { 

   12   #pragma omp for private(j) 

   13   for (i = 0; i < N; i++) { 

   14    for (j = 0; j < N; j++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  

 Figure 3-7    A Simple Example with A Simple Loop Nest 
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This step analyzes the semantics of the input OpenMP program. With kernel regions 

transformation and outlining of the O2O baseline translator, for instance, shared data 

analyzed in this step will be copied into an OpenCL buffer object for the device before a 

kernel execution by OpenCL API. After the kernel execution, the shared data will be copied 

from the OpenCL buffer object back into main memory by the API. 

 

3.2.2 Kernel Regions Identification 

The translator targets OpenMP parallel regions as candidate kernel regions. As mentioned 

in the fifth paragraph of Subsection 3.2.1, synchronization directives result in split points, 

where a candidate kernel region must be split into two sub-regions in order to ensure global 

synchronization. In addition, at entry to and exit from a parallel region, and at exit from a 

work-sharing region, there are implicit flush synchronization directives. Moreover, most 

OpenMP directives annotate on a structured block which is an executable statement and 

possibly compound, with a single entry at the top and a single exit at the bottom. The 

translator must consider that the splits should not break the control flow semantics of 

OpenMP; in other words, the split points should not locate in the middle of a structured block 

to prevent creating unstructured blocks. 

The overall algorithm derived from the related work [8] for identifying kernel regions is 

shown in Figure 3-9. This top-down split approach is for splitting candidate kernel regions as 

less as possible. 

 

   10  #pragma omp parallel shared(a, b) private(i, j) 

   11  { 

   12   #pragma omp for private(i, j) 

   13   for (i = 0; i < N; i++) { 

   14    for (j = 0; j < N; j++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  

 Figure 3-8    The Simple Loop Nest with Additional Data-Sharing Attribute 

Clauses 



 

24 

 

 

The parallel region as shown in Figure 3-10 has four split points, which are shown by 

dash lines. The first and the last split points are at entry to and exit from the parallel region 

respectively, the second and the third split points are at exit from work-sharing regions. After 

splitting, the parallel region is split into two parallel regions as shown in Figure 3-11. The 

first region will be translated into an OpenCL kernel function, whereas the second region will 

not due to lack of global synchronization mechanism among work-items in OpenCL. 

 

Input: R       /* a set of OpenMP parallel regions */ 

Output: KR     /* a set of identified GPU kernel regions */ 

 

Foreach R(i) in R 

Foreach split point in R(i) 

Divide R(i) into two sub-regions at the split point 

Build CFG, a control flow graph for R(i) 

Foreach sub-region SR(j) in R(i) 

Foreach entry/exit points other than the one at the 

top/bottom of SR(j) 

Divide SR(j) into two sub-sub-regions at such 

entry/exit points 

Foreach sub-sub-region SSR(k) in SR(j) 

If SSR(k) contains an OpenMP work-sharing 

directive 

Figure 3-9    The Algorithm for Identifying Kernel Regions 
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3.2.3 Kernel Regions Transformation and Outlining 

The kernel regions identified should be transformed before outlined into OpenCL kernel 

functions. The transformation includes two stages: work partitioning and data mapping. 

Firstly, for work-partitioning, each iteration of an omp for loop is mapped to an OpenCL 

work-item, and each section of an omp sections is assigned to an OpenCL work-item. As a 

consequence, the total number of work-items could be calculated by the number of iterations 

for an omp for loop or the number of sections for an omp sections. Secondly, for data mapping, 

   10  #pragma omp parallel shared(a, b) private(i, j) 

   11  { 

   12   #pragma omp for private(i, j) 

   13   for (i = 0; i < N; i++) { 

   14    for (j = 0; j < N; j++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  } 

   19 

   20 

   21  #pragma omp parallel 

   22  { 

   23   #pragma omp single 

   24   { 

   25    puts("XD"); 

   26   } 

   27  } 

   10  #pragma omp parallel shared(a, b) private(i, j) 

   11  { 

   12   #pragma omp for private(i, j) 

   13   for (i = 0; i < N; i++) { 

   14    for (j = 0; j < N; j++) { 

   15     a[i][j] = b + 1; 

   16    } 

   17   } 

   18  

   19   #pragma omp single 

   20   { 

   21    puts("XD"); 

   22   } 

   23  } 

Figure 3-10    The Parallel Region with Split Points Shown by Dash Lines 

Figure 3-11    The Parallel Regions After Splitting 
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using the interpretation results from Subsection 3.2.1 that all variables referenced in a kernel 

region are listed in data-sharing attribute clauses, the translator inserts memory transfer 

command calls to read data from or write data to OpenCL buffer objects for shared and 

threadprivate data (threadprivate data are transferred only when the corresponding variables 

are listed in copyin clauses of parallel directives). A basic strategy is to copy data used by 

kernel functions from main memory into memory objects and copy modified data from 

memory objects back to main memory. However, not all memory transfer command calls are 

necessary, since the modified data might not be used by the host and data in global memory 

region are persistent across kernel executions. The optimization for reducing memory transfer 

command calls will be discussed in Subsection 3.3.2. 

After being transformed, the kernel regions are outlined and replaced with kernel 

execution command calls. 

When the first parallel region in Figure 3-11 is transformed and outlined, the resulted 

OpenCL kernel function is shown in Figure 3-12. Variables a and b are shared so that they 

are mapped to OpenCL global memory region, and before the kernel execution, they are 

copied into an OpenCL buffer object which is passed as an argument to the kernel function. 

Variables i and j are private so that they are mapped to OpenCL private memory regions, 

and, accordingly, they are defined as local variables in the kernel function. For line 7 to line 

11 in Figure 3-12, each work-item does an iteration of the omp for loop Li in Figure 3-11. 

 

 

 

 

    1 __kernel void main_kernel0(__global int a[N][N], __global int 

*b) 

    2 { 

    3  int i; 

    4  int j; 

    5  i = wiid; 

    6  ...; 

    7  ...; 

    8  if (i < N) { 

    9   for (j = 0; j < N; j++) { 

   10    a[i][j] = *b + 1; 

   11   } 

   12  } 

   13  ...; 

   14  ...; 

   15 } 

Figure 3-12    The OpenCL Kernel Function Translated From the First Parallel 

Region in Figure 3-11 
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API and the extended C language for kernel functions of CUDA are different from those 

of OpenCL with some similarities, so some changes are necessary. For instance, OpenCL 

kernel functions must be in a string to be compiled by clBulidProgram, so the transformed 

and outlined kernel functions must be appended into a string. In addition, the OpenCL kernel 

functions in the string cannot access information such as macros in the host code, and, 

consequently, the necessary information must be also included in the string.  

 

3.3 OpenCL Optimizer 

Since the OpenMP optimizer in Phase 1 only makes use of the constructs of the C 

programming language, which is the selected base language of the OpenMP programs, the 

OpenCL optimizer optimizes the resulted OpenCL programs of O2O baseline translator for 

performance by utilizing features of OpenCL and some OpenCL devices like low-latency 

memory regions and persistent data in global memory. 

This optimizer provides three optimizations, which are caching frequently accessed global 

data and memory transfer reduction. The optimizations can be turn on and turn off by the 

command line options of OMP2OCL translator. 

 

3.3.1 Caching Frequently Accessed Global Data 

In some OpenCL devices such as GPUs, global memory region is mapped to an off-chip 

memory which might not has cache depending on the capabilities of the OpenCL device, and 

other memory regions such as private memory region, local memory region, and constant 

memory region are either mapped to an on-chip memory or equipped with caches. In addition, 

an on-chip memory usually has higher bandwidth and lower latency than an off-chip memory 

for the same device. Hence, in order to reduce memory access latency, frequently accessed 

data in global memory region should be cached on low-latency memory regions. 

Concerning temporal data locality, the hardware automatically exploits intra-thread 

locality and inter-thread locality on CPUs. Whereas using OpenCL on GPUs, the software 

must exploit both intra-thread locality and inter-thread locality (or intra-work-item and inter-

work-item) by itself for global memory region. 
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This optimization performs data flow analysis to identify temporal locality of global data, 

and inserts necessary caching codes. The caching strategies for global data with different 

attributes are shown in Table 3-1. The O2O baseline translator maps shared data into global 

memory region; however, this optimization caches global data into different memory regions 

according to their attributes. 

 

Table 3-1    The Caching Strategies for Global Data with Different Attributes 

 

Temporal Locality 

Intra-work-item Inter-work-item 

R/O scalar Private, Local Local 

R/W scalar Private, Local Local 

R/O array  Local  Local 

R/W array Local Local 

 

In Figure 3-12, the data pointed by the variable b belongs to read-only scalar global data, 

and work-items share the data. Therefore, variable b will be cached in the local memory 

regions as shown in Figure 3-13. A variable declaration locates in line 5 with __local 

specifier, which is used to indicate that the variable is resided in the local memory regions. In 

line 7, the data pointed by the variable b is cached into the local memory regions. In line 12, 

the access to the data in the local memory regions substitutes the access to the global data. 
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As mentioned in Subsection 2.2.3, shared memory in CUDA is generalized as local 

memory in OpenCL which is shared by a work-group. In CUDA, passing the data as an 

argument to a kernel function has an effect of caching the data into shared memory regions. 

Nevertheless, in OpenCL, to cache the data into local memory regions, it is necessary to insert 

a variable declaration and an assignment statement as shown in Figure 3-13 since parameters 

of a kernel function with specifier __local cannot be initialed from the host. 

 

3.3.2 Memory Transfer Reduction 

An important stage of transforming kernel regions into OpenCL kernel functions is the 

insertion of memory transfer command call. The O2O baseline translator inserts memory 

transfer calls for all shared and threadprivate data. However, not all memory transfer 

command calls are necessary since the modified data might not be used by the host and since 

data in global memory region are persistent across kernel executions. 

To remove the unnecessary memory transfer command calls, this optimization performs 

data flow analysis in four steps: 

i. Finding a set of shared data read in the kernel region as UseSet. 

ii. Finding a set of shared data written in the kernel region as DefSet. 

    1 __kernel void main_kernel0(__global int a[N][N], __global int 

*b) 

    2 { 

    3  int i; 

    4  int j; 

    5  __local int lo__b; 

    6  i = wiid; 

    7  lo__b = *b; 

    8  ...; 

    9  ...; 

   10  if (i < N) { 

   11   for (j = 0; j < N; j++) { 

   12    a[i][j] = lo__b + 1; 

   13   } 

   14  } 

   15  ...; 

   16  ...; 

   17 } 

Figure 3-13    The OpenCL Kernel Function with Variable b Cached in the Local 

Memory Regions 
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iii. For each variable in UseSet, if its reaching definition locates outside the kernel 

region, then the variable should be transferred from the host before the kernel 

execution. 

iv. For each variable in DefSet, if it is used outside the kernel region, then the variable 

should be transferred back to the host after the kernel execution. 

In Figure 3-12, after the kernel execution, the host transfers the data pointed by variable a 

and b back into the main memory. With this optimization, these memory transfers are 

removed because the data will be useless after the kernel execution. 

 

3.4 Limitations of OMP2OCL Translator 

Some limitations of OMP2OCL translator are listed as follows: 

 OMP2OCL translator assumes that there is only one device in the platform and 

only one kernel executes at a time. 

 OMP2OCL translator can only translate simple OpenMP programs now. For 

instance, it does not support omp task. 

 OMP2OCL translator has three optimizations now. For the performances of the 

translated OpenCL programs, it is necessary to develop more optimizations for 

OMP2OCL translator. 
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Chapter 4 Experiment 

The experiment platform has one Intel Core 2 Quad Q6600 as the host and one NVIDIA 

GeForce 9800 GT as the device. Using oclBandwidthTest from NVIDIA GPU Computing 

SDK, the bandwidth from the host to the device is around 2330 MB/s, and the bandwidth 

from the device to the host is about 1900 MB/s. 

Our experiment is based on two important kernels (JACOBI and SPMUL) and one NAS 

OpenMP Parallel Benchmark (EP). Table 4-1 describes these three benchmarks, sorted from 

top to down according to the increasing order of the numbers of source lines. The following 

sections present the experiment results with respect to each benchmark. 

 

Table 4-1    Descriptions of the Benchmarks 

Benchmark Description 
# of Source 

Lines 

# of Kernel 

Lines 

# of Omp 

Parallel 

JACOBI 

An algorithm for determining the solutions 

of a system of linear equations with largest 

absolute values in each row and column 

dominated by the diagonal elements 

92 14 2 

SPMUL 

Sparse matrix multiplication, which is an 

algorithm for sparse matrices, where most 

elements of the matrices are zero 

250 44 1 

EP 

Embarrassingly parallel, which is an 

algorithm for generating independent 

Gaussian random variates using the 

Marsaglia polar method 

614 79 1 

 

Table 4-2 describes five optimizations implemented by the related work and the three 

optimizations included in OMP2OCL translator. As a result, three optimizations, Parallel 

Loop-Swap (PLS), Caching of Frequently Accessed Global Data (Caching), and Memory 

Transfer Reduction (MTR) are conducted in the experiments. 
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Table 4-2    Optimizations Implemented by the Related Work and OMP2OCL 

Translator 

 
The Related Work 

OMP2OCL 

Translator 

Parallel Loop-Swap (PLS) √ √ 

Loop Collapsing (LC) √ 
 

Caching of Frequently Accessed Global Data (Caching) √ √ 

Matrix Transpose of Threadprivate Array (MT) √ 
 

Memory Transfer Reduction (MTR) √ √ 

 

4.1 JACOBI 

 

 

Without any optimization, both the CUDA program and the OpenCL program output by 

the related work and OMP2OCL translator, respectively, perform worse than the original 

OpenMP program because of the uncoalesced global memory accesses in the kernel functions. 

The uncoalesced global memory accesses are resulted from the fact that each work-item 

accesses arrays in row-wise scheme. Accordingly, Parallel Loop-Swap in Phase 1 can be used 

to overcome these situations. 

Figure 4-1    Experiment Results for JACOBI 
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Using Parallel Loop-Swap in Phase 1, the performances of both the CUDA program and 

the OpenCL program increase substantially and their execution time are around 57.13% and 

57.33% compared to the OpenMP program and the OpenCL program with no optimization 

respectively. 

Using Memory Transfer Reduction in Phase 2, the performances of both the CUDA 

program and the OpenCL program improve just very little due to the small amount of memory 

transfers between the host and the device. Before optimization, the sizes of memory transfers 

are around 32 MB for each direction. After optimization, the size of memory transfers is 

reduced to around 16 MB for the direction from the host to the device, whereas the size of 

memory transfer is remained the same for the direction from the device to the host.  

Using both Parallel Loop-Swap in Phase 1 and Memory Transfer Reduction in Phase 2, 

the combined effect of the optimizations are as expected that the execution time of both the 

CUDA program and the OpenCL program are the shortest in programs output by the 

translator of the related work and OMP2OCL translator respectively. 

For JACOBI, Caching Frequently Accessed Global Data in Phase 2 has no effect on both 

the CUDA program and the OpenCL program, since there are no temporal data locality 

regarding to global memory accesses .Accordingly, the execution times after applying this 

optimization are not showed in Figure 4-1. 
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4.2 SPMUL 

 

 

Without any optimization, both the CUDA program and the OpenCL program output by 

the related work and OMP2OCL translator, respectively, perform better than the original 

OpenMP program because of the little uncoalesced global memory accesses and the large 

amount of computation. 

By Caching Frequently Accessed Global Data in Phase 2, some array elements are cached 

in registers and private memories of the CUDA program and the OpenCL program, 

respectively. As a consequence, the memory accesses to global memory region are reduced, 

and, thus the performances of both the CUDA program and the OpenCL program increase a 

few. 

Using Memory Transfer Reduction in Phase 2, the performances of both the CUDA 

program and the OpenCL program just increase very little due to the small amount of memory 

transfer reduction. Before optimization, the sizes of memory transfers are around 85.64 MB 

from the host to the device and about 7.87 MB from the device to the host. After optimization, 

the size of memory transfers is reduced to around 77.77 MB from the host to the device, 

whereas the size of memory transfer is remained the same from the device to the host. 

Figure 4-2    Experiment Results for SPMUL 
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Using both Caching Frequently Accessed Global Data in Phase 2 and Memory Transfer 

Reduction in Phase 2, the combined effect of the optimizations are as expected that the 

execution time of both the CUDA program and the OpenCL program are the shortest in 

programs output by the related work and OMP2OCL translator respectively. 

For SPMUL, Parallel Loop-Swap in Phase 1 has no effect because suitable loop nest 

described in Subsection 3.1.1 for optimization does not exist, and, as a consequence, the 

execution times after applying this optimization are not showed in Figure 4-2. 

 

4.3 EP 

 

Figure 4-3    Experiment Results for EP 

 

Without any optimization, both the CUDA program and the OpenCL program output by 

the related work and OMP2OCL translator, respectively, perform better than the original 

OpenMP program because of the characteristics of EP, which has little uncoalesced global 

memory accesses and large amount of parallelizable computation. 

By Caching Frequently Accessed Global Data in Phase 2, some array elements are cached 

in shared memories and local memories of the CUDA program and the OpenCL program, 
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respectively. As a consequence, the memory accesses to global memory region are reduced, 

and, thus the performances of both the CUDA program and the OpenCL program increase a 

few. 

For EP, Parallel Loop-Swap in Phase 1 and Memory Transfer Reduction in Phase 2 have 

no effect on both the CUDA program and the OpenCL program; in other words, there is no 

suitable loop nest for Parallel Loop-Swap and no suitable global data for Memory Transfer 

Reduction. Consequently, the execution times after applying this optimization are not showed 

in Figure 4-3. 

 

4.4 Discussion 

Parallel Loop-Swap in Phase 1 resolves uncoalesced global memory accesses in a loop 

nest with regular data accesses. Coalesced global memory accesses are significant in both 

CUDA programs and OpenCL programs with GPUs as the devices. In our experiment 

platform, there is a GPU. Therefore, for JACOBI, both the CUDA program and the OpenCL 

program while applying this optimization perform well compared to those without this 

optimization and the original OpenMP program. However, with devices rather than GPUs 

such as CPUs, this optimization might decrease the performance instead. 

In the experiment platform, caching frequently accessed global data in private memories 

and local memories of OpenCL has benefits to the performance of both the CUDA program 

and the OpenCL program, because the latencies to private memories and local memories are 

shorter than that to global memory. Nevertheless, with devices rather than GPUs such as 

CPUs, the latency reduction by Caching might not be significant. 

Memory Transfer Reduction in Phase 2 removes unnecessary memory transfers. If the 

memory transfers locate in a loop nest with many iterations, then the performance 

improvement could be substantial. However, this situation is not present in the experiments. 

Thus, for JACOBI and SPMUL, the performances of both the CUDA program and the 

OpenCL program while applying this optimization improve a little compared to those without 

applying this optimization. 
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Chapter 5 Conclusion and Future Work 

We designed and implemented a translator for automatic translation of OpenMP programs 

into OpenCL programs. Although there are performance losses for OMP2OCL translator 

compared to the related work designed dedicatedly for NVIDIA GPUs, it is still promising 

that the translated OpenCL programs can use other devices as compute devices other than 

NVIDIA GPUs. In addition, we have constructed an infrastructure for automatic translation of 

OpenMP programs into OpenCL programs. Researchers can use this infrastructure as a basis 

to develop more device-independent and device-dependent optimizations. Moreover, 

programmers can use this translator to translate existed or newly-developed OpenMP 

programs into OpenCL programs, in order to make the OpenMP programs as programs of 

heterogeneous multiprocessor platforms. 

The future work listed in the following might be considered to extend our OMP2OCL 

translator: 

 Currently, our OMP2OCL translator assumes that there is only one device in the 

platform and only one kernel executes at a time. Whenever there are multiple 

devices in the platform and multiple kernels in the OpenCL program, these kernels 

have the potential to execute simultaneously. However, there are some conditions 

for the simultaneous execution, i.e., two kernels executed simultaneously should 

not have data and control dependencies between each other; otherwise, the 

translated OpenCL program would have different behaviors from the original 

OpenMP program. We plan to do necessary dependency analysis on kernels and 

let independent kernels execute on multiple devices in the future. 

 Our OMP2OCL translator can translate only simple OpenMP programs now. For 

instance, it does not support omp task. We plan to map omp task into task parallel 

programming model of OpenCL in the future. 

 OMP2OCL translator has three optimizations now. For the performances of the 

translated OpenCL programs, it is necessary to develop more optimizations for 

OMP2OCL translator. We plan to analyze and port Loop Collapsing and Matrix 

Transpose of the related work into OMP2OCL translator in the future. 
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