P

YRR AR T
T2 BE R

bR EH L BEHR
iR \ﬁ&€
Code Size Reduction by Integer Linear Programming for

Register Reassignment in Mixed-Width ISA Processors

IR
RSN L

PEAR 44 & L

PUERERBRITE AR ER LSBT LY
HRERR RS ENERE

Code Size Reduction by Integer Linear Programming for

Register Reassignment in Mixed-Width ISA Processors

o4 i mAptt Student : Po Tsun, Chen

R EFR Advisor : Dr. Jyh-Jiun Shann

¢ 3

4% |+
Nt

e

R
k)

&

04*?‘“? A=

-
B R E

AThesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science and Engineering
October 2010

HsinChu, Taiwan, Republic of China

MEERERL L AR SRS B R T LY
BEEHAS FESRIARE
g4 g H TR I #L

Bl 2 < B TP A 20 e § TR LT

#F &

Bk o~ 3V kY o AR] Bt - R E R ARAL BN A AR

£l s TR R 2 A T LR oA Y - g
RO ZepA R s N L @4 ’f?&O Ty LR ’f?-ii THRE-A7 R
%&ﬁﬁﬁ"—&§16ﬁ%ﬁ@ﬁ 232 ahE gy L o AR R

A&7 o e ARM MIPS: Andes 358t 1640 4 B %4 > » S o 4 4

BEHATA S 2 S B E AR NP ERT AT 0 9 4% dp 4 8
A RIAFIG B Ao AT SRS 16 mdy £ 2 32
PAEEL S PR AR ER L ERT L BT E &g
B Ldpinl & UFd EATH L3 BRI AL S 2 b p chz it 5 &4
HARTL Y o R AL BEET 2 G B4 AR AL Sakmp NP R
30 FptfRaan 2 < F 4 E % Heuristic e sV R EF AV 7fF 0 A B H
TR AP R FRERERA AR R AR S BT 2 BE 4

BT RE o AR R SRR i 2T s AN g F Rt 34, 4% mﬁ&;g&g@%—k |

Code Size Reduction by Integer Linear Programming for

Register Reassignment in Mixed-Width ISA Processors

Student: Po-Tsun Chen Advisor: Dr. Jyh-Jiun Shann

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Code size issue for a memory constrained embedded system is as important as
performance. There are many researches that devote to this issue. One way of
reducing code size is to exploit compact instruction formats. A mixed-width ISA may
provide this kind of feature for the Reduce iInstruction Set Computer (RISC)
processors. In general, it usually provides two different widths of instruction formats:
short and long instruction format..In.commercial,” ARM, MIPS and Andes all support
this feature in their products. From our research, the formats of 49% instructions can
be decided only after register assignment. Therefore, the register assignment policy is
very important for mixed-width ISA. Register reassignment renumbers the registers in
each instruction for specific goals. Register reassignment for mixed-width ISA has
been proved to be an NP problem. Some researches have devoted to design heuristic
algorithms to find the feasible solutions. In this thesis, we use integer linear
programming to solve the register reassignment problem in mixed-width ISA for
reducing the code size. On the average, we reduce about 34.4% code size compared to

the original program.

W 9

BARMA g sk EHL X Ao #9 2R A affd P8 L Tp

2 0 HEF AP :m.\,;}ﬂ%;a HE- Bwod LR *rsi;ki;i 5o ¥k B

WK EE o LF - SR Y R LR o R RS T
R goi s PRFES &0 B R R EREE TSR A
’4\‘7 i"tmfg; -

2L B

Pl B L d] Gumid 5 4RI s A g i A

i hlé‘ Af |J

R A EEML Y c PR R REE R R E B S L

N

Penfp o @ FE

>

§ s Al kg Bk -

-~

Bofd o B A PEERLE LY

)4

g sans - s o A .iﬁ“}l?ii B S

AR WL T

P 4a 44 2010/10/14

Table of Content

BB s [
AADSTTACT ... bbbt ii
S RS S PP PSPSSSRSRR i
TaDIE OF CONTENT......eoiiitiiieece e bbb iv
LISE OF FIQUIES ...ttt sttt ettt saeeaeenaesreene s vi
LiSE OF TaADIES. ...t bbb viii
Chapter 1 INtrOQUCTIONcc.eeieiie et ee e 1
1.0 ODSEIVALION ...ttt sttt 4

1.2 Motivation and ODJECHIVEc.ccveiuiiieiicii e 5

1.3 Organization Of this theSIScceiiiiiiiiei e 6
Chapter 2 Background and Related WOrK............c.ccveviiieiieiicie e 7
2.1 BaCKGIOUNGocvieieeie ettt reene e 7
2.1.1 Register Reassignment Problem i ...cccovveiieie i, 7

2.1.2 Calling CONVENLION oo cueeitin e s e e sreesieeeesteesreeeesreesreeeesreenneens 8

2.1.3 Integer Linear Programming ..o . e ceereeireseeseesieseesseeseesseesnens 8

2.2 REIAIEA WOTK......coe ittt sttt aseatseniinanne st et shaseeseeseeneeeesbesbesbesnesneaneeneenee s 9
2.2.1 KU’S MENOO i it atianianiassin e ek bttt 10

2.2.2 Discussion of Ku’s Method....cocccr. it 13

Chapter 3 ILP Formulation for Register Reassignment Method Tcccccevveiennen. 15
B L OVEIVIBW ...tttk e ittt sttt ettt sttt 15

3.2 Description of Register ReassignmeNt...........c.cccveveiieiiiiie e 16

B3 INOLALIONS ...ttt sttt 17
3.3 L ISA FRALUIES ...ttt 17

3.3.2 FUNCLION FRALUIESc.veiiieiciieieeiieiee et 19

3.3.3 ReassignmMeNnt IMAtriXc.cccveiieiieeiie e 20

B4 FOIMUIALION ...ttt nne s 20
3.4.1 Objective FUNCLION.........cooviiiie e 20

342 CONSLIAINTS ..ottt enes 33

34,3 SUMIMAIY ..ottt sttt e e snb e e s e e e nnn e e e seeeanseas 35

D EXAMPIE .o 37
3.5.1 ODbjective FUNCLION.........cooi e 40

3.5.2 Register Usage CONSLraiNtS..........cccvviiieiieiiiieiie e 40

3.5.3 Register Reassignment ConstraintsS...........ccccvevvveviieeiieiieesie e 41

3.5.4 Instruction Operands CONSIAINTS.........ccovvrierierenie e 41

3.5.5 Reassigning to Small Set Register Constraints............cocevvveevvevneenne. 43

v

Chapter 4 ILP Formulation for Register Reassignment Method IIccccceeveienen. 45

Ot I N (0] - £ [0 OSSPSR 45
A.1.L ISA FRALUIES ...ttt 46

4.1.2 FUNCHION FRALUIESeoviiiieiiieieeiie sttt s 47

4.1.3 ReassSigNMENTt MALIIXocveieiieiieie e 48

o o1 401 F= 1 o] o PSPPSR 49
4.2.1 ODJECtIVE FUNCLION ..ot 49

4.2.2 CONSLFAINTSeeviieieiiieite et sttt nre e enes 51

A 3 EXAMPIE .o 52
4.3.1 ODJECtIVE FUNCLION ..ot 55

4.3.2 Web Usage CONSEIAINTSc.coeiviriiiiiiiiiieieeeese e 55

4.3.3 Register Reassignment ConStraints...........ccocevevenerenesenesieieeeeen, 56

4.3.4 Web Interference CONSIraiNTS........ccoovererieereiie e 56

4.3.5 Instruction Operands CONSLraiNtS.ccooveieiierenerese e, 60

4.3.6 Reassigning to Small Set Register Constraints............c.ccoeevevevverennne 61

4.3.7 Callee-Saved Registers. Overheads Constraints...........ccccevcveeervereenne 62

Chapter 5 EXPErTMENTS.c..ovi i e ittt Skttt 65
5.1 ENVITONIMENT.c..tetie it e kiiiadaae e n s e sansab s s ia s ameeseesseesseaneessaesseeneesseeseanenssens 65
5.1.1 IBM ILOG CPLEX iiiiiuireisumrasttastasanssestetteaseasaessessessessessessessasssesseneens 65

TR O IR S s SRS 66

5.1.3 Target ArChitBCIUIe i st i e i 66

5.2 Benchmark Evaluation RESUISoor it 67

5.3 EXPEriMENtS DISCUSSION .. .c. i itirurisiismeses e beeessestestesseeseeseessessessessessessesseeeenes 70
5.3.1 Discussion 0f Method Tccccoovevieiiiiiiiiiesee e, 70

5.3.2 Discussion Of MethOd ILccevveierierieiiieseceeee e 73

Chapter 6 Conclusions and FUtUre WOrKS.............cooeiiiiiiiinieesc e 75
L E =T =] T USSR 77

List of Figures

Figure 1-1 Two different mode switch mechanisms: (a) Use mode switch instruction

(b) Use special instruction €NCOAING..........ccueiieriiiiieiieieeie e sie e sae e nneas 3
Figure 1-2 Distribution of long and short inStructionscccceveviviie e, 5
Figure 2-2 Example of neighbor graph..........c.ccceov i 13
Figure 3-1 Proposed flow chart of our register reassignment method......................... 16
Figure 3-2 Structure of INStTabIEccveiiiecece e 19
Figure 3-3 ReassignmMent MatriXcccceeiueiiieiierie et 20
Figure 3-4 Function layouts after code generationcc.cccoeeveeieieeseevesiee s 23
Figure 3-5 An example of reassignment a callee-saved register to a callee-saved register
... 26
Figure 3-6 An example of reassignment a callee-saved register to a caller-saved register
... 26
Figure 3-7 An example of reassignment a temporary register to a callee-saved register
... 27
Figure 3-8 An example of reassignment a temporary register to a caller-saved register
... 28
Figure 3-9 An example of reassignment an-argument register to a callee-saved register
... 29
Figure 3-10 An example of reassighment an argument register to a caller-saved register
... 29
Figure 3-11 An example of reassignment a return value register to a callee-saved
=101 (] PSSP 30
Figure 3-12 An example of reassignment a return value register to a caller-saved
=101 (] USRS 31
Figure 3-13 An example of the reassignment MatriX..........cccoovvevvieiiieiie e 34
Figure 3-14 An MIPS 32 assembly COUEcccoviiiiiiiiice e 37
Figure 3-15 Register reassignment results for example 3.5.........ccccoeviiiiiiie e, 44
Figure 4-1 Register reassignment results for example 4.3.........ccccoooveiiiiiiciie e, 64
Figure 5-1 Translation rate of uncertain in which format instructions to short
INSEIUCTIONS ...ttt ettt b ettt e b e bt e st e b e e be et e sneente e e enes 68
Figure 5-2 Additional instruction count COMPAriSONccceevvveiieiiieesiie e sie e 69
Figure 5-3 Code size reduction COMPANISONcccvveiieiiieeiieeieesre e s see e 70
Figure 5-4 Instruction coverage ratios of top 7 frequent occurrence registers of unlzh
... 71
Figure 5-5 Instruction coverage ratios of the top 7 registers of Rawcaudio................ 72

Vi

Figure 5-6 Instruction coverage ratios of the top 7 frequent occurrence registers in CRC

vii

List of Tables

Table 2-1 Proposed design v.s. Ku’s methodcccooveveiiiiicii i 14
Table 3-1 Summary of reassignment overheadscccccvveveeie i, 32
Table 3-3 The contents Of INStTabIe.........ccoviiiiii s 39
Table 3-4 Example of reassignment OVerneadsccccceovveveeveiieviese s ese e 40
Table 4-1 Instruction insertions for callee-saved registers at prologue/epilogue after
FEQISLEr FEASSIGNMENTviiviiiiieie et e et na e e sre e e enes 50
Table 4-2 The contents Of INStTabIe.........ccoviiiiiiii 54
Table 4-3 Reassignment overheads of each Webccccoevveii i, 55

viii

Chapter 1 Introduction

Embedded systems are widely used in many fields, from the hand-held devices to
micro-control systems. For the cost and energy consumption consideration, embedded
systems usually adopt reduced instruction set computer (RISC) processor in system. However,
the features of a RISC processor make the code size larger than complex instruction set
computer (CISC) processor. Therefore, many researches have devoted to reduce the code size
of a RISC processor. The mixed-width ISA is one of the methods designed for this purpose. It
can achieve high code density and low power consumption simultaneously. Processors, for
example, ARM, MIPS, and Andes family of embedded cores, support mixed-width ISA [1-3].
MIPS proposed microMIPS as an:independent 16- and 32-bit ISA that compatible with
original MIPS32 and MIPS64. ARM ‘also has thumb2 as an independent 16- and 32-bit ISA
[4-5].

In general, mixed-width ISA processor is a RISC processor with more than one
fixed-width instructions sets [6]. Basically, it supports two different kinds of encoding lengths
for long instructions (L-Format) and short instructions (S-Format). For instance, in MIPS,
16-bit length is for the short instructions and 32-bit length for long instructions. There are
some advantages of mixed-width ISAs; the most well known one is significantly reducing the

code size of RISC processors. Moreover, there are some benefits corresponding to the code

size reduction such as the improvement instruction cache miss rate and decreasing of the bus

traffic between memory and cache. Despite of the great advantages of mixed-width ISA, some

limitations of the short format instructions should be considered and we listed as follows:

1. Limited functionalities

S-format instructions are the subset of L-format instructions and for some operations,

it may use several S-format instructions to accomplish. The reason is that the

operation bit field of S-format instruction cannot specify all the operations and the

lengths of others fields are not enough. For example, Thumb is a subset of ARM ISA.

2. Fewer bits for holding the immediate value

Due to ISA format limitation, an immediate value oversized the immediate field of

S-format cannot be represented by S-format instruction. In MIPS16e, the length of

immediate value filed is 8 bits for some S-format instructions but 16 bits for

L-format instructions.

3. Fewer bits for indexing registers

Due to ISA format limitations, the S-format instructions of some mixed-width ISAs

cannot access all the registers. In MIPS, there are only 3 bits for indexing registers in

16-bit instruction but 5 bits for indexing registers in 32-bit instructions.

For switching long and short format instructions, there are two commonly used

mechanisms as shown in figure 1-1 and we will depict in the following:

1. Using mode switch instruction:
Compiler will insert a mode switch instruction between the L-format and S-format
instructions. The mode switch instruction gives a hint to the processor which length of the
instructions to be processed. To avoid frequently mode switches that cause performance
loss, compiler will find contiguous convertible blocks to exploit the S-format instructions.
This method is adopted in MIPS16/32 and ARM/Thumb ISA.

2. Using special instruction encoding:
This method uses a bit in an instruction to indicate whether the instruction is L-format or
S-format. Compiler or programmer can.exploit each-instruction which can be converted to
the S-format instruction. This method is more flexible than using mode switch instruction.
However, this mechanism™also; reduces “an -available bit in the ISA. In real word,
microMIPS and Thumb2 all adopted this mechanism for the mixed-width ISA. We adopt

this mechanism as our design in this thesis.

y + func 16 - —a funcl6
2 BB 1: \ BB1: 1
= 1.
o '\ « i f
o Mode Switch | 2 : J uncB
main : | — Atk
3 A BB1:
— BB 1: g
2 |
2 | o
= [.= .
.;' BB 2: [= BB2: .
g v‘/,' e
Y Modeswitch v j funclé
(@) (b)

Figure 1-1 Two different mode switch mechanisms:
(a) Use mode switch instruction (b) Use special instruction encoding

3

1.1 Observation

So far we have introduced the mixed-width ISA: an architecture feature for reducing
code size. Figure 1.2 shows the distribution of long and short instructions if we encoded them
by a MIPS like hypothetical mixed-width ISA. The experiment environment based on LLVM
2.5, and selected some benchmarks from SPEC2000, MediaBench and MiBench [7-9]. On the
average, about 32.79% instructions produced by the compiler without supporting mixed-width
ISA can be directly translated to the S-format instructions since these instructions are
irrelative register assignments or no immediate field. There are about 19.06% instructions
which cannot be translated to short instructions.since the immediate value is oversized or no
corresponding S-format instructions. Apart from exact long or short instructions, there are still
48.15% instructions uncertain”in which formats before assigning registers. The formats of
these kinds of instructions are determined by the register number. If there is a good register
allocation/assignment algorithm, these instructions can be translated to S-format instructions.
It still gave us a strong motivation to design better policy to handle the register assignment
issue of mixed-width ISAs. If we may translate as many possibly short instructions to actual

exact short instructions as possible, the code size will decrease largely.

M Exact Long Instruction M Possible Short Instruction Exact Short Instruction

100.00%

90.00% +— —
80.00% +— —
70.00% +— —
60.00% -

50.00% -

40.00% -

30.00% -

20.00% -

10.00% -

0.00% - T T T T T T T T T T
V?yQ @é 'b‘)&o f:?es\o (,00& ~\¢:’é’b e'g\é\ $K\ & . (\b’b\ é(?;b 2
RS R IV O
< < BN

Figure 1-2 Distribution-of long and short instructions

1.2 Motivation and Objective

From the previous section, it IS revealed that register assignment is important for
exploiting S-format instructions. Register assignment.can be considered in register allocation
or by inserting an optimization phase after register allocation. Previous researchers have
proposed register allocation methods for mixed-width ISA processors [10-11]. However, they
did not consider some important issues such as calling convention or register coalescing in
their algorithms. In fact, the goal of register allocation algorithms tries to allocate variables to
physical registers with minimized spilling. To make more instructions convert to S-format, it
should assign more registers which can be indexed by S-format instructions. However, this
two different goals may counteract by each other such that we can neither minimize the

spilling and nor assign registers which can be indexed by S-format instructions adequately.

Therefore, we adopted another approach, reassigning register after register allocation. In this
paper, we proposed two register reassignment methods to reduce the code size. In the first
method, we reassign each used register in a function by once. For the second method, we
relax the restriction of the first method by allowing the register can be reassigned more than
once if the live-cycle is not overlapped.

Our objective is using the integer linear programming to formulate the register
reassignment problem for mixed-width ISA processors to find the optimal translation rate of
S-format instructions to reduce the code size.

1.3 Organization of this thesis

We will discuss the background knowledge and related work in Chapter 2. Two register

reassignment methods by integer. linear programming.are introduced in Chapter 3 and 4.

Chapter 5 is the experiment results and Chapter 6 is the conclusion and future work.

Chapter 2 Background and Related Work

In this chapter, we give an overview of the background knowledge for our design.
Previous researches that devoted to code size reduction for mixed-width ISA are also
introduced. One previous work for code size reduction by register reassignment for
mixed-width ISA processors would be presented in detail and compared with ours.

2.1 Background
Some important background knowledge will be presented in following subsections

including register reassignment, calling conventionand integer linear programming.

2.1.1 Register Reassignment Problem

Register reassignment, also .called register .renumbering, can be regarded as an
optimization phase after register allocation or as post-compilation. Register reassignment for
mixed-width ISA has been proved to be an NP-Complete problem [12]. It reassigns registers
of the given assembly code or binary code for some special purposes. The goal of register
reassignment is diversity such as optimizing for code size or power consumption and so on.
The unit of register reassignment can be a whole program, a function, or a basic block. Each
kind of units has different advantages and is useful for different optimization purposes. In our
model, the reassignment unit is a function. Since different function may have different

reassignment results, it may cause the problem of the violation of calling convention.

2.1.2 Calling Convention

Calling convention is a scheme for the way of passing parameters and receiving return
values between caller and callee. There are some important issues required to consider: (i)
where parameters and return values are placed; (ii) the order of passing parameters; (iii) how
to separate tasks between caller and callee such as setting stack pointer for function call; and
(iv) which registers can be used directly without saving by callee. Different architectures may
have different calling convention schemes and some target machines provide special
instructions to improve the efficiency of handling calling convention. Register reassignment
may lead the result of the program incorrect if not obeying the rule of the calling convention.

Further discussion will be presented in Chapter 3.

2.1.3 Integer Linear Programming

Linear programming is a mathematical method to find the optimal solution under the
given constraints. Linear programming has been used in a variety of areas such as computer
science, management science, and so on. It formulates a problem with one objective function
and one or several linear constraints. The solution of a linear programming problem must
satisfy all the constraints to get the best solution. If an additional requirement that all variables
of linear equations must be integer is added to linear programming, then it becomes integer

linear programming (ILP). Integer linear programming has been proved to be an NP-hard

problem. The canonical form of the integer linear programming is listed as follows:

(minimize f(x1, Xz, ..., Xn) = €1Xg + C2Xp + - + Xy +

n

% subject to Z ajx; <bforj=1,..,m
i=1

k x; = 0fori=1,..,n (x;is an integer)

Another variation of integer linear programming is binary integer linear programming
(BILP). BILP is an integer programming problem that contains only binary variables and is
also called 0-1 integer linear programming. In this thesis, we will use BILP to model our
register reassignment problems.

2.2 Related Work

Most of the previous researches-to reduce code size for mixed-width ISA with mode
switch instructions have proposed different kinds of ‘compilation methods [13-16]. These
mechanisms require finding contiguous convertible block for translating to short instructions
and insert mode switch instructions between those blocks. It may cause the two following
situations: the code size reduction rate cannot be deeply exploited and the mode switch
instruction may lead performance losses. Our approach adopts the mixed-width ISA with
special instruction encoding that allows the freeform of mixing short and long format
instructions. Hence, the above problems are not needed to address in our method.

For the mixed-width ISA with special instruction encoding, Tobias J. K. Edler von Koch
et al. proposed a feedback-guided approach that cooperated instruction selection and register

allocation methodology to exploit the short instructions of original program [17]. Their

method based on three steps; the first step is IR annotation phase that maps mid-level

intermediate representation (MIR) to low-level intermediate representation (LIR) by giving

preference to short format instructions and annotates extra spill or move code to mid-level

intermediate representation. The next step maps virtual registers to physical registers and then

decides the LIRs inserted for reducing register pressure. The third step is feedback-guided

code generation that deactivates the LIRs produced for reducing register pressure and

reproduces the LIRs with long format preference. Subsequently register allocation is

performed, and finally, native code interleaving with long and short format instructions are

emitted. Although this is a very.creative method-and improved the performance, this method

still suffers from high register-pressure such that the code size reduction rate is not ideal.

Our method reduces code size by register reassignment. Register reassignment for

mixed-width ISA has been proved as an NP-Complete problem [12]. One previous research of

code size reduction by register reassignment has proposed heuristic methods to solve the

problem [18]. In our method, we put efforts on using ILP to model the register reassignment

problem of mixed-width ISA to find the optimal solution of code size reduction under the

given constraints. We will present this related work in the next subsection.

2.2.1 Ku’s Method

In Ku’s heuristic methods [18], there are three main phases:

1. Register selection

10

2. Mapping and reassignment assessment

3. Instruction insertion

For the register selection phase, they proposed two register selection methods which

interchange the selected registers with small set registers. Note that the small set register is a

set of registers which S-format instructions can be indexed. Those methods are:

1. Selection registers by the priority that based on registers’ usage counts

2. Selection registers by the priority that based on registers’ usage counts and neighbor

graph.

The first method is very simple. It counts.the number of times for each register used in

the input function. The usage-count of each register is regarded as the priority of the register

for mapping into the small set registers which S-format instruction can be indexed.

Obviously, the first method is too trivial. To increase the opportunity of the used registers

appeared in the same instruction, the second method build a new data structure called

neighbor graph for manipulating the priority of the candidate registers. The neighbor graph is

a special data structure with vertex, edge, weight and priority.

A vertex of a neighbor graph stands for a register number used in the input function and

an edge between two vertices represents that these two registers have appeared in same

instructions. The weight on an edge is the appearance counts of the two registers. The priority

of a vertex is initialized by the usage count of a register. Once a register is selected to map

11

into small register set, the priorities of other vertices which connected with the selected
register will be updated by adding the weight of the edge of the selected register to increase
the opportunity of related registers. Figure 2-2 is an example of the neighbor graph. Assume
that there are two instructions and four used registers, $2, $3, $14, and $16 are used. The
initial priorities of these four registers are 12, 6, 4, and 3. For the first instruction, we can find
$2, $3, and $14 appeared. Therefore, these three registers form three vertices and there are
three edges connected with each other. Moreover, the weight of these three edges is 1. For the
next instruction, $2, $3, and $16 appear in the same instruction. Since $16 didn’t appear in
previous instruction, we add a new vertex for.it and-insert two edges between $2, $16 and $3,
$16. $2 and $3 have appeared in previous instruction, thus, we only need to increment the
weight of edge between $2 and $3 by one.

The next phase is mapping and reassignment assessment. In this phase, the selected
registers will be mapped to small register set. The mapping rules are: if the selected registers
belong into small set registers, it would be mapped to itself without changing. Otherwise,
these registers are mapped from highest to lowest priority through interchanging selected
registers with the rest of small set registers. After mapping completion, it started out analyzing
the mapping result of a function to determine whether it is valuable to reserve. In
consideration of calling convention, it may need to insert some code before and after each

function call. Therefore, it may make the code size increased. In Ku’s method, the mapping

12

result is accepted only if the code size reduction was larger than the extra overheads.

The final phase is designed for dealing with the calling convention problem. As we know,
register reassignment may violate the calling convention, so it has to insert some code to keep
the correctness of the program. For the different categories of registers such as caller-saved or

callee-saved, each category has different code insertion rules.

addu $2, $3, $14
addu $3, $2, %16

Figure 2-2 Example of neighbor graph

2.2.2 Discussion of Ku’s Method

Ku’s method is very simple and efficient. However, for our purpose, it may be too rough
to solve the problem. We discuss the drawbacks of his method in this subsection.

The first drawback of Ku’s method is that it didn’t deeply consider the reassignment
overheads. Although the registers are selected according the usage count and neighbor-graph, ,

his method did not consider the calling convention overheads while selecting registers.

13

Another important issue is that it interchanged the registers of mapping pairs. This is an easy

way to deal with the selected registers that map to the small set registers. However, as we

have mentioned in previously, different reassignment combinations may have different

reassignment costs under the calling convention. Therefore, interchanging the mapping pair

may not cover all possible cases. The other is that this method does not analyze the liveness of

the registers such that the calling convention overheads cannot be computed accurately. Brief

comparisons between Ku’s method and our method are listed in table 2-1.

Table 2-1 Proposed design v.s: Ku’s method

Ku’s Method Our method
Method Heuristic Optimal
Time Complexity Low High
Reassignment restriction Strict No Restrict
Reassignment Overhead Estimation | Conservative Accurate

14

Chapter 3 ILP Formulation for Register
Reassignment Method I

In this chapter, we will present how to model register reassignment problem as an integer
linear programming. Firstly, an overview of the proposed design and the assumptions of our
model are given. After the notations are defined, we will discuss all the details of our model.
3.1 Overview

Figure 3-1 shows the proposed .design. of our register reassignment method. After
compiler front-end processing, it produces intermediate representation, (IR) and then, enters
into back-end processing. The first stage of back-end processing is instruction selection,
which maps IR to target instructions. The second stage-is instruction scheduling which takes
responsibility for arranging instructions order to reducing stalling or hazard. Then register
allocation maps virtual registers to architecture registers. We add a register reassignment
phase after register allocation. In this phase, we analyze each instruction of a function and
construct the control flow graph in order to computing the liveness information of the
physical registers. Besides the liveness information, we compute the reassignment overheads
here. Then, we apply our ILP model for register reassignment is applied to produce the
constraints and objective function. After an integer program is produced, a third party ILP

solver library is used to solve the problem. Finally, we retrieve the results of register

15

reassignment from the solver and the instruction formatting is called to determine the correct
format for producing the assembly code. We will present the details of the ILP model in the

following sections.

Instruction Selection
(Mapping IR to Instructions)

Instruction Scheduling
(Schedule for Optimization)

v

Register Allocation
(Mappingvirtual reg toarch.reg)

v

Register Reassighment

(Collect Necessary Info.)
(Build & Solve ILP-Model)

v
Instruction Formatting

(Determine INS Format)

| Assembly Code

Figure 3-1 Proposed flow chart of our register reassignment method

3.2 Description of Register Reassignment

In this subsection, we will introduce the assumptions, input and output of our ILP
method 1. We assume that our target architecture has only two kinds of instruction widths, one
long instruction and one short instruction formats. Input of our model is the instructions of a
function. The basic register reassignment unit of our method is a function. All the instructions

of a function, except those with certain long or short format by arbitrary register assignment,

16

are analyzed. To simplify the problem, we also make an assumption in our first method that
each register can only be reassigned to only one register after reassignment. After solving the
problem, the produced reassigned register numbers will be used to rewrite the corresponding
instructions.
3.3 Notations

The necessary definitions used in our model will be introduced in this section and are

classified into ISA features, function features and reassignment matrix.

3.3.1 ISA Features

ISA features related to our madel are (i) the target register file, (ii) ISA format, (iii)

calling convention, and (iv) classifications of instructions.

Two sets and one function defined for-target register file are described as follows:

- RegisterSeta: Set of all the physical registers except special purpose registers in the target
architecture.

- RegisterSets: the set of all the physical registers which can be indexed by S-format
instructions.

- isSmallReg(Reg), Reg € RegisterSeta: a boolean function which represents whether the
given register will be reassigned to RegisterSets.

The following variables are related to ISA format.

- InstSizeong: the number of bytes of a long instruction.

17

- InstSizeshort: the number of bytes of a short instruction.

- SavedSize: the number of saved bytes when a long instruction is translated to a short

instruction.

The following sets are related to the calling convention.

- CalleeSavedRegs: the set of the physical registers saved by callee.

- CallerSavedRegs: the set of the physical registers saved by caller.

- TempRegs: the set of physical registers which are used for storing temporary value.

- ArgRegs: the set of physical registers which are used for passing arguments.

- RetRegs: the set of physical registers which. are used for passing return values.

The following sets defined for the classification of input instructions.

- L_INS: the set of certain L-format instructions. An. instruction which has no equivalent

short format instruction or has oversized immediate value for the equivalent short format

instruction belongs to this category.

- S_INS: the set of certain S-format instructions. An instruction which has an equivalent short

format instruction by arbitrary register assignment belongs to this set.

-« U_INS: the set of instructions each of which may be either L-format or S-format according

to the register assignment. This kind of instructions is the input of our register

reassignment method.

18

3.3.2 Function Features

In this subsection, we define the variables or sets to represent function features. Those

are (i) register usage of a function and (ii) register number used by each instruction of the

function.

- RegUsed: the set of registers used in the function.

- RegNotUsed: set of registers not used in the function.

- RegOpndCount(Inst), Inst € U_INS: a function which returns the number of register
operands of an uncertain format instruction Inst.

- Inst, Inste U_INS: instruction variable of each U_INS. Inst = 1 when Inst can be converted
to S-format instruction after reassignment.

- InstTable(Inst, k), Inst € U_INS; 1< k < RegOpndCount(Inst): a function that returns the
kth register number used by Inst. Figure 3.2 shows the structure of InstTable. For example,

if we use InstTable(Inst1, 1), this function will return Reg4 as the output.

Define Use Use
Inst 0 Reg2 Reg3
Inst 1 Reg4d Reg6 Reg7
Inst 2 Regl6 Reg5 Reg8

Figure 3-2 Structure of InstTable

19

3.3.3 Reassignment Matrix

To easily define the constraints for our model, we first introduce a special matrix called
reassignment matrix RM. Figure 3.3 shows the structure of an RM. For each row of RM, Ry;,
1<i<m, stands for the register number before register reassignment; for each column of RM,
R4, 1 <j < n, stands for the register number after register reassignment. Each element in RM
Is denoted as X;;. The X;; is define as following:

Xi j: 1,] € RegisterSeta: each element of RM, X; ; = 1 if register i reassigned to register j

RM Ry . Ry, .. R,
Rb1

Rp;

Rbm

Figure 3-3 Reassignment Matrix

3.4 Formulation

After defining the necessary notations used in our ILP model, we present the model for
register reassignment problem in this section. We first show the objective function and then

introduce the constraints of register reassignment.

3.4.1 Objective Function

If all the register operands of an L-format instruction belong to small set registers, it can
be represented by S-format instruction and thus the code size is reduced. However,

20

reassigning registers may also make program incorrect. Since the basic reassignment unit of
our model is a function, it means that different functions may have different reassignment
results. In other words, the results may violate the calling convention such that the program is
incorrect. Therefore, we may need to insert extra code to make our program correct. However,
code insertion counteracts the benefits of the register reassignment, i.e., it is a trade-off
between the both. Hence, the objective function of our model is expressed as shown in Eq.
(1):

Maximize CSR (D

where CSR = CRgy, ot — Reassignmentyerheads
CRshort represents code size reduction and Reassignmentgyereads ShOWS the extra code insertion

for the calling convention.

A. CRshort

The formulation of CRgpor is listed as following:

RegOpndCount(Inst)
CRghort = z 1_[isSmallReg(InstTable(Inst, k)) | x SavedSize
InsteU_INS k=1

The above is a nonlinear equation when the register operands of an instruction are larger

and equal than two. For this kind of nonlinear boolean function, we can use linearization

method to deal with it through replacing the nonlinear part of the function by new variables

and adding new constraints to linearize this objective function [19]. The modified objective

function after linearization is listed in the following.

21

CRshort = z Inst X SavedSize
InsteU_INS

The added constraints are listed as follows:

Inst — isSmallReg(InstTable(Inst, k)) <0

RegOpndCount(Inst)

Z isSmallReg(InstTable(Inst, k)) — Inst < RegOpndCount(Inst) — 1
k=1

B. Reassignment Overheads

Register reassignment may violate the rule of calling convention since each function may
have different reassignment results. Therefore, we may need to insert extra code to keep the
correctness of the program. In our -model; possible register reassignment overheads of each
function can be computed in-advance. To deal with thecalling convention, we classify the
general purpose registers into two.categories according to whether the registers which will be
preserved and not preserved across function call. These two categories are callee-saved
registers and caller-saved registers. In addition, caller-saved registers can further be classified
into temporary registers, argument registers and return value registers. Different solution of
register reassignment would introduce different overheads. To explain the case of
reassignment overheads analysis, a conceptual basic function layout after compiler code
generation like Figure 3-4 is used. After compiler completing register allocation, the virtual
registers will be mapped to the physical registers. Compiler will insert prolog code and epilog

code to preserve and restore the callee-saved register used in current function, respectively.

22

Moreover, if the content of caller-saved registers would be used after a function call in current

function, compiler will insert preserved code before the function call and retrieved code after

function call. In a RISC processor, the calling convention define the argument registers or

return value registers to pass parameters or receive the return values. For analyzing the

reassignment overheads, those are important and affect the reassignment overheads

significantly.

function

prolog code

PreserveCallerSR

call
RestoreCallerSR

epilog code
ret

Figure 3-4 Function layouts after code generation

To compute reassignment overheads, we need to know the type of registers before and

after reassignment, the function prototype and the liveness of each used register. In assembly

code, function prototype information is very hard to retrieve or analyze. In this thesis, we

implement our design in the LLVM compiler [22] to retrieve the necessary information such

as function prototype. The other important information we need to know is live range of each

used physical registers. To achieve this goal, we construct the control flow graph to compute

23

the live-in, live-out, define and use information of each instruction of the function to calculate
to calculate liveness of each used register.
The variables used to check the register type before and after reassignment are defined as

follows:

- isCalleeToCallee(Ryi,R4j), Rui, Rsje RegisterSeta: a boolean function which returns whether
a callee-saved register is reassigned to a callee-saved register.

- isCalleeToCaller(Rpi,R4j), Rui, Rsyje RegisterSeta: a boolean function returns whether a
callee-saved register is reassigned to a caller-saved register.

- isTempToCallee(Rui,R4), Ruis Raje RegisterSeta: @ boolean function returns whether a
temporary register is reassigned to a callee-saved register.

- isTempToCaller(Rui,R4j), Rois Raje RegisterSeta: a boolean function returns whether a
temporary register is reassigned to a‘caller-saved register.

- isArgToCallee(Ryi,Raj), Rui, Rsje RegisterSeta: a boolean function returns whether an
argument register is reassigned to a callee-saved register.
iIsArgToCaller(Rpi,R4), Rbi, Raje RegisterSeta: a boolean function returns whether an
argument register is reassigned to a caller-saved register.

- isRetToCallee(Ryi,R4), Rui, Rayje RegisterSeta: a boolean function returns whether a return

value register is reassigned to a callee-saved register.

24

- isRetToCaller(Ryi,Rzj), Roi, Raje RegisterSeta: a boolean function returns whether a return
value register is reassigned to a caller-saved register.
The following definitions are the overheads for the reassignment of different types of
registers:
- CostofCalleetoCaller: overheads of reassignment callee-saved to caller-saved registers.
- CostofCalleetoCallee: overheads of reassignment callee-saved to callee-saved registers.
- CostofTemptoCallee: overheads of reassignment temporary to callee-saved registers.
- CostofTemptoCaller: overheads of reassignment temporary to caller-saved registers.
- CostofArgtoCallee: overheads of reassignment-argument to callee-saved registers.
- CostofArgtoCaller: overheads of reassignment argument to callee-saved registers.
- CostofRettoCallee: overheads of reassignment return value to callee-saved registers.
- CostofRettoCaller: overheads of reassignment return value to caller-saved registers.
Now we start out presenting the reassignment overheads computation. We will discuss
each reassignment case by case.
Case 1: Reassignment of a callee-saved register.
For reassigning a callee-saved register to a callee-saved registers, we may modify the
stack offset only since the callee-saved register has been preserved at the prolog and restored

at epilog, respectively. The modification of code is shown in Figure 3-5.

25

.function

Modify the stack offset of

PreserveCalleeSR : prolog code
PreserveCallerSR,
call
RestoreCallerSR,
Madify the stack offset of
RestoreCalleeSR, . epilog code
ret

Figure 3-5 An example of reassignment a callee-saved register to a callee-saved register

For reassigning a callee-saved register to a caller-saved register, we need to remove the

code for preserving and restoring callee-saved register at prologue and epilogue. Also, for

each function call in the current function, if the live ranges of original callee-saved registers

cross the function call, the preserved and restored code of the register before and after the

function call should be inserted. The maodification of code is shown in Figure 3-6.

.function ##,J
PreserveCalleeSR, .

Remove preserved code

Insert preserved code

PreserveCallerSR, | —

call

Insert retrieved code

RestoreCallerSR, | __|

Remove restored code

[

RestoreCalleeSR, —

ret

Figure 3-6 An example of reassignment a callee-saved register to a caller-saved register

26

Case 2: reassignment of a temporary register.

For reassigning a temporary register to a callee-saved register, it needs to insert code at
prologue and epilogue for preserving a callee-saved register. If a temporary register
spill/reload the value before/after each function call, we need to remove the code. Figure 3-7

shows an example of a temporary register reassigned to callee-saved registers.

function
PreserveCalleeSR, —-.__&HJ Insert prolog code
Remove preserved code
PreserveCallerSR, — (if needed)
call
RestoreCaIIerSRs |~ Remove restored code
(if needed)
RestoreCalleeSR, __,*4 Insert epilog code
ret

Figure 3-7 An example of reassignment a-temporary register to a callee-saved register

For reassigning a temporary register to a caller-saved register, if a temporary register has
been preserved and retrieved before/after each function call, only the stack offset need to be
modified and no insertion of code is required. Figure 3-8 shows the example of reassignment

temporary registers to caller-saved registers.

27

function

PreserveCalleeSR,

A Modify the stack offset
(if needed)

PreserveCallerSR, — .

call

Modify the stack offset

RestoreCallerSR, —— (if needed)

RestoreCalleeSR;

ret

Figure 3-8 An example of reassignment a temporary register to a caller-saved register

Case 3: reassignment of an argument.register

For reassigning an argument register to a callee-saved register, we need to insert code at

prologue and epilogue for preserving and restoring the content of the callee-saved register and

we also need to insert an instruction.to move the argument of the current function to the

reassigned register. If the argument register has been preserved and retrieved before and after

each function call, it should be removed. For each function call, it also needs to check whether

the argument register has been used for passing parameter to the called site. If it is used, a

move instruction has to be inserted to move the value to the argument register. Figure 3-9

shows an example of reassignment an argument register to a callee-saved register.

28

function) Insert prolog code
_____._--'"'-1

-‘é
Preseweca"eeSRS |_— Insert a mov instruction

| (if needed)

__— Remove preserved code

| (if needed)
call ? Insert a mov instruction
if ded
RestoreCallerSR, (if needed)

~—— |
Remove preserved code
(if needed)

RestoreCalleeSR, —{ﬁ

PreserveCallerSR,

[

/

Insert epilog code

ret

Figure 3-9 An example of reassignment an argument register to a callee-saved register

For reassigning an argument register to a caller-saved register, we have to insert move

instructions for an argument passed ‘into the current function and parameter passed to its

function call. If the caller-saved register spills/reloads the value before/after function call, the

stack offset should modified.. Figure 3-10 shows an example of the reassignment of an

argument register to a caller-saved register.

function

Insert mov instruction

PreserveCalleeSR, (if needed)

Modify the stack offset
(if needed)

Insert mov instruction

call (if needed)

RestoreCaIIerSRs p— Modify the stack offset

(if needed)

PreserveCallerSR, —-'-’—-—'2‘]
]
I
]

RestoreCalleeSR,

ret

Figure 3-10 An example of reassignment an argument register to a caller-saved register

Case 4: reassignment of a return value register

29

For reassigning a return value registers to a callee-saved register, the code insert is

similar to that of an argument register except the place of code insertion. If the function has to

return a value, an instruction needs to be inserted to move the return value from the reassigned

register to the return value register. Another case is that for each function call in the function,

if the called function has return value, it has to move the return value from the return value

register to the reassigned register. Figure 3-11 shows the example of the reassignment of a

return value register to a callee-saved register.

For reassigning a return value register to a caller-saved register, the code insertion policy

is the same as we depicted in the previous paragraph. There is one thing different: if the return

function _J
PreserveCaIIeeSRs — Insert prolog code
PreserveCallerSR,
call _._.--——""""J Insert a mov instruction
RestoreCallerSR, (if needed)
J Insert epilog code
RestoreCalleeSR, ﬁ
Insert a mov instruction
ret | (if needed)

Figure 3-11 An example of reassignment a return value register to a callee-saved register

value register preserved/retrieved before/after each function call, it has to modify the stack

offset to make sure that the value is spilled to the correct stack place. Figure 3-12 shows an

30

example of reassignment a return value register to a caller-saved register. The summary of the

reassignment overheads of all possible cases is shown in Table 3-1.

function
— [I
PreserveCalleeSR, |——— '"ertprologcode
Remove preserved code
4 (if needed)
PreserveCallerSR,
Insert a mov instruction
call — (if needed)
RestoreCa"erSRs Remove preserved code
““\l (if needed)
— Insert epilog code
RestoreCalleeSR,
Insert a mov instruction
ret | (if needed)

Figure 3-12 An example of reassignment a return value register to a caller-saved register

31

Table 3-1 Summary of reassignment overheads

After RRA

Before RRA

Callee-saved Register

Caller-saved Register

Callee-saved Register

1.May modify stack offset

1.Remove prologue/epilogue
2.Insert preserved Caller

3.Insert retrieved Caller

Temporary Register

1.May insert prologue/epilogue

2.May remove preserved/retrieved code

1.May modify stack offset

Argument Register

1.May insert prologue/epilogue

2.May remove preserved/retrieved code

3.May insert move instruction before
each function call

4.May insert move.instruction after

prolog

1.Modify stack offset

2.May insert move instruction
before each function call

3.May insert move instruction

after prolog

Return Value Register

1.Insert prologue/epilogue

2.May remove preserved/retrieved code

3:May insert move instruction after
each function call

4.May.insert move instruction before

function return

1.Modify stack offset

2.May insert move instruction
after each function call

3.May insert move instruction

before function return

32

According to the cases analysis described above, the equationof the reassignment

overheads is expressed as follows: Note that each overhead is all computed in advanced.

Reassigmentyehead =
RpjERegUsed RyjERegisterSetp

(RM[Rbi, Raj] X isCalleeToCallee(Rbi, Raj) X CostofCalleeToCallee +
RM[Rbi, Ra]-] X isCalleeToCaller(Rbi, Raj) X CostofCalleeToCaller +
RM[Rbi, Raj] X isTempToCallee(Rbi, Raj) X CostofTempToCallee +
RM[Rbi, Raj] X isTempToCaller(Rbi, Raj) X CostofTempToCaller +
RM[Rbi, Raj] X isArgToCallee(Rbi, Raj) X CostofArgToCallee +
RM[Rbi, Raj] X isArgToCaller(Rbi, Ra]-) X CostofArgToCaller +
RM[Rbi, Raj] X isRetToCaller(Rbi, Ra]-) X CostofRetToCaller +

RM[Rbi, Raj] X isRetToCallee(Rbi, Ra]-) X CostofRetToCallee)

3.4.2 Constraints

We describe the constraints for the method 1 in this subsection.

1. Registers usage constraints:

A Rbi S RegUsed, Z RM[Rbi, Ra]] =1 (2)

Raj€RegsiterSetp
If a register Ry is used before reassignment, it should be reassigned to one and only one
register R, after reassignment.

A Rbi S RegNoUsed, Z RM[Rbi, Ra]] =0 (3)
RajERegsiterSetp

If a register Rpi is not used before reassignment, it should not occupy the register after

33

reassignment but it can be reassigned by other registers.

2. Register reassignment constraints

V R,j € RegisterSety, Z RM[Rp;, Ryl =1 4)

RpjERegsiterSety

For each register R;; after reassignment, we restrict that it is reassigned by one register.

To clearly illustrate the constraints, the following example demonstrates how to use the
reassignment matrix to build the constraints. Assume that a fictitious architecture only has
four registers and two kinds of instruction widths, long and short formats. The long format
instruction can access all the registers and the short format can only access the first three
registers. The RegisterSeta = {$rl, $r2, $r3, $r4} and Registersets = {$rl, $r2, $r3}. Give a
function that uses register $r1;$r2, $r4. In this case, RegUse = {$r1, $r2, $r4} and RegNotUse

= {$r3}. The constraints corresponding to reassignment matrix are shown in Figure 3-13.

Ra1 Ra2 Ras Ras
Ry, S RM[R, R, =1
Ry, S RM[R;, R,] =1
Rys S RM[R,;R,] =0
Repa SRM[R,, Rl =1

SRM[RyRa1] €1 ZRM[RyRa] €1 ZRM[RyRy3] €1 I RM[RyiRa] <1

Figure 3-13 An example of the reassignment matrix

3. Instruction operands constraints

As mentioned in 3.4.1, these two constraints are added to linearize the objective function.

34

For each Inst € U_INS,

Inst — isSmallReg(InstTable(Inst, k)) < 0,1 < k < RegOpndCount(Inst) (5)

RegOpndCount(Inst)

z isSmallReg(Inst Table(Inst, k)) — Inst < RegOpndCount(Inst) — 1 (6)
k=1

4. Reassigning to small set register constraints
This constrains check whether the register after reassignment belongs to the small set
register.

vV, Reg € RegUsed

isSmallReg(Reg) — Z RM[Reg,R ;] = 0 (7

Raj€RegsiterSets

3.4.3 Summary

Finally, we give a brief summary of our objective function and constraints
Objective function
Maximize CSR

CSR = CRgport — Reassignmentgyerheads

CR¢hort = Z Inst X SavedSize
InsteU_INS
Reassigmentyenead =

Rpj€RegUsed Ryj€RegisterSety

(RM[Rbi, Raj] X isCalleeToCallee(Rbi, Raj) X CostofCalleeToCallee +

RM[Rbi, Raj] X isCalleeToCaller(Rbi, Raj) X CostofCalleeToCaller +

35

RM[Rbi, Ra]-] X isTempToCallee(Rbi, Raj) X CostofTempToCallee +

RM[Rbi, Ra]-] X isTempToCaller(Rbi, Raj) X CostofTempToCaller +

RM[Rbi, Ra]-] X isArgToCallee(Rbi, Raj) X CostofArgToCallee +

RM[Rbi, Ra]-] X isArgToCaller(Rbi, Raj) X CostofArgToCaller +

RM[Rbi, Ra]-] X isRetToCaller(Rbi, Raj) X CostofRetToCaller +

RM[Rbi, Raj] X isRetToCallee(Rbi, Raj) X CostofRetToCallee)
Constraints

1. Register usage constraints:

v Rbi € RegUsed, Z RM[Rbi, Ra]] =1
RajERegsiterSetp
V Rp; € RegNoUsed, Z RM{Rp;, R3] = 0

Raj€RegsiterSeta

2. Register reassignment constraints:

V Rp;i € RegisterSet,, Z RM[Rp;, Ry < 1

Raj€RegsiterSety

3. Instruction operands constraints:

Inst — isSmallReg(InstTable(Inst, k)) <0

RegOpndCount(Inst)

Z isSmallReg(InstTable(Inst, k)) — Inst < RegOpndCount(Inst) — 1
k=1

4. Reassigning to small set register constraints:

V Reg € RegUsed, isSmallReg(Reg) — Z RM[Reg, R,] = 0

Raj€RegsiterSets

36

3.5 Example

We give an example to illustrate our register reassignment method by ILP in this section.
We input a simple MIPS assembly code in Figure 3-14 and we will use this example to
explain how to build ILP model for register reassignment. Note that the funcA takes one

parameter as input.

1 1w $4 4(%sp)
2 lw $8 8($sp)
3 add $9 $4 $8
4 sub $10 $9 $4
5 addi $4 $10 2
6 Iw.$25 " %got(funcA)($gp)
7 ojalr $25
8. 7 lw—$11 -4($sp)
9 andi $12 $11 5
10 addi. $13° $12
11 o = $2 -$13 -1
12 jr-. $31
Figure 3-14 An MIPS 32 assembly code

Here we use MIPS as our target architecture. The sets related to MIPS architecture are

defined as follows:

RegisterSeta = {$1, $2, ..., $25}

RegisterSets = {$1, $2, ..., $7}

CalleeSavedRegs = {$16, $17, ..., $23}

CallerSavedRegs = {$2, $3, ..., $15, $24, $25}

ArgRegs = {$4, $5, $6, $7}

37

RetRegs = {$2, $3}

TempRegs = {$8, $9, ..., $15, $24, $25}

InstSizejong = 4 bytes

InstSizesnort = 2 bytes

SavedSize = 2 bytes
We analyze the input assembly code and define the sets related to the function features listed
as follows:

U_INS ={lInstl, Inst2, Inst3, Inst4, Inst5, Inst8, Inst9, Inst10, Inst1l}

S_INS = {Inst7, Inst12}

L_INS= {Inst6}

InstSizejong = 4 bytes

InstSizesnort = 2 bytes

Savedsiz = 2 bytes

RegUsed = {$2, $4, $8, $9, $10, $11, $12, $13, $25}

RegNoUsed = {$1, $3, $5, $6, $r7, $14, $15, $16, $17,..., $24}

Reg, Reg € RegsisterSeta: register variable

Xi j, 1,] € RegsisterSeta: Xi j=1 if register i is reassigned to register j

38

InstTable of U_INS is defined in Table 3-3.

Table 3-3 The contents of InstTable

Inst # Opcode RegOpnd Def | RegOpnd Use 1 | RegOpnd Use 2
Instl Iw $4

Inst2 Iw $8

Inst3 add $9 $4 $8

Inst4 sub $10 $9 $4

Inst5 addi $4 $10

Inst8 Iw $11

Inst9 andi $12 $11

Inst10 addi $13 $12

Inst11 ori $2 $13

The reassignment overheads-of used registers are listed in Table 3-4 and are all constants.

$4 and $2 are used for passing parameter and receiving return value according to MIPS

calling convention. If $4 is reassigned, a move instruction should be inserted before function

call. Therefore, it leads overheads. If $2 is reassigned, a move instruction should be inserted

before function return. Note that a register reassigned to itself has no overheads.

39

Table 3-4 Example of reassignment overheads

Register Reassign to' Reassign to.
Caller-saved registers Callee-saved registers
$2 2 bytes 10 bytes
$4 2 bytes 10 bytes
$8 0 bytes 8 bytes
$9 0 bytes 8 bytes
$10 0 bytes 8 bytes
$11 0 bytes 8 bytes
$12 0 bytes 8 bytes
$13 0 bytes 8 bytes
$25 0 bytes 8 bytes

3.5.1 Objective Function

Maximize2Instl+2+Inst2+2xInst3+2*Inst4+2*Inst5+2+xInst8+2+Inst9+2*Inst10+
2+Inst11 - 2% (Xo_1+X2 3+ X2 a4+ Xo_i5+X2 244X2 25) — 10% (X 16+X5 17+ +X3 23)
- 2%(X4_1+Xa 2+ Xa 3+ Xa s+ +Xa 159Xa 24+X4 25) — 10%(Xy 16+X4 17+ +X4 23) — 8%
(Xg_161Xg 17+ +Xg 23) =8* (Xg_16+Xg 174+ +Xg 23) =8* (X109 16+X10_ 17+ +X10 23) — 8*
(X112 16+Xa1 17+ +X11 23) = 8 * (X12_16 + X1 17+ +X12 23) = 8 * (X12_16 + X1p 174+

X2 23) =8 * (X13.16 + X1z 17++-++X13 23) = 8 * (X25_16 + Xo5_17+++*+X05 23)

3.5.2 Register Usage Constraints
Xo 1+ X5 2+ X5 3+ Xy 4+ Xo 5+ +Xp 4+ Xy 5 =1
Xy 1+Xq o+ Xg 3+Xg 4+ Xg 5t +Xg 24+ Xs 25 =1
Xg 1+ Xg 2+ Xg 3+ Xg 4+ Xg 5+ +Xg 24+ Xg 5 =1

40

Xg 1+Xg 2+ Xg 3+Xg 4+Xg 5++++Xg 24+ Xg 25 =1

X1o 1+X10 2+ X10 3+ X109 4+ X10 5+ +X10 24+ X190 25 =1
Xu1 1+ X1 2+ Xqg 3+ Xqg 4+ Xqg 5+ +Xqg 24+ Xg1 25=1
Xz 1+ X1 2+ X12 3+ X120 4+ X2 5+ + X1 24+ X120 5 =1
X1z 1+X13 0+ X13 3+ X3 4+ X13 5+ +X13 24+ X3 5 =1

Xos 1+ X5 21 Xo5 3+ Xo5 4+ Xo5 54+ X35 24+ X5 25 =1

3.5.3 Register Reassignment Constraints

Xy 1+Xp 1+ X3 1+ + X4 1+ X054 <1
Xy 2+ Xp 2+ X3 o+ + X4 01 X35 271
X1 3+Xp 3+ X3 3t + X831 Xo5 351

X1 a+Xp 4+ Xz ot +Xs 4+ X545 1

X1 24+ Xz 24+ X5 g4+ +Xo4 24+ X5 24 <1

Xy 25+ X35 25+ X3 o5+ +Xo4 25+ X5 5 <1

3.5.4 Instruction Operands Constraints

Instl - Reg4 <0
Reg4 - Inst1<0
Inst2 - Reg8<0

41

Reg8 - Inst2 <0

Inst3 - Reg9 <0

Inst3- Reg4 <0

Inst3- Reg8<0

Reg9 + Reg4 + Reg8 - Inst3 < 2

Inst4 - Reg10<0

Inst4 - Reg9 <0

Inst4 - Reg4 <0

Reg10+Reg9 + Reg4 - Inst4 < 2

Inst5 - Reg4 <0

Inst5 - Reg10<0

Reg4 + Reg10 - Inst5<1

Inst8 - Reg11<0

Reg8 - Inst8 < 0

Inst9 - Reg12<0

Inst9 - Reg11<0

Regl12 + Regll -Inst9<1

Inst10 - Reg13<0

Inst10 - Reg12<0

42

Regl3 + Regl2 - Inst10<1
Inst11 - Reg2 <0
Inst11 - Reg13<0

Reg2 + Regl13 - Inst11 <2

3.5.5 Reassigning to Small Set Register Constraints

Regl - X1.1- X1 2- X1.3- X1.4- X1.5- X1.6- X1.7=0
Reg2 - X2.1- X2 2- X2 3—- X2.4- X25- X2 6- X2.7=0
Reg3 - X3.1- X3 2— X3 3- X3.4- X35-X36-X37=0

Reg4 - X4 1- X4 2—- X4 3— X4.4— X4 5= Xa6~X47=0

Reg24 - X24 1— X24 2— X24 3— X24 4~ X24 5= X24 6— X247=10

Reg25 - X25_1- X25 2— X25 3— X25 4— X25 5— X25 6— X257 =0

We input this example to ILP solver, the final result is that we can save 14 bytes after
register reassignment. Except $2, all the other registers belong to RegisterSets after register

reassignment. The final result is listed as follows:
« X22=1,X44=1,Xs7=1,X06=1, X10.10=1, X115 =1, X12.3=1, X13.1=1,X25 25=1
Except instruction 4 and 5, the input instructions all become S-format instructions after

register reassignment. Figure 3-15 shows the final result.

43

1 1w $4 4(%sp)
2 lw $7 8($sp)
3 add $6 $4 $7
4 sub $10 $6 $4
5 addi $4 $10 2
6 Iw $25 %got(funcA)($gp)
7 jalr $25
8 Iw $5 4($sp)
9 andi $3 $5 S
10 addi $1 $3
11 ori $2 91 -1
12 jr $31
Figure 3-15 Register reassignment results for example 3.5

44

Chapter 4 ILP Formulation for Register
Reassignment Method II

In this chapter, we will present an extended method which relaxes the register
reassignment constraint of the method 1 mentioned in Chapter 3. In the method 1, each
register used in a function is restricted to be reassigned to exactly one register. In this
extended method, if the live ranges of the registers do not overlap, they can be reassigned to a
same register. Therefore, the liveness information of the physical registers should be collected
for register reassignment. For computing liveness, we use the web, which is a set of uses and
definitions of physical registers in the statements of the function [20]. Each physical register
may have several webs. We apply the‘backward data-flow analysis to build the def-use chain
and merge the def-use chains with same use to form the webs. After building the webs, we
need to analyze the interference between the webs. Two webs are called interfered if one is
live in the definition of another. We use this rule to build the interference constraints to
prevent the interfered webs to be reassigned to the same register. In Section 4.1, we first give
the notation used in the method 2. In Section 4.2 we will present the ILP formulation for this
method. Finally, we will use an example to illustrate this method.

4.1 Notation

Before we present the ILP formulation for method 2, we first define the notation which

45

will be used in this model.

4.1.1 ISA Features

The following sets, variables and functions are the same with the Subsection 3.3.1. We
listed it as follows:
- RegisterSeta: Set of all the physical registers except special purpose registers in the target
architecture.

- RegisterSets: the set of all the physical registers which can be indexed by S-format

instructions.

- isSmallReg(W), W € Webs: a boolean variable function which represent whether the given
web will be reassigned to RegisterSets:

The following variables are related to-ISA format.

- InstSizejong: the number of bytes of a long instruction.

- InstSizeshort: the number of bytes of a short instruction.

- SavedSize: the number of saved bytes when a long instruction is translated to a short
instruction.

The following sets are related to the calling convention.

- CalleeSavedRegs: the set of the physical registers saved by callee.

- CallerSavedRegs: the set of the physical registers saved by caller.

- TempRegs: the set of physical registers which are used for storing temporary value.

46

- ArgRegs: the set of physical registers which are used for passing arguments.

- RetRegs: the set of physical registers which are used for passing return values.

The following sets defined for the classification of input instructions.

- L_INS: the set of certain L-format instructions. An instruction which has no equivalent
short format instruction or has oversized immediate value for the equivalent short format
instruction belongs to this category.

- S_INS: the set of certain S-format instructions. An instruction which has an equivalent short
format instruction by arbitrary register assignment belongs to this set.

- U_INS: the set of instructions.each of which. may- be either L-format or S-format according
to the register assignment. This kind of instructions is the input of our register

reassignment method.

4.1.2 Function Features

We make the definitions of three new sets for the webs and list as follows:

« Webs: the set of all webs in a function.
- WebsReg;, ieU_INS: the set of register operands of instruction i.

- WebsInterference; j, ieRegUsed, j is the set of webs of register i: the set of webs which
interfere with the web, W ;.
The following notations are the same with Subsection 3.3.2

- RegUsed: the set of registers used in the function.

47

- RegOpndCount(Inst), Inst € U_INS: a function which returns the number of register
operands of uncertain format instruction Inst.
- Inst, Inste U_INS: instruction variable of each U_INS. Inst = 1 when Inst can be converted
to S-format instruction after reassignment.
- InstTable(Inst, k), Inst € U_INS; 1< k < RegOpndCount(Inst): a function that returns the
web number of kth register number used by Inst.

For the callee-saved registers used in a function after register reassignment, we define
the variables as follows:
- CalleeUseReg, Reg e CalleeSavedRegs: variables for checking whether callee-saved
registers are used after reassignment.
- CalleeNotUseReg, Reg € CalleeSavedRegs:- variables for checking whether callee-saved

registers are not used after reassignment.

4.1.3 Reassignment Matrix

In 3.4.2, we have shown the structure of reassignment matrix (RM). Each row and

column of RM represents the register number. In Method 2, we modify this RM such that

each row of RM stands for the webs of a function. We defined RM and variables used in

Method 2 as follows:

- Xijk I € RegUsed, j e the set of webs of register i, k € RegisterSeta: each element of the

RM. X j k = 1 if the jth web of register i is reassigned to register k.

48

- Wi, i € RegisterSeta, j € the set of webs of register i: the jth web of register i before
reassignment. W, j = 1 if the jth web of register will be reassigned to the small set registers
after reassignment.

4.2 Formulation

In this section, we present the formulation of the second ILP model. First, we show the

objective function and constraints of the model.

4.2.1 Objective Function

Our objective function is to maximize the code size reduction: CSR, when all the constraints
are satisfied. CSR is comprised of two-parts: CRshori @nd Reassignmentoyerheads-

Maximize CSR 1)

CSR = CRgport — Reassignmentgyerneads —ProEpilogcaiee

1. CRsport

CRsnort IS the saved size by translating L-format instruction to S-format instruction.

CRshort = Z Inst X SavedSize
InsteU_INS

2. Reassignmentoverheads

Reassigment,yenead = Z Z Z (
ieERegUsed jeWebsReg; RegeRegisterSety

RM [Wi_j, Reg] X isCalleeToCallee(Wi_]-, Reg) X CostofCalleeToCallee +
RM [Wi_j, Reg] X isCalleeToCaller(Wi_]-, Reg) X CostofCalleeToCaller +

RM [Wi_j, Reg] X isTempToCallee(Wi_]-, Reg) X CostofTempToCallee +

49

RM [Wi_]-, Reg] X isTempToCaller(Wi_]-, Reg) X CostofTempToCaller +

RM [Wi_]-, Reg] X isArgToCallee(Wi_j, Reg) X CostofArgToCallee +

RM [Wi_]-, Reg] X isArgToCaller(Wi_]-, Reg) X CostofArgToCaller +

RM [Wi_]-, Reg] X isRetToCaller(Wi_]-, Reg) X CostofRetToCaller +

RM [Wi_]-, Reg] X isRetToCallee(Wi_]-, Reg) X CostofRetToCallee)

3. ProEpilogCalleeSR: we need to check whether callee-saved registers are used after

reassignment. There are four cases for callee-saved registers to determine the code
insertion at prolog and epilog. Table 4-1 presents the code insertion for callee-saved

registers at prologue and epilogue.

vV Reg € CalleeSavedRegs, ProEpilog..jccsr(Reg) =
CalleeUsegeg % CostofUseCalleege, +

CalleeNotUsegeg % CostofNotUseCalleegeg

Table 4-1 Instruction insertions for callee-saved registers at prologue/epilogue
after register reassignment

After
Reassignment
Used NotUsed
Before
Reassignment
] Remove
Used No Insertion

Prologue/Epilogue

Insert

NotUsed) No Insertion
Prologue/Epilogue

50

4.2.2 Constraints

In Subsection 3.4.2, we have shown the constraints for method one. For the method two,
we relax the register reassignment constraints such that each register can be reassigned more
than once. Meanwhile, we also set a new constraint for the interfered webs. The constraints
are listed as follows:

1. Webs usage constraints

For Wi j € Webs, Wi j should be reassigned to one and only one register R;

V W, ; € Webs, Z RM[W;;,R;] = 1)

RjE€RegisterSety

2. Register reassignment constraints

For each Reg € RegisterSeta, Reg can be reassigned any times by Wi ;

V Reg € RegisterSet,, Z RM[Wi_]-,Reg] =0 3)
W EWebs

3. Webs interference constraints
For W, , € WebslInterference; j, W, , and Wi j cannot reassigned to the same register
V Reg € RegisterSet, ,RM [Wa_b, Reg] + RM [Wi_]-, Reg] <1 4
4. Instruction operand constraints

For each Inst € U_INS,

Inst — isSmallReg(InstTable(Inst, k)) < 0,1 < k < RegOpndCount(Inst) (5
RegOpndCount(Inst)
Z isSmallReg(Inst Table(Inst, k)) — Inst < RegOpndCount(Inst) — 1(6)
k=1

51

5. Callee-saved registers overheads constraints: these constraints check whether each

callee-saved register has been reassigned.

Vi € RegUsed,j € Webs;, Reg € CalleeSavedRegs

CalleeUsegeg = Xjjreg = 0 @)
Xijreg |- CalleeUsegeg = 0 (8)

RegeCalleeSavedRegs
CalleeUsegeg + CalleeNotUseges = 1 9

6. Reassigning to small set register constraints

\v Wi_j S Web,
isSmallReg(Wi_]-) - Z RM[Wi_]-,RegAR] =0 (10)
RegarERegisterSetg
4.3 Example

We give an example to-illustrate our register reassignment method by ILP in this
subsection. Here we use the same example-defined in Section 3.5. Here we also use MIPS as
our target architecture; therefore, the target-dependent set would not be defined again.

The following sets are related to the input function.

U_INS = {lnstl, Inst2, Inst3, Inst4, Inst5, Inst8, Inst9, Instl10, Inst11}

S_INS = {Inst7, Inst12}

L_INS= {Inst6}

RegUsed = {$2, $4, $8, $9, $10, $11, $12, $13, $25}

RegNoUsed = {$1, $3, $5, $6, $r7, $14, $15, $16, $17,..., $24}

Webs = {W; 1, W4 1, W4 2,Ws 1, Wy 1, W1g 1, W11 1, Wiz 1, Wiz 1}

52

WebslInterference,_1 = {Wa3 1}

Webslnterferences 1 = { }

Webslinterferences » = {Wio 1}

WebslInterferenceg 1 = {W, 1}

Webslnterferenceg 1 = {W, 1, Ws 1}

WebsInterference;o 1 = {Wy 1, W4 1}

Webslnterferencens 1 = {}

Webslinterferenceiz 1 = {Wh1 1}

WebsInterference;s 1 = {W2 1}

WebsInterference,s 1 = {Wa o}

Wi j, Wi j € Webs: webs variable.

Xi j, 1 € Webs, j € RegsisterSeta: Xi j=1if Web i reassigns to register j.
CalleeUserey, Reg € CalleeSavedRegs: CalleeUsegreq =1 if Reg is used after
reassignment.

CalleeNotUsereg, Reg € CalleeSavedRegs: CalleeNotUsereg =1 if Reg is not used after

reassignment.

53

InstTable of U_INS is listed in Table 4-2.

Table 4-2 The contents of InstTable

Inst # Opcode RegOpnd Def | RegOpnd Use 1 | RegOpnd Use 2
Instl Iw $4

Inst2 Iw $8

Inst3 add $9 $4 $8

Inst4 sub $10 $9 $4

Inst5 addi $4 $10

Inst8 Iw $11

Inst9 andi $12 $11

Inst10 addi $13 $12

Inst11 ori $2 $13

Assume that the reassignment overheads of each used register are listed in Table 4-3.

C1,C2,.., and C16 are the reassignment overheads of the corresponding webs and are all

constants. Note that a web reassigned to itself has no overheads.

54

Table 4-3 Reassignment overheads of each web

Web Reassign to Reassign to
Caller-saved registers Callee-saved registers
W5 4 2 bytes 2 bytes
W, 4 0 bytes 0 bytes
W, 2 bytes 2 bytes
W5 1 0 bytes 0 bytes
Wy 1 0 bytes 0 bytes
Wig 1 0 bytes 0 bytes
Wi 1 0 bytes 0 bytes
Wi 1 0 bytes 0 bytes
Wiz 1 0 bytes 0 bytes
Wos 1 0 bytes 0 bytes

4.3.1 Objective Function

Maximize 2xInst1+2x*Inst2+2x*Inst3+2* Inst4+2% Inst5+2+Inst8+2xInst9 +2xInst10
+2xInst1l — 2% (Xo 1 1+ X5 1 g AKX 1 154X 1 244X5 1 25) — 2 % (X 1 16+X2 1 17+
+X2 1.23) — 2%(Xa 2 14 X4 2 o+. . X4 2158 Xa 2 24+Xs 2 25) — 2%(X4 2 161 X4 2 17F...
+X4 2 23) — 8 * CalleeUse s — 8 * CalleeUse 7 — 8 * CalleeUse;s — 8 * CalleeUse;9 —8 *

CalleeUseyg — 8 * CalleeUse,; — 8 * CalleeUsey, — 8 * CalleeUsess

4.3.2 Web Usage Constraints

Xo 1 14X 1 0+ Xp 1 3+ Xp 1 4+ Xo 1 5.+ X0 1 24t X5 1 25=1
Xa1atXq 1 2+ Xa 1 3+ Xa 1 a+Xg 1 5t +XKa 1 24+ Xs 1 25=1
Xa 2.1%Xq 2 2+ Xa 2 3% Xa o a+Xa 2 5.4 XKa 2 24+ Xs 5 25 =1

Xg 111 Xg 1 2+ Xg 1 3+ Xg 1 4+ Xg 1 51...7Xg 1 24t Xg 1 25 =1

55

Ko 1 1+Xg 1 2+Xg 1 3+ X9 1 4+Xg 1 5F...+Xg 1 24+ X9 1 25=1

X101 1t X10 1 2+ X10 1 3+ X101 4+ Xq0 1 5+...+ X0 1 24t X101 25 =1
X1 1 1+ Xq1 1 2+ Xqg 1 3+ Xq1 1 a+Xqg 151X 1 24+ X1 125 =1
X121 1+ X12 1 2+ X121 3+ X2 1 4+ Xqp 1 5+.. .+ X2 1 24t X121 25=1
X1z 1 1t X13 1 2+ X131 3+ Xq3 1 4+ Xq3 1 5+...+ X3 1 24t X131 25=1

Xos 1 1+ X051 2+ X051 3+ X051 4+ Xo5 1 5+...+X05 1 241 X5 1 25 =1

4.3.3 Register Reassignment Constraints

Xo 1 14Xy 1 1+ X 2 1+ Xg 1 1+ Xo a1+ Xig 1 4+ X 11+ Xeo 11+ X3 11>0
Xo 1 24Xy 1 21Xy 2 2+ Xg.1 0% Xo-1 2% Xig 1 o+ X120+ Xeo 1 2+ X3 1 2>0
Xo 1 3+ X4 1 3+ X4 2 3+ Xger 3+ Xg 1 3+ Xig 1 3t X1g 18+ X2 1 3+ X131 3>0

X2 1 4+ Xq 1 41Xy 2 4+ Xg 1 41 XKgq 4+ Xi0 1.4+ XK1 14+ Xi2 14+ Xi314>0

Xo 1 241 X4 1 24+ X4 2 24+ Xg 1 24 Xog 1 24F X101 24+ X111 24 + X121 24+ X131 24> 0

Xo 1 24+ X4 1 24Xy 2 25+ Xg 1 24 Xog 1 24% X101 24+ X111 24 + X121 24+ X131 24> 0

4.3.4 Web Interference Constraints

1. Webs interfered with W ;

Xo 11t X3 1151

Xo 12t X131 21

56

Xo 124t X131 2451

Xo 1 25t X13125<1
2. Webs interfered with W,

X421tX1011<1

Xa 2 24X 1251

X4 2 247 X101 24< 1

X4 2 251 X101 25< 1
3. Webs interfered with Ws 1

Xg11+tX4 111

Xg12tX4 1251

Xg 1247 X4 1 24< 1

Xg 1 25¥X4 1 25< 1
4. Webs interfered with Wy 4

Xo11tX411<1

Xg12tX4 1251

Xo 1 24+Xg 1 24 <1

57

Xo 1 257X4 1 251
Xg11tXg 1151

Xg 1 2tXg 1251

Xg 1 24t Xg 12451

Xg 1 25+ Xg 1 25<1
5. Webs interfered with Wi 1

X1011+tX9 1151

X101 2tX9 1251

X101 24t Xg 1 24 <1
X101 25t Xg 1 25 <1
X101 1+tX4 1151

X101 21X4 1251

X101 247 X4 1 24 <1
X101 25t X4 1 25 <1

6. Webs interfered with W5 4

58

X211+ X1 1151

X121 2% X111 251

X121 24 X11 1 24< 1
X121 254 X1 1 25<1

7. Webs interfered with W3 1
X1311tXp 1151

X131 2¥X121 251

X131 24% X121 24<1
X131 251 X12 1 25 < 1

8. Webs interfered with Wos 4
Xos 11+ X4 21<1

Xos 1 21 X4 2251

Xo5 1 24%X4 2 2451

Xos 1 251 X4 2 25 <1

59

4.3.5 Instruction Operands Constraints

Instl -W, 1 <0

W, 1—1Instl <0

Inst2 —W;g 1 <0

Wsg 1—1Inst2<0

Inst3 —Wy 1<0

Inst3-W, 1<0

Inst3 -W;g 1<0

Wy 1+Wj 1 + Wg 1 — INSt3<2
Instd —Wyo 1 <0

Inst4 — Wy 1 <0

Inst4 —W, 1 <0

Wig 1#Wo 1 + W, 5 — Inst4 <2
Inst5 — W, <0

Insts — W0 1 <0

Wy 2+Wig 1 —Inst5 <1

Inst8 — W11 1<0

Wi 1—Inst8 <0

Inst9 — W1, 1<0

60

Inst9 — Wy 1<0

Wiz 1#Wi 1 — Inst9 < 1
Inst10 —Wi3 1 <0

Inst10 - Wi, 1 <0

W3 1#Wip 1 — Instl0< 1
Instll - W, 1 <0

Instll -Wi3 1 <0

W2_1 + W13_1 —Inst11 <0

4.3.6 Reassigning to Small -Set Register Constraints

Wo1—-Xo11-Xo12-Xo13-Xo14-Xo 15X 16-X217=0
Wiy 1—Xg11—-Xg10-Xg 132 XKag 4~ Xg 15=Xp16-X417=0
Wiy 2—Xs21-Xs22-Xs 23 X424 Xg 25 X426-Xag27=0
Wg1—-Xg11-Xg12-Xg13-Xg14Xg15Xg16-Xg17=0
Wy 1—Xg 1 1—Xg 1 2~ Xg 13- Xg 14 Xg 15 Xg16Xg17=0
W10 1 —X10 11— X101 2= X101 3= X101 4~ X101 5- X101 6~ X101 7=0
Wi 1 —Xu11-Xun12-Xin13-Xin 14X 15~ Xir 16 X1 17=0
Wi 1-X211- X212 X213 X121 4~ X2 15- X216~ X121 7=0
Wiz 1 - X131 1-X312-X1313- X131 4 X315 X1316-X1317=0
Woas 1 — Xos 11— Xos 1 2~ Xos 13- Xos 1 4~ Xos 15~ Xos 1 6~ Xos17=0

61

4.3.7 Callee-Saved Registers Overheads Constraints

X2_1_16 + CalleeUsei = 0
X4_1_16 + CalleeUsei = 0
X4_2_16 + CalleeUsei = 0
X8_1_16 + CalleeUseis = 0
X9_1_16 + CalleeUseis = 0
X10_1_16 + CalleeUsels >0
X11_1_16 + CalleeUsels >0
X12_1_16 + CaIIeeUse16 >0
X13_1_16 + CaIIeeUselG >0
X25_1_16 + CaIIeeUselG >0
Xo1167Xs 116+ Xs216+Xg 116+ Xo116+X10116F X116+ X116+ X31167+
X25_1_16 - CaIIeeUsels >0

CalleeUse g+ CalleeNotUse s =1

X2_1_23 + CalleeUsess = 0
X4_1_23 + CalleeUsess = 0

X4 2 23 + CalleeUseys 2 0

62

X8_1_23 + CalleeUse,3 = 0
X9_1_23 + CalleeUse,3 = 0
X10_1_23 + CalleeUsey3 > 0
X11_1_23 + CalleeUsey3 = 0
X12_1_23 + CalleeUsex3 = 0
X13_1_23 + CaIIeeUse23 >0
X25_1_23 + CaIIeeUse23 >0
Xo 123t Xg 123+ Xs 223+ Xg 123+ Xg 123+ X101 23+ X111 23+ X213+ X313+
X25_1_23 - CalleeUse23 >0

CalleeUse,3+ CalleeNotUses; =1

Assume that all C1, C2, ...,"and C16 are all zero. We input this model to ILP solver, the
final result is that we can save 18 bytes after register reassignment. All the webs belong to
RegisterSets after reassignment since method 1 only allows each register can be reassigned
once. In the method 2, we only restrict interfered webs which cannot be reassigned to the
same registers. Therefore, we can achieve better result compared with method 1. The result of

the above example is listed as follows:

« X212=1,X414=1,X424,X812=1,X913=1,X1015=1, X11.16=1, X12.1.4=1,

X13.15=1,X25125 =1

The result of register reassignment is listed in Figure 4-1.

63

1 Iw $4 4($sp)

2 lw $2 8($sp)

3 add $3 $4 $2

4 sub $5 %9 $4

5 addi $4 $5 2

6 Iw $25 %got(funcA)($gp)
7 jalr $25

8 Iw $6 4($sp)

9 andi $4 $6 5

10 addi $5 $4

11 ori $2 $5 -1

12 jr $31

Figure 4-1 Register reassignment results for example 4.3

64

Chapter 5 Experiments

In this chapter we present the experiment results. Firstly the experiment environment and
ILP solver used in our model are introduced. Then, we will show the experiment results of the
two ILP models. Finally we will make a discussion of the results and compare to the previous
research.
5.1 Environment

The experiment environments include three major parts: ILP solver module, compiler
back-end, and target architecture.«In the following subsections, we will introduce the above

three parts.

5.1.1 IBM ILOG CPLEX

IBM ILOG CPLEX is an optimization software for mathematical programming [21].
ILOG supports some fundamental algorithms to solve linear programming, mixed integer
programming, quadratic programming, and quadratic constrained programming problems. It
provides flexible interfaces that can interact with the existing programming languages. In this
thesis, we use this tool to create and solve the integer linear programming model for register

reassignment.

65

5.1.2 LLVM

We implement our design in back-end of LLVM[22]. LLVM is the abbreviation of Low
Level Virtual Machine which is a compiler framework proposed by University of Illinois at
Urbana-Champaign. It provides a very simple, hierarchical and modular back-end design such
that it may easily be used to implement a new idea or design on it. It also supports a lot of
popular architecture such x86, ARM, SPARC, MIPS and so on. LLVM provides many
optimization options such as register coalescing, post register allocation scheduling and so on.
In this thesis, we add a new phase_after register allocation for register reassignment by ILP.

After that, LLVM will call the instruction formatting to output the assembly file.

5.1.3 Target Architecture

The target ISA is MIPS-like which assumes that the long or short instruction mode is
changed by a special instruction bit in the instruction rather than a specific mode switch
instruction. MIPS defined 28 general purposed registers and 4 special purposed registers; $gp,
$sp, $fp, and $ra. In general purposed registers, $r0 is hard-lined zero, $r26 and $r27 is
preserved for kernel usage. Hence, these three registers and the four special purposed registers
are not considered for register reassignment. In addition, MIPS also defined callee-saved,
caller-saved, argument and return value registers. Therefore, several register sets defined for

our model as listed as follows:

66

- RegisterSets = {$1, $2, ..., $7},

- RegisterSetp = {$1, $2, ..., $25},

- CalleeSavedRegs = {$16, $17, ..., $23},

- CallerSavedRegs = {$8, $9, ..., $15, $24, $25},

- ArgRegs = {$4, $5, $6, $7},

- RetArgs = {$2, $3}

- TempArgs = {$8, $9, ..., $15, $24, $25}.

5.2 Benchmark Evaluation Results

In Figure 1-2, we have showed the distribution of the instruction type and the uncertain
in which format instruction -count ratio and our motivation also from that figure. In this
subsection, we are going to present the translation rate of short instructions and compare it
with the related work.

Figure 5-1 shows the short instruction translation rate between different methods Here
the direct conversion means that the code is directly produced and formatted without the
register reassignment. On the average, we translate more than 14.6 and 6.6% uncertainly in
which format instructions to short instructions compared with direct conversion and related
work in method one. For method two, we translate more than 34.4%, 26.5% and 20%
uncertain in which format instructions to S-format instruction compared with direct

conversion, Ku’s method and method 1.

67

Direct Conversion Ku's Method ® Modell ©® Model2

100.00%

90.00%

80.00%

70.00%

60.00% +—
50.00% -
40.00% -+
30.00% +
20.00%
10.00% +

0.00%
& ° &S & S NS b"’& «8’% S
\,b&. $(;b §;b \(,),\&o N I ¢3’® 0\0 &
@ o g’é\

Figure 5-1 Translation rate of uncertainin which format instructions to short instructions

Figure 5-2 shows the additional instruction counts of our two methods and the related

work. Ku’s method did not apply to the following three benchmarks: rawcuadio, rawdaudio

and crc, since the code size reduction is less than that of the direct conversion. For some

benchmarks such as crc and stringsearch, our method suffers from calling convention

overheads significantly. However, the instruction counts of some other benchmarks like

rawdaudio and bitcount may even less than that of the original program since we remove the

prologue and epilogue for callee-saved registers after reassignment. For these programs which

increase the instructions after reassignment such as stringsearch and blowfish, they may

degrade the performance; but for some other benchmarks, they can reduce the total instruction

counts. Therefore, register reassignment in some cases may not affect the performance; it

depends on the characteristics of the program.

68

Ku's Method Modell m Model2
8.00% -
7.00% -
6.00% -
5.00% -
4.00% -
3.00% -
2.00% -
1.00% -
0.00% I. .. I. B T I. T I. I.]
-1.00% | 48 @é N $° O&I <&@ & & 2 o

-2.00% " & &

-3.00% -

Figure 5-2 Additional instruction count comparison

Figure 5-3 shows the code size reduction ratios of our two methods compared with direct

conversion, Ku’s method and-an ideal case in which all uncertain in which format instructions

are assumed to be translated to short instructions. On the average, we reduce about 30.11%

and 34.40% code size in contrast to the original program after applying our two methods,

respectively. Our two different methods come up with different results. Method 2 can further

improve the code size than method one since it allows that a register may be reassigned more

than once. In next section, we will further analyze the impact of these two different methods.

69

Direct Conversion 1 Ku's Method M ILP Modell ®ILP Model2 W Ideal Case

50.00%
45.00%
40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

Figure 5-3 Code size reduction comparison

5.3 Experiments Discussion

In this section, we will discuss and analyze the results of our two register reassignment

methods.

5.3.1 Discussion of Method T

In Method 1, the translation rates of some programs have a large gap compared to the
ideal case. In fact, the ideal case is a very ideal upper bound that only establishment by using
small set registers for register assignment without any additional spill code. In other words, if
the register pressure in a function is higher than the number of RegisterSets, this upper bound
is difficult to be achieved.

We observe the number of instructions may be covered by the frequently occurred

registers. By gathering the register occurrences of each instruction and sorting in descending

70

order, we discover that the frequent occurred registers can cover all instructions of the
functions in some programs. Here we infer that the translation rate may have positive
correlation with the coverage ratio of frequent occurred registers.

In Method 1, each used register can only be reassigned to one register, i.e. ILP solver
will map the registers with high instruction coverage ratio and lower calling convention
overheads to reassign to the small set registers. If the function does not have many function
calls, the translation rates of it may be dominated by the coverage rate of the frequent
occurred registers. We analyze the benchmarks to judge whether the short instruction
translation rates consistent with our-inference. Since the number of small set registers is 7, we
will observe the top 7 frequent-occurred registers.

Figure 5-4 shows the unlzh function in 164.gizp. In this function, the top 7 frequent
occurred registers cover about 91% instructions of the function. In fact, there are 85%

instructions can be translated to short instructions after applied our method 1.

100.00%
90.00%
80.00% -
70.00% +——
60.00% +——
50.00% +—
40.00% -
30.00% -
20.00% -
10.00% -~
0-00% L L L r—rTrrr—r—r—r—TrTr1TT1T 17T ""7T""1T" "1 ""“"T" "“"1T "1
M ST NGO OWMNGOAIANONOHANO ANMSSTINNMS LN
0O B0 G0 B0 H N B0 B0 N — B0 B0 60 B0 o o o o = o4 N N N N
U U U U 6o o W) U U bo o o) U U U U bo GO b QO Lo DO B0 b GO bo
Froeoc 90 e 0 varxraoc 09I UV VUV U
€ x @ x Froeoceoe e

Figure 5-4 Instruction coverage ratios of top 7 frequent occurrence registers of unlzh

71

100.00%

90.00%

80.00%

70.00%

60.00%

50.00% -

40.00% +——

30.00% +——

20.00% -

10.00% -

0-00% rr—r—r—r—rr—r—r——r—r——r—r—r—r——r—TrTrT1Tr 1T T T 1T T 1T 1
MNMN AN ANNOSTANMNMOST VLWL NSO O o N m
B0 80 H w B0 G0 H G0 < o o N Q0) < ~N @0 B0 80 H N N N N
U O oo b0 U © oo b bo A o Lo o bh U A 6o bo U U © oo LD bo Lo o
X x 0 0Xxce 09 090U 0 xrade U 09 U

€ x € x X ¥ X o € ¥x oo

Figure 5-5 Instruction coverage ratios of the top 7 registers of Rawcaudio

Figure 5-5 shows the instruction coverage ratio of the top 7 frequent occurred registers in
the main function of Rawcaudio. The top.7 registers can cover about 63% instructions of the
function and the short instruction translation rate is about 45%.

Figure 5-6 shows the instruction coverage ratio of the top 7 frequent occurred registers in
the main function of CRC. Although the top 7 registers can cover 75% instructions of the
function, there are four callee-saved registers in the frequent occurred registers and many
function calls, i.e. the ILP solver may not chose those registers mapping to the small set

registers because of high reassignment overheads. The short instruction translation rate of

CRC is about 49%.

72

100.00%

90.00%

80.00%

70.00%

60.00% -

50.00% -

40.00% -

30.00%-7/

20.00% -

10.00% -

0-00% L L L L rrr—r—r—rr—rTr 1T T 1T T 1T 1T T 1T 1T 1
NS OHOMANN-SOOMINWONOGHOWO®NO - NMSST LN S N
B0 B0 1 AN O AN 1 N i i (N b0 b0 b0 b0 b0 o B v v v NN
O O o td U o Lo G bo o B U U U U U U U Lo Lo Lo oo Lo b Lo o
X U 0 U U Ve louaxarxeraeroradx 0 I U ULV

o o X X xXxoeo C @Xoeoeood £

Figure 5-6 Instruction coverage ratios of the top 7 frequent occurrence registers in CRC

For Rijndael and Rawdaudio, they also have the same property we have mentioned

above. Basically, our register reassignment policy prefers higher short instruction translation

rate and lower calling convention overheads.
5.3.2 Discussion of Method II

In the second method, we relax the restrictions to allow each register to be reassigned
more than once. Obviously, the results are better than method one since more registers after
reassignment can map to RegisterSets. Nevertheless, some programs still have a large gap
compared to the upper bound, such as rawcaudio, rawdaudio, and rijndael. For rawcaudio and
rawdaudio, we find some webs with long life time but low usage count. However, our method
does not split the live range of this kind of webs, and we only restrict that the interference

registers cannot be reassigned to the same register. On the other hand, rijndael suffers from

73

high register pressures so that method 2 cannot work well on it. For these reasons, we don’t

achieve good code size reduction on these programs.

74

Chapter 6 Conclusions and Future Works

Code size issue for a memory constrained system is as important as performance
especially for versatile functionalities requirements. Mixed-width ISA is proposed to reduce
the memory usage from the architecture point of view. There are many commercial processors
for embedded systems have adopted mixed-width ISA.

We introduce register reassignment for code size reduction for two reasons: efficiency
and complexity. The efficiency is that we can inherit existing compiler back-end paths and
add a new phase for optimizing code size. For the complexity point of view, it is not easy to
modify the existing register allocation algorithm for adapting the new features since the new
features may conflict with the original goal of the register-allocation.

In this thesis, we model register reassignment problem to be two different integer linear
programs. In average, we reduce 30.11% and 34.40% code size in the first and second method
by our experiment. Through this result, we can set an upper bound for this register
reassignment problem under our assumptions and use this result to evaluate the results of all
possible heuristic algorithms.

In the future, there are still some works to do for reducing code size by register
reassignment using integer linear programming. In our method, we only consider the calling
convention overheads but ignore the performance effect of the code inserted. If the code

insertion is in the hotspot parts such as a loop, it may degrade the performance significantly.

75

Therefore, we can try to use the profiling results to find the hotspot of a function and avoid

doing code insertion in the hotspot. However, the profiling results may not be accurate since

they are collected statically. A conservative way to estimate performance impact of the place

of code insertion can be also evaluated. We may treat each loop in a function as hotspot, and

then set a special weight for the code insertion in such places.

76

[1]
[2]
[3]
[4]

[5]
[6]
[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

Reference

Advanced RISC Machine Ltd. http://www.arm.com.

MIPS Technology http://www.mips.com/.

Andes Technology. Andes Instruction Set Architecuture Specification, 2008. Available:
http://www.andestech.com

"microMIPS Instruction Set Architecture. Uncompromised Performance, Minimum
System Cost. MD00690 Revision 01.00. Oct. 2009."

R. Phelan, "Improving Arm Code Density and Performance -- New Thumb Extensions
to the Arm Architecture. Arm Thumb-2 Core Technology Whitepaper,” June, 2003
2003.

A. Krishnaswamy and R. Gupta, "Mixed-width instruction sets,” Commun. ACM, vol.
46, pp. 47-52, 2003.

The SPEC2000 Benchmark, http://www.spec.org/cpu2000/.

MediaBench, http://euler.slu.edu/~fritts/mediabench/.

MiBench, http://www.eecs.umich.edu/mibench/.

T.-Y. Yang, "Register Allocation-of JIT Compiler for Mixed-Width ISA for Code Size
Reduction," Master Thesis, Department of Computer Science, National Chiao-Tung
University, HisnChu,Taiwan, R.O.C,; 20009.

J.-S. Wang, et al., "Reducing Code Size by Graph Coloring Register Allocation and
Assignment Algorithm for Mixed-Width ISA Processor,"” the Proceedings of the 2009
International Conference on Computational Science and Engineering, 2009, Volume
2,pp. 174-181.

Bor-Yeh Shen, Wei-Chung Hsu, and Wuu Yang, "Register Reassignment for
Mixed-Width ISAs is an NP-Complete Problem," the Proceedings of the International
Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2010),
Orlando, Florida, USA, April 6-9, 2010, pp. 139-143.

S. Lee, et al., "Selective code transformation for dual instruction set processors,” ACM
Trans. Embed. Comput. Syst., 2007 ,\ol. 6, p. 10,.

A. Halambi, et al., "An Efficient Compiler Technique for Code Size Reduction Using
Reduced Bit-Width ISAs," the Proceedings of the conference on Design, automation
and test in Europe (DATE), 2002, pp. 402-408.

L. Xianhua, et al., "Efficient code size reduction without performance loss," presented
at the Proceedings of the 2007 ACM symposium on Applied computing (SAC), Seoul,
Korea, 2007, pp.666-672.

A. Krishnaswamy and R. Gupta, "Profile guided selection of ARM and thumb
instructions,” SIGPLAN Not. , 2002,vol. 37, pp. 56-64.

77

http://www.arm.com/
http://www.mips.com/
http://www.andestech.com/
http://www.spec.org/cpu2000/
http://euler.slu.edu/~fritts/mediabench/
http://www.eecs.umich.edu/mibench/

[17]

[18]

[19]

[20]

[21]

[22]

T.J. K. E. v. Koch et al., "Integrated instruction selection and register allocation for
compact code generation exploiting freeform mixing of 16- and 32-bit instructions,"
presented at the Proceedings of the 8th annual IEEE/ACM international symposium
on Code generation and optimization (CGO 2010), Toronto, Ontario, Canada, 2010, pp.
180-189.

Y.-L. Ku, "Code Size Reduction with Register Reassignment for Mixed-Width ISA
Processsors," Master Thesis, Department of Computer Science, National Chiao Tung
University, HsinChu, 20009.

P. Barth, Logic-based 0-1 constraint programming: Kluwer Academic Publishers,
1996.

S. S. Muchnick, Advanced compiler design and implementation: Morgan Kaufmann
Publishers Inc., 1997.

IBM. (2010, ILOG CPLEX 12.2)
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

C. Lattner. The LLVM Compiler Infrastructure. http://llvm.org.

78

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://llvm.org/

