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藉由多面體模型 (Polyhedral Model) 改善同質多核心系統 

之資料局部性 

 

 

學生：高淑娟          指導教授：單智君  博士 

國立交通大學資訊科學與工程研究所碩士班 

摘要 

在現今同質多核心(homogeneous multiprocessors)系統上，常用的平行編程模式

(parallel programming model)有 OpenMP 與 MPI 等，其中又以 OpenMP 最為被廣泛地使

用。另一方面，對於同質多核心系統而言，效能的瓶頸通常是在迴圈程式的記憶體存取

上。因此，為提昇程式在同質多核心系統上的執行效能，程式開發者會藉由一些迴圈優

化技術來提高程式執行的資料局部性(data locality)以減少外部記憶體(external memory)

的存取次數，其中常見的技術有迴圈互換(loop interchange)與迴圈區塊化(loop tiling)等。

為了執行這些優化的技術，迴圈程式碼都通常會先轉成抽象化中間表示式(intermediate 

representation, IR)；在執行完一連串優化技術後，再將 IR 轉回成程式碼或可執行檔。目

前常見的 IR 表示方式有抽象語法樹 (abstract syntax tree, AST)與多面體模型(polyhedral 

model)等。對於迴圈程式碼而言，使用 polyhedral model 可以減少避免轉換順序之間造

成的副作用(side-effect)，如程式碼變大及複雜度變高等問題。 

在本論文中，我們針對迴圈程式的資料局部性的優化實作了一套迴圈程式原始碼到
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原始碼(source-to-source)的轉換框架(framework)。本論文開發之 framework 可自動找出

OpenMP 程式中的 DOALL 迴圈，並針對這些迴圈進行 loop tiling 以提昇資料局部性。

根據模擬結果顯示，透過所開發之 loop tiling 技術，程式的執行效能平均可提昇 14.1%。

此外，藉由本論文開發之 framework，程式開發者可以快速地發展在 polyhedral model

下所需之迴圈優化技術。 
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Data locality improvement by Polyhedral Model 

for Homogeneous Multiprocessors 

 

Student：Shu-Chuan Kao        Advisor：Dr. Jyh-Jiun Shann 

Institute of Computer Science and Engineering 

National Chiao Tung University 

Abstract 

The parallel programming model on homogeneous multiprocessors includes OpenMP, 

MPI, and others. OpenMP is the most widely used in these common parallel programming 

models. On the other hand, the performance bottleneck on homogeneous multiprocessors is 

usually the memory access within a nested loop. Therefore, programmers would adopt some 

loop optimizations to enhance data locality and reduce external memory access times for the 

parallel execution on homogeneous multiprocessors. The common techniques of loop 

optimizations are loop interchange and loop tiling. The source code of the nested loops would 

usually translate to the intermediate representation (IR) for applying the loop optimizations. 

After a series of optimizations, IR would translate back to the source code or the executable 

program. The common IR includes abstract syntax tree, polyhedral model, and others. Using 

polyhedral IR could avoid causing side-effects between transformation orders, such as 

increasing the code size and enhancing the transformation complexity. 

In this thesis, we present the implementation of a polyhedral source-to-source 
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transformation framework that could optimize the nested loops for the data locality 

improvement. The framework could find the DOALL loops automatically and adopt loop 

tiling to enhance the data locality. According to the simulation results, the programs could 

increase 14.1% performance in average by performing loop tiling. Moreover, programmers 

could develop loop optimizations quickly based on our polyhedral framework. 
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Chapter 1 Introduction 

1.1  Research Motivation 

Homogeneous multi-processors are popular recently and the parallel programming 

models such as OpenMP are widely used. The OpenMP is an important method and 

language extension for program parallelism. In order to make existing OpenMP 

applications to achieve higher performance, we want to improve data locality in nested 

loops. Moreover, we not only optimize the data movement and allocation, but also 

decrease cache misses in memory hierarchy. 

In addition, the growing speed gap between memory and processor makes an 

efficient use of the cache more important to get higher performance. Tiling is a critical 

optimizing transformation for data locality improvement. It groups points in an iteration 

space into smaller tiles (blocks) allowing reuse when the block in a faster memory 

hierarchy (e.g. registers or cache).  

Because applying syntactic transformations such as abstract syntax tree would 

dramatically increase the code size and transformation complexity, this work adopts 

another powerful representation, called “Polyhedral model”. In the polyhedral model, the 

program is viewed as a “statement centric” structure; therefore many side-effects could be 

avoided. 
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In this thesis, we proposed a source-to-source transformation framework in which 

realizes polyhedral model and loop tiling to improve the data locality of nested loops. 

 

1.1.1 Limitation of Syntactic Transformations 

Current compilers provide an unstructured search space for syntactic 

transformations, i.e., control structures are regenerated after each transformation and it’s 

unable to perform a serial of transformations well. There exist some limitations in 

syntactic intermediate representations (IR). 

Code Size and Transformation Complexity – The code size and transformation 

complexity would dramatically increase after several transformations. Consider the 

simple synthetic example shown in Figure 1.1 and the analysis depicted in Figure 1.2. 

 

 

 

Figure 1.1 Source code for code size and complexity analysis 

   

 

 

Figure 1.2 Code size and complexity analysis of Figure 1.1 

 

Syntacitc 

(# lines) 

Polyhedral 

(# values) 

Original code      7           78      

Outer loop Fusion     28 (x4.0)     78 (x1.0)  

Inner loop Fusion    84 (x12.0)      78 (x1.0)  

Fission     78 (x11.2)      78 (x1.0)  

Strip-mine   223 (x31.8)    122 (x1.5)  

Strip-mine   259 (x37.0)    182 (x2.3)  

Interchange  290 (x41.4)    182 (x2.3)  
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When applying some transformations in the source code in Figure 1.1, the code size 

would increase a lot in the syntactic representation. However, when applying same 

transformations in the polyhedral representation, only the strip-mining transformation 

increases the overall complexity. Because the polyhedral representation consists in a 

fixed number of matrices associated with each statement, only the dimension of some 

matrices slightly increases. Moreover, neither its transformation complexity increases nor 

its code size varies significantly.  

Patterns Breaking -- When compilers look for the transformations opportunities 

depending on pattern-matching rules, it’s difficult to find the suitable transformation 

pattern. As a consequence, prior transformations usually break target patterns for further 

ones. Hence, combining different loop transformations would not always lead to the best 

result. 

Limitations Of Phase Ordering – the phase order of loop transformations is 

another challenge to achieve optimal result. Because every transformation would change 

the intermediate representation, the opportunity of the following transformations would 

decrease. 

For these limitations[1], we believe that the polyhedral representation would be an 

appropriate way to avoid these side-effects. 
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1.1.2 Advantage and disadvantage of Polyhedral Model 

This polyhedral representation could avoid side-effects addressed above. For 

example, it would not increase code size or/and transformation complexity significantly. 

Unfortunately, this polyhedral representation is not easy to understand for programmers. 

 

1.2  Research Objective 

Many compute-intensive applications often spend most of their execution time in 

nested loops. The polyhedral model provides a powerful abstraction on loop 

representation in which each statement in an iteration is viewed as an integer point in a 

well-defined space called the statement’s polyhedron. With representation for each 

statement, it is possible to show the correctness of transformations in a completely 

mathematical setting relying on machinery from linear algebra and integer linear 

programming. 

The task of program optimization for data locality in the polyhedral model may be 

viewed in terms of three phases: (1) constructing the loop information from intermediate 

representation of the abstract syntax tree to the polyhedral model (2) performing 

transformations for data locality improvement in the polyhedral intermediate 

representation, and (3) generating the target code from the transformed intermediate 
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representation of the polyhedral model. 

 

1.3  Organization of this Thesis 

The rest of this paper is organized as follows: Section 2 provides the mathematical 

background and the data structure for the polyhedral model. Chapter 3 describes the detail 

of our framework. Chapter 4 presents the experimental results and discussion follows. 

Finally, Section 5 dedicates to the conclusions and the future work planed. 
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Chapter 2 Background 

In this chapter, we give an overview of the polyhedral model, and introduce notations 

used throughout the dissertation. In syntactical compilers, two important structuring elements 

are the basic block (BB) and the control flow graph (CFG). However, the most important 

element in the data structure used in the polyhedral model is the statements (S) in nested 

loops. 

 

2.1 Polyhedral Model 

The polyhedral model[2-3] is applicable to the nested loops which the data access 

and loop bounds are affine functions (means linear function with a constant). 

Accordingly, we could adopt the program transformations more efficiently. 

 

2.1.1 Polyhedron 

Definition 1 - Polyhedron (a.k.a. Polyhedral). A polyhedron is an intersection of a 

finite number of half-spaces. A polyhedron also has a representation in terms of 

vertices, rays, and lines, and algorithms like the Chernikova algorithm[4]. 

Here is an example for the polyhedron. The nested loops in source code may 

like Figure 2.1, and the corresponding polyhedron is in Figure 2.2. 
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Figure 2.1 Source code for polyhedron representation 

Figure 2.2 Corresponding polyhedron of Figure 2.1 

Polylib[5] and PPL[6] are two of the libraries[7-8] that provide a range of 

functions to perform various operations on polyhedral. In this work, we are always 

interested in the integer points inside a polyhedron since the loop’s iterators 

typically have integer data types and traverse an integer space. 

 

2.1.2 Iteration Domain 

The iteration domain represents the nested loops bound constraints, including 

upper bounds and lower bounds of an iterator. The iteration domain of a statement 

(S) is defined by: 

We recall the previous simple example in Figure 1.1. 

 

 

 

S1 (Statement one) belongs to one-dimensional iteration domain, meanwhile, 

S2 and S3 belong to two-dimensional iteration domains. The global parameters in 

 cxxxD ns 
 Α,| 

for (i=2; i<N; i++)  

for (j=2; j<N; j++) 

 A[i] = pi; 

S1 

S2 

S3 
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this nested loop are M, N, P and Q. As a result, the matrix of iteration domain has 

one column for each iterator and each global parameter, here respectively i, j and M, 

N, P, Q. Otherwise, we also keep one column for storing a constant value. 

Moreover, the loop’s iteration domain is bounded by affine inequalities which 

we called it loop bounds. Each row of the matrix presents an affine inequality. It 

means that for each iterator at least has an upper bound and a lower bound. 

Therefore the iteration domain in S1 has two rows and six columns. 

Hence, the iteration domain of S1 is 

 

The first row presents  

, which means the lower bound in loop i is      . Moreover, the second row 

presents            , which means the 

upper bound in loop j is   . Accordingly, the iteration domain of S2 and S3 

is       

        and 

The first two rows of the matrix are loop i’s constrains, and the others are loop j’s. 

 

2.1.3 Schedule matrix 

The schedule matrix characterizes the execution order of each statement within 

the nested loops. To achieve that, we define a timestamp to record execution 
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sequence of each statement. The schedule matrix θS
 of a statement is defined by 

 

 

 

Let d
S
 be the depth of the nested loops, which means how many levels from 

the outermost loop to the innermost loop. We call the outermost level of the nested 

loops depth 0. And A
S
 is the iteration vector, which means this statement 

surrounding by which iterators. 

Let β
S
 be the static statement ordering vector, which represents the timestamp. 

It points out the execution ordering of this statement. The first execution part would 

be label as 0, and the second execution part would be label as 1, and so on. Next, we 

trace this nested loop recursively, and label each timestamp to all statements and 

loops. When the whole nested loop was traversed, we could specify the execution 

order for all statements in this nested loop. 

So we recall the previous simple example again in Figure 1.1. 

 

 

 

The schedule matrix of S1 is   . The left-side of the matrix means that 



























s

d

s

s

s
d

s
d

s
d

s

s

s

s

sβ

β

β

A

A

A

A

A

A

0

0

0

0

0

0

0

0

0

1

0

3

2

1

13

12

11
















,

,

,

,

,

,

 
















0
0
0

0
1
0

1   
S

θ

S1 

S2 

S3 



10 

this statement surrounding by loop i, and the β
S
 in the right-hand side of the matrix 

is [0, 0]. It means the stamement1 in depth 0 is the first part to be executed, and it’s 

also the first part to be executed in depth 1. 

Accordingly, the schedule matrix of S2 and S3 is  

 

 

We could translate the source polyhedron into the target polyhedron containing 

the same points but in a new coordinate system with a new execution order. As a 

result, we could distribute the iterations in space, i.e. across different processors, 

order them in time, or both. In some specify transformations, we would modify this 

matrix to adopt loop transformations. 

 

2.1.4 Access Function 

The array reference represents all array accesses in left-hand side or right-hand 

side of each statement. In other words, we store left-hand side or right-hand side 

array information of each statement in matrixes. 

For each statement S, we define a pair of sets       and       . Each pair 

represents an array reference in the left-hand side or right-hand side of the statement. 

The access function f is defined by a matrix F such that 
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f is a function of loop iterators (i), local variables and global parameters (g), 

and a constant value (1). So we recall the previous simple example in Figure 1.1. 

 

 

 

  Because the right-hand side array access of S1 is Z[i], we store the access 

function as          , which means that the S1 refers to 

the array ZZ and after the comma is the parameter part. In addition, the left-hand side 

array access of S1 is the empty set, we store the access function as   . 

 Accordingly, we could store the information for S2 and S3 as below,  

 

 

 

 

 

These four equations mean the left-hand side and right-hand side array access’s 

names and parameters used in each statement. 

 

2.2 Optimization for Data Locality 

The growing speed gap between memory and processor makes an efficient use of 

2   L
S

hs    ,,                   0000001

2   R
S

hs

,,              













0
0

0000
0000

01
10

   ,,                   0000001 ,,              













0
0

0000
0000

10
01

                   0000010 ,

3   L
S

hs                      0000001,

3   R
S

hs    ,,                   0000001 ,,              













0
0

0000
0000

10
01                    0000010 ,

  tgiFi  1,,)f( 

1   R
S

hs      

S1 

S2 

S3 

                 000001,1   L
S

hs

1                   QPNMj



12 

the cache more important to reach high performance. One of the most important ways to 

improve cache behavior is to increase the data locality, such as making lower cache miss 

rates. Data locality could be improved by reordering the memory accesses so that the 

same array elements are accessed closer together.  

Data use and reuse often occur in different iterations of the same loop. Two 

traditional transformations that improve the data locality in a single iteration are loop 

tiling and loop interchange. 

Loop interchange, as known as loop coalescing, is to permute the order of the loops 

to modify the memory traversal order. If the array elements from the same row are stored 

consecutively ( for example : a[1,1], a[1,2], a[1,3]... ), namely row-major. If we access 

array elements from the same column together ( for example : a[1,1], a[2,1], a[3,1]... ) , 

called column-major. 

 

 

 

(a) (b) 

Figure 2.3 Different memory traversal orders. (a) row-major (b) column-major 

Therefore, if the storage way is different with the access way, we could exchange 

the order of two iterators of the loops. 

Loop tiling is applied when the long-distance reuses occur between different 

row-major column-major 
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iterations of a single outer loop. The principle idea is to process less datum in one 

iteration of the loop, so that datum could be retained in the cache between several 

iterations of the loop.  

We partition the iteration space into tiles that may be executed concurrently on 

different processors. In other words, grouping points in an iteration space into smaller 

tiles allows reuse datum when the tile fits in a faster level of the memory hierarchy, such 

as the cache. The following Figure 2.4 is an example to divide the matrix into 

sub-matrices, or tiles. 

 

 

 

Figure 2.4 2x2 tiling example 
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Chapter 3 Implementation of Data Locality Transformation and 

Code Generation Algorithm 

3.1  Overview 

In this thesis, our goal is to modify a compiler framework for data locality 

improvement of OpenMP source code using polyhedral model. The flowchart of the 

framework may like Figure 3.1. 

 

Figure 3.1 The flowchart of our framework 

In the first part of this chapter, we would introduce how to translate from the 

abstract syntax tree of CETUS[9] to the matrices of polyhedral model. In the second part, 

the nested loops transformations for data locality would be introduced. Also, array 

accesses analysis in statements would be mention. In the last part of this chapter, we 

would introduce how to translate the matrices of polyhedral model back to abstract 

syntax tree of CETUS. 
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3.2  AST to Polyhedral Model 

In this section, we want to translate the intermediate representations from the 

abstract syntax tree of CETUS to the matrices of polyhedral model. The input is an 

OpenMP source program. The output is the data structure in polyhedral model. 

For CETUS compiler supporting, we could get the abstract syntax tree from the 

OpenMP source code. Accordingly, we need to extract loop information from this abstract 

syntax tree and keep the necessary information in polyhedral model’s matrices, which 

were described in previous section. 

First, we recognize all nested loops with OpenMP annotation in source program. For 

each nested loops, we use DepthFirstIterator in CETUS compiler to trace from the 

outermost level to the innermost level. Then we could get the information from each level 

of the nested loops recursively, and store them to the data structure (D, S, A) in 

polyhedral model for each statement. 

To achieve that, we propose an algorithm for scanning the nested loops in Figure 

3.2. 

 

 

 

Figure 3.2 The algorithm for scanning the nested loops 
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 It means that when tracing the nested loops in abstract syntax tree from the 

outermost level to the innermost level, we should record the execution order at the same 

time. In addition, if this node is a loop form, we could use the method of 

getInitialStatement()、getCondition() and getStep() to get the information of the loop. For 

example, index variables, lower bounds, and upper bounds are all information which we 

need to store. Otherwise, if this node is a statement form, we could use the method of 

getBody() to record all array accesses in this statement. Then we trace to the inner level 

recursively until all nodes in this nested loops were traced. 

  Here is an example in Figure 3.3 to explain how it works. We could follow the 

blue arrowhead to trace all nodes in the loop. At first, we encounter a for-form node and 

record the information of the iteration domain and the schedule matrix. 

 

 

Figure 3.3 (a) Source code for explaining the polyhedral construction (b) temporary result 

Then we trace the inner level of the loop, and encounter a statement-form node. So 

we modify the schedule matrix and store all temporary information to the S1, as shown in 

Figure 3.4. 
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Figure 3.4 Polyhedral data structure for statement 1 

And following figures are the construction process step by step. 
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As a result, when we trace all nodes in this nested loop by recursively applying these 

three steps in the algorithm of Figure 3.2, all statements’ information we need is recorded. 

 

3.3  Data Locality Transformation in Polyhedral Model 

3.3.1 Loop Interchange (a.k.a. coalescing) 

In this section, our goal is to change the order of the loops if the traversal way is 

different to the storage way. When we get a nested loop, we should analyze the array 

access in this loop to decide does it need to adopt the loop interchange.  

Because C language belongs to row-major storage, we should make sure that the 

array access pattern in the nested loops would follow this rule. If we encounter a 

column-major array access, we should apply the loop interchange. There is an example 

to explain how to adopt the loop interchange shown in Figure 3.5. 

         

 

   

 

 

Figure 3.5 (a) Source code before loop interchange (b) Source code after loop interchange 


























6
0
3

0

10
10
01
01

  
SD

Domain :

Source code: 


























6
0
3

0

01
01
10

10

  
SD

Domain :
Source code: 

(a) 

(b) 



19 

The left-hand side of the Figure 3.5 (a) is the nested loops which we would analyze, 

and the right-hand side of the Figure 3.5 (a) is the corresponding data structure and 

processes which we should perform. Because the memory access of array A belongs to 

column-major traversal way which is violating the row-major storage way, we exchange 

the corresponding columns in the domain iteration and the iterator matrix. As a result, we 

could get the source code and the data structure after loop interchange in the Figure 3.5 

(b). 

 

3.3.2 Tiling (a.k.a. blocking) 

Loop tiling is one of the loop optimizations for reducing the execution time of the 

nested loops which access a lot of array elements. Typically, the cache miss happened 

when too much other datum was accessed between the use and reuse of same specific 

data. It means that partitioning a loop's iteration domain into smaller tiles or blocks could 

ensure datum used in a nested loop sustains in the cache (or a faster level of the memory 

hierarchy). Thus fitting array elements of a tile into cache size could enhance the cache 

reuse frequency and eliminate cache size requirements. 

To achieve that, we propose a mechanism to improve spatial data locality and 

temporal data locality in parallel programs. Spatial data locality refers to the use of data 

elements within relatively close storage locations. Accordingly, it could be improved by 
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evaluating the average memory cost per tiles. Temporal data locality refers to the reuse 

of specific data within relatively a short period of time. Therefore, it could be optimized 

by evaluating the datum reuse amount per tiles through analyzing array access within 

nested loops. 

So far we have known that iteration-domain tiling (or blocking) is a well known 

loop transformation, but how to decide the tile sizes for a nested loop is a challenge. If 

the tile sizes are too large, the accesses of array elements within the nested loops would 

cause the cache miss frequently. If the tile sizes are too small, the improvement in data 

locality due to the loop tiling would not be significant and might have the extra 

computation overhead of inner tiled loops. 

 

Figure 3.6 Performance of Matrix Multiplication on different tile size 

On above Figure 3.6, we could realize that the different tile sizes affect performance 
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dramatically. Therefore, an appropriated tile size would lead a better cache behavior and 

a lower execution time. 

In this thesis, we proposed a mechanism to choose an appropriated tile size from 

spatial and temporal analysis results. In the next two sections, we would introduce the 

two methods in detail. And the tile sizes for the nested loops, loop i and loop j which 

would be tiled respectively, are Si and Sj.  

 

3.3.2.1. Spatial data locality analysis 

Optimal tiling for spatial data locality refers to the problem of selecting the tile 

sizes that minimize the average memory cost which directly measure the execution 

time. In addition, we introduced the cost model which was proposed by Sarkar and 

Meggido, also used in the IBM XL FORTRAN compiler for evaluating tile sizes. 

This cost model is applicable to two or three level loops. 

Our strategy is to estimate the average memory cost and record it for each tile size. 

The goal is to pick the tile sizes which minimize the memory cost, in other words 

the minimal total execution time. And the objective function used in the context of 

the tile size selection is all functions of the tile variables, cache capacity and cache 

line size, etc. 

The memory cost of a tile(S) is calculated as )(μ)(μ sDPsDL pc 
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, where   is the estimated number of distinct cache lines accessed by a single 

tile and       is the estimated number of distinct pages accessed by a single tile. 

Given the hardware parameters: (1) the cache line size, L, (2) the effective 

cache size, ECS, (3) the TLB page size, TLB, and (4) the miss penalties of cache 

and TLB,    and    . Then we could calculate the memory cost of a tile by the 

previous hardware information to. The detailed formulation would be showed 

below. 

calculate         per tile size 

subject to   

 

DL, DP : number of distinct cache lines and pages touched by a tile 

μc, μp : cache and TLB miss penalties 

For calculating average memory cost, we could divide the memory cost to tile 

volume, which means Si*Sj. Then the SCL (Spatial_Coulddidate_List) would keep 

these average memory costs for each tile size. Accordingly, section 3.3.2.3 would 

select the tile size by referring SCL and TCL (Temporal_Coulddidate_List). 

So far we have introduced the method to calculate the average memory cost for 

each tile size. Moreover, let’s take an example to explain how it works. Figure 3.4 

is a nested loop with two loops (loop i and loop j) 

ji
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Figure 3.7 Source code of spatial data locality analysis 

The iteration domain may look like the gray grids in following figure. The 

range of dimension i is from 1 to 400, same as dimension j. And the tile size Si*Sj 

may be 8*8, 16*16, or 4*4 (such as yellow block) in the following figure. 

 

 

 

Given the cache capacity is 4K bytes, hence, the cache capacity constraint 

could be written as:          . The cache capacity constraint ensures that 

the same datum could be accessed within a tile. In addition, other hardware 

information would be    =50 cycles,    =260 cycles, L=128 bytes, L1 cache 

size=32K bytes, and it’s column-major storage. These given information would 

vary on different machine.  

Hence, the number of distinct cache lines accessed by tile sizes of Si*Sj is 

estimated as follows: 

           , 

We could view the statement in this nested loop as  
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The first array access in the statement is A[1,i], and it would use elements from 

A[1][1~Si]. Graphic representation would show in the right-side 

figure. In this case, we need Si distinct cache lines to deal with 

all array accesses of array A. 

The second array access is B[i,j], and it would use elements from 

A[1~Si ][1~Sj]. Graphic representation would show in the 

right-side figure. In this case, we need        distinct cache 

lines to deal with all accesses of array B. 

The last array access is C[Sj,1], and it would use elements from A[1~ Sj][1]. 

Graphic representation would show in the right-side figure. In 

this case, we need      distinct cache lines to deal with all 

accesses of array C. 

As a result,       distinct cache lines would be required within a 

single tile. That’s how       be calculated. 

On the other hand, the number of distinct pages accessed by a tile of Si*Sj 

iterations are estimated as follows: 

            , 

The way to calculate in DP is similar to the way to calculate in DL, so we 
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would skip this detail process. As a result, the value of        

would be stored in SCL (Spatial Candidate List) for each tile size. 

 

3.3.2.2. Temporal data locality analysis 

For each tile size in SCL, we analyze the temporal data locality as well. In 

other words, calculating the reuse times across the two-dimension iterations. If the 

indices of the array access belong to innermost two levels’ variable (respectively i 

and j), we would calculate the reuse amount for each array by the following 

equation: 

reuse amount =   (Si-idiff)(Sj-jdiff) 

Sj means the first tile size, and Sj means the second tile size. The value of idiff 

represents how many across reuse happen when the j dimension is fixed. And the 

value of jdiff represents how many across reuse happen when the i dimension is 

fixed. There is a simple example to explain the idea shown as the following figure. 
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If the tile size is 8*8, the reuse amount would be calculated like following 

equations. 

A[1][i], A[1][i+1] :  

(Si-idiff)*Sj = (8-1)*8 

B[1][j], B[1][j+2] :  

(Sj-jdiff)*Si = (8-2)*8 

C[i][j], C[i+2][j+3] :  

(Si-idiff)(Sj-jdiff) = 6*5 

Therefore, the total reuse amount is 134. 

As a result, we would store these values in TCL (Temporal Candidate List) for 

each tile size. 

 

3.3.2.3. Combination with Spatial and Temporal data locality 

In the section 3.3.2.1, we have calculated the average memory cost for each tile 

size and store in SCL (Spatial Candidate List). Moreover, we also have calculated 

the reuse amount for each tile size in the previous section 3.3.2.2 and store in TCL 

(Temporal Candidate List). Accordingly, we would select the final tile size by 

reference these two values. 
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The first problem we should conquer is that the smaller memory cost is better, 

but the larger reuse amount is better. Because there are the opposite directions, we 

need to normalize these two different kinds of values with different ways to make 

them in the same direction. 

We normalize each average memory cost to the minimal average memory cost 

like the following equation: 

 

The normalized spatial value would be a constant, which is larger than zero. 

Typically, the smaller value is the better. 

On the other hand, we normalize each reuse amount to the maximal reuse 

amount like the following equation: 

 

The normalized temporal value would be a constant, which is between one and 

zero. Typically, the value smaller is better, too. 

The second problem we should conquer is how we prefer spatial analysis or 

temporal analysis. In order to choose how much percentage should take from spatial 

analysis, we imply the weight (α value) to our model. Therefore, we calculate the 

score to combine spatial and temporal analysis. The equation would be following: 

score = α‧NormSpat + (1-α)‧NormTemp 
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And thus, we choose the tile size which has minimal score to be the final tile 

size in tiling optimization. 

 

3.4  Polyhedral Model to AST (Code Generation) 

Code generation is to determine sets of statements whose execution order is 

interleaved and to create the appropriate loop nest structure. The basic mechanism is, 

starting from the list of polyhedral to scan, to recursively generate each level of the 

abstract syntax tree (AST) of the scanning code. As a result, we could output an abstract 

syntax tree that could be translated in high level language (for example, C language) or 

in a compiler’s IR. 

 

 3.4.1 Extended Quiller é et al. Algorithm 

Earliest contributions [10-12] by Kelly et al. and Quiller é et al. provide the way for 

generating efficient code for many statements with the overlapping polyhedral. The 

algorithm relies on polyhedral operations that could be implemented by library 

supporting, for example, PolyLib or PPL. 

The notations which we would use are a polyhedron list (TS1 , ..., TSn), the 

constraints set C, and the current dimension d. The constraints set labels all loop bounds 

and surrounding conditions. Accordingly, we would introduce the detail of the steps in 
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the algorithm. 

Therefore, the extended Quiller é et al. algorithm would introduce in the following 

Figure 3.8.  

Input: a polyhedron list (TS1, …, TSn), constraints C, the current dimension d. 

Output: the abstract syntax tree of the code scanning 

 

 

 

 

Figure 3.8 Extended Quiller é Algorithm 

In other words, the most straightforward way to generate the resulting program is to 

apply the following simplified steps: 

1. Create the scattering polyhedron for each statement by extending the iteration 

domain with the equalities. 

2. Recursively project the previous polyhedron on the outermost dimensions to 

innermost dimensions to determine the span of each statement. 

3. Recursively perform the intersection, difference and ordering of the previously 

projected polyhedral for all statements to distribute their iterations. 

So far we have introduced the idea of the algorithm, but let us take an example for 

explain how this algorithm works. The original input code has three statements, named 
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S1, S2, and S3. The Figure 3.9 is a polyhedral list, input of the algorithm. The list contains 

three polyhedrons. 

 

 

Figure 3.9 A polyhedron list for code generation input 

And the source code may be like any combination in Figure 3.9. The goal of this 

chapter is how to translate a polyhedral list to a correct source code which code size is 

small. 

 

Figure 3.10 Possible source codes of Figure 3.9 

The initial domains to scan may look like below figure. 

 

 

 

 

Figure 3.11 Initial domains of Figure 3.9 

The first step in the algorithm is to compute projection (P) for each polyhedral on 
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the outermost dimension. The projection list would like Figure 3.12. 

 

 

 

Figure 3.12 Projection list onto the first dimension. 

The second step in the algorithm is to compute separate projections into a new list 

of disjoint polyhedral. Given a list of n polyhedron, start with the first two polyhedral P1  

   TS1 and P2   TS2 by computing (P1 − P2)   TS1 (i.e. S1 alone), (P1   P2)   (TS1, 

TS2 ) (i.e. S1 and S2) and (P2 − P1)   TS2 (i.e. S2 alone). Then for the three resulting 

polyhedron, make the same separation with P3   TS3 and so on. The following figures 

from Figure 3.13 to Figure 3.19 are detail processes. 

 

Figure 3.13 Operation on statement 1 and 2 

 

Figure 3.14 Operation on statement 1 and 2 with statement 3  

 

 

Figure 3.15 Separate them into disjoint polyhedral, the result on first dimension 

   




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The result of projection and separation onto the first dimension domains may look 

like below figure. 

 

 

 

Figure 3.16 Separation result onto first dimension 

So far we have projected the polyhedron onto the first dimension, i, then we 

separate them into two disjoint polyhedral. 

Then we recurse on the next dimension, j, repeating the same previous process for 

each polyhedral list. The two polyhedral lists in first dimension are the following figures. 

 

 

 

The first polyhedron list has many polyhedral could be separated, so we recurse this 

polyhedron list on next dimension, j. And the second polyhedron list has only one 

polyhedron which means that we don’t need to recursively do it. 

We apply the same previous process to the new polyhedron list. Computing 

separated projections into a new list of disjoint polyhedron. We start with the first two 

polyhedrons P1 and P2 by computing difference and intersection operations. Then join 



33 

the P3 to compute the disjoint polyhedron. As a result, we could get the following 

figures. 

 

 

Figure 3.17 Operation on statement 1 and 2 

 

 

 

Figure 3.18 Operation on statement 1 and 2 with statement 3 

 

 

 

 

Figure 3.19 Separation result onto first and second dimensions 

After all recursive steps to get the disjoint polyhedrons, we could return the final 

polyhedron list to generate each level of the abstract syntax tree or source code. For more 

detailed explanations, we refer the reader to the work of Quiller é et al. and Bastoul [13]; 

here we only focus on a simplified example. In this section, we implement a mechanism 

to perform code generation process and translate them into AST. 
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Chapter 4 Experiment 

In this chapter, the experiment environment and the simulation result are described. First, 

the experimentation environment is introduced. Then, the weight parameter, α value, would 

be determined. And finally, benchmark evaluation results discussed in Section 4.3. The 

evaluation results contain the reduction percentage of the execution time. 

 

4.1 Environment 

The CETUS compiler version 1.2 is used as our compiler infrastructure, because the 

CETUS compiler is easier to modify for programmers and provides many available passes 

such as OmpParser, LoopAnalysisPass, etc. For generating optimal OpenMP source code with 

data locality improvement, the CETUS compiler would be modified to analyze the nested 

loops with OpenMP annotations as input of our framework. 

In our simulation, all of the programs are C source codes with OpenMP annotations. In 

addition, benchmarks used in this experiment were selected from NPB2.3-omp (NAS Parallel 

Benchmark) [14] and matrix-related parallel program, such as matrix-multiplication and 

matrix-transport. And the value of parameter α would be set from zero to one in which next 

section would discussed about. 
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4.2 Benchmark Evaluation Results 

In this section, the α value in the score function is determined and our simulation results 

including the performance improvement. The simulation result of the benchmarks for our 

proposed methods are denoted as the T (named by temporal locality), the S (named by spatial 

locality), and the S+T (named by temporal and spatial locality). For comparison, the 

simulation results of the traditional multi-threads execution program (orig) are also depicted. 

And the environment parameter OMP_NUM_THREADS would set to eight for all programs 

which we simulated. Accordingly, eight threads would execute each program in parallel. 

 

4.2.1 Parameter Determination 

α value is the parameter to control the weight between SCL (Spatial Candidate List) 

and TCL (Temporal Candidate List) in our score function. If the α is equal to one, it 

means that the score of each tile size takes only the SCL into account; on the other hand, 

if the α is equal to zero, the score of each tile size takes only the TCL into account, 

apparently. 

We have evaluated α value from 0 to 1 for our implementation, and the result is 

shown in Figure 4.3 to Figure 4.5. From the evaluation results, we observe that the α 

value would change scale slightly with different benchmark, because of the memory 
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access patterns and the cache behaviors differ from each benchmark. Based on our 

simulation results, the α value may be set to 0.25 for the proposed methods. 

 

4.2.2 Performance improvement 

The benchmarks which we would simulate are listing in Figure 4.1. The first five 

programs belong to NPB2.3-omp, and the other programs are matrix-related programs. 

 

Benchmarks Description 

LU LU Factorization 

FT 3-D fast Fourier Transform (FFT) 

MG MultiGrid 

SP Scalar Pentadiagonal 

BT 3-D compressible Navier-Stokes equations 

transport Matrix Transporation 

omp_mm Matrix Multiplication 

mm_unroll Matrix Multiplication with unroll j 

Table 4.1 Description of benchmarks 

LU uses symmetric successive over-relaxation (SSOR) method to solve a 

seven-block-diagonal system in 3-D by splitting it into block lower and upper triangular 

systems. FT contains the computational kernel of a 3-D fast Fourier Transform (FFT). 

MG uses a MultiGrid method to compute the solution of the 3-D scalar Poisson equation. 
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SP solves the finite differences that decouple the x, y and z dimensions. BT solves 3-D 

compressible Navier-Stokes equations. Transport and omp_mm are two widely used 

matrix operations. In addition, we modify the omp_mm to unroll the loop j four times for 

testing the temporal data locality (mm_unroll). 

The experiment results for the different approaches (S, T, and S+T) discussed in 

section 3.3.2.1, 3.3.2.2 and 3.3.2.3 are presented as follows. We have simulated different 

α values for each benchmark which has temporal characteristic. The first experiment 

result is the comparison of original parallel code and tiling parallel code. The results of 

these alternatives are shown in the following Figure 4.1. 

 

Figure 4.1 Evaluation results of origin and tiling 

In Figure 4.1, the Y-axis indicates the execution time percentage, and the X-axis is 

the different benchmarks which be used. By using our proposed method, the execution 
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time percentage is improved mostly by about 33.7% compared to the traditional parallel 

codes. And the performance improvement is 14.1% in average. 

Because the calculations are performed along the diagonal in LU, it does not utilize 

cache line well for either row-major or column-major storage. The performance almost 

does not improve. 

The second experiment result is the comparison of different methods of data locality 

analysis in our work. The results of these alternatives are shown in the following Figure 

4.2. 

 

Figure 4.2 Evaluation results of origin, S, T, S+T and best 

In Figure 4.2, the Y-axis indicates the execution time percentage, and the X-axis is 

the different benchmarks which be used. And the corresponding tile size of different data 
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locality analysis ways is marked above the execution time bar. The best approach means 

that the minimize execution time from all possible tile sizes would be choose for each 

nested loop. It is the ideal execution time which means the most performance 

improvement for all combinations of the tile sizes within each program. 

We could observe the performance results by different data locality analysis ways of 

the mm_unroll parallel program which has temporal characteristic. The spatial method 

could improve 6% performance, and temporal method would loss performance 

significantly but hints the appropriated tile size preference. Therefore, we could select the 

proper α value to get the tile size for better performance result which reduces 33.7% 

execution time. 

The experiment result in Figure 4.3 is one of the nested loops in SP program. The α 

value would not affect the performance, because S and T get the same tile size. 

 

Figure 4.3 The evaluation result of different α values in SP 
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The experiment result in Figure 4.4 is another nested loops in SP program. Different 

α value would affect the performance, but it is difficult to get the performance 

improvement by loop tiling. Unfortunately, loop tiling not always works well. 

 

Figure 4.4 The evaluation result of different α values in SP 

The last experiment result is the execution time for different α value in mm_unroll 
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Figure 4.5 The evaluation result of different α values in mm_unroll 
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 In Figure 4.5, the Y-axis indicates the execution time percentage, and the X-axis is 

the different α value which is chose. And the corresponding tile size of different α value 

is marked above the execution time bar. The performance would improve 33.7% 

execution time if an appropriated α value is set. And an improper α value may cause the 

performance degradation. 

 

4.3 Summary for Simulation Results 

 In this chapter, we presented experiment results for each of our proposed methods. It is 

obvious that the approaches proposed in this thesis are usually effective for reducing 

execution time by using SCL and TCL for an appropriate α value. 

By the statistics, the first data locality analysis method, SCL, could reduce 10.4% 

execution time in average. In addition, we have demonstrated the different results of 

performance improvement in different α values. In this thesis, the α value is set to 0.25 for 

performance consideration for programs. And the last S+T method could improve 33.7% 

performance at most, 14.1% in average. 
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Chapter 5 Conclusions and Future Works 

In this chapter, the conclusions of this thesis are made first, and then the future works of 

this thesis are proposed. 

 

5.1 Conclusions 

In this thesis, we proposed a polyhedral framework to improve the data locality by 

modifying a current compiler backend. The framework included three parts of the 

processes which were translated a C source code with OpenMP annotations (AST) to 

polyhedral model, performed loop transformations, and translated it back to AST. 

From the analysis result shown above, the performance increases 33.7% at most and 

14.1% in average. But the performance doesn’t improve significantly when the array 

sizes in those benchmarks are not very large. Because the cache behavior and the runtime 

variations of multiprocessors are usually unpredictable and difficult to analysis, the 

performance of our method could not achieve the best performance. For these reasons, 

the OpenMP threads number and other execution processes would affect the performance 

dramatically. 
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5.2 Future Works 

The future works of this thesis could be put into three dimensions: to implement more 

transformations in polyhedral model, to consider the multiprocessors environment would 

cause what different effects, to modify the evaluation of tile sizes for getting a better 

performance improvement. 

The first, we could implement other loop transformations[15-16] to make this polyhedral 

model framework more powerful. For example, loop fission, loop fusion and loop unrolling 

may be a choice to implement for improving the performance of the source code. 

The second, executing program on multiprocessors has many unpredictable factors to 

affect the performance. Analyzing and observing the relationship between these factors may 

find out some optimization opportunities and modifications of cost model. 

Finally, it may have chances to improve performance by modifying the evaluation of tile 

sizes, because of the previous simulation results and the relationship between multiprocessors 

factors. Hence, the performance improvement would work well in the future, regardless of the 

thread number which is executing the OpenMP source code and the resource competition. 
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