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Data locality improvement by Polyhedral Model

for Homogeneous Multiprocessors

Student : Shu-Chuan Kao Advisor : Dr. Jyh-Jiun Shann
Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

The parallel programming model on homogeneous multiprocessors includes OpenMP,
MPI, and others. OpenMP is the most widely used in these common parallel programming
models. On the other hand, the performance bottleneck on homogeneous multiprocessors is
usually the memory access within a nested loop. Therefore, programmers would adopt some
loop optimizations to enhance data locality and reduce external memory access times for the
parallel execution on homogeneous multiprocessors. The common techniques of loop
optimizations are loop interchange and loop tiling. The source code of the nested loops would
usually translate to the intermediate representation (IR) for applying the loop optimizations.
After a series of optimizations, IR would translate back to the source code or the executable
program. The common IR includes abstract syntax tree, polyhedral model, and others. Using
polyhedral IR could avoid causing side-effects between transformation orders, such as
increasing the code size and enhancing the transformation complexity.

In this thesis, we present the implementation of a polyhedral source-to-source



transformation framework that could optimize the nested loops for the data locality
improvement. The framework could find the DOALL loops automatically and adopt loop
tiling to enhance the data locality. According to the simulation results, the programs could
increase 14.1% performance in average by performing loop tiling. Moreover, programmers

could develop loop optimizations quickly based on our polyhedral framework.
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Chapter 1 Introduction

1.1 Research Motivation

Homogeneous multi-processors are popular recently and the parallel programming
models such as OpenMP are widely used. The OpenMP is an important method and
language extension for program parallelism. In order to make existing OpenMP
applications to achieve higher performance, we want to improve data locality in nested
loops. Moreover, we not only optimize the data movement and allocation, but also
decrease cache misses in memory hierarchy.

In addition, the growing speed gap between memory and processor makes an
efficient use of the cache more important to get higher performance. Tiling is a critical
optimizing transformation for data locality improvement. It groups points in an iteration
space into smaller tiles (blocks) allowing reuse when the block in a faster memory
hierarchy (e.g. registers or cache).

Because applying syntactic transformations such as abstract syntax tree would
dramatically increase the code size and transformation complexity, this work adopts
another powerful representation, called “Polyhedral model”. In the polyhedral model, the
program is viewed as a “statement centric” structure; therefore many side-effects could be

avoided.



In this thesis, we proposed a source-to-source transformation framework in which

realizes polyhedral model and loop tiling to improve the data locality of nested loops.

1.1.1 Limitation of Syntactic Transformations

Current compilers provide an unstructured search space for syntactic

transformations, i.e., control structures are regenerated after each transformation and it’s

unable to perform a serial of transformations well. There exist some limitations in

syntactic intermediate representations (IR).

Code Size and Transformation Complexity — The code size and transformation

complexity would dramatically increase after several transformations. Consider the

simple synthetic example shown in Figure 1.1 and the analysis depicted in Figure 1.2.

For (i=0; i<M; i++)
Z[i] = 0;
For (j=0; j<N; j++)
Z[i] += (ANIG] + BOIIT*XO);
For (k=0; k<P; k++)
For (1=0; 1<Q; I++)
Z[K] += A[K]IT*YID);

Figure 1.1 Source code for code size and complexity analysis

Syntacitc Polyhedral

(# lines) (# values)

Original code 7 78

Outer loop Fusion 28 (x4.0) 78 (x1.0)
Inner loop Fusion 84 (x12.0) 78 (x1.0)
Fission 78 (x11.2) 78 (x1.0)
Strip-mine 223 (x31.8) 122 (x1.5)
Strip-mine 259 (x37.0) 182 (x2.3)
Interchange 290 (x41.4) 182 (x2.3)

Figure 1.2 Code size and complexity analysis of Figure 1.1



When applying some transformations in the source code in Figure 1.1, the code size

would increase a lot in the syntactic representation. However, when applying same

transformations in the polyhedral representation, only the strip-mining transformation

increases the overall complexity. Because the polyhedral representation consists in a

fixed number of matrices associated with each statement, only the dimension of some

matrices slightly increases. Moreover, neither its transformation complexity increases nor

its code size varies significantly.

Patterns Breaking -- When compilers look for the transformations opportunities

depending on pattern-matching rules, it’s difficult to find the suitable transformation

pattern. As a consequence, prior transformations usually break target patterns for further

ones. Hence, combining different loop transformations would not always lead to the best

result.

Limitations Of Phase Ordering — the phase order of loop transformations is

another challenge to achieve optimal result. Because every transformation would change

the intermediate representation, the opportunity of the following transformations would

decrease.

For these limitations[1], we believe that the polyhedral representation would be an

appropriate way to avoid these side-effects.



1.1.2 Advantage and disadvantage of Polyhedral Model
This polyhedral representation could avoid side-effects addressed above. For
example, it would not increase code size or/and transformation complexity significantly.

Unfortunately, this polyhedral representation is not easy to understand for programmers.

1.2 Research Objective

Many compute-intensive applications often spend most of their execution time in
nested loops. The polyhedral model provides a powerful abstraction on loop
representation in which each statement in an iteration is viewed as an integer point in a
well-defined space called the statement’s polyhedron. With representation for each
statement, it is possible to show the correctness of transformations in a completely
mathematical setting relying on machinery from linear algebra and integer linear
programming.

The task of program optimization for data locality in the polyhedral model may be
viewed in terms of three phases: (1) constructing the loop information from intermediate
representation of the abstract syntax tree to the polyhedral model (2) performing
transformations for data locality improvement in the polyhedral intermediate

representation, and (3) generating the target code from the transformed intermediate



representation of the polyhedral model.

1.3 Organization of this Thesis
The rest of this paper is organized as follows: Section 2 provides the mathematical
background and the data structure for the polyhedral model. Chapter 3 describes the detail
of our framework. Chapter 4 presents the experimental results and discussion follows.

Finally, Section 5 dedicates to the conclusions and the future work planed.



Chapter 2 Background

In this chapter, we give an overview of the polyhedral model, and introduce notations
used throughout the dissertation. In syntactical compilers, two important structuring elements
are the basic block (BB) and the control flow graph (CFG). However, the most important
element in the data structure used in the polyhedral model is the statements (S) in nested

loops.

2.1 Polyhedral Model

The polyhedral model[2-3] is applicable to the nested loops which the data access
and loop bounds are affine functions (means linear function with a constant).

Accordingly, we could adopt the program transformations more efficiently.

2.1.1 Polyhedron
Definition 1 - Polyhedron (a.k.a. Polyhedral). A polyhedron is an intersection of a
finite number of half-spaces. A polyhedron also has a representation in terms of
vertices, rays, and lines, and algorithms like the Chernikova algorithm[4].
Here is an example for the polyhedron. The nested loops in source code may

like Figure 2.1, and the corresponding polyhedron is in Figure 2.2.



j =2 j=N
for (i=2; i<N; i++) ~! . o g j<=N
for (j=2; j<N; j++) TR
. L q
A[I]_pl’ 1 'lllll
2 4o B p—— _]}=2
]_
Figure 2.1 Source code for polyhedron representation B B

Figure 2.2 Corresponding polyhedron of Figure 2.1

Polylib[5] and PPL[6] are two of the libraries[7-8] that provide a range of
functions to perform various operations on polyhedral. In this work, we are always
interested in the integer points inside a polyhedron since the loop’s iterators

typically have integer data types and traverse an integer space.

2.1.2 Iteration Domain
The iteration domain represents the nested loops bound constraints, including
upper bounds and lower bounds of an iterator. The iteration domain of a statement

S) is defined by:
© ’ Dsz{xwez”,szc}

We recall the previous simple example in Figure 1.1.

For (i=0; i<M; i++)

S1 Z[i] = 0;
For (j=0; j<N; j++)
Sz Z[i] += (AlilD] + BOI* XD,

For (k=0; k<P; k++)
For (1=0; 1<Q; I++)
Ss Z[k] += A[K][IT*Y[ID);

S1 (Statement one) belongs to one-dimensional iteration domain, meanwhile,

S, and S; belong to two-dimensional iteration domains. The global parameters in



this nested loop are M, N, P and Q. As a result, the matrix of iteration domain has
one column for each iterator and each global parameter, here respectively i, j and M,
N, P, Q. Otherwise, we also keep one column for storing a constant value.

Moreover, the loop’s iteration domain is bounded by affine inequalities which
we called it loop bounds. Each row of the matrix presents an affine inequality. It
means that for each iterator at least has an upper bound and a lower bound.
Therefore the iteration domain in S1 has two rows and six columns.

Hence, the iteration domain of S1 is 0% _ [ ]! I\é gOPOT 8]

~|1-11000-1

The first row presents Ixi+0OxM +0xN +0xP+0xQ+0x1>0
, which means the lower bound in loopiis i >0 . Moreover, the second row
presents —1xi+1xM +0xN +0xP+0xQ+0x—-1>0, which means the

upper bound in loop jis i <M —1. Accordingly, the iteration domain of S, and S;

i j MNPQ1 i jMNPQ1

is 1 0/0000|0 1 0/0000/|0
DSz -[=10/1000/-1 pDSs_|-10/0010-1

~10 1/0000 0 100000
0 -10100/|-1 and 0-10001-1

The first two rows of the matrix are loop i’s constrains, and the others are loop j’s.

2.1.3 Schedule matrix
The schedule matrix characterizes the execution order of each statement within

the nested loops. To achieve that, we define a timestamp to record execution



sequence of each statement. The schedule matrix 0° of a statement is defined by

0 - 0 |ps]
A:El... Sd 0
0 e 0 ﬂs
1
e = Ags,lz"Azs_,d 0
A1 ASal O

0O --- 0 ﬁds_

Let d° be the depth of the nested loops, which means how many levels from
the outermost loop to the innermost loop. We call the outermost level of the nested
loops depth 0. And AS is the iteration vector, which means this statement
surrounding by which iterators.

Let B° be the static statement ordering vector, which represents the timestamp.
It points out the execution ordering of this statement. The first execution part would
be label as 0, and the second execution part would be label as 1, and so on. Next, we
trace this nested loop recursively, and label each timestamp to all statements and
loops. When the whole nested loop was traversed, we could specify the execution
order for all statements in this nested loop.

So we recall the previous simple example again in Figure 1.1.

For (i=0; i<M; i++)
Z[i]=0;
For (j=0; j<N; j++)

Z[i] += (A[i]0] + BOIOTX[D);

For (k=0; k<P; k++)

S For (1=0; 1<Q; I++)
Z[K] += ALK][IT*Y[);

S1

Sz

0
The schedule matrix of S1 is 6 :L%

0
8]. The left-side of the matrix means that



this statement surrounding by loop i, and the #° in the right-hand side of the matrix
is [0, 0]. It means the stamementl in depth O is the first part to be executed, and it’s
also the first part to be executed in depth 1.

Accordingly, the schedule matrix of S2 and S3 is

00|0 001
S 10/0 S 10/0
0°2=/00|1 073 =/00|1
010 010
00|0 00/0

We could translate the source polyhedron into the target polyhedron containing
the same points but in a new coordinate system with a new execution order. As a
result, we could distribute the iterations in space, i.e. across different processors,
order them in time, or both. In some specify transformations, we would modify this

matrix to adopt loop transformations.

2.1.4 Access Function
The array reference represents all array accesses in left-hand side or right-hand
side of each statement. In other words, we store left-hand side or right-hand side
array information of each statement in matrixes.
For each statement S, we define a pair of sets hs>and ./ ns° . Each pair
represents an array reference in the left-hand side or right-hand side of the statement.

The access function f is defined by a matrix F such that

10



f(i) = F x[i, g, 1]"
f is a function of loop iterators (i), local variables and global parameters (g),

and a constant value (1). So we recall the previous simple example in Figure 1.1.

For (i=0; i<M; i++)

S; Z[i]=0;
For (j=0; j<N; j++)
S Z[i] += (ALIG] + BOIGTXI);

For (k=0; k<P; k++)
For (I=0; 1<Q; I++)
S3 Z[K] += ALK][ITYTID);

Because the right-hand side array access of S1 is Z[i], we store the access

i MNPQ 1
functionas < pSl= {(Z [1\0 000|0 ])} which means that the S; refers to
the array Z and after the comma is the parameter part. In addition, the left-hand side

array access of S1 is the empty set, we store the access function as .’ hsslz{ }

Accordingly, we could store the information for S2 and S3 as below,

(z,|10]0000/0]),

U hs>2 {
=1 (z.l10100000 ] [4213399])
(B,[ 0o00] 8D,(X,[01ooooo])}
v w2 ={(,[10]0000/0])}
e =((2.[10/0000j0]), (43318388 3] ) (x. [0 2/00000])}

These four equations mean the left-hand side and right-hand side array access’s

names and parameters used in each statement.

2.2 Optimization for Data Locality

The growing speed gap between memory and processor makes an efficient use of

11



the cache more important to reach high performance. One of the most important ways to
improve cache behavior is to increase the data locality, such as making lower cache miss
rates. Data locality could be improved by reordering the memory accesses so that the
same array elements are accessed closer together.

Data use and reuse often occur in different iterations of the same loop. Two
traditional transformations that improve the data locality in a single iteration are loop
tiling and loop interchange.

Loop interchange, as known as loop coalescing, is to permute the order of the loops
to modify the memory traversal order. If the array elements from the same row are stored
consecutively ( for example : a[1,1], a[1,2], a[1,3]... ), namely row-major. If we access
array elements from the same column together ( for example : a[1,1], a[2,1], a[3,1]... ),

called column-major.

j row-major column-major

W =

(a) (b)

Figure 2.3 Different memory traversal orders. (a) row-major (b) column-major

Therefore, if the storage way is different with the access way, we could exchange

the order of two iterators of the loops.

Loop tiling is applied when the long-distance reuses occur between different

12



iterations of a single outer loop. The principle idea is to process less datum in one
iteration of the loop, so that datum could be retained in the cache between several
iterations of the loop.

We partition the iteration space into tiles that may be executed concurrently on
different processors. In other words, grouping points in an iteration space into smaller
tiles allows reuse datum when the tile fits in a faster level of the memory hierarchy, such
as the cache. The following Figure 2.4 is an example to divide the matrix into

sub-matrices, or tiles.

Ll
H

Figure 2.4 2x2 tiling example

()

13



Chapter 3 Implementation of Data Locality Transformation and
Code Generation Algorithm

3.1 Overview
In this thesis, our goal is to modify a compiler framework for data locality
improvement of OpenMP source code using polyhedral model. The flowchart of the
framework may like Figure 3.1.
oo o, — S | "L

kg el \ Transformation

(data locality improvement
e.g. tiling, interchange)

1 e Ge‘n’;’:’a?ion/
OMP)
Figure 3.1 The flowchart of our framework

In the first part of this chapter, we would introduce how to translate from the
abstract syntax tree of CETUS[9] to the matrices of polyhedral model. In the second part,
the nested loops transformations for data locality would be introduced. Also, array
accesses analysis in statements would be mention. In the last part of this chapter, we
would introduce how to translate the matrices of polyhedral model back to abstract

syntax tree of CETUS.

14



3.2 AST to Polyhedral Model

In this section, we want to translate the intermediate representations from the
abstract syntax tree of CETUS to the matrices of polyhedral model. The input is an
OpenMP source program. The output is the data structure in polyhedral model.

For CETUS compiler supporting, we could get the abstract syntax tree from the
OpenMP source code. Accordingly, we need to extract loop information from this abstract
syntax tree and keep the necessary information in polyhedral model’s matrices, which
were described in previous section.

First, we recognize all nested loops with OpenMP annotation in source program. For
each nested loops, we use DepthFirstlterator in CETUS compiler to trace from the
outermost level to the innermost level. Then we could get the information from each level
of the nested loops recursively, and store them to the data structure (2. 5. ~4) in
polyhedral model for each statement.

To achieve that, we propose an algorithm for scanning the nested loops in Figure

3.2.
Input : a nested loop (£) with OpenMP annotation

Output : data structure (2, s, #) in Polyhedral Model

1. Trace each level of £, store the orderto s

2. If the node is loop, store the iterator and bounds to 2
3. If the node is statement, store the array access to #
4. For each Z— inside, apply step 1 to 3 to inside

Figure 3.2 The algorithm for scanning the nested loops

15



It means that when tracing the nested loops in abstract syntax tree from the

outermost level to the innermost level, we should record the execution order at the same

time. In addition, if this node is a loop form, we could use the method of

getlInitialStatement() ~ getCondition() and getStep() to get the information of the loop. For

example, index variables, lower bounds, and upper bounds are all information which we

need to store. Otherwise, if this node is a statement form, we could use the method of

getBody() to record all array accesses in this statement. Then we trace to the inner level

recursively until all nodes in this nested loops were traced.

Here is an example in Figure 3.3 to explain how it works. We could follow the

blue arrowhead to trace all nodes in the loop. At first, we encounter a for-form node and

record the information of the iteration domain and the schedule matrix.

=) For (i=0; i<100; i++) D: Iteration Domain
S1 Z[i]=0; 0: Schedule matrix
For (j=0; j<150; j++)
52 Z[i] += (A[I0] + BOIT™XLD): [1]0 _
s3 B[i] = 6; D —H 99} 0 =[0]

(a) (b)

Figure 3.3 (a) Source code for explaining the polyhedral construction (b) temporary result

Then we trace the inner level of the loop, and encounter a statement-form node. So

we modify the schedule matrix and store all temporary information to the S;, as shown in

Figure 3.4.
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For (i=0; i<100; i++) 11
s1 B 7] =0 D% :{11 ‘ 909}
For (j=0; j<150; j++)
S2 Z[i] += (A[iJ0] + BOITX[D); s 0|0
$3 BJi] = 6 051 = é 8
“ns*t={(z,[1)0])}
D% ] 6=fo0] onsi=1 )

Figure 3.4 Polyhedral data structure for statement 1

And following figures are the construction process step by step.

For (i=0; i<100; i++)

S =0,

1
B For (j=0; j<150; j++) Lo
52 Zi] += (ATI][] + BIX01): D=|g1!0 0 =[01]
83 B[i] = 6; 0 -11149
i j 1
For (i=0; i<100; i++) 100
S1 Zli]=0; D%t %
For (j=0; j<150; j++) 0 —1/149
s2 B 7[j)+= (AGG] + BUIGIX)) 0010
$3 Bli] = 6; 10lo
052 ={00/1
010
10[0 00/0
D=|51 o | 8=010 | w*2={(z [10[0])}
0 -1149
.///hsszzhz,[mo]),[A,[é?gD,(B,m8”(x,[010])}

] 1
For (i=0; i<100; i++) 100
st Zi=o Dss{o“{ 909]
For (j=0; j<150; j++) 0 —1149
S2 Z[i] += (A[iJ0] + BOITX[D); 00/0
s3 B Bjjj=6; ] {100
0% =|00/1
010
10/0 001
~10 |99
D=|5 1 0| 0=011 3= {(B,[10]0
ng] w2 {(8.[10/0])}
///hss3:{ }
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As a result, when we trace all nodes in this nested loop by recursively applying these

three steps in the algorithm of Figure 3.2, all statements’ information we need is recorded.

3.3 Data Locality Transformation in Polyhedral Model
3.3.1 Loop Interchange (a.k.a. coalescing)

In this section, our goal is to change the order of the loops if the traversal way is
different to the storage way. When we get a nested loop, we should analyze the array
access in this loop to decide does it need to adopt the loop interchange.

Because C language belongs to row-major storage, we should make sure that the
array access pattern in the nested loops would follow this rule. If we encounter a
column-major array access, we should apply the loop interchange. There is an example

to explain how to adopt the loop interchange shown in Figure 3.5.

I C A
Source code: terator : j i
0

array A is col-major 0 -1

0
-3
0
-6
array access v

Exchange column 1 and 2

(a)

for (3=0; j<=3; j++) Domain:

for (i= 0; i<=6; i++) |:‘> 1
DS{

A[i] [J+1]=A[4i] [J1+B[3];

Iterator : i j

Source code:
Domain:

for (i= 0; i<=6; i++) 01
for (3=0; j<=3; j++) DS—{O 1

A[i] [J+1]=A[i][]]1+B[]3];

(b)
Figure 3.5 (a) Source code before loop interchange (b) Source code after loop interchange
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The left-hand side of the Figure 3.5 (a) is the nested loops which we would analyze,

and the right-hand side of the Figure 3.5 (a) is the corresponding data structure and

processes which we should perform. Because the memory access of array A belongs to

column-major traversal way which is violating the row-major storage way, we exchange

the corresponding columns in the domain iteration and the iterator matrix. As a result, we

could get the source code and the data structure after loop interchange in the Figure 3.5

(b).

3.3.2 Tiling (a.k.a. blocking)

Loop tiling is one of the loop optimizations for reducing the execution time of the

nested loops which access a lot of array elements. Typically, the cache miss happened

when too much other datum was accessed between the use and reuse of same specific

data. It means that partitioning a loop's iteration domain into smaller tiles or blocks could

ensure datum used in a nested loop sustains in the cache (or a faster level of the memory

hierarchy). Thus fitting array elements of a tile into cache size could enhance the cache

reuse frequency and eliminate cache size requirements.

To achieve that, we propose a mechanism to improve spatial data locality and

temporal data locality in parallel programs. Spatial data locality refers to the use of data

elements within relatively close storage locations. Accordingly, it could be improved by
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evaluating the average memory cost per tiles. Temporal data locality refers to the reuse

of specific data within relatively a short period of time. Therefore, it could be optimized

by evaluating the datum reuse amount per tiles through analyzing array access within

nested loops.

So far we have known that iteration-domain tiling (or blocking) is a well known

loop transformation, but how to decide the tile sizes for a nested loop is a challenge. If

the tile sizes are too large, the accesses of array elements within the nested loops would

cause the cache miss frequently. If the tile sizes are too small, the improvement in data

locality due to the loop tiling would not be significant and might have the extra

computation overhead of inner tiled loops.

Matrix Multiplication
1000
o
€ 800
=
c
2 600
e
=
b
x 400 -
o
200 -
§Q,b Q\Q/" &?j’ &Qj’ x'g}\é’ ‘.0\0(’ ’&Qf’ x'\}\é’ ;0\?:’
R ¥ N A T 2
© 4 2 o 3+ o+ S
NS % © B 5o N W
N v © N
N
Tile Size

Figure 3.6 Performance of Matrix Multiplication on different tile size

On above Figure 3.6, we could realize that the different tile sizes affect performance
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dramatically. Therefore, an appropriated tile size would lead a better cache behavior and
a lower execution time.

In this thesis, we proposed a mechanism to choose an appropriated tile size from
spatial and temporal analysis results. In the next two sections, we would introduce the
two methods in detail. And the tile sizes for the nested loops, loop i and loop j which

would be tiled respectively, are Si and Sj.

3.3.2.1. Spatial data locality analysis

Optimal tiling for spatial data locality refers to the problem of selecting the tile
sizes that minimize the average memory cost which directly measure the execution
time. In addition, we introduced the cost model which was proposed by Sarkar and
Meggido, also used in the IBM XL FORTRAN compiler for evaluating tile sizes.
This cost model is applicable to two or three level loops.

Our strategy is to estimate the average memory cost and record it for each tile size.
The goal is to pick the tile sizes which minimize the memory cost, in other words
the minimal total execution time. And the objective function used in the context of
the tile size selection is all functions of the tile variables, cache capacity and cache
line size, etc.

The memory cost of a tile(S) is calculated as  p¢ x DL(S) +p, x DP(s)
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, Where DL(s) is the estimated number of distinct cache lines accessed by a single
tile and DP(s) is the estimated number of distinct pages accessed by a single tile.
Given the hardware parameters: (1) the cache line size, L, (2) the effective
cache size, ECS, (3) the TLB page size, TLB, and (4) the miss penalties of cache
and TLB, H¢ and #p . Then we could calculate the memory cost of a tile by the
previous hardware information to. The detailed formulation would be showed

below.

calculate Mc < DL(Si,Sj) +pp x DP(s;,sj) per tile size
Sisj
subjectto DL(s;j,s;) < Effective cache size (# lines of cache)

1<s;j,sj <loop upper bound

Si,Sj e/

DL, DP : number of distinct cache lines and pages touched by a tile

uc, up : cache and TLB miss penalties

For calculating average memory cost, we could divide the memory cost to tile
volume, which means Si*Sj. Then the SCL (Spatial Coulddidate_List) would keep
these average memory costs for each tile size. Accordingly, section 3.3.2.3 would
select the tile size by referring SCL and TCL (Temporal_Coulddidate_L.ist).

So far we have introduced the method to calculate the average memory cost for
each tile size. Moreover, let’s take an example to explain how it works. Figure 3.4

is a nested loop with two loops (loop i and loop j)
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Source code :
real*8 A[400,400]
real*4 B[400,400],C[400,400]
fori=1, 400
forj=1, 400
Alk,i] = Alk,i] + B[i,j] x Clj.]

Figure 3.7 Source code of spatial data locality analysis

The iteration domain may look like the gray grids in following figure. The

range of dimension i is from 1 to 400, same as dimension j. And the tile size Si*Sj

may be 8*8, 16*16, or 4*4 (such as yellow block) in the following figure.

400

Given the cache capacity is 4K bytes, hence, the cache capacity constraint
could be written as:DL(s;,s;) <4096 . The cache capacity constraint ensures that
the same datum could be accessed within a tile. In addition, other hardware
information would be ¢ =50 cycles, #p=260 cycles, L=128 bytes, L1 cache
size=32K bytes, and it’s column-major storage. These given information would
vary on different machine.

Hence, the number of distinct cache lines accessed by tile sizes of Si*Sj is
estimated as follows:

DL(si,Sj) = si +[4Si-‘sj J{f;ﬂ , 1<sj,5; <400

We could view the statement in this nested loop as
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A[1,i] = A[1,i] + B[i,j] x C[j,1]

The first array access in the statement is A[1,i], and it would use elements from

A[1,1~Si]

A[1][1~Si]. Graphic representation would show in the right-side i

figure. In this case, we need Si distinct cache lines to deal with ;

all array accesses of array A.

The second array access is BJij], and it would use elements from

‘B[1~Si,1~S]]

A[1~-Si ][1~Sj]. Graphic representation would show in the ;

4s;
right-side figure. In this case, we need [12;3]51' distinct cache

lines to deal with all accesses of array B.
The last array access is C[Sj,1], and it would use elements from A[1~ Sj][1].

Graphic representation would show in the right-side figure. In j C[1-~Sj1]

4s;
this case, we neeo( 122;} distinct cache lines to deal with all

accesses of array C.

4s; 4Sj __ . . e
Si+|——ISi+|-—=
As aresult, s; [1281 j [1281 distinct cache lines would be required within a
single tile. That’s how DL(s;j,s;) be calculated.

On the other hand, the number of distinct pages accessed by a tile of Si*Sj

iterations are estimated as follows:

DP(Si,Sj): {8x4005iw+[4si+4x4005j-‘ {451-

4096 4096 4096—| ' Lesisj <400

The way to calculate in DP is similar to the way to calculate in DL, so we
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e x DL(s;,5;) +1p % DP(5;.5,)
SiSj

would skip this detail process. As a result, the value of

would be stored in SCL (Spatial Candidate List) for each tile size.

3.3.2.2. Temporal data locality analysis

For each tile size in SCL, we analyze the temporal data locality as well. In
other words, calculating the reuse times across the two-dimension iterations. If the
indices of the array access belong to innermost two levels’ variable (respectively i
and j), we would calculate the reuse amount for each array by the following
equation:

reuse amount = ., (Si-idiff)(Sj-jdiff)

Sj means the first tile size, and Sj means the second tile size. The value of idiff
represents how many across reuse happen when the j dimension is fixed. And the
value of jdiff represents how many across reuse happen when the i dimension is

fixed. There is a simple example to explain the idea shown as the following figure.

Source code :
for (m=0; m<100; m++)
for (i=0; i<100; i++)
for (j=0; j<100; j++)
Alm][i]= Alm][i+1]+B[2][];
CliliI=B[2]j+2]+C[i+2][j+3];
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If the tile size is 8*8, the reuse amount would be calculated like following

equations. . Iteration Domain

A[L][1], A[1][i+1]

(Si-idiff)*Sj = (8-1)*8

Iteration Domain

B[1]10], BL110+2] :

(Sj-jdiff)*Si = (8-2)*8

Iteration Domain

CIi10l, Cli+2][+3] :

(Si-idiff)(Sj-jdiff) = 6*5

Therefore, the total reuse amount is 134.
As a result, we would store these values in TCL (Temporal Candidate List) for

each tile size.

3.3.2.3. Combination with Spatial and Temporal data locality

In the section 3.3.2.1, we have calculated the average memory cost for each tile
size and store in SCL (Spatial Candidate List). Moreover, we also have calculated
the reuse amount for each tile size in the previous section 3.3.2.2 and store in TCL
(Temporal Candidate List). Accordingly, we would select the final tile size by

reference these two values.
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The first problem we should conquer is that the smaller memory cost is better,
but the larger reuse amount is better. Because there are the opposite directions, we
need to normalize these two different kinds of values with different ways to make
them in the same direction.

We normalize each average memory cost to the minimal average memory cost

like the following equation:

TileSize. ot —min TileSize gst
min TileSizegosy 0 < NormSpat

NormSpat =

The normalized spatial value would be a constant, which is larger than zero.

Typically, the smaller value is the better.

On the other hand, we normalize each reuse amount to the maximal reuse

amount like the following equation:

max TileSize o se—TileSize, g ge

NormTemp = ==
maxTileSize o se

0 <TempSpat <1

The normalized temporal value would be a constant, which is between one and

zero. Typically, the value smaller is better, too.

The second problem we should conquer is how we prefer spatial analysis or

temporal analysis. In order to choose how much percentage should take from spatial

analysis, we imply the weight (o value) to our model. Therefore, we calculate the

score to combine spatial and temporal analysis. The equation would be following:

score = a * NormSpat + (1-a) - NormTemp 0<a<il
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And thus, we choose the tile size which has minimal score to be the final tile

size in tiling optimization.

3.4 Polyhedral Model to AST (Code Generation)

Code generation is to determine sets of statements whose execution order is
interleaved and to create the appropriate loop nest structure. The basic mechanism is,
starting from the list of polyhedral to scan, to recursively generate each level of the
abstract syntax tree (AST) of the scanning code. As a result, we could output an abstract
syntax tree that could be translated in high level language (for example, C language) or

in a compiler’s IR.

3.4.1 Extended Quillere et al. Algorithm

Earliest contributions [10-12] by Kelly et al. and Quiller’e et al. provide the way for
generating efficient code for many statements with the overlapping polyhedral. The
algorithm relies on polyhedral operations that could be implemented by library
supporting, for example, PolyLib or PPL.

The notations which we would use are a polyhedron list (75: . .... Tsn), the
constraints set C, and the current dimension . The constraints set labels all loop bounds

and surrounding conditions. Accordingly, we would introduce the detail of the steps in
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the algorithm.

Therefore, the extended Quillere et al. algorithm would introduce in the following

Figure 3.8.

Input: a polyhedron list (Tsy, ..., Tsy), constraints C, the current dimension d.
Output: the abstract syntax tree of the code scanning

1. Compute for each polyhedron Tg,, its projection P; onto the
outmost d dimensions. Consider the new list of P; — Tg;,

2. Start with Py — Tg, and P» — Tgs,, and compute
(P1 — PQ) - Tsl, (Pl m PQ) — (Tsl. Tsl) and
(Py — P1) — Ts,, continue with P3 — Tg,.

3. Order according to lexicographical order.

4. foreach P — (Ts,, -+ . Ts,.),
4.1 Apply constraint CNP to Ts,, -+, Ts,
4.2 recurse with list Ts,,--- . Ts, and dimension d + 1

5. For each P — (inside), apply steps 2 to 4 to inside.

Figure 3.8 Extended Quiller’e Algorithm

In other words, the most straightforward way to generate the resulting program is to

apply the following simplified steps:

1. Create the scattering polyhedron for each statement by extending the iteration

domain with the equalities.

2. Recursively project the previous polyhedron on the outermost dimensions to

innermost dimensions to determine the span of each statement.

3. Recursively perform the intersection, difference and ordering of the previously

projected polyhedral for all statements to distribute their iterations.

So far we have introduced the idea of the algorithm, but let us take an example for

explain how this algorithm works. The original input code has three statements, named
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S1, Sz, and Sz. The Figure 3.9 is a polyhedral list, input of the algorithm. The list contains

three polyhedrons.

1<i<n
Tslz{ . LT

Jj =i

1</ <n
Tsz_{f'éjén

1<i<mAmZ=>=n
T53: -

j=n

Figure 3.9 A polyhedron list for code generation input
And the source code may be like any combination in Figure 3.9. The goal of this

chapter is how to translate a polyhedral list to a correct source code which code size is

small.

fori =1ton fori=1ton{
if (i==j) S1 if (i==j) S1

fori=1ton forj=iton
forj=1ton e

S2 }

fori=1 tom fori=1tom

if'(jJ==n) S3 if (j==n) S3

Figure 3.10 Possible source codes of Figure 3.9

The initial domains to scan may look like below figure.

o Operation of S1
= Operation of S2
x Operation of S3

Ja

n| & & & & g x X
" e & 9
¢ o

21 & &

1 *
1 2 n m i

Figure 3.11 Initial domains of Figure 3.9

The first step in the algorithm is to compute projection (2) for each polyhedral on
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the outermost dimension. The projection list would like Figure 3.12.

Project onto first dimension -i

Pir=1<i<n
P,=1<i<n

Pi=1<i<mAm2Z>=n

Figure 3.12 Projection list onto the first dimension.

The second step in the algorithm is to compute separate projections into a new list

of disjoint polyhedral. Given a list of n polyhedron, start with the first two polyhedral P,

—>Ts; and P, —Ts; by computing (P; — P,) —>Ts; (i.e. Sy alone), (P1 M P2) —>(Tsy,

Tsp ) (i.e. Sy and Sp) and (P2 — P1) —Ts, (i.e. Sp alone). Then for the three resulting

polyhedron, make the same separation with Pz=> Ts3 and so on. The following figures

from Figure 3.13 to Figure 3.19 are detail processes.

(Pr—P2) — Ts 0
(PLNP2) —(Ts,.Ts,) = (1 <i<n)
(P2 — P1) — Ts, )|

Figure 3.13 Operation on statement 1 and 2

((PLNP2) = P3) = (Ts,.Ts,) 0
((Plﬂpg)ﬂp3)H(T&.TSQ.TSS) : (].S!Sﬂ)
(P3 — (PN P)) — Ts, L (n+1Zi<m)

Figure 3.14 Operation on statement 1 and 2 with statement 3

To recurse with:
> (1 <i< n) - (Tsl.- TS:;! TSS)
> (n4+1<i<m)— Ts,

Figure 3.15 Separate them into disjoint polyhedral, the result on first dimension
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The result of projection and separation onto the first dimension domains may look

like below figure.

o Operation of S1
e Operation of S2
x Operation of S3

T4 sis2ands3 _ S3
n- | & & & &K ¢| X X
s |le & e &
. . o
2 * B
11| =
1 2 -+ nleeem! i

Figure 3.16 Separation result onto first dimension
So far we have projected the polyhedron onto the first dimension, i, then we
separate them into two disjoint polyhedral.
Then we recurse on the next dimension, j, repeating the same previous process for

each polyhedral list. The two polyhedral lists in first dimension are the following figures.

Recurse with: 1</ < A ~
1g i<n Recurse with: T53—{{1+ =f=mam=n
Ts, = j= Jj=n
<< There is only one polyhedron to consider (no change)
{5
1 g <
Ts, = { j=

The first polyhedron list has many polyhedral could be separated, so we recurse this
polyhedron list on next dimension, j. And the second polyhedron list has only one
polyhedron which means that we don’t need to recursively do it.

We apply the same previous process to the new polyhedron list. Computing
separated projections into a new list of disjoint polyhedron. We start with the first two

polyhedrons P; and P, by computing difference and intersection operations. Then join
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the P; to compute the disjoint polyhedron. As a result, we could get the following
figures.

(PLNP2)— (Ts,.Ts,) - (1<i<nAj=i)
(P2—P1) = Ts, c (1<i<nAi+1<j<n)

{ (Pr—P2) — Ts

Figure 3.17 Operation on statement 1 and 2

{«Pmpgpg)ﬂrsl.rsg) (Q<i<nnj=inj#n)
(PLNP)NP3) = (Ts,.Ts,. Ts,) = (1<i<nANi=nAj=n)
(Ps—(P1NP2)) = Ts, 20
(P2 — Py) — P3) — (Ts,) C (1<i<nhi+1<j<n—1)
{((PQ—P1)0P3)—.>(T32.T33) (1 iSnANI+1ZjAj=n)
(P3—(P2—FP1)) = Ts; 0

Figure 3.18 Operation on statement 1 and 2 with statement 3

o Operation of S1
e Operation of S2

_x Operation of 53
Ji

i A el
L ooo//g

>
1 2 -+ ne--m' i

Figure 3.19 Separation result onto first and second dimensions
After all recursive steps to get the disjoint polyhedrons, we could return the final
polyhedron list to generate each level of the abstract syntax tree or source code. For more
detailed explanations, we refer the reader to the work of Quiller’e et al. and Bastoul [13];
here we only focus on a simplified example. In this section, we implement a mechanism

to perform code generation process and translate them into AST.
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Chapter 4 Experiment

In this chapter, the experiment environment and the simulation result are described. First,
the experimentation environment is introduced. Then, the weight parameter, o value, would
be determined. And finally, benchmark evaluation results discussed in Section 4.3. The

evaluation results contain the reduction percentage of the execution time.

4.1 Environment

The CETUS compiler version 1.2 is used as our compiler infrastructure, because the
CETUS compiler is easier to modify for programmers and provides many available passes
such as OmpParser, LoopAnalysisPass, etc. For generating optimal OpenMP source code with
data locality improvement, the CETUS compiler would be modified to analyze the nested
loops with OpenMP annotations as input of our framework.

In our simulation, all of the programs are C source codes with OpenMP annotations. In
addition, benchmarks used in this experiment were selected from NPB2.3-omp (NAS Parallel
Benchmark) [14] and matrix-related parallel program, such as matrix-multiplication and

matrix-transport. And the value of parameter 0. would be set from zero to one in which next

section would discussed about.
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4.2 Benchmark Evaluation Results

In this section, the O value in the score function is determined and our simulation results

including the performance improvement. The simulation result of the benchmarks for our

proposed methods are denoted as the T (named by temporal locality), the S (named by spatial

locality), and the S+T (named by temporal and spatial locality). For comparison, the

simulation results of the traditional multi-threads execution program (orig) are also depicted.

And the environment parameter OMP_NUM_THREADS would set to eight for all programs

which we simulated. Accordingly, eight threads would execute each program in parallel.

4.2.1 Parameter Determination

Ol value is the parameter to control the weight between SCL (Spatial Candidate List)

and TCL (Temporal Candidate List) in our score function. If the o is equal to one, it

means that the score of each tile size takes only the SCL into account; on the other hand,

if the o is equal to zero, the score of each tile size takes only the TCL into account,

apparently.

We have evaluated o0 value from 0 to 1 for our implementation, and the result is

shown in Figure 4.3 to Figure 4.5. From the evaluation results, we observe that the O

value would change scale slightly with different benchmark, because of the memory
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access patterns and the cache behaviors differ from each benchmark. Based on our

simulation results, the o value may be set to 0.25 for the proposed methods.

4.2.2 Performance improvement

The benchmarks which we would simulate are listing in Figure 4.1. The first five

programs belong to NPB2.3-omp, and the other programs are matrix-related programs.

LU LU Factorization
FT 3-D fast Fourier Transform (FFT)
MG MultiGrid
SP Scalar Pentadiagonal
BT 3-D compressible Navier-Stokes equations
transport Matrix Transporation
omp_mm Matrix Multiplication
mm_unroll Matrix Multiplication with unroll j

Table 4.1 Description of benchmarks

LU uses symmetric successive over-relaxation (SSOR) method to solve a

seven-block-diagonal system in 3-D by splitting it into block lower and upper triangular

systems. FT contains the computational kernel of a 3-D fast Fourier Transform (FFT).

MG uses a MultiGrid method to compute the solution of the 3-D scalar Poisson equation.
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SP solves the finite differences that decouple the x, y and z dimensions. BT solves 3-D
compressible Navier-Stokes equations. Transport and omp_mm are two widely used
matrix operations. In addition, we modify the omp_mm to unroll the loop j four times for
testing the temporal data locality (mm_unroll).

The experiment results for the different approaches (S, T, and S+T) discussed in
section 3.3.2.1, 3.3.2.2 and 3.3.2.3 are presented as follows. We have simulated different
a values for each benchmark which has temporal characteristic. The first experiment
result is the comparison of original parallel code and tiling parallel code. The results of

these alternatives are shown in the following Figure 4.1.

#orig wtiling
100%

N7 Nws T T 7

XN NN
R LTS
S ANANAANMNN &

N AN NN NANNAN
M i EEEi
g ANNANNANNDNNANNNANN
S a% NN N ﬁ\ﬁﬁﬁﬂﬂ
3 N N N N N N AN A
E NANANNNANNA
S ANANANANANANNANNA
M EEEEEEE!

-
c
n
—

<

G

SP BT

Benchmarks

transport  omp_mm mm_unroll

Figure 4.1 Evaluation results of origin and tiling

In Figure 4.1, the Y-axis indicates the execution time percentage, and the X-axis is

the different benchmarks which be used. By using our proposed method, the execution
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time percentage is improved mostly by about 33.7% compared to the traditional parallel

codes. And the performance improvement is 14.1% in average.

Because the calculations are performed along the diagonal in LU, it does not utilize

cache line well for either row-major or column-major storage. The performance almost

does not improve.

The second experiment result is the comparison of different methods of data locality

analysis in our work. The results of these alternatives are shown in the following Figure

4.2.
#orig 1 Spatial %= Temporal —S+T ::best
100% , 5 o -
90% :ﬁ: 7 % :ﬁ %
A 7 S os
80% ? = = = % 186
N 7 S A I
s 7o = S AR 7
£ 60% N~ B AE A
= sox N =8 N [SH
s 0 % % 3= =g %
S % % = 7
S a0% 7 Z NS = 7
“ i
3 N 7 \E .
S 30% & “ = = %z
N EREIK
EENEIKE
Z 2 T 2
10% % =
IS 7
0% I..i [
SP BT transport omp_mm mm_unroll
Benchmarks

Figure 4.2 Evaluation results of origin, S, T, S+T and best

In Figure 4.2, the Y-axis indicates the execution time percentage, and the X-axis is

the different benchmarks which be used. And the corresponding tile size of different data
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locality analysis ways is marked above the execution time bar. The best approach means
that the minimize execution time from all possible tile sizes would be choose for each
nested loop. It is the ideal execution time which means the most performance

improvement for all combinations of the tile sizes within each program.

We could observe the performance results by different data locality analysis ways of
the mm_unroll parallel program which has temporal characteristic. The spatial method
could improve 6% performance, and temporal method would loss performance
significantly but hints the appropriated tile size preference. Therefore, we could select the
proper a value to get the tile size for better performance result which reduces 33.7%

execution time.

The experiment result in Figure 4.3 is one of the nested loops in SP program. The O,

value would not affect the performance, because S and T get the same tile size.

“ orig W tiling

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

S:128x16

)

.

P

execution time %

o value range

Figure 4.3 The evaluation result of different a values in SP



The experiment result in Figure 4.4 is another nested loops in SP program. Different

o value would affect the performance, but it is difficult to get the performance

improvement by loop tiling. Unfortunately, loop tiling not always works well.

= orig ®tiling

120%

110% 28x1
° )
% 64x32

execution time %

100% % /§ /%—7& /\
A )0 )0

90%

a value range

Figure 4.4 The evaluation result of different o values in SP

The last experiment result is the execution time for different a value in mm_unroll

program. The results of these alternatives are shown in the following Figure 4.5.

#orig ®tiling
250%

200%

T:256x4
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150%

\

50% -

execution time %
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1~0.35 0.34~0.09 0.08~0.02 0.01~0

a value range

Figure 4.5 The evaluation result of different a values in mm_unroll
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In Figure 4.5, the Y-axis indicates the execution time percentage, and the X-axis is
the different o value which is chose. And the corresponding tile size of different o value
is marked above the execution time bar. The performance would improve 33.7%
execution time if an appropriated o value is set. And an improper a value may cause the

performance degradation.

4.3 Summary for Simulation Results

In this chapter, we presented experiment results for each of our proposed methods. It is
obvious that the approaches proposed in this thesis are usually effective for reducing
execution time by using SCL and TCL for an appropriate a value.

By the statistics, the first data locality analysis method, SCL, could reduce 10.4%
execution time in average. In addition, we have demonstrated the different results of
performance improvement in different o values. In this thesis, the a value is set to 0.25 for
performance consideration for programs. And the last S+T method could improve 33.7%

performance at most, 14.1% in average.
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Chapter 5 Conclusions and Future Works

In this chapter, the conclusions of this thesis are made first, and then the future works of

this thesis are proposed.

5.1 Conclusions

In this thesis, we proposed a polyhedral framework to improve the data locality by
modifying a current compiler backend. The framework included three parts of the
processes which were translated a C source code with OpenMP annotations (AST) to
polyhedral model, performed loop transformations, and translated it back to AST.

From the analysis result shown above, the performance increases 33.7% at most and
14.1% in average. But the performance doesn’t improve significantly when the array
sizes in those benchmarks are not very large. Because the cache behavior and the runtime
variations of multiprocessors are usually unpredictable and difficult to analysis, the
performance of our method could not achieve the best performance. For these reasons,
the OpenMP threads number and other execution processes would affect the performance

dramatically.
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5.2 Future Works

The future works of this thesis could be put into three dimensions: to implement more

transformations in polyhedral model, to consider the multiprocessors environment would

cause what different effects, to modify the evaluation of tile sizes for getting a better

performance improvement.

The first, we could implement other loop transformations[15-16] to make this polyhedral

model framework more powerful. For example, loop fission, loop fusion and loop unrolling

may be a choice to implement for improving the performance of the source code.

The second, executing program on multiprocessors has many unpredictable factors to

affect the performance. Analyzing and observing the relationship between these factors may

find out some optimization opportunities and modifications of cost model.

Finally, it may have chances to improve performance by modifying the evaluation of tile

sizes, because of the previous simulation results and the relationship between multiprocessors

factors. Hence, the performance improvement would work well in the future, regardless of the

thread number which is executing the OpenMP source code and the resource competition.
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