

國 立 交 通 大 學

資訊科學與工程研究所

博博博博 士士士士 論論論論 文文文文

運用一正規化模式來偵測商業流程規格中

異常的 Artifact 使用

Detecting the Artifact Anomalies in

Business Process Specifications with a Formal Model

研 究 生：許嘉麟

指導教授：王豐堅 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 六六六六 年年年年 十十十十 月月月月

運用一正規化模式來偵測商業流程規格中異常的 Artifact 使用

Detecting the Artifact Anomalies in

Business Process Specifications with a Formal Model

研 究 生：許嘉麟 Student：Chia-Lin Hsu

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

October 2007

Hsinchu, Taiwan, Republic of China

中華民國九中華民國九中華民國九中華民國九十六年十六年十六年十六年十十十十月月月月

I

運用運用運用運用一正規化模式來偵測商業流程規格中一正規化模式來偵測商業流程規格中一正規化模式來偵測商業流程規格中一正規化模式來偵測商業流程規格中

異常的異常的異常的異常的 Artifact 使用使用使用使用

學生：許嘉麟 指導教授：王豐堅 博士

國立交通大學資訊工程與科學研究所 博士班

摘要摘要摘要摘要

儘管已有許多商業流程模型被提出，卻鮮少針對 artifact的使用進行分析。由於不適當的

artifact操作，譬如說 artifact流程與控制流程不一致或是相衝突的 artifact運算，一個結構

良好且擁有足夠資源的商業流程在執行時依然可能產生非預期的結果。因此，分析 artifact

的使用是很重要的畢竟活動無法在沒有精確的資訊的情況下執行正確。本論文提出一個流

程模型來描述商業流程並且在此模型上分析 artifact 的使用。總共有三類(十三種狀況)會影

響流程執行的異常 artifact使用被確認出來並且使用系統化的方式來表達。除此之外，本論

文提出偵測這些異常的演算法並以一個實際的例子作示範說明。

關鍵字: 工作流程，商業流程，分析，控制流程，資料流程，異常

II

Detecting the Artifact Anomalies

in Business Process Specifications

with a Formal Model

Student：Chia-Lin Hsu Advisor：Dr. Feng-Jian Wang

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Although many business process models have been proposed, analyses on artifact usages are

seldom discussed. A well-structured business process with sufficient resources may still fail or

yield unexpected results during process execution due to inaccurate artifact specification e.g.

inconsistency between artifact flow and control flow, or contradictions between artifact

operations. Thus, the analyses on artifact usages are very important since activities cannot be

executed properly without accurate information. This dissertation presents a process model for

describing a business process and analyzes the artifact usages on this model. Three types with

thirteen cases of artifact usage anomalies affecting process execution are identified and

formulates and a set of algorithms to detect these anomalies in business process specifications is

presented. Furthermore, an example is demonstrated to validate the usability of the proposed

algorithms.

Keyword: workflow, business process, analysis, control flow, data flow, artifact, anomaly.

III

誌誌誌誌 謝謝謝謝

 本篇論文的完成，首先要萬分感謝指導教授王豐堅博士，王教授在我求學期間 (從

碩士班到博士班) 持續不斷的指導與鼓勵，讓我不僅在論文研究方面學習到相當寶貴的

經驗，在做人處事方面也獲益良多。如今學生若有些微的成就，王教授的指導實在功不

可沒。

 其次要感謝吳毅成教授，陳耀宗教授，朱治平教授，朱正忠教授，黃悅民教授，與

楊鎮華教授，在百忙之中首肯擔任我博士論文的口試委員，並且提供了許多寶貴的意見，

補足我論文裡不足的部分。其中吳、陳兩位教授亦是我的論文計畫書口試委員，在論文

報告的方式上也給了我相當多的指導。此外，對於一起研究討論與互相鼓勵的實驗室學

長與學弟妹們，包括楊基載、黃國展、王建偉、王靜慧、許懷中等等，在此一併加以感

謝。

 最後，我要與我的家人、同學、朋友、溶璘、徐媽媽與徐嬤嬤共同分享完成論文的

喜悅，由於有您們的支持與關懷，陪伴我走過這漫長的求學過程。僅將此論文獻給我最

敬愛的父母親與支持我的親友們。

IV

Table of Contents

摘要摘要摘要摘要 .. I

ABSTRACT .. II

誌誌誌誌 謝謝謝謝 ... III

TABLE OF CONTENTS .. IV

LIST OF TABLES ... VI

LIST OF FIGURES ... VII

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RELATED WORK AND BACKGROUND .. 3

CHAPTER 3. PROCESS MODELING ... 6

3.1. PROCESS SPECIFICATIONS .. 6

3.2. CONTROL FLOW SPECIFICATION .. 7

3.2.1. Activities and Control Blocks ... 7

3.2.2. Relations among Activities and Control Blocks .. 10

3.3. ARTIFACT FLOW SPECIFICATION .. 13

3.3.1. Artifacts and Artifact Operations .. 13

3.3.2. Artifact Flow and Artifact Usages ... 15

CHAPTER 4. ARTIFACT USAGE ANOMALIES... 17

4.1. ARTIFACT USAGE ANOMALIES... 17

4.1.1. Missing Production Anomalies ... 17

4.1.2. Redundant Write Anomalies ... 22

4.1.3. Conflict Write Anomalies .. 24

4.1.4. Summary of Usage Patterns Causing Artifact Usage Anomalies .. 25

CHAPTER 5. ALGORITHMS TO DETECTING ARTIFACT USAGE ANOMALIES .. 27

5.1. THE TRAVERSAL ALGORITHM .. 27

5.2. THE DETECTION ALGORITHM .. 30

5.2.1. Method for Detecting Missing Production Anomalies .. 30

5.2.2. Method for Detecting Redundant Production/Update Anomalies ... 35

5.2.3. Method for Detecting Conflict Writes Anomalies ... 39

5.2.4. Complexities of Traversal and Detection Algorithms ... 41

CHAPTER 6. ILLUSTRATIVE EXAMPLE .. 43

6.1. AN EXAMPLE: PROPERTY LOAN APPROVAL PROCESS .. 43

6.2. DETECTION OF M ISSING PRODUCTION ANOMALIES ... 45

6.3. DETECTION OF REDUNDANT WRITE ANOMALIES .. 47

V

CHAPTER 7. COMPARISONS OF DATA-FLOW ANALYSIS APPROACHES 50

CHAPTER 8. CONCLUSION AND FUTURE WORK ... 54

REFERENCE .. 55

VI

List of Tables

Table 4.1. Symbols Used in Usage Patterns .. 17

Table 4.2: Summary of Usage Patterns Causing Artifact Usage Anomalies 26

Table 6.1: Activities and Artifacts in the Property Loan Approval Process 43

Table 6.2: Artifacts Usages in the Property Loan Approval Process ... 44

Table 6.3. Steps to Detect Missing Production Anomalies. ... 45

Table 6.4. Steps to Calculate the Unused Artifacts for Every Activity. ... 47

Table 7.1. Comparison of anomalies addressed. ... 51

Table 7.2. A summary of comparisons. ... 53

VII

List of Figures

Figure 3.1. Notations of Control Flow Graph. .. 7

Figure 3.2. Four Primitive Types of Control Structures. ... 9

Figure 3.3. The State Diagram of an artifact. .. 14

Figure 5.1: Transform a Repeat-Until Loop. ... 28

Figure 5.2: Transform a While Loop. .. 28

Figure 6.1: Property Loan Approval Process. ... 44

1

Chapter 1. Introduction

Workflow can be viewed as a set of interrelated tasks that are systematized to achieve certain

business goals by completing each task in a particular order under automatic control [1].

Resources are required for workflow implementation, and support process execution. Resource

allocation and resource constraint analysis [2－6] are popular workflow research topics. However,

data flow within workflow is seldom addressed [7－10].

Artifact is an abstraction of a data instance within a workflow. Introducing analysis of artifact

usage into control-oriented workflow designs helps maintain consistency between execution

order and data transition, as well as prevents the exceptions resulting from contradiction between

data flow and control flow. In contrast to structural correctness, accuracy in artifact manipulation

can help determine whether the execution result of a workflow is meaningful and desirable.

This dissertation proposes a process model for describing business processes and address

three types of artifact usage anomalies. An artifact usage analysis procedure associated with the

model is applied before deploying the workflow schema. Reports of consistency checking

between data flow and control flow and information of manipulating artifacts are automatically

provided to designers when they edit or adjust workflow specification. The model is based on

component-based design technique [11, 12] and is compatible with existing control-oriented

workflow design models. It provides an easier way to extract knowledge of artifact usages in a

workflow. In our earlier work [13, 14], we have introduced the artifact usage analysis into

workflow design phase and the improper artifact usages affecting workflow execution have been

identified preliminary. In this dissertation, the artifact usages are formularized and the concrete

algorithms to discovering the improper usages in workflow specifications are proposed. In

addition, an example to demonstrate the contribution of our work and a comparison among

related works and ours are presented.

The remainder of this dissertation is organized as follows. Chapter 2 presents the research

background and related work. Chapter 3 presents our process modeling, including the control

flow and artifact flow. Chapter 4 then defines three types with thirteen cases of artifact usage

2

anomalies. Next, chapter 5 proposes a set of algorithms to detect artifact usage anomalies in a

process schema. Chapter 6 demonstrates the algorithms through an example. Chapter 7 compares

our approach with related works. Conclusions are finally drawn in chapter 8, along with

recommendations for future work.

3

Chapter 2. Related Work and Background

A workflow can be deemed as a collection of cooperating and coordinated activities designed

to carry out a well-defined complex process, such as a trip planning, conference registration

procedure, or business process in an enterprise. A workflow model is used to describe a workflow

in terms of various elements, such as roles and resources, tools and applications, activities, and

data, which represent different perspectives of a workflow [15, 16]. Roles and resources elements

represent organizational perspective that describes where and by whom tasks are performed and

available resources tasks can utilize in the organization. Tools and applications elements represent

operational perspectives by specifying what tools and applications are used to execute a particular

task. Activity elements are defined with two perspectives: 1) functional: what tasks a workflow

performs; and 2) behavioral: when and how tasks are performed. Data elements represent the

informational perspective, i.e., what information entities are produced or manipulated in the

corresponding activities in a workflow.

A well-defined workflow model leads to the efficient development of an effective and reliable

workflow application. The correctness issues in a workflow might be classified into three

dimensions: control-flow, resource, and data-flow. Generally, the analyses in control-flow

dimension are focused on correctness issues of control structure in a workflow. The common

control-flow anomalies include deadlock, livelock (infinite loop), lack of synchronization, and

dangling reference [17－28]. A deadlock anomaly occurs if it is no longer possible to make any

progress for a workflow instance, e.g. synchronization on two mutually exclusive alternative

paths. A livelock anomaly indicates an infinite loop, such as iteration without possible exit

condition, which causes a workflow to make continuous progress, however, without progressing

toward successful completion. A lack of synchronization anomaly represents the case of more

than one incoming vertex merging into an or-join vertex. Activities without termination or

without activation are two common cases of dangling reference anomaly.

Activities belonging to different workflows or parallel activities in the same workflow might

access the same resources. A resource conflict occurs when these activities execute over the same

time interval. Thus, the analyses in resource dimension include the identification of resource

4

conflicts under resource allocation constraints and/or under the temporal and/or causality

constraints [2－6]. On the other hand, missing, redundancy, and conflict use of data are common

anomalies in data-flow dimension [7－10]. A missing data anomaly occurs when an artifact is

accessed before it is initialized. A redundant data anomaly occurs when an activity produces an

intermediate data output but this data is not required by any succeeding activity. A conflicting

data anomaly represents the existence of different versions of the same artifact.

Current workflow modeling and analyzing paradigms are mainly focused on the soundness of

control logic, i.e., in the control-flow dimension, including process model analysis [19－30],

workflow patterns [20－33] and automatic control of workflow process [34]. Aalst and ter

Hofstede [19] proposed a WorkFlow net (WF-net), based on Petri nets, to model a workflow:

transitions representing activities, places representing conditions, tokens representing cases, and

directed arcs connecting transitions and places. Furthermore, control-flow anomalies, such as

deadlock, livelock, and dangling reference (activities without termination or activation) have

been identified through Petri net modeling and analysis. Son [35] defined a well-formed

workflow based on the concepts of closure and control block. He claimed that a well-formed

workflow is free from structural errors, and that complex control flows can be made with nested

control blocks. Son [35] and Chang [36] identified and extracted the workflow critical path from

the context of the workflow schema. They proposed extraction procedures from various

non-sequential control structures to sequential paths, thus obtaining appropriate sub-critical paths

in non-sequential control structures. Sadiq and Orlowska [30] proposed a visual verification

approach and algorithm with a set of graph reduction rules to discover structural conflicts in

process models for given workflow modeling languages.

There are several research topics discussed in resource dimension, including resource

allocation constraints [2, 3], resource availability [4], resource management [5] and resource

modeling [6]. Senkul [2] developed an architecture to model and schedule workflow with

resource allocation constraints and traditional temporal/causality constraints. Li [3] concluded

that a correct workflow specification should have resource consistence. His algorithms can verify

resource consistency and detect the potential resource conflicts for workflow specifications. Both

Pinar and Hongchen extended workflow specifications with constraint descriptions. Liu [4]

5

proposed a three-level bottom-up workflow design method to effectively incorporate

confirmation and compensation in case of failure. In Liu’s model, data resources are modeled as

resource classes, and the only interface to a data resource is via a set of operations.

Current analysis techniques including above approaches pay little attention on the data-flow

dimension, although the related analysis in data-flow dimension is very important since activities

cannot be executed properly without sufficient data information. In the literature, there are two

works in data-flow dimension found. Sadiq et al. [7] presented data flow validation issues in

workflow modeling, including identifying requirements of data modeling and seven basic data

validation problems: redundant data, lost data, missing data, mismatched data, inconsistent data,

misdirected data, and insufficient data. However, there is no concrete verification procedure

presented. Sun et al. [8－10] presented a data-flow analysis framework for detecting data-flow

anomalies such as missing data, redundant data, and potential conflicts of data. In addition, they

provided several analysis algorithms; however, the work is done only based on read and initial

write data operations.

6

Chapter 3. Process Modeling

3.1. Process Specifications

Based on BPMN, a process consists of a network of activities designed to produce a product

or service for a particular customer or market. A process specification, a formalized view of a

business process, defines a set of linked (parallel and/or sequential) activities across time and

space, with a beginning and an end, associated with clear defined inputs and outputs respectively.

Each activity takes a subset of process input(s) or output(s) of previous activity(ies) and

transforms them to create the data for later use or as process outputs. The inputs or outputs of a

process, as well as the intermediate outputs of activities, are called artifacts. Thus, a process

specification contains not only the control flow but also the artifact flow of a business process.

Definition 3.1 is a formal description of a business process.

Definition 3.1. A process specification is a tuple W WBP (G,VT ,D,I ,O)= , where

－ G (V ,E)= , representing the control flow, is a directed, connected, and acyclic graph, where

V is a set of vertices of which each represents an activity and VE V x⊂ is a set of

directed edges indicating the precedence relation between two activities.

－ VT : V T→ is a type function that maps each activity into one of the activity types defined as

{

 }

T Task,SubProcess,ProcessStart,ProcessEnd,AndSplit,AndJoin,

XorSplit,XorJoin,LoopStart,LoopEnd

=
.

Activities whose types are Task are called task activities while the others are called

control activities.

－ D is a set of artifacts used in the process.

－ WI D⊂ , a subset of D , denotes the set of process inputs.

－ WO D⊂ , a subset of D , denotes the set of process outputs.

7

3.2. Control Flow Specification

3.2.1. Activities and Control Blocks

An activity in a business process might be atomic or non-atomic (compound). An atomic

activity is the smallest unit of work that is scheduled by a workflow engine during process

enactment and cannot be decomposed. A sub-process included within a process is represented as

a compound activity. Atomic activities are classified into two major types, Task activities and

control activities, based on their functionalities. A task activity performs a piece of processing

steps. Control activities are pairwise activities representing a group of activities, called a control

block. There are eight types (four pairs) of primitive control activities in general: (1). ProcessStart

(PS) and ProcessEnd (PE) are unique control activities of a process that represent the start and the

end of the process respectively (2). AndSplit (AS) and AndJoin (AJ) are control activities for

constructing a parallel structure (3). XorSplit (XS) and XorJoin (XJ) are control activities for

constructing a branch structure. (4). LoopStart (LS) and LoopEnd (LE) are control activities

representing an iteration structure.

Figure 3.1 shows the corresponding notations of control activities, task activity, sub-process

activity, and the precedence relation [37].

Figure 3.1. Notations of Control Flow Graph.

8

With typed activities and their precedence relation, various kinds of control structures can be

constituted. In this dissertation, the four primitive control structures, "sequential", "parallel

branch", "conditional branch" and "iterative structure", defined in [1] are concerned.

Figure 3.2 shows these control structures to construct a process respectively.

� Sequential Block: the activities within this structure are executed sequentially under a single

thread. The main characteristic is that the target activity cannot execute until its preceding

activity completes. In other words, the completion of a target activity triggers the execution

of its succeeding activity.

� Iteration Control Block: The activities within the block enclosed by LoopStart and LoopEnd

control activities are executed repetitively until certain conditions are met. There are two

kinds of iteration control blocks: while loop and repeat-until loop. A while loop checks the

conditions before the first activity within the block is executed and thus, it is often also

known as a pre-test loop. On the contrary, a repeat-until loop, also known as a post-test loop,

tests the conditions after the activities within the block are executed.

� AND Control Block: All outflows of an AndSplit activity are executed in parallel, and finally

converge into an AndJoin activity synchronously.

� XOR (eXclusive OR) Control Block: An XorSplit activity decides one among multiple

alternative outflows (process branches) to continue. These branches converge to a single

XorJoin activity. No synchronization is required since only one thread is chosen for

execution.

9

Figure 3.2. Four Primitive Types of Control Structures.

According to our notations, the control flow G (V ,E)= of a process specification is

well-formed if the following constraints hold:

－ G has a unique Process Start vertex psv of type ProcessStart, which has no incoming

edge and one outgoing edge.

� 0 1ps ps ps ps!v : VT(v) Pr ocessStart InDegree(v) OutDegree(v)∃ = → = ∧ =

－ G has a unique Process End vertex esv of type ProcessEnd, which has one incoming edge

and no outgoing edge.

� 1 0es es es es!v : VT(v) Pr ocessStart InDegree(v) OutDegree(v)∃ = → = ∧ =

－ Vertices of type Task , LoopStart , and LoopEnd have one incoming edge and one

outgoing edge.

� 1i i i iv : (VT(v) Task LoopStart LoopEnd) InDegree(v) OutDegree(v)∀ = ∨ ∨ → = =

－ Vertices of type AndSplit and XorSplit have one incoming edge and more than one

outgoing edge.

� 1 1bs bs bs bsv : (VT(v) AndSplit XorSplit) InDegree(v) OutDegree(v)∀ = ∨ → = ∧ >

10

－ Vertices of type AndJoin and XorJoin have more than one incoming edge and one

outgoing edge.

� 1 1bj bj bj bjv (VT(v) AndJoin XorJoin) InDegree(v) OutDegree(v)∀ ∈ = ∨ → > ∧ =

－ Any two control blocks can be nested but not overlapped.

� 1 2 1 2 1 2 1 2 1 2i j x yb [v ,v],b [v ,v],b b b b b b b b∀ = = ≠ → ⊂ ∨ ⊂ ∨ = ∅∩

3.2.2. Relations among Activities and Control Blocks

In this session, relations among activities and control blocks are identified as follows.

Definition 3.2 (Paths).

A path from v1 to vk is a sequence of vertices <v1,...,vk> in a control graph G = (V, E) such

that each node is connected to the next vertex in the sequence (the edges (vi,vi+1) for

i=1,2,...,k-1 are in the edge set E). A path from v1 to vk is denoted by 1(,)kPath v v .

Definition 3.3 (Reachability).

Given two vertices, u and v, (,)IsReachable u v is a Boolean function that indicates whether

if there exists a path from u to v.

, , (,) (,)u v V IsReachable u v true Path u v u v∀ ∈ = ↔ ∃ ∨ =

Definition 3.4 (Predecessors and Successors).

{ | (,) }IsPredecessor
vV u V u v E= ∈ ∈

{ | (: }IsPredecessor IsPredecessor IsPredecessor IsPredecessor
v v v uV t V t V u V t V= ∈ ∈ ∨ ∃ ∈ ∈

11

{ | (,) }IsSuccessor
vV u V v u E= ∈ ∈

{ | (: }IsSuccessor IsSuccessor IsSuccessor IsSuccessor
v v v uV t V t V u V t V= ∈ ∈ ∨ ∃ ∈ ∈

IsPredecessor
vV comprises the set of vertices which are the source of an edge with destination

vertex v V∈ . Each element u in IsPredecessor
vV is called a direct predecessor of the vertex and is

denoted by u v→ . IsPredecessor
vV denotes the transitive closure of IsPredecessor

vV .

IsPredecessor
vV comprises those vertices that are reachable from v. Each element u in IsPredecessor

vV is

called a predecessor of v and is denoted by u v։ . IsSuccessor
vV and its transitive closure

IsSuccessor
vV are defined similarly.

Definition 3.5 (Ancestor Blocks and Level of an Activity).

v V∀ ∈ , let v.PB denote the parent control block containing v. AncestorBlock comprises

the set of all control blocks that contains v.

() { | . ((. .)}AncestorBlock v b b v PB b AncestorBlock v PB startVertex= = ∨ ∈

In addition, the cardinality of ()AncestorBlock v identifies the nested level of v.

() if

(.) if represents a control block

()

AncestorBlock v v V

AncestorBlock v StartVertex v
Level v

∈
= 


Definition 3.6 (Common Ancestor Blocks and Nearest Common Ancestor Blocks).

Given a set of vertices,1, , nv v… , Bi is a common ancestor block of 1, , nv v… if and only if the

12

following holds:

1

()
n

i i
i

B AncestorBlock v
=

∈∩ , denoted by 1(, ,)i nB CAB v v∈ … .

Bi is the Nearest common ancestor of 1, , nv v… if and only if the following holds:

 1(, ,) : () ()j j i j inB CAB v v B B Level B Level B∀ ∈ ∧ ≠… < , denoted by 1(, ,) inNCAB v v B=… .

Definition 3.7 (Parallel Activities).

Given two vertices, u and v, (,)IsParallel u v is a Boolean function to represent if u and v

might be executed in parallel within a workflow instance.

(,) (,). " " (,) (,)IsParallel u v true NCAB u v Type AND IsReachable u v IsReachable v u= ⇔ = ∧ ¬ ∧ ¬

(,)IsParallel u v true= , denoted asu v⊕ , indicates that u and v might be executed in parallel

and v is called a parallel activity of u.

Definition 3.8 (Exclusive Activities).

Given two vertices, u and v, (,)IsExclusive u v is a Boolean function to represent some XOR

characteristics of u and v. Within a workflow instance, if u is selected for execution then v

won’t be selected for execution and vice versa.

(,) (,). " " (,) (,)IsExclusive u v true NCAB u v Type XOR IsReachable u v IsReachable v u= ⇔ = ∧ ¬ ∧ ¬

(,)IsExclusive u v true= , denoted as u v⊗ , indicates that at most one of u and v can be

selected for execution and v is called an exclusive activity of u.

13

Definition 3.9 (Companion Activities).

Given two vertices, and u v , (,)IsCompanion u v is a Boolean function which indicates

whether if u is selected for execution then v will always be selected for execution and vice versa.

() () \ (,) : . " " if (,) (,)

() () \ (,) { (,)} : . " " otherwis

(,)

b AncestorBlock u AncestorBlock v CAB u v b type AND IsReachable u v IsReachable v u

b AncestorBlock u AncestorBlock v CAB u v NCAB u v b type AND

IsCompanion u v true

∀ ∈ = ∨

∀ ∈ =

= ⇔

∪

∪ ∪ e





(,)IsCompanion u v true= , denoted as u v⊙ , indicates that neither of and u v or both of

them will be selected for execution and v is called a companion activity of u.

3.3. Artifact Flow Specification

Currently, as identified in [7], there are three major implementation models for artifact flow:

explicit data flow, implicit data flow through control flow, and implicit data flow through a

process data store. In this dissertation, we adopt the model of implicit data flow through a

common process data store. The exchanges of artifacts between tasks are passed through global

variables stored in a common database. In a workflow, some activities store their output artifacts

in the database, and their following activities may access these artifacts later. The activities in our

model are regarded as black boxes, i.e., their internal computations are not visible. Neither are the

intermediate execution states. Thus, the artifact usages of an activity are identified through the

inputs/outputs of the activity.

3.3.1. Artifacts and Artifact Operations

Artifacts are information entities involved in a process, including the input data to the process,

the intermediate data produced within the process, and the final output data from the process. An

artifact is an atomic data item (e.g. a number, a character string, or an image) or a collection of

atomic data items (e.g. a document). Intuitively, all artifacts participating in a workflow execution

must be pre-defined in process specifications. Each artifact contains a set of legal operations for

its internal data. An activity designed to manipulate a certain artifact can work only with that

14

artifact’s legal operations. From the data storage point of view, every artifact operation can be

regarded as one of the following operations, regardless of its semantic meaning.

� Initialize: all definition operations, e.g. "fill in", "create", and "define" operations.

� Read: all reference operations, e.g. "use", "fetch", "select", and "retrieve" operations.

� Update: all modification operations, e.g. "write", "change", and "update" operations.

� Destroy: all deletion operations, e.g. "remove", "erase", "cancel", and "discard" operations.

In general, an Initialize operation is used to create an artifact instance in a process. Read and

Update operations are then used to access the instance. Finally, a Destroy operation is used to

delete the artifact instance. Destroy operations are applied for temporary artifacts created during

in workflow execution, but may not strict for all artifacts.

Figure 3.3 shows the state diagram of an artifact with above four kinds of operations. There

are four states, “Uninitialized”, “Initialized”, “Updated”, and “Read”. ‘Uninitialized’ represents

the initial state of an artifact. “Initialized”, “Updated”, and “Read” represent the states after an

Initialize, Update, and Read operation is performed respectively. In addition, the state of an

artifact resets to “Uninitialized” after a Destroy operation.

Figure 3.3. The State Diagram of an artifact.

15

3.3.2. Artifact Flow and Artifact Usages

To simplify the discussion of artifact usages, now a formal and complete definition of a

task/control activity is shown below:

Definition 3.10 (Task/Control Activities).

An task/control activity is a tuple (, , , , , ,)v v v v v v vv AT SC EC RC I O AS= , where

� vAT represents the type of the activity.

� vSC , vEC , and vRC are sets of logical expressions which are evaluated by a workflow

engine.

� vSC is the set of pre-conditions of which each is evaluated to decide whether an

activity within a process instance can be started (only used by task activities).

� vEC is the set of post-conditions of which each is evaluated to decide whether an

activity within a process instance is completed (only used by task activities).

� vRC is the set of routing conditions of which each is evaluated to decide the

sequence of activity execution within a process (only used by control activities).

� vI , the input set, identifies all the artifacts required to be accessed by the activity.

� For a task activity, vI contains all the artifacts required for computation.

� For a control activity, vI contains all the artifacts required for evaluating the

routing conditions.

� vO , the output set, identifies all the artifacts produced, updated, or destroyed after

executing the activity. vO is divided into two disjoint subsets, vO+ and vO− , where

vO+ represents the set of the artifacts initialized or updated by t and vO− represents the set

of the artifacts destroyed by t.

� vAS is the activity specification (only used by task activities).

16

Based on Definition 3.10, a usage relation between an activity and an artifact can be defined

as follows: an artifact usage representing the relation between an activity and an artifact is

defined as follows:

Definition 3.11 (Consumer, Producer, Updator, and Destroyer Activities of an Artifact).

For a given artifact d, the memberships between artifact d and vI , vO+ , and vO− can be

applied for identifying the usage of artifact d at activity v. All the possible usages are

categorized as follows:

� if and v
v

v

d O
d I

d O

+

−

 ∉∈ 
∉

, v is called a Reader (Activity) of artifact d.

� if and v vd I d O+∈ ∈ , v is called an Updator (Activity) of artifact d.

� if and v

v

v

d I
d O

d I
−∈

∈ ∉
, v is called a Destroyer (Activity) of artifact d.

� if and v vd I d O+∉ ∈ , v is called a Producer (Activity) of artifact d.

� if and v
v

v

d O
d I

d O

+

−

 ∉∉ 
∉

, v is called an Irrelevantor (Activity) of artifact d.

In addition, if vd I∈ , v is generally called a Consumer (Activity) of artifact d and

if vd O+∈ , v is generally called a Writer (Activity) of artifact d.

Definition 3.12 (Consumer, Updator, Destroyer and Producer Activity Sets for an Artifact).

� { | }IsConsumer
vdV v V d I= ∈ ∈ is called the Consumer Activity Set of artifact d.

� { | and }IsUpdator
vd vV v V d I d O+= ∈ ∈ ∈ is called the Updator Activity Set of artifact d.

� { | }IsDestroyer
d vV v V d O−= ∈ ∈ is called the Destroyer Activity Set of artifact d.

� { | and }IsProducer
vd vV v V d I d O+= ∈ ∉ ∈ is called the Producer Activity Set of artifact d.

17

Chapter 4. Artifact Usage Anomalies

4.1. Artifact Usage Anomalies

In a process specification, some of the following three types of anomalies might occur: (1)

Missing Production, (2) Redundant Write, and (3) Conflict Write. In the subsections, these

anomalies are defined and the corresponding usage patterns that cause the anomalies are

identified. Every usage pattern is given a name, description, and formulated detection conditions.

Table 4.1 shows the symbols used in usage patterns.

Table 4.1. Symbols Used in Usage Patterns

dP : a producer (and v vd I d O+∉ ∈)

dC : a consumer (vd I∈)

dU: a updator (and v vd I d O+∈ ∈)

dW : a updator (vd O+∈)

dR : a reader (and v
v

v

d O
d I

d O

+

−

 ∉∈ 
∉

)

։: reachable

dP : no producer of d exists

dC : no consumer of d exists

dR : no reader of d exists

 (): a control block

 ()⊗ : XOR control block

()⊕  : AND Control block

4.1.1. Missing Production Anomalies

A missing production anomaly occurs when an artifact is consumed before it is produced or

after it is destroyed. Formally speaking, given an activity v and an artifact d such that v is a

consumer of d, a missing production anomaly occurs if d is not produced or is destroyed when v

is selected for execution. To formulate this type of anomaly, the propagation of an artifact is

introduced in Definition 4.1.

18

Definition 4.1 (Propagation of Artifacts to an Activity).

Given an activity v, let a preceding execution order to v denote an execution order leading

to v without parallel activities of v, i.e., only consisting of the predecessors of v. Given an

artifact d, if there exists at least one preceding execution order to v such that d is produced but

not destroyed (i.e., d is not in Uninitialized state), we call d can be propagated from v’s

predecessors to v. The propagation of artifact d regarding only the preceding execution orders

to v is called preceding propagation of d to v and can be classified into three cases: no

preceding propagation, conditional preceding propagation, and unconditional preceding

propagation.

No preceding propagation indicates that d is always Uninitialized for all preceding

execution orders to v. Conditional preceding propagation indicates whether d is Uninitialized

depends on the preceding execution orders to v taken. Unconditional preceding propagation

denotes that d is Uninitialized for all preceding execution orders to v.

Based on Definition 4.1, let vAA contains all the artifacts which can be propagated from the

predecessors of v. vAA can be divided into two disjoint subset, u
vAA and c

vAA , where u
vAA

contains the artifacts unconditional propagated from the predecessors of v and c
vAA contains the

artifacts propagated from the predecessors of v conditionally.

The causes of missing production anomalies can be classified into three categories: No

Preceding Propagation, Conditional Preceding Propagation, and Uncertain Preceding

Propagation. Intuitively, if and IsConsumer
d vv V d AA∈ ∉ hold, a missing production anomaly might

occur due to No Preceding Propagation of d to v. Similarly, if and IsConsumer c
d vv V d AA∈ ∈ hold, a

missing production anomaly might occur owning to Conditional Preceding Propagation of d to v.

Furthermore, consider parallel activities of v, even though and IsConsumer u
d vv V d AA∈ ∈ hold, a

missing production anomaly might still occur if there exists a parallel activity which destroys d

and this cause is classified as Uncertain Preceding Propagation.

19

For each cause of the missing production anomaly, the possible usage patterns are

characterized by its name, description, and required condition as followings:

(1). No Preceding Propagation: IsConsumer
d vv V d AA∈ ∧ ∉

Usage Pattern 1: dP d dC P։։

� Name: No Production

� Description: Artifact d has at least one consumer activity v; however, no producer

activity of d exists in the process.

� Conditions: IsConsumer IsProducer
d dv V V∃ ∈ ∧ = ∅

Usage Pattern 2: dP d dC P։։ ։

� Name: Delayed Production

� Description: Artifact d has a consumer activity v which precedes every producer activity

of d.

� Conditions: () ()IsConsumer IsPredecessor IsProducer IsSuccessor IsProducer
d v d v dv V V V V V∃ ∈ ∧ = ∅ ∧ ≠ ∅∩ ∩

Usage Pattern 3: d d dP D C։ ։։ ։

� Name: Early Destruction

� Description: Artifact d is produced and then destroyed before it is consumed.

� Conditions: ()IsConsumer IsPredecessor IsProducer IsDestroyer
d v v d dv V d AA V V V∃ ∈ ∧ ∉ ∧ ≠ ∅∩ ∩

20

Usage Pattern 4: dP d d(C P)⊗։ ։

� Name: Exclusive Production

� Description: Given two exclusive activities v and u such that v is a consumer of artifact d

and u is a producer of d. Due to the characteristic of exclusive activities, only one of v

and u might be selected for execution. Although u is a producer of d, it makes no

contribution to the propagation of d to v and thus a missing production anomaly occurs if

artifact d cannot be propagated from the predecessors of v.

� Conditions: IsConsumer IsExclusive IsProducer
d v v dv V d AA V V∃ ∈ ∧ ∉ ∧ ≠ ∅∩()

Usage Pattern 5: dP d d(C P)⊕։ ։

� Name: Uncertain Production

� Description: Given two exclusive activities v and u such that v is a consumer of artifact d

and u is a producer of d. Due to the race hazard of parallel activities, v might be executed

before u. Therefore, u may not make contribution to the propagation of d for v and

consequently, a missing production anomaly occurs if artifact d cannot be propagated

from the predecessors of v.

� Conditions: IsConsumer IsParallel IsProducer
d v v dv V d AA V V∃ ∈ ∧ ∉ ∧ ≠ ∅∩()

(2). Conditional Preceding Propagation: IsConsumer c
d vv V d AA∈ ∧ ∈

Whether d is propagated depends on the preceding path to v taken. Consequently, a missing

production anomaly occurs when those preceding paths to v such that d is not propagated are

taken.

Usage Pattern 6: dP d d(P P⊗։ d) C։։

� Name: Conditional Production

� Description: Artifact d is produced conditionally before a consumer activity of d.

21

� Conditions: IsConsumer c
d vv V d AA∃ ∈ ∧ ∈

Usage Pattern 7: d d dP (D D⊗։ ։ d) C։։

� Name: Conditional Destruction

� Description: Artifact d is destroyed conditionally before a consumer activity of d.

� Conditions: IsConsumer c
d vv V d AA∃ ∈ ∧ ∈

(3). Uncertain Preceding Propagation: IsConsumer u
d vv V d AA∈ ∧ ∈

Usage Pattern 8: d d dP (D C)⊕։ ։  ։

� Name: Uncertain Destruction

� Description: Given two parallel activities v and u such that v is a consumer of artifact d

and u is a destroyer of d. Due to the race hazard of parallel activities, v might be executed

before u. Therefore, even though d is unconditional propagated from the predecessors of v,

d might be destroyed by u before v is executed and a missing production anomaly occurs.

� Conditions: IsConsumer u IsParallel IsDestroyer
d v v dv V d AA V V∃ ∈ ∧ ∈ ∧ ≠ ∅∩()

Theorem 1 (Missing Production Verification).

A process BP is free from missing production anomalies if the following condition holds:

v V∀ ∈ , vd I∀ ∈ : u
vd AA∈ and IsParallel IsDestroyer

v dV V = ∅∩() .

Proof: This theorem is proofed by contradiction as follows. Support that there exists a

missing production anomaly in BP. It indicates that there exists an activity v V∈ , an artifact

vd I∈ , and an execution order Γ such that v∈Γ and d is Uninitialized when v is selected for

execution. However, u
vd AA∈ implies that d will be always propagated from the predecessors

22

of v. Furthermore, IsParallel IsDestroyer
v dV V = ∅∩() implies that no parallel activity of v will affect the

propagation of d from the predecessors of v. Thus, d will always be propagated to v regardless

the execution order leading to v, that is, Γ does not exist. This contradicts the hypothesis and

thus, Theorem 1 holds.

4.1.2. Redundant Write Anomalies

A redundant write anomaly occurs when an artifact is written (produced or updated) by an

activity but the artifact is neither required by succeeding activities nor a member of the process

outputs. Redundancy is not an error; nevertheless, it causes inefficiency. To formulate this type of

anomaly, the set of artifacts unused to an activity is introduced in Definition 4.2.

Definition 4.2 (The Set of Artifacts Unused before an Activity).

Given an activity v and an artifact d, if there exists at least one preceding execution order to

v such that d is written but not consumed when v is selected for execution, d is called unused

for the predecessors of v or simply called unused before v. Intrusively, if artifact d is unused for

the predecessors of the Process End vertex and is not a member of the set of process outputs, a

redundant write anomaly occurs. There are two cases: completely unused and conditionally

unused. Completely unused indicates that d is unused for all preceding paths to v. Conditionally

unused indicates whether d is unused depends on the preceding path to v taken.

Let vNC contain all the artifacts unused for the predecessors of v. vNC can be divided into

two disjoint subset, u
vNC and c

vNC . u
vNC contains the artifacts which are completely unused

and c
vNC contains the artifacts which are conditional unused.

Based on Definition 4.2, redundant update anomalies can be classified into two categories:

Explicit Redundant Update and Potential Redundant Update. Intuitively, for every artifact

23

u
ProcessEndd NC∈ such that wd O∉ , a redundant update anomaly always occurs for artifact d of the

process. Similarly, for every artifact c
ProcessEndd NC∈ such that wd O∉ , a redundant update

anomaly might occur for artifact d depending on the execution paths taken.

For each category of the redundant write anomaly, the possible usage patterns are

characterized by its name, description, and required condition as followings:

(1). Explicit Redundant Update

Usage Pattern 9:

dC d dW C։։

d d dC W C։ ։ ։

d d d(C W) C⊗։ ։ 

� Name: No Consumption After Last Write

� Description: For an artifact d not belonging to the process outputs, when d is written by

an activity v and the artifact is unused for all succeeding activities of v, a redundant

update always occurs for the artifact.

� Conditions: u
ProcessEnd wd NC d O∃ ∈ ∉:

(2). Potential Redundant Update

Usage Pattern 10:
d d dW (C C⊗։ ։

d d d

)

(C W) C⊕


։ ։

� Name: Conditional Consumption After Last Write

� Description: For an artifact d not belonging to the process outputs, when d is written by

an activity v and the artifact is conditionally unused for some succeeding activities of v, a

redundant update might occurs.

� Conditions: c
ProcessEnd wd NC d O∃ ∈ ∉:

24

Theorem 2 (Redundant Write Verification).

A process BP is free from redundant write anomalies if ProcessEnd wNC O = ∅\ holds:

Proof: ProcessEnd wNC O = ∅\ indicates that every artifact d is a process output (wd O∈) or is

read after its last write for all possible (preceding) execution orders leading to Process End

vertex. (ProcessEndd NC∉). Therefore, no redundant write anomaly exists if ProcessEnd wNC O = ∅\

holds.

4.1.3. Conflict Write Anomalies

A multiple parallel productions anomaly occurs when more than one activity tries to

initialize the same artifact in parallel. When this anomaly occurs, different versions of an

artifact will exist.

A conflict update anomaly occurs when more than one activity in parallel updates the same

artifact.

Usage Pattern 11: d d(P P)⊕։ ։

� Name: Multiple Parallel Productions

� Description: More than one activity initializes the same artifact in parallel.

� Conditions: IsProducer IsProducer IsParallel
d d vv V u V V∃ ∈ ∧ ∈ ∩()

Usage Pattern 12: d d(U U)⊕։ ։

� Name: Multiple Parallel Updates

� Description: More than one activity updates the same artifact in parallel.

� Conditions: IsUpdator IsUpdator IsParallel
d d vv V u V V∃ ∈ ∧ ∈ ∩()

25

Usage Pattern 13: d d(R U)⊕։ ։

� Name: Parallel Read and Update

� Description: Two activities perform read and update respectively on the same artifact

concurrently.

� Conditions: IsReader IsUpdator IsParallel
d d vv V u V V∃ ∈ ∧ ∈ ∩() ()

Theorem 3 (Conflict Writes Verification).

A process BP is free from conflict writes anomalies if for any two parallel activities v and u,

v v u uO I O I+ + = ∅∩(\) (\) , v v u uO I O I+ + = ∅∩ ∩ ∩() () , v uI O+ = ∅∩ , and u vI O+ = ∅∩ hold.

Proof: if for any two parallel activities v and u such that v v u uO I O I+ + = ∅∩(\) (\) , then no

two activities initializes the same artifact in parallel. If v v u uO I O I+ + = ∅∩ ∩ ∩() () , then no two

activities updates the same artifact in parallel. Furthermore, v uI O+ = ∅∩ and u vI O+ = ∅∩

indicate that no two activities perform read and update respectively on the same artifact. Thus,

BP is free from conflict writes anomalies.

4.1.4. Summary of Usage Patterns Causing Artifact Usage Anomalies

Table 4.2 shows the summary of usage patterns for each type of artifact usage anomaly.

26

Table 4.2: Summary of Usage Patterns Causing Artifact Usage Anomalies

Type Case Pattern

Missing Production

No Production dP d dC P։։

Delayed Production dP d dC P։։ ։

Early Destruction d d dP D C։ ։։ ։

Exclusive Production dP d d(C P)⊗։ ։

Conditional Production dP d d(P P⊗։ d) C։։

Conditional Destruction d d dP (D D⊗։ ։ d) C։։

Uncertain Production dP d d(C P)⊕։ ։

Uncertain Destruction d d dP (D C)⊕։ ։  ։

Redundant Write

No Consumption

After Last Write

dC d dW C։։

d d dC W C։ ։ ։

d d d(C W) C⊗։ ։ 

Conditional Consumption

After Last Write

d d dW (C C⊗։ ։

d d d

)

(C W) C⊕


։ ։

Conflict Write

Multiple Parallel

Productions
d d(P P)⊕։ ։

Multiple Parallel Updates d d(U U)⊕։ ։

Parallel Read and Update d d(R U)⊕։ ։

27

Chapter 5. Algorithms to Detecting Artifact Usage Anomalies

This chapter presents a solution for detecting artifact usage anomalies in a process

specification. To simplify the discussion, our solution is divided into two algorithms: traversal

algorithm and detection algorithm. The traversal algorithm is applied firstly to transform the

control graph of a process for facilitating the presentation of the detection algorithm. The

detection algorithm to artifact usage anomalies is then applied on the transformed structure.

5.1. The Traversal Algorithm

From the top-level of view, a well-formed control flow can be deemed as a sequence of task

activity and top-level control blocks. Thus, an entire process can be deemed as a sequence of

nodes, where each node may present a task activity or a control block. The same perspective can

be applied to the branches of a control block. Based on this perspective, a control flow graph can

be recursively transformed into a sequence of nodes.

Thus, for an input process schema, the traversal algorithm begins by traversing the main

sequence enclosed by the start vertex and the end vertex of the process. The traversal algorithm is

recursively applied until every task activity and control block in each level are processed.

Besides, the traversal algorithm also transforms each iteration control block into a

corresponding XOR control block during the analysis of artifact usage anomalies. Figure 5.1 and

Figure 5.2 show the transformation of a loop with at-least-once iteration and zero iteration

respectively.

28

...

...

...
...

lsvRC = ∅
levRC ≠ ∅

leV lsV

'''
lsV '''

leV ''''
lsV ''''

leV

''
lsV ''

leVxsV xjV

Transformation of a
Repeat-Until Loop

Figure 5.1: Transform a Repeat-Until Loop.

...

...

...
...

lsvRC ≠ ∅

leV lsV

'''
lsV '''

leV ''''
lsV ''''

leV

''
lsV ''

leV

'
lsV '

leV

xsV xjV

Transformation of a
While Loop

Figure 5.2: Transform a While Loop.

29

Algorithm ControlGraphToSequence(G, v, level) {

//Input: G=(V,E): a directed connected graph

// v: a vertex of G representing the next vertex to traverse

// level: nested level

//Output: S: a structure containing a sequence of nodes (a node can represent a task or a control block)

// S.startVertex :corresponding vertex in G for the beginning of s

// S.endVertex :corresponding vertex in G for the end of s

// S.nodes :nodes collection (an ordered set of nodes)

sequence.startVertex=currentVertex=v;

sequence.level=level;

while (currentVertex!=null) {

currentVertex.ownerSequence=sequence;

switch (currentVertex.type) {

case “Task”:

sequence.nodes.append(currentVertex);

nextVertex=currentVertex.next;

break;

case “ProcessStart”, “AndSplit”, “XorSplit”, “LoopStart”:

if (currentVertex.type==”LoopStart”) {

//Transform loop to corresponding XOR control block

//based on Figure 5.1 and 5.2

}

newNode.type=currentVertex.type;

newNode.startVertex=currentVertex;

for each edge (currentVertex, w) E∈ {

//recursively transform every branch within a control block

subSequence= ControlGraph2Sequence(G, w, level+1);

subsequence.parentBlock = newNode;

//collect every subSequence (corresponding to each branch)

newNode.subSequences.append(subSequence);

}

newNode.endVertex=subSequence.endVertex.next;

sequence.nodes.append(newNode);

nextVertex=newNode.endVertex.next;

break;

case “ProcessEnd”, “LoopEnd”, “AndJoin”, “XorJoin”:

30

exit while;

}

previousVertex=currentVertex; //remember last traversed vertex

currentVertex=nextVertex; //continue to traverse next node

}

sequence.endVertex=previousVertex;

return sequence

}

5.2. The Detection Algorithm

The detection algorithm is subdivided into several sub-algorithms described in subsections.

Algorithm AnalyzeProcess (G , D, WI , WO) {

S = ControlGraphToSequence(G);

// S.startVertex WO I= ; // S.endVertex WI O= ;

DetectMissingProduction (S , WI);

DetectRedundantWrite(S , WI , WO);

DetectConflictWrites(S , ∅);

}

5.2.1. Method for Detecting Missing Production Anomalies

5.2.1.1. Calculation of Propagated Artifacts from the Predecessors

Given a sequence S of the input process schema and an activity v of S, Let vS.AA denote the

set of artifacts propagated from the predecessors of v and v
'S.AA be the set of artifacts of which

each can be propagated to the direct successors of v after execution of v. Initially,

S.startVertex wS.AA I= if S is the top level sequence. During the traversal of the sequenceS , S.AA is

calculated after every traversed node n as follow.

31

� If n represents a task activity v, v has only one direct successor x. v
'S.AA and xS.AA are

calculated as follows:

� For every destroyed artifact vd O−∈ , remove d from u
vS.AA and c

vS.AA

� For every produced artifact \ v vd (O I)+∈ , add d to u
vS.AA and remove d from c

vS.AA .

 \ \

 \ \ \

u u
v v v v v

x v
c c
v v v v v

'
'

'

S.AA S.AA O (O I)
S.AA S.AA

S.AA S.AA O (O I)

− +

− +

 == = 
=

∪

� If n represents a control block with subsequences{ }1iSS SS | i k= ≤ ≤ , every vertex within the

block will be recursively traversed as follows:

� n.startVertex, the start vertex of the control block, is traversed first.

� n.startVertex n.startVertex n.startVertex
'S.AA S.AA S.AA= = =since n.startVertex is a control node.

� For every subsequenceiSS , recursively applied the same traversed algorithm to calculate

each iSS .AA

� n.endVertex is traversed at last and each iSS .AA is merged according to the type of the

control block.

� If n is an XOR control block,

1

1

\

i

i

k
u u
n.endVertex i SS .endVertex

i

n.endVertex n.endVertex k
c u
n.endVertex i SS .endVertex n.endVertex

i

'
S.AA SS .AA

S.AA S.AA

S.AA SS .AA S.AA

=

=

 =
= = 
 =


∩

∪

32

� If n is an And control block,

1 1

1

i i

i

k k
u u u
n.endVertex i SS .endVertex i i SS .endVertex

i i

n.endVertex n.endVertex k
c u
n.endVertex i SS .endVertex n.endVertex

i

'
S.AA SS .AA (SS .O SS .AA)

S.AA S.AA

S.AA SS .AA S.AA

−

= =

=

 =
= = 
 =


\ \

\

∪ ∪

∪

5.2.1.2. Rules for Detecting Missing Production Anomalies

� No Propagation

� When visiting an activity v such that v vI O− ≠ ∅∪ , if) \ u
v v v vMA (I O AA−= ≠ ∅∪ a missing

production anomaly occurs for each artifact u
vd M∈ due to No Propagation.

� Conditional Propagation

� When visiting an activity v such that v vI O− ≠ ∅∪ , if c c
v v v vMA (I O) AA−= ≠ ∅∪ ∩ a

missing production anomaly occurs for each artifact c
vd M∈ .due to Conditional

Propagation.

� Uncertain Propagation

� For an AND control block with subsequences { }1 2iSS SS | i k,k= ≤ ≤ ≥ , before merging

ii SS .endVertexSS .AA from every subsequence, if

1
i jSS ,SS i ji ,j i , j k i j (UP SS .I SS .O)−∃ ∧ ≤ ≤ ∧ ≠ ∧ = ≠ ∅∩ , a missing production anomaly occurs

for each artifact
i jSS ,SSd UP∈ due to Uncertain Propagation.

5.2.1.3. Algorithm to Detect Missing Production Anomalies

Algorithm DetectMissingProduction (S ,AAP) {

//Input: S: a structure containing a sequence of nodes (of which each is a task or a control block)

// AAP: the set of artifacts propagated from preceding nodes.

//Output: messages for detected missing production anomalies.

33

PS.AA AA= ; //the set of artifacts propagated from preceding nodes.

S.I = ∅ ; //the set of artifacts consumed by activities of this sequence.

S.O− = ∅ ; //the set of artifacts destroyed by activities of this sequence.

for each n S∈ { //process every task or control block

switch (n.type) {

case Task: //a task activity

v=n.startVertex;

CheckMissingProduction(v , S.AA); //check missing production on v

//Calculate the set of artifacts that can be propagated to the successors of v.

S.AA = UpdatePropagatedArtifactSet(v , S.AA);

 vS.I S.I I= ∪ ; //update the set of artifacts consumed after execution of v.

 vS.O S.O O− − −= ∪ ; //update the set of artifacts destroyed after execution of v.

break;

case default: //control blocks

CheckMissingProduction(n.startVertex , S.AA);//check missing production on n.startVertex

SS n.subSequences= ; //the set of subsequences of the control block.

for each iSS SS∈ {

//recursively applied the algorithm on every subsequence by passing S.AA as an argument

DetectMissingProduction (iSS , S.AA);

}

//check uncertain destruction before merging

CheckUncertainDestruction(n , SS);

//merge artifact sets propagated from all subsequences

AA = MergePropagatedArtifactSets (n , SS);

}

}

}

Algorithm CheckMissingProduction(v , AA) {

if ()v v(I O− ≠ ∅∪) {

)

)

u
v v v

v c c
v v v

MA (I O AA
MA

MA (I O AA

−

−

 == 
=

\∪

∪ ∩
;

34

for each ud MA∈

 print “a missing production occurs on v due to no propagation of artifact d”;

for each cd MA∈

 print “a missing production occurs on v due to conditional propagation of artifact d”;

}

}

Algorithm UpdatePropagatedArtifactSet (v , AA) {

//after traversing v, update the set of propagated artifacts.

//remove artifacts destroyed and add artifacts produced by v.

 \

 \

u u
v v v v

v c c
v v v v

AA AA O (O I)
AA

AA AA O (O I)

− +

− +

 == 
=

\

\ \

∪
;

return vAA ;

}

Algorithm MergePropagatedArtifactSets(n , SS) {

if (n.endVetex.type==”XorJoin”) {

1

SS

u u
n.endVertex i

i

AA SS .AA
=

=∩ ;

1

SS

c u
n.endVertex i n.endVertex

i

AA SS .AA AA
=

= \∪ ;

} else {

1 1

SS SS

u u u
n.endVertex i i i

i i

AA SS .AA (SS .DA \ SS .AA)
= =

= \∪ ∪ ;

1

SS

c u
n.endVertex i n.endVertex

i

AA SS .AA AA
=

= \∪ ;

}

u c
n.endVertex n.endVertex n.endVertexAA AA AA= ∪ ;

return n.endVertexAA ;

}

Algorithm CheckUncertainDestruction (n , SS) {

35

for each iSS SS∈ {

for each and j j iSS SS SS SS∈ ≠ {

i jSS ,SS i jUP SS .I SS I.O−= ∩ ;

for each
i jSS ,SSd UP∈ {

print “A missing production anomaly for artifact d might occur due to uncertain production on

parallel branches i j(SS ,SS) .”

}

}

}

}

5.2.2. Method for Detecting Redundant Production/Update Anomalies

5.2.2.1. Calculation of Redundant Production/Update

Given a sequence S of the input process schema and an activity v of S, Let vS.NC denote the

set of artifact unused before v and v
'S.NC denotes the set of artifact unused after executing v.

During the traversal of the sequenceS , S.NC is calculated on every traversed node n as follow.

� If n represents a task activity v,
u u
v v v v v

v
c c
v v v v v

'
'

'

S.NC (S.NC I O) O
S.NC

S.NC S.NC I O O

− +

− +

 == 
=

\ \

\ \ \

∪

� For every read or destroyed artifact or v vd I d O−∈ ∈ , remove d from u
vNC and c

vNC .

� For every produced or updated artifact vd O+∈ , add d to u
vNC and remove d from c

vNC .

� If n represents a control block with subsequences{ }1iSS SS | i k= ≤ ≤ , the same algorithm is

recursively applied to calculate each iSS .NC and then merge them according to the type of the

control block.

� If n is an XOR control block,

36

1

1

i

i

k
u u
n.endVertex i SS .endVertex

i

n.endVertex n.endVertex k
c u
n.endVertex i SS .endVertex n.endVertex

i

'
S.NC SS .NC

S.NC S.NC

S.NC SS .NC S.NC

=

=

 =
= = 
 =


\

∩

∪

� If n is an And control block,

1 1

1

i i

i

k k
u u u u
n.endVertex i SS .endVertex i SS .endVertex n.startVertex

i i

k
u

n.endVertex n.endVertex i i i SS .endVertex
i

c
n.endVertex i

'

S.NC SS .NC (SS .NC S.NC)

S.NC S.NC ((SS .I SS .O) SS .NC)

S.NC SS .NC

= =

−

=

=

= =

=

\

 \ \

∪

∪

∩ ∪

∪

1

i

k
u

SS .endVertex n.endVertex
i

S.NC
=











\∪

5.2.2.2. Rules for Detecting Redundant Production/Update Anomalies

� Explicit Redundant Update

� After visiting the endVertex of the top level sequence, i.e. the end vertex of the process, if

u
S.endVertex wEC NC O= ≠ ∅\ , a redundant update anomaly occurs for every artifact d EC∈

due to No Consumption After Last Write.

� Potential Redundant Update

� After visiting the endVertex of the top level sequence, i.e. the end vertex of the process, if

c
S.endVertex wCC NC O= ≠ ∅\ , a redundant update anomaly occurs for every artifact

d CC∈ due to Conditional Consumption After Last Write.

5.2.2.3. Algorithm to Detect Redundant Production and Update Anomalies

Algorithm DetectRedundantWrite (S , NCP, WO) {

//Input: S: a structure containing a sequence of nodes (of which each is a task or a control block)

// NCP: the set of artifacts unused after preceding nodes.

//Output: messages for detected missing production anomalies.

37

PS.NC NC= ; //the set of artifacts not unused by preceding nodes.

S.I = ∅ ; //the set of artifacts consumed by activities of this sequence.

S.O− = ∅ ; //the set of artifacts destroyed by activities of this sequence.

for each n S∈ { //process every task or control block

switch (n.type) {

case Task: //a task activity

v=n.startVertex;

S.NC = UpdateUnusedArtifactSet(v , S.NC);

 vS.I S.I I= ∪ ; //update the set of artifacts consumed.

 vS.O S.O O− − −= ∪ ; //update the set of artifacts destroyed.

break;

case default: //control blocks

SS n.subSequences= ;

for each iSS SS∈ {

// for every subsequence, recursively

//calculate the set of artifacts unused and detect redundant update

DetectRedundantWrite (iSS , S.NC , WO);

}

//merge unused artifact sets from all subsequences

AA =MergeUnusedArtifactSets(n , SS);

}

}

If (S.level==0) // top level sequence {

CheckRedundantWrite (NC, WO);

}

}

Algorithm UpdateUnusedArtifactSet (v , NC) {

//update the set of artifacts unused

//remove artifacts read or destroyed and add artifacts updated by v.

u u
v v v v

v c c
v P(v) v v v

NC NC I O) O
NC

NC NC I O O

− +

− +

 == 
=

\ \

\ \ \

∪
;

38

}

Algorithm MergeUnusedArtifactSets (n , SS){

if (n.endVetex.type==”XorJoin”){

1

1

i

i

k
u u
n.endVertex i SS .endVertex

i
n.endVertex k

c u
n.endVertex i SS .endVertex n.endVertex

i

NC SS .NC

NC

NC SS .NC NC

=

=


=


= 
 =


\

∩

∪

;

} else {

1 1

1

i i

i

i

k k
u u u u
n.endVertex i SS .endVertex i SS .endVertex n.startVertex

i i

k
u

n.endVertex i i i SS .endVertex

i

c
n.endVertex i SS .endVertex n.endVert

NC SS .NC (SS .NC S.NC)

NC ((SS .I SS .O) SS .NC)

NC SS .NC NC

= =

−

=

=

=

=

\

 \ \

\

∪

∪

∩ ∪

∪

1

k
u

ex

i=













∪

;

}

return n.endVertexNC ;

}

Algorithm CheckRedundantWrite(NC , WO) {

for each c
Wd (NC O)∈ \ {

print “A potential redundant update anomaly occurs for artifact d

due to Conditional Unused for the Process”;

}

for each u
Wd (NC O)∈ \ {

print “A potential redundant update anomaly occurs for artifact d

due to Completely Unused for the Process”;

}

}

39

5.2.3. Method for Detecting Conflict Writes Anomalies

5.2.3.1. Calculation of the Set of Artifact Produced and Updated of a Sequence

Given a sequence S of the input process schema, let S.PA and S.UA denote the set of

artifacts produced and updated respectively within the sequence S. Initially, S.PA and S.UA are

empty. During the traversal of the sequenceS , S.PA and S.UA are calculated on every

traversed node n as follow.

� If n represents a task activity v, v v

v v

S.PA S.PA (O I)

S.UA S.UA (O I)

+

+

 =


=

\∪

∪ ∩

� For every artifact d produced by v, i.e. v vd (O I)+∈ \ , add v toS.PA .

� For every artifact d updated by v, i.e. v vd (O I)+∈ ∩ , add v toS.UA .

� If n represents a control block with subsequences{ }1iSS SS | i k= ≤ ≤ , the same algorithm is

recursively applied to calculate each iSS .PA and iSS .UA and then merge them.

1

1

k

i
i

k

i
i

S.PA S.PA SS .PA

S.UA S.UA SS .UA

=

=

=

=

∪

∪

∪

∪

5.2.3.2. Rules for Detecting Conflict Production/Update Anomalies

� Multiple Parallel Productions

� For an AND control block with subsequences { }1 2iSS SS | i k,k= ≤ ≤ ≥ , before merging

iSS .PA from every subsequence, if
1

k

i
i

MPA SS .PA
=

= ≠ ∅∩ then a conflict writes anomaly

occurs for every artifact d MPA∈ due to multiple parallel productions.

� Multiple Parallel Updates

� For an AND control block with subsequences { }1 2iSS SS | i k,k= ≤ ≤ ≥ , before merging

40

iSS .UA from every subsequence, if
1

k

i
i

MUA SS .UA
=

= ≠ ∅∩ then a conflict writes anomaly

occurs for every artifact d MUA∈ due to multiple parallel updates.

5.2.3.3. Algorithm to Detect Conflict Production and Update Anomalies

Algorithm DetectConflictWrites (S) {

S.PA = ∅ ; //the set of artifacts produced by activities of sequence S.

S.UA = ∅ ; //the set of artifacts updated by activities of sequence S.

S.RA = ∅ ; //the set of artifacts read by activities of sequence S.

for each n S∈ { //process every task or control block

switch (n.type) {

case Task: //a task activity

v=n.startVertex;

 u u
v vS.PA S.PA (O I)+= \∪ ; //update the set of artifacts consumed.

 u u
v vS.UA S.UA (O I)+= ∪ ∩ ; //update the set of artifacts destroyed.

break;

case default: //control blocks

SS n.subSequences= ;

for each iSS SS∈ {

// for every subsequence, recursively

//calculate the set of artifacts produced/updated and detect conflict write

DetectConflictWrites (iSS);

}

//detect conflict writes before merging

DetectConflictWrites (n , SS);

//merge from all subsequences

AA =MergeWriteArtifactSets(n , SS);

}

}

41

}

Algorithm DetectConflictWrites (n , SS) {

1

SS

i

i

MPP SS .PA
=

=∩ ;
1

SS

i

i

MPU SS .UA
=

=∩ ;

for each d MPP∈ {

print “A conflict writes anomaly for artifact d might occur due to

multiple parallel productions.”

}

for each d MPU∈ {

print “A conflict writes anomaly for artifact d might occur due to multiple parallel updates.”

}

}

Algorithm MergeWriteArtifactSets (n , SS) {

1

k

i

i

S.PA S.PA SS .PA
=

= ∪ ∪ ;
1

k

i

i

S.UA S.UA SS .UA
=

= ∪ ∪ ;

return n.endVertexNC ;

}

5.2.4. Complexities of Traversal and Detection Algorithms

Given an input process schema W WBP (G,VT ,D,I ,O)= , as shown in 5.2, four main algorithms

are used to check the artifact usage anomalies: ControlGraphToSequce, DetectMissingProduction,

DetectRedundantWrite, and DetectConflictWrites.

Algorithm ControlGraphToSequce walks through every vertex and edge in G(V ,E) . Every

edge is walked through exactly once and every vertex is processed once. Thus, the complexity of

algorithm ControlGraphToSequce is (| V | | E |)Ο + .

The detection algorithms, including algorithm DetectMissingProduction,

DetectRedundantWrite, and DetectConflictWrites, handles every activity only once. Two or

42

three sets of artifacts are required to calculate for every activity. Since the maximum size of each

set of artifacts is fixed (D), we can use a bit-vector representation of an element of a set. The

advantages of this representation are that operations are very fast and the required memory space

can be small. Operations such as unions, intersections, and complements can be considered as

constant time. Thus, given n | V |= , algorithm DetectRedundantWrite and DetectConflictWrites

are (n)Ο . For algorithm DetectMissingProduction, if destroy operation is not considered, the

complexity is (n)Ο . When destroy operation is involved, it is necessary to check every pair of

parallel branches for missing production anomalies inside an AND control block. Thus, with

destroy operations, the complexity of algorithm DetectMissingProduction is 2 2(n n) (n)Ο + = Ο .

43

Chapter 6. Illustrative Example

To demonstrate the proposed analysis algorithms, this chapter introduces a property loan

approval process [10] as an example. The proposed algorithms are applied on this example to

illustrate the steps to detect the artifact usage anomalies.

6.1. An Example: Property Loan Approval Process

Figure 6.1 shows the control flow graph of the approval process and Table 6.2 presents the

artifact usages.

Table 6.1: Activities and Artifacts in the Property Loan Approval Process

Activities

t1 Receive application

t2 Verify application

t3 Assess credit rating 1

t4 Assess credit rating 2

t5 Determine interest rate

Artifacts

d1 Application data

d2 Applicant data

d3 Account data

d4 Loan amount

d5 Application status

d6 Credit history

d7 Credit rating

Artifact Usages

R Reader

U Updator

t6 Appraise property

t7 Determine loan risk

t8 Adjust loan amount

t9 Sign by applicant

t10 Sign by loan officer

d8 Desired Type of Rate

d9 Interest rate

d10 Property data

d11 Appraised value of property

d12 Adjusted loan amount

d13 Bank’s portfolio

d14 Risk level

P Producer

D Destroyer

t11 Sign by bank manager

t12 Notify for the rejection

t13 Notify for the acceptance

t14 Log the loan application

d15 Bank’s risk exposure

d16 Marginal risk

d17 Signature of loan officer

d18 Signature of manager

d19 Approved statement

d20 Rejected statement

d21 Application summary

44

Figure 6.1: Property Loan Approval Process.

Table 6.2: Artifacts Usages in the Property Loan Approval Process

 ps ls1 t1 t2 le1 as1 t3 t4 aj1 as2 t5 t6 aj2 t7 xs1 xs2 t8 xj2 as3 t9 xs3 t10 t11 xj3 aj3 xj1 xs4 t12 t13 xj4 t14 pe
d1 P R
d2 P R R R R R D R R R
d3 P R R R
d4 P R R R R R R R
d5 P U R U U U U U U U U U
d6 U R
d7 P P R D R R
d8 R
d9 P D R R R
d10 P R R
d11 R P R R
d12 R P R R R R
d13 P
d14 P R R R R R R R
d15 R R R R
d16 R R
d17 P R
d18 P R
d19 P R
d20 P R
d21 R R

45

6.2. Detection of Missing Production Anomalies

Table 6.3 shows the steps of the calculation of propagated artifacts and the detection of missing

production anomalies.

Table 6.3. Steps to Detect Missing Production Anomalies.

ps, ls1 { }1 13 , u cAA d ,d AA= = ∅

t1 () () () () (){ } { }
1 11 13 2 3 4 5 10 1 u c

t tAA d ,d , d , d , d , d , d , AA , I d , I \ AA= = ∅ = = ∅

t2 { } { }
2 21 13 2 3 4 5 10 2 3 4 5 , u c

t tAA d ,d ,d ,d ,d ,d ,d , AA , I d ,d ,d ,d I AA= = ∅ = = ∅\

le1,

as1
{ } { }

1 11 13 2 3 4 5 10 5 u c
le leAA d ,d ,d ,d ,d ,d ,d , AA , I d , I AA= = ∅ = = ∅\

t3
(){ } { }

{ }
3

3

1 13 2 3 4 5 10 7 2 3 5 6

6

 => no preceding propagation

u c
t

t

AA d ,d ,d ,d ,d ,d ,d , d , AA , I d ,d ,d ,d

I AA d

= = ∅ =

=\

t4
(){ } { }

{ }
4

4

1 13 2 3 4 5 10 7 2 5 6

6

 => no preceding propagation

u c
t

t

AA d ,d ,d ,d ,d ,d ,d , d , AA , I d ,d ,d

I AA d

= = ∅ =

=\

aj1,

as2
{ }1 13 2 3 4 5 10 7 u cAA d ,d ,d ,d ,d ,d ,d ,d , AA= = ∅

t5
(){ } { }

{ }
5

5

1 13 2 3 4 5 10 7 9 2 3 4 7 8 11

8 11

 => no preceding propagation

u c
t

t

AA d ,d ,d ,d ,d ,d ,d ,d , d , AA , I d ,d ,d ,d ,d ,d

I AA d ,d

= = ∅ =

=\

t6 (){ } { }
6 61 13 2 3 4 5 10 7 11 10 u c

t tAA d ,d ,d ,d ,d ,d ,d ,d , d , AA , I d , I AA= = ∅ = = ∅\

aj2 { }1 13 2 3 4 5 10 7 9 11 u cAA d ,d ,d ,d ,d ,d ,d ,d ,d ,d , AA= = ∅

46

t7
1 13 2 3 4 5 10 7

uAA d ,d ,d ,d ,d ,d ,d , d= (){ } { }
{ }

7

7

9 11 14 4 5 7 10 11 12

12

 => no preceding propagation

c
t

t

,d ,d , d , AA , I d ,d ,d ,d ,d ,d

I AA d

= ∅ =

=\

xs1,

xs2

{ } { } { }
{ }
{ }

1 2

1

2

1 13 2 3 4 5 10 9 11 14 14 16 14 15

16

15

 => no preceding propagation

 => no preceding propagation

u c
xs xs

xs

xs

AA d ,d ,d ,d ,d ,d ,d ,d ,d ,d , AA , I d ,d , I d ,d

I AA d

I AA d

= = ∅ = =

=

=

\

\

t8
1 13 2 3 4 5 10 9

uAA d ,d ,d ,d ,d ,d ,d , d= (){ } { }
8

8

11 14 12 2 4 5 9 11 14 c
t

t

,d ,d , d , AA , I d ,d ,d ,d ,d ,d

I AA

= ∅ =

= ∅\

xj2,

as3
{ } { }1 13 2 3 4 5 10 11 14 9 12 u cAA d ,d ,d ,d ,d ,d ,d ,d ,d , AA d ,d= =

t9
1 13 2

uAA d ,d , d={ } { } { }
{ }

9

9 9

3 4 5 10 11 14 9 12 2 9 12

9 12

 preceding propagation

c
t

c
t t

,d ,d ,d ,d ,d ,d , AA d ,d , I d ,d ,d

I AA , I AA d ,d conditional

= =

= ∅ = =>\ ∩

xs3

{ } { } { }
{ }

{ }

3

3

3

1 13 2 3 4 5 10 11 14 9 12 4 12 14 15

15

12

 preceding propagation

 preceding propagation

u c
xs

xs

c
xs

AA d ,d ,d ,d ,d ,d ,d ,d ,d , AA d ,d , I d ,d ,d ,d

I AA d no

I AA d conditional

= = =

= =>

= =>

\

∩

t10

(){ } { } { }
{ }

{ }

10

10

10

1 13 2 3 4 5 10 11 14 17 9 12 2 4 5 7 9 12 14

7

9 12

 => no preceding propagation

 => conditional preceding propagation

u c
t

t

c
t

AA d ,d ,d ,d ,d ,d ,d ,d ,d , d , AA d ,d , I d ,d ,d ,d ,d ,d ,d

I AA d

I AA d ,d

= = =

=

=

\

∩

t11

(){ } { }
{ }

{ }
{ }

11

11

11

1 13 2 3 4 5 10 11 14 18 9 12

2 4 5 7 9 12 14 15 17 21

7 15 17 21

9 12

 => no preceding propagation

 => conditional p

u c

t

t

c
t

AA d ,d ,d ,d ,d ,d ,d ,d ,d , d , AA d ,d

I d ,d ,d ,d ,d ,d ,d ,d ,d ,d

I AA d ,d ,d ,d

I AA d ,d

= =

=

=

=

\

∩ receding propagation

xj3 { } { }1 13 2 3 4 5 10 11 14 9 12 17 18 u cAA d ,d ,d ,d ,d ,d ,d ,d ,d , AA d ,d ,d ,d= =

47

aj3

{ } { }
{ }
{ }

10 9

11 9

1 13 3 4 5 10 11 14 9 12 17 18

2

2

 =>uncertain preceding propagation

 =>uncertain preceding propagation

u c

t t

t t

AA d ,d ,d ,d ,d ,d ,d ,d , AA d ,d ,d ,d

I O d

I O d

−

−

= =

=

=

∩

∩

xj1,xs4

{ } { }
{ }

{ }
{ }

4

4

4

1 13 3 4 5 10 11 14 9 12 17 18 2

2 14 15 16 18

15

12

 => no preceding propagation

 => conditional preceding propagation

u c

xs

xs

c
xs

AA d ,d ,d ,d ,d ,d ,d ,d , AA d ,d ,d ,d ,d

I d ,d ,d ,d ,d

I AA d

I AA d

= =

=

=

=

\

∩

t12 (){ } { } { }
12 121 13 3 4 5 10 11 14 20 9 12 17 18 2 5 u c

t tAA d ,d ,d ,d ,d ,d ,d ,d , d , AA d ,d ,d ,d ,d , I d , I AA= = = = ∅\

t13 (){ } { } { }
13 131 13 3 4 5 10 11 14 19 9 12 17 18 2 5 u c

t tAA d ,d ,d ,d ,d ,d ,d ,d , d , AA d ,d ,d ,d ,d , I d , I AA= = = = ∅\

xj4,t14
{ } { } { }

{ }
14

14 14

1 13 3 4 5 10 11 14 9 12 17 18 2 20 19 5 19 20

19 20

 => conditional preceding propagation

u c
t

c
t t

AA d ,d ,d ,d ,d ,d ,d ,d , AA d ,d ,d ,d ,d ,d ,d , I d ,d ,d

I AA , I AA d ,d

= = =

= ∅ =\ ∩

pe { } { }1 13 3 4 5 10 11 14 9 12 17 18 2 20 19 u cAA d ,d ,d ,d ,d ,d ,d ,d , AA d ,d ,d ,d ,d ,d ,d= =

6.3. Detection of Redundant Write Anomalies

Table 6.4 shows the steps to calculate the set of unused artifacts for every activity.

Table 6.4. Steps to Calculate the Unused Artifacts for Every Activity.

ps, ls1 { }1 13 , u cNC d ,d NC= = ∅

t1 1
uNC d= () () () () (){ }13 2 3 4 5 10 c,d , d , d , d , d , d , NC = ∅

t2 13 2
uNC d , d= 3, d 4, d{ }5 10 c,d ,d , NC = ∅

48

le1,

as1
13 5

uNC d , d={ }10 c,d , NC = ∅

t3 () () (){ }13 10 5 6 7 u cNC d ,d , d , d , d , NC= = ∅

t4 () (){ }13 10 5 7 u cNC d ,d , d , d , NC= = ∅

aj1,

as2
{ } { }13 10 5 7 6 u cNC d ,d ,d ,d , NC d= =

t5 13 10 5 7
uNC d ,d ,d , d= (){ } { }9 6 c, d , NC d=

t6 13 10
uNC d , d= (){ } { }5 7 11 6 c,d ,d , d , NC d=

aj2 { } { }13 5 9 6 11 u cNC d ,d ,d , NC d ,d= =

t7 (){ }13 5 9 14 6 11 u cNC d ,d ,d , d , NC d , d= ={ }

xs1 13 5 9 14
uNC d ,d ,d , d={ } { }6 c, NC d=

xs2 { } { }13 5 9 6 u cNC d ,d ,d , NC d= =

t8 13 5 9
uNC d ,d , d= (){ } { }12 6 c, d , NC d=

xj2 { } { }13 5 6 9 12 u cNC d ,d , NC d ,d ,d= =

t9 { }13 5 6 9 u cNC d ,d , NC d , d= = 12, d{ }

xs3 { }13 5 6 9 12 u cNC d ,d , NC d ,d , d= ={ }

t10 (){ }13 5 17 6 9 u cNC d ,d , d , NC d , d= ={ }

49

t11 (){ }13 5 18 6 9 u cNC d ,d , d , NC d , d= ={ }

xj3 { } { }13 5 6 17 18 u cNC d ,d , NC d ,d ,d= =

aj3 { } { }13 5 6 17 18 u cNC d ,d , NC d ,d ,d= =

xj1,xs4 { }13 5 6 17 18 u cNC d ,d , NC d ,d , d= ={ }

t12 (){ } { }13 5 20 6 17 u cNC d ,d , d , NC d ,d= =

t13 (){ } { }13 5 19 6 17 u cNC d ,d , d , NC d ,d= =

xj4 { } { }13 5 6 17 20 19 u cNC d ,d , NC d ,d ,d ,d= =

t14 { }13 5 6 17 20 u cNC d ,d , NC d ,d , d= = 19, d{ }

pe { } { }13 5 6 17 u cNC d ,d , NC d ,d= =

After visiting Process End vertex, the redundant update anomalies are detected as follows:

� Explicit Redundant Update

{ } { } { }13 5 21 13 5
u

wEC NC O d ,d d d ,d= = =\ \ is not empty and thus, a redundant update

anomaly occurs for every artifact d EC∈ due to Completely Unused for the Process.

� Potential Redundant Update

{ } { } { }6 17 21 6 17
c

wCC NC O d ,d d d ,d= = =\ \ is not empty and thus, a redundant update

anomaly occurs for every artifact d CC∈ due to Conditional Unused for the Process.

50

Chapter 7. Comparisons of Data-flow Analysis Approaches

Current workflow modeling and analyzing paradigms are mainly focused on the control-flow

and resource dimensions. Literature reports indicate little work in data-flow dimension such as

those in conventional programming languages. Sadiq et al. [7] and Sun et al. [8－10] are two

groups working on the analysis in data-flow dimension. In this chapter, we compare our work

with them.

Regarding the anomalies addressed, Sun et al. [8－10] claimed that seven types of data-flow

anomalies proposed by Sadiq et al. [7] can be either represented by their three basic data-flow

anomalies or not a problem at the conceptual level. The anomalies in [7] can be found with our

model as follows.

A redundant data anomaly occurs when an activity produces an intermediate data output but

this data is not required by any succeeding activity. This anomaly is classified as Redundant Write

in our approach.

A lost data anomaly occurs when two parallel activities perform non-read operations on an

artifact. This anomaly is classified as Conflict Write (Multiple Parallel Production/Updates) in

our approach.

A missing data anomaly occurs when an artifact is accessed before it is initialized. This

anomaly is classified as Missing Production in our approach.

A mismatched data anomaly occurs when the structure of the data produced by the source is

incompatible with the structure required by the activity that uses the artifact. This anomaly can be

regarded as the occurrence of both Missing Production and Redundant Write in our approach.

An inconsistent data anomaly occurs when an initial input artifact of a workflow is updated

externally during the execution time of the workflow. As stated by Sun et al., this anomaly is not

a problem at the conceptual level.

51

A misdirected data anomaly occurs when a data-flow direction conflicts with the control flow

in a workflow schema. This anomaly is classified as Missing Production (Conditional Production)

in our approach.

An insufficient data anomaly occurs when data specified are not sufficient to complete an

activity successfully. This anomaly results from ill-designed activity and can be classified as

Missing Production in our approach at the semantic level. Table 7.1 summaries the comparison of

anomalies addressed among Sadiq et al., Sun et al., and our work.

Table 7.1. Comparison of anomalies addressed.

Our approach Sadiq et al. Sun et al.

Missing

Production

No Production

Missing data

Insufficient data

Mismatched data

Missing data Delayed Production

Misdirected data Conditional Production

Uncertain Production

Exclusive Production

N/A N/A
Early Destruction

Conditional Destruction

Uncertain Destruction

Redundant

Write

Conditional Consumption

After Last Write Redundant data

Mismatched data
Redundant data

No Consumption

After Last Write

52

Conflict

Write

Multiple Parallel Productions
Lost data

Conflicting data

Multiple Parallel Updates
N/A

Parallel Read and Update N/A

Sadiq et al. [7] identify and justify the importance of data modeling in overall workflow

design process. In addition, data-flow validation issues and essential requirements of data-flow

modeling in workflow specifications are identified. They illustrate and define seven potential

data-flow anomalies in above table. However, Sadiq’s work is discussed only on the conceptual

level and thus, neither concrete data-flow model nor detecting algorithms are proposed.

Furthermore, operations on data are only classified into read and write type.

Sun et al. [8－10] formulate the data-flow perspective by means of dependency analysis. The

data-flow matrix and an extension of the unified modeling language (UML) activity diagram are

proposed to specify the data flow in a business process. Then, three basic types of data-flow

anomalies, missing data, redundant data, and conflicting data, are defined. Based on the

dependency analysis, algorithms to data-flow analysis for discovering the data-flow anomalies

are presented. However, as Sadiq’s work, no explicit model is proposed to characterize the

behaviors of data. Also, read and initial write operation types are considered only.

Our approach presents a process model to describe workflow schemas. The behaviors of an

artifact are explicitly modeled by a finite state machine. The operation types including Initialize,

Read, Update, and Destroy, are concerned in this dissertation. Table 7.2 summaries the

comparisons.

53

Table 7.2. A summary of comparisons.

 Sadiq et al. Sun et al. This Work

Process Model
N/A

(Conceptual Level)

Data-flow matrices

Process data diagram
Control flow Diagram

Operations

Concerned
Read, Write Read, Write Read, Initialize, Update, Destroy

Detecting

Method
N/A

Data dependency

analysis

Artifact Usage dependency

analysis

Concrete

Algorithm
N/A Yes Yes

Complexity N/A 3(n)Ο

(n)Ο for Redundant Write and

Conflict Writes

(n)Ο for missing productions

(without destroy operations)

2(n)Ο for missing productions

(with destroy operations)

54

Chapter 8. Conclusion and Future Work

The main contribution of this dissertation is to introduce an artifact usage analysis technique

into workflow design phase. To achieve this goal, this dissertation presents a business process

model for describing a business process and analyzes the artifact usages on this model. In our

model, the usages of an artifact are characterized by its state transition diagram. Among the

usages of artifacts, three types with thirteen cases of improper artifact usage affecting workflow

execution are identified and formulated and a set of algorithms to discovering these anomalies is

presented. An example is demonstrated to validate the usability of the proposed algorithms.

We are currently continuing our research in several directions. First, we plan to implement the

proposed model and algorithms on current workflow management systems, such as Agentflow

[38], so that our research result can be tested in real-world applications. Second, we will continue

the analysis on composite artifacts with more complex usages using Revise operations. The third

is to integrate resource constrains analysis techniques with our work to build a practical workflow

design methodology.

55

Reference

1 The Workflow Management Coalition, “The workflow reference model”, Document Number

TC00-1003, January 1995.

2 P. Senkul and I.H. Toroslu, “An architecture for workflow scheduling under resource

allocation constraints”, Information Systems, Vol. 30, Issue 5, pp. 399-422, PERGAMON,

July 2005.

3 H. Li, Y. Yang and T.Y. Chen, “Resource constraints analysis of workflow specifications”,

Journal of Systems and Software, Vol. 73, No. 2, pp. 271–285, Elsevier Science, October

2004.

4 C. Liu, X. Lin, M.E. Orlowska, and X. Zhou, “Confirmation: increasing resource availability

for transactional workflows”, Information Sciences, Vol. 153, Issue 1, pp. 37-53, Elsevier

Science Inc, July 2003.

5 W. Du and M.C. Shan, “Enterprise workflow resource management”, Proceedings of the Ninth

International Workshop on Research Issues on Data Engineering: Information Technology for

Virtual Enterprises, pp. 108-115, IEEE Computer Society, March 1999.

6 M.Z. Muehlen, “Resource modeling in workflow applications”, Proceedings of the 1999

Workflow Management Conference, pp. 137-153, Münster, Germany, November 1999.

7 S. Sadiq, M.E. Orlowska, W. Sadiq, and C. Foulger, ”Data flow and validation in workflow

modeling”, Proceedings of the 15th Australasian database conference, pp. 207-214, Dunedin,

New Zealand, January 2004.

8 S.X. Sun, and J.L. Zhao, "A data flow approach to workflow design", Proceedings of the 14th

Workshop on Information Technology and Systems (WITS’04), pp. 80-85, 2004.

9 S.X. Sun, J.L. Zhao, and O.R. Sheng, "Data flow modeling and verification in business

process management", Proceedings of the AIS Americas Conference on Information Systems,

pp. 4064-4073, New York, August 5-8, 2004.

10 S.X. Sun, J.L. Zhao, J.F. Nunamaker, and O.R.L. Sheng, “Formulating the data flow

perspective for business process management”, Information Systems Research, Vol. 17, No. 4,

pp. 374-391, December 2006.

56

11 H. Zhuge, “Component-based workflow systems development”, Decision Support Systems,

Vol. 35, Issue 4, pp. 517-536, Elsevier Science Publishers, July 2003.

12 A.S. Hitomi and D. Le, “Endeavors and component reuse in web-driven process workflow”,

Proceedings of the California Software Symposium, pp. 15-20, Irvine, CA, USA, October

1998.

13 H.-J Hsu, “Using state diagrams to validate artifact specifications on primitive workflow

schema”, National Chiao-Tung University, M.S. Thesis, 2005.

14 F.-J. Wang, C.-L. Hsu, and H.-J. Hsu, “Analyzing inaccurate artifact usages in a workflow

schema”, Proceedings of the 30th Annual International Computer Software and Applications

Conference (COMPSAC'06), Vol. 2, pp. 109-114, September 17-21, 2006.

15 B. Curtis, M.I. Kellner, and J. Over, “Process modeling”, CACM Vol. 35, No. 9, pp. 75–90.

16 S. Jablonski and C. Bussler, Workflow management: modeling concepts, architecture, and

implementation, International Thomson Computer Press, London, UK, 1996.

17 C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater, “Model checking of

workflow schemas”, Proceeding of Fourth International Enterprise Distributed Object

Computing Conference (EDOC'00), pp. 170-179, IEEE Computer Society, September 2000.

18 W.M.P. van der Aalst, “The application of petri nets to workflow management”, Journal of

Circuits, Systems and Computers, Vol. 8, No. 1, pp. 21-66, 1998.

19 W.M.P. van der Aalst and A.H.M. ter Hofstede, “Verification of workflow task structures: a

petri-net-based approach”, Information Systems, Vol. 25, No. 1, pp. 43-69, 2000.

20 W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros, “Workflow

patterns”, BETA Working Paper Series, WP 47, Eindhoven University of Technology,

Eindhoven, 2000.

21 W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros, “Advanced

workflow patterns”, Proceeding of 7th International Conference on Cooperative Information

Systems (CoopIS 2000), Vol. 1901 of Lecture Notes in Computer Science, pp. 18-29.

Springer-Verlag, Berlin, 2000.

22 W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros, “Workflow

57

patterns”, Distributed and Parallel Databases, Vol. 14, No. 1, pp. 5-51, July 2003.

23 W.M.P. van der Aalst, “Verification of workflow nets”, Proceedings of the 18th International

Conference on Application and Theory of Petri Nets, pp. 407-426, Toulouse, France, June

23-27, 1997.

24 W.M.P. van der Aalst, “The application of petri-nets to workflow management”, Journal of

Circuits, Systems and Computers, Vol. 8, No. 1, pp. 21-66, 1998.

25 W.M.P. van der Aalst and T. Basten, “Inheritance of workflows: an approach to tackling

problems related to change”, Theoretical Computer Science, Vol. 270, No. 1-2, pp. 125-203,

2002.

26 H.M.W. Verbeek and W.M.P. van der Aalst, “Woflan 2.0: a petri-net-based workflow diagnosis

tool”, Proceedings of the 21st International Conference of Application and Theory of Petri

Nets (ICATPN 2000), pp. 475-484, Aarhus, Denmark, June 26-30, 2000.

27 C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater, “Formal verification of

workflow schemas”, Technical Report, Control and Coordination of Complex Distributed

Services, ESPRIT Long Term Research Project, 2000.

28 H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst, “Diagnosing workflow processes using

woflan”, The Computer Journal, Vol. 44, No. 4, pp. 246-279, 2001.

29 L. Gong and H.-Y. Wang, “A method to verify the soundness of workflow control logic”,

Computer Supported Cooperative Work in Design, Vol. 1, pp. 284-388, May 2004.

30 W. Sadiq and M.E. Orlowska, “Analyzing process models using graph reduction techniques”,

Information Systems, Vol. 25, No. 2, pp. 117-134, Elsevier Science Publishers, 2000.

31 W. Sadiq and M.E. Orlowska, “On correctness issues in conceptual modeling of workflows”,

Proceedings of the 5th European Conference on Information Systems (ECIS ‘97), Cork,

Ireland, June 19-21, 1997.

32 W. Sadiq and M.E. Orlowska, “Applying graph reduction techniques for identifying structural

conflicts in process models”, Proceedings of the 11th International Conference on Advanced

Information Systems Engineering (CAiSE '99), Vol. 1626 of Lecture Notes in Computer

Science, pp. 195-209, Springer-Verlag, Berlin, 1999.

58

33 N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst, “Workflow data

patterns”, QUT Technical report, FIT-TR-2004-01, Queensland University of Technology,

Brisbane, 2004.

34 J. Bae, H. Bae, S.-H. Kang, and Y. Kim, “Automatic control of workflow processes using ECA

rules”, IEEE Transaction on Knowledge and Date Engineering, Vol. 14, No. 8, pp. 1010-1023,

IEEE Computer Society, August 2004.

35 J.H. Son, and M.H. Kim, “Extracting the workflow critical path from the extended

well-formed workflow schema”, Journal of Computer and System Sciences, Vol. 70, Issue 1,

pp. 86-106, Elsevier Science Publishers, February 2005.

36 D.-H. Chang, J.H. Son, and M.H. Kim, “Critical path identification in the context of a

workflow”, Information & Software Technology, Vol. 44, No. 7, pp. 405-417, Elsevier Science

Publishers, May 2002.

37 Object Management Group. 2006, Business Process Modeling Notation (BPMN),

http://www.bpmn.org/.

38 Flowring Technology Corp., http://www.flowring.com, accessed May 2006.

39 The Workflow Management Coalition, “Terminology & glossary”, Document Number

WFMC-TC-1011, February 1999.

40 N.R. Adam, V. Atluri, and W.K. Huang, “Modeling and analysis of workflows using petri

nets”, Journal of Intelligent Information Systems, Vol. 10, No. 2, pp. 131-158, March/April

1998.

41 M. Koubarakis and D. Plexousakis, “A formal framework for business process modelling and

design”, Information Systems, Vol. 27, No. 5, pp. 299-319, July 2002.

42 H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan, “Logic based modeling

and analysis of workflows”, Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pp. 25-33, Seattle, Washington, United States,

June 01-04, 1998.

43 P. Senkul, M. Kifer and I.H. Toroslu, “A logical framework for scheduling workflows under

resource allocation constraints”, Proceeding of 28th International Conference on Very Large

59

Data Bases (VLDB’02), pp. 694–702, August 2002.

44 G. Trajcevski, C. Baral, and J. Lobo, “Formalizing (and Reasoning About) the specifications of

workflows”, Proceedings of the 7th International Conference on Cooperative Information

Systems, pp. 1-17, September 06-08, 2000.

45 N. Tatbul, S. Nural, P. Karagoz, I. Cingil, E. Gokkoca, M. Altinel, P. Koksal, and A. Dogac, “A

workflow specification language and its scheduler”, Proceedings of International Conference

on Computer and Information Sciences, pp. 163-170, Antalya, Turkey, November 1997.

46 S. Chinn, and G. Madey, “Temporal representation and reasoning for workflow in engineering

design change review”, IEEE Transactions on Engineering Management, Vol. 47, No. 4, pp.

485-492, 2000.

47 A.H.M. ter Hofstede and M.E. Orlowska, “On the complexity of some verification problems

in process control specifications”, The Computer Journal, Vol. 42, No. 5, pp. 349-359, 1999.

48 A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse, “Verification problems in conceptual

workflow specifications”, Data and Knowledge Engineering, Vol. 24, Iss. 3, pp. 239-256,

1998.

49 C. Karamanolis, D. Giannakopoulou, J. Magee, and S. Wheater, “Modeling and analysis of

workflow processes”. Technical Report 99/2, Department of Computing, Imperial College.

50 K. Kim, C.A. Ellis, “Performance analytic models and analyses for workflow architectures”,

Journal of Information Systems Frontiers, Vol. 3, No. 3, pp. 339-355, September 2001.

51 A. Zaidi, “On temporal logic programming using petri nets”, IEEE Transactions on Systems,

Man, and Cybernetics, Part A: Systems and Humans, Vol. 29, Issue 3, pp. 245-254, 1999.

52 M. Rosemann and M. zur Mühlen, “Evaluation of workflow management systems: a

meta-model approach”,: Australian Journal of Information Systems, Vol. 6, No. 1, pp. 103-116,

1998.

53 E. Bertino; E. Ferrari, and V. Atluri, “The specification and enforcement of authorization

constraints in workflow management systems”, ACM Transactions on Information and System

Security, Vol. 2 , Iss. 1, pp. 65-104, 1999.

54 O. Marjanovic, “Dynamic verification of temporal constraints in production workflows”,

60

Proceedings of the Australian Database Conference ADC'2000, pp. 74-81, January

31-February 03, 2000.

55 M. Reichert and P. Dadam, “Adeptflex—Supporting Dynamic Changes of Workflows Without

Losing Control”, Journal of Intelligent Information Systems, Vol. 10, No. 2, pp. 93-129,

March/April 1998.

56 A. Bajaj and S. Ram, "Seam: a state-entity-activity-model for a well-defined workflow

development methodology", IEEE Transactions on Knowledge and Data Engineering, Vol. 14,

No. 2, pp. 415-431, March/April 2002.

57 A. Kumar and J.L. Zhao, "Dynamic routing and operational control in workflow management

systems", Management Science, Vol. 35, No. 2, pp. 253-272, February 1999.

58 M.M. Kwan and P.R. Balasubramanian, "Dynamic workflow management: a framework for

modeling workflows", Proceedings of the 13th Hawaii International Conference on System

Sciences, Vol. 4, pp. 367-376, January 7-10, 1997.

59 H.B. Luo, Y.S. Fan, and C. Wu, “Analysis of event balance in the verification of workflow

soundness”, Journal of Software, Vo1. 13, No. 8, pp. 1686-1691, 2002.

