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Detecting the Artifact Anomalies
INn Business Process Specifications
with a Formal M od€

Student: Chia-Lin Hsu AdvisorDr. Feng-Jian Wang

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Although many business process models have begoged, analyses on artifact usages are
seldom discussed. A well-structured ‘business psowéth sufficient resources may still fail or
yield unexpected results during process executiom t inaccurate artifact specification e.g.
inconsistency between artifact flow and controlwfloor contradictions between artifact
operations. Thus, the analyses on artifact usagevery important since activities cannot be
executed properly without accurate information.sTHissertation presents a process model for
describing a business process and analyzes thactiisages on this model. Three types with
thirteen cases of artifact usage anomalies affgcfinocess execution are identified and
formulates and a set of algorithms to detect tla@semalies in business process specifications is
presented. Furthermore, an example is demonsttate@lidate the usability of the proposed

algorithms.

Keyword: workflow, business process, analysis, m@ritow, data flow, artifact, anomaly.
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Chapter 1. Introduction

Workflow can be viewed as a set of interrelateétsdbat are systematized to achieve certain
business goals by completing each task in a pé#aticorder under automatic control [1].
Resources are required for workflow implementatiemg support process execution. Resource

allocation and resource constraint analysis @ are popular workflow research topics. However,

data flow within workflow is seldom addressed{70].

Artifact is an abstraction of a data instance withiworkflow. Introducing analysis of artifact
usage into control-oriented workflow designs hefpaintain consistency between execution
order and data transition, as well as preventgxiceptions resulting from contradiction between
data flow and control flow. In contrast to struelucorrectness, accuracy in artifact manipulation

can help determine whether the executionireswdtwbrkflow is meaningful and desirable.

This dissertation proposes -a process-model forridbgsg business processes and address
three types of artifact usage anomalies. An attifsage analysis procedure associated with the
model is applied before deplaying the workflow sotlae Reports of consistency checking
between data flow and control flow and informatminmanipulating artifacts are automatically
provided to designers when they edit or adjust Wk specification. The model is based on
component-based design technique [11, 12] and mspatible with existing control-oriented
workflow design models. It provides an easier waextract knowledge of artifact usages in a
workflow. In our earlier work [13, 14], we have riatluced the artifact usage analysis into
workflow design phase and the improper artifacgesaaffecting workflow execution have been
identified preliminary. In this dissertation, thdifact usages are formularized and the concrete
algorithms to discovering the improper usages inkilmv specifications are proposed. In
addition, an example to demonstrate the contrinutd our work and a comparison among

related works and ours are presented.

The remainder of this dissertation is organizedo#lews. Chapter 2 presents the research
background and related work. Chapter 3 presentspmgess modeling, including the control

flow and artifact flow. Chapter 4 then defines thitgpes with thirteen cases of artifact usage
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anomalies. Next, chapter 5 proposes a set of #hgasi to detect artifact usage anomalies in a
process schema. Chapter 6 demonstrates the atgeritirough an example. Chapter 7 compares
our approach with related works. Conclusions arallff drawn in chapter 8, along with
recommendations for future work.



Chapter 2. Related Work and Background

A workflow can be deemed as a collection of coojiregeand coordinated activities designed
to carry out a well-defined complex process, sushadrip planning, conference registration
procedure, or business process in an enterprig@rkflow model is used to describe a workflow
in terms of various elements, such as roles amulress, tools and applications, activities, and
data, which represent different perspectives obekfhow [15, 16]. Roles and resources elements
represent organizational perspective that descwltese and by whom tasks are performed and
available resources tasks can utilize in the omgdiun. Tools and applications elements represent
operational perspectives by specifying what toal$ a@pplications are used to execute a particular
task. Activity elements are defined with two pedpes: 1) functional: what tasks a workflow
performs; and 2) behavioral: when and how tasksparéormed. Data elements represent the
informational perspective, i.e., what.informationtites are produced or manipulated in the

corresponding activities in a workflow.

A well-defined workflow model leads to the effictestevelopment of an effective and reliable
workflow application. The correctness issues in'arkflow might be classified into three
dimensions: control-flow, resource, and data-flo@enerally, the analyses in control-flow
dimension are focused on correctness issues ofatasttucture in a workflow. The common
control-flow anomalies include deadlock, livelodkfihite loop), lack of synchronization, and

dangling reference [1728]. A deadlock anomaly occurs if it is no longesgible to make any

progress for a workflow instance, e.g. synchromzabn two mutually exclusive alternative
paths. A livelock anomaly indicates an infinite poasuch as iteration without possible exit
condition, which causes a workflow to make contusiprogress, however, without progressing
toward successful completion. A lack of synchrotira anomaly represents the case of more
than one incoming vertex merging into an or-joirrt@e. Activities without termination or

without activation are two common cases of danglefgrence anomaly.

Activities belonging to different workflows or pdled activities in the same workflow might
access the same resources. A resource conflictoaten these activities execute over the same

time interval. Thus, the analyses in resource dgimninclude the identification of resource
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conflicts under resource allocation constraints /@ndinder the temporal and/or causality

constraints [2-6]. On the other hand, missing, redundancy, andlicbnse of data are common
anomalies in data-flow dimension{710]. A missing data anomaly occurs when an artifact

accessed before it is initialized. A redundant datamaly occurs when an activity produces an
intermediate data output but this data is not meguby any succeeding activity. A conflicting

data anomaly represents the existence of differersions of the same artifact.

Current workflow modeling and analyzing paradigmes mainly focused on the soundness of

control logic, i.e., in the control-flow dimensiomcluding process model analysis [230],
workflow patterns [20-33] and automatic control of workflow process [3#alst and ter

Hofstede [19] proposed a WorkFlow net (WF-net),eloben Petri nets, to model a workflow:
transitions representing activities, places repriasg conditions, tokens representing cases, and
directed arcs connecting transitions and placesth&umore, control-flow anomalies, such as
deadlock, livelock, and dangling reference (adggitwithout termination or activation) have
been identified through Petri .net| modeling .and ysial Son [35] defined a well-formed
workflow based on the concepts' of closure and cbmtiock. He claimed that a well-formed
workflow is free from structural-errors, -and-thanplex control flows can be made with nested
control blocks. Son [35] and Chang [36] identifitd extracted the workflow critical path from
the context of the workflow schema. They proposetraetion procedures from various
non-sequential control structures to sequentidigdhus obtaining appropriate sub-critical paths
in non-sequential control structures. Sadiq ancovska [30] proposed a visual verification
approach and algorithm with a set of graph redactides to discover structural conflicts in

process models for given workflow modeling langusage

There are several research topics discussed irunesadimension, including resource
allocation constraints [2, 3], resource availapil#], resource management [5] and resource
modeling [6]. Senkul [2] developed an architecttiwe model and schedule workflow with
resource allocation constraints and traditional peral/causality constraints. Li [3] concluded
that a correct workflow specification should hageaurce consistence. His algorithms can verify
resource consistency and detect the potential resmonflicts for workflow specifications. Both

Pinar and Hongchen extended workflow specificatiovith constraint descriptions. Liu [4]



proposed a three-level bottom-up workflow designthoe to effectively incorporate
confirmation and compensation in case of failureLil’s model, data resources are modeled as

resource classes, and the only interface to ardatairce is via a set of operations.

Current analysis techniques including above appreapay little attention on the data-flow
dimension, although the related analysis in data-tllimension is very important since activities
cannot be executed properly without sufficient datarmation. In the literature, there are two
works in data-flow dimension found. Sadiq et al} presented data flow validation issues in
workflow modeling, including identifying requiremisnof data modeling and seven basic data
validation problems: redundant data, lost datasimgsdata, mismatched data, inconsistent data,
misdirected data, and insufficient data. Howevberd is no concrete verification procedure
presented. Sun et al. {810] presented a data-flow analysis framework faeckng data-flow
anomalies such as missing data, redundant datgp@edtial conflicts of data. In addition, they
provided several analysis algorithms;:however,woek is done only based on read and initial

write data operations.



Chapter 3. Process Modeling

3.1. Process Specifications

Based on BPMN, a process consists of a networlkctofiges designed to produce a product
or service for a particular customer or market.rAcess specification, a formalized view of a
business process, defines a set of linked (parafidlor sequential) activities across time and
space, with a beginning and an end, associatedclgén defined inputs and outputs respectively.
Each activity takes a subset of process input(sputput(s) of previous activity(ies) and
transforms them to create the data for later ussesq@rocess outputs. The inputs or outputs of a
process, as well as the intermediate outputs oVites, are called artifacts. Thus, a process
specification contains not only the control flowtlalso the artifact flow of a business process.

Definition 3.1 is a formal description of a busisgsocess.

Definition 3.1. A process specification is a tupeP = (G,vT,D,1,,,0,,), where

— G=(V,E), representing the control.flovg a directed, connected, and acyclic graph, w

V is a set of vertices of which each represents civilg and EOV x V is a set of

directed edges indicating the precedence relagtwden two activities.

— VT:V - T is atype function that maps eaattivity into one of thactivity types defined a

T ={Task,SubProcess,ProcessStart,ProcessEnd, AndSplit, AndJoin,
XorSplit,XorJoin,LoopStart,LoopEnd} '

Activities whose types arfask are called task activities while the others arkeda

control activities.
— D is a set of artifacts used in the process.

— 1, 0D, a subset ofD, denotes the set of process inputs.

— 0,, 1D, asubset ofD, denotes the set of process outputs.




3.2. Control Flow Specification
3.2.1. Activitiesand Control Blocks

An activity in a business process might be atomican-atomic (compound). An atomic
activity is the smallest unit of work that is schedl by a workflow engine during process
enactment and cannot be decomposeslb®process included within a process is represented as
a compound activity. Atomic activities are classifiinto two major typeslask activities and
control activities, based on their functionalities. A tesitivity performs a piece of processing
steps. Control activities are pairwise activitiepresenting a group of activities, called a control
block. There are eight types (four pairs) of primatcontrol activities in general: (1). ProcessiStar
(PS) and ProcessEnd (PE) are unique control deswif a process that represent the start and the
end of the process respectively (2). AndSplit (&8H AndJoin (AJ) are control activities for
constructing a parallel structure (3). XorSplit (X&d XorJoin (XJ) are control activities for
constructing a branch structure. (4).:LoopStart)(B8d LoopEnd (LE) are control activities

representing an iteration structure.

Figure 3.1 shows the corresponding.notations ofrobactivities, task activity, sub-process

activity, and the precedence relation.[37].

ProcessStart AndSplit XorSplit LoopStart
ProcessEnd AndJoin XorJoin LoopEnd
l —
@
(edge)
Task Sub-Process Precedence

Figure 3.1. Notations of Control Flow Graph.
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With typed activities and their precedence relatiarious kinds of control structures can be
constituted. In this dissertation, the four priméticontrol structures, "sequential”, "parallel

branch”, "conditional branch" and "iterative stuwret', defined in [1] are concerned.
Figure 3.2 shows these control structures to cooisér process respectively.

® Scquential Block: the activities within this structure are execusediuentially under a single
thread. The main characteristic is that the taagétity cannot execute until its preceding
activity completes. In other words, the completaira target activity triggers the execution

of its succeeding activity.

® |teration Control Block: The activities within the block enclosed byopStart andLoopEnd
control activities are executed repetitively umdrtain conditions are met. There are two
kinds of iteration control blocksvhile loop andrepeat-until loop. A while loop checks the
conditions before the first activity withinthe blois executed and thus, it is often also
known as a pre-test loop. On the contrary; a repetitloop, also known as a post-test loop,

tests the conditions after the: activities withia tiock are executed.

@ AND Control Block: All outflows of anAndSplit activity are executed in parallel, and finally

converge into aAndJoin activity synchronously.

® XOR (eXclusive OR) Control Block: An XorSplit activity decides one among multiple
alternative outflows (process branches) to contirfileese branches converge to a single
XorJoin activity. No synchronization is required since yordne thread is chosen for

execution.



T T S S

(a) Sequential Block (b) Iteration Control Block

><% }«»

(¢) And Control Block (d) Xor Control Block

Figure 3.2. Four Primitive Types of Control Struetsl

According to our notations, the control flod=(V,E) of a process specification is

well-formed if the following constraints hold:

— G has a uniquérocess Start‘vertex v, of type ProcessStart, which has no incoming

edge and one outgoing edge.
W [lv, :VT(v,)=ProcessStart — InDegree(v, ) =0JOutDegree(v,,) =1

— G has a uniquérocess End vertex v, of typeProcessEnd, which has one incoming edge
and no outgoing edge.

B [Vv_:VT(v,)=ProcessStart — InDegree(v, ) =100utDegree(v,)=0

— \Vertices of type Task, LoopStart, and LoopEnd have one incoming edge and one

outgoing edge.
B (v, :(VT(v,) =Task OLoopStart (LoopEnd) — InDegree(v;) =OutDegree(v;) =1

— \Vertices of type AndSplit and XorSplit have one incoming edge and more than one
outgoing edge.

W (v, :(VT(v,,)=AndSplit OXorSplit) — InDegree(v,,) =100utDegree(v,,)>1



— \Vertices of type AndJoin and XorJoin have more than one incoming edge and one

outgoing edge.

W v, 0O(VT(v,)=AndJoin[0XorJoin) - InDegree(v,;) >100utDegree(v,;) =1
— Any two control blocks can be nested but not oygréal.

W Ob, =[v,v,],b,=[v,,v,],b;#b, » b,0b,00b,[0b ,[0b /1b =0
3.2.2. Relationsamong Activitiesand Control Blocks

In this session, relations among activities androbblocks are identified as follows.

Definition 3.2 (Paths).

A path from v; to v is a sequence of vertices,...,i> in a control graple = (V, E) such
that each node is connected to thepnext, vertexhen sequence (the edgésg,vi.1) for

i=1,2,....k-1 are in the edge sBE). Apath fremVit0 Vieis denoted bRath(vs,vx).

Definition 3.3 (Reachability).

Given two verticesy andv, IsReachable(u,v)is a Boolean function that indicates whet

if there exists a patltom u tov.

Ou,v OV, IsReachable (u,v)=true « [Path(u,v)du=v

ner

Definition 3.4 (Predecessors and Successors).

vv/sPredecesso" = {U 0 Vl (U, V) A E}

Vv!sPredecessor - {t D Vl t |:| VvlsPredecessor I:I( DJ D VvlsPredecessor t D VJsPredecessor}

10



VvlsSuccessor :{U O Vl (V, u) H E}

v

V!sSuccessor - {t D Vl t D VvlsSuccessor I:I( DJ |:| VvIsSuccessor : t |:| vJsSuccessor}

yisPredecessor comprises the set of vertices which are the soafcen edge with destinatig

vertex vV . Each element inV*"** s called adirect predecessor of the vertex and i

denoted by u-v . V€ denotes the transitive closure of et

\'

Visfredecessor comprises those vertices that are reachable froBeach elementi in Ve« js

called apredecessor of v and is denoted by —»v. V' and its transitive closur,

Vvlssuccessor are defined similarly.

n

12}

Definition 3.5 (Ancestor Blocks and Level of an Activity).

OvOdvV, let v.PB denote the parent contral block containingAncestorBlock comprises

the set of all control blocks that contains

AncestorBlock(v) ={b| b = v.PB (b [J AncestorBlock(v.PB.startVertex)}

In addition, the cardinality ofAncestorBlock(v) identifies the nested level of

‘ AncestorBlock(v) ‘ if v(Iv

Level(v) = {

‘ AncestorBlock(v.StartVertex) ‘ if v represents a control blor

Definition 3.6 (Common Ancestor Blocks and Nearest Common Anc&itmks).

Given a set of vertices,,...,v,, B; is acommon ancestor block ofv,,...,v, if and only if the

n
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following holds:

BiU ﬂ AncestorBlock(v,), denoted b®i LICAB(v,,...,v,).

i=1

B; is theNearest common ancestor ofv,,...,v, if and only if the following holds:

n

00B; D CAB(vy,...,v,)UB; ZBi:Level (Bj) < Level(Bi), denoted biCAB(v,,...,v,) =Bi.

Definition 3.7 (Parallel Activities).

Given two verticesy andv, IsParallel(u,v)is a Boolean function to representuifandv

might be executed in parallel within a workflow tiaisce.

IsParallel(u,v) = true = NCAB(u,v).Type = AND"*[1=isReachable(u,v) O-IsReachable(v,u)

IsParallel(u,v) = true, denoted as il.v, indicates thati andv might be executed in parall

andv is called a parallel activity af.

Definition 3.8 (Exclusive Activities).

Given two verticesy andv, IsExclusive(u,v)is a Boolean function to represent some X

characteristics ofi andv. Within a workflow instance, ifi is selected for execution then

won't be selected for execution and vice versa.

IsExclusive(u,v) =true < NCAB(u,v).Type = "XOR"[1-IsReachable(u,v) - IsReachable(v,u)

IsExclusive(u,v) = true , denoted asulv, indicates that at most one ofandv can be

selected for execution awds called an exclusive activity of

OR

12



Definition 3.9 (Companion Activities).

Given two verticesy andv, IsCompanion(u,v)is a Boolean function which indicats

19
(7]

whether ifu is selected for execution therwill always be selected for execution and vicesaer

IsCompanion(u,v) = true <

{Db O AncestorBlock(u) U AncestorBlock(v) \ CAB(u,v) : b.type = "AND" if IsReachable(u, v) (IsReachable(v,u)

Ob O AncestorBlock(u) U AncestorBlock(v) \ CAB(u,v) U{NCAB(u, v)}: htype =" AND'  otherwise

IsCompanion(u,v) =true, denoted asu®v, indicates that neither ofi andvor both of

them will be selected for execution and called a companion activity aof

3.3. Artifact Flow Specification

Currently, as identified in [7]; thereare threganamplementation models for artifact flow:
explicit data flow, implicit data flow through coot=flow, and implicit data flow through a
process data store. In this dissertation;-we-atlmptmodel of implicit data flow through a
common process data store. The .exchanges.of. tstif@tween tasks are passed through global
variables stored in a common database. In a wavkome activities store their output artifacts
in the database, and their following activities naagess these artifacts later. The activities m ou
model are regarded as black boxes, i.e., theirmateomputations are not visible. Neither are the
intermediate execution states. Thus, the artifaeigas of an activity are identified through the

inputs/outputs of the activity.
3.3.1. Artifactsand Artifact Operations

Artifacts are information entities involved in aopess, including the input data to the process,
the intermediate data produced within the procasd,the final output data from the process. An
artifact is an atomic data item (e.g. a numbehaacter string, or an image) or a collection of
atomic data items (e.g. a document). Intuitivellyagtifacts participating in a workflow execution
must be pre-defined in process specifications. Eatfact contains a set of legal operations for
its internal data. An activity designed to manipela certain artifact can work only with that

13



artifact’s legal operations. From the data storpgmmt of view, every artifact operation can be
regarded as one of the following operations, rdgasdof its semantic meaning.

® |nitialize: all definition operations, e.g. "fill in", "crealt, and "define" operations.
® Read: all reference operations, e.g. "use", "fetchglést”, and "retrieve" operations.
® Update: all modification operations, e.g. "write", "chaigand "update" operations.

® Destroy: all deletion operations, e.g. "remove", "erasedncel”, and "discard" operations.

In general, annitialize operation is used to create an artifact instance processRead and
Update operations are then used to access the instamalyfa Destroy operation is used to
delete the artifact instancBestroy operations are applied for temporary artifactat@e during
in workflow execution, but may not strict for attidacts.

Figure 3.3 shows the state diagram of an artifattt above four kinds of operations. There
are four states, “Uninitialized”, “Initialized”; “pdated”, and “Read”. ‘Uninitialized’ represents
the initial state of an artifact. “Initialized”, ‘hblated’, and “Read” represent the states after an
Initialize, Update, and Read operation is performed- respectively. In addititimee state of an
artifact resets to “Uninitialized” after[@estroy operation.

Unlnitialized
)

Initialized
@
Destroy

Read

Destroy Initialize  Update

Initialize

Updated

Figure 3.3. The State Diagram of an artifact.
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3.3.2. Artifact Flow and Artifact Usages

To simplify the discussion of artifact usages, nawormal and complete definition of a

task/control activity is shown below:

Definition 3.10 (Task/Control Activities).

An task/control activity is a tupler = (AT ,SC,,EC,,RC, I, 0, ,AS, ), where

® AT.represents the type of the activity.

® SC,, EC,, and RC, are sets of logical expressions which are evatulayea workflow
engine.

B SC, is the set of pre-conditions of which each is eatdd to decide whether &n
activity within a process instance.can be starbedy(used by task activities).
B EC, is the set of post-conditions of which each isleat@d to decide whether an
activity within a process instance is completedyased by task activities).
B RC, is the set of routing conditions: of which each imlaeated to decide the

sequence of activity execution-within a processy(osed by control activities).

® |, the input set, identifies all the artifacts regdito be accessed by the activity.
B For atask activity,l contains all the artifacts required for computation

B For a control activity,I, contains all the artifacts required for evaluatihg
routing conditions.

® O, , the output set, identifies all the artifacts proed, updated, or destroyed after

executing the activity.0, is divided into two disjoint subsets); and O, where

O; represents the set of the artifacts initializedpdated by and O represents the set

of the artifacts destroyed hy

® AS, is the activity specification (only used by taskiaties).
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Based on Definition 3.10, a usage relation betwaeactivity and an artifact can be defined
as follows: an artifact usage representing thetioglabetween an activity and an artifact is

defined as follows:

Definition 3.11 (Consumer, Producer, Updator, and Destroyer Actw/iof an Artifact).

For a given artifactl, the memberships between artifdcand I, O], and O, can be

applied for identifying the usage of artifadtat activity v. All the possible usages are

categorized as follows:

+

ddo
® if ddJI and {d DOV_ , v is called eReader (Activity) of artifactd.

v

® if dianddOO;, v is called arUpdator (Activity) of artifactd.

\%

dul
o f {d D’V andd O, , v is called @Destroyer (Activity) of artifactd.

® if d0 anddOO;, v is called aProducer (Activity) of artifactd.

ddo;
e if d0I and{dDOV_ , v is called arirrelevantor (Activity) of artifactd.

v

In addition, ifdI, v is generally called a&onsumer (Activity) of artifact d and

ifd0O],vis generally called ®kiter (Activity) of artifactd.

Definition 3.12 (Consumer, Updator, Destroyer and Producer Agtisdts for an Artifact).

® o =ty V| dOl} is called theConsumer Activity Set of artifactd.
® yerdtr =fyy| d0l andd0O; } is called théUpdator Activity Set of artifactd.
® Ve =fy[v|dOUO0.} is called theDestroyer Activity Set of artifactd.

® ot =ty V| dOl andd O] } is called theProducer Activity Set of artifactd.
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Chapter 4. Artifact Usage Anomalies

4.1. Artifact Usage Anomalies

In a process specification, some of the followihgee types of anomalies might occur: (1)
Missing Production, (2) Redundant Write, and (3)nfliot Write. In the subsections, these
anomalies are defined and the corresponding usatferps that cause the anomalies are
identified. Every usage pattern is given a namscidgtion, and formulated detection conditions.
Table 4.1 shows the symbols used in usage patterns.

Table 4.1. Symbols Used in Usage Patterns

P,: a producer¢OI. and00;) }{: no producer of d exists

Cd +a consumerdlv) ;{ : no consumer of d exists

U,:aupdator 01, and0O;) P{ o reader of d exists

W,: a updator § 10})
( ): a control block

. d0o’
o+ areaderd Ul and dDOV‘) ( O ): XOR control block

—» : reachable ( [ )ZAND Control block

4.1.1. Missing Production Anomalies

A missing production anomaly occurs when an aittifmconsumed before it is produced or
after it is destroyed. Formally speaking, givenaativity v and an artifactd such thatv is a
consumer oti, a missing production anomaly occurslifs not produced or is destroyed when
is selected for execution. To formulate this tygeanomaly, the propagation of an artifact is
introduced in Definition 4.1.
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Definition 4.1 (Propagation of Artifacts to an Activity).

Given an activityv, let a preceding execution ordert@enote an execution order leading
to v without parallel activities of, i.e., only consisting of the predecessorsv.ofsiven an

artifactd, if there exists at least one preceding execudioler tov such that is produced bu

—F

not destroyed (i.e.d is not in Uninitialized state), we calld can bepropagated from v’s
predecessors ta The propagation of artifact regarding only the preceding execution orders
to v is calledpreceding propagation of d to v and can be classified into three casas;
preceding propagation, conditional preceding propagation, and unconditional preceding
propagation.

No preceding propagation indicates thaétis always Uninitialized for all preceding
execution orders te. Conditional preceding propagation indicates whethé Uninitialized
depends on the preceding exectution jorderg taken Unconditional preceding propagation

denotes that is Uninitialized for:all preceding execution orderswto

Based on Definition 4.1, leAA * contains all the artifacts which can be propagéteah the
predecessors of. AA, can be divided into two disjoint subseAA’ and AA;, where AA;

contains the artifacts unconditional propagatethftbe predecessors vind AA; contains the

artifacts propagated from the predecessorsconditionally.

The causes of missing production anomalies canl&gsified into three categorieslo
Preceding Propagation, Conditional Preceding Propagation, and Uncertain Preceding

Propagation. Intuitively, if vOV ™™ andd0AA, hold, a missing production anomaly might
occur due tdNo Preceding Propagation of d tov. Similarly, if vOV ™™ anddJAAS hold, a
missing production anomaly might occur owningCmnditional Preceding Propagation of d tov.
Furthermore, consider parallel activities wf even thoughv OVy“™™" andd JAA! hold, a

missing production anomaly might still occur if theexists a parallel activity which destrays

and this cause is classified@scertain Preceding Propagation.
18



For each cause of the missing production anomdlyg, possible usage patterns are

characterized by its name, description, and reduomdition as followings:

1). No Preceding Propagation: v[Vs©e™me qJAA
( g Propag d v

Usage Pattern 1: }{%Cd —»K

® Name: No Production

® Description: Artifact d has at least one consumer activity however, no producer

activity of d exists in the process.

® Conditions: [l [JV orumer [Jy/sfroducer = 7]

Usage Pattern 2: }{—»Cd P, =

® Name: Delayed Production

® Description: Artifact d has a eensumer-activitywhich precedes every producer activity
of d.

Y ConditionSZ D/ D V:Consumer D(VvlsPredecessor ﬂ VésProducer) = D D(VvlsSuccessor ﬂ V;Producer) ¢ D

UsagePattern3: —P,—D,— C,—
® Name: Early Destruction

® Description: Artifact d is produced and then destroyed before it is coesum

Y ConditionSZ D/ D v(;sConsumer Dd D AAV D (vvlsPredecessor ﬂ VJsProducer ﬂ Vﬂl{sDestroyer) # D
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UsagePattern4: R —(C,00P,)—

® Name: Exclusive Production

® Description: Given two exclusive activities andu such thav is a consumer of artifact
andu is a producer ofi. Due to the characteristic of exclusive activitiealy one ofv
and u might be selected for execution. Although u is a producer ofti, it makes no
contribution to the propagation dfto v and thus a missing production anomaly occurs if

artifactd cannot be propagated from the predecessors of

Y Cond|t| ons D/ D VésConsumer Dd D AAV D(VvlsExclusive m VésProducer) Z D

UsagePattern 5. R —(C,0P,)—

® Name: Uncertain Production

® Description: Given two exclusive activities andu such thav is a consumer of artifact
andu is a producer of. Due to the race hazard of parallel activitiemyight be executed
before u. Therefore,u may. not-makecontribution to the propagationdofor v and
consequently, a missing production anomaly occuetifact d cannot be propagated

from the predecessors of

Y Cond|t| ons D/ D VésConsumer Dd D AAV D(VvlsParaHel ﬂ VUI‘sProducer) £ D

(2). Conditional Preceding Propagation: v V<™ Od[JAAS

Whetherd is propagated depends on the preceding pathitaken Consequently, a missing
production anomaly occurs when those precedingspathy such thatl is not propagated are

taken.

UsagePattern6: R — (P, 0 R)—C, —

® Name: Conditional Production

® Description: Artifact d is produced conditionally before a consumer agtivftd.
20



® Conditions: [T OV, <™ ™" Od O AAS

UsagePattern 7. —P, — (D, 0 1) —C,—
® Name: Conditional Destruction

® Description: Artifact d is destroyed conditionally before a consumer agtivi d.

® Conditions: v OV, Od OAAS
(3). Uncertain Preceding Propagation: vV, <™ [JdJAA!

UsagePattern8:  — P, — (D, [1C,)—»

® Name: Uncertain Destruction

® Description: Given two parallel activities andu such thav is a consumer of artifact
andu is a destroyer of.. Due. to the race 'hazard of parallel activitiesjight be executed
beforeu. Therefore, even thoughis unconditional propagated from the predecessiovs

d might be destroyed hybeforevis executed and a missing production anomaly occurs

Y ConditionS: D/ D VésConsumer Dd D AA\L/J D(VvlsParaHel ﬂ Vol‘sDestroyer) Z D

Theorem 1 (Missing Production Verification).

A processBP is free from missing production anomalies if thédwing condition holds

DV DV , Dd Dlv : d DAA: and (VvlsParaHel ﬂ VUI‘sDestroyer) = |:| .

Proof: This theorem is proofed by contradiction as feo Support that there exists| a
missing production anomaly iBP. It indicates that there exists an activity 1V, an artifact

d0dl,, and an execution ordé€rsuch thatvrl and d isUninitialized whenv is selected for

execution. HoweverdJAA! implies thatd will be always propagated from the predecessors
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of v. Furthermore, (V""" N vy = [T implies that no parallel activity of will affect the

propagation ot from the predecessors wf Thus,d will always be propagated toregardless
the execution order leading 9 that is,I does not exist. This contradicts the hypothesis|and

thus, Theorem 1 holds.

4.1.2. Redundant Write Anomalies

A redundant write anomaly occurs when an artifaciviitten (produced or updated) by an
activity but the artifact is neither required bycseeding activities nor a member of the process
outputs. Redundancy is not an error; nevertheiesauses inefficiency. To formulate this type of

anomaly, the set of artifactsmused to an activity is introduced in Definition 4.2.

Definition 4.2 (The Set of Artifacts Unused before an Activity).

Given an activityw and an artifactl, if there exists-at least one preceding execudioler to
v such thaid is written but not consumed whens selected for executiod,is calledunused
for the predecessors obr simply calledunused beforev. Intrusively, if artifactd is unused fo
the predecessors of tlReocess End vertex and is not a member of the set of procafsuts, a
redundant write anomaly occurs. There are two cas®gpletely unused and conditionally
unused. Completely unused indicates tlbis unused for all preceding pathsvtcConditionally

unused indicates whethéiis unused depends on the preceding patttaken

Let NC, contain all the artifacts unused for the predemrassfv. NC, can be divided into
two disjoint subset,NC; and NC;. NC; contains the artifacts which are completely unysed

and NC; contains the artifacts which are conditional uduse

Based on Definition 4.2, redundant update anomakesbe classified into two categories:
Explicit Redundant Update and Potential Redundant Update. Intuitively, for every artifact
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dONC; such thatd[JO,,, a redundant update anomaly always occurs fdaetti of the

ProcessEnd

process. Similarly, for every artifact UNC;, ..., such thatdJO,, a redundant update

anomaly might occur for artifactdepending on the execution paths taken.

For each category of the redundant write anomdig possible usage patterns are

characterized by its name, description, and reduiomdition as followings:

(1). Explicit Redundant Update

HoWom B

UsagePattern9: —C,—W, —»§<
—(C,O0W,)—> ¥

® Name: No Consumption After Last W ite

® Description: For an artifacd not belonging to the process outputs, whaa written by
an activityv and the artifact is unused for-all succeedingvdigs of v, a redundant

update always occurs for the artifact.

® Conditions: [HONGC,  ..nq - dBO,,

(2). Potential Redundant Update

—W,—(C0X)
—(C,OW,)— X

® Name: Conditional Consumption After Last Write

Usage Pattern 10:

® Description: For an artifactd not belonging to the process outputs, whes written by
an activityv and the artifact is conditionally unused for sasueceeding activities of a

redundant update might occurs.

® Conditions: [INC, ddo,

rocessEnd *
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Theorem 2 (Redundant Write Verification).

A processBP is free from redundant write anomaliesN{C \' 0, =0 holds:

ProcessEnd

Proof: NC \ 0, =0 indicates that every artifadtis a process outputi(JO,,) or is

ProcessEnd
read after its last write for all possible (precey)i execution orders leading Bvocess End
vertex. dONC \o, =0

holds.

). Therefore, no redundant write anomaly existNd

Processend ProcessEnd

4.1.3. Conflict WriteAnomalies

A multiple parallel productions anomaly occurs whmore than one activity tries to
initialize the same artifact in parallel. When+tl@esomaly occurs, different versions of an

artifact will exist.

A conflict update anomaly-occurs when.more-thanawt®ity in parallel updates the same
artifact.
UsagePattern 11:  —» (P, [JP,)—»

® Name: Multiple Parallel Productions

® Description: More than one activity initializes the same artifiacparallel.

® Conditions: [l OV Predcer Qu OV, Producer (/P

UsagePattern 1. — (U, 00U, ) —

® Name: Multiple Parallel Updates

® Description: More than one activity updates the same artifapiirallel.

Y Cond|t| ons D/ |:| VUI‘sUpdator I:Iu D (VU!‘sUpdator n VvlsParaHel)
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UsagePattern 13— (R, 00U, ) —

® Name: Parallel Read and Update

® Description: Two activities perform read and update respectivaiythe same artifact

concurrently.

® Conditions: [ OV e ) QuO (Vv updeer (ysrorae

Theorem 3 (Conflict Writes Verification).

A processBP is free from conflict writes anomalies if for atwo parallel activitiey andu,

o \)ynE\y=0o, o NN Niy=a, 1,No; =0, and I,N0; =0 hold.

Proof: if for any two parallel activities-andu such that(0; \1 )N (0, \I,)=0, then no
two activities initializes the same artifact in giel. If (0 N1,)N(O; N1,)=0, then no twa

activities updates the same artifact in parall@lirthermore, |, N0, =0 and 1,N0; =0

indicate that no two activities perform read andatp respectively on the same artifact. Thus,

BP is free from conflict writes anomalies.

4.1.4. Summary of Usage Patterns Causing Artifact Usage Anomalies

Table 4.2 shows the summary of usage patternsafdr gype of artifact usage anomaly.
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Table 4.2: Summary of Usage Patterns Causing Attilsage Anomalies

Type Case Pattern
No Production }{ —»C,— }{
Delayed Production }{ —C,—P,—

Early Destruction

—»P,—»D,—C,—

Exclusive Production }{ —(C,0P,)—
Missing Production
Conditional Production R —(P,OR)—C,—
Conditional Destruction —P,— (D, D{) —C,—»
Uncertain Production K—» (C,OP)—
Uncertain Destruction —P,—(D,0C,)—
K—»Wd —»K
No C ti
o Consumption —»Cd—»Wd—»K
After Last Write 0
Redundant Write ~(GOW) > K
Conditional  Consumption | — W, — (Cd N ;{)
After Last Write —»(CdDWd)—»%
Multiple Parallée
i ~(P,OP)~
Productions
Contlict Write Multiple Parallel Updates | — (U, U, )—
Parallel Read and Update | — (R, JU, ) —

26




Chapter 5. Algorithmsto Detecting Artifact Usage Anomalies

This chapter presents a solution for detectingfaatti usage anomalies in a process
specification. To simplify the discussion, our gmno is divided into two algorithms: traversal
algorithm and detection algorithm. The traversgioathm is applied firstly to transform the
control graph of a process for facilitating the qaetation of the detection algorithm. The

detection algorithm to artifact usage anomalighés applied on the transformed structure.
5.1. TheTraversal Algorithm

From the top-level of view, a well-formed contr&dwW can be deemed as a sequence of task
activity and top-level control blocks. Thus, anienprocess can be deemed as a sequence of
nodes, where each node may present a task aaiiviycontrol block. The same perspective can
be applied to the branches of a control block. Basethis perspective, a control flow graph can

be recursively transformed intola sequence of nodes

Thus, for an input process:schema;thestravergaritim begins by traversing the main
sequence enclosed by the start vertex and theetek\of the process. The traversal algorithm is

recursively applied until every task activity arahtrol block in each level are processed.

Besides, the traversal algorithm also transformshederation control block into a
corresponding XOR control block during the analyfisirtifact usage anomalies. Figure 5.1 and
Figure 5.2 show the transformation of a loop witHeast-once iteration and zero iteration
respectively.
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Transformation of a
Repeat-Until Loop
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Figure 5.1: Transform a Repeat-Until Loop.

Transformation:of a
While L oop
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Xj
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Figure 5.2: Transform a While Loop.
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Algorithm ControlGraphToSequence(G, v, level) {

//Input: G=(V,E): a directed connected graph

/I v: a vertex of G representing the next vertex to traverse
/I level: nested level

//Output: S: astructure containing a sequence of nodes (a node can represent a task or a control block)

/! S.startVertex  :corresponding vertex in G for the beginning of s
/I S.endVertex :corresponding vertex in G for the end of s
/l S.nodes :nodes collection (an ordered set of nodes)

sequence.startVertex=currentVertex=v;
sequence.level=level;
while (currentVertex!=null) {
currentVertex.ownerSequence=sequence;
switch (currentVertex.type) {
case “Task’:
sequence.nodes.append(currentVertex);
nextVertex=currentVertex.next;
break;
case ‘“ProcessStart”, “AndSplit”’;“XorSplit”;“‘LoopStart””:
if (currentVertex.type=="LoopStart’’){
[[Transform loop to corresponding XORcontrol block
/[based on Figure 5.1and 52
}
newNode.type=currentVertex.type;
newNode.startVertex=currentVertex;
for each edge (currentVertex, w)[JE {
[[recursively transform every branch within a control block
subSequence= ControlGraph2Sequence(G, w, level+1);
subsequence.parentBlock = newNode;
[[collect every subSequence (corresponding to each branch)
newNode.subSequences.append(subSequence);
}
newNode.endVertex=subSequence.endVertex.next;
sequence.nodes.append(newNode);
nextVertex=newNode.endVertex.next;
break;

case “Processend”, “LoopEnd”, “AndJoin”, “XorJoin”:
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exit while;

}

previousVertex=currentVertex; //remember last traversed vertex

currentVertex=nextVertex; /[continue to traverse next node

}

sequence.endVertex=previousVertex;

return sequence

5.2. The Detection Algorithm

The detection algorithm is subdivided into severdd-algorithms described in subsections.

Algorithm AnalyzeProcess (G, D, I, ,0% ) {
S = ControlGraphToSequence( G );

I Os startvertex = w3 I ls endvertex =Ow

DetectMissingProduction (S, I, );
DetectRedundantWrite(S, I,y , Oy );

DetectConflictWrites(S, 0 );

}

5.2.1. Method for Detecting Missing Production Anomalies
5.2.1.1. Calculation of Propagated Artifacts from the Predecessors

Given a sequenceof the input process schema and an activiby S, Let S.AA, denote the

set of artifacts propagated from the predecesdovsaod S.AA'v be the set of artifacts of which

each can be propagated to the direct successors after execution ofv. Initially,

SAA cverex = |, If S is the top level sequence. During the traversahefsequence, S.AAis

calculated after every traversed nadas follow.

30



® If n represents a task activity v has only one direct successar S.AA'v and S.AA_ are

calculated as follows:

B For every destroyed artifac O, , removed from S.AA] and S.AA;

W For every produced artifadt](O] \1,), addd toS.AA! and removel from S.AA;.

S.AAY =S.AAY\O; (0! \I,)

S.AA =S.AA = ,
S.AAC =S.AAS\O;\(O; \1,)

® If n represents a control block with subsequeESe:{SS,. [1s:’sk}, every vertex within the

block will be recursively traversed as follows:

W n.start\Vertex, the start vertex of the control block, is traeer$irst.

L 2 S.AA =S.AA =S.AA =sincen.start\Vertex is a control node.

n.startVertex n.startVertex n.startVertex

B For every subsequensg;; recursively. applied. the same traversed algorithroalculate

each SS,.AA

B n.endVertex is traversed at last and.-eads,.AA is merged according to the type of the

control block.

@ If n is anXOR control block,

k
u — u
S‘AAn.endVertex - ﬂssy ‘AASS,.endVertex
' — — i=1
S.AA n.endVertex S'AAn.endVertex - Kk
c — u
S‘AAn.endVertex - U SS! ‘AASS, .endVertex \ S‘AAn.endVertex

i=1
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@ If nis anAnd control block,

k k
S'AA;:.endVertex = U SS: 'AA;S,- .endVertex \ U (SSI o \ SS: ‘AALS‘Si .endVertex )
[} _ _ i=1 i=1
S.AA n.endVertex — S‘AAn.endVertex - Kk
S'AA;.endVertex = U SSI 'AASS,- .endVertex \ S‘AA;.endVertex

i=1

5.21.2. Rulesfor Detecting Missing Production Anomalies

® No Propagation
B When visiting an activity such thati, Uo, #00, if MA,=(1,U0O,)\AA, 0 a missing

production anomaly occurs for each artifatfiM, due toNo Propagation.

® Conditional Propagation
B When visiting an activityy such thati Uo, 20, if MA;=(1,U0;) N AA;#20 a

missing production anomaly occurs for each artifabtfiM; .due to Conditional

Propagation.
® Uncertain Propagation

W For an AND control block with subsequensss-{ss, |1<i<k,k=2}, before merging

SS,.AA from every subsequence, if

SS;.endVertex

0,j01<i,j<k0i#jO(UP, o =SS,.I(1SS,.0" #0), a missing production anomaly occurs

S,.,SS;

for each artifactd JUP;, o, due toUncertain Propagation.

5.21.3. Algorithm to Detect Missing Production Anomalies

Algorithm DetectMissingProduction (S ,AAp) {
/[Input: S: a structure containing a sequence of nodes (of which each is a task or a control block)
/l AAp: the set of artifacts propagated from preceding nodes.

/|Output: messages for detected missing production anomalies.
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S.AA=AA,; [lthe set of artifacts propagated from preceding nodes.

SI=0; [[the set of artifacts consumed by activities of this sequence.

S.0" =0; [/the set of artifacts destroyed by activities of this sequence.

foreach nOS { [/process every task or control block

switch (n.type) {
case Task: [[a task activity

v=n.startVertex;
CheckMissingProduction( v, S.AA); [/check missing production on v
[[Calculate the set of artifacts that can be propagated to the successors of v.
S.AA = UpdatePropagatedArtifactSet(v , S.AA);

SI=S1 U 1,; [lupdate the set of artifacts consumed after execution of v.

S.0”=S.0" U 0y ; /lupdate the set of artifacts destroyed after execution of v.
break;
case default: //control blocks
CheckMissingProduction( n.startVertex;S:AAY);//check missing production on n.startVertex
SS=n.subSequences; [[the set of subsequences of the control block.
for each SS;0SS {
[Irecursively applied the algorithmon'every subsequence by passing S.AA as an argument

DetectMissingProduction ( SS;,'S.AA);

[[check uncertain destruction before merging
CheckUncertainDestruction(n, SS);
[I[merge artifact sets propagated from all subsequences

AA = MergePropagatedArtifactSets (n, SS );

Algorithm CheckMissingProduction(v, AA) {
if ((1,U0,)z0){
A :{MA;‘ =(L,U0))\ AA
MAS =(1,U0;) N AA®
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for each dOMA"
print “a missing production occurs on v due to no propagation of artifact d”’;
for each dOMA®

print “a missing production occurs on v due to conditional propagation of artifact d”;

Algorithm UpdatePropagatedArtifactSet (v, AA) {
[[after traversing v, update the set of propagated artifacts.
[[remove artifacts destroyed and add artifacts produced by v.
AAY = AA"\ O U(O; \1,)
AA, = ;
AAS =AA\ O\ (0, \1,)

return AA, ;

Algorithm MergePropagatedArtifactSets(n ,SS-).{
if (n.endVetex.type=="XorJoin”) {

Iss
AAz.end\/ertex = ﬂssi AAY ’
i=1

Iss|
AAf).endVertex :USSi'AA \ AAz.endVertex H
i=1
}else {
|ss| |ss|
AAY cravertex =(_J551-AA% \ | J(55,.DA1SS;.AA") ;
i=1 i=1
Iss|
AA;.endVertex = USSE'AA \ AAz.endVertex )
i=1
}

— u 4 .
AAn.endVertex - AAn.endVertex U AAn.endVertex ’

return AAn.endVertex ’

Algorithm CheckUncertainDestruction (n, SS) {
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for each SS;0SS {

for each SS;[ISS andss; #5SS; {
UPgs 55 =551 N S5,1.07;
for each dUUPgg {

print “A missing production anomaly for artifact d might occur due to uncertain production on
parallel branches (SS;,SS;) .”

}

5.2.2. Method for Detecting Redundant Production/Update Anomalies
5.2.2.1. Calculation of Redundant Production/Update

Given a sequencgof the input process'schema and an activity S, Let S.NC, denote the

set of artifact unused beforeand S.NC'V denotes the set of artifact unused after executing

During the traversal of the seques¢eS.NCiS calculated on every traversed nadas follow.

N v [ SNCU=(S.NC\ 1\ O])UO!
® |f n represents a task activity S.NC = ,
SNCE=SNC\ I\ O\ OF
B For every read or destroyed artifadtll,  darO, , removed from NC. and NC;.
W For every produced or updated artifd€tO; , addd toNC! and removel from NC;.

® If n represents a control block with subsequeESecs{SS,.llsisk}, the same algorithm is

recursively applied to calculate eads, .NC and then merge them according to the type of the

control block.

B |f n is anXOR control block,
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k
u _r ] u
S‘Ncn.end\/ertex - Ssi'NCSSi.endVertex
' i
i=1

n.endVertex — S'Ncn.endVertex -

S.NC

k
c — u
S‘NCn.endVertex - U SSI ‘NCSSi .endVertex \ S‘Ncn‘endVeritex

i=1

B |f n is anAnd control block,

k k
S’NC:.endVertex = ﬂ SS; ‘NC;S, .endVertex U (U SS: ‘Ncgsi .endVertex \ S‘Ncrl:.startVertex )
i=1 i=1
k
S.NC n.endVertex = S‘Ncn.endVertex = \ U((SSI" U SS;"O_)\ Ssi'NCLS‘Si.endVertex)
i=1
k
S'Ncn.endVertex = U SSv ‘NCSS,- .endVertex \ S'NC:.endVertex

i=1

5.2.2.2. Rulesfor Detecting Redundant Production/Update Anomalies

® Explicit Redundant Update

B After visiting theendVertex of the top level sequence, i.e. the end vertekefprocess, if

EC=NC;

S.endVertex

\ 0, #0, a"redundant update anomaly occurs for everyaattifl JEC

due toNo Consumption After Last Write.

® Potential Redundant Update

B After visiting theendVertex of the top level sequence, i.e. the end vertekefprocess, if

CC=NC; \O0,#0 , a redundant update anomaly occurs for every aattif

S.endVertex

dJCC due toConditional Consumption After Last Write.
5.2.2.3. Algorithm to Detect Redundant Production and Update Anomalies

Algorithm DetectRedundantWrite (S, NG, Oy, ) {

/[Input: S: a structure containing a sequence of nodes (of which each is a task or a control block)
/I NCp: the set of artifacts unused after preceding nodes.

/|Output: messages for detected missing production anomalies.
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SNC=NCp; [/the set of artifacts not unused by preceding nodes.
SI=0; [[the set of artifacts consumed by activities of this sequence.
S.0" =0; [/the set of artifacts destroyed by activities of this sequence.
foreach nOS { [/process every task or control block
switch (n.type) {
case Task: [[a task activity
v=n.startVertex;
S.NC = UpdateUnusedArtifactSet(v , S.NC);

S.I=S.1 U I,; [lupdate the set of artifacts consumed.

S.0” =S.0" U O, ; /lupdate the set of artifacts destroyed.
break;
case default: //control blocks
SS=n.subSequences;
for each SS;0SS {
/| for every subsequence, recursively
[Icalculate the set of artifacts unused and detect redundant update

DetectRedundantWrite (:SS;;S.NC, Oy, );

[//[merge unused artifact sets from‘all subsequences

AA =MergeUnusedArtifactSets(n, SS);

If (S.level==0) /| top level sequence {
CheckRedundantWrite (NG, Oy, );

Algorithm UpdateUnusedArtifactSet (v, NC) {
[/lupdate the set of artifacts unused

/[remove artifacts read or destroyed and add artifacts updated by v.

NC. = NC! =NC“\ 1.\ 0, )UO;
" INCE=NCE,\ LN O\ OF
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Algorithm MergeUnusedArtifactSets (n, SS ){

if (n.endVetex.type=="XorJoin”){

k
ch.endVertex = ﬂssi 'NCLSJS,-.endVertex
- i=1 .
NCn.endVertex - ’k ’
Ncg.endVertex = USSE'NCSS,.endVertex\ NCg.endVertex
i=1
}else {
k k
NC:1J.endVertex = ﬂssi 'NCLSJS,-.endVertex U (USSi 'NCLS‘S; .endVertex\ S'Ncg.startVertex)
i=1 i=1
k
NCn.endVertex = \ U((SSE"UsSi'O )\ Ssi'NCgSi.endVertex)
i=1
k
NcrcLendVertex = Ussi 'NCSS,.endVertex\ Ncg.endVertex
i=1
}

return NCn.endVertex ’

Algorithm CheckRedundantWrite(NC, O, ) {

for each dO(NC°\ Oy,) {

print “A potential redundant update anomaly occurs for artifact d

due to Conditional Unused for the Process”;

}
for each dO(NCY\ 0,,) {

print “A potential redundant update anomaly occurs for artifact d

due to Completely Unused for the Process”;

38



5.2.3. Method for Detecting Conflict WritesAnomalies
5.2.3.1. Calculation of the Set of Artifact Produced and Updated of a Sequence

Given a sequencé of the input process schema, I8PA and S.UA denote the set of
artifacts produced and updated respectively withensequencg. Initially, S.PA and S.UA are
empty. During the traversal of the sequeficeS.PA and S.UA are calculated on every

traversed node as follow.

SPA=SPAU(O\ 1)

® If n represents a task activity
SUA=SUAU(0;NI,)

W For every artifact! produced by, i.e.d0J(0;\ I,), addv toS.PA.
W For every artifact! updated by, i.e.d0(0; NI, ), addv toS.UA.

® If n represents a control block:with subsequeﬁSes{SS,.lls:‘sk}, the same algorithm is

recursively applied to calculate eads;.PA‘and.SS.UA and then merge them.

k
SPA=SPA U | Jss.PA

i=1

k
SUA=SUA U [ Jss.UA

i=1
5.2.3.2. Rulesfor Detecting Conflict Production/Update Anomalies

® Multiple Parallel Productions

B For an AND control block with subsequenSés{SS,.|1s:‘sk,k22}, before merging

k
SS;.PAfrom every subsequence, MPA=ﬂSS,..PA¢D then a conflict writes anomaly
i=1

occurs for every artifacd (JMPA due to multiple parallel productions.

® Multiple Parallel Updates

W For an AND control block with subsequensss{Ss, |1<i<k,k>=2}, before merging
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k
SS,.UAfrom every subsequence, MUA=ﬂSS,..UA¢ [0 then a conflict writes anomaly
i=1

occurs for every artifacd IMUA due to multiple parallel updates.

5.2.3.3. Algorithm to Detect Conflict Production and Update Anomalies

Algorithm DetectConflictWrites (S ) {
SPA=0; [[the set of artifacts produced by activities of sequence S.
SUA=0; [lthe set of artifacts updated by activities of sequence S.

SLRA=0; [[the set of artifacts read by activities of sequence S.

foreach nOS { [/process every task or control block
switch (n.type) {
case Task: /[a task activity

v=n.startVertex;

S.PAY =s.PA" U (0;\ I,); /fupdate the setofartifacts consumed.

S.UAY =S.UA" U (0; NI,); llupdatethe set-of artifacts destroyed.
break;
case default: //control blocks
SS=n.subSequences;
for each SS;0SS {
/| for every subsequence, recursively
[[calculate the set of artifacts produced/updated and detect conflict write

DetectConflictWrites ( SS;);

[/detect conflict writes before merging
DetectConflictWrites (n, SS );
[//[merge from all subsequences

AA =MergeWriteArtifactSets(n, SS );
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Algorithm DetectConflictWrites (n, SS) {

|ss| [ss|
MPP = ﬂssi PA; MPU= ﬂssi UA;
i=1 i=1

for each dOOMPP {
print “A conflict writes anomaly for artifact d might occur due to

multiple parallel productions.”

for each dOMPU {

print “A conflict writes anomaly for artifact d might occur due to multiple parallel updates.”

Algorithm MergeWriteArtifactSets (n, SS9 {

k k
sPA=SPA U | Jss.Pa; sua=suAld | Jss.UA;
i=1 i=1

return NCn.endVertex )

5.2.4. Complexitiesof Traversal and Detection Algorithms

Given an input process schen&® =(G,VT,D,l,,,0,,), as shown in 5.2, four main algorithms

are used to check the artifact usage anomalesrolGraphToSequce, DetectMissingProduction,

DetectRedundantWrite, andDetectConflictWrites.

Algorithm ControlGraphToSequce walks through every vertex and edge G@(V,E). Every
edge is walked through exactly once and every xastprocessed once. Thus, the complexity of

algorithmcControlGraphToSequce is O(|V|+|E]|).

The detection algorithms, including algorithm DetectMissingProduction,
DetectRedundantWrite, and DetectConflictWrites, handles every activity only once. Two or

41



three sets of artifacts are required to calculates¥ery activity. Since the maximum size of each

set of artifacts is fixed|l()|), we can use a bit-vector representation of amef of a set. The

advantages of this representation are that opestce very fast and the required memory space
can be small. Operations such as unions, inteosestiand complements can be considered as

constant time. Thus, given=|V|, algorithmDetectRedundantWrite andDetectConflictWrites
are O(n). For algorithmDetectMissingProduction, if destroy operation is not considered, the
complexity is O(n) . Whendestroy operation is involved, it is necessary to checkneyair of
parallel branches for missing production anomaiiesde anAND control block. Thus, with

destroy operations, the complexity of algorithPetectMissingProduction is O(n+n?*)=0(n?).
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Chapter 6. Illustrative Example

To demonstrate the proposed analysis algorithms, dhapter introduces a property loan

approval process [10] as an example. The propolgguitams are applied on this example to

illustrate the steps to detect the artifact usagerealies.

6.1. An Example: Property Loan Approval Process

Figure 6.1 shows the control flow graph of the appt process and Table 6.2 presents the

artifact usages.

Table 6.1: Activities and Artifacts in the Propetiyan Approval Process

Activities

t
t2
t3
t4
ts

Receive application
Verify application
Assess credit rating 1
Assess credit rating 2

Determine interest rate

Artifacts

ds
d
ds
da
ds
ds
dy

Application data
Applicant data
Account data
Loan amount
Application status
Credit history
Credit rating

Artifact Usages

R
U

Reader

Updator

—

s “Appraise property

—

-~ Determine:loan-risk
tg Adjust loan amount
to Sign by applicant

t10~ Sign.by:-lean officer

dg Desired Type of Rate

dy Interest rate

dyo Property data

dy; Appraised value of property
di> Adjusted loan amount

diz Bank’s portfolio

dis Risk level

P Producer

D Destroyer

t14

Sign by bank manager
Notify for the rejection
Notify for the acceptance

Log the loan application

Bank’s risk exposure
Marginal risk

Signature of loan officer
Signature of manager
Approved statement
Rejected statement

Application summary
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ST IR ISP PT RO . f3: Assess

else’: sy
: : credit rating 1
t: Verify :
Completed ty: Assess

application
credit rating 2

ti: Receive
application

ps /55

ts: Determine

XS7
s . interest r:
else P t7: Determine terest rate
- loan risk A .
f 5 raise
Bad risk ajz € pp

property
ty: Sign by

applicant

ti0: Sign by
loan officer

ti4: Log the
application
X4 pe

Loan reject tiz: NOtify'for
‘ the loan reject l

X1 fccepr ] T3t Notify for

the loan accept

t11: Sign by

Loan amout

manager
> 1000,000
Figure 6.1: Property Loan Approval Process.
Table 6.2: Artifacts Usages!in the Property Loapywpal Process
psflsilta|to|lerlasafta|tafai s|asfts| Lo |aioftz{XSufXSafte]X] @S] to [XSaftaoltra|X] sfal 3}X] 1fXSeftoftasfX] afta4| P
d;|P| |R
do PIR RIR R R D| |R|R R
d3 PIR R R
dy PIR R R R R|R|R
ds PIU|IR| |UJU U U Uju Ujul U
ds U|R
d; PIP R D RIR
dg R
dg P D Rl |RIR
dio P Rl |R
dis Rl P R R
di, R P RIR|R|R
d13 P
d14 PIR|RIR R|R|R R
dis R R| |R R
dis R R
di7 PIR
dis P R
dig Pl |R
d2o P R
d2 R R
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6.2. Detection of Missing Production Anomalies

Table 6.3 shows the steps of the calculation opagated artifacts and the detection of missing

production anomalies.

Table 6.3. Steps to Detect Missing Production Arnlgsa

ps, Is)| AAY ={d,,d,}, AA° =T

ti [AA"={d,,d(d,),(ds),(d.),(dg),(d )}, AA =0, I, ={d}, I |1AA=O

t, |AA'={d,,d,;d,d,d,dgd .}, AA°=0, 1, ={d ,d ,d ,d },I, \ AA=T]

ley,
[ AA"={d, dyyydpdyd dod o, AAT =0, I, ={d}, [\ AA=D
asy
t AAY :{dlrdlsrdzrdydmdad 1G(d 7)}’ AAT=L, ’tz ={d2’d3’d5’d6}
° I\ AA={d} => no preceding propagation
t AAT :{dl,dl3,d2,d3,d4,d5dlo(d 7)}' AAT=L; k, :{dz’dE”dG}
¢ I\ AA:{dG} => no preceding propagation
ajl!
AA"={d,,d,, d,d,d,ded,.d }, AA =0
as
t AA" :{d1;d13;d2;d3’d4rd9d10d 7(d 9}1 AAS =D’ ’t5 ={d Zd 3d “d ”d Bd }l
5

I\ AA={dj,d,;} => no preceding propagation

ts [AA"={d,dy;d,dyd,ded ,d,(d )}, AA =0, I ={d,}, |\ AA=0

aj; |AA“={d,,dp,,d,dd ,dod od ,d od }, AA =0
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AA" ={d,,d,5,d,,d 5 d 4 d 5d 1 Koo, dyyy(dr)}, AR =0, I, ={d ,d od 5d 1o 1y }

t7
I\ AA={d,,} => no preceding propagation
‘s, AA" ={d,,dy3,d, d3d ,d od 14d od 1,d J}, AA°=T, Ly, ={dy, d:d}, Ly, ={dy,,d.g
" |1\ AA={d,} => no preceding propagation
X
% L, \ AA :{dls} => no preceding propagation
t AA" ={d,,dy d,d 5 4 od 1 Koy (d )}, AA =00, 1, ={d,,d,,ds,dod 1, d )
N AVY S
ij’ U — c—
AA"={d,,d,;,d,d,d ,d4d od ,d .}, AA° ={d,,d,,}
asz
t AA" ={d,, dys, 3,03,y ey i d 1y dad, AT ={d od )}, 1, ={d ,d od }
9
I\ AA=0, I, NAA° ={d,,ds}" =>conditional preceding propagatic
AA" ={d11d131d2rd'«yd4rd9d 10d 1,0 1}1 AA* ={d97d12}r Ly, :{d4,d12,d14,d1§
xss [I.,\ AA={d,s} =>no preceding propagation
I, NAA°={d,,} =>conditional preceding propagation
AA“ ={dl’d13’d2’d3’d4’d9d10d lld l4(d l)}’ AAC ={d Bd ]}2’ ’t1o ={d ’g ’g ’g ’d ’g ’.Lg }lt
tio |l \ AA ={d7} => no preceding propagation
I, NAA={d,,d,,} =>conditional preceding propagation
AA" ={d,,d,d,,d 3d ,d od 1od 1,d 1,(d )}, AA“={d;,d,,}
¢ ’t11 :{dz’duds’d?rdgrdlz:d 129 15d 14d 2}1
H I\ AA={d,,d,5,d ,d,} => no preceding propagation
I, NAA® ={d,,d,,} => conditionakgceding propagatic
Xjz [AA® :{dl’dlsrdz’da»dmdsdlod nd 1}: AA? :{dg:dlzfdlwdlz}
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AA* :{dl,d13,d3,d4,d5.dwd 1d 1}’ AA® :{d9’dlZ’dl7’dlJ

ajs |l N0, :{dz} =>uncertain preceding propagation
I, MO, :{dz} =>uncertain preceding propagation
AA" :{dl’dlsrdsrdzvdsvdwd 1d 1}: AA? :{d od 100 A 46 }2
iox L, :{dz’dwdwdwdl}
J1. X5 I.,\ AA={d,}  =>no preceding propagation
L, [NAAC :{dlz} => conditional preceding propagation
tip |AA’ :{dl’dlB’dB’dwdE)led 12d 1,(d 23}: AA® ={d,,d.,,d,;,d16d ], L, ={de}, I\ AA=T]
iz [AA" ={d1rd13rd3’d42d5rd10d 12 14(d 19}! AA® ={d od o oA o }2 I, ={d5}) l,\ AA=D
it AA" ={d1rd13rd3’d42d5rd10d 12d 1}’ AAS ={d od 1d A 0 40 Hd ]{9 I, ={d5’d19rd20}
Jaa I\ AA=0, I, NAA“={dy,dy} =>.conditional preceding propagation
pe |AA ={d1rd13rd3’d42d5rd10d 1d 1}! AA° ={d od d A o0 8 }is

6.3. Detection of Redundant Write Anomalies

Table 6.4 shows the steps to calculate the satwsed artifacts for every activity.

Table 6.4. Steps to Calculate the Unused Artifemt&very Activity.

ps, Is1

NC ={d,,d,}, NC° =00

ty

N =( o (d.), (), (), (4 (a0}, N =0

to

NC* ={ds, 3, 3K, 3K, dyo}, NC° =10
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¢ _D
Cu _{d13’ ldlo} y NC -
NC“ = ok

<=0
NC
(ds).(de)s(d )}
NC* ={d13;d10r

CU_ d d 7[> N
N 37 4 5

132 { }
0 5
’ NC { ) 7

ts

NC* ={d}
{d13 dlo:d9><'(d9 )} ’
NC" ={d,,,

ts

- ) { 6}
37 )

a2

‘=i{d ,dll}
c ‘{dlg,ds,dg}, NC { 6
NCY =

t7

= ‘=yd ;)ﬁ}
{d d5,d9,(d14)}; NC { 6
NCU 137

XS

“={d}
NCt ={d13;d5;d9)m} NC 6

XS

¢ — d6}
NC* ={d,;,d,dgf, NC*={

ts

{diods B, (o)}, N ={d )
NC* =1dy3,ds,

Xj2

d] )ds : 4 }
NC 3 ) 62~ 9 1

to

“={do 3636}
NC* :{dIS’dS}’ NC _{d6 %

XS3

<={d_d,
NC" ={d13;d5}r NC —{da gﬁé}

t1o

BTN
u_{dlerdsr(dﬂ)}'NC { &
NC" =
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ty [NC ={d13,d5,(d18)}, NC* :{dﬁ’%}

Xz |NC'={dy;,d, NC ={dsd,,d .}

ajs |NC'={d;,d}, NC" ={dsd,,d .}

Xj1.xsf NC* ={d;;,dg}, NC* ={d6’d17’>§}

tiy [NC"={d,s,dy(d )}, NC“={d 5d,}

tis [NC"={d,s,dy(dye)}, NC={d od .}

Xjs |NCY :{dlg;ds}; NC* :{dG’dlY’d 200 1}

tis |NC ={d13rd5}’ NC* ={d6’dl7’%’>§}

pe |NC'={d,;dd}, NC° ={ddy}

After visiting Process End vertex, the redundant update anomalies are ddtastéollows:
® Explicit Redundant Update

EC=NC‘\ 0, ={dy,,d}\{d,}={d ,d¢ is not empty and thus, a redundant update

anomaly occurs for every artifaet [JEC due toCompletely Unused for the Process.

® Potential Redundant Update

CC=NC\ 0, ={d,,d, )\ {d,} ={dsd .} is not empty and thus, a redundant update

anomaly occurs for every artifaetJCC due toConditional Unused for the Process.
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Chapter 7. Comparisons of Data-flow AnalysisApproaches

Current workflow modeling and analyzing paradigme mainly focused on the control-flow
and resource dimensions. Literature reports inditititte work in data-flow dimension such as
those in conventional programming languages. Satligl. [7] and Sun et al. {810] are two
groups working on the analysis in data-flow dimensiln this chapter, we compare our work

with them.

Regarding the anomalies addressed, Sun et -all(8 claimed that seven types of data-flow
anomalies proposed by Sadiq et al. [7] can be rei#m@esented by their three basic data-flow
anomalies or not a problem at the conceptual |éMet. anomalies in [7] can be found with our

model as follows.

A redundant data anomaly occurs when an-activity produces an irgeiate data output but
this data is not required by any.Succeeding agtivitis anomaly is classified &dundant Write

in our approach.

A lost data anomaly occurs when two parallel activities perfaron-read operations on an
artifact. This anomaly is classified @onflict Write (Multiple Parallel Production/Updates) in

our approach.

A missing data anomaly occurs when an artifact is accessed befaee initialized. This

anomaly is classified adissing Production in our approach.

A mismatched data anomaly occurs when the structure of the dataymed by the source is
incompatible with the structure required by the\étst that uses the artifact.his anomaly can be

regarded as the occurrence of biglilssing Production andRedundant Write in our approach.

An inconsistent data anomaly occurs when an initial input artifact ofvarkflow is updated
externally during the execution time of the workfldAs stated bySun et al., this anomaly is not

a problem at the conceptual level.
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A misdirected data anomaly occurs when a data-flow direction cordlwith the control flow
in a workflow schemarhis anomaly is classified &4issing Production (Conditional Production)

in our approach.

An insufficient data anomaly occurs when data specified are not sefficto complete an
activity successfullyThis anomaly results from ill-designed activity aoan be classified as
Missing Production in our approach at the semantic level. Table Wrdrsaries the comparison of

anomalies addressed among Sadiq et al., Sun ahdlqur work.

Table 7.1. Comparison of anomalies addressed.

Our approach Sadiqg et al. Sun et al.
Missing data
No Production Insufficient data

Mismatched data

Delayed Production Missing data
Conditional Production Misdirected data
Missing
Production Uncertain Production
Exclusive Production
Early Destruction
N/A N/A

Conditional Destruction

Uncertain Destruction

Conditional Consumption

Redundant | After Last Wite Redundant data

_ _ Redundant data
Write Mismatched data

No Consumption
After Last Write
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Multiple Parallel Productions Conflicting data
Conflict _ Lost data
_ Multiple Paralld Updates
Write N/A
Parallel Read and Update N/A

Sadiq et al. [7] identify and justify the import@nof data modeling in overall workflow
design process. In addition, data-flow validatiesues and essential requirements of data-flow
modeling in workflow specifications are identifiefihey illustrate and define seven potential
data-flow anomalies in above table. However, Sadigprk is discussed only on the conceptual
level and thus, neither concrete data-flow model detecting algorithms are proposed.

Furthermore, operations on data are only classifiedread and write type.

Sun et al. [8-10] formulate the data-flow perspective by meandegfendency analysis. The

data-flow matrix and an extension of the unifieddaing language (UML) activity diagram are
proposed to specify the data flow in a-businessgs®. Then, three basic types of data-flow
anomalies, missing data, redundant."data,;~and-cotnfli data, are defined. Based on the
dependency analysis, algorithms to data-flow amalige discovering the data-flow anomalies
are presented. However, as Sadig’s work, no exptmdel is proposed to characterize the

behaviors of data. Also, read and initial write igi®n types are considered only.

Our approach presents a process model to descolddlew schemas. The behaviors of an
artifact are explicitly modeled by a finite statachine. The operation types including Initialize,
Read, Update, and Destroy, are concerned in thésedation. Table 7.2 summaries the

comparisons.
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Table 7.2. A summary of comparisons.

Sadig et al.

Sun et al.

This Work

Process Mode

N/A

Data-flow matrices

Control flow Diagram

y

(Conceptual Level) Process data diagram
Operations
Read, Write Read, Write Read, Initialize, Updatesttoy
Concerned
Detecting /A Data dependency | Artifact Usage dependend
Method analysis analysis
Concrete
Algorithm N/A Yes Yes
O(n) for Redundant Write an
Conflict Writes
. O(n) for missing production
Complexity N/A o(n*)

(without destroy operations)
O(n*) for missing production

(with destroy operations)

v

v

53



Chapter 8. Conclusion and Future Work

The main contribution of this dissertation is ttranluce an artifact usage analysis technique
into workflow design phase. To achieve this golis dissertation presents a business process
model for describing a business process and armalyee artifact usages on this model. In our
model, the usages of an artifact are charactedmeds state transition diagram. Among the
usages of artifacts, three types with thirteen sagemproper artifact usage affecting workflow
execution are identified and formulated and a salgorithms to discovering these anomalies is

presented. An example is demonstrated to valiteisability of the proposed algorithms.

We are currently continuing our research in sewvdirakctions. First, we plan to implement the
proposed model and algorithms on current workfloanagement systems, such as Agentflow
[38], so that our research result can be tested. innedd applications. Second, we will continue
the analysis on composite artifacts with-more c@xpisages usinBevise operations. The third
is to integrate resource constrains.analysis tectasi with our work to build a practical workflow

design methodology.
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