EARI2HETREWRAR
Bt WX

NAT 7 42 B st TCP 7 4 # 4

NBA — NAT Behavior Aware TCP Traversal Scheme

IR LR
TR 2 REE I (S5

TEREB L+t RAELA

v

N AT 2 g & & T CP 7 4 # 4
NBA — NAT Behavior Aware TCP Traversal Scheme

RN { L Student : Kun-Ying Liu
ERR e Advisor : Chien-Chao Tseng
B 2+ F

L A AR

;L e

AThesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science
July 2010

Hsinchu, Taiwan, Republic of China

SEAR LA

N AT & & g & v T CP 5 oA

g4 HE g IR g KR

SERSTEE SR F RN

*# < & 9 - £ Network Address Translation (NAT) 7 % g == (NAT Beha-
vior-Aware, NBA): TCP 5 A » 5 3 sh2b A s =07 | NAT BT pF o 55 %
1Rz - i TCP g £ 4 > NBA 4] € 1% & =50 NAT T > fE g% ih
TCPNAT 74&= 2 ¢ > & - R db § 05 ARPLAT > 817 E @ RI3# - 515 NBA
EBARA B TCPNAT FA8ch A 4 > 7 UL 2 7 0 5 5 AHFLR
FERPRE B ERPRETEHAOFRET R o

W HAY L gk MRk TCP NAT 3 AXR4Een= 2 > Ko i

I

RREE SER I
NAT = TCP ik AL if Bid 12 5] » ¥ £ > 3420 % b NAT 28 T chig # |75 — fg orde
dod p BB TCPNAT 7432 287 2 @l BRI - FLRRE > §
URAAPIFEFFRLEE A LB L AL 20 P80 NAT 7 4 ame
B EF

PO MR RRRFUEBEE M L R o A R ERGERA F o N
P - 2 NAT 7 5 g 4w (NBA)eh TCP 7 4%484] NBA i & 18 £ & 54
(host) eraig * —F{ k12 A (user agent, UA)L iz & 4 & e NAT T3> ¢ 7 NAT

mapping {7 5 ~filtering 7 5 &2 TCP ;& & 3 BigF it » § =37 F NAT AT 3 UA

& E T A% NAT BF - NBA ® 12 41% 045 UA “7c f 5160 NAT 730 > 48 01 -
Bds§ NAT F A8 £ iz s UARY o 4ot — %o g8 UAJET 114
2T F a0 S D NAT FARPFNRIER 7 &2 5 LR

Ao g S NBAWGF T XEFIT RS PIREPFRFETRET § 5%
i 4915 > 217 NBA & % & # i@ iPl3#(Sequential Connectivity Check, SCC)1 2 & {7
® i jp| ¥ (Parallel Connectivity Check, PCC) % & #6 41] choas v e o F S 2 % BT -
mAp e e & AINAT BB T > 2= A F1cnE @ 5 = 249 > 7 7> NBA E£# NAT
FARP S 2 AR P L R S F R AR
NBA g2 SCC #pic2 © £ § {Eenipls# 682 NBA ' PCC &8 * 1 sy >

NBA i #8 »cie % g SCC = PCC { &) o

A 4& % - Network Address Translation ~ NAT ~ NAT Traversal ~ TCP~ TCP NAT Traversal

NBA — NAT Behavior Aware TCP Traversal Scheme

Student : Kun-Ying Liu Advisor : Dr. Chien-Chao Tseng

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

ABSTRACT

In this thesis, we propose a Network Address Translation (NAT) Behavior Aware,
henceforth referred to as NBA, scheme for TCP NAT Traversals. Many researchers
have proposed techniques to tackle the TCP NAT traversal problem. However, previous
TCP NAT traversal research focuses on whether a specific TCP signaling sequence can
establish a direct connection successfully between two peers behind NATs. Because
each signaling sequence has its own applicable NAT types, brute force connectivity
check may induce a long delay or excessive message exchanges for setting up a connec-
tion.

Therefore, NBA utilize TCP state tracking behaviors of NATs as a priori know-
ledge to select the most appropriate Traversal method for the connectivity check be-
tween two communicating peers behind. As a consequence, it can eliminate unnecessary
checks, shorten the connectivity check delay, reduce the number of message exchanges,
and sometimes help to avoid failure in connectivity check that ought to succeed. With

NBA, user agents (UAs) collect the NAT information such as mapping rules, filtering

rules and TCP state tracking behaviors, and report the collected information to an NBA
server. When two UAs intend to establish a communication session, the server consults
the information reported by the two UAs, determines the best traversal method, if exists,
and informs the two UAs to check connectivity with the selected method.

We have implemented NBA and compared the performance of NBA with both
sequential connectivity check (SCC) scheme and parallel connectivity check (PCC)
schemes. The experimental results show that NBA achieves the same direct connection
ratio as SCC and PCC do. Furthermore, NBA outperforms SCC in terms of latencies

and PCC in system resources utilizations for connectivity checks.

Keywords: Network Address Translation, NAT, NAT Traversal, TCP, TCP NAT Tra-

versal

&k O#H
FAL TR Ehd B EF MY R TEF P a8k KT i;#.ug%?;
S LA E el Biolel > 2 g8 5 < B AR AR P2 PR
B afr 2Ry - TG 0 — KL - HEPLfchrp T 4 &
ek JP A 4pi8 AR L FLAPE R AT o B enT g 0t 7 o RS- L AT BV iE A D
Lo FE 0 i Aend EouhFsad 57 FlaF mim o A LR LIRE o

AR S S bR ol T AR RS AE R R s e
ARF AR R F R EHERPIFEER A SR S BRba R BE g
Paper ~Debug - 1% 3 5> A E D L BT B R > T ERAENDR R > 4 i i

LR REHA L T SEIRRYITRE S - PR RFELL AR
¥t g AUIRIE SRR It o 0 ¢ R SRS e A 3 PR
O tesar s B At R G Gl R ek RAH Sk B4
F A F o

—_

EEp e eBAiEA R WINLab 77 &40 - 3P - A2 p Y 2
*E O e RELITEG EADRTEELE - A2y 8 cnGunter 8 £ ~Z w4
- Aed R L 2L B R - kG - A dkan Cary & 0 (R E i
\ ';,’:,E PREFENA P FE SRR L RHENETE R RFLF AR
BANEBREAY > - BRI A R - B RF R OFHEE A Y s
P+ ‘%w"’E’Sérﬁgﬁ*?ﬁf’éfihﬁ?{»c}éfﬁffkﬁs@ﬁ%ﬁﬂﬁikﬁ,@q,fig D
P RE B RE P GVER A IR EEP A S R A AP A R R

PR e ARDREL SRS OEPELR O R AR FRE SR A Ew
Rips @B BPE o2 &R 422 & D-Link T1 4745 e4% Partner -] £ > & it
5 ES BGRE PBAL S SRR P - BRI o b b A A 8- A2 4B 0 AUAR S REBAE
F2 i kA4 b - PoBh o R D-Link e08 £ Kig o iR A h - u@e#ﬁ%?’fffw
PEEL T HY AL FE R R 3 4 AN B < el BY o B Vincent #0240 3B B 4 Linux
I R AP AR Y £ NGB - e AP i B X mmﬂﬂsw SN
BB R 0 RRH Y EARDEERE - BT N A S X - %\uﬁhéﬁﬁ?% P g

%

&
e

4=» vrlm

!

R R e R R VL A S S A

F A SAREWHECL TR A SRR W 8 S PR A R L B
R BRADER B3 g ke 1R E RO BT kit A iR K FE i
]FE o 4 _@}a’,&]’}\.m—‘% I‘/ti'\‘ﬁE’Jche ’ 7‘\3»#&‘?4—\) L_}\a&jﬂ_ F'émfr:“rn}:) “{,‘,}\.lﬁﬁz}‘) ”); 15
PEAF o5 BRI %) % F 30 BEinie- koL E e A F 4 FEairy ERER

o

2 g2 Q)I?w/‘“rpg C R BSE A PP AL E AR E R A O -

Contents

ADSEFrACt IN CRINESE ..o [
ADSEract IN ENGHISN.......ooi e ii
ACKNOWIEAGEMENTS.......cuiiiicie ettt sreenreenee e v
(0] 4] (=] 01 KT TP PR TP PR PSPPRO Vi
I TS o) T U SR viii
LISt OF TADIES ... X
Chapter 1 INtrOAUCTION ... i ottt ettt este e esreenee s 1
1.1 MOTIVATION ket see ittt 1
I © 1 o] 1Tt £ SRS 5
1.3 Outline 0f the TRESIS ..ot 6
Chapter 2 BacKgroUNQ......... .. i e se e sre e e sae e e steesnessaesreeee s 7
2.1 Problems of TCP NAT Traversal.........ccccoiiiiiiiniiie e 7
2.2 NAT OPEratiON.....coccuieiiieieieceie ettt 7
2.3 NAT Mapping RUIE ... 9
24 NAT FIltering RUIEc.oooiiiiice e 11
2.5 NAT VariatiOnS.......ccoooiiiiiiiieiesiiseee e 13
2.6 NAT TCP State TraCking.......ccccueiivieiiiiiiieiie s 14
Chapter 3 Related WOIK...........c.couiiiiiiie e 16
3.1 UDPNAT Traversal ... 16
3.2 TCPNAT TraVversal ..o 19
3.3 Issue in TCP NAT Traversal ... 23

-Vi-

Chapter 4 Analyze TCP NAT Traversal Methods..........ccccccovveieiieieecese e 25

41 SNT —SYNWIith Normal TTL ..ccccoooiiiiiiiecececeeeee s 25
4.2 SLT = SYN WIth LOW TTL oot 27
4.3 ESi—Establish then SYN-IN ..o 28
A4 SUMMANYuiiiiiiie ittt ettt et et nsb e e snb e e e nnbe e nneas 29
Chapter 5 NBATCP Traversal SChEME ... 30
5.1 NBA OVENVIEBW ..ottt 30
5.2 NBA Operation ProCeAUIE...........couiiiieieieic et 31
5.3 Step 1 of NBA— NAT Information Collection........c...cccoeevvivveinnnne 33
5.4 Step 2 of NBA - Traversal Method Determination...........ccc.cccceevennee. 39
5,5 Step 3 of NBA—Connectivity ChecK............cccooveviiieiiieiicc e, 45
Chapter 6 System Implementationco.coivriiiiiie e 46
6.1 SYSLEM OVEIVIEW . cuveiurerrremssrsssereeisieitesteesteesesseesseasesseesssassesseesseessessessnes 47
6.2 NBAIMPIEMENTATION ...t 47
6.3 Discuss Ways to Implement NBA Schemeccccccovveieiiececcccee, 50
Chapter 7 EXPEriMENTooiiiiiiieieie et ere s 51
7.1 Overview of EXPerimentcccoeoveiiiii i 52
7.2 Result of Step 1IN NBAc.coi i 53
7.3 Resultof Step 2INNBA ... 56
7.4 Comparison of Direct Connection Rate in Different Schemes 57

7.5 Comparison of System Resource Utilization in Different Schemes...59
Chapter 8 Conclusions and FULUIre WOIKSccccoeiiieiiiie e 63

BIDHOGIaPNY e s 65

- vii -

List of Figures

Figure 1-1 NAT device, private and public NEtWOrKSccccoveiviieiieene i 1
Figure 1-2 Mapping table ... 2
FIQUIe 2-1 NAT OPEFALION.....cccviiiiiieie ettt e et se et raesae e e sreenreenee e 8
Figure 2-2 Independent MapPINgcccooeieriieiieieieiee e 10
Figure 2-3 Address dependent MapPing......cccccceieeiieieieesie e 10
Figure 2-4 Address and port dependent MappPiNg.......cccocevererenenieienene e 10
Figure 2-5 Independent filtering.........ccoooieiiiie i 12
Figure 2-6 Address dependent filtering........ca i 12
Figure 2-7 Address and port dependent filteringc.ccccoeev e 12
Figure 2-8 TCP three-way handshakecccuioiiii i 14
Figure 2-9 TCP State traCKiNgcoveiiiiieiiueiie it 15
Figure 3-1 STUN ArCRITECTUIEcuviiiiieec e 17
Figure 3-2 TURN AFCNITECTUIEccveiiiiie et 18
Figure 3-3 ICE AFCNITECTUIE. ..o 19
FIQUIE 3-4 STUNT L ... et 20
FIQUIE 3-5 STUNT H2..oi oottt ettt ne e snee e 20
FIQUIE 3-6 NATBIASTErcueiiee e 22
FIQUIE 3-7 P2PNAT ..ottt sttt et e e ta e te s e nneeaeeneesneenes 23
FIQUIE 4-1 SINT ettt s b ettt e b e sre e e 27

- Viii -

FIQUIE 4-2 SLT oottt et e et b e et e ne e s re e teeneesneers 28

FIQUIE 4-3 EST .ttt 29
Figure 5-1 NBA SysStem arChiteCtUre..........ccccveveiieiiee e 31
Figure 5-2 NBA operated ProCeAUIEcccoiiiiiieiiieiesie e 32
FIgUre 5-3 MapPInNg TEST......ccveii et sre e 34
Figure 5-4 EST teSt & ST TESToiuiiiiiiieiee e 35
Figure 5-5 S0Si tesSt & SORIST tEST.......c.cccviiiiiece e 36
Figure 5-6 SOUiSi teSt & SOTIST TEST....c.eoiviiiiiiiiiieieee e 37
Figure 5-7 Procedure of Step LiNNBA ... 38
Figure 5-8 Initiator of connectivity ChECKccco.oiviiiiiii e 40
Figure 5-9 A possible packet sequence of SNTcccooeiiiii i 42
Figure 6-1 System modules of NBA ..ot 46
Figure 6-2 Module interaction flow of Step 1cccovviiiiiiiic e 49
Figure 6-3 Module interaction flow of SteP 2 ..o 49
Figure 6-4 Module interaction flow of Step 3 ..o 50
Figure 7-1 EXPeriment eNVIFONMENTcccoiiiiiiiinieiesie e 51

List of Tables

Table 5-1 LiSt OF NAT TYPE TESTS ..cviiiiiieiieie et sre e 38
Table 5-2 Traversal Method Selection Table............cooiiiiiiiiis 41
Table 7-1 Brands Of NATScoiiiiiieieie e 52
Table 7-2 Naming rule of mapping deteCtion............cocevvvirininiiiieiee e 54
Table 7-3 Naming rule of filtering detection...........ccccccovvevv i 54
Table 7-4 Naming rule of TCP state tracking detectioncccccevevevenineninnnnnns 54
Table 7-5 Classify of NATS IN grOUP A ... ettt sre e 54
Table 7-6 Classify of NATS 1IN Group B......ooiiiiiiiieee e 55
Table 7-7 Traversal method selected by NBA O group Accccveevevievveciecieceeae 56
Table 7-8 Traversal method selected by NBA O group B.........coeoveiiiiniiiiiiiiins 57
Table 7-9 Direct connection of group Amade by NBA ... 58
Table 7-10 Direct connection of group B made by NBA.........ccooiiiiiineniiniicns 58
Table 7-11 Direct connection of group A made by SCC or PCC........c.ccccovivevieenne 59
Table 7-12 Direct connection of group B made by SCC or PCCccccccvviveieennne 59
Table 7-12 connectivity CheCK tIMEcccooviiii e 60
Table 7-13 Traversal time of each SCheme..........cccooiiiiiiis 60
Table 7-14 Numbers of message exchanges of each traversal method 61
Table 7-15 Numbers of message exchanges of each scheme...........ccccveiiiiiiiinns 61

Chapter 1
Introduction

1.1 Motivation

The dramatic development of the internet industry in recent years has led to the
depletion of the remaining IPv4 address space. Limited IPv4 addresses could not satisfy
a large number of devices on internet nowadays. To alleviate the IPv4 address space
exhaustion, network address translation (NAT) [1] appeared and became a popular tool
in the mid-1990s. NAT allows several hosts to share one public IPv4 address because
NAT divides the network into public and private network as shown in Figure 1-1. Mul-
tiple hosts on a private network have their own private IP addresses which are mea-
ningful only within the scope of the private network and can’t be used to get into the
internet directly. Therefore, the same private IP address can be reused on different pri-
vate network blocks as long as those private networks cannot communicate with each
other directly. Hosts on private networks can take the NAT as a gateway and share a
single public IP via address/port translating on the NAT to connect to each other or

access to the internet though NAT boxes.

Private Network Address Space
10.0.0.0 ~ 10.255.255.555
172.16.0.0 ~ 172.31.255.555
192.168.0.0 ~ 192.168.255.555

Private network Public network

Figure 1-1 NAT device, private and public networks

In order to achieve the capacity to share a public of NAT to multiple hosts, NAT
must have some effort on inbound and outbound packets. Hosts who are located on pri-
vate network are named internal hosts. Once they want to communicate with external
hosts via sending/receiving packets, the NAT device would involve rewriting the source
and/or destination IP addresses and also the TCP/UDP port numbers of IP packets as
they pass through the NAT. Checksums of IP and TCP/UDP headers must also be recal-
culated to make sure the NAT device transmits packets correctly between internal and
external hosts. Once the internal hosts send packets to the external hosts, NAT will
record the translating rule between private and public IP address/port on the mapping
table. NAT then transmits inbound packets to the correct host according to the mapping
table such as Figure 1-2. If the record on the mapping table hasn’t been created, NAT
would not understand where to route the packets. In the other word, external host cannot
initiate unsolicited session to internal host until the internal host sends out packets to the

external host, and NAT creates a recode on mapping table.

[se]
— [en]
Src 192.168.0.7:5100 o - Src 140.113.215.188:12345
Dst 140.113.21.88:747 o 2 Dst 140.113.21.88:747
Src 192.168.0.5:1278 > & W Z Src 140.113.215.188:13579 -
Dst 140.113.23.89:27 @ NAT g Dst 140.113.23.89:27
~ —=a z
Mapping Table
Internal IP/Port Local NAT Port
192.168.0.7 5100 12345
192.168.0.5 1278 13579
. w

Figure 1-2 Mapping table

Although NAT provides a lot of benefits to the internet nowadays, however, it also
incurs some drawbacks. NAT is a barrier for peer-to-peer applications because one peer
cannot know the address of the other peer behind an NAT, and NAT may block unsoli-
cited inbound traffics. Many methods have been proposed to solve the issues, and those
methods are called NAT traversal. Interactive Connectivity Establishment (ICE) is a
well-know protocol for UDP NAT traversal [6]. It uses nine address pairs to perform
connectivity checks in order to find out an appropriate connection between two peers
behind NATs. In recent years, most peer-to-peer applications use TCP to transmit pack-
ets, but establishing a TCP connection is more complex than UDP since two hosts must
perform a three-way handshake procedure [17]. Moreover, most NATs implement some
sort of TCP state tracking mechanism to trace TCP stages [16]. Different TCP state
tracking mechanisms implemented in NATs need different traversal methods to solve
them, so many TCP NAT traversal methods was also proposed, and each method is ap-
plicable to different NAT combinations.

One kind of the most effective NAT traversal methods of establishing peer-to-peer
communication between hosts on' different private networks is known as "hole
punching" [2, 19, 21]. UDP hole-punching was first explored and publicly documented
by Dan Kegel [3]. Using the same aspects, techniques was declared such as Simple tra-
versal of User Datagram Protocol (UDP) through NATs (STUN) allows applications to
discover the presence, types and IP address of NATs [4]. Traversal Using Relays around
NAT (TURN) allows two hosts behind different NATs to exchange packets each other
using the relay [5]. Interactive Connectivity Establishment (ICE) makes use of STUN
and TURN protocol [6]. TCP hole punching is seem more complexity then UDP, be-
cause three-way handshake must be performed to establish TCP connection and most
NATs implement TCP state tracking mechanism to track the TCP stages. NatTrav advo-

cate direct TCP connections between peers [7]. Simple Traversal of UDP Through NATs

and TCP (STUNT) is a well-know TCP hole punching method [14]. NATBIlaster pro-
posed novel mechanisms to create direct TCP connections between two hosts behind
middle-boxes with minimal help from a third-party [15]. However, previous TCP NAT
traversal proposals did not consider TCP state tracking of NATs, but they perform brute
force connectivity check instead so that this procedure induces a long delay or excessive

message exchanges for setting up a connection.

1.2 Objective

In this thesis, we propose a NAT Behavior-Aware (NBA) TCP Traversal Scheme
that can eliminate unnecessary connectivity checks from choosing the most appropriate
traversal method based on the behaviors of NATSs, instead of try-and-error tests [20].
Connectivity check will be more efficient by using NBA and result in shorter connectiv-
ity check delay, fewer message exchanged, possible higher Direct Connection Ratios
(DCR) and less resource usage or simpler state maintenance. In NBA, we implemented
several NAT type detected tests to realize NAT behaviors clearly including behaviors of
both UDP and TCP. When two hosts behind different NATs want to establish a TCP
connection through NAT traversal techniques, NBA can use the behavior knowledge of
the two NATSs to determine the most appropriate traversal method for the two hosts. This
study successfully considers the NAT device characteristics, and the results may provide

an insight into the usage of TCP NAT traversal.

1.3 Outline of the Thesis

This paper is organized as follows. In chapter 2, characteristics and behaviors of
NATs are described. Many UDP and TCP NAT traversal methods are surveyed in chap-
ter 3. In chapter 4 we review three practical TCP NAT traversal methods to understand
their characters comprehensively. In chapter 5, NAT behavior aware approach is de-
clared in detail. We include system implementations of NBA in chapter 6. In chapter 7,
NAT behavior aware approach and previous TCP NAT traversal are compared according

to the experiment results. Finally, we draw conclusions and suggest future works.

Chapter 2
Background

In the chapter, NAT will be described carefully including problems of TCP NAT
traversal and the basic principle of NAT operation, mapping rules, filtering rules and
TCP state tracking. Although the concept of NAT was proposed more than 15 years [1,
10, 11, 12], neither NAT-related standard nor protocol is specified. As a result, current

NAT implementations vary among not only vendors but also NAT models.

2.1 Problems of NAT Traversal

Three characteristics of NAT behaviors affect NAT traversal deeply that are NAT
mapping rules, filtering rules and TCP state tracking. NAT uses mapping rules to decide
which ports for assigning to each connection and filtering rule for determining whether
inbound packets can be sent to hosts behind an NAT via existing mappings. The two
rules make it difficult to establish direct connection between two peers behind NATs.
Besides, NAT implements TCP state tracking to trace TCP stage and the mechanism
may block unexpected TCP packet sequences. Different NATs may have different NAT
TCP state tracking implementations, so peers are more difficult to establish a TCP con-
nection between two hosts behind NATs. In the following sections, we describe the

three characteristics of NAT behaviors in detail.

2.2 NAT Operation

Figure 2-1 illustrates the case that one host located on a private network wants to
communicate with the other host located on a public network. Internal host must first

send out an outbound packet though the NAT device to the external host, and NAT will

then generate a mapping entry on its mapping table to keep track of the session. For
example in Figure 2-1, the internal host sends out an outbound packet to the external
host, and NAT must translate the source address of the outbound packet from private IP
address (ex: 192.168.1.10) to public IP address (ex: 140.113.215.183) and source port
from local port (ex: 5100) to global port (ex: 12500) so that the packet can be routed on
the public network. On the other hand, NAT generates a mapping entry to record the
mapping between local IP/Port transport address and global IP/Port transport address
(ex: 192.168.1.10:5100 -140.113.215.183:12500). When the NAT device receives the
inbound packet form the external host to the internal host, it translates the destination
IP/Port transport address (ex: 140.113.215.183:12500) of the inbound packet to the cor-
responding transport address (ex: 192.168.1.10:5100) according to the mapping table in
NAT. The principle of address translation in NAT is based on mapping table. Therefore,
any inbound packet from the external host cannot be routed to the internal host by NAT
until the internal host has sent out an outbound packet to the external host and a map-

ping entry was generated on mapping table in NAT.

SA: 192.168.1.10
SP: 5100

Internal host +

DA 140.113.102.170
DP: 10778

Private network

SA: 140113102170
SP: 10778

DAz 192.168.1.10

DP: 5100

192.168.1.1

140.113.215.183

SA: 140.113.215.183
SP: 12500

DA: 140.113.102.170
DP: 10778

Public network

SA: 140.113.102.170
SP: 10778

[

DA:140.113.215.183
DP: 12500

Mapping Table

Internal IP/Port

Local NAT Port

192.168.1.10

5100

12500

Figure 2-1 NAT Operation

External host

2.3

NAT Mapping Rule

NAT mapping rule defines how NAT assigns public ports to outgoing connections,

and it is required for a NAT to maintain a connection between private network and pub-

lic network. When an internal host initiates an outgoing connection through an NAT, the

NAT assigns a global IP address and a global port number to the connection and then

create a mapping entry so that subsequent response packets from an external host can be

received by the NAT, translated, and forwarded to the internal host according this entry

[8]. NAT mapping rule can be classified into three categories:

Independent: NAT reuses the port-mapping for subsequent packets sent from
the same internal IP/Port transport address to any external IP/Port transport ad-
dress. For example, in Figure 2-2, no matter Node A sends packets to different
ports P1, P2 on Node B or P3 on Node C, NAT will all reuse the same
port-mapping Pa of its external interface.

Address dependent: NAT reuses the port-mapping for subsequent packets sent
from the same internal IP/Port transport address only to the same external IP
address, regardless of the external port. For instance, Figure 2-3 shows that
NAT will use the port-mapping Pa when Node A sends packets to P1 and P2 on
Node B. But NAT uses port-mapping Pb when the destination is Node C.
Address and port dependent: NAT reuses the port-mapping for subsequent
packets sent from the same internal 1P/Port transport address only to the same
external IP/Port transport address. As shown in Figure 2-4, if the destination IP
address or port is different (Node B with P1 and P2, and Node C with P3), NAT

uses different port-mapping (Pa, Pb and Pc).

Public network

Private network

192.168.0.7

Node C
140.113.215.183

Figure 2-2 Independent mapping

Public network

Private network

ode B
140.113.102.173
Node A <~
192.168.0.7

Node C
140.113.215.183

Figure 2-3 Address dependent mapping
Public network

Private network

Node A
192.168.0.7

Node C
140.113.215.183

Figure 2-4 Address and port dependent mapping

-10 -

2.4

NAT Filtering Rule

NAT filtering rule defines which external hosts are allowed to send inbound packets

to the corresponding internal hosts via existing mappings [8]. NAT filtering rule can al-

so be classified to three categories:

Independent: Internal hosts send packets to any external IP address is suffi-
cient to allow any packets from external host with any IP address and port back
to the internal host. As shown in Figure 2-5, once the session between Node A
and Node B has been established by Node A, any inbound packets from exter-
nal hosts such as Node B and Node C can pass the NAT via this port-mapping.
Address dependent: Internal hosts receiving packets from a specific external
host are necessary for internal hosts to send packets first to that specific exter-
nal host's IP address. For instance, Figure 2-6 shows that once the session has
been established by Node A between Node A and Node B, only inbound pack-
ets from external host Node B with P1 and P2 can pass the NAT via this
port-mapping.

Address and port dependent: This behavior is similar to the previous catego-
ry. Internal hosts receiving packets from a specific external host are necessary
for them to send packets first to that specific external host's IP address and
port. For example, in Figure 2-7, once the connection has been established by
Node A between Node A and Node B, only inbound packets from external host

Node B’s port P1 can pass the NAT via this port-mapping.

-11 -

Public network

| .-6)
Private network @

Node B
140.113.201.187

Node A Te.
192.168.0.7 NAT
S

Node C
140.113.215.188

Figure 2-5 Independent filtering
Public network

Private network 1.° @

Session

10 BP1E A5
Node A T
192.168.0.7 NAT
S

140.113.215.183

Node B

Figure 2-6 Address dependent filtering
Public network

Private network 1.° @

Session
: NodeB
e B-P1 140.113.102.173

Node A e .
192.168.0.7 NAT "
S
Node C
140.113.215.183

Figure 2-7 Address and port dependent filtering

-12 -

2.5

NAT Variations

For UDP, NAT’s treatment of packets varies among implementations. Typically,

NAT devices can be classified into two categories such as Cone NAT and Symmetric

NAT based on mapping rule [4]. Cone NAT assigns the same public port for all connec-

tions from the same local port; Symmetric NAT assigns a unique public port for differ-

ent connections.

Cone NAT can be further classified into Full Cone, Restricted Cone and Port Re-

stricted Cone based on filtering rule [4]. In the following, we describe the four catego-

ries of NAT carefully.

Full Cone: All outgoing packets from the internal host with the same internal
IP/Port transport address are mapped to the same external IP/Port transport
address. Moreover, all external hosts can send packets to the internal host by
using the mapped external IP/Port transport address.

Restricted Cone: All outgoing packets from the internal host with the same
internal IP/Port transport address are mapped to the same external IP/Port
transport address. But only internal hosts who ever send packets to the specific
external host’s IP address can receive packets from the specific external host.
Port Restricted Cone: All outgoing packets from the internal host with the
same internal IP/Port transport address are mapped to the same external
IP/Port transport address. But only internal hosts who ever send packets to the
specific external host’s IP/Port transport address can receive packets from the
specific external host.

Symmetric: If the same internal host sends a packet with the same source ad-
dress and port to a different destination IP address or port, and NAT would use

a different mapping. Furthermore, only internal hosts who ever send packets to

-13 -

the specific external host’s IP/Port transport address can receive packets from
the specific external host.
However, RFC 5389 which evolves from the STUN protocol, RFC 3489, had re-
moved the algorithm for NAT variations detection because NATs nowadays cannot be
classified into those four types of behaviors. But this is a familiar classification when

we study NAT technology. So, we still describe it in this section.

2.6 NAT TCP State Tracking

The TCP three-way handshake known technically as the SYN, SYN-ACK and
ACK is the process for establishing a TCP connection as shown in Figure 2-8. However,
two hosts behind different NATs cannot establish a TCP connection through normal
TCP three-way handshake process so that special TCP packet sequence flows will ap-
pear. The special packet sequence flows are caused not only by current TCP NAT tra-
versal methods but also by NAT response. For example, scenario 1 and scenario 2 in
Figure 2-9, there are many vendors use a lightweight state machine within
the NAT Session to track the current state of a TCP connection [13] and determine when
connection-state can be garbage-collected. NAT may block unexpected packets se-

quences according to its implementation of TCP state tracking mechanism.

O D

Node A Node B
S5 N ———-

4—SYNACK—

- ACK—»

Figure 2-8 TCP three-way handshake

-14 -

SOOI

Scenario 1

Scenario 2

Node A NAT X NATY NodeB
SY N -
b ECEEEEEETEE “_SYN
SYN -
1
- RST
e mmnnnnnnns ‘|‘78YN
I

Figure 2-9 TCP state tracking

-15 -

Chapter 3
Related Work

In this chapter, a number of current researches and techniques related to UDP and
TCP NAT traversal problem will be described. Then, a major issue which affects TCP

NAT traversal problem will also be depicted.
3.1 UDP NAT Traversal

3.1.1 STUN

Simple Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs) (STUN) is a lightweight protocol that allows hosts to discover not
only the presence and types of NATs and firewalls between them but also the public
IP/Port transport addresses [4]. STUN Server is a third-party network server with two IP
addresses and two ports as shown in Figure 3-1. STUN is a commonly used technique
to solve UDP NAT traversal problems. Internal host uses STUN server to realize the
public IP and port-mapping on its NAT and then other host may use this port-mapping
to send inbound packets to the internal host in some types of NATSs.

RFC 5389 [9] is a new specification of STUN named “Session Traversal Utilities
for NAT”, and it is an evolution from RFC 3489. The original STUN protocol defined a
NAT type discovery process flow for applications to discover the type of an NAT. But
new STUN protocol had removed this algorithm for NAT type detection and binding
lifetime discovery. Because NATs nowadays may not fit into those type classifications
which we have described in session 2.5, and the algorithm was found to have some er-
rors [9]. RFC 5389 also defines STUN protocol to have additional capability such as

checking connectivity between two peers behind different NATs and a keep-alive pro-

-16 -

tocol to maintain NAT mappings.
However, since symmetric NAT assigns a unique public port for each connection
to a specific IP/Port transport address, we cannot use STUN to traverse this category of

NATSs.

STUN Server

IP1:3478)(IP1:3479) IP2:3478
. S
1. Binding

RE‘CILIEEt 2. Elndlﬁg
Response

Figure 3-1 STUN Architecture

3.1.2 TURN

Traversal Using Relays around NAT (TURN) is a protocol that allows the host
behind a NAT to control the operation of the relay server and to exchange packets with
its peers using the relay [5]. Once hosts behind different NATs want to communicate
with each other, they can establish their own connection with the third-party network
server named TURN server, and TURN server would help them to redirect data to the
other hosts. Figure 3-2 shows the typical operation of TURN. In Figure 3-2, Node A

connects to TURN for requesting relay resources X, and then Node A would inform the

-17 -

relay resource X to host B. Once two hosts want to communicate with each other, they
can just send data to the relay resource X, and TURN server will redirect data to the
other host. This relay approach is a useful NAT traversal method.

However, when two hosts use TURN server as a relay server to communicate
with each other, they must occupy additional network bandwidth. Therefore, although

TRUN can traverse all types of NATS, it has the lowest priority in NAT traversal me-

thods.
TURN Server
1. Allocate
relay
resourge
Z. Communicate
via TURN
s
/ NAT A
Node A MNode B
Figure 3-2 TURN Architecture
3.1.3 ICE

Interactive Connectivity Establishment (ICE) makes use of integrating some NAT
traversal techniques such as STUN and TURN, and it is a protocol for UDP (ICE-UDP)
and TCP (ICE-TCP) NAT traversal. Once two hosts behind NATs want to check con-
nectivity, they would collect their own possible candidates which are a multiplicity of IP
addresses and ports from STUN and TURN. Then two hosts use ICE to exchange those

candidates, ICE would make pairs of two hosts’ candidates and try systematically all

-18 -

possible pairs until it finds one or more direct connectivity path.

Figure 3-3 is an example for ICE-UDP. Both two hosts must collect its own can-
didates which are local address, server reflexive address from STUN server and relay
address from TURN server. ICE makes pairs of two hosts’ candidates to nine possible

pairs and checks connectivity of each pair.

3 | TURN Relay
=

2.L<>3
(S) 3 L<>R
4.S<>L
5 8<>8§

Address
Address 3X3 .
(L) Pairing (L)

Node A Node B
Figure 3-3 ICE Architecture

However, ICE brings about a large delay during connection setup since these col-
lection steps and check procedure have to be performed for any new connectivity re-
quest. Moreover ICE only establishes connections between applications on two hosts
which have the knowledge of ICE protocol. As a result ICE cannot be seen as a solution

for arbitrary applications.

3.2 TCP NAT Traversal

TCP NAT traversal is more complex than UDP because most NATs implement
TCP state tracking mechanism to track the current state of a TCP connection. In this
section, three implement TCP NAT traversal methods which are proposed in recent lite-

ratures will be described.

-19 -

3.2.1 STUNT

Simple Traversal of UDP Through NATs and TCP too (STUNT), which extends
STUN to include TCP functionality, is a lightweight protocol that assists hosts behind
NATs to determine external IP address and port number. It also helps hosts traverse
NAT to establish TCP connections. STUNT was proposed in [14] including two TCP
NAT traversal methods named STUNT #1 and STUNT #2, illustrated in Figure 3-4

and Figure 3-5 respectively.

Internal Internal @

Router Router @
@ STUNT <SS

Node A NAT X Server NATY Node B

|
—SYN (with low TTL)-=
|
Response
I
-t ICMP TTL expired- —

--4-SYN (with low TTL)—
|
Responsé
|
— |ICMP TTL expired-#

___—SYNSeq#—--—"".,.___SYNSeq#————
-4——SYNACK (spoofed)—— SYNACK (spoofed)—

ACK >
< ACK

Figure 3-4 STUNT #1

O Qg O

Node A NAT X Router NATY Node B
——SYN (with Iow TTL)—

Response

— ICMP TTL expired —

-t SYN
|
SYN ACK -
|
i ACK

Figure 3-5 STUNT #2

-20 -

In STUNT #1, when hosts behind different NATs want to establish a TCP con-
nection, both hosts must first send an initial SYN packet to each other. However, un-
solicited packets may cause side effects of NAT while establishing two hosts’ connec-
tions. Therefore, the initial SYN packets are set with low time to live (TTL) values to
cross their NATs, but the SYN packets must not reach other host’s NAT and will be
dropped in the network (once the TTL expires). Second, both hosts learn the TCP se-
guence number of the initial SYN packets over PCAP or a RAW socket and send their
respective TCP sequence number to a globally reachable third-party named STUNT
server. The STUNT server resides in public network and spoofs a relative SYNACK
to each host with the appropriately sequence numbers as the packet comes from the
other host. Finally, host will respond an' ACK packet to the other host for completing
TCP 3-way handshake.

STUNT #2 is similar to the STUNT #1, but only one host sends out a low -TTL
SYN packet. Then sender aborts this connection attempt and creates a passive TCP
socket on the same IP address and port number. The other host then initiates a 3-way
handshake procedure to establish a TCP connection. However, there are some issues
existing on STUNT such as NAT characteristics, host requirements and the spoofing

requirement for the STUNT Server.

3.2.2 NATBIaster

In [15], the authors propose a novel mechanism named NATBIaster to create
direct TCP connections between two hosts behind middle-boxes with minimal help
from a third-party. NATBlaster as shown in Figure 3-6 is similar to STUNT #1 except
that instead of spoofing SYNACK packets by STUNT server, the two hosts exchange

the sequence numbers and each crafts a SYNACK packet the other expects to receive.

-21-

Internal Internal
Q) Router Router @ S

Node A NAT X NAT Y Node B
—SYN (with I'UW TTL)» «SYN (with low TTL)—
t |
Responsel Responsé
-+ |[CMP TTL expired- - — ICMP TITL expired-s
—————————— L SYNSeq#+ ————— — — —p»
- — — — 1 — — — SYN Seq#————p————
|t SYNACK
SYNACK -
ACK -
- ACK
Figure 3-6 NATBlaster
3.2.3 P2PNAT

In [2], the authors take advantage of the simultaneous open scenario defined in
the TCP specifications [2]. As illustrated in Figure 3-7, each host initiates a TCP
3-way handshake procedure to establish TCP connections. First, both hosts establish
TCP connections with a well-known rendezvous server which records each registered
client’s public and private IP addresses. Second, client A uses its active TCP session
with server to ask server for help connecting to client B. Third, server replies B’s pub-
lic and private address to A, and at the same time sends A’s public and private address
to B. Finally, client A and B each asynchronously make outgoing connection attempts
to the other’s public and private address as replied by server, while simultaneously
listening for incoming connections on their respective local TCP ports. If one of the
outgoing connection attempts fails due to a network error such as “connection reset”
or “host unreachable”, the host simply retries that connection attempt after a short de-

lay (e.g., one second), up to an application-defined maximum timeout period.

-22 -

NS TSP

Node A NAT X NATY Node B
SYN

- SYN ——
>

-~ SYNACK
SYNACK -
ACK >

-t ACK

Figure 3-7 P2PNAT

3.3 Issue in TCP NAT Traversal

NAT mapping rule, filtering rule and TCP state tracking are the characteristics
that affect TCP NAT traversal. NATs handle outbound packets differently by using dif-
ferent mapping rules and inbound packets by filtering rules so that NAT traversal may
fail in establishing a connection between two hosts because of the two rules. NAT may
block unexpected TCP packet sequence according to its TCP state tracking mechanism.
Many TCP NAT traversal methods have been proposed for TCP NAT traversal problem,
and different methods may work for different NAT combinations. Therefore, we need to
apply several traversal methods to increase direct connection rate while traversing NATS.
There are two general schemes for applying traversal methods to do connectivity check
such as sequential connectivity check (SCC) and parallel connectivity check (PCC). The
former scheme applies NAT traversal methods sequentially while the latter scheme per-
forms in parallel. However, the two schemes have no idea about applicability of NAT
Traversal methods to types of NATs, and apply traversal methods in a try-and-error fa-
shion. So, they consume large amounts of system resources and time delay to traverse

NATSs.

-23-

In this paper, an effective NAT Behavior-Aware (NBA) TCP traversal scheme was
proposed. It takes NAT information about mapping rules, filtering rules and TCP state

tracking into consideration to select the most appropriate NAT traversal method.

-24 -

Chapter 4
Analyze TCP NAT Traversal Methods

We have introduced many TCP NAT traversal methods in above chapter, actually
there are three practical TCP NAT traversal methods in recent years, and each method
may generate a specific packet sequence and thus only works well for the NATs that al-
low such packet sequences. Therefore, as long as we realize the packet sequences ap-
pear while applying each method, we will know what kinds of TCP NAT traversal me-
thods can work well for the combination of two NATSs. In this chapter, we review three
practical TCP NAT traversal methods to realize kinds of packet sequences which appear
while applying these methods. The results are important for NBA to determine NAT
type examinations. The three traversal methods are listed as follows:

1. SYN with Normal TTL (SNT)

2. SYN with Low TTL (SLT)

3. Establish then SYN-in (ESI)

4.1 SNT -SYN with Normal TTL

The first TCP NAT traversal method is SNT which is the same as “STUNT #2
with no-TTL” [16]. In SNT, the first unsolicited SYN packet which is sent from caller
to callee would be treated as an unsolicited income packet and be filtered by the callee’s
NAT. Therefore, the callee’s NAT will choose to either drop the packet silently or notify
the client and then different response may cause different packet sequences on the call-
er’s NAT. Different NATs on the caller side may behave dissimilarly towards those
packet sequences. For example, in Figure 4-1, when Node A would like to establish a

TCP connection with Node B, it performs SNT to traverse NATS. The first SYN packet

-25-

which is sent by Node A will reach the Node B’s NAT (NAT Y), and NAT Y filters this
unsolicited packet. The responses are important for us to understand SNT deeply.
Therefore, the first knowledge we want to obtain is how NAT responds to the unsoli-
cited inbound packet. We named this behavior examination as “unsolicited inbound SYN
(Si) test” which means we want to test how a NAT behaves when it confronts with an
unsolicited inbound packet.

In addition, according to our experiments, there are three kinds of responses
which NAT responds to the unsolicited inbound packets such as drop the packet silently,
sending back a reset packet and sending back an ICMP host unreachable packet. There-
fore, three corresponding packet sequences appear on the caller’s NAT and we also want
to obtain the knowledge about how NAT behaves towards these packet sequences. For
instance, in Figure 4-1, NAT X confronts three different kinds of packet sequences that
are an outbound SYN followed by an inbound SYN, an outbound SYN followed by an
inbound fatal TCP RST and then inbound SYN, and an outbound SYN followed by an
ICMP host unreachable message and then inbound SYN. In NBA, the examinations
which exam whether NAT allows the packet sequences are “outbound SYN and then in-
bound SYN (SoSi) test®, “outbound SYN followed by inbound RST and then inbound
SYN (SoRiSi) test”, and “outbound SYN followed by inbound ICMP host unreachable

and then inbound SYN (SoUiSi) test”.

-26 -

L O P

Client NAT X NAT Y Server
|
SYN -
|
Possible Resgonse ~
| \ Drop
4+ — — — — R8T — — — — — }
|
-4— — - ICMP unreachable- — —
|t SYN
SYN ACK -
“ fn\CK

Figure 4-1 SNT

42 SLT-SYNwith Low TTL

The second TCP NAT traversal method is SLT which is the same as “STUNT #2
with low-TTL” [16]. In SLT, caller sets the time to live (TTL) value of the first SYN
packet for a low value and sends to callee. The packet will only pass its NAT and be
dropped by the internal router between the two hosts because of TTL-expired. Then, the
router would signal an error by sending back an ICMP TTL expired to the caller. Since
the first SYN packet of caller does not reach the callee’s NAT instead dropped by the
internal router. Packet sequence which appears on SLT is different with them which ap-
pear on SNT. For example, in Figure 4-2, when Node A would like to establish a TCP
connection with Node B, it performs SLT to traverse NATs. The first SYN packet with
low-TTL value is sent by Node A, and it will be dropped by the internal router (Router
Z) and not reach the Node B’s NAT (NAT Y). Moreover, Router Z sends back an ICMP
TTL expired to Node A, and then callee initiates another three-way handshake proce-
dure. Therefore, NAT X confronts one kind of packet sequences that is an outbound
SYN followed by an inbound ICMP TTL-exceeded error and then inbound SYN. In

NBA, the examination which exams whether NAT allows the packet sequences is “out-

-27-

bound SYN followed by inbound ICMP TTL-expired and then inbound SYN (SoRiSi) test

13

O QoL g &

Internal
Client NAT X Router NATY Server

——SYN (with low TTL)—m

Response

-— [CMP TTL expired —

- SYN
I
SYN ACK .
|
|t ACK

Figure 4-2 SLT

4.3 ESI - Establish then SYN-in

The third TCP NAT traversal method, ESi, is first declared and implemented in
NBA. This method uses characteristic of NAT filtering rule to traversal NAT. As we
mentioned in chapter 2, if the filtering rule of NAT is classified to be Independent, in-
ternal hosts send packets to any external IP address is sufficient to allow any packets
from external host with any IP address and port back to the internal host. So, if one of
the two hosts’ NATs is classified to be Independent, they can reuse the port-mapping
existing on the NAT to traverse NATs. In NBA, UA normally has a TCP connection
with NBA Server. If the filtering rule of UA’s NAT is Independent, other UAs can use
the port-mapping of the TCP connection to initiate a three-way handshake procedure,
and traverse NATSs. For instance, in Figure 4-3, Node A has a TCP connection with NBA
Server, and the port-mapping of this TCP connection on NAT X is Port A. In conse-
guence, Node B can use Port A to initiate three-way handshake procedure and establish

a TCP connection with Node A.

-28 -

K

9 o¥Ye®

Node A NAT X Server

TCP connection
-

ort a

Initiate 3-

way hands

NAT Y

hake

Node

- ‘!hCWtE

Figure 4-3 ESi

4.4 Summary

Six NAT type examinations are described in this section such as Si test, SoSi test,

SoRiSi test, SoUiSi test, SoTiSi test and ESi test. We will explain the six examinations of

NBA in detail in the following section.

-29.-

Chapter 5
NBA TCP Traversal Scheme

Whereas the drawbacks of the other NAT traversal schemes such as SCC and PCC
described in chapter 3, we propose a NAT Behavior-Aware TCP traversal scheme, hen-

ceforth referred as NBA, to eliminate unnecessary connectivity checks.

5.1 NBA Overview

NBA assists hosts to collect knowledge of their NAT behaviors in advance. Once
hosts behind NATs want to establish a direct TCP connection through connectivity
check with TCP NAT traversal techniques, the most appropriate method among existent
methods is selected based on the knowledge of the two communicating NATS.

Figure 5-1 shows the system architecture and major functional components of
NBA. In NBA, NBA Server being a third-party is a global reachable server which re-
sides in public network, and it can assist hosts to traverse NATs effectively. For example
in Figure 5-1, hosts (i.e. Node A and Node B) behind NATs (i.e. NAT X and NAT Y)
would like to establish a direct TCP connection via connectivity check with TCP NAT
traversal methods, NBA Server will assists them to collect their NAT behaviors infor-
mation comprehensively. This information includes NAT mapping rule, filtering rule
and TCP state tracking, and it is collected by hosts after performing several NAT type
tests in NBA.

NBA scheme is similar to SCC or PCC scheme since they all apply several tra-
versal methods in order to increase the direct connection rate of connectivity check.
However, issues still exist in the two schemes such as long check latencies in SCC and

large system resources utilizations in PCC. In NBA, the third-party, NBA Server, be-

-30 -

comes more intelligent and powerful of assisting hosts to traverse NATs. Of course,
hosts also have to pay more effort in order to get more thorough understanding of NAT

behaviors.

Exchange

Exchange information

information Internet

Connectivity

Figure 5-1 NBA system architecture

5.2 NBA Operation Procedure

In this section, we will describe the NBA procedure to introduce how NBA oper-
ates by taking Figure 5-2 as an example. There are three steps in NBA that are

1. Step 1: NAT Information Collection

2. Step 2: Traversal Method Determination

3. Step 3: Connectivity Check

-31-

P o B o &

Client X NAT X NBA Server NATY ClientY
| |

] I
1. Collect NAT 1. Collect NAT
Step 1 | <= info. - < info. >

- —-2. Submit NAT info. — sl -2 Submit NAT info. - -

——3. Connect request—s

Step 2 C
4.

" Determine a TCP NAT
traversal method

5. Inform method & role——5. Inform method &rolew

Step 3 s 6. Perform connectivity check)
P with the selected method
I I |
I I I
Figure 5-2 NBA operated procedure

In Figure 5-2, Node A and Node B are two hosts behind different NATs (i.e. NAT
X and NAT Y), and they want to establish a direct TCP connection. First, Step 1 of NBA,
user agent (UA) of Node Aor Node B collects behavior information of its NAT via per-
forming several NAT type tests when it boots up. Second, Step 2 of NBA, UAs submit
NAT information to a NBA Server respectively when it intends to perform connectivity
check with other UAs. And then, the NBA Server will determine the most appropriate
traversal method according to the behavior information of the two communicating NATS,
and it informs both UAs the selected method. Third, Step 3 of NBA, UAs perform con-
nectivity check with the selected method.

In the fact, there are several ways to implement Step 1 and Step 2 of NBA such
that NBA Server could maintain behavior information of all NATs instead of submitting
by hosts every time while connectivity checks. Besides, as long as host can discover
that its NAT is still the serving one or not, it can reuse the NAT information from the

NAT type examinations until replacing the NAT. We will discuss in detail many possible

-32-

variations of implementation for NBA in chapter 5.

5.3 Step 1 of NBA— NAT Information Collection

In Step 1 of NBA, UA collects three kinds of information that are mapping rule,
filtering rule and TCP state tracking to understand its NAT comprehensively. First, be-
cause NAT uses mapping rule to decide port-mapping of each connection, and the
port-mapping plays an important role of NAT traversal. Therefore, mapping rule of NAT
is critical information in NBA. Second, since filtering rule is used by NAT to determine
how to treat inbound packets via an existent port or respond to unsolicited inbound
packets via a non-existent port. NBA should also need this kind of information. Finally,
because NAT uses TCP state tracking mechanism to decide whether allow the following
packet via the port-mapping with special packet sequences and TCP state tracking is
important information of TCP NAT traversal. In summary, NAT type tests in Step 1 of
NBA can be classified into three kinds of detections

® Mapping Rule Detection

® Filtering Rule Detection

® TCP State Tracking Mechanism Detection

By the way, we follow a simple rule to name type tests in NBA. The notation ‘S’
means a SYN packet and ‘R’ means a RST packet and ‘T’ means a ICMP TTL Expired
packet, and ‘U’ means a ICMP host unreachable packet. Moreover, in order to define the
direction of packets. We use the notation ‘i’ means an inbound packet while ‘0” means
an outbound packet. For example, the notation “SoRiSi”” means that an outbound SYN

packet followed by an inbound RST packet and then an inbound SYN packet.

5.3.1 Mapping Rule Detection

The first NAT type test is Mapping test. As shown in Figure 5-3, UA sends binding

-33-

request messages to different IP address and port number on NBA Server. According to
the binding response messages which are send from different combinations of IP ad-
dress and port number on NBA Server, UA can determine mapping rule of its NAT. As
we described in section 2.3, NAT mapping rule can be classified into three categories:
Independent, Address dependent and Port & Address dependent. However, NAT may
assign different port numbers to connections when its mapping rule is classified to the
last two categories. Moreover, different port number assignment can be classify further
to linearly dependent (assign different port numbers linearly for connections) and ran-
domly dependent (assign different port numbers randomly for connections). In NBA,
we would like use Mapping test to realize that mapping rule of an NAT is independent
or not. If mapping rule is not independent, what kinds of port assignments do an NAT
present? Therefore, Mapping test in NBA has three kinds of results that are independent,

linearly dependent or randomly dependent mapping.

NBA
Server

1. Mapping test

[> Q [

Node A NATK 11P2] [P3]

——PBinding Req o
1
-4—Binding Res.—

Binding Req.——=
1

-+———Finding Res.
|

————Binding Req.—f—»
1 1

-————FBinding Res.
I |

Figure 5-3 Mapping test

-34 -

5.3.2 Filtering Rule Detection

UA can use ESi test in NBA to exam how NAT treats packets inbounded to an ex-
isting port. As shown in Figure 5-4 (A), UA on Node A performs a three-way handshake
procedure to establish a TCP connection with the first IP address of NBA Server (i.e.
IPB). Then, NBA Server initiates other three-way handshake procedure to the UA
through the port-mapping on UA’s NAT. There are two kinds of result with ESi test. If
the last inbound SYN packet can pass UA’s NAT and be routed successfully to the cor-
responding UA, we decide the target NAT allows the packet sequence of Establishment
then inbound SYN, otherwise it doesn’t.

Besides, because of NAT filtering character, NAT is certain of filtering unsolicited
inbound packets. However, NBA wants to know the way how NAT filters the packets.
Figure 5-4 (B) presents the second NAT type test named Si test. NBA Server sends an
unsolicited SYN packet to the NAT of UA, and it waits a minute to observe the res-
ponses of the NAT. Si test has three kinds of result such that NAT drops the unsolicited

inbound SYN packet silently, sends back a RST message or an ICMP Host Unreachable

error.
2. ESI test 3. Si test
< T
& Server @ @ &
NAT X NBA
Node A NA"r X Node A Server
——SYN 1
SYN -
]
YN':\CK Result 1 Drop/
ACK > 1 A .
! Result 2 - — — RST- — —p
Result 1 | |g— — — — SYN I B
m— — - |—] ICMP
Result 2 SYN Result 3 | _Host —p]
| Unreachable
(A) (B)

Figure 5-4 ESi test & Si test

-35-

5.3.3 TCP State Tracking Detection

As we described in chapter 4, there are many possible packet sequences when
UAs perform connectivity check with traversal methods in NBA. In this section, we in-
troduce these tests about TCP state tracking detection to realize how NAT treats those
packet sequences.

SoSi test is the forth NAT type test in NBA. As shown in Figure 5-5 (A), UA
sends an outbound SYN packet in the first to NBA Server, and then NBA Server sends
back a SYN packet to the UA via the same port-mapping on NAT X. This procedure can
exam whether target NAT allows the packet sequence of outbound SYN followed by
inbound SYN. Figure 5-5 (B), Figure 5-6 (A) and Figure 5-6 (B) show the remaining
three NAT type tests in NBA to detect NAT state tracking that are SoRiSi test, SoUiSi
test and SoTiSi test. Each test of the three tests is similar to SoSi test, but NBA Server
sends a specific message to target NAT before the last inbound SYN. The specific mes-
sage is a RST packet or-an ICMP Host Unreachable packet or an ICMP TTL-Expired

packet.

4. SoSi test 5. SoRiSi test

A [
s o U oo

_ E

NBA NBA
Node A NAT X Server Node A NAT X Server
SYN - SYN -
- RST
Result 1 — — — — |- SYN Result 1 — — — — | SYN

YN i,
Result 2 %_S Result 2 * SYN

(A) (B)
Figure 5-5 SoSi test & SoRiSi test

-36 -

6. SoUiSi test 7. SoTiSi test

’
5o U po ¢

NEBA NBA
Node A NAT X Server Node A NAT X Server

SYN - SYN -
ICMP Host | ICMP

Unreachable T TTL-Expired™]
Result 1 t— — — — |———SYN Result 1 -— — — — | SYN
Result 2 Ha—sN Result 2)ﬁ SYN

(A) (B)

Figure 5-6 SoUiSi test & SoTiSi test

5.3.4 Summary of Type Tests in NBA

In summary, seven tests can be classified into three kinds of detection
® Mapping Rule Detection
1. Mapping test
® Filtering Rule Detection
2. ESi test
3. Sitest
® TCP State Tracking Mechanism Detection
4. SoSi test
5. SoRISi test
6. SoUiSi test

7. SoTiSi test

NBA assists hosts behind a NAT to recognize NAT’s behaviors about various se-

quences of packets. NBA simulates the same packet sequences via NBA Server as those

sequences which appear on current TCP NAT traversal methods to examine how NAT

behaves to them. UAs perform those examinations with NBA Server respectively, and

-37-

they submit the results to NBA Server. The results are a useful knowledge for NBA
Server to determine whether NAT traversal methods can work well or not. Figure 5-7
shows the procedure of NAT behaviors examination in NBA.

O o

NBA
Node A NAIT X Server

Perform NAT type tests
-+——— 1. Mapping test————m
e 0. EISi test————
Step1 | [«—3. ISitest—l-
4, Slt::Si test———]
-5, Sr.:IRiSi test———m
-0 SolLliSi test———m

|
--— 7. S0TiSi test——=

Figure 5-7 Procedure of Step 1 in NBA

After UA performs these NAT type tests, it will have comprehensive knowledge
about its NAT’s behaviors. Table 5-1 shows possible results of each test in Step 1. Then,

UA must send the information to NBA Server when it wants to traverse NATS.

Table 5-1 List of NAT type tests

Categories No. Test Item Result
; Independent/
Mapping Rule . .
: 1 Mapping Linearly dependent/
Detection
Randomly dependent
o 2 ESi Yes/ No
Filtering Rule De-
. . Drop/ RST/
tection 3 Si
ICMP Host Unreachable
4 SoSi Yes/ No
TCP State Track- 5 SoRiSi Yes/ No
ing Detection 6 SoUiSi Yes/ No
7 SoTiSi Yes/ No

-38 -

5.4 Step 2 of NBA - Traversal Method Determination

In this section, we describe the selection algorithm of NBA Server to select the
most appropriate traversal method based on NATS’ behavior knowledge which is col-

lected by UAs via performing those NAT type tests.

5.4.1 Main ldea

Once two UAs behind NATs want to traverse their NATs through NAT connectiv-
ity check with some kinds of NAT traversal methods, their NATs must support corres-
ponding special packet sequences so that the UAs can use the method to traverse NATs
successfully. So, as long as we take look at the two NATs’ behaviors, we can realize
which TCP NAT traversal methods can be or cannot be used for NATs to traverse their
NATs. In NBA, NBA Server is the role of determination about the traversal method, and
it has a priori knowledge about NAT connectivity checks. However, UA could also be
the role of determination in other concerns about system resource utilizations and so on.

We will discuss possible implementation approaches to Step 2 in chapter 6.

5.4.2 Priority of Traversal Methods

Because we determine the traversal method based on NAT information, several
traversal methods may work at the same time for a combination of NATSs. In order to
achieve an objective about less resource utilization while connectivity checks in NBA,
we must prioritize these traversal methods. First, since relay method needs use addi-
tional bandwidth to assist UAs to redirect packets, it has the lowest priority. In the other
hand, if the combination of NATs is traversable, NBA is as much as possible to find out
a traversal method with the highest priority. ESi method can reuse a port-mapping
which is created by existent connection on a NAT with NBA Server to traverse NATS. It

does not need to create additional port-mapping. Therefore, ESi method has the highest

-39 -

priority. As for SNT and SLT method, SLT has a potential problem. It requires the UA to
determine a TTL large enough to cross its own NAT and low enough to not reach the
other UA’s NAT. So, SNT method has higher priority than SLT method. In summary,
priority of traversal methods is listed as follows:

1. ESi

2. SNT

3. SLT

4. Relay
In fact, the priority is not unique, and it could be dynamically adjusted base on different
assumptions while implementations. The adjustment will not influence DCR.

Besides, since which peer to initiate NAT connectivity check may affect the result
of the check [18], NBA also determines the most appropriate role between the two UAs
while connectivity check. For example in Figure 5-8, Node A and Node B use the TCP
NAT traversal method, SLT, to traverse NATs. Node A’s NAT (i.e. NAT X) does not al-
low the packet sequence of an-outbound SYN followed by an ICMP TTL-Expired mes-
sage and then an inbound SYN, but Node B’s NAT (i.e. NAT Y) does. When Node B

initiates NAT connectivity check with SLT, the NATs can be traversed successfully.

SoTiSi = SoTiSi = Yes
Imtlator % Resgonsor Responsor SoTiSi = % SoTiSi = Yes Imtlator
@ Internal @ <b < % Internal @ Q)
Node A NAT X Router ~ NATY NodeB Node A NATX Router NATY Node B

YN (wlth low TTL) -4=SYN (with low TTL)—

ICMP TTL- ICMP TTL-
_Expired _ | _Expired | _ _]

| Change
- YN | Role SYN >
- SYNACK

ACK: >

Figure 5-8 Initiator of connectivity check

Moreover, NBA defines initiator is the one who initiates NAT connectivity check

while responsor is another peer in the check.

- 40 -

5.4.3 Selection Algorithm

NBA Server uses a selection algorithm to select the most appropriate traversal
method based on NAT behaviors. We present this algorithm as a tabular form, and the

table is named Traversal Method Selection Table (TMST) in NBA.
Table 5-2 Traversal Method Selection Table

Priority Caller Callee Method Initiator
C1l ESi = Yes ESi Caller
Cc2 ESi = Yes ESi Callee
Mapping = Relay Both
Randomly dep.
C3 : —
Mapping - = Relay Both
Randomly dep.
SoSi =Yes Drop SNT Caller
C4 |sSoUiSi=Yes |Si=|UNR | SNT | caller
SoRiSi=Yes | | RST | SNT | caller
Drop SoSi =Yes SNT Callee
C5 |Si= |UNR |SoUiSi=Yes | SNT | Callee
RST | SORiSi=Yes | SNT | Calle
C6 SoTiSi SLT Caller
Cc7 SoTiSi SLT Callee
C8 Relay Both

TMST is shown in Table 5-2. Because ESi method has the highest priority among
traversal methods in NBA, if NAT of caller or callee allows ESi test, then NBA selec-
tion algorithm will select “ESi” as the most appropriate traversal method according to
the combination of NATs. Moreover, the initiator of NAT connectivity check would be
the UA whom NAT allows ESi test. Next, if two NATs don’t allow ESi test, we should
exam whether the results of NATs” Mapping test is randomly dependent or not. It is im-
possible to use the remaining traversal methods to traverse NATs successfully in NBA

when one of the NATs have randomly dependent mapping. As a result, traversal method

-41 -

which is selected by NBA Server for the UAs with this kind of NAT behaviors is “Re-
lay”.

Then, selection algorithm will choose the most appropriate traversal method to
UAs continuously. Traversal method with second priority in NBA is SNT, so the selec-
tion algorithm uses information of two communicating NATs to decide whether UAs
behind the two NATs can use SNT to perform connectivity check. The procedure of
SNT causes responsor’s NAT to respond three kinds of responses to the unsolicited in-
bound SYN. Therefore, selection algorithm should use the Si test result of responsor’s
NAT to decide which test result of initiator’s NAT to take look. For example, if the res-
ponsor’s NAT responses a RST packet to a unsolicited inbound packet, we should take
look at the SoRiSi test result of initiator’s NAT to determine whether SNL can be ap-
plied successfully by UAs with the combination of NATSs, as shown in Figure 5-9.

S o © I

Client MNAT X NATY Server

- R|ST -E)

- \SYN

SYN ACK4+——»|
-t ACK

Figure 5-9 A possible packet sequence of SNT

Next, if selection algorithm decides that a combination of NATs is possible to es-
tablish a direct TCP connect with a traversal method in NBA, but the traversal method
is not ESi or SNT. So, the algorithm then decides whether SLT method can be use to do
connectivity check in the combination of NATs. If NAT of caller or callee allows SoTiSi
test, then the algorithm selects “SLT” as the most appropriate traversal method, and the

initiator of NAT connectivity check is the UA whom NAT allows SoTiSi test. Pseudo

-42 -

code of selection algorithm is presented in the follow.
In summary, NBA selection algorithm can determine two kinds of results that are
the appropriate traversal method and an initiator of connectivity check. NBA informs

the results to UASs.

-43-

Traversal Method Selection Algorithm

1. CallerNAT € NAT Info. of Caller

2. CalleeNAT € NAT Info. of Callee

3 if CallerNAT.ESi = Yes then

4 Selected traversal method is ESi

5. Initiator of connectivity check is Caller

6. else if CalleeNAT.ESi = Yes then

7 Selected traversal method is ESi

8 Initiator of connectivity check is Callee

9. else if CallerNAT.Mapping = Randomly dependent || CalleeNAT.Mapping = Randomly

dependent then
10. Selected traversal method is Relay
11. Both peers initiate connectivity check
12. else if CalleeNAT.Si = Drop && CallerNAT.SoSi = Yes then
13. Selected traversal method is SNT
14, Initiator of connectivity check is Caller
15. else if CalleeNAT.Si = RST && CallerNAT.SoRiSi = Yes then
16. Selected traversal method is SNT
17. Initiator of connectivity check is Caller
18. else if CalleeNAT.Si = UNR && CallerNAT.SoUiSi = Yes then
19. Selected traversal method is SNT
20. Initiator of connectivity check is Caller
21. else if CallerNAT.Si = Drop && CalleeNAT.SoSi = Yes then
22. Selected traversal method is SNT
23. Initiator of connectivity check is Callee
24. else if CallerNAT.Si = RST && CalleeNAT.SoRiSi = Yes then
25. Selected traversal method is SNT
26. Initiator of connectivity check is Callee
27. else if CallerNAT.Si = UNR && CalleeNAT.SoUiSi = Yes then
28. Selected traversal method is SNT
29. Initiator of connectivity check is Callee
30. else if CallerNAT.SoTiSi = Yes then
31. Selected traversal method is SLT
32. Initiator of connectivity check is Caller
33. else if CalleeNAT.SoTiSi = Yes then
34. Selected traversal method is SLT
35. Initiator of connectivity check is Callee
36. else
37. Selected traversal method is Relay
38. Both peers initiate connectivity check
39. endif

-44 -

5.5 Step 3 of NBA — Connectivity Check

An initiator of two UAs then initiates connectivity check with the notify methods

which is selection by NBA Server based on information of their NATSs.

- 45 -

Chapter 6
System Implementation

This chapter describes system implementations of NBA scheme. Section 6.1
presents the system overview. Section 6.2 shows our current implementation. Section

6.3 discusses ways to determine the most appropriate traversal method in different con-

siderations.
NBA Server
NAT Type Tests
Module Traversal
Method
Selection
Direct Connection
Module

NBA UA NBA UA
Information Collection Information Collection
Module Module
Connectivity Check Connectivity Check
Module Module

Figure 6-1 System modules of NBA

- 46 -

6.1 System Overview

Figure 6-1 illustrates the system topology and modules of NBA scheme. NBA
topology which is similar to traditional NAT traversal topologies consists of two UAs
behind NATs and a third-party server named NBA Server. The NBA Server located on
the internet provides three modules that are NAT Type Tests Module, Traversal Method
Selection Module and Direct Connection Module. As for UA, it has two modules that

are Information Collection Module and Connectivity Check Module.

6.2 NBA Implementation

In NBA, all implementations are based on Linux and use C language. As shown
in Figure 6-1, NBA provides the following functional components:

® NBAUA

1. Information Collection Module: NBA Server provides seven type tests such
as Mapping test, ESi test, Si test, SoSi test, SoRiSi test, SoUiSi test and SoTiSi
test, and each test was described in detail in chapter 5. Information Collection
Module provides an interface for NBA UA to perform these NAT type tests to
collect knowledge of its NAT. This module is integrated form the client side
of STUNT. STUNT was implemented by Cornel University at 2005 and it ex-
tends STUN to include TCP functionality [22]. STUNT is a lightweight pro-
tocol that allows UAs running behind a NAT to determine external IP and
port-mapping properties, packet filtering rules and various timeout associated
with TCP connections through the NAT.

2. Connectivity Check Module: Connectivity Check Module implemented three
kinds of TCP NAT traversal methods that are SNT, SLT and ESi. This module
can assist NBA UAs to perform connection check with current traversal me-

thods. It is integrated from the client side of XSTUNT which is a C/C++ li-

-47 -

brary and can assist two hosts behind NATs to establish a direct TCP connec-

tion via traversal methods [23].

® NBA Server

1. NAT Type Tests Module: NAT Type Tests Module which corresponds to In-
formation Collection Module in NBA UA provides seven NAT type tests, and
it assists UAs to collect NAT information. This module is integrated form the
server side of STUNT. Similarly, it has the functionality for UAs to determine
its NAT’s external IP and port-mapping properties, and it can generate several
special packet sequences to test TCP state tracking of NAT by using row
socket.

2. Traversal Method Selection: Traversal Method Selection implements a se-
lection algorithm which is introduced in chapter 5 to select the most appropri-
ate traversal method according to information of two communicating NATS.
In NBA, this method selection is implemented in NBA Server. However, there
are different approaches to implement this method selection and put it in dif-
ferent location, and we will discuss in detail in the next section.

3. Direct Connection Module: Direct Connection Attempting Module provides
the functionalities of connectivity check for UAs, and it is integrated form the
server side of XSTUNT. This module which corresponds to Connectivity
Check Module in NBA UA implements the three TCP NAT traversal methods,

too. It assists UAs to perform connectivity check.

6.2.1 Interaction of Modules

In this section, we describe the interactions of modules in NBA. Figure 6-2 shows

the module interaction of Step 1 in NBA. UA uses Information Collection Module to

-48 -

interact with NAT Type Tests Module in NBA Server for collecting NAT information

which are mapping rule, filtering rule and TCP state tracking.

NE& LA NBA Server

MNEBA LA Infarmation Collection MAT Type Examination

Collect NAT info.

Perform Type examinations
L1

|
 wie]
Il... .

F ———————— 9

1. Mapping rule

|
| 2. Filtering rule |
: 3. TCP state |
|
|
|

|
|
|
|
|
|
fracking |
|

Figure 6-2 Module interaction flow of Step 1
Figure 6-3 shows the module interaction of Step 2 in NBA. UA interacts with

Traversal Method Selection in NBA Server by submitting its NAT information, and
Traversal Method Selection uses behavior information of the two NATSs to determine the
most appropriate traversal method, and then NBA Server informs UAs the selected tra-

versal method.

NBA UA (Caller) NBA Server NEA UA (Callee)

NEA UA (Caller) ‘ Traversal Method Selection MBA UA (Callee)

|

Submit NAT info. : Submit NAT info.

H > <
Connect Reguest I

1 Determine the

\ most appropriate

|

|

|

|

|

|

|

|

traversal meﬂT-d |
|
_____________ o — a.
[

|

Traversal method 1 Traversal method

Figure 6-3 Module interaction flow of Step 2

R T R

Figure 6-4 shows the module interaction of Step 3 in NBA. UAs use Connectivity

Check Module to interact with Direct Connectivity Module in NBA Server for perform-

- 49 -

ing connectivity check with the selected traversal method.

NBA UA (Caller)

NBA Server

NEA UA (Callee)

NBA UA (Caller)

Connectivity Check

Direct Connectivity Attempting

Connectivity Check || NBA UA (Calleg)

MNAT traversal |

|
|
|
ctivity Check |

Cannectivity

L

|
[
NAT traversal :

6.3 Discuss Ways to Implement NBA Scheme

Figure 6-4 Module interaction flow of Step 3

We could implement a Signal Server in NBA to maintain all UA’s information

including ID and NAT type information. Once a UA wants to establish a direct connec-

tion with another UA via connectivity check, it can send a request message to NBA

Server. Then NBA Sever fetch the two UA’s information from Signal Server.

-50 -

Chapter 7
Experiment

Groups of NATs:
Group A: 20 NATs
Group B: 16 NATs

Switch
: _ @ Private network
Caller Callee

Figure 7-1 Experiment environment

NBA scheme developed several NAT type tests and the selection algorithm of se-
lecting the most appropriate traversal method. This scheme also integrated three kinds
of TCP NAT Traversal methods on Linux. In this chapter, we present our experiment
environment and describe the process of our experiments and then analyze results of
experiments. We use two groups of NATs to construct a fully mesh architecture as
shown in Figure 7-1. In our environment, we have a NBA Server and two peers, caller
and callee, and execute NBA scheme under two group of NAT which were bought by us

at 2008 and 2010. Table 7-1 shows brands of the 36 NATS.

-51-

Table 7-1 Brands of NATs

Group A Group B
No. Brand No. Brand No. Brand No. Brand
Al | 3Com All | Lemel B1 |[D-Link635 |B11 | PCIWNH
A2 | AboCom | A12 | Netgear B2 | D-Link628 |[B12 | ASUS
A3 | Asus Al13 | Planex B3 | D-Link 615 | B13 | Abocom
A4 | Buffalo Al4 | Smc B4 | D-Link 825 [B14 | Belkin
A5 | Belkin Al5 | Zyxel B5 |[BUFFALO | B15 | Aximcom
A6 | Corega Al16 | Windows B6 [PCIW300 B16 | Levelone
A7 | Draytek Al7 | FreeBSD B7 [Smc
A8 | D-link Al18 | Linux B8 | Zyxel
A9 | Edimax A19 | Smc Wireless | B9 | Edimax
A10 | Linksys A20 | Linksys N B10 | Corega
7.1 Overview of Experiment

In our experiment, we analyze performances of NBA under various NAT combi-

nations to establish a direct TCP connection through NAT connectivity check. As we

described in chapter 5, there are three steps in NBA. In the following sections, we

present the results of these three steps in NBA respectively, and we compare NBA

scheme with the following two schemes:

Sequential Connectivity Check with Initiator Changes (IC):

This scheme tries each traversal method one-by-one and change initia-
tor to tray each method in opposite direction, so the executive order of traver-
sal methods about connectivity check in this scheme is SNT - SNT-IC >

SLT - SLT-IC - ESi = ESI-IC

-52 -

® Parallel Connectivity Check (PCC)
This scheme tries all traversal methods at the same time that are SNT &
SNT-IC & SLT & SLT-IC & ESi & ESi-IC
We compare NBA with the two schemes in three metrics that are
1. Direct Connection Rate (DCR)
2. Connectivity Check Time

3. System Resource Utilizations

7.2 Resultof Step 1 in NBA

Step 1 of NBA is for UA to collect its NAT information about mapping rule, fil-
tering rule and TCP state tracking. After UA perform NAT type tests, it has a compre-
hensively knowledge of it NAT. For the purpose of convenience, NATs are marked by
us with symbols that mean NATs has corresponding types. The naming rule is listed on
Table 7-2, Table 7-3 and Table 7-4. In Table 7-2, if a NAT’s test results of Mapping test
is randomly dependent, we mark the NAT a notation ‘I’. That means the NAT is im-
possible to be traversed. Next, there are three kinds of test results about Si test, and each
result has a unique mark such as ‘D’, ‘R’ or ‘U’ as shown in Table 7-3. A NAT only has
one kind of result, because it chooses one kind of response to respond unsolicited in-
bound packets. Then, if a NAT allows ESi test, we mark the NAT a notation ‘E’. Finally,
SoSi, SoRiSi, SoTiSi and SoUiSi test are four type tests about TCP state tracking detec-
tion, if a NAT allows some kinds of these tests, we mark a corresponding symbol that
are ‘d’, ‘r’, ‘t” and ‘u’ as shown in Table 7-4. For example, if a NAT drops unsolicited
packets, and it allows “SoSi” and “SoTiSi” tests but does not allow “SoRiSi” test, we

mark the NAT as “D-dt”.

-53-

Table 7-2 Naming rule of mapping detection

Mapping Detection

Result

Test Randomly dependent

Mapping I (Impossible to be traversed)

Table 7-3 Naming rule of filtering detection

Filtering Detection
Test geult Drop RST Host Unreachable
Si D R U
Result
Test Yes
ESi E

Table 7-4 Naming rule of TCP state tracking detection

Filtering Detection

Result
Test SoSi SoRiSi SoTiSi SoUiSi
Mark d r t U

We can then mark NATSs in group A and group B according to this naming rule.

Table 7-5 presents marking result of NATs in group A while Table 7-6 shows NATs in

group B.
Table 7-5 Classify of NATs in group A
Test Results
No. of P .
Mapping ESi Si SoSi SoRiSi | SoTiSi | Mark
NAT
A8 Independent | Yes | Drop No Yes No ED-r
A7,All,
Al13, A15, | Independent | No | Drop Yes Yes Yes D-drt
Al9

-54 -

Al4, Al6, Linearly
No | RST Yes Yes Yes R-drt
Al7 dependent
Al,A20 | Independent | No | Drop| Yes No Yes D-dt
A4, A9 Independent | No | RST Yes No Yes R-dt
A6 Independent | No | RST No Yes No R-r
A5 Independent | No | Drop No No No DN
Al8 Independent | No | RST No No No R-"
A2, A3, Randomly
No | Drop No No No I-D-»
Al10,Al12 | dependent
Table 7-6 Classify of NATs in group B
Test Results
No. of _ : . . i .
Mapping ESi Si SoSi | SoRiSi | SoTiSi | Mark
NAT
B16 Independent | Yes | Drop | Yes Yes Yes ED-drt
B1, B2 Independent | No | Drop | Yes Yes Yes D-drt
B5, B10 | Independent | No | Drop | Yes No Yes D-dt
B3, B4,
B6, B7,
Independent | No | Drop No No No D~
B8, B12,
B14
B9, B11,
Independent | No | RST No No No R-N
B13, B15

-55-

7.3 Result of Step 2 in NBA

Step 2 of NBA is for NBA Server to determine the most appropriate traversal me-
thod base on information of two communicating NATs. Table 7-7 shows the results of
Step 2 in NBA about traversal method chosen by NBA Server to each connection com-
bination of NATs in group A. Behaviors of NATs in the same class are the same, so
NBA Server chooses the same traversal method to connection combinations in a kind of
class combination. Since we consider two peers are under different NATs only, there
have no combination of NATs in some cases. In Table 7-7, numerals mean three kinds of
three TCP traversal methods implemented in NBA, and notation ‘R’ means the NATSs of
combinations cannot be traversed to establish a direct connection and must use relay
method. Moreover, notation <“N/A” means the block has no connection combination,
and notation “IC” means callee must be the initiator of connectivity check. Similarly,

Table 7-8 presents selected methods of connection combinations of NATs in group B.
1: SNT; 2: SLT; 3: ESi; R: Relay
N/A: Non-Existent,
IC: Initiator Change
Table 7-7 Traversal method selected by NBA to group A

Responsor
Class | ED-r | D-drt | R-drt | D-dt | R-dt R-r DA | R™ | I-D-"
ED-r | N/A 3 3 3 3 3 3 3 3
D-drt | 3,IC 1 1 1 1 1 1 1 R
R-drt | 3,IC 1 1 1 1 1 1 1 R
S | Ddt | 3,1C 1 1,1C 1 LI1c | 2 Lic | 2 R
g' R-dt | 3,IC 1 1,1C 1 2 1,1C 1 2 R
S| Rr|3I1Cc| 1IC 1 2,1C 1 N/A R 1 R
-~ | 31Cc | 1,ICc | 1,IC | L,IC | 1,IC R NA | R R
A~ | 31Cc | 1,Ic | 1,IC | 2,IC | 2,IC | L,IC R |NA| R
I-D-~ | 3,IC R R R R R R R R

-56 -

Table 7-8 Traversal method selected by NBA to group B

Responsor
Class ED-drt | D-drt D-dt D~ | R
ED-drt N/A 3 3 3 1 3
= D-drt 3,1C 1 1 1 1 1
:I-. 1
T} i
= D-dt 3,IC 1 1 1 1 2
=)
D-A 3,IC 1,1C 1,1C R R
R 3,1c | 1ic | 21c R | R

7.4 Comparison of Direct Connection Rate in Different Schemes

In this section, we compare direct connection rate of NBA scheme with SCC and

PCC schemes.

7.4.1 Result of Step 3.in NBA

Step 3 of NBA is for UAs to perform TCP NAT traversal via the method which is
chosen by NBA Serverin Step 2. Table 7-9 and Table 7-10 present the connectivity
check results of group A and group B after performing Step 3 in NBA. We put an aste-
risk (%) to a block when each connection combination can establish a direct TCP con-
nection in the block. The DCR is 56.84% in group A and 54.17% in group B by using

NBA scheme.

-57-

% : Direct Connection

N/A: Non-Existent
Table 7-9 Direct connection of group A made by NBA

Responsor
Class | ED-r | D-drt | R-drt | D-dt | R-dt | R-r | D-* | R- | I-D-"
EDr[NA] * | % [x ! % | x| x 1 x| %
Ddrt| * | * | x | x | & | * | * | %
Rdrt| * | * | *x | * x| x| ! x| |
2 [pat| » [» § » [x>« [« [1 *
8 [RrRat| » [» 1 * [« *x [x| x 1« |
Rr| ~ [» | | ! x |[NA *
DA *x | * | * | x | N/A
RA| * | %« | » | « ! % | [NAT
1D~ | * i i i

Table 7-10 Direct connection of group B made by NBA

Responsor
Class | ED-drt | D-drt | D-dt D i R
ED-drt N/A * * * 1 %
2 | D * * * * *
1 oa | » | » | » | » | =
D * * *
R x* | * | =

In summary, according to experimental data of section 7.3 and section 7.4.1, we
could conclude that it does not have any error selection existing in NBA selection algo-
rithm. Therefore, we could claim that traversal method chosen from NBA Server can
succeed in traversal target NATS exactly. NBA has no miscarriage of justice about tra-

versal methods while connectivity checks.

- 58 -

7.4.2 DCR of Other Traversal Scheme

® SCC with change role or PCC

1. GroupA
Table 7-11 Direct connection of group A made by SCC or PCC
Responsor
Class | ED-r | D-drt | R-drt | D-dt { R-dt | R-r | D- { R-" | I-D-"
ED-r| NA| * | * * ok * * ok *
Drt| * [* 1 ox | kx| x| x i %
R-drt| “;__E * * i * * * i-“;“
2 [pat| « [| * [x{ x [x| x| %
§Rrat| » [1 x [%1 x [x| x 1 %
R-r * * * * * | N/A *
DN | *x * * * * N/A
RA| » [* T » [| x [% /A
I-D-N | &
2. Group B
Table 7-12 Direct connection of group B made by SCC or PCC
Responsor
Class | ED-drt| D-drt | D-dt D-" i R-"
ED-drt N/A * * * 1 ok
2 | pat [* * * * *
1 oat | » | » | » | » | =
D-" * * *
RA | * | % * |

Direct connection rates of NBA, SCC and PCC are the same in the same group.

DCR of group A is 56.84%; while group B is 54.17%.

7.5 Comparison of System Resource Utilization in Different Schemes

The bottom layer of implementations for the three kinds of TCP NAT traversal
methods are the same in SCR, PCC and NBA scheme. All schemes use the prototypes

implemented by D-Link NCTU Joint Research Center (DNJRC). Therefore, the

-59 -

schemes have the same procedures and waiting time in each traversal method.

7.5.1 Connectivity Check Time

In this section, we make a comparison of the total connectivity check time in SCC,
PCC and NBA scheme. Table 7-12 presents average connectivity check time of different
traversal methods; we experiment ten times of each data. Due to each traversal method
only exchange a few message to traverse NATS, it takes a very short time which connec-
tivity checks. However, when connectivity check fails, we must spend several seconds
to wait for results. Besides, connectivity check time of Relay is set to be zero because
our experiment focuses on direct connection. We assume it is the time that UAs start to

establish relay connection.

Table 7-12 connectivity check time

Method
m SNT SLT ESi Relay

Success 1.1602 s 0.1605 s 0.0917 s 0s

Failure 9.2514s 8.1507 s 8.0739 s ===

Table 7-13 Traversal time of each scheme

Scheme . .
Method Initiator SCC PCC with Relay NBA

Caller 1.1602 s
SNT 1.1602 s 1.1602 s
Callee 10.4116 s

Caller 18.6633 s
SLT 0.1605 s 0.1605 s
Callee 26.8140 s

) Caller 34.8959 s
ESi 0.0917 s 0.0917 s
Callee 42.9698 s

9.2514s
(Apply Relay after all
traversal methods)
Relay 50.952 s Os
or0s
(Apply Relay in pa-

rallel)

- 60 -

Table 7-13 shows traversal time of each scheme. Because SCC applies each tra-
versal method one-by-one, it has to accumulate failure time of performed traversal me-
thods. For example, if two UAs use SCC scheme to perform connectivity check, finally
callee initiates this check and use ESi traversal method to successfully traverse NATS.
This procedure has to accumulate failure time of SNT, SNT-IC, SLT, SLT-IC and ESi.
And also add successful time of ESi-IC. It is a long period of time.

The concept of PCC is using all traversal methods at the same time, but there are
two approaches to apply Relay method. Someone applies Relay in parallel with other
traversal methods; while the other applies it after fail in direct connectivity check.
Therefore, while applying Relay in after fail in direct connectivity check, the connectiv-
ity check time is the longest one of failure time between traversal methods except Relay.

NBA could eliminate unnecessary connectivity checks, so it does not have to take

the time of fail in applying traversal methods.

7.5.2 Resource Utilizations

Table 7-14 shows numbers of message exchanges about each traversal method.

Table 7-14 Numbers of message exchanges of each traversal method

Method
Resul SNT SLT ESi Relay

Numbers 6 6 3 6

Table 7-15 Numbers of message exchanges of each scheme

Scheme
Method Initiator SCC PCC with Relay NBA

Caller 6

SNT 36 6
Callee 12
Caller 18

SLT 36 6
Callee 24
. Caller 27

ESi 36 3
Callee 30

Relay 36 36 6

-61 -

Table 7-15 shows numbers of message exchanges about schemes. Because PCC
performs all traversal methods in the same time, it must accumulate all numbers of
message exchanges in traversal methods. Therefore, it should use a large of system re-
sources within connectivity check procedure.

In summary, according to experimental results of this chapter, NBA has shorter
connectivity check delay than SCC and less resource usages or simpler state mainten-
ance than PCC. Besides, NBA always knows whether we can use the existing traversal
methods to traverse successfully with specific combination of NATs. But SCC has no
idea about traversal methods to NAT combinations. Therefore, PCC sometimes could

have higher DCR than SCC.

-62 -

Chapter 8

Conclusions and Future Works

In this thesis, we have demonstrated that NBA is a powerful TCP traversal
scheme. It utilizes NAT information comprehensively to select the most appropriate
traversal method to traverse NATs. NBA has a priori knowledge on connectivity of each
combination of NAT types. Moreover, NBA could eliminate unnecessary connectivity
checks, because it knows what combinations of NAT types are traversable. Therefore,
we need not perform NAT traversal when direct connection is impossible. By perform-
ing NBA, connectivity check of TCP. NAT traversal will be more efficient with shorter
check delay, fewer message exchanged, possible higher DCR and less resource usages
or simpler state maintenance compared to other schemes.

In NBA, many NAT type examinations are declared to understand a comprehen-
sive set of NAT characteristics as they pertain to TCP, and we develop an algorithm of
traversal method determination. We have shown that this algorithm has good judgment
in selecting traversal method.

In the future works, there are still many research issues of the proposed scheme.
For example, we only implemented three kinds of practical TCP NAT traversal methods
in this thesis. Maybe we can implement other current TCP NAT traversal methods such
as STUNT #1 and NATBIlaster. The direct connection rate will thus increase because of
including new methods. In the other hand, perhaps we can develop new TCP traversal
methods based on our comprehensively knowledge about TCP NAT behaviors.

NBA uses NAT information to select the most appropriate traversal method, but
everyone has his own definitions of appropriateness. Maybe we could give an objective

function to our selection algorithm, and using different input parameters will obtain dif-

-63 -

ferent selection results. Therefore, the procedure of method selection in NBA will be
more general and more universal. Besides, we would also try to make our scheme more

robust for fault tolerance and shorter time delay.

-64 -

Bibliography

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

K. Egevang and P. Francis, “The IP Network Address Translator (NAT),” IETF
RFC 1631, May 1994.

B. Ford, P. Srisuresh and D. Kegel, “Peer-to-Peer Communication Across Network
Address Translators,” in USENIX Annual Technical Conference, pp. 179-192,
April 2005.

D. kegel, “NAT and Peer-to-peer Network,” http://www.kegel.com, July 1999.

J. Rosenberg, J. Weinberger, C. Huitema and R. Mahy, “STUN — Simple Traversal
of User Datagram Protocol (UDP) through Network Address Translators (NATSs),”
IETF RFC 3489, March 2003.

J. Rosenberg, R. Mahy and P. Matthews, “Traversal Using Relay around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN),” IETF
RFC 5766, April 2010.

J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Net-
work Address Translator (NAT) Traversal for Offer/Answer Protocols,” IETF RFC
5245, April 2010.

Jeffrey L. Eppinger, “TCP Connections for P2P Apps: A Software Approach to
Solving the NAT Problem,” Technical Report CMU-ISRI1-05-104, Carnegie Mellon
University, January 2005.

F. Audet and C. Jennings, “Network Address Translation (NAT) Behavioral Re-
quirements for Unicast UDP,” IETF RFC 4787, January 2007.

J. Rosenberg, R. Mahy, P. Matthews and D. Wing, “Session Traversal Utilities for

NAT (STUN),” IETF RFC 5389, October 2008.

[10] D.Clark, L. Chapin and V. Cerf, “Towards the Future Internet Architecture,” IETF

- 65 -

http://www.kegel.com/

RFC 1287, December 1991.

[11] Z. Wang and J. Crowcroft, “A Two-Tier Address Structure for the Internet: A solu-
tion to the problem of Address Space Exhaustion,” IETF RFC 1335, May 1992.
[12] Y. Rekhter, B. Moskowitz and D. Karrenberg, “Address Allocation for Private In-

ternets,” IETF RFC 1918, February 1996.

[13] S. Guha, K. Biswas, B. Ford, S. Sivakumar and P. Srisuresh, “NAT Behavioral Re-
quirements for TCP,” IETF RFC 5382, October 2008.

[14] S. Guha, Yutaka Takeday and P.Francis, “NUTSS: A SIP-based approach to UDP
and TCP network connectivity,” in ACM SIGCOMM Asia Workshops, August
2004.

[15] A. Biggadike, D. Ferullo, G. Wilson and A. Perrig, “NATBLASTER: Establishing
TCP connections between hosts behind NATs,” in ACM SIGCOMM Asia Work-
shop, April 2005.

[16] S. Guha and P. Frances, “Characterization and Measurement of TCP Traversal
through NATs and Firewalls,” in 5" ACM SIGCOMM conference on Internet
Measurement, pp. 18-18, October 2005.

[17] S. Guha, K. Biswas, B. Ford, S. Sivakumar and P. Srisuresh, “NAT Behavioral Re-
quirements for TCP,” IETF RFC 5382, October 2008.

[18] Cheng-Yuan Ho, Fu-Yu Wang and Chien-Chao Tseng, “To Call or to Be Called
under NATs is Sensitive for Solving Direct Connection Problem,” Submitted to
IEEE Communications Letters, 2010.

[19] P. Srisuresh, B. Ford and D. Kegel, “State of Peer-to-Peer (P2P) Communication
across Network Address Translators,” IETF RFC 5128, March 2008.

[20] R. Roverso, S. El-Ansary and S. Haridi, “NATCracker: NAT Combinations Mat-
ter,” in 18" International Conference on Computer Communications and Network

20009, pp. 1-7, August 2009.

- 66 -

[21] Zhou Hu, “NAT Traversal Techniques and Peer-to-Peer Applications,” HUT

T-110.551 Seminar on Internetworking, 2005.

[22] STUNT, http://nutss.gforge.cis.cornell.edu/stunt.php

[23] XSTUNT, http://www.cis.nctu.edu.tw/~qis87577/xDreaming/XSTUNT/index.html

[24] R. Denis-Courmont, “Test Vectors for Session Traversal Utilities for NAT
(STUN),” IETF RFC 5769, April 2010.
[25] D. MacDonald and B. Lowekamp, “NAT Behavior Discovery Using Session Tra-

versal Utilities for NAT (STUN),” IETF RFC 5780, May 2010.

-67 -

http://nutss.gforge.cis.cornell.edu/stunt.php
http://www.cis.nctu.edu.tw/~gis87577/xDreaming/XSTUNT/index.html

