

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

N A T 行 為 感 知 的 T C P 穿 越 機 制

NBA – NAT Behavior Aware TCP Traversal Scheme

研 究 生：劉坤穎

指導教授：曾建超 教授

中 華 民 國 九 十 九 年 七 月

i

N A T 行 為 感 知 的 T C P 穿 越 機 制

NBA – NAT Behavior Aware TCP Traversal Scheme

研 究 生：劉坤穎 Student：Kun-Ying Liu

指導教授：曾建超 Advisor：Chien-Chao Tseng

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2010

Hsinchu, Taiwan, Republic of China

中華民國 九十九 年 七 月

 - i -

N A T 行 為 感 知 的 T C P 穿 越 機 制

學生：劉坤穎

指導教授：曾建超 教授

國立交通大學資訊科學與工程研究所

摘 要

本論文提出一套 Network Address Translation (NAT)行為感知(NAT Beha-

vior-Aware, NBA)的 TCP 穿越機制，當兩端點分別位於不同 NAT 底下時，若兩者

想嘗試建立一條 TCP 的直接連線，NBA 機制會利用兩端的 NAT 資訊，從候選的

TCP NAT 穿越方法中，找尋一個最恰當的穿越技術，進行直連測試。因為 NBA 洞

悉連線兩端 TCP NAT 穿越的支援能力，可以避免使用不可能成功的穿越技術來執

行直連測試，減少直連測試所花掉的時間與資源。

許多研究已經提出解決 TCP NAT 穿越問題的方法，然而這些方法並沒有將

NAT 的 TCP 狀態追蹤特性列入考量，對於不同 NAT 組合下的適用性亦一無所知，

如果盲目嘗試這些 TCP NAT 穿越方法進行直連測試，試圖找到一條直連路徑，會

導致連線測試時間冗長與不必要的訊息交換等問題，進而影響到 NAT 穿越的效率

與成功率。

 為了縮短連線測試延遲與降低訊息的交換量，以及提高直接連線的比率，我

們提出一套 NAT 行為感知 (NBA)的 TCP 穿越機制。NBA 的主要構想是本機端

(host)的使用者代理人 (user agent, UA)先收集當地的 NAT 資訊，包含 NAT 的

mapping 行為、filtering 行為與 TCP 狀態追蹤特性，當位於不同 NAT 底下的兩 UA

 - ii -

想要嘗試穿越 NAT 時，NBA 可以利用此兩 UA 所收集到的 NAT 資訊，選擇出一

個最恰當的 NAT 穿越技術，並通知這兩 UA 使用。如此一來，這兩 UA 就可以省

去執行不可能成功的 NAT 穿越技術的測試時間與系統資源。

 我們已經完成 NBA 機制的實作，並針對直連率、測試時間與資源使用量等效

能指標，進行 NBA 與循序直連測試(Sequential Connectivity Check, SCC)以及平行

直連測試(Parallel Connectivity Check, PCC)兩種機制的效能比較。實驗結果顯示，

在相同組合的 NAT 環境下，這三種機制的直連率完全相同，亦即，NBA 選擇 NAT

穿越技術的方法非常精確，不會發生誤選的情況。其次，當進行直接連線測試時，

NBA 與 SCC 相較之下具有更短的測試時間延遲，且 NBA 比 PCC 使用更少的資源，

故 NBA 的整體效能表現較 SCC 和 PCC 更傑出。

關鍵字: Network Address Translation、NAT、NAT Traversal、TCP、TCP NAT Traversal

 - iii -

N B A – N AT B e h a v i o r Aw a r e T C P T r a v e r s a l S c h e m e

Student：Kun-Ying Liu

Advisor：Dr. Chien-Chao Tseng

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

In this thesis, we propose a Network Address Translation (NAT) Behavior Aware,

henceforth referred to as NBA, scheme for TCP NAT Traversals. Many researchers

have proposed techniques to tackle the TCP NAT traversal problem. However, previous

TCP NAT traversal research focuses on whether a specific TCP signaling sequence can

establish a direct connection successfully between two peers behind NATs. Because

each signaling sequence has its own applicable NAT types, brute force connectivity

check may induce a long delay or excessive message exchanges for setting up a connec-

tion.

Therefore, NBA utilize TCP state tracking behaviors of NATs as a priori know-

ledge to select the most appropriate Traversal method for the connectivity check be-

tween two communicating peers behind. As a consequence, it can eliminate unnecessary

checks, shorten the connectivity check delay, reduce the number of message exchanges,

and sometimes help to avoid failure in connectivity check that ought to succeed. With

NBA, user agents (UAs) collect the NAT information such as mapping rules, filtering

 - iv -

rules and TCP state tracking behaviors, and report the collected information to an NBA

server. When two UAs intend to establish a communication session, the server consults

the information reported by the two UAs, determines the best traversal method, if exists,

and informs the two UAs to check connectivity with the selected method.

 We have implemented NBA and compared the performance of NBA with both

sequential connectivity check (SCC) scheme and parallel connectivity check (PCC)

schemes. The experimental results show that NBA achieves the same direct connection

ratio as SCC and PCC do. Furthermore, NBA outperforms SCC in terms of latencies

and PCC in system resources utilizations for connectivity checks.

Keywords: Network Address Translation, NAT, NAT Traversal, TCP, TCP NAT Tra-

versal

v

致 謝

 碩士班兩年的生活，隨著此論文的完成，即將畫上句點。從下定決心轉戰資

工所的那一刻起，我就不曾後悔過，不管遇到多大的難關與障礙，相信自己都能

想盡各種方法克服它。幸虧我遇到了一位好教授，一群好夥伴和好同事，也與我

的女朋友相遇在碩士班的時光裡。真的不虛此行，感謝這一路上所有協助過我的

人，因為有你們，我的生活充滿鮮豔的色彩；因為有你們，我的成長過程不再孤單。

 我要特別感謝我最敬重的指導老師曾建超教授，在你身上我學到了很多包括學術上，

生活上或是做人處事的道理。感謝您協助探索我的極限，多少個孤獨的夜晚，埋首看

Paper、Debug。因為有你，我體會到做研究應有的嚴謹度，了解寫程式的奧義，也知道做

人要謙虛要對自己負責，並學到原來製作投影片也是一門大學問，很高興您給了我這個學

習的機會，祝福您身體健康，謝謝您的指導。其次，也要感謝我的口試委員王讚彬教授，

曹孝櫟教授以及張弘鑫教授，因為有你們的指導與建議，讓本論文多添加了幾分

有趣的元素。

 很高興自己有這個福氣跟 WINLab 的所有學長姐、學弟妹們一起共同學習與

成長，包括博士班最有活力的 RT 學長、一起騎腳踏車的 Gunter 學長、姿欣學姊，

約好一起去征服六十石山與再一次環島、一起打壘球的 Gary 學長，你傳球真的很

準、最認真的承運學長以及瘦身冠軍大樑哥學長。感謝俊羽學長、宗羲學長幫我投履歷，

在我的求職過程中，一直幫忙我。感謝上一屆人小志氣高的冠銘學長，人非常好的統一獅

投手俊良學長，與台南南霸天劉阿舍俊延學長。感謝我最要好的好同學，國科會台柱愛將

蛋捲，你每天晚上都會想到的那個人，跟他說話時卻不知道要說什麼，相信我，你真的愛

上他了。未來的同事也是環島的好夥伴竣晨，以後在桃園的生活還要多請教你，破釜沉舟

那招也記得順便傳授給我。也要感謝一起共同在 D-Link T1 打拼的好 Partner 小毛，最正

的昱樺與最認真的銘祥，謝謝你們這一路來的陪伴，風風雨雨都一起走過，祝福大家鵬程

萬里，在未來的人生路上一路順風。感謝 D-Link 的學長承遠，你是我的第二個指導教授，

不管是工作、論文或是學業上，你都不吝嗇給我最大的協助，謝謝 Vincent 教我這麼多 Linux

的技巧，感謝一起研究程式的文堯，永遠記得一起留在中心打世紀到半夜的時光。也要感

謝最幽默的東寰，在寫論文無趣的時光裡，給了我這麼多歡笑，一起在精神時光屋修練的

日子，謝謝你的陪伴。也謝謝學弟愛將明辰、家明、阿彪、沅春與學妹貞慧、瑜茜。

 當然，我要感謝從小到大陪我成長的家人，媽媽、爸爸，謝謝你們讓我無後顧之憂的

做我想做的學問，真不知道要如何才能報答你們的恩情，接下來的人生，輪到我來孝順你

們。也要感謝我的哥哥與大嫂 Joyce，永遠支持我，在我最無助的時候，給我溫暖，有你

們真好。也要感謝我的女朋友宥均，謝謝你這一路來的陪伴，共同分享生活的所有喜怒哀

樂。

 僅以此論文獻給所有曾經幫助過我的朋友以及我最親愛的家人。

 - vi -

Contents

Abstract in Chinese .. i

Abstract in English ... iii

Acknowledgements .. v

Contents .. vi

List of Figures ... viii

List of Tables .. x

Chapter 1 Introduction ... 1

1.1 Motivation... 1

1.2 Objective ... 5

1.3 Outline of the Thesis .. 6

Chapter 2 Background.. 7

2.1 Problems of TCP NAT Traversal .. 7

2.2 NAT Operation ... 7

2.3 NAT Mapping Rule .. 9

2.4 NAT Filtering Rule .. 11

2.5 NAT Variations ... 13

2.6 NAT TCP State Tracking ... 14

Chapter 3 Related Work ... 16

3.1 UDP NAT Traversal ... 16

3.2 TCP NAT Traversal ... 19

3.3 Issue in TCP NAT Traversal ... 23

 - vii -

Chapter 4 Analyze TCP NAT Traversal Methods .. 25

4.1 SNT – SYN with Normal TTL .. 25

4.2 SLT – SYN with Low TTL .. 27

4.3 ESi – Establish then SYN-in ... 28

4.4 Summary... 29

Chapter 5 NBA TCP Traversal Scheme .. 30

5.1 NBA Overview .. 30

5.2 NBA Operation Procedure .. 31

5.3 Step 1 of NBA – NAT Information Collection 33

5.4 Step 2 of NBA – Traversal Method Determination 39

5.5 Step 3 of NBA – Connectivity Check .. 45

Chapter 6 System Implementation .. 46

6.1 System Overview .. 47

6.2 NBA Implementation ... 47

6.3 Discuss Ways to Implement NBA Scheme ... 50

Chapter 7 Experiment .. 51

7.1 Overview of Experiment ... 52

7.2 Result of Step 1 in NBA ... 53

7.3 Result of Step 2 in NBA ... 56

7.4 Comparison of Direct Connection Rate in Different Schemes 57

7.5 Comparison of System Resource Utilization in Different Schemes... 59

Chapter 8 Conclusions and Future Works ... 63

Bibliography .. 65

 - viii -

List of Figures

Figure 1-1 NAT device, private and public networks .. 1

Figure 1-2 Mapping table ... 2

Figure 2-1 NAT Operation.. 8

Figure 2-2 Independent mapping .. 10

Figure 2-3 Address dependent mapping.. 10

Figure 2-4 Address and port dependent mapping .. 10

Figure 2-5 Independent filtering .. 12

Figure 2-6 Address dependent filtering ... 12

Figure 2-7 Address and port dependent filtering ... 12

Figure 2-8 TCP three-way handshake ... 14

Figure 2-9 TCP state tracking .. 15

Figure 3-1 STUN Architecture ... 17

Figure 3-2 TURN Architecture .. 18

Figure 3-3 ICE Architecture ... 19

Figure 3-4 STUNT #1 .. 20

Figure 3-5 STUNT #2 .. 20

Figure 3-6 NATBlaster .. 22

Figure 3-7 P2PNAT ... 23

Figure 4-1 SNT .. 27

 - ix -

Figure 4-2 SLT ... 28

Figure 4-3 ESi .. 29

Figure 5-1 NBA system architecture .. 31

Figure 5-2 NBA operated procedure ... 32

Figure 5-3 Mapping test .. 34

Figure 5-4 ESi test & Si test ... 35

Figure 5-5 SoSi test & SoRiSi test .. 36

Figure 5-6 SoUiSi test & SoTiSi test .. 37

Figure 5-7 Procedure of Step 1 in NBA ... 38

Figure 5-8 Initiator of connectivity check ... 40

Figure 5-9 A possible packet sequence of SNT ... 42

Figure 6-1 System modules of NBA ... 46

Figure 6-2 Module interaction flow of Step 1 ... 49

Figure 6-3 Module interaction flow of Step 2 ... 49

Figure 6-4 Module interaction flow of Step 3 ... 50

Figure 7-1 Experiment environment ... 51

 - x -

List of Tables

Table 5-1 List of NAT type tests ... 38

Table 5-2 Traversal Method Selection Table ... 41

Table 7-1 Brands of NATs ... 52

Table 7-2 Naming rule of mapping detection.. 54

Table 7-3 Naming rule of filtering detection ... 54

Table 7-4 Naming rule of TCP state tracking detection .. 54

Table 7-5 Classify of NATs in group A ... 54

Table 7-6 Classify of NATs in group B ... 55

Table 7-7 Traversal method selected by NBA to group A .. 56

Table 7-8 Traversal method selected by NBA to group B .. 57

Table 7-9 Direct connection of group A made by NBA .. 58

Table 7-10 Direct connection of group B made by NBA .. 58

Table 7-11 Direct connection of group A made by SCC or PCC 59

Table 7-12 Direct connection of group B made by SCC or PCC 59

Table 7-12 connectivity check time .. 60

Table 7-13 Traversal time of each scheme ... 60

Table 7-14 Numbers of message exchanges of each traversal method 61

Table 7-15 Numbers of message exchanges of each scheme 61

 - 1 -

Chapter 1

Introduction

1.1 Motivation

The dramatic development of the internet industry in recent years has led to the

depletion of the remaining IPv4 address space. Limited IPv4 addresses could not satisfy

a large number of devices on internet nowadays. To alleviate the IPv4 address space

exhaustion, network address translation (NAT) [1] appeared and became a popular tool

in the mid-1990s. NAT allows several hosts to share one public IPv4 address because

NAT divides the network into public and private network as shown in Figure 1-1. Mul-

tiple hosts on a private network have their own private IP addresses which are mea-

ningful only within the scope of the private network and can‟t be used to get into the

internet directly. Therefore, the same private IP address can be reused on different pri-

vate network blocks as long as those private networks cannot communicate with each

other directly. Hosts on private networks can take the NAT as a gateway and share a

single public IP via address/port translating on the NAT to connect to each other or

access to the internet though NAT boxes.

Figure 1-1 NAT device, private and public networks

 - 2 -

In order to achieve the capacity to share a public of NAT to multiple hosts, NAT

must have some effort on inbound and outbound packets. Hosts who are located on pri-

vate network are named internal hosts. Once they want to communicate with external

hosts via sending/receiving packets, the NAT device would involve rewriting the source

and/or destination IP addresses and also the TCP/UDP port numbers of IP packets as

they pass through the NAT. Checksums of IP and TCP/UDP headers must also be recal-

culated to make sure the NAT device transmits packets correctly between internal and

external hosts. Once the internal hosts send packets to the external hosts, NAT will

record the translating rule between private and public IP address/port on the mapping

table. NAT then transmits inbound packets to the correct host according to the mapping

table such as Figure 1-2. If the record on the mapping table hasn‟t been created, NAT

would not understand where to route the packets. In the other word, external host cannot

initiate unsolicited session to internal host until the internal host sends out packets to the

external host, and NAT creates a recode on mapping table.

Figure 1-2 Mapping table

 - 3 -

Although NAT provides a lot of benefits to the internet nowadays, however, it also

incurs some drawbacks. NAT is a barrier for peer-to-peer applications because one peer

cannot know the address of the other peer behind an NAT, and NAT may block unsoli-

cited inbound traffics. Many methods have been proposed to solve the issues, and those

methods are called NAT traversal. Interactive Connectivity Establishment (ICE) is a

well-know protocol for UDP NAT traversal [6]. It uses nine address pairs to perform

connectivity checks in order to find out an appropriate connection between two peers

behind NATs. In recent years, most peer-to-peer applications use TCP to transmit pack-

ets, but establishing a TCP connection is more complex than UDP since two hosts must

perform a three-way handshake procedure [17]. Moreover, most NATs implement some

sort of TCP state tracking mechanism to trace TCP stages [16]. Different TCP state

tracking mechanisms implemented in NATs need different traversal methods to solve

them, so many TCP NAT traversal methods was also proposed, and each method is ap-

plicable to different NAT combinations.

One kind of the most effective NAT traversal methods of establishing peer-to-peer

communication between hosts on different private networks is known as ``hole

punching'' [2, 19, 21]. UDP hole-punching was first explored and publicly documented

by Dan Kegel [3]. Using the same aspects, techniques was declared such as Simple tra-

versal of User Datagram Protocol (UDP) through NATs (STUN) allows applications to

discover the presence, types and IP address of NATs [4]. Traversal Using Relays around

NAT (TURN) allows two hosts behind different NATs to exchange packets each other

using the relay [5]. Interactive Connectivity Establishment (ICE) makes use of STUN

and TURN protocol [6]. TCP hole punching is seem more complexity then UDP, be-

cause three-way handshake must be performed to establish TCP connection and most

NATs implement TCP state tracking mechanism to track the TCP stages. NatTrav advo-

cate direct TCP connections between peers [7]. Simple Traversal of UDP Through NATs

 - 4 -

and TCP (STUNT) is a well-know TCP hole punching method [14]. NATBlaster pro-

posed novel mechanisms to create direct TCP connections between two hosts behind

middle-boxes with minimal help from a third-party [15]. However, previous TCP NAT

traversal proposals did not consider TCP state tracking of NATs, but they perform brute

force connectivity check instead so that this procedure induces a long delay or excessive

message exchanges for setting up a connection.

 - 5 -

1.2 Objective

In this thesis, we propose a NAT Behavior-Aware (NBA) TCP Traversal Scheme

that can eliminate unnecessary connectivity checks from choosing the most appropriate

traversal method based on the behaviors of NATs, instead of try-and-error tests [20].

Connectivity check will be more efficient by using NBA and result in shorter connectiv-

ity check delay, fewer message exchanged, possible higher Direct Connection Ratios

(DCR) and less resource usage or simpler state maintenance. In NBA, we implemented

several NAT type detected tests to realize NAT behaviors clearly including behaviors of

both UDP and TCP. When two hosts behind different NATs want to establish a TCP

connection through NAT traversal techniques, NBA can use the behavior knowledge of

the two NATs to determine the most appropriate traversal method for the two hosts. This

study successfully considers the NAT device characteristics, and the results may provide

an insight into the usage of TCP NAT traversal.

 - 6 -

1.3 Outline of the Thesis

This paper is organized as follows. In chapter 2, characteristics and behaviors of

NATs are described. Many UDP and TCP NAT traversal methods are surveyed in chap-

ter 3. In chapter 4 we review three practical TCP NAT traversal methods to understand

their characters comprehensively. In chapter 5, NAT behavior aware approach is de-

clared in detail. We include system implementations of NBA in chapter 6. In chapter 7,

NAT behavior aware approach and previous TCP NAT traversal are compared according

to the experiment results. Finally, we draw conclusions and suggest future works.

 - 7 -

Chapter 2

Background

In the chapter, NAT will be described carefully including problems of TCP NAT

traversal and the basic principle of NAT operation, mapping rules, filtering rules and

TCP state tracking. Although the concept of NAT was proposed more than 15 years [1,

10, 11, 12], neither NAT-related standard nor protocol is specified. As a result, current

NAT implementations vary among not only vendors but also NAT models.

2.1 Problems of NAT Traversal

Three characteristics of NAT behaviors affect NAT traversal deeply that are NAT

mapping rules, filtering rules and TCP state tracking. NAT uses mapping rules to decide

which ports for assigning to each connection and filtering rule for determining whether

inbound packets can be sent to hosts behind an NAT via existing mappings. The two

rules make it difficult to establish direct connection between two peers behind NATs.

Besides, NAT implements TCP state tracking to trace TCP stage and the mechanism

may block unexpected TCP packet sequences. Different NATs may have different NAT

TCP state tracking implementations, so peers are more difficult to establish a TCP con-

nection between two hosts behind NATs. In the following sections, we describe the

three characteristics of NAT behaviors in detail.

2.2 NAT Operation

Figure 2-1 illustrates the case that one host located on a private network wants to

communicate with the other host located on a public network. Internal host must first

send out an outbound packet though the NAT device to the external host, and NAT will

 - 8 -

then generate a mapping entry on its mapping table to keep track of the session. For

example in Figure 2-1, the internal host sends out an outbound packet to the external

host, and NAT must translate the source address of the outbound packet from private IP

address (ex: 192.168.1.10) to public IP address (ex: 140.113.215.183) and source port

from local port (ex: 5100) to global port (ex: 12500) so that the packet can be routed on

the public network. On the other hand, NAT generates a mapping entry to record the

mapping between local IP/Port transport address and global IP/Port transport address

(ex: 192.168.1.10:5100 140.113.215.183:12500). When the NAT device receives the

inbound packet form the external host to the internal host, it translates the destination

IP/Port transport address (ex: 140.113.215.183:12500) of the inbound packet to the cor-

responding transport address (ex: 192.168.1.10:5100) according to the mapping table in

NAT. The principle of address translation in NAT is based on mapping table. Therefore,

any inbound packet from the external host cannot be routed to the internal host by NAT

until the internal host has sent out an outbound packet to the external host and a map-

ping entry was generated on mapping table in NAT.

Figure 2-1 NAT Operation

 - 9 -

2.3 NAT Mapping Rule

NAT mapping rule defines how NAT assigns public ports to outgoing connections,

and it is required for a NAT to maintain a connection between private network and pub-

lic network. When an internal host initiates an outgoing connection through an NAT, the

NAT assigns a global IP address and a global port number to the connection and then

create a mapping entry so that subsequent response packets from an external host can be

received by the NAT, translated, and forwarded to the internal host according this entry

[8]. NAT mapping rule can be classified into three categories:

 Independent: NAT reuses the port-mapping for subsequent packets sent from

the same internal IP/Port transport address to any external IP/Port transport ad-

dress. For example, in Figure 2-2, no matter Node A sends packets to different

ports P1, P2 on Node B or P3 on Node C, NAT will all reuse the same

port-mapping Pa of its external interface.

 Address dependent: NAT reuses the port-mapping for subsequent packets sent

from the same internal IP/Port transport address only to the same external IP

address, regardless of the external port. For instance, Figure 2-3 shows that

NAT will use the port-mapping Pa when Node A sends packets to P1 and P2 on

Node B. But NAT uses port-mapping Pb when the destination is Node C.

 Address and port dependent: NAT reuses the port-mapping for subsequent

packets sent from the same internal IP/Port transport address only to the same

external IP/Port transport address. As shown in Figure 2-4, if the destination IP

address or port is different (Node B with P1 and P2, and Node C with P3), NAT

uses different port-mapping (Pa, Pb and Pc).

 - 10 -

Figure 2-2 Independent mapping

Figure 2-3 Address dependent mapping

Figure 2-4 Address and port dependent mapping

 - 11 -

2.4 NAT Filtering Rule

NAT filtering rule defines which external hosts are allowed to send inbound packets

to the corresponding internal hosts via existing mappings [8]. NAT filtering rule can al-

so be classified to three categories:

 Independent: Internal hosts send packets to any external IP address is suffi-

cient to allow any packets from external host with any IP address and port back

to the internal host. As shown in Figure 2-5, once the session between Node A

and Node B has been established by Node A, any inbound packets from exter-

nal hosts such as Node B and Node C can pass the NAT via this port-mapping.

 Address dependent: Internal hosts receiving packets from a specific external

host are necessary for internal hosts to send packets first to that specific exter-

nal host's IP address. For instance, Figure 2-6 shows that once the session has

been established by Node A between Node A and Node B, only inbound pack-

ets from external host Node B with P1 and P2 can pass the NAT via this

port-mapping.

 Address and port dependent: This behavior is similar to the previous catego-

ry. Internal hosts receiving packets from a specific external host are necessary

for them to send packets first to that specific external host's IP address and

port. For example, in Figure 2-7, once the connection has been established by

Node A between Node A and Node B, only inbound packets from external host

Node B‟s port P1 can pass the NAT via this port-mapping.

 - 12 -

Figure 2-5 Independent filtering

Figure 2-6 Address dependent filtering

Figure 2-7 Address and port dependent filtering

 - 13 -

2.5 NAT Variations

For UDP, NAT‟s treatment of packets varies among implementations. Typically,

NAT devices can be classified into two categories such as Cone NAT and Symmetric

NAT based on mapping rule [4]. Cone NAT assigns the same public port for all connec-

tions from the same local port; Symmetric NAT assigns a unique public port for differ-

ent connections.

Cone NAT can be further classified into Full Cone, Restricted Cone and Port Re-

stricted Cone based on filtering rule [4]. In the following, we describe the four catego-

ries of NAT carefully.

 Full Cone: All outgoing packets from the internal host with the same internal

IP/Port transport address are mapped to the same external IP/Port transport

address. Moreover, all external hosts can send packets to the internal host by

using the mapped external IP/Port transport address.

 Restricted Cone: All outgoing packets from the internal host with the same

internal IP/Port transport address are mapped to the same external IP/Port

transport address. But only internal hosts who ever send packets to the specific

external host‟s IP address can receive packets from the specific external host.

 Port Restricted Cone: All outgoing packets from the internal host with the

same internal IP/Port transport address are mapped to the same external

IP/Port transport address. But only internal hosts who ever send packets to the

specific external host‟s IP/Port transport address can receive packets from the

specific external host.

 Symmetric: If the same internal host sends a packet with the same source ad-

dress and port to a different destination IP address or port, and NAT would use

a different mapping. Furthermore, only internal hosts who ever send packets to

 - 14 -

the specific external host‟s IP/Port transport address can receive packets from

the specific external host.

However, RFC 5389 which evolves from the STUN protocol, RFC 3489, had re-

moved the algorithm for NAT variations detection because NATs nowadays cannot be

classified into those four types of behaviors. But this is a familiar classification when

we study NAT technology. So, we still describe it in this section.

2.6 NAT TCP State Tracking

The TCP three-way handshake known technically as the SYN, SYN-ACK and

ACK is the process for establishing a TCP connection as shown in Figure 2-8. However,

two hosts behind different NATs cannot establish a TCP connection through normal

TCP three-way handshake process so that special TCP packet sequence flows will ap-

pear. The special packet sequence flows are caused not only by current TCP NAT tra-

versal methods but also by NAT response. For example, scenario 1 and scenario 2 in

Figure 2-9, there are many vendors use a lightweight state machine within

the NAT Session to track the current state of a TCP connection [13] and determine when

connection-state can be garbage-collected. NAT may block unexpected packets se-

quences according to its implementation of TCP state tracking mechanism.

Figure 2-8 TCP three-way handshake

 - 15 -

Figure 2-9 TCP state tracking

 - 16 -

Chapter 3

Related Work

In this chapter, a number of current researches and techniques related to UDP and

TCP NAT traversal problem will be described. Then, a major issue which affects TCP

NAT traversal problem will also be depicted.

3.1 UDP NAT Traversal

3.1.1 STUN

Simple Traversal of User Datagram Protocol (UDP) Through Network Address

Translators (NATs) (STUN) is a lightweight protocol that allows hosts to discover not

only the presence and types of NATs and firewalls between them but also the public

IP/Port transport addresses [4]. STUN Server is a third-party network server with two IP

addresses and two ports as shown in Figure 3-1. STUN is a commonly used technique

to solve UDP NAT traversal problems. Internal host uses STUN server to realize the

public IP and port-mapping on its NAT and then other host may use this port-mapping

to send inbound packets to the internal host in some types of NATs.

RFC 5389 [9] is a new specification of STUN named “Session Traversal Utilities

for NAT”, and it is an evolution from RFC 3489. The original STUN protocol defined a

NAT type discovery process flow for applications to discover the type of an NAT. But

new STUN protocol had removed this algorithm for NAT type detection and binding

lifetime discovery. Because NATs nowadays may not fit into those type classifications

which we have described in session 2.5, and the algorithm was found to have some er-

rors [9]. RFC 5389 also defines STUN protocol to have additional capability such as

checking connectivity between two peers behind different NATs and a keep-alive pro-

 - 17 -

tocol to maintain NAT mappings.

However, since symmetric NAT assigns a unique public port for each connection

to a specific IP/Port transport address, we cannot use STUN to traverse this category of

NATs.

Figure 3-1 STUN Architecture

3.1.2 TURN

Traversal Using Relays around NAT (TURN) is a protocol that allows the host

behind a NAT to control the operation of the relay server and to exchange packets with

its peers using the relay [5]. Once hosts behind different NATs want to communicate

with each other, they can establish their own connection with the third-party network

server named TURN server, and TURN server would help them to redirect data to the

other hosts. Figure 3-2 shows the typical operation of TURN. In Figure 3-2, Node A

connects to TURN for requesting relay resources X, and then Node A would inform the

 - 18 -

relay resource X to host B. Once two hosts want to communicate with each other, they

can just send data to the relay resource X, and TURN server will redirect data to the

other host. This relay approach is a useful NAT traversal method.

However, when two hosts use TURN server as a relay server to communicate

with each other, they must occupy additional network bandwidth. Therefore, although

TRUN can traverse all types of NATs, it has the lowest priority in NAT traversal me-

thods.

Figure 3-2 TURN Architecture

3.1.3 ICE

Interactive Connectivity Establishment (ICE) makes use of integrating some NAT

traversal techniques such as STUN and TURN, and it is a protocol for UDP (ICE-UDP)

and TCP (ICE-TCP) NAT traversal. Once two hosts behind NATs want to check con-

nectivity, they would collect their own possible candidates which are a multiplicity of IP

addresses and ports from STUN and TURN. Then two hosts use ICE to exchange those

candidates, ICE would make pairs of two hosts‟ candidates and try systematically all

 - 19 -

possible pairs until it finds one or more direct connectivity path.

Figure 3-3 is an example for ICE-UDP. Both two hosts must collect its own can-

didates which are local address, server reflexive address from STUN server and relay

address from TURN server. ICE makes pairs of two hosts‟ candidates to nine possible

pairs and checks connectivity of each pair.

Figure 3-3 ICE Architecture

However, ICE brings about a large delay during connection setup since these col-

lection steps and check procedure have to be performed for any new connectivity re-

quest. Moreover ICE only establishes connections between applications on two hosts

which have the knowledge of ICE protocol. As a result ICE cannot be seen as a solution

for arbitrary applications.

3.2 TCP NAT Traversal

TCP NAT traversal is more complex than UDP because most NATs implement

TCP state tracking mechanism to track the current state of a TCP connection. In this

section, three implement TCP NAT traversal methods which are proposed in recent lite-

ratures will be described.

 - 20 -

3.2.1 STUNT

Simple Traversal of UDP Through NATs and TCP too (STUNT), which extends

STUN to include TCP functionality, is a lightweight protocol that assists hosts behind

NATs to determine external IP address and port number. It also helps hosts traverse

NAT to establish TCP connections. STUNT was proposed in [14] including two TCP

NAT traversal methods named STUNT #1 and STUNT #2, illustrated in Figure 3-4

and Figure 3-5 respectively.

Figure 3-4 STUNT #1

Figure 3-5 STUNT #2

 - 21 -

In STUNT #1, when hosts behind different NATs want to establish a TCP con-

nection, both hosts must first send an initial SYN packet to each other. However, un-

solicited packets may cause side effects of NAT while establishing two hosts‟ connec-

tions. Therefore, the initial SYN packets are set with low time to live (TTL) values to

cross their NATs, but the SYN packets must not reach other host‟s NAT and will be

dropped in the network (once the TTL expires). Second, both hosts learn the TCP se-

quence number of the initial SYN packets over PCAP or a RAW socket and send their

respective TCP sequence number to a globally reachable third-party named STUNT

server. The STUNT server resides in public network and spoofs a relative SYNACK

to each host with the appropriately sequence numbers as the packet comes from the

other host. Finally, host will respond an ACK packet to the other host for completing

TCP 3-way handshake.

STUNT #2 is similar to the STUNT #1, but only one host sends out a low -TTL

SYN packet. Then sender aborts this connection attempt and creates a passive TCP

socket on the same IP address and port number. The other host then initiates a 3-way

handshake procedure to establish a TCP connection. However, there are some issues

existing on STUNT such as NAT characteristics, host requirements and the spoofing

requirement for the STUNT Server.

3.2.2 NATBlaster

In [15], the authors propose a novel mechanism named NATBlaster to create

direct TCP connections between two hosts behind middle-boxes with minimal help

from a third-party. NATBlaster as shown in Figure 3-6 is similar to STUNT #1 except

that instead of spoofing SYNACK packets by STUNT server, the two hosts exchange

the sequence numbers and each crafts a SYNACK packet the other expects to receive.

 - 22 -

Figure 3-6 NATBlaster

3.2.3 P2PNAT

In [2], the authors take advantage of the simultaneous open scenario defined in

the TCP specifications [2]. As illustrated in Figure 3-7, each host initiates a TCP

3-way handshake procedure to establish TCP connections. First, both hosts establish

TCP connections with a well-known rendezvous server which records each registered

client‟s public and private IP addresses. Second, client A uses its active TCP session

with server to ask server for help connecting to client B. Third, server replies B‟s pub-

lic and private address to A, and at the same time sends A‟s public and private address

to B. Finally, client A and B each asynchronously make outgoing connection attempts

to the other‟s public and private address as replied by server, while simultaneously

listening for incoming connections on their respective local TCP ports. If one of the

outgoing connection attempts fails due to a network error such as “connection reset”

or “host unreachable”, the host simply retries that connection attempt after a short de-

lay (e.g., one second), up to an application-defined maximum timeout period.

 - 23 -

Figure 3-7 P2PNAT

3.3 Issue in TCP NAT Traversal

NAT mapping rule, filtering rule and TCP state tracking are the characteristics

that affect TCP NAT traversal. NATs handle outbound packets differently by using dif-

ferent mapping rules and inbound packets by filtering rules so that NAT traversal may

fail in establishing a connection between two hosts because of the two rules. NAT may

block unexpected TCP packet sequence according to its TCP state tracking mechanism.

Many TCP NAT traversal methods have been proposed for TCP NAT traversal problem,

and different methods may work for different NAT combinations. Therefore, we need to

apply several traversal methods to increase direct connection rate while traversing NATs.

There are two general schemes for applying traversal methods to do connectivity check

such as sequential connectivity check (SCC) and parallel connectivity check (PCC). The

former scheme applies NAT traversal methods sequentially while the latter scheme per-

forms in parallel. However, the two schemes have no idea about applicability of NAT

Traversal methods to types of NATs, and apply traversal methods in a try-and-error fa-

shion. So, they consume large amounts of system resources and time delay to traverse

NATs.

 - 24 -

In this paper, an effective NAT Behavior-Aware (NBA) TCP traversal scheme was

proposed. It takes NAT information about mapping rules, filtering rules and TCP state

tracking into consideration to select the most appropriate NAT traversal method.

 - 25 -

Chapter 4

Analyze TCP NAT Traversal Methods

We have introduced many TCP NAT traversal methods in above chapter, actually

there are three practical TCP NAT traversal methods in recent years, and each method

may generate a specific packet sequence and thus only works well for the NATs that al-

low such packet sequences. Therefore, as long as we realize the packet sequences ap-

pear while applying each method, we will know what kinds of TCP NAT traversal me-

thods can work well for the combination of two NATs. In this chapter, we review three

practical TCP NAT traversal methods to realize kinds of packet sequences which appear

while applying these methods. The results are important for NBA to determine NAT

type examinations. The three traversal methods are listed as follows:

1. SYN with Normal TTL (SNT)

2. SYN with Low TTL (SLT)

3. Establish then SYN-in (ESi)

4.1 SNT – SYN with Normal TTL

The first TCP NAT traversal method is SNT which is the same as “STUNT #2

with no-TTL” [16]. In SNT, the first unsolicited SYN packet which is sent from caller

to callee would be treated as an unsolicited income packet and be filtered by the callee‟s

NAT. Therefore, the callee‟s NAT will choose to either drop the packet silently or notify

the client and then different response may cause different packet sequences on the call-

er‟s NAT. Different NATs on the caller side may behave dissimilarly towards those

packet sequences. For example, in Figure 4-1, when Node A would like to establish a

TCP connection with Node B, it performs SNT to traverse NATs. The first SYN packet

 - 26 -

which is sent by Node A will reach the Node B‟s NAT (NAT Y), and NAT Y filters this

unsolicited packet. The responses are important for us to understand SNT deeply.

Therefore, the first knowledge we want to obtain is how NAT responds to the unsoli-

cited inbound packet. We named this behavior examination as “unsolicited inbound SYN

(Si) test” which means we want to test how a NAT behaves when it confronts with an

unsolicited inbound packet.

In addition, according to our experiments, there are three kinds of responses

which NAT responds to the unsolicited inbound packets such as drop the packet silently,

sending back a reset packet and sending back an ICMP host unreachable packet. There-

fore, three corresponding packet sequences appear on the caller‟s NAT and we also want

to obtain the knowledge about how NAT behaves towards these packet sequences. For

instance, in Figure 4-1, NAT X confronts three different kinds of packet sequences that

are an outbound SYN followed by an inbound SYN, an outbound SYN followed by an

inbound fatal TCP RST and then inbound SYN, and an outbound SYN followed by an

ICMP host unreachable message and then inbound SYN. In NBA, the examinations

which exam whether NAT allows the packet sequences are “outbound SYN and then in-

bound SYN (SoSi) test“, “outbound SYN followed by inbound RST and then inbound

SYN (SoRiSi) test”, and “outbound SYN followed by inbound ICMP host unreachable

and then inbound SYN (SoUiSi) test”.

 - 27 -

Figure 4-1 SNT

4.2 SLT – SYN with Low TTL

The second TCP NAT traversal method is SLT which is the same as “STUNT #2

with low-TTL” [16]. In SLT, caller sets the time to live (TTL) value of the first SYN

packet for a low value and sends to callee. The packet will only pass its NAT and be

dropped by the internal router between the two hosts because of TTL-expired. Then, the

router would signal an error by sending back an ICMP TTL expired to the caller. Since

the first SYN packet of caller does not reach the callee‟s NAT instead dropped by the

internal router. Packet sequence which appears on SLT is different with them which ap-

pear on SNT. For example, in Figure 4-2, when Node A would like to establish a TCP

connection with Node B, it performs SLT to traverse NATs. The first SYN packet with

low-TTL value is sent by Node A, and it will be dropped by the internal router (Router

Z) and not reach the Node B‟s NAT (NAT Y). Moreover, Router Z sends back an ICMP

TTL expired to Node A, and then callee initiates another three-way handshake proce-

dure. Therefore, NAT X confronts one kind of packet sequences that is an outbound

SYN followed by an inbound ICMP TTL-exceeded error and then inbound SYN. In

NBA, the examination which exams whether NAT allows the packet sequences is “out-

 - 28 -

bound SYN followed by inbound ICMP TTL-expired and then inbound SYN (SoRiSi) test

“.

Figure 4-2 SLT

4.3 ESi – Establish then SYN-in

The third TCP NAT traversal method, ESi, is first declared and implemented in

NBA. This method uses characteristic of NAT filtering rule to traversal NAT. As we

mentioned in chapter 2, if the filtering rule of NAT is classified to be Independent, in-

ternal hosts send packets to any external IP address is sufficient to allow any packets

from external host with any IP address and port back to the internal host. So, if one of

the two hosts‟ NATs is classified to be Independent, they can reuse the port-mapping

existing on the NAT to traverse NATs. In NBA, UA normally has a TCP connection

with NBA Server. If the filtering rule of UA‟s NAT is Independent, other UAs can use

the port-mapping of the TCP connection to initiate a three-way handshake procedure,

and traverse NATs. For instance, in Figure 4-3, Node A has a TCP connection with NBA

Server, and the port-mapping of this TCP connection on NAT X is Port A. In conse-

quence, Node B can use Port A to initiate three-way handshake procedure and establish

a TCP connection with Node A.

 - 29 -

Figure 4-3 ESi

4.4 Summary

Six NAT type examinations are described in this section such as Si test, SoSi test,

SoRiSi test, SoUiSi test, SoTiSi test and ESi test. We will explain the six examinations of

NBA in detail in the following section.

 - 30 -

Chapter 5

NBA TCP Traversal Scheme

Whereas the drawbacks of the other NAT traversal schemes such as SCC and PCC

described in chapter 3, we propose a NAT Behavior-Aware TCP traversal scheme, hen-

ceforth referred as NBA, to eliminate unnecessary connectivity checks.

5.1 NBA Overview

NBA assists hosts to collect knowledge of their NAT behaviors in advance. Once

hosts behind NATs want to establish a direct TCP connection through connectivity

check with TCP NAT traversal techniques, the most appropriate method among existent

methods is selected based on the knowledge of the two communicating NATs.

Figure 5-1 shows the system architecture and major functional components of

NBA. In NBA, NBA Server being a third-party is a global reachable server which re-

sides in public network, and it can assist hosts to traverse NATs effectively. For example

in Figure 5-1, hosts (i.e. Node A and Node B) behind NATs (i.e. NAT X and NAT Y)

would like to establish a direct TCP connection via connectivity check with TCP NAT

traversal methods, NBA Server will assists them to collect their NAT behaviors infor-

mation comprehensively. This information includes NAT mapping rule, filtering rule

and TCP state tracking, and it is collected by hosts after performing several NAT type

tests in NBA.

NBA scheme is similar to SCC or PCC scheme since they all apply several tra-

versal methods in order to increase the direct connection rate of connectivity check.

However, issues still exist in the two schemes such as long check latencies in SCC and

large system resources utilizations in PCC. In NBA, the third-party, NBA Server, be-

 - 31 -

comes more intelligent and powerful of assisting hosts to traverse NATs. Of course,

hosts also have to pay more effort in order to get more thorough understanding of NAT

behaviors.

Figure 5-1 NBA system architecture

5.2 NBA Operation Procedure

In this section, we will describe the NBA procedure to introduce how NBA oper-

ates by taking Figure 5-2 as an example. There are three steps in NBA that are

1. Step 1: NAT Information Collection

2. Step 2: Traversal Method Determination

3. Step 3: Connectivity Check

 - 32 -

Figure 5-2 NBA operated procedure

In Figure 5-2, Node A and Node B are two hosts behind different NATs (i.e. NAT

X and NAT Y), and they want to establish a direct TCP connection. First, Step 1 of NBA,

user agent (UA) of Node A or Node B collects behavior information of its NAT via per-

forming several NAT type tests when it boots up. Second, Step 2 of NBA, UAs submit

NAT information to a NBA Server respectively when it intends to perform connectivity

check with other UAs. And then, the NBA Server will determine the most appropriate

traversal method according to the behavior information of the two communicating NATs,

and it informs both UAs the selected method. Third, Step 3 of NBA, UAs perform con-

nectivity check with the selected method.

In the fact, there are several ways to implement Step 1 and Step 2 of NBA such

that NBA Server could maintain behavior information of all NATs instead of submitting

by hosts every time while connectivity checks. Besides, as long as host can discover

that its NAT is still the serving one or not, it can reuse the NAT information from the

NAT type examinations until replacing the NAT. We will discuss in detail many possible

 - 33 -

variations of implementation for NBA in chapter 5.

5.3 Step 1 of NBA – NAT Information Collection

In Step 1 of NBA, UA collects three kinds of information that are mapping rule,

filtering rule and TCP state tracking to understand its NAT comprehensively. First, be-

cause NAT uses mapping rule to decide port-mapping of each connection, and the

port-mapping plays an important role of NAT traversal. Therefore, mapping rule of NAT

is critical information in NBA. Second, since filtering rule is used by NAT to determine

how to treat inbound packets via an existent port or respond to unsolicited inbound

packets via a non-existent port. NBA should also need this kind of information. Finally,

because NAT uses TCP state tracking mechanism to decide whether allow the following

packet via the port-mapping with special packet sequences and TCP state tracking is

important information of TCP NAT traversal. In summary, NAT type tests in Step 1 of

NBA can be classified into three kinds of detections

 Mapping Rule Detection

 Filtering Rule Detection

 TCP State Tracking Mechanism Detection

By the way, we follow a simple rule to name type tests in NBA. The notation „S‟

means a SYN packet and „R‟ means a RST packet and „T‟ means a ICMP TTL Expired

packet, and „U‟ means a ICMP host unreachable packet. Moreover, in order to define the

direction of packets. We use the notation „i‟ means an inbound packet while „o‟ means

an outbound packet. For example, the notation “SoRiSi” means that an outbound SYN

packet followed by an inbound RST packet and then an inbound SYN packet.

5.3.1 Mapping Rule Detection

The first NAT type test is Mapping test. As shown in Figure 5-3, UA sends binding

 - 34 -

request messages to different IP address and port number on NBA Server. According to

the binding response messages which are send from different combinations of IP ad-

dress and port number on NBA Server, UA can determine mapping rule of its NAT. As

we described in section 2.3, NAT mapping rule can be classified into three categories:

Independent, Address dependent and Port & Address dependent. However, NAT may

assign different port numbers to connections when its mapping rule is classified to the

last two categories. Moreover, different port number assignment can be classify further

to linearly dependent (assign different port numbers linearly for connections) and ran-

domly dependent (assign different port numbers randomly for connections). In NBA,

we would like use Mapping test to realize that mapping rule of an NAT is independent

or not. If mapping rule is not independent, what kinds of port assignments do an NAT

present? Therefore, Mapping test in NBA has three kinds of results that are independent,

linearly dependent or randomly dependent mapping.

Figure 5-3 Mapping test

 - 35 -

5.3.2 Filtering Rule Detection

UA can use ESi test in NBA to exam how NAT treats packets inbounded to an ex-

isting port. As shown in Figure 5-4 (A), UA on Node A performs a three-way handshake

procedure to establish a TCP connection with the first IP address of NBA Server (i.e.

IPB). Then, NBA Server initiates other three-way handshake procedure to the UA

through the port-mapping on UA‟s NAT. There are two kinds of result with ESi test. If

the last inbound SYN packet can pass UA‟s NAT and be routed successfully to the cor-

responding UA, we decide the target NAT allows the packet sequence of Establishment

then inbound SYN, otherwise it doesn‟t.

Besides, because of NAT filtering character, NAT is certain of filtering unsolicited

inbound packets. However, NBA wants to know the way how NAT filters the packets.

Figure 5-4 (B) presents the second NAT type test named Si test. NBA Server sends an

unsolicited SYN packet to the NAT of UA, and it waits a minute to observe the res-

ponses of the NAT. Si test has three kinds of result such that NAT drops the unsolicited

inbound SYN packet silently, sends back a RST message or an ICMP Host Unreachable

error.

(A) (B)

Figure 5-4 ESi test & Si test

 - 36 -

5.3.3 TCP State Tracking Detection

As we described in chapter 4, there are many possible packet sequences when

UAs perform connectivity check with traversal methods in NBA. In this section, we in-

troduce these tests about TCP state tracking detection to realize how NAT treats those

packet sequences.

SoSi test is the forth NAT type test in NBA. As shown in Figure 5-5 (A), UA

sends an outbound SYN packet in the first to NBA Server, and then NBA Server sends

back a SYN packet to the UA via the same port-mapping on NAT X. This procedure can

exam whether target NAT allows the packet sequence of outbound SYN followed by

inbound SYN. Figure 5-5 (B), Figure 5-6 (A) and Figure 5-6 (B) show the remaining

three NAT type tests in NBA to detect NAT state tracking that are SoRiSi test, SoUiSi

test and SoTiSi test. Each test of the three tests is similar to SoSi test, but NBA Server

sends a specific message to target NAT before the last inbound SYN. The specific mes-

sage is a RST packet or an ICMP Host Unreachable packet or an ICMP TTL-Expired

packet.

(A) (B)

Figure 5-5 SoSi test & SoRiSi test

 - 37 -

 (A) (B)

Figure 5-6 SoUiSi test & SoTiSi test

5.3.4 Summary of Type Tests in NBA

In summary, seven tests can be classified into three kinds of detection

 Mapping Rule Detection

1. Mapping test

 Filtering Rule Detection

2. ESi test

3. Si test

 TCP State Tracking Mechanism Detection

4. SoSi test

5. SoRiSi test

6. SoUiSi test

7. SoTiSi test

NBA assists hosts behind a NAT to recognize NAT‟s behaviors about various se-

quences of packets. NBA simulates the same packet sequences via NBA Server as those

sequences which appear on current TCP NAT traversal methods to examine how NAT

behaves to them. UAs perform those examinations with NBA Server respectively, and

 - 38 -

they submit the results to NBA Server. The results are a useful knowledge for NBA

Server to determine whether NAT traversal methods can work well or not. Figure 5-7

shows the procedure of NAT behaviors examination in NBA.

Figure 5-7 Procedure of Step 1 in NBA

 After UA performs these NAT type tests, it will have comprehensive knowledge

about its NAT‟s behaviors. Table 5-1 shows possible results of each test in Step 1. Then,

UA must send the information to NBA Server when it wants to traverse NATs.

Table 5-1 List of NAT type tests

Categories No. Test Item Result

Mapping Rule

Detection
1 Mapping

Independent/

Linearly dependent/

Randomly dependent

Filtering Rule De-

tection

2 ESi Yes/ No

3 Si
Drop/ RST/

ICMP Host Unreachable

TCP State Track-

ing Detection

4 SoSi Yes/ No

5 SoRiSi Yes/ No

6 SoUiSi Yes/ No

7 SoTiSi Yes/ No

 - 39 -

5.4 Step 2 of NBA – Traversal Method Determination

In this section, we describe the selection algorithm of NBA Server to select the

most appropriate traversal method based on NATs‟ behavior knowledge which is col-

lected by UAs via performing those NAT type tests.

5.4.1 Main Idea

Once two UAs behind NATs want to traverse their NATs through NAT connectiv-

ity check with some kinds of NAT traversal methods, their NATs must support corres-

ponding special packet sequences so that the UAs can use the method to traverse NATs

successfully. So, as long as we take look at the two NATs‟ behaviors, we can realize

which TCP NAT traversal methods can be or cannot be used for NATs to traverse their

NATs. In NBA, NBA Server is the role of determination about the traversal method, and

it has a priori knowledge about NAT connectivity checks. However, UA could also be

the role of determination in other concerns about system resource utilizations and so on.

We will discuss possible implementation approaches to Step 2 in chapter 6.

5.4.2 Priority of Traversal Methods

Because we determine the traversal method based on NAT information, several

traversal methods may work at the same time for a combination of NATs. In order to

achieve an objective about less resource utilization while connectivity checks in NBA,

we must prioritize these traversal methods. First, since relay method needs use addi-

tional bandwidth to assist UAs to redirect packets, it has the lowest priority. In the other

hand, if the combination of NATs is traversable, NBA is as much as possible to find out

a traversal method with the highest priority. ESi method can reuse a port-mapping

which is created by existent connection on a NAT with NBA Server to traverse NATs. It

does not need to create additional port-mapping. Therefore, ESi method has the highest

 - 40 -

priority. As for SNT and SLT method, SLT has a potential problem. It requires the UA to

determine a TTL large enough to cross its own NAT and low enough to not reach the

other UA‟s NAT. So, SNT method has higher priority than SLT method. In summary,

priority of traversal methods is listed as follows:

1. ESi

2. SNT

3. SLT

4. Relay

In fact, the priority is not unique, and it could be dynamically adjusted base on different

assumptions while implementations. The adjustment will not influence DCR.

Besides, since which peer to initiate NAT connectivity check may affect the result

of the check [18], NBA also determines the most appropriate role between the two UAs

while connectivity check. For example in Figure 5-8, Node A and Node B use the TCP

NAT traversal method, SLT, to traverse NATs. Node A‟s NAT (i.e. NAT X) does not al-

low the packet sequence of an outbound SYN followed by an ICMP TTL-Expired mes-

sage and then an inbound SYN, but Node B‟s NAT (i.e. NAT Y) does. When Node B

initiates NAT connectivity check with SLT, the NATs can be traversed successfully.

Figure 5-8 Initiator of connectivity check

 Moreover, NBA defines initiator is the one who initiates NAT connectivity check

while responsor is another peer in the check.

 - 41 -

5.4.3 Selection Algorithm

NBA Server uses a selection algorithm to select the most appropriate traversal

method based on NAT behaviors. We present this algorithm as a tabular form, and the

table is named Traversal Method Selection Table (TMST) in NBA.

Table 5-2 Traversal Method Selection Table

Priority Caller Callee Method Initiator

C1 ESi = Yes --- ESi Caller

C2 --- ESi = Yes ESi Callee

C3

Mapping =

Randomly dep.
--- Relay Both

Mapping =

Randomly dep.
Relay Both

C4

SoSi = Yes

Si =

Drop SNT Caller

SoUiSi = Yes UNR SNT Caller

SoRiSi = Yes RST SNT Caller

C5 Si =

Drop SoSi = Yes SNT Callee

UNR SoUiSi = Yes SNT Callee

RST SoRiSi = Yes SNT Callee

C6 SoTiSi --- SLT Caller

C7 --- SoTiSi SLT Callee

C8 --- --- Relay Both

TMST is shown in Table 5-2. Because ESi method has the highest priority among

traversal methods in NBA, if NAT of caller or callee allows ESi test, then NBA selec-

tion algorithm will select “ESi” as the most appropriate traversal method according to

the combination of NATs. Moreover, the initiator of NAT connectivity check would be

the UA whom NAT allows ESi test. Next, if two NATs don‟t allow ESi test, we should

exam whether the results of NATs‟ Mapping test is randomly dependent or not. It is im-

possible to use the remaining traversal methods to traverse NATs successfully in NBA

when one of the NATs have randomly dependent mapping. As a result, traversal method

 - 42 -

which is selected by NBA Server for the UAs with this kind of NAT behaviors is “Re-

lay”.

Then, selection algorithm will choose the most appropriate traversal method to

UAs continuously. Traversal method with second priority in NBA is SNT, so the selec-

tion algorithm uses information of two communicating NATs to decide whether UAs

behind the two NATs can use SNT to perform connectivity check. The procedure of

SNT causes responsor‟s NAT to respond three kinds of responses to the unsolicited in-

bound SYN. Therefore, selection algorithm should use the Si test result of responsor‟s

NAT to decide which test result of initiator‟s NAT to take look. For example, if the res-

ponsor‟s NAT responses a RST packet to a unsolicited inbound packet, we should take

look at the SoRiSi test result of initiator‟s NAT to determine whether SNL can be ap-

plied successfully by UAs with the combination of NATs, as shown in Figure 5-9.

Figure 5-9 A possible packet sequence of SNT

Next, if selection algorithm decides that a combination of NATs is possible to es-

tablish a direct TCP connect with a traversal method in NBA, but the traversal method

is not ESi or SNT. So, the algorithm then decides whether SLT method can be use to do

connectivity check in the combination of NATs. If NAT of caller or callee allows SoTiSi

test, then the algorithm selects “SLT” as the most appropriate traversal method, and the

initiator of NAT connectivity check is the UA whom NAT allows SoTiSi test. Pseudo

 - 43 -

code of selection algorithm is presented in the follow.

In summary, NBA selection algorithm can determine two kinds of results that are

the appropriate traversal method and an initiator of connectivity check. NBA informs

the results to UAs.

 - 44 -

Traversal Method Selection Algorithm

1. CallerNAT NAT Info. of Caller

2. CalleeNAT NAT Info. of Callee

3. if CallerNAT.ESi = Yes then

4. Selected traversal method is ESi

5. Initiator of connectivity check is Caller

6. else if CalleeNAT.ESi = Yes then

7. Selected traversal method is ESi

8. Initiator of connectivity check is Callee

9. else if CallerNAT.Mapping = Randomly dependent || CalleeNAT.Mapping = Randomly

dependent then

10. Selected traversal method is Relay

11. Both peers initiate connectivity check

12. else if CalleeNAT.Si = Drop && CallerNAT.SoSi = Yes then

13. Selected traversal method is SNT

14. Initiator of connectivity check is Caller

15. else if CalleeNAT.Si = RST && CallerNAT.SoRiSi = Yes then

16. Selected traversal method is SNT

17. Initiator of connectivity check is Caller

18. else if CalleeNAT.Si = UNR && CallerNAT.SoUiSi = Yes then

19. Selected traversal method is SNT

20. Initiator of connectivity check is Caller

21. else if CallerNAT.Si = Drop && CalleeNAT.SoSi = Yes then

22. Selected traversal method is SNT

23. Initiator of connectivity check is Callee

24. else if CallerNAT.Si = RST && CalleeNAT.SoRiSi = Yes then

25. Selected traversal method is SNT

26. Initiator of connectivity check is Callee

27. else if CallerNAT.Si = UNR && CalleeNAT.SoUiSi = Yes then

28. Selected traversal method is SNT

29. Initiator of connectivity check is Callee

30. else if CallerNAT.SoTiSi = Yes then

31. Selected traversal method is SLT

32. Initiator of connectivity check is Caller

33. else if CalleeNAT.SoTiSi = Yes then

34. Selected traversal method is SLT

35. Initiator of connectivity check is Callee

36. else

37. Selected traversal method is Relay

38. Both peers initiate connectivity check

39. endif

 - 45 -

5.5 Step 3 of NBA – Connectivity Check

 An initiator of two UAs then initiates connectivity check with the notify methods

which is selection by NBA Server based on information of their NATs.

 - 46 -

Chapter 6

System Implementation

This chapter describes system implementations of NBA scheme. Section 6.1

presents the system overview. Section 6.2 shows our current implementation. Section

6.3 discusses ways to determine the most appropriate traversal method in different con-

siderations.

Figure 6-1 System modules of NBA

 - 47 -

6.1 System Overview

Figure 6-1 illustrates the system topology and modules of NBA scheme. NBA

topology which is similar to traditional NAT traversal topologies consists of two UAs

behind NATs and a third-party server named NBA Server. The NBA Server located on

the internet provides three modules that are NAT Type Tests Module, Traversal Method

Selection Module and Direct Connection Module. As for UA, it has two modules that

are Information Collection Module and Connectivity Check Module.

6.2 NBA Implementation

In NBA, all implementations are based on Linux and use C language. As shown

in Figure 6-1, NBA provides the following functional components:

 NBA UA

1. Information Collection Module: NBA Server provides seven type tests such

as Mapping test, ESi test, Si test, SoSi test, SoRiSi test, SoUiSi test and SoTiSi

test, and each test was described in detail in chapter 5. Information Collection

Module provides an interface for NBA UA to perform these NAT type tests to

collect knowledge of its NAT. This module is integrated form the client side

of STUNT. STUNT was implemented by Cornel University at 2005 and it ex-

tends STUN to include TCP functionality [22]. STUNT is a lightweight pro-

tocol that allows UAs running behind a NAT to determine external IP and

port-mapping properties, packet filtering rules and various timeout associated

with TCP connections through the NAT.

2. Connectivity Check Module: Connectivity Check Module implemented three

kinds of TCP NAT traversal methods that are SNT, SLT and ESi. This module

can assist NBA UAs to perform connection check with current traversal me-

thods. It is integrated from the client side of XSTUNT which is a C/C++ li-

 - 48 -

brary and can assist two hosts behind NATs to establish a direct TCP connec-

tion via traversal methods [23].

 NBA Server

1. NAT Type Tests Module: NAT Type Tests Module which corresponds to In-

formation Collection Module in NBA UA provides seven NAT type tests, and

it assists UAs to collect NAT information. This module is integrated form the

server side of STUNT. Similarly, it has the functionality for UAs to determine

its NAT‟s external IP and port-mapping properties, and it can generate several

special packet sequences to test TCP state tracking of NAT by using row

socket.

2. Traversal Method Selection: Traversal Method Selection implements a se-

lection algorithm which is introduced in chapter 5 to select the most appropri-

ate traversal method according to information of two communicating NATs.

In NBA, this method selection is implemented in NBA Server. However, there

are different approaches to implement this method selection and put it in dif-

ferent location, and we will discuss in detail in the next section.

3. Direct Connection Module: Direct Connection Attempting Module provides

the functionalities of connectivity check for UAs, and it is integrated form the

server side of XSTUNT. This module which corresponds to Connectivity

Check Module in NBA UA implements the three TCP NAT traversal methods,

too. It assists UAs to perform connectivity check.

6.2.1 Interaction of Modules

In this section, we describe the interactions of modules in NBA. Figure 6-2 shows

the module interaction of Step 1 in NBA. UA uses Information Collection Module to

 - 49 -

interact with NAT Type Tests Module in NBA Server for collecting NAT information

which are mapping rule, filtering rule and TCP state tracking.

Figure 6-2 Module interaction flow of Step 1

Figure 6-3 shows the module interaction of Step 2 in NBA. UA interacts with

Traversal Method Selection in NBA Server by submitting its NAT information, and

Traversal Method Selection uses behavior information of the two NATs to determine the

most appropriate traversal method, and then NBA Server informs UAs the selected tra-

versal method.

Figure 6-3 Module interaction flow of Step 2

Figure 6-4 shows the module interaction of Step 3 in NBA. UAs use Connectivity

Check Module to interact with Direct Connectivity Module in NBA Server for perform-

 - 50 -

ing connectivity check with the selected traversal method.

Figure 6-4 Module interaction flow of Step 3

6.3 Discuss Ways to Implement NBA Scheme

 We could implement a Signal Server in NBA to maintain all UA‟s information

including ID and NAT type information. Once a UA wants to establish a direct connec-

tion with another UA via connectivity check, it can send a request message to NBA

Server. Then NBA Sever fetch the two UA‟s information from Signal Server.

 - 51 -

Chapter 7

Experiment

 Figure 7-1 Experiment environment

NBA scheme developed several NAT type tests and the selection algorithm of se-

lecting the most appropriate traversal method. This scheme also integrated three kinds

of TCP NAT Traversal methods on Linux. In this chapter, we present our experiment

environment and describe the process of our experiments and then analyze results of

experiments. We use two groups of NATs to construct a fully mesh architecture as

shown in Figure 7-1. In our environment, we have a NBA Server and two peers, caller

and callee, and execute NBA scheme under two group of NAT which were bought by us

at 2008 and 2010. Table 7-1 shows brands of the 36 NATs.

 - 52 -

Table 7-1 Brands of NATs

Group A Group B

No. Brand No. Brand No. Brand No. Brand

A1 3Com A11 Lemel B1 D-Link 635 B11 PCI WNH

A2 AboCom A12 Netgear B2 D-Link 628 B12 ASUS

A3 Asus A13 Planex B3 D-Link 615 B13 Abocom

A4 Buffalo A14 Smc B4 D-Link 825 B14 Belkin

A5 Belkin A15 Zyxel B5 BUFFALO B15 Aximcom

A6 Corega A16 Windows B6 PCI W300 B16 Levelone

A7 Draytek A17 FreeBSD B7 Smc

A8 D-link A18 Linux B8 Zyxel

A9 Edimax A19 Smc Wireless B9 Edimax

A10 Linksys A20 Linksys N B10 Corega

7.1 Overview of Experiment

In our experiment, we analyze performances of NBA under various NAT combi-

nations to establish a direct TCP connection through NAT connectivity check. As we

described in chapter 5, there are three steps in NBA. In the following sections, we

present the results of these three steps in NBA respectively, and we compare NBA

scheme with the following two schemes:

 Sequential Connectivity Check with Initiator Changes (IC):

 This scheme tries each traversal method one-by-one and change initia-

tor to tray each method in opposite direction, so the executive order of traver-

sal methods about connectivity check in this scheme is SNT SNT-IC

SLT SLT-IC ESi ESi-IC

 - 53 -

 Parallel Connectivity Check (PCC)

 This scheme tries all traversal methods at the same time that are SNT &

SNT-IC & SLT & SLT-IC & ESi & ESi-IC

We compare NBA with the two schemes in three metrics that are

1. Direct Connection Rate (DCR)

2. Connectivity Check Time

3. System Resource Utilizations

7.2 Result of Step 1 in NBA

Step 1 of NBA is for UA to collect its NAT information about mapping rule, fil-

tering rule and TCP state tracking. After UA perform NAT type tests, it has a compre-

hensively knowledge of it NAT. For the purpose of convenience, NATs are marked by

us with symbols that mean NATs has corresponding types. The naming rule is listed on

Table 7-2, Table 7-3 and Table 7-4. In Table 7-2, if a NAT‟s test results of Mapping test

is randomly dependent, we mark the NAT a notation „I‟. That means the NAT is im-

possible to be traversed. Next, there are three kinds of test results about Si test, and each

result has a unique mark such as „D‟, „R‟ or „U‟ as shown in Table 7-3. A NAT only has

one kind of result, because it chooses one kind of response to respond unsolicited in-

bound packets. Then, if a NAT allows ESi test, we mark the NAT a notation „E‟. Finally,

SoSi, SoRiSi, SoTiSi and SoUiSi test are four type tests about TCP state tracking detec-

tion, if a NAT allows some kinds of these tests, we mark a corresponding symbol that

are „d‟, „r‟, „t‟ and „u‟ as shown in Table 7-4. For example, if a NAT drops unsolicited

packets, and it allows “SoSi” and “SoTiSi” tests but does not allow “SoRiSi” test, we

mark the NAT as “D-dt”.

 - 54 -

Table 7-2 Naming rule of mapping detection

Mapping Detection

 Randomly dependent

Mapping I (Impossible to be traversed)

Table 7-3 Naming rule of filtering detection

Filtering Detection

 Drop RST Host Unreachable

Si D R U

 Yes

ESi E

Table 7-4 Naming rule of TCP state tracking detection

Filtering Detection

 SoSi SoRiSi SoTiSi SoUiSi

Mark d r t U

We can then mark NATs in group A and group B according to this naming rule.

Table 7-5 presents marking result of NATs in group A while Table 7-6 shows NATs in

group B.

Table 7-5 Classify of NATs in group A

 Test Results

No. of

NAT
Mapping ESi Si SoSi SoRiSi SoTiSi Mark

A8 Independent Yes Drop No Yes No ED-r

A7, A11,

A13, A15,

A19

Independent No Drop Yes Yes Yes D-drt

Result
Test

Result

Test

Result
Test

Result

Test

 - 55 -

A14, A16,

A17

Linearly

dependent
No RST Yes Yes Yes R-drt

A1, A20 Independent No Drop Yes No Yes D-dt

A4, A9 Independent No RST Yes No Yes R-dt

A6 Independent No RST No Yes No R-r

A5 Independent No Drop No No No D-^

A18 Independent No RST No No No R-^

A2, A3,

A10, A12

Randomly

dependent
No Drop No No No I-D-^

Table 7-6 Classify of NATs in group B

 Test Results

No. of

NAT
Mapping ESi Si SoSi SoRiSi SoTiSi Mark

B16 Independent Yes Drop Yes Yes Yes ED-drt

B1, B2 Independent No Drop Yes Yes Yes D-drt

B5, B10 Independent No Drop Yes No Yes D-dt

B3, B4,

B6, B7,

B8, B12,

B14

Independent No Drop No No No D-^

B9, B11,

B13, B15
Independent No RST No No No R-^

 - 56 -

7.3 Result of Step 2 in NBA

Step 2 of NBA is for NBA Server to determine the most appropriate traversal me-

thod base on information of two communicating NATs. Table 7-7 shows the results of

Step 2 in NBA about traversal method chosen by NBA Server to each connection com-

bination of NATs in group A. Behaviors of NATs in the same class are the same, so

NBA Server chooses the same traversal method to connection combinations in a kind of

class combination. Since we consider two peers are under different NATs only, there

have no combination of NATs in some cases. In Table 7-7, numerals mean three kinds of

three TCP traversal methods implemented in NBA, and notation „R‟ means the NATs of

combinations cannot be traversed to establish a direct connection and must use relay

method. Moreover, notation “N/A” means the block has no connection combination,

and notation “IC” means callee must be the initiator of connectivity check. Similarly,

Table 7-8 presents selected methods of connection combinations of NATs in group B.

Table 7-7 Traversal method selected by NBA to group A

 Responsor

 Class ED-r D-drt R-drt D-dt R-dt R-r D-^ R-^ I-D-^

In
itiato

r

ED-r N/A 3 3 3 3 3 3 3 3

D-drt 3, IC 1 1 1 1 1 1 1 R

R-drt 3, IC 1 1 1 1 1 1 1 R

D-dt 3, IC 1 1, IC 1 1, IC 2 1, IC 2 R

R-dt 3, IC 1 1, IC 1 2 1, IC 1 2 R

R-r 3, IC 1, IC 1 2, IC 1 N/A R 1 R

D-^ 3, IC 1, IC 1, IC 1, IC 1, IC R N/A R R

R-^ 3, IC 1, IC 1, IC 2, IC 2, IC 1, IC R N/A R

I-D-^ 3, IC R R R R R R R R

1: SNT; 2: SLT; 3: ESi; R: Relay

N/A: Non-Existent,

IC: Initiator Change

 - 57 -

Table 7-8 Traversal method selected by NBA to group B

 Responsor

 Class ED-drt D-drt D-dt D-^ R-^

In
itiato

r

ED-drt N/A 3 3 3 3

D-drt 3, IC 1 1 1 1

D-dt 3, IC 1 1 1 2

D-^ 3, IC 1, IC 1, IC R R

R-^ 3, IC 1, IC 2, IC R R

7.4 Comparison of Direct Connection Rate in Different Schemes

In this section, we compare direct connection rate of NBA scheme with SCC and

PCC schemes.

7.4.1 Result of Step 3 in NBA

Step 3 of NBA is for UAs to perform TCP NAT traversal via the method which is

chosen by NBA Server in Step 2. Table 7-9 and Table 7-10 present the connectivity

check results of group A and group B after performing Step 3 in NBA. We put an aste-

risk () to a block when each connection combination can establish a direct TCP con-

nection in the block. The DCR is 56.84% in group A and 54.17% in group B by using

NBA scheme.

 - 58 -

 Table 7-9 Direct connection of group A made by NBA

 Responsor

 Class ED-r D-drt R-drt D-dt R-dt R-r D-^ R-^ I-D-^

In
itiato

r

ED-r N/A

D-drt

R-drt

D-dt

R-dt

R-r N/A

D-^ N/A

R-^ N/A

I-D-^

Table 7-10 Direct connection of group B made by NBA

Responsor

 Class ED-drt D-drt D-dt D R
In

itiato
r

ED-drt N/A

D-drt

D-dt

D

R

In summary, according to experimental data of section 7.3 and section 7.4.1, we

could conclude that it does not have any error selection existing in NBA selection algo-

rithm. Therefore, we could claim that traversal method chosen from NBA Server can

succeed in traversal target NATs exactly. NBA has no miscarriage of justice about tra-

versal methods while connectivity checks.

: Direct Connection

N/A: Non-Existent

 - 59 -

7.4.2 DCR of Other Traversal Scheme

 SCC with change role or PCC

1. Group A

Table 7-11 Direct connection of group A made by SCC or PCC

 Responsor

 Class ED-r D-drt R-drt D-dt R-dt R-r D-^ R-^ I-D-^

In
itiato

r

ED-r N/A

D-drt

R-drt

D-dt

R-dt

R-r N/A

D-^ N/A

R-^ N/A

I-D-^

2. Group B

Table 7-12 Direct connection of group B made by SCC or PCC

Responsor

 Class ED-drt D-drt D-dt D-^ R-^

In
itiato

r

ED-drt N/A

D-drt

D-dt

D-^

R-^

Direct connection rates of NBA, SCC and PCC are the same in the same group.

DCR of group A is 56.84%; while group B is 54.17%.

7.5 Comparison of System Resource Utilization in Different Schemes

The bottom layer of implementations for the three kinds of TCP NAT traversal

methods are the same in SCR, PCC and NBA scheme. All schemes use the prototypes

implemented by D-Link NCTU Joint Research Center (DNJRC). Therefore, the

 - 60 -

schemes have the same procedures and waiting time in each traversal method.

7.5.1 Connectivity Check Time

In this section, we make a comparison of the total connectivity check time in SCC,

PCC and NBA scheme. Table 7-12 presents average connectivity check time of different

traversal methods; we experiment ten times of each data. Due to each traversal method

only exchange a few message to traverse NATs, it takes a very short time which connec-

tivity checks. However, when connectivity check fails, we must spend several seconds

to wait for results. Besides, connectivity check time of Relay is set to be zero because

our experiment focuses on direct connection. We assume it is the time that UAs start to

establish relay connection.

Table 7-12 connectivity check time

 SNT SLT ESi Relay

Success 1.1602 s 0.1605 s 0.0917 s 0 s

Failure 9.2514 s 8.1507 s 8.0739 s ---

Table 7-13 Traversal time of each scheme

Initiator SCC PCC with Relay NBA

SNT
Caller 1.1602 s

1.1602 s 1.1602 s
Callee 10.4116 s

SLT
Caller 18.6633 s

0.1605 s 0.1605 s
Callee 26.8140 s

ESi
Caller 34.8959 s

0.0917 s 0.0917 s
Callee 42.9698 s

Relay --- 50.952 s

9.2514 s

(Apply Relay after all

traversal methods)

 or 0 s

 (Apply Relay in pa-

rallel)

0 s

Method

Result

Scheme

Method

 - 61 -

 Table 7-13 shows traversal time of each scheme. Because SCC applies each tra-

versal method one-by-one, it has to accumulate failure time of performed traversal me-

thods. For example, if two UAs use SCC scheme to perform connectivity check, finally

callee initiates this check and use ESi traversal method to successfully traverse NATs.

This procedure has to accumulate failure time of SNT, SNT-IC, SLT, SLT-IC and ESi.

And also add successful time of ESi-IC. It is a long period of time.

The concept of PCC is using all traversal methods at the same time, but there are

two approaches to apply Relay method. Someone applies Relay in parallel with other

traversal methods; while the other applies it after fail in direct connectivity check.

Therefore, while applying Relay in after fail in direct connectivity check, the connectiv-

ity check time is the longest one of failure time between traversal methods except Relay.

NBA could eliminate unnecessary connectivity checks, so it does not have to take

the time of fail in applying traversal methods.

7.5.2 Resource Utilizations

Table 7-14 shows numbers of message exchanges about each traversal method.

Table 7-14 Numbers of message exchanges of each traversal method

 SNT SLT ESi Relay

Numbers 6 6 3 6

Table 7-15 Numbers of message exchanges of each scheme

Initiator SCC PCC with Relay NBA

SNT
Caller 6

36 6
Callee 12

SLT
Caller 18

36 6
Callee 24

ESi
Caller 27

36 3
Callee 30

Relay --- 36 36 6

Method

Result

Scheme

Method

 - 62 -

Table 7-15 shows numbers of message exchanges about schemes. Because PCC

performs all traversal methods in the same time, it must accumulate all numbers of

message exchanges in traversal methods. Therefore, it should use a large of system re-

sources within connectivity check procedure.

In summary, according to experimental results of this chapter, NBA has shorter

connectivity check delay than SCC and less resource usages or simpler state mainten-

ance than PCC. Besides, NBA always knows whether we can use the existing traversal

methods to traverse successfully with specific combination of NATs. But SCC has no

idea about traversal methods to NAT combinations. Therefore, PCC sometimes could

have higher DCR than SCC.

 - 63 -

Chapter 8

Conclusions and Future Works

In this thesis, we have demonstrated that NBA is a powerful TCP traversal

scheme. It utilizes NAT information comprehensively to select the most appropriate

traversal method to traverse NATs. NBA has a priori knowledge on connectivity of each

combination of NAT types. Moreover, NBA could eliminate unnecessary connectivity

checks, because it knows what combinations of NAT types are traversable. Therefore,

we need not perform NAT traversal when direct connection is impossible. By perform-

ing NBA, connectivity check of TCP NAT traversal will be more efficient with shorter

check delay, fewer message exchanged, possible higher DCR and less resource usages

or simpler state maintenance compared to other schemes.

In NBA, many NAT type examinations are declared to understand a comprehen-

sive set of NAT characteristics as they pertain to TCP, and we develop an algorithm of

traversal method determination. We have shown that this algorithm has good judgment

in selecting traversal method.

In the future works, there are still many research issues of the proposed scheme.

For example, we only implemented three kinds of practical TCP NAT traversal methods

in this thesis. Maybe we can implement other current TCP NAT traversal methods such

as STUNT #1 and NATBlaster. The direct connection rate will thus increase because of

including new methods. In the other hand, perhaps we can develop new TCP traversal

methods based on our comprehensively knowledge about TCP NAT behaviors.

NBA uses NAT information to select the most appropriate traversal method, but

everyone has his own definitions of appropriateness. Maybe we could give an objective

function to our selection algorithm, and using different input parameters will obtain dif-

 - 64 -

ferent selection results. Therefore, the procedure of method selection in NBA will be

more general and more universal. Besides, we would also try to make our scheme more

robust for fault tolerance and shorter time delay.

 - 65 -

Bibliography

[1] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),” IETF

RFC 1631, May 1994.

[2] B. Ford, P. Srisuresh and D. Kegel, “Peer-to-Peer Communication Across Network

Address Translators,” in USENIX Annual Technical Conference, pp. 179-192,

April 2005.

[3] D. kegel, “NAT and Peer-to-peer Network,” http://www.kegel.com, July 1999.

[4] J. Rosenberg, J. Weinberger, C. Huitema and R. Mahy, “STUN – Simple Traversal

of User Datagram Protocol (UDP) through Network Address Translators (NATs),”

IETF RFC 3489, March 2003.

[5] J. Rosenberg, R. Mahy and P. Matthews, “Traversal Using Relay around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN),” IETF

RFC 5766, April 2010.

[6] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Net-

work Address Translator (NAT) Traversal for Offer/Answer Protocols,” IETF RFC

5245, April 2010.

[7] Jeffrey L. Eppinger, “TCP Connections for P2P Apps: A Software Approach to

Solving the NAT Problem,” Technical Report CMU-ISRI-05-104, Carnegie Mellon

University, January 2005.

[8] F. Audet and C. Jennings, “Network Address Translation (NAT) Behavioral Re-

quirements for Unicast UDP,” IETF RFC 4787, January 2007.

[9] J. Rosenberg, R. Mahy, P. Matthews and D. Wing, “Session Traversal Utilities for

NAT (STUN),” IETF RFC 5389, October 2008.

[10] D.Clark, L. Chapin and V. Cerf, “Towards the Future Internet Architecture,” IETF

http://www.kegel.com/

 - 66 -

RFC 1287, December 1991.

[11] Z. Wang and J. Crowcroft, “A Two-Tier Address Structure for the Internet: A solu-

tion to the problem of Address Space Exhaustion,” IETF RFC 1335, May 1992.

[12] Y. Rekhter, B. Moskowitz and D. Karrenberg, “Address Allocation for Private In-

ternets,” IETF RFC 1918, February 1996.

[13] S. Guha, K. Biswas, B. Ford, S. Sivakumar and P. Srisuresh, “NAT Behavioral Re-

quirements for TCP,” IETF RFC 5382, October 2008.

[14] S. Guha, Yutaka Takeday and P.Francis, “NUTSS: A SIP-based approach to UDP

and TCP network connectivity,” in ACM SIGCOMM Asia Workshops, August

2004.

[15] A. Biggadike, D. Ferullo, G. Wilson and A. Perrig, “NATBLASTER: Establishing

TCP connections between hosts behind NATs,” in ACM SIGCOMM Asia Work-

shop, April 2005.

[16] S. Guha and P. Frances, “Characterization and Measurement of TCP Traversal

through NATs and Firewalls,” in 5
th

 ACM SIGCOMM conference on Internet

Measurement, pp. 18-18, October 2005.

[17] S. Guha, K. Biswas, B. Ford, S. Sivakumar and P. Srisuresh, “NAT Behavioral Re-

quirements for TCP,” IETF RFC 5382, October 2008.

[18] Cheng-Yuan Ho, Fu-Yu Wang and Chien-Chao Tseng, “To Call or to Be Called

under NATs is Sensitive for Solving Direct Connection Problem,” Submitted to

IEEE Communications Letters, 2010.

[19] P. Srisuresh, B. Ford and D. Kegel, “State of Peer-to-Peer (P2P) Communication

across Network Address Translators,” IETF RFC 5128, March 2008.

[20] R. Roverso, S. El-Ansary and S. Haridi, “NATCracker: NAT Combinations Mat-

ter,” in 18
th

 International Conference on Computer Communications and Network

2009, pp. 1-7, August 2009.

 - 67 -

[21] Zhou Hu, “NAT Traversal Techniques and Peer-to-Peer Applications,” HUT

T-110.551 Seminar on Internetworking, 2005.

[22] STUNT, http://nutss.gforge.cis.cornell.edu/stunt.php

[23] XSTUNT, http://www.cis.nctu.edu.tw/~gis87577/xDreaming/XSTUNT/index.html

[24] R. Denis-Courmont, “Test Vectors for Session Traversal Utilities for NAT

(STUN),” IETF RFC 5769, April 2010.

[25] D. MacDonald and B. Lowekamp, “NAT Behavior Discovery Using Session Tra-

versal Utilities for NAT (STUN),” IETF RFC 5780, May 2010.

http://nutss.gforge.cis.cornell.edu/stunt.php
http://www.cis.nctu.edu.tw/~gis87577/xDreaming/XSTUNT/index.html

