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ABSTRACT: A general method for the large deflection analysis of inelastic 
plane frames is presented. The large deflection analysis is based on the 
Eulerian formulation in which a member tangent stiffness matrix is 
constructed with reference to the current deformed configuration. The 
exact differential equation and the moment-thrust-curvature relations of 
a member subjected to large relative deflection are used for deriving the 
member tangent stiffness matrix. A member tangent stiffness matrix for 
W-sections of elasto-plastic material is constructed as an example and its 
application to the large deflection analysis of inelastic frames is demon­
strated by several examples. A simple form of the member tangent 
stiffness matrix is deduced from the above exact formulation by utilizing 
the assumption of small member relative deflections. It is shown that the 
simple one can yield excellent results compared to those obtained by the 
exact formulation. Hence it is reasonable to adopt the assumption of 
small member relative deflections in the large deflection analysis of 
inelastic framed structures. 

INTRODUCTION 

The evaluation of accurate ultimate loads of structures is an important 
task in the structural design and reliability analysis processes. In order to 
find the accurate ultimate loads, one has to consider both material and 
geometrical nonlinearities in the structural analysis. Therefore the nonlin­
ear analysis of framed structures has become a subject of research for 
many years. A considerable amount of research was devoted to the 
analysis of inelastic frames based on the assumption of small deflections of 
the frames (Alvarez and Birnstiel 1969; Harung and Miller 1973; Kam et al. 
1983; Oran 1973; Saafan 1963; Vijakklane 1974). Some researchers inves­
tigated the large deflections of elastic frames (Lee et al. 1968; Meek and 
Tan 1984; Oran and Kassimali 1976; Qashu and Dadeppo 1983; Turner et 
al. 1960). Recently, the large deflection analysis of inelastic frames has 
been successfully treated by some authors (Argyris et al. 1982; Backlund 
1976; Bathe and Ozdemir 1975; Cichon 1984). For instance, Kassimali 
(1983) presented a method for the analysis of inelastic frames in which rigid 
body displacements of members can be arbitrarily large while relative 
member deflections are considered to be small and yielding is restricted to 
concentrated points at member ends. El-Zanaty and Murray (1983) utilized 
the incremental viriational principles together with the finite element 
method to analyze inelastic frames subjected to large deflections. Never­
theless it has been pointed out that the development of an efficient and 
effective method for the large deflection analysis of inelastic structures is 
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still a live problem (Cichon 1984). Hence more research work is needed in 
this area. 

In this paper, an alternative for the large deflection analysis of inelastic 
frames is proposed. A general formulation of member tangent stiffness 
matrix for inelastic members subjected to large deflection is presented. The 
formulation is derived from an integral equation form of the exact 
differential equation of a beam-column in a local Eulerian coordinate 
system and includes the effects of the spreading of yielding, changes in the 
stiffness of the structure due to axial force, axial shortening of members, 
and the reduction of plastic moments of resistance due to axial loads. The 
tangent stiffness matrix of a wide-flange steel member is presented as an 
example, and its application to the large deflection analysis of inelastic 
frames is demonstrated by means of several examples. A simpler form of 
the member tangent stiffness matrix obtained by adopting the assumption 
of small relative member deflections is used for the large deflection 
analysis of the previously mentioned inelastic frames to study the effect of 
different formulations of member tangent stiffness on the behavior of the 
frames. It is shown that for some inelastic frames the effect is small when 
the large displacements of the frames are mainly due to the rigid body 
displacements of members and member relative deflections remain small 
during deformation. 

The basic assumptions adopted in the formulation of the member 
tangential stiffness matrix are: the member is initially straight; and sections 
normal to the centroidal axis of the undeformed member remain undistor-
ted and normal to the deformed centroidal axis. 

LARGE DEFLECTION OF MEMBER AT EQUILIBRIUM STATE 

Consider an arbitrary prismatic member ij of initial length L0 in equilib­
rium under the action of end forces in local Eulerian coordinates as shown 
in Fig. 1 in which the positive directions of the end forces and end 
displacements are indicated. 

y , n 
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7~« 4 -

j / p 

u 

FIG. 1. Member in Local Eulerian Coordinate System 
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intermediate point 

segment k 

x,? 

FIG. 2. Deflections at Intermediate Points 

The differential equation of the member with large relative deflection is 

y" = aO>(a) (1) 

in which a = [1 + (y')2]3/2; <f>(a) = the curvature at any section of the 
member; and a is a set of independent parameters. Integrating Eq. 1 twice 
and observing the boundary conditions at the two ends of the member, i.e., 
y = 0 at x = 0 and x = L, one obtains the following equations: 

y = 

and 

y = 

* ^a<I> 
dt, 

L / e \ 
1 - T- laO <*£ . 

1 - - teo<D <% iX'-i; a® d%. 

(2d) 

(2b) 

where £ is a dummy variable for integration. The slopes at the two ends can 
be written as 

yt = 

yj 

1 - - laO dt, (3d) 

$ a®d£, (3b) 
o L 

Subtraction of y\ from y'j gives 

y) - ?, = \ a$ d^ (4) 

If member ij of Fig. 1 is subdivided into n segments with n-\ intermediate 
points between them, as shown in Fig. 2, the vertical deflections and the 
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slopes at the intermediate points from Eq. 2 are 

and 

n = 

a- ^a# dZ, - xk{ 1 - ~\a<$> dt, 

£a<J> 
d£, -ro a<D d£ 

(5a) 

(5ft) 

in which yk, rk = deflections and slopes at the intermediate points, 
respectively; and k = 1, 2, . . . , n-\. The axial deformation of member ij 
due to the application of axial forces and the bowing effect is expressed as 

u = ec d% + x/i + (y1)2 dl-L (6) 

in which u = shortening in axial direction; and ec = compressive normal 
strain at the centroid of the cross section in the deformed state. Let the 
displacement relations of Eqs. 6,4, 3b, and 5 be expressed in the functional 
forms 

Fx(a) = Br<flj + 
Jo Jo 

1 + {y'f d^-L-u 

a) = f a0> d$ - (y'j - tf) 
Jo 

H 0 V ^ • 
H * ( a ) = ~r* ̂  ~ ?)a® ̂  ~ r ^ o ~ 9 a a > dk~y* {id) 

F2(, 

F3(> 

(7a) 

{lb) 

(7c) 

**(«) = 
^a<I> 

ft- 1 § 
afcrfS (7e) 

in which A: = 1 , 2 , . . . , «-l; and a is defined as 

a = [ P M , . M J . j 1 . . . y „ _ 1 r 1 . . . r ^ m ^ ] (7/) 

Define a column vector F such that 

F(a)T = [F1F2F3Hl...Hn_lK1... K „ _ J (8a) 

When compatibility and equilibrium are satisfied, F becomes a null vector, 
or 

F(a) = 0 (8fc) 

The evaluation of the integrals in Eq. 7 can be accomplished by using cubic 
splines to approximate the deflections of the segments along the member 
and a Gauss-Lobatto quadrature expression for numerical integration. The 
use of a Gauss-Lobatto quadrature, which considers the end points as 
integration points, can ensure convergence and give excellent results for 
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the plastic analysis of members with plastic hinges developed at the ends 
as reported in Crisfield (1983). 

If the end displacements of member ij are prescribed, the corresponding 
end forces and deflections at the intermediate points of the member can be 
evaluated from Eq. 8b by using the standard Newton-Raphson iteration 
procedure. Let 

« = [«i : a2] (9a) 

in which 

a1 = lPMtMJy1...y„_1rt... r „_ J (9b) 

and 

a2 = Luy'iy'j] (9c) 

Assuming F(a) to be analytic, and since a2 is prescribed, expansion of F(a) 
in a truncated Taylor series about a" which is an approximation of a^ yields 

Fatf a2l) = F(\.a\ : a J) + 
dF"~ 

_da1_ 
(Aoi)" s 0 (10) 

in which a" + x = a" + Aa" ; a' = transpose of a; and n stands for the nth 
iteration cycle of the iteration procedure. Improved values of a"+' can then 
be obtained by computing 

Aa'[ = 
dF" 

da± 
F" 

Repetition of the process continues until the error 

= 771+1 f»+ l _ pn 

(11) 

(12) 

becomes sufficiently small. 

MEMBER TANGENTIAL STIFFNESS MATRIX IN LOCAL EULERIAN 
COORDINATES 

Consider an adjacent equilibrium state which is obtained by increment­
ing the end displacements and end forces of the member which is currently 
in equilibrium. Then Eq. 8 becomes 

F(a + Aa) = 0 

Expansion of Eq. 13 in a curtailed Taylor series leads to 

'dF' 
F(a + Ad) = F{a) + 

and since F(a) = 0 

~d£ 
da 

da 
Aa'= 0 

Aa' = 0 

(13) 

(14) 

(15) 

188 

J. Struct. Eng. 1988.114:184-197.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 o

n 
05

/0
1/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



From Eq. 9, Eq. 15 can be written as 

dF' 
Aa\ = - ~d£ 

da, 
Aa\ (16) 

If 

6 = [FM,Mj]« (17a) 

and 

« = CVi ••• yn-i
ri ••• r „ - i ] ' (17&) 

then 

al = [b' j 9'] • (18) 

Substitution of Eq. 18 into Eq. 16 yields 

dF_ 

_dai 

Ab 
Aq 

~d£ 
da0 

Aa', (19) 

Performing a static condensation of Eq. 19, a relationship between Ab and 
AA2 is obtained as 

Ab = K'Aa, t (20) 

in which K' = a 3 x 3 member tangential stiffness matrix in local Eulerian 
coordinates. 

TRANSFORMATION OF COORDINATES 

Fig. 3 shows the initial undeformed and the current deformed configu­
rations of member ij. The rigid body rotation of the member can be 

Q 5 ' D S f V D 6 

7 — B Q 4 ' D 4 

FIG. 3. Member in Global Coordinate System 
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arbitrarily large. Let Q and D be the member end forces and end 
displacements, respectively, of the deformed member in the global xrx2 
coordinate system. The incremental global member end forces AQ are 
related to those in the local Eulerian coordinate system, i.e., Ab, by 

AQ= TAb 

in which 

AQ' = [Ag, AQ2 A<23 AQ4 AQ5 AQ6] 

and the transformation matrix 

sin p sin p 

(21a) 

(21b) 

t U 8 (J 

sin P 

0 

— cos P 

— sin p 

0 

L 

cos p 
L 

1 

sin p 
L 

cos p 
L 

0 

L 

cos p 
L 

0 

sin p 
L 

cos p 
L 

1 

(21c) 

in which p = angle between the local and global coordinate axes. The 
slope at any section of the member referenced to the local Eulerian 
coordinate system is 

/ = t an6 (22) 

in which 6 = rotation of the section in the local coordinate system, and the 
incremental relation between slope and rotation is 

Ay' = — r ^ A e • (23) 
cos^ 0 

In view of Eq. 23 the incremental relation between member end displace­
ments AD in the global coordinate system and those, Aa2, in the local 
coordinate system can be written as 

Aa2 = B' AD (24a) 

in which 

AD' = {AD1AD2AD3AD4ADSAD6} (24b) 
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and the transformation matrix 

B = 

sin p sin p 
cos p 

sin p 

0 

— cos p 

— sin p 

0 

L cos2 0(-

cos P 
L cos2 0; 

1 

cos2 0,-

sin P 
L cos2 0f 

cos P 
L cos2 0, 

0 

L cos2 fy 

cos p 
L cos2 Qj 

0 

cos p 
L cos2 Qj 

cos P 
L cos2 0j 

1 

(24c) 

COS2 0 ; 

in which 8,-, 6,- — member end rotations in a local coordinate system. From 
Eqs. 21 and 24 the incremental relationship between member end forces 
and end displacements in the global coordinate system can be expressed as 

AQ = KAD 

and the 6 x 6 member tangential stiffness matrix 

K = TK'B' 

(25a) 

(25b) 

Assembling all member tangential stiffness matrices by the direct stiffness 
procedure yields the structure tangential stiffness matrix for relating 
incremental values of nodal forces and nodal displacements as 

AR = K,Ar (26) 

in which Ks = the structure tangential stiffness matrix; AR = the 
assembled vector of incremental nodal forces; and Ar = the assembled 
vector of incremental nodal displacements. As for the nonlinear analysis of 
inelastic frames, the modified arc length method of Crisfield (1983) and 
Meek and Tan (1984) is used for obtaining the load-displacement charac­
teristics of the frames. 

It is noted that the foregoing formulation of the member tangential 
stiffness matrix will become much simpler if the relative member deflection 
in the local coordinate system is assumed to be small while the rigid body 
rotation of the member can be arbitrarily large. In this occasion, the 
variable a of Eq. 1 becomes one, the slope of the member in the local 
coordinate system can be approximated by its rotation, and the transfor­
mation matrice B in Eq. 25b can be replaced by T of Eq. 21c. This leads to 
a simpler form of the member tangent stiffness matrix. The use of this 
stiffness matrix for the large deflection analysis of the same inelastic 
frames can yield excellent results as shown in the subsequent sections. 
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STIFFNESS MATRIX OF WIDE-FLANGE MEMBERS 

If a wide-flange member undergoes elastic-plastic bending, three possi­
ble stress distributions, which correspond, respectively, to three zones— 
elastic, primary plastic, and secondary plastic—may occur at a section of 
the member. The three stress distributions of an idealized wide-flange 
section are shown in Fig. 4. Explicit expressions of curvature in terms of 
bending moment and axial force on a cross section for the three zones have 
been derived by Hauck and Lee (1963) with the following assumptions: (1) 
The material is linear elastic-perfectly plastic; (2) cooling residual stress is 
not included; and (3) no strain reversal is considered. The spreading of 
yield zone in a member is considered by substituting the appropriate 
curvature expressions into Eqs. 2 and 6 when performing the integrations. 
The reduction of plastic moment due to axials loads is implicitly included 
in the curvature expressions. From these curvature equations, the tangent 
stiffness matrix of Eq. 20 can be constructed by following the previously 
described procedure. A complete description of the formulation is given in 
Kuo (1985). 

NUMERICAL EXAMPLE 

The accuracy of the proposed method is first verified by comparing the 
present analysis of the post-buckling of a beam column with the exact 

A f /2 

\ 

Kj2 

T 
2b 

1 .A 
| « — J 

(a) (h) (c) (d) 

FIG. 4. Idealized Section and Types of Stress Distribution: (a) Idealiied Section; (b) 
Elastic; (c) Primary Plastic; (d) Secondary Plastic 

FIG. 5. Loads on Elastic Beam-Column 
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3.0 . ™ 

2.0 

Data 

E = 

I = 

L = o 

for Analysis 

3 x 10° 

16 

50 

538 

0 

Exact 

0 0 0 Present 

Analysis 

0 0.2 0.4 0.6 0.8 1.0 L 

FIG. 6. Post-Buckling of Elastic Beam-Column 

solution. The cantilever beam-column is subjected to an axial force P as 
shown in Fig. 5. A small transverse load is applied to create an initial 
imperfection. The results on the load-displacement relation obtained by 
the present method are plotted in Fig. 6 and compared with the "Elastica" 
solution (Timoshenko and Gere 1961). The application of the proposed 
method in the large deflection analysis of inelastic frames is demonstrated 
by analyzing two frames. Both exact and approximate formulations of the 
member tangent stiffness matrix are used for the illustrations and the 
results are compared. 

P 
9 
P 
9 

120" 

-A-

40" 

40" 

40" 

120" 120" 

\£D 

A 
FIG. 7. Loaded Frame with Hinged Base (1 in. = 25.4 mm) 
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o o Measured Displacement 

Present Analysis: Small Relative 
Deflection 

-- Present Analysis: Large Relative 
Deflection 

10 11 12 13 14 
D(in.) 

FIG. 8. Load-Displacement Curves for Frame with Hinged Base (1 kip = 4448N; 1 in. 
= 25.4 mm) 

Comparison with Experimental Frame 
The frame with a hinged base in Fig. 7 was fabricated from W 12 X 36 

steel sections and tested by Schilling et al. (1956). Loads were applied at 
the four points indicated and increased in proportion by small finite 
increments. The deflection at the midspan of the beam was measured and 
the resulting experimental points are shown in Fig. 8. 

Using the member properties obtained from actual measurements, the 
frame is analyzed by using the present method in which seven members are 
used with each member being subdivided into six segments and a 4 point 
Gauss-Lobatto quadrature expression is used for numerical integration 
within each segment. Results obtained from the two different formulations 
based on large and small member deflection theories, respectively, are 
plotted in Fig. 8. 

Load-Displacement Relation of Four-Story Frame 
The four-story frame in Fig. 9 was previously analyzed for different 

lateral to vertical load ratios (r = 0.1, 0.24, 0.5) by Kassimali (1983) using 
large rigid body rotation and small relative member deflection theory, and 
the results are shown in Fig. 10. The present method is utilized to analyze 
the same frame. The results obtained from the formulations based on large 
and small relative member deflection theories are plotted in Fig. 10. 

CONCLUSIONS 

A general method for the large deflection analysis of elastic-plastic 
frames is presented. The formulation of a member tangential stiffness 
matrix is based on the exact differential equation of a member subjected to 
large deflection referenced to a local Eulerian coordinate system. Nonli-
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Ttr rrr 
ig/2 . ig/2 . 

Columns: W12x79 (Bottom Story) 
Wl0x60 (Other Stories) 

Girders: Wl6x40 
Lc = 12 ft (3.66 m) 

L = 30 ft (9.15 m) 

E = 13xl03tsi (201xl06kpa) 

aQ = 15.25 tsi (236xl0
3kpa) 

FIG. 9. Four Story Frame = Loads, Dimensions, and Properties 

nearities associated with the changes in the stiffness of the member due to 
axial force, axial shortening of the member, bowing effect, P-A effect, the 
reduction of plastic moment due to axial loads, and the spreading of plastic 
zones are included. A 6 x 6 stiffness matrix in a global coordinate system 
is derived for wide-flange members, and its application to the large 
deflection analysis of inelastic frames is demonstrated by several simple 
examples. A simpler form of the member tangent stiffness can be obtained 
if the assumption of small relative member deflection is used. A compar­
ison on the accuracy between the two formulations is also made by the 
presented examples. It is shown that, for some inelastic frames, if the large 
displacements are mainly due to the rigid body displacements of members, 
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Obtained in Ref. [7) 

Present Analysis: Small Relative 
Deflection 

Present Analysis: Large Relative 
Deflection 

10 12 14 16 18 20 D(ih.) 

FIG. 10. Load-Displacement Curves for Four-Story Frame (1 ton = 9.97 KN; 1 in. = 
25.4 mm) 

the adoption of the small member relative deflection assumption is 
acceptable and accurate ultimate loads can be obtained. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper. 

a 
« i 

«2 
B 
b 
F 

Ft 
Hk 

Kk 

K 
K' 
L 

L0 

M(, Mj 
P 
<7 
T 
u 

P 
e,,e, 

= 
= 
= 
= 
= 

-= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

[ai a2]; 
[PMiMJy1 . . . . )>„_! /-! . . . . r„_J; 
[uy}yji; 
displacement transformation matrix; 
[P M( Mj\'; 
displacement equation vector; 
end displacement equation; 
equations of intermediate vertical displacements; 
equation of intermediate slopes; 
6 x 6 stiffness matrix; 
3 x 3 stiffness matrix; 
length of deformed member; 
initial length of member; 
end moments; 
axial force along local coordinate axis; 
b\ yn-\ / • ! • • • • >•„_!]; 
force transformation matrix; 
axial displacement; 
angle between local and global coordinate axes; and 
end rotations. 
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