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Summary

In this thesis, we investigate the soft handoff mechanism and power allocation mecha-
nism for the wide-band code division multiple access (WCDMA) system. We propose
a contour overlapping technique for soft handoff parameters design in the WCDMA
system. Moreover, we evaluate the performance of different power allocation schemes
subject to power efficiency, sensitivity to power control errors and resistance to the
fast fading. This thesis includes three parts.

First, we presents a contour overlapping technique to design downlink soft hand-
off parameters for the WCDMA system. Optimizing soft handoff performance in the
WCDMA system is a challenging task because it is necessary to determine many pa-
rameters to meet different requirements simultaneously. There are four key soft hand-
off parameters, including AS_TH, AS ' TH HYST, AS. TH REP, and AS MAX SIZE.
Each soft handoff parameter affects different system performance aspects, includ-
ing handoft probability, active set size, and link quality. Through simulations, we
evaluate the impact of each handoff parameter on different performance metrics.
Our results indicate that AS_'TH and AS_TH_HYST significantly affect the target
Ey/N,, handoff probability, and average active set size, while the other two parame-
ters, AS.TH_REP and AS_MAX_SIZE, have little effect. Based on this observation,
we develop a simple contour overlapping technique to determine handoff parameters
AS_TH and AS_.TH_HYST subject to various performance requirements simultane-
ously. The proposed design method can facilitate the soft handoff parameters design

for the WCDMA system.



Second, we derive the closed-form expressions for the outage probabilities of
different power allocation mechanisms subject to transmission power control errors. In
addition to site selection diversity transmission (SSDT), we consider the equal power
allocation (EPA), quality balancing power allocation (QBPA), and link proportional
power allocation (LPPA) schemes. From both the perspectives of base station power
shortage and power control errors, we develop a semi-analytical approach to evaluate
the outage performance of different power allocation schemes. Our numerical results
show that due to power control errors, the system with SSDT suffers from a higher
outage probability with a moderate traffic load although it can achieve the lowest
outage probability performance in the heavy traffic condition. Furthermore, the LPPA
system can almost approach the same capacity as SSDT system, while maintaining
lower outage probability than SSDT in the typical traffic condition.

Third, we present an analytical approach to evaluate the outage probability of
a handoff user in the WCDMA system when applying different downlink power allo-
cation mechanisms in the log-normally shadowed and Rician fading channel subject
to co-channel interference. We consider the following power allocation mechanisms,
including SSDT, LPPA, EPA and QBPA. An analytical formula for calculating the
power efficiency of the above schemes is also derived in the paper. Out results show
that although the SSDT method is most power efficient, it is also most sensitive
to the fast fading and co-channel interference. As compared to the SSDT method,
the LPPA mechanism achieves better outage in presence of fast fading at the cost
of slightly sacrificing power efficiency. The proposed analytical frame work can also
evaluate the effects of soft handoff threshold, orthogonality factor of channelization
codes, and the Rician factor.

To summarize, we analyze the soft handoff and power allocation mechanism in
the WCDMA system. For soft handoff study, we provide a systematic methodology to
design the optimal soft handoff parameters subject to multiple system requirements.

For power allocation schemes study, we evaluate the performance of different power

i1



allocation schemes, including EPA, QBPA, SSDT, and LPPA, from the perspective
of power efficiency, resistance to power control errors and sensitivity to Rician fast
fading effects considering co-channel interference. Through the study of this thesis, we
provide some guidelines to improve the system performance by adjusting soft handoft
parameters and power allocation schemes, which can be implied to the real systems

at least cost.
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CHAPTER 1

Introduction

Wireless communications are becoming increasingly popular nowadays. The evolution
of wireless communications has been incredibly fast and the future of this technology is
unlimited. Mobility, portability, and instant access data from Internet are the selling
points of the wireless communication system. Since the first commercial mobile phone
network was opened for business in Tokyo in 1979, billions of people have experienced
the convenience of talking anytime, anywhere by mobile phone. Twenty-five years
have passed, people require more than only voice services. The growing demand
of multimedia services has encouraged the telecommunication industry to start a
business of data-oriented services. Because the data rate of the second generation
mobile systems is not sufficient to support the high quality multimedia services, the
third generation (3G) mobile systems is going to be in the market soon.

The 3G system is based on the the wide-band code division multiple access
(WCDMA) system. In the WCDMA system, the soft handoff mechanism is critical
technique to provide seamless services. During soft handoff process, the downlink
power allocation mechanisms calculate the transmission power of each base station
in the active set. Soft handoff has been viewed as an inevitable technique of the
code division multiple access (CDMA) system since the introduction of the second
generation cellular mobile systems. However, as the downlink transmission power
grows with increasing downlink traffic volume, more interference is generated espe-
cially when assigning multiple channels to one mobile. Since the performance of

the WCDMA system is interference-limited, how to adjust soft handoff and power



allocation mechanisms in the WCDMA system is still a hot research issue.

1.1 Problems and Solutions

Usually, quality of service (QOS) and capacity are two contradictory objectives. How
to improve QOS and achieve high capacity is an important issue in wireless commu-
nication systems. Soft handoff and power allocation mechanisms are two important
technique in the WCDMA system. For soft handoff, it is challenging to design op-
timal handoff parameters, because there are many parameters and multiple system
requirements have to be achieved simultaneously. On the other hand, the challenge
for power allocation mechanism selection is to achieve high power efficiency and low
outage probability at the same time. Appropriate soft handoff parameters and suit-
able power allocation schemes can enhance system performance dramatically. We

illustrate each research topic in details as follows.

1.1.1 A Contour Overlapping Technique for Soft Handover
Parameters Design in the WCDMA System

We presents a contour overlapping technique to design downlink soft handoff param-
eters setting for the WCDMA system. Optimizing soft handoff performance in the
WCDMA system is a challenging task because it is necessary to determine many
parameters to meet different requirements simultaneously. There are four key soft
handoff parameters: 1) active set threshold (AS_TH); 2) active set threshold hys-
teresis (AS_.TH_HYST); 3) active set threshold for replacement (AS_TH_REP); and
4) maximum active set size (AS_.MAX_SIZE). Each soft handoff parameter affects
system performance differently on various performance measures, including handoft

probability, active set size, and link quality. Through simulations, we evaluate the



impact of each handoff parameter on the above performance measures. Our results
indicate that AS_TH and AS_TH_HYST significantly affect the target Fj/N,, handoff
probability, and average active set size, while the other two parameters, AS_ TH REP
and AS_MAX _SIZE, have little effect. Based on this observation, we develop a simple
design methodology and a contour overlapping technique to determine handoff param-
eters AS_'TH and AS_TH HYST subject to various performance requirements simul-
taneously, which can facilitate the soft handoff parameters design for the WCDMA

system.

1.1.2 Performance Evaluation of Downlink Power Allocation
Mechanisms for Soft Handoff in the WCDMA System

with Power Control Errors

We derive the closed-form expressions for the outage probabilities of different power
allocation mechanisms subject to transmission power control errors. In addition to
site selection diversity transmission (SSDT), we consider the equal power allocation
(EPA), quality balancing power allocation (QBPA), and link proportional power al-
location (LPPA) schemes. From both the perspectives of base station power shortage
and power control errors, we develop a semi-analytical approach to evaluate the out-
age performance of different power allocation schemes. Our numerical results show
that due to power control errors, the system with SSDT suffers from a higher outage
probability with a moderate traffic load although it can achieve the lowest outage
probability performance in the heavy traffic condition. Furthermore, the LPPA sys-
tem can almost approach the same capacity as SSDT system, while maintaining lower

outage probability than SSDT in the typical traffic condition.



1.1.3 Performance Analysis of Downlink Power Allocation
Mechanisms for Soft Handoff in the WCDMA System

with Co-channel Interference

We present an analytical approach to evaluate the outage probability of a hand-
off user in the WCDMA system when applying different downlink power allocation
mechanisms in the log-normally shadowed and Rician fading channel subject to co-
channel interference. We consider the following power allocation mechanisms, includ-
ing SSDT, LPPA, EPA and QBPA. An analytical formula for calculating the power
efficiency of the above schemes is also derived in the paper. Out results show that
although the SSDT method is most power efficient, it is also most sensitive to the fast
fading and co-channel interference. As compared to the SSDT method, the LPPA
mechanism achieves better outage in presence of fast fading at the cost of slightly
sacrificing power efficiency. The proposed analytical frame work can also evaluate
the effects of soft handoff threshold, orthogonality factor of channelization codes, and

the Rician factor.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 reviews the WCDMA system,
soft handoff mechanism, power allocation, and other related techniques. In Chapter
3, we propose a contour overlapping technique to optimize the soft handoff parame-
ters in downlink WCDMA system. In Chapter 4, we analyze the power efficiency and
sensitivity to power control errors of four power allocation schemes, including link pro-
portional power allocation (LPPA), equal power allocation (EPA), quality balancing
power allocation (QBPA), and site selection diversity transmission (SSDT). Chapter

5 discusses the outage performance of the four power allocation mechanisms in the



log-normally shadowed and Rician fading channel subject to co-channel interference.

Chapter 6 gives our conclusions and provides suggestions for future research.



CHAPTER 2

Background

In this chapter, we review the techniques related with wide-band code division multi-

ple access (WCDMA) system, soft handoff technique, and power allocation schemes.

2.1 WCDMA System

The telecommunication industry is now shifting their focus from second generation
(2G) to third generation (3G) system due to growing demand on wireless data and
multimedia services [1]. The wireless network of 3G is based on wide-band code
division multiple access (WCDMA) system [2] [3]. The WCDMA system supplies
data rate up to 2 Mbps. Figure 2.1 shows the evolution of telecommunication systems
from 1G to 3G.

Two operating mode are applied, namely frequency division duplex (FDD)
and time division duplex (TDD). Figure 2.2 illustrates the difference of frequency
allocation between FDD and TDD methods. One can find that the FDD method
needs a pair of frequency band for both uplink and downlink transmission, while the
TDD method only need a frequency band but switch the transmission direction in
time. We briefly summarize the important characteristics of the FDD-CDMA and
TDD-CDMA systems in Table 2.1 as follows.
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code-division multiple-access

Figure 2.1: Telecommunication system evolution.

2.2 Soft Handoff Mechanism

Handoff mechanism is activated when a mobile station moves from the coverage area
of a base station to another base station [4]. For the TDMA system, such as GSM,
hard handoff is usually adopted. For hard handoff, a mobile station connects to only
one base station any time. However, CDMA systems usually implement soft handoff,
which allows a mobile station to connect to multiple base stations simultaneously
[5-7]. Soft handoff can improve link quality by assigning multiple channels to a user.
On the other hand, soft handoff consumes more system resource. Thus, there exists
a tradeoff between link quality maintenance and system capacity [8,9]. That is,
the higher the soft handoff probability, the lower the system capacity. Thus we can
control the timing and probability of handoff by choosing appropriate soft handoff

parameters. However, it is a challenging task to determine a set of optimal soft
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Figure 2.2: Spectrum utilization of FDD and TDD modes

handoff parameters to meet all the system requirements simultaneously.

Figure 2.3 show the scenario of soft handoff. When a mobile terminal moves
the the cellular boundary and proceed the soft handoff, the mobile establish links to
both base stations. Two base stations transmit the same data to the mobile and the
mobile uses rake receiver and maximum ratio combining mechanism to combine the
signal [10] [11]. Mobiles in handoff process get a soft handoff gain with appropriate
system parameters [12] [13]. Soft handoff mechanism improves cell coverage and QOS

by assigning multiple channels to one mobile station.

2.3 Power Allocation Mechanism

Power allocation mechanism calculate the transmission power of each base station in
the active set during the process of soft handoff. The goal of power allocation mecha-
nism is to coordinate all the base station in the active set and adjust the transmission
power to meet the signal to interference ratio (SIR) requirement. There are four power

allocation schemes are taken into consideration, including the site selection diversity
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Figure 2.3: Scenario of soft handoff.

transmission (SSDT) [14-16], the link proportional power allocation (LPPA) [17-19],
the equal power allocation (EPA) [20-22], and the quality balancing power allocation
(QBPA) [23]. Each power allocation scheme has different impact on the performance
of power efficiency, sensitivity to power control errors, and sensitivity to fast fading

effects.



Table 2.1: Comparison of UTRA FDD and TDD physical key parameters.

UTRA TDD

UTRA FDD

Multiple access

method

CDMA (inherent FDMA)

CDMA (inherent FDMA)

Duplex method

TDD (suitable for asym-
metric services, e.g., web

browsing.)

FDD (suitable for symmet-

ric services, e.g., voice.)

Channel spacing

5 MHz (nominal)

Carrier chip rate

3.84 Mcps

Timeslot structure

15 slots/frame

Frame length

10 ms

Multirate concept

Multicode, multislot and or-
thogonal variable spreading

factor (OVSF)

Multicode and OVSF

Modulation QPSK
) Coherent, based on mi- | Coherent, based on pilot
Detection
damble symbols

Intra-frequency han-

dover

Hard handover

Soft handover

Inter-frequency han-

dover

Hard handover

Channel allocation

DCA supported

No DCA required

Intra-cell interference

cancellation

Support for joint detection

Support for advanced re-

ceivers at base station

10
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CHAPTER 3

A Contour Overlapping Technique for
Soft Handover Parameters Design in the

WCDMA System

This chapter and [24] presents a contour overlapping technique to design downlink
soft handoff parameters setting for the WCDMA system. Optimizing soft hand-
off performance in the WCDMA system is a challenging task because it is neces-
sary to determine many parameters to meet different requirements simultaneously.
There are four key soft handoff parameters: 1) active set threshold (AS_TH); 2) ac-
tive set threshold hysteresis (AS_TH_HYST); 3) active set threshold for replacement
(AS_-TH_REP); and 4) maximum active set size (AS_-MAX_SIZE). Each soft handoff
parameter affects system performance differently on various performance measures,
including handoft probability, active set size, and link quality. Through simulations,
we evaluate the impact of each handoff parameter on the above performance mea-
sures. Our results indicate that AS'TH and AS TH_HYST significantly affect the
target Fy/N,, handoff probability, and average active set size, while the other two
parameters, AS_ TH_REP and AS_.MAX_SIZE, have little effect. Based on this obser-
vation, we develop a simple design methodology and a contour overlapping technique
to determine handoff parameters AS_TH and AS_.TH_HYST subject to various perfor-

mance requirements simultaneously, which can facilitate the soft handoff parameters



design for the WCDMA system.

3.1 Introduction

Soft handoff is an important technique to improve the quality of service in cellu-
lar mobile systems. For the wide-band code division multiple access (WCDMA)
system, many soft handoff parameters are required to be designed appropriately to
achieve high performance gain. The key soft handoff parameters in the WCDMA
system include: 1) active set threshold (AS_TH); 2) active set threshold hysteresis
(AS_.TH_HYST); 3) active set threshold for replacement (AS_TH_REP); and 4) active
set maximum size (AS_.MAX_SIZE) [25]. Thus, it is a challenging task to find a set
of soft handoff parameters subject to many different performance requirements.

The performance of a handoff algorithm can be gauged mainly by the following
three requirements: 1) the radio link quality in terms of the ratio of bit energy to
noise power density (Ey/N,); 2) the average active set size; 3) handoff probability,
which is defined as the ratio of the number of snap shots in handoff to the number of
total snap shots. Obviously, it is desirable to set he handoftf parameters to achieve a
higher E;,/N, performance. On the contrary, handoff requests consume more system
resource. Thus, it is preferred to have a lower handoff probability or active set size.

In the literature, some papers have discussed how to choose handoff parameters
[26] [27] [21]. In [26] [27], the authors compared limited sets of handoff parameters
in various propagation environments. In [21], the authors studied the effect of the
maximum allowed active set size and the handoff threshold on the outage probability
and the total average base station transmit power for a handoff user in a omni-
directional cellular system. In general, these works analyze the effect of a certain
set of soft handoff parameters in the WCDMA system. In this chapter, we consider

the handoff design issue from different angles. Specifically, given a set of system

12



performance requirements, we want to design suitable handoff parameters subject to
the impact of terminal mobility and channel varieties.

The goals of this chapter are two folds. First we aim to discuss the effect
of each soft handoff parameter, including AS TH, AS ' TH HYST, AS_'TH REP, and
AS_ MAX SIZE. Second, we develop a systematic methodology to search all the feasi-
ble solutions of handoff parameters to meet the predetermined performance require-
ments in forward link, including Ej/N,, handoff probability and active set size.

The rest of this chapter is organized as follows. Section 3.2 introduces our
simulation model. Section 3.3 illustrates soft handoft for the WCDMA system in de-
tails. In Section 3.4 we evaluate the effects of handoft parameters by using WINDSP.
Section 3.5 details the contour overlapping technique for handoff parameters opti-

mization. We give our concluding remarks in Section 3.6.

3.2 System Model

To evaluate the effect of handoff parameters in terms of different performance require-
ments. It is important to incorporate the impacts of both radio channel impairments
and terminal mobility. We have developed such a simulator called Wlreless Net-
work Dynamic Simulation Platform (WINDSP). Figure 3.1 shows input parameter
fields, cellular layout, and some performance outputs of WINDSP. The simulation

environments in WINDSP are introduced as follows.

3.2.1 Directional Antenna

Three different types of antennas are used in WINDSP: omni-directional, 60 degree
and 120 degree directional antennas. Because of different antenna patterns, the cell

layouts with 60 and 120 degree antenna are slightly different [28], as shown in Figure

13
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Figure 3.2: Base station scenarios for 60° and 120° antenna.

3.2.

3.2.2 Mobile Configuration

We consider mobiles with the mobility model of Table 3.1 in WINDSP [29]. The
average speed of mobile terminals is 80 km/hr. A mobile terminal can change its
direction within +45° with probability of 0.2. Each mobile has rake receiver and uses

maximum ration combining to combine signals from different base stations.
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Table 3.1: Mobility model parameters

Speed value 80 km /hr
Probability to change direction at position update 0.2
Maximal angle for direction update 45°
Decorrelation length 20 meters

3.2.3 Path Loss Model

According to the 3GPP specification, there are at least two different channel models:
macro-cell propagation model and micro-cell propagation model. We adopt the macro

cell propagation model as follows:
L=40- (1 —4. 10_3 . Hb) . LOglo(R) — 18- LOglo(Hb)

+21 - Logyo(f) + 80, (3.1)

where R represents the distance between a base and a mobile in kilometers; f repre-
sents the carrier frequency in hertz; Hy represents the antenna height of base station

in meters.

3.2.4 Shadowing Effect

The shadowing effect of a WCDMA system channel can be modelled as a log-normal
random variable S. The standard deviation of S is usually set to be 6 to 10 dB in an

urban area. We define the link gain between two locations as
Link Gain =L+ S. (3.2)

Note that the shadowing component S is highly related to the mobile terminal’s

locations. A correlation of shadowing on locations should be also modelled. Define
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the de-correlation distance d,, as the distance at which the correlation co-efficient of
the shadowing components between two locations are equal to 0.5. Let R(Az) be the
auto-correlation function of the shadowing component between two locations with a

distance of Az. According to [29], we can express R(Azx) as

R(Ax) = ¢ feor @, (3.3)

Let €; be the shadowing component with a standard deviation of o for a mobile
terminal at location z; in time ¢;. Then the correlated shadowing €2;,; at location
ZTiy1 In time ;47 is:

Qi+1 = R(AIE) . Qz + 1 -0, (34)

where Az = |z;41 — 24|, 0. = 04/1 — R?(Ax), and 7 is a normal radom variable with

zero mean and standard deviation of 1 dB.

3.3 Handoff Algorithm

Handoff mechanism is activated when a mobile station moves from the coverage area
of a base station to another base station. For the TDMA system, such as GSM, hard
handoff is usually used. For hard handoff, a mobile station connects to only one base
station any time. However, CDMA systems usually implement soft handoff, which
allows a mobile station to connect multiple base stations simultaneously. Soft handoff
can improve link quality by assigning multiple channels to a user. On the other hand,
soft handoff consumes more system resource. Thus, there exists a tradeoff between
link quality maintenance and system capacity. That is, the higher the soft handoff
probability, the lower the system capacity. Thus we can control the timing and
probability of handoft by choosing appropriate soft handoff parameters. However, it

is a challenging task to determine a set of optimal soft handoff parameters to meet all
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the system requirements simultaneously. In the following, we will detail a systematic
methodology to determine the optimal soft handoff parameters.

Figure 3.3 shows the flow chart of the soft handoff algorithm in the WCDMA
system. The figure illustrates the relationship among all key soft handoff parameters.
We first describe soft handoff algorithm in brief [25] [30] [31]. To begin with, we
respectively denote Best_SS as the best signal strength of the cell in the active set,
Worst_Old_SS as the worst signal strength of the cell in the active set, Best_Cand_SS
as the cell with the best signal strength in the monitored set, and Sycqsureq 8 the mea-
sured signal strength. With the information of Best_SS, Worst_O1d_SS, Best_Cand_SS,
and Speasured, the soft handoft algorithm checks the following conditions to dynami-

cally add or remove a base station from the active set. Specifically,

Simeasured < Best_SS — AS.TH — AS.TH_HY ST (3.52)
Sreasmred > Best S5 — ASTH + AS.TH_HY ST (3.5b)
Best_ Cand_SS > Worst_ Old_SS + AS_.REP_HY ST (3.5¢)

1. If (3.5a) is satisfied for a period of T, the system removes the worst cell from

the active set;

2. If (5b) is satisfied for a period of T and the active set size is below the maximum

value, the system adds the cell with S, cqsureq into the active set;

3. If (3.5¢) is satisfied for a period of T, the system adds the cell with Best_Cand_SS

and removes the Worst_Old_SS from the active set.

We consider only equal power allocation cases in the following simulation.
To summarize, the parameters AS_TH and AS_ TH_HYST can be used to de-
cide when a base station is qualified to be added into the active set, or to be re-

moved. AS_MAX_SIZE limits the maximum number of base stations in the active
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set. AS_REP_HYST is used to control the occurrence of the replacement of base
stations in the active set. The aforementioned soft handoff parameters will influence
the system performance from different aspects, which will be discussed in the next

section.

3.4 Effect of Soft Handoff Parameters

We apply our developed WINDSP to evaluate the impact of four key handoft param-
eters from different aspects. System environment parameters are listed in Table 3.2.
Observing Figure 3.4, we find that multiple base stations are in the active set only
when the link quality of a mobile terminal is relatively poor. When the link quality
becomes good, the system will remove some base stations in the active set. Most of
the time a mobile terminal connects to only one base station. We can control the
timing of soft handoff by modifying key soft handoff parameter.

We consider the effects of soft handoff in terms of the following three perfor-
mance measures, (1) E,/N, distribution, (2) average active set size, and (3) handoff
probability. Recall that there are four key soft handoff key parameters: (1) AS_TH,
(2) AS.TH HYST, (3) AS.TH REP, and (4) AS MAX SIZE. It would be compli-
cated to analyze the impact of all the parameters at the same time. Thus we evaluate
these parameters once at a time, while using the default values in Table 3.3 for other
parameters. In our simulation, more than 30,000 samples are taken to collect the
statistics of Ey/N,, average active set size, and handoff probability.

Figure 3.5 shows the impact of the soft handoff parameter AS_TH on soft
handoff gain, average active set size, and handoff probability, respectively. Soft hand-
off gain is defined as the E,/N, improvement as compared to the case without soft
handoff. Handoff probability here is defined as the ratio of the number of snap shots

in handoff to the number of total snap shots. Thus a higher soft handoff gain means
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Table 3.2: Parameters of soft handoff behavior simulation.

System Environment

Base Radius 1211 Km
Antenna 60° directional antenna
Max total BS TX Power 20 Watt

Max Tx Power per MS 30 dBm

Total Mobile amount 20 % 19 = 380
Mobile velocity 100 km/Hr
Service rate 12.2 kbps
Ey/N, target [32] 7.9 dB

Soft Handoff Parameters

AS_Th 3dB
AS_Th Hyst 1dB
AS Rep_Hyst 1dB
AS_Max _Size 3
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Figure 3.4: Soft Handoff behavior simulations. Upper part of this figure shows the
trajectory of a mobile; the corresponding Ej/N, is shown in the middle part; and
the bottom part illustrates the content of active set. The y-axis of bottom part of
this figure represents the base station number from 1 to 19 while x-axis represents
the time. The blocks with dark color represent the base stations in the active set.
For example, the mobile terminal connects to base station number 3 and 11 in the

beginning, while it connects to base station number 15 at time around 20.
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Table 3.3: Default value of simulation.

Parameter Default Value
#MS / Sector 20
AS_Th 3dB
AS_Th_Hyst 1dB
AS_Rep_Hyst 1dB
AS_Max_Size 3

a better E,/N, performance. As shown in the figure, the larger the value of AS_TH,
the larger the E,/N,. Meanwhile, a larger AS_TH also leads to a higher handoff
probability and a larger active set size. For example, when AS TH is set to be 1
dB in the omni-directional antenna case, the soft handoff gain is 0.5 dB and average
active set size is 1.15. For AS T H is 5 dB, the soft handoff gain becomes 2 dB and
average active set size becomes 1.5.

Figure 3.6 illustrates the effect of AS.TH HYST in soft handoff. One can
observe that a larger AS TH HYST will discourage the occurrence of a large-sized
active set (middle plot), thereby decreasing the E,/N, performance (top plot) and
handoff probability (bottom plot).

Figures 3.7 and 3.8 show that AS_ REP_HYST and AS_MAX _SIZE have little
effect on the E;, /N, performance. According to our observation and [32], active set size
is usually less than three in most cases. Therefore, when AS_MAX SIZE is larger than
three, the system performance is rarely influenced. In the meantime, AS REP HYST
is effective only when the number of base stations involved in the handoff process is

equal to AS_. MAX_SIZE. Because the active set size is usually equal to one or two,

23



the chance for AS_ REP_HYST to be effective is also relatively low.

We have analyzed the impact of four key handoff parameters individually. The
information we obtained so far is still not enough to decide the optimal handoff param-
eters with respect to the performance of E,/N,, average active set size, and handoff
probability. Because each parameter is affected mutually, it is necessary to develop
a systematic design methodology to decide a set of optimal handoff parameters. In
the next section, we will propose such a systematic design approach subject to the

performance requirements of F,/N,, average active set size, and handoff probability.

3.5 Contour Overlapping Technique

3.5.1 Design Procedures

According to our observations in the previous section, we find that AS_'TH and
AS _TH_HYST significantly influence the system performance, while AS ' TH_REP and
AS MAX SIZE have little effect. Based on this observation, we suggest a simple soft
handoff parameter design approach. That is, we can determine a set of better soft
handoff parameters by focusing on the design of AS_ TH and AS_ TH_HYST, while set-
ting AS_ MAX SIZE and AS_ REP_HYST as the default values. Figure 3.9 illustrates
the flow chart of the proposed contour overlapping methodology in the soft handoft
parameter design. First, we set the system requirements, including: 1) the required
99" percentile E,/N,; 2) average active set size; and 3) handoff probability. Second,
we perform simulations to obtain the performance contours in terms of AS ' TH and
AS_TH HYST. Third, we overlap the contours of E,/N,, handoff probability and av-
erage active set size. From the intersections of the overlapping contours, we can find

the optimal soft handoff parameters satisfying all the system requirements.
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3.5.2 An Example

The following example demonstrates the procedure of the proposed soft handoft pa-

rameters design methodology:

1. We list the system performance requirements for 12.2 kbps service as shown in

Table 3.4.

2. We generate the 99" percentile of Ej/N,, handoff probability, and average active
set size in terms of different values of AS_ TH and AS_ TH HYST. As shown in
Fig. 3.10, we project these curves onto the X-Y plane to obtain the performance

contours in terms of AS_ TH_ HYST and AS_TH.

3. We overlap these performance contours obtained in step 2. Figure 3.11 (a) shows
the overlapping contours for the target Fj/N, and the handoff probability. The
circled region satisfies the requirement of the 99" percentile E, /N, equal to 7.9
dB and handoff probability less than 12%. Figure 3.11 (b) shows the overlapping
contours of the target E,/N, and the average active set size. The circled region
satisfies the requirement of the 99" percentile E, /N, equal to 7.9 dB and average
active set size less than 1.4. Figure 3.11 (c) shows the overlapping contours of all
the three performance requirements. The intersection of circled region in Figure
3.11 (c) satisfies all the performance requirements. Hence from the intersection
of the figure, we find the optimal parameters for the 12.2 kbps service, which
are AS TH HY ST is 2dB and AS TH is 3.5 dB.

3.6 Conclusion

In this chapter we have discussed the impact of the soft handoff parameters with

respect to the WCDMA system. We find that only two parameters, i.e. AS_TH and
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Table 3.4: System performance requirements in example

System performance requirements

99 percentile E;,/N, 7.9 dB
Average active set size 1.4
Handoff probability 12%

ERNo 99% distribution Threshold with different AS__TH & AS__TH_Hyst
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(3.10a)
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Average amount of base serving one mobile with different AS__TH & AS__TH_Hyst

(3.10b)
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Probability of handover with different AS__ TH & AS T _Myst
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Figure 3.10: Simulation results with different values of AS_'TH and AS TH HYST,
where (a) distribution and contours of 99 percentile Ej/N,; (b) distribution and

contours of average active set size; (c) distribution and contours of handoff probability.
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P o= Probobility of Handoff
SRRty et | EbNo Target
e v e m R R - )
e h T ~ « Average amount of base serang one mobils
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(3. 1 lc) AS__ TH_ Hyst

Figure 3.11: Overlapping contours of Figure 3.6: plot (a) shows the overlapping
contours for the target Ey/N, equal to 7.9dB and handoff probability requirement,
where the circled region satisfies E,/N, equal to 7.9dB and handoff probability less
than 12%; plot (b) shows the overlapping contours of the target E,/N, equal to 7.9dB
and requirement on average active set size, where the circled region satisfies the Fy /N,
equal to 7.9dB and average active set size less than 1.4; plot (¢) shows the overlapping
of all the three contours. The intersection in circled region in plot (c) satisfies all the

performance requirements.
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AS TH_HYST, affect the system performance significantly. Based on this observation,
we propose a contour overlapping technique to simplify soft handoff parameters design
with emphasis on the setting of AS'TH and AS'TH HYST. By using the proposed
methodology, we can easily find the optimal handoff parameters subject to different
performance requirements. Thus the proposed handoff parameter design approach

can be used to optimize the performance for the WCDMA system.
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