Dealing with Symbolic File Input by Regular Constraint Symbolic

Execution

PE R RL L E 4

B BRI 2 BT A A % B
Dealing with Symbolic File Input by Regular Constraint

Symbolic Execution

B oArERe Student : Yu-Chun Huang
hERE IR R Advisor : Shih-Kun Huang
K = = i <~ 5

A Thesis
Submittedto Department of Computer and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer and Information Science

September 2010
Hsinchu, Taiwan, Republic of China

SEARY L4 E

o ERR R X LSRR R
Fh: KES WA PR AL

Bl 5 Rl K BE AL 1428 2R AT AL I

K

#HE

RBAATRBER T —BERGZF, DARAKIAERLSRBRRXF RGP —, &
IRR R E AL S B BRI G3E, BIRME R T A5 AR XA AR e R 4 SO T 48T
FRGEH, R BARRMA B RATAIRRI, FRARXSE A7 BLA®, TFR,
FEMOZEFTA R BZ AR T # AR X RFI XA KE 7 % TR AR L, 5% R
ik B R FROUEBRALIENERGFR AT S FRARXTAZF, KLEE ¥Rz
LLVM (Low Level Virtual Machine) F7 B 469 F NeE S E R XB T AL B RBYGRITE
b, PR LLVM L EAGEAT R IRRIK, B AT R 3 A s i B3 % 2106 B 69 fF 35 2]
AKLAZ—, Af £ KLEE ¥, @8R 2 2RmE TCEREXRXE, IAEALTE
% W FATIRAE, B —ER 2 BT DR RHAT I L S o B e a8, mAT AR EH
PATHAZ G RIAEH R ARCESAREZN R GRXAAH M, RA— D Hy Ttz
B X B B HATHRAS, R ZEEEHL T IEER R = XR BG4S L7 KLEE 27 X,
B3 A A AR X TR PRI, VM AEnE M A AL B B 69 B TR HATIRAZ

Bl A, ARaEK. ERATX

Dealing with Symbolic File Input by
Regular Constrained Symbolic Execution
Student: Yu-Chun Huang Advisors: Prof. Shih-Kun Huang
Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Software testing is an important procedure of software development process, and sym-
bolic testing is one of the most important techniques in the domain of software testing. If
we can handle symbolic testing with file level; we can process testing directly via standard
input rather than modifying source code and marking the symbolic variables. Nowadays,
symbolic testing with symbolic files is feasible because of the powerful computing ability
and the techniques about reducing constraints. In various symbolic testing tools, KLEE
based on the top of LLVM(Low Level Virtual-Machine) because that LLVM’s assembly
level instruction set is independent of programming languages and architectures. KLEE
is one of well-developed and famous symbelic tools. However, KLEE does symbolic files
testing still have some problems: symbolic files testing cover the C standard library and
generate too many execution paths. The result is: (1) Waste a large amount of time
and run out of memory when test a source code which is less than 100 lines. (2) The
most ratio of test cases which can cover new paths relative testing source code to all
test cases is too small. In other words, we spend too much time on generating new paths
which cover C standard library. We want to improve the efficiency of generating execution
paths by using regular expressions which describes a given format. In this way, we can

explore useful execution paths which is covered the new part of source code in short period.

Keywords: Software Testing, Symbolic Testing, Regular Expression

i

&

Bk, RAFBRHMEXE, ERALF TE AR pEITA, LEAGHLEHEAGN
M, ERLETREMBTEZGH S, BHRHHEAER,

WHHRRE T AT O8I, BT ATELER TRF Si0b, FRARGBRERAL
RARMT KRV AE E6gIEN,

BERBRHF KGR RR, ERXPRALAE EALRET TSRS,

BB, B, B BE BH. RR. AEFARRKREINARTRER LT AR
7, BT FFEAthAZog 45, ERFASFELE TRR S,

BB EETRENEAL, Wik, +@W. 28, i, 8&. B#. AF. T
e, FRERM, AR EASE ERETRAY H I, LELZMR, BAREREZZE Lab
BT IE K3 M2 KLEE #93F % 114,

AROUHHHPRB L TRELGREGFTALENM, THERE. (ER)F. 43k, REAALE
FRFH, WIVKLEEPTREEG Wargame A4, £RETR AR HGLETYT
E NN

Bb B RHRIE T XER, ILRIOERAREHELR, LTH S ChftiE BATRET

&
e

MR IER AR, BERA
HREHBFELLE, TAEARMTTRENNATR, BAARLETRFSHEA
B G LT RF S W, LHSEERFMAMIFGRE, REBRLES,
By, BRMUOATARRST, RABRTZ, REHH R LA THBLRGA, £
WL, FR&ERAM,

1l

Contents
B

Abstract

e

Contents

List of Figures
List of Tables

1 Introduction
1.1 Problem Descriptions and Motivation. ~

1.2 Objective %8¢ . . BEmmdl %* - - - - - - -

2 Background

2.1 Execution Paths.and Constraints0 .o . .00
2.2 Constraints Solver . . L o rn L
2.3 Symbolic Execution . .o, ..o oL T
2.4 Concolic Execution . . & 0 v o oo L
2.5 Fuzz Testing

3 Related Work

3.1 LLVM Compiler Framework
3.2 KLEE Symbolic Virtual Machine
3.3 Catchconv
3.4 Alert
3.5 zzuf .o
3.6 HAMPI
4 Methods
4.1 The architecture of KLEE with symbol files

4.2 The architecture of KLEE with regular expression symbolic files support

v

ii

iii

iv

vi

vii

10
10
11
11

13
13
14

4.2.1 The intuitive idea .
4.2.2 The improved idea

4.2.3 The Overview of Flowchart

5 Implement

5.1 Data Struct
5.1.1 ByteUnit
5.1.2 TimesExpr.

5.2 Parse Regular Expression to Structure
5.2.1 preparse Functiono
5.2.2 parse Function
5.2.3 times Functiono oo o
5.2.4 reparse Function_ «u v v Lo oo Lo
5.25 Example . .0

5.3 Patch Constraints:by Parsed Regular Expression
5.3.1 patch functiono 0oL o
5.3.2 Example™o oo LT

6 Evaluations

6.1 Compare with Original KLEE. .. .00 .0 00000 0 ..
6.1.1 Testcase 1.
6.1.2 Test case 2.

6.2 Compare with Other Work

6.2.1 Compare with Catchconv
6.2.2 Compare with HAPMI

6.2.3 Compare with zzuf

7 Conclusions

8 Future Work

References

19
19
19
19
20
20
21
21
21
22
23
23
27

29
29
29
30
33
33
34
35

37

38

39

List of Figures

1-1
1-2
2-1
3-1
4-1
4-2
4-3
o-1
5-2
3-3
o-4
2-9
9-6
5-7
9-8
2-9
5-10

The relation about specification and implementation 1
source code of test case 1 3
An example for explaining execution path 5
The Comparison of Some Relative Works 12
Klee Architecture 14
Klee Modified Architecture L. 16
KLEE with Regular Expression Matching Logic 18
The example we handle regular expression (before reparse) 23
The example we handle regular expression (after reparse) 23
The pseudo code about times expression patch 24
The pre-defined instruction and function. 25
The pseudo code about handling any char .« 26
The pseudo code about handling bracket and mbracket 26
The pseudo code.about handling IsDigit 27
The pseudo code about handling sWord . . .".°. 27
source code of example using to explain implementation 27
The example we handle regular expression .+. 28
source code of example 2 L U L L L 32
The result and information about our method in example 2. 33
The result and information about klee in example 2 33
The Comparison between our work and catchconv 33
The Comparison between our work and HAMPI 34
The figure of coverage comparison using zzuf 36

vi

List of Tables

6-1
6-2
6-3
6-4
6-5

The test data produced by our method about test case 1 29
Comparison with KLEE o000 29
The test cases original KLEE produced about test case 1 30
The test cases our method produced about example 2 31
The line coverage of program bc using zzuf 35

vil

1 Introduction

1.1 Problem Descriptions and Motivation

Software testing is a very important stage in procedures of software de-
velopment [1]. If we develop software without testing, we can not prove that
software can satisfy the specifications completely. If the implementation does
not adhere to the specifications, there may be bugs (do not implement the
requirements) and security problems (implement some function which does

not be requested), as Figure 1<1 shows.

Under-implementation o~ Over-implementation
Bugs ; Security Problems

Specifjcation Impleméentation

Implementation adheres to Specification

Figure 1-1: The relation about specification and implementation

Symbolic testing is one of mainstream techniques in the domain of soft-
ware testing. Symbolic testing is more precise than other testing method,
but it also spent more time and computing resource. In generally, before
doing symbolic testing, we must modify source codes to provide information

that which variable is symbolic. But if symbolic testing can support file level

testing, we can do symbolic testing easily by making standard input symbolic.

We choose KLEE [2] as our main symbolic testing tool because KLEE

has following advantages:
e [t is a famous and well-developed symbolic testing tool
e It can do symbolic testing with basic file-level supported

e It built on top of the LLVM(Low Level Virtual Machine) [3] [4] [5]
compiler framework. Via LLVM framework, we can validate and check
many programs independent of programming languages and CPU ar-
chitectures (if LLVM supported;the programming language and CPU
architecture). In the other words, we can effectively extend the testing

range of programming language.

KLEE doing symbolic files testing with C standard-library to provide
detailed path and instruction information about standard library functions.
The advantage is the bug which is dependent on library can be found eas-
ily. But the disadvantage is that the amount of execution paths is growing
rapidly. For example, if we call fscanf function, fscanf function will call vf-
scanf function next. After calling the vfscanf function, vfscanf function call
_scan_getc function. Because the input is unconstrainted, when we meet the
branch instructions like if, switch, for and while, all conditions of branch
instructions is always satisfiable. Because no execution path is discarded by
unsatisfiablity of constraints, the rate of execution paths growing is too rapid
to handle.

For example : the Figure 1-2 showed above is a source code on NCTU
On-line Judge System [6]. Execute the program via KLEE [2] with symbolic
files and files’ size upper bound is 20 bytes, the result is: 330368 execution

states, only 10225 test cases can exit program normally. Then only 13 test

2

#include <stdio.h>

#include <stdlib.h>

main(int argc, charx argv([]) {
char buf[1024];
unsigned long long i,j,k;

while (fgets(buf,1024,stdin) != NULL) {
if (strcmp(buf,".\n")==0) break;
if (strcmp(buf,".")==0) break;
sscanf (buf,"%1lu %1lu",&i,&j);
if (i == 0)
printf ("%u\n",j);
else
printf ("%1lu\n", (i << 32) + j);
}
return O;

}

Figure 1-2: source code of test case 1

cases can produce new execution paths. And according our observation (The
relative data will show in evaluations section), the 13 test cases is produced
at early period. In other words, the efficiency of generating new execution

paths is not good enough.

By previous example, we can find out a critical problem: How do we
reduce the execution states efficiently? ‘T'he main causes of a large number

of execution states are:

1. To arrive the goal about general using, standard library to handle all
possible situation. So the code of standard library is significant com-

plexity.

2. No constraints describes and limits standard input, so all conditions

about branches in standard library are almost possible.

In this thesis, we proposed a method called regular constraint to limit
constraints with regular expression and resolve the above problem. By this

method, we can scale the level of tested program.

1.2 Objective

In this thesis, we observe the problem that KLEE does symbolic files
testing with uClibc [7] standard library and generates most execution states
which is only covering paths in standard library code. To resolve the problem,
we do symbolic files testing with focusing on the program’s core function-
ality. In the other word, we want to test the "specification” part which we
mentioned early. If we want to describe the input data format, use regular
expression is a normal and reasonable method.

So we propose one method to resolve the above problem and implement

the method on KLEE:

e Descript standard input format by regular expression, and combine

regular expression and eonstraints, to arrive the effect we want.

Because we aim at ”'Test the part which programmers expect”, the rules
of on-line judge adhere to our requirement, we use some source code on

NCTU On-line Judge to evaluate.

—_

O © 00O U WN

2 Background

2.1 Execution Paths and Constraints

Execution Paths is the set of executed instructions in order. If two ex-
ecuting paths’s executed instructions or their order is not the same, we say
the two execution paths are different. Constraints describe the reservations
about an execution path. By way of converting instructions information to
constraints, we can obtain the description about the limitation of data value
, life time of variable , the relation about variables and the information about

stack and heap. Constraint can be devided into two category:

e Constant constraints: The all information constraints provided is inde-

pendent of user input.

e Symbolic constraints: The information is dependent on user input or

execution environment.

For example, in Figure 2-1, n is-an integer user entered. The value of x
depends on n, so line 2 is symbolic constraints. And if we do not consider

the value of x, this function has three execution paths because of if-else in

line 4 to 9.

void test(unsigned int n){
unsigned int x = 3 * n + 1;
unsigned int y = 3 * x - 2;
if (x % 3)

puts ("Pathi\n");
else if (y % 5)

puts ("Path2\n");
else

puts ("Path3\n");

Figure 2-1: An example for explaining execution path

2.2 Constraints Solver

The formal name of Constraints Solver is Satisfiability Modulo Theories
Solver. In theory, if we can transform a problem to a satisfiability problems,
we can use SMT(Satisfiability Modulo Theories) solver to resolve our prob-
lems. As known to all, satisfiability problems is NP-complete problems, if
your constraints amount reach the significant degree, the SMT solver may
not resolve the problem certainly. For enhancing the motive to improve the
SMT solver, SMT-LIB arises a competition called SMT-COMP (Satisfiabil-
ity Modulo Theories Competition) [8]. every year

CVC3 [9](advenced work from CVC Lite [10]), STP [11] and Yices [12]

are some famous SMT solvers using by symbolic testing tools.

2.3 Symbolic Execution

Symbolic testing is one of the most important techniques in the do-
main of software testing...The concept of symbolic testing is proposed in
1970s [13] [14].

In symbolic executions, we use symbols to represent the program variables
and execute the program with these symbols. This method is more powerful
than concrete execution because one symbolic execution can be correspond-
ing to a set of concrete executions.

In Figure 2-1, the function read an integer, does some arithmetic com-
puting, and output depends on symbolic variables. In line 3, the symbolic
variable x will be represented as 3 x n + 1, symbolic variable y will be repre-
sented as 9 x n 4+ 1. During symbolic execution, we can obtain a execution
tree which is the control flow of this program. In Figure 2-1 line 6, you will
choice one of paths depending on symbolic variable. Usually, the execution
will always enter line 7 because symbolic x is not a multiple of 3. But when

we use correct constraints like z = (3xn +1)%2%% and y = (3 xz — 2)%23% |

6

we can resolve a counter example that n is 2000000001. If n is 2000000001,
the execution will enter line 7 or 9. Using symbolic execution, we can col-
lect constraints and use constraints solver to get the test case to solve the

execution paths. So find the same bug type of integer overflow easily.

2.4 Concolic Execution

The term ”concolic” is combined ”concrete” with ”symbolic” . As the
word ”concolic” is originated from, concolic execution is a testing technique
that use properly concrete values to replace the symbolic variable. At a
specific time (usually when detecting a branch), we gather all constraints
and give SMT solver the information. {The solver will find a counterexample
to try exploring other execution paths.

This method is better for these reasons:
e Avoid generating redundant test cases.
e Usually has better path coverage than other testing method.

EXE [15], DART [16], CUTE [17]and Crest {18] perform concolic testing.
EXE can address bit-level acccurate modeling of memory , but byte-level
memory model has more efficiency and the effect is only a little deterioration.
Crest is advanced work for CUTE, it use Yices [12] as constraints solver and

use CIL insert instrumentation code.

2.5 Fuzz Testing

Fuzz testing is also called "Random Testing” or ”"Brute Force Testing”
because that the test data is generated randomly. Peach [19] and zzuf [20] is
some famous fuzzing tools.The basis of fuzz testing’s theory is described as

following;:

e Although the efficiency of exploring executing paths per test case is
poorer than other testing tools, the efficiency of generating test cases

is better.

Found bugs Generating test case

Ef ficiency = *
1 Y Test cases Time
e The difficulty of designing a fuzz testing tools is easy than other testing

tools.

But in real world, pure fuzz testing usually only finds simple faults
of programs. So it usually combine with other testing method to help other
methods obtain more improvement.. For example, Automated White Fuzz
[21] Testing is a work combined with symbolic testing, and Hybird Concolic

Testing [22] is a work combined with concolic testing.

3 Related Work

3.1 LLVM Compiler Framework

LLVM (Low Level Virtual Machine) provides a virtual instruction set,
which provides rich, language-independent, type and SSA(Static Single As-
signment) information about instruction operands. Nowadays, it supports

many programming languages and back-ends of machine architecture.

3.2 KLEE Symbolic Virtual Machine

KLEE is a redesigned work from"EXE. The biggest different of KLEE
and EXE is that KLEE is a symbolic testing tool which bases on top of LLVM
compiler infrastructure, which has language independent instruction set and
type system. Klee use bitcode, which a middle-end instructions llvim-gcc
or clang produced, as input to do symbolic testing. KLEE execute bitcode
by instruction and instruction, and then convert instruction information to
constraints. KLEE use ExecutionState object-to manage the path and con-
straint information. KLEE use some state search algorithm to choose which
state should be executed first. It also cache the queries and their results to
speed up the speed of query.

KLEE use STP as its default constraints solver. But it also design another
constraints solver: Kleaver, which can be presented by KQuery language.
The KQuery language is closely related to the C++ API for KLEE’s Exprs

(which is LLVM instruction appending some information KLEE maintains).

3.3 Catchconv

Catchconv [23] is based on Valgrind [24] framework. Catchconv combines
symbolic execution and run-time type inference from a sample program run
to generate test cases. And it mentions how to convert program and symbolic
memory address to constrains of STP in detail. The architecture and imple-
mentation of Catchconv can execute query parallel easily, but the amount of

constraints Catchconv generating still too much.

3.4 Alert

Alert [25], [26] is abbreviated from ”Automatic Logic Evaluation for
Random Testing”. Alert is a testing tools using concolic execution technique
and refering EXE and Cute testing framework to implement. It use CIL
[27] (C Intermediate Language) to instrument the source code and produce
an instrumented code. Alert executes with instrumented code and collects
constraints by instrumented part: And it use CVC3 as constraints solver. In
2009, Alert support symbolie testing with files input (28], and use STP as
constraints solver. The method Alert- used is ”List & Pick”, list all possible
constraints about files input and pick some of them to union (operation
of 7or”). Alert implement symbolic files testing by instrumented some file
functions of C standard library like fopen, fgets, fseek and fscanf.

CAST [29] is a improvement and modified work from ALERT. It simplify
CIL instrumented part and implement a parser which is written in Ocaml
let user can define universal check self. The most important contribution of
this work is implement of symbolic pointer read/write with symbolic value.
This implement is a significant improvement to the auto generating of exploit
because that if you can control a symbolic pointer and symbolic value, you
almost can access any memory address.

Alert implements many useful features and functions, but its disadvantage

10

is the level of tested sources can not scale still now.

3.5 zzuf

As early mentioned, zzuf is a fuzz testing tools with standard input
and network fuzz supported. Zzuf’s primary testing target is media players
(like mplayer [30]), image viewers and web browsers. It has many options
to control generating test cases. For example, it can control the ratio of
difference between original data and generating data. It also can assign the
byte offset range to fuzz. It use the regular expression to match file name,

and decide fuzz the file or not.

3.6 HAMPI

HAMPI [31] is a SMT solver based-on top of STP.and it is for string
constraints over fixed-size string variables. HAMPI do seme implements to
make constraints expressing membership in regular languages and fixed-size
context-free languages. Given set of constraints, HAMPI outputs a string if

constraints are satisfiable. The implement steps of HAMPI are following :
1. Normalize constraints to HAMPI’s core string constraints
2. Translate core string constraints to a quantifier-free logic of bit-vectors

3. Call STP to judge the bit-vector constraints are satisfiable or unsatis-

fiable.
4. If constraints are satisfied, compute and output the string solution.

HAMPI does evaluations of symbolic testing using KLEE. First, HAMPI
conpile the input grammar file into STP bit-vector constraints. Then it con-
verts STP bit-vector constraints into C language code that expresses by API

of KLEE. Finally, it inserts these code to test source code and runs KLEE

11

on target program. The line coverage result of experiments is better than

original KLEE.

KLEE Alert(linyt) | catchconv Klee with
HAMPI

Testing
Method

Symbholic
testing with file

Regular
expression
supported

Advantage

Disadvantage

Symbolic Symbolic
Yes Yes
No No
Can do I|bra_ry Implement
level symbolic A f
_ symbolic index
testing

The paths of
doing symbolic
file testing is
too
significantly.

Can not scale

Symbolic Fuzz
Yes N/A
No Only filter Args
Many options
Easy to to control
proceed in generating
parallel data.
Run-time type Good for
inference blackbox
testing.
The amount of
constraints too
. Usually only
significantly. test easy fault
Not fit the loop Y
structure.

Figure 3-1: The Comparison of Some Relative Works

12

Symbolic

No

Yes

Regular
expression
supported

Need to
modify source
files

4 Methods

In this thesis, we implement the part of converting regular expression to
constraints and resolving these constraints with original constraints. In this
section, we will describe our method to handle the standard input constraints
with user-defined regular expression information. We introduce that how
does KLEE test with symbolic files first, and explain the reasons that why
do we choose the method. Finally, we display the overview of our method.

The details about implementation will be described at next section.

4.1 The architecture of KLEE with symbol files

As figure 4-1 show, the seurce code of C language is compiled in LLVM
bitcode by llvm-gee (or clang) at first. At the next step, KLEE reads the
bitcode and initializes the testing environment. To implement symbolic files
testing, KLEE creates a symbolic buffer and construct the relation between
standard input and symbolic buffer, then KLEE select a state from the set
of states to collect constraints information instrution by instrution. If KLEE
meets the branch instruction (the definition is: according some conditions
like value of a variable, you has two or more basic blocks to choose. For
example, if, case, while and for) or alloc instruction, it will use solver to
check the possible paths, then let forked state to wait until it is selected
by searcher. If there are no execution states waiting to be selected, KLEE
resolves the execution constraints per path to generate the test case which

can explore the corresponding execution path.

13

LLVM Assembly
Code

COMPILER INFRASTRUCTURE

llvm-gce:
GCC Front end +
LLVM Optimizer +
LLVM Code Generator

uClibc
library

Generating Test Cases
which can explore this
exection path

KLEE Virtual Machine

Execute when meet
Branch or Alloc intruction

Set of States

Solver
Discard

Figure 4-1: Klee Architecture

4.2 The architecture of KLEE with regular expression

symbolic files support
4.2.1 The intuitive idea

The most important key of this thesis is: how do we use regular infor-
mation to limit constraints. Usually, the method we using regular expression
is that let strings to match regular expression. But the situation of handling
constraints is different from handling strings. The character value of a string
is fixed, but the constraints may contains many possible values. Consider the
difference, we consider two methods to handle this problem at first. The first
method is : At KLEE selects a execution state, we use SMT solver to resolve

constraints and get the value which is not contradictory to constraints. If the

14

Return a
possible value

value can not adhere to regular expressions, we discard the execution state.
The problem of this method is: The resolved value can not represent con-
straints, it is only a possible value about constraints. So if a execution state
is discarded, that does not mean the execution state can not satisfy regular
expression. In some cases, this method filter more than 99 percentage of
execution paths that is not contradictory to user-defined regular expression.

The second method is: We use regular expression to generate fixed value
inputs, then convert these inputs to constant constraints. For every input,
we create execution state and add corresponding constant constraints to ex-

ecution state. This method also has some problems:

e The number of possible cases which can satisfy regular expression are

significant.

e Be the same with the problem of fuzz testing, most-of generated values

are corresponding the same execution path.

4.2.2 The improved idea

According the analysis above mentioned, the two methods have some
critical problems. The main reason is that we use fixed values to replace
constraints or regular expression in some procedures, so some information is
missing and inaccurate. We consider other methods which does not loss any
information. The third method is "regular expression expansion” method.
The ”expansion” means that expanding all possible value in non-fixed times
expression range,then we convert these expanded regular expressions to fixed-
length constraints. And we append every constraints to forked states, the
advantage of this method is needless to use SMT solver (There is no failed re-
sult by add constraints because the initial execution state has no constraint.)
The disadvantage is that the number of possible expanding states may be

significant.

15

The fourth method is ”checking every time” method. When KLEE’s
searcher select a execution state, we compare the constraints to regular ex-
pression byte by byte. The advantage is we can append no constraints to
states (because of the information of non-fixed times expression can not con-
vert to constraints, so if we use third method, there still is some error), the
disadvantage is that the number of solver query requests is significant. The
number of solver query requests usually are bottleneck of symbolic testing,
so this method is not efficient.

Finally, consider the size of standard input buffer usually has some limit,
the number of possible expanding states can be reasonably limited, we use

third method to implement.

LLVM Assembly

-C Code

.h
source code

COMPILER INFRASTRUCTURE

llvm-gcc:
GCC Front end +
LLVM Qptimizer +
LLVM Code Generator

uClibc

library Generating Test Cases

which can explore this
exection path

KLEE Virtual Machine

Execute when meet
Branch or Alloc intruction

Return a
Set of States possible value

Solver

Discard

Figure 4-2: Klee Modified Architecture

16

4.2.3 The Overview of Flowchart

Our method is described as following: First, at the moment of KLEE’s
searcher selects a state to continue exploring paths, match the path con-
straints to regular expression’s information, see Figure 4-2. If it can be
resolved after adding regular expression’s information, still execute. If it can

be resolved, then discard this execution path.

Because the smallest unit of regular expression is character and the

size of character is byte, we operate adding constraints of regular expression

information in byte level. The flow of our method is showed as Figure 4-3.

17

— > Control Flow

Searcher —y Data Flow
Set of States selects a state

InitState?

User Defined Add
Regular constraints
Expressio Byte unit

Query
Solver

" Discard

False) this state

True

Fork State

P Mark and Add™ N
the state to Set
I of States o

Figure 4-3: KLEE with Regular Expression Matching Logic

18

5 Implement

5.1 Data Struct

A regular Expression includes two important type of information. First
type of information is contents of comparison, second type of information is
the number range of match times. So we define two kinds of structure to

record and describe the information of regular expressions.

5.1.1 ByteUnit

Structure ByteUnit consists of the type of contents of comparison. It

consists of two attributes:
e type: We only implement following type about contents of regular ex-
pressions:

— .. all, all possible character.
— \d: digit, from-character '0’ to-character '9’.
— \w: word, same as'la = zA — Z0 — 9.
— \s: space, \t, \n, \f, \r and \v.
— [...]: bracket, all list characters are possible values.
— ["...]: nbracket , all list characters are impossible values.

e contents: A vector of characters. If the type is bracket, nbracket(not

including beginning *) or other, this attribute contains the character(s).

We handle the contents of bracket or nbracket type at patch function.

5.1.2 TimesExpr

Structure TimesExpr records the match times information (like {?,7},
7, * and +) about some elements of regular expression. It consists of four

attributes:

19

e min: An unsigned integer records the minimum number of match times.

e max: An unsigned integer records the maximum number of match
times. If the match times is a fixed value rather than a range, the

value of max is zero.

e nextLevelTEs: A vector contains of TimesExpr objects, and these
TimesExpr are sequencing by order. Because a regular expression usu-
ally contains more than one match times information, and some match
times information usually contains other match times information. For

example (\d{2,4}){3}, the {3} contains the match times information
{2,4} .
e unit: It contains a ByteUnit object.

To explain easily, in regular expression; parentheses represent a Time-
skExpr. If a TimesExpr contains no nextLevel TEs, it must contain a ByteUnit

object.

5.2 Parse Regular Expression to-Structure

In this section, we introduce the functions to parse regular expression

and the flowchart of parse procedure.

5.2.1 preparse Function

TimeExpr * preparse(void)

To avoid some regular expression like (\w{2,3})(\d{3,4}) has more than
two TimesExpr after parsing, so we add parentheses at begin and end, then
call parse function to parse. Finally, this function return a TimesExpr to

repersent all regular expression .

20

5.2.2 parse Function

void parse(TimesExpr &te, std :: string re)

Parse() is the most important function to handle regular expression to
our defined structures. If there is a right parenthesis, find the corresponding
left parenthesis and create a TimesExpr to represent this parentheses (Notice
that if before the parenthesis has continuous odd ”\”s, the parenthesis only
is a common character). Then call parse function recursively to parse the
part of regular expression in parentheses. In this situation, the TimesExpr
contains many TimesExpr.

If there is not a right parenthesis, 'we still .create a TimesExpr, but this
TimesExpr only contains a ByteUnit. We also assign the corresponding type
according the character parsed.

After parse a TimesExpr, we call times function to check the minimum
and maximum value of this TimesExpr.

In there is no parentheses, we parse ByteUnit and still create a Time-

sExpr to append ByteUnit to TimesExpr.

5.2.3 times Function

unsigned int times(std :: string partnre, unsigned int &min, unsigned int &max)

Function to handle times expression. Set up the value of minimum and

maximum in TimesExpr and return the string length of time expression.

5.2.4 reparse Function

void reparse(TimeExpr &te)

21

Function to handle times expression which is redundant: a TimesExpr
is a redundant TimesExpr if its contains no unit and its minimum is 1 and
its maximum is 0. We will erase the redundant TimesExpr to improve effi-

ciency.

5.2.5 Example

We use the regular expression (\d{2,4})+ to explain the procedures.

1. First, call preparse function to add a pair of parenthesis to (\d{2,4}

)+ ({24})+).

2. Create a TimesExpr object to represent all regular expression, and set

up the minimum and maximum value to 1 -and 0.

3. Call parse function, find out the right parenthesis: So find the corre-

sponding left parenthesis and call parse function recursively: \d{2,4}.

4. Find out a ByteUnit: \d, create TimesExpr to contains the ByteUnit
and set the ByteUnit'type to digit. Then call times function to set
up the minimum value and maximum value of TimesExpr. Finally,

append this TimesExpr to nextLeverTEs of upper level TimesExpr.

5. Find out a ByteUnit: the space character. Create TimesExpr to con-
tains the ByteUnit and set the ByteUnit type to other. Then call times
function to set up the minimum value and maximum value of Time-
skxpr. Finally, append this TimesExpr to nextLeverTEs of upper level

TimesExpr.

6. Finish parsing the \d{2,4}, call times function and found the '+’ sym-

bol, so we set up minimum to 1 and maximum to a defined number.

7. The parsing result is showed in Figure 5-1.

22

The “+” symbol

TimesExpr,
which contains
-_'many TimesExpr
or a ByteUnit
Byte
— .
@—

Figure 5-1: The example we handle regular expression (before reparse)

8. Call reparse, the result is showed in Figure 5-2.

The “+" symbol

TimesExpr,

which contains
-_’many TimesExpr

or a ByteUnit

Byte
@ (i

Figure 5-2: The example we handle regular expression (after reparse)

5.3 Patch Constraints by Parsed Regular Expression
5.3.1 patch function

void patch(TimeExpr &te, std :: vector < std :: pair < ExecutionStatex, unsigned int >

> &patchstates, bool top)

The parameters patchstates contains the states waiting to be patched
and the patched byte size of the corresponding state. This function to han-

dle these part:

23

© 00 O Ut W~

LN NN RN DN DNDNDNDNDN = e e e e e e
QWO TDDUTR WNHFE O OO U WN O

1. Add constraints to all execution states in patchstates according to reg-
ular expression and the corresponding byte size. After adding con-

straints, increase 1 to the byte size.

2. Fork execution state and maintain the relationship between original

state and fork state (KLEE’s PTree structure).

At beginning, patchstates only contains initial state, and its patched
standard input size is 0. If TimesExpr contains nextLevelTEs, call patch
function recursively with per TimesExpr in nextLevelTEs. If TimesExpr
contains ByteUnit, we patch patchstates according type of ByteUnit and

patched byte size.

std::vector< std::pair<ExecutionStatex, unsigned> >::iterator si = patchstates.begin(),
se = patchstates.end();
std::vector< std::pair<ExecutionState*, unsigned> > addStates;
while(si!=se){
unsigned int count = 0; // record the times
for (;count<te.minjcount++){
ExecutionState * tmp = si->first;
if (si->second == tmp->symbolics[0].first->size)
break;

// generating ‘comstraints and_add to si->second byte
(si->second)++;

}
for (;count<te.max;count++){
ExecutionState * tmp = si->first;
if (si->second == tmp->symbolics[0].first->size)
break;

ExecutionState *forkState = tmp->fork();
addStates.push_back(std::make_pair (forkState,si->second));

// generating constraints and add to si->second byte
(si->second)++;
}
si++;
}
patchstates.insert(patchstates.end(), addStates.begin(), addStates.end());
addStates.clear ();

Figure 5-3: The pseudo code about times expression patch

The patching method is described in Figure 5-3 simply. First, we

patch states according the TimesExpr minimum value, then if we adhere

24

© 00O Ui W

[I R N R N R N R e e i el S o
B WP OO0 Utk WwNn —=O

25

to the requirement of minimum value, we try to patch states according the

maximum value. Because all times between minimum and maximum adhere

to requirement, we want to list all possible situation. So we fork state, add

one to a temp vector: addStates, and process with another state.

We explain how we implement some feature in Figure 5-4, Figure 5-5,

Figure 5-6, Figure 5-7 and Figure 5-8.

ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>
ref <Expr>

Space_L = ConstantExpr::alloc(8, Expr::Int8);
Space_R = ConstantExpr::alloc (14, Expr::Int8);
CharSpace_L = ConstantExpr::alloc(31, Expr::Int8);
CharSpace_R = ConstantExpr::alloc(33, Expr::Int8);
INT_L = ConstantExpr::alloc (47 Expr::Int8);

INT_R= ConstantExpr::alloc (58, Expr::Int8);
Upper_L= ConstantExpr::alloc(64, Expr::Int8);
Upper_R= ConstantExpr::alloc(91, Expr::Int8);
Lower_L= ConstantExpr::alloc (96, Expr::Int8);
Lower_R= ConstantExpr::alloc (123, Expr::Int8);
CHARUD_L= ConstantExpr::alloc (94, Expr::Int8);
CHARUD_R= ConstantExpr::alloc (96, Expr::Int8);

void range_AND(state, L, cur, R){
ref <Expr> resultli = S1tExpr::create(lL, cur); // L < cur

ref <Expr> result2

S1tExpr::create(cur, R); // cur < R

ref <Expr> result3 = AndExpr::create(resultl, result2); // L < cur < R

solver ->mustBeFalse (state, result3, failed);

if (failed) terminateStateOnError (state);
else addConstraint (state, result3);

}
void range_OR(state, L, cur, R){
ref <Expr> resultl = SltExpr::create(cur, L); // cur < L
ref <Expr> result2 = SltExpr::create(R, cur);// cur > R
ref <Expr> result3 = OrExpr::create(resultl, result2); // cur < L [] cur > R

solver ->mustBeFalse (state, result3, failed);

if (failed) terminateStateOnError (state);
else addConstraint(state, result3);

}

void range_EQ(state, C, cur){
ref <Expr> resultl = Equpr::create(cur, C);
solver ->mustBeFalse (state, resultl, failed);

if (failed) terminateStateOnError (state);
else addConstraint (state, resultl);

Figure 5-4: The pre-defined instruction and function

25

W N =

4

O~ O U W

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

ref <Expr> C= ConstantExpr::alloc(charl, Expr::Int8);

ref <Expr> cur = (state.addressSpace.findObject(state.symbolics[0].first))->read8(i);

func_EQ(state, C, cur);

Figure 5-5: The pseudo code about handling any char

unsigned int pos;
std::vector< ref<Expr> > OrExprs;

ref <Expr> cur = (tmp->addressSpace.findObject(state.symbolics[0].first))->read8(i);

for (pos=0;pos<te.unit->contents.size();pos++){
if (te.unit->contents [pos] == ’\\’){
ref <Expr> target, resultil;
switch(te.unit->contents [++pos]){

case ’-’:
case ’\\’:
case ’.’:
target = ConstantExpr::alloc(te.unit->contents[pos],
resultl = EqExpr::create(cur, target);
OrExprs.push_back(resultl);
break;
default:
break;
}
}
else if(te.unit->contents[pos+1] 1= 2-7){
ref <Expr> target = ConstantExpr::alloc(te.unit->contents[pos],
ref <Expr> resultl = EqExpr::create(cur, target);
OrExprs.push_back(resultl);
}
else{
ref <Expr> limitL = ConstantExpr::alloc(te.unit->contents[pos]-1,
ref <Expr> limitR = ConstantExpr::alloc(te.unit->contents[pos+2]+1,
ref <Expr> resultl = S1ltExpr::create(limitL, cur);
ref <Expr> result2 = SltExpr::create(cur, 1limitR);
ref <Expr> result3 = AndExpr::create(resultl, result2);
OrExprs.push_back(result3);
pos+=2;
}
}
if (OrExprs.size() == 1){
if (te.unit->type & nbracket)
OrExprs [0] = NotExpr::create(OrExprs[0]);
addConstraint (state, OrExprs[0]);
}
elsed{
ref <Expr> result = OrExpr::create(OrExprs[0], OrExprs([1]);
for (pos=2;pos<0rExprs.size();pos++)
result = OrExpr::create(OrExprs[pos], result);
if (te.unit->type & nbracket)
result = NotExpr::create(result);
addConstraint (state, result);
}

Figure 5-6: The pseudo code about handling bracket and nbracket

26

Expr::Int8);

Expr::Int8);

Expr::Int8);
Expr::Int8);

N =

S UL W N

0O Uk WN

===
N = O O

ref <Expr> cur = (state.addressSpace.findObject(state.symbolics[0].first))->read8(i);

range_AND(state ,INT_L, cur, INT_R);

Figure 5-7: The pseudo code about handling IsDigit

ref <Expr> cur = (state.addressSpace.findObject(state.symbolics[0].first))->read8(i);

range_AND(state, INT_L, cur, Lower_R);
range_OR(state, INT_R cur, Upper_L);
range_OR(state, Upper_R, cur, CHAR_UD_L);
range_OR(state, CHAR_UD_R, cur, Lower_L);

Figure 5-8: The pseudo code about handling IsWord

5.3.2 Example

We use the regular expression (\d{2,4})+ and sample code like Figure
5-9 to explain the details of our implementation. First, we separate the part
of times expression and part of comparison from regular expression. We can
get a structure like Figureb-2. Tf the times is big than the min value of times
expression and small thanthe max value of times expression, We can fork the
execution state, one of exeeution state try to adhere the max value of times
expression, another execution state is-continuing to do next comparison with
other byte constraints. If match the all regular expression, we will mark and
add the forked execution state to set of execution states. According this flow,

we will get the result like Figure 5-10.

#include<stdio.h>
#include<string.h>

int main(){
char buf[12];

int i, j;
fgets (buf ,12,stdin);
if (buf[6] == ’a’) print("branch!\n");

while (sscanf (buf," %d %d",&i,&j)==2)1{
printf ("%d %d\n",i, j);
}

Figure 5-9: source code of example using to explain implementation

27

Initial state

\d{2,4)

fdO[0-1] = \d
fd0[0-1] = \d fd0[0-2] = \d ” fd0[0-3] = \d
/ N
fd0[0-1] =\d

8& fd0[2]

Fa
fd0[0-1,3-4] = \d fdo[0-1,3-5] = \d
&& fd0[2,5] = * * 8& fd0[2,6] = * * 8&& de[2 7=

Execute line8

Both of true or
false path Only false path Only false path

Figure 5-10: The example we handle regular expression

28

6 Evaluations

6.1 Compare with Original KLEE

In the section, we use some examples to demonstrate the functionality

of our implementation.

6.1.1 Test case 1

We use regular expression (\d{3} \d{2}.)+ to do symbolic file testing
with our implement, and the source code is Figure 1-2. The produced test

cases and the cover paths show in Table 6-1 when buffer size is 8 .

Test Case # | Input Contents Cover Line

1 32323220 3232002E | 6 9 11 15

2 30303020 3232002E | 6 9 13 15

3 30303020 30300a2E | 6 9'13 6 8 15

Table 6-1: The test data produced by our method about test case 1

If want to fulfill the regular expression, the execution path including
line 7 is impossible, so all the possible paths we explored. Then we can see

the comparison with original KLEE in Table 6.1.1:

Test data 1 Test data 2 Test data 3
out implement | klee klee

16 seconds 8 hours 17 seconds

3 new paths 14 new paths | 12 new paths

Table 6-2: Comparison with KLEE

According the compare of last two test data, we can observe obviously

the efficiency of generating new execution paths at early period of executing.

29

Compare with first and third test data, At first glance, original KLEE seems
to have more efficient, but analyse the test data carefully, we will found that
most of these execution paths is relative with uClibc [7] standard library, the
new execution paths which is relative with Figure 1-2 is two test cases only,

see Table 6-3.

Test Case # | Input Contents New Path?
2E000000 00000000 v

2E010000 00000000 v

2E010101 01010102
00000000 00000000
10000000 00000000
00100000 00000000
01010000 00000000
30000000 00000000
20000000 00000000
2D006000 06000000
2B000000 00000000
41000000 00000000

e
D el o] u k| w| o=

—_
(\]

Table 6-3: The test cases original KLEE produced about test case 1

6.1.2 Test case 2

We use regular expression (\d{2}\n)+ to do symbolic file testing with
our implement, and the source code is Figure 6-1. We set the size of stdin

to 10, and our generating test cases is showed Table 6-4:

30

Test Case # | Input Contents

1 30311032 32103232 1032
31361032 32103232 1032
30371032 32103232 1032
30321032 32103232 1032
30341032 32103232 1032
30361032 32103232 1032
30351032 32103232 1032
30331032 32103232 1032

OO T = WD

Table 6-4: The test cases our method produced about example 2

Except the path of test case 2 is generating because of new execution
path about uClibc standard library, other test cases is obviously relative
with line 20-61 of Figure 6-1 . The paths generated is cover all paths we
can observe. The time spending to generating the test cases is 2.3 seconds
in our method. But original KLEE spends 49.3 seconds and can not resolve
any test case. Our method use the memory size of 13.7 megabytes , show as
Figure 6-2, but KLEE use the memory size of 2 gigabytes, show as Figure
6-3. According we observe; Klee can not resolve any execution paths because
that the memory size is not enough. In this test case, the advantage about

adding regular constraints is obvious.

31

© 00O U W~

e el e el e
0O~ Uk WN R~ O

19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

43
44
45
46
47
48

50
51
52
53
54
55

57
58
59
60
61
62
63

#include<stdio.h>
#include<math.h>
unsigned int table[31];
void func(int n);
int main(int argc,
int ca = 1, num,
table [0] = 1;
for(i=1;i<31;i++)

char* argv[]){
tmp, i, J;

table[i] = 2 * tablel[i-1];
while(scanf ("%s" ,&num)){
printf ("case %d:\n",ca++);
func (num) ;
printf ("\n");
if (ca > 10) break;
}
return O;
}
void func(int n){
unsigned int tmpl, tmp2, flag, i, j;
if (n == 1){
printf ("{}\n{1}\n"); return;
}
else if (n == 2){
func (1) ;
printf ("{2}\n{1,2}\n"); return;
}
else if (n == 3){
func (2) ;
printf ("{3}\n{1,3}\n{2,3}\n{1,2,3}\n"); return;
}
else if (n == 4){
func (3) ;
printf (the answer == 4); return; //change some
}
else if (n == 5){
func (4) ;
printf (the answer n_==.5); return; //change some
}
else if (n == 6){
func (5) ;
printf (the answer n == 6); return; //change some
}
else{
func(n-1);
tmpl = pow(2,n); tmp2 = pow(2,n-1);
for(i = tmp2; i < tmpl ;i++){
flag = 0;
printf ("{");
for (j = 0;j<n;j++){
if (i & table[j1){
if (flag)
printf (",%d",j+1);
else{
flag = 1; printf("%d",j+1);
}
}
}
printf ("}\n");
}
return;
}

code

code

code

Figure 6-1: source code of example 2

32

0.00 |

Figure 6-3: The result and.information about klee in example 2

6.2 Compare with Other Work
6.2.1 Compare with Catchconv

We use testcase 1, 2 to do test with catchconv. - Catchconv also can
explore paths as well as our method, so we compare the time and memory
usage. Figure 6-4 is the comparison result between our work and catchconv,
we can find out that catchconv spends more times and memory than our

method to explore path, and it also need to modify many scripts to do a

testing.
| Ourmethod | catchconv
Testcase 1 Time: 33 sec Time: 5 min
Memory: 14.9MB Memory: 60MB
Time: 2.3 sec Time: more than 30 min
Testcase 2

Memory: 13.7MB Memory: more than 1GB

Figure 6-4: The Comparison between our work and catchconv

33

6.2.2 Compare with HAPMI

We use program bc and logictree to compare with HAPMI. logictree is a
solver for propositional logic formulas, and bc is a command-line calculator
and simple programming language.

Because HAMPI does not release the script which can convert it con-
straints to KLEE API (like klee_assert()), we construct the almost same
environment: one core of 2.66 GHz i7-920 CPU and 1GB of RAM. We also
run these program 1 hour using our defined regular expression and use same
buffer size. Finally, we use the gcov tool to measure the line coverage. The
result is shown as Figure 6-5. Because the difference of tested program ver-
sion, the ELOC (which means ”Executable Lines of Code”) also has some

different. The upper ELOC is measured by us, and lower ELOC is measured

by HAMPL.

Program | ELOC Compare target Our method _Hapml
(orilfregexp) | (ori/grammer)

e total line coverage 22.2%/33.1% 27.1%/43.0%

bc 6 :
/1669 parser file line o .
coverage(324/332) 32.1% 39.5%
1447 total line coverage 18.3%/53.0% 31.2%/63.3%
logictree 11492 7 parser file line 53.0% 64.7%
coverage(17/17) : .

Figure 6-5: The Comparison between our work and HAMPI

There are two reason to cause the result:

1. HAMPI does not use symbolic file testing. The affect can be observed
by coverage of original KLEE testing (22.2% VS 27.1%). So HAMPI

34

does not need to challenge uclibc library which is more complex than

KLEE original libc library.

2. The language level of HAMPI implemented is Context-free language,
so is can cover more possible cases. For example, HAMPI can handle
a"b™ problem easily(same number of right and left parenthesis). This

case does not be handled well by regular language.

6.2.3 Compare with zzuf

We use zzuf to do fuzz be program, the input buffer size is also 6. We
control some parameter like fuzzing ratio to observe the affect. To do fuzz
testing smoothly, we add ”quit\n” te the end of fuzzing file and do not fuzz
the part. The fuzzing ratio is 0.1, 0.2, 0.3 and 0.4, the every fuzzing ratio
test with the number of test data: 1000, 2000, 3000, 4000, 5000 and 6000.
The result is shown as Table 6-5 and Figure 6-6. The ”all” means combining

the fuzzing ratio is 0.1, 0:2, 0.3 and 0:4.

1000 36.0% 38.2% 38.6% 39.5% 40.3%
2000 38.7% 39.6% 39.7% 40.0% 41.4%
3000 39.5% 40.9% 40.3% 40.2% 42.5%
4000 39.8% 41.1% 40.6% 40.2% 42.5%
5000 39.8% 41.5% 41.9% 40.2% 44.0%
6000 39.8% 41.6% 41.9% 40.3% 44.0%

Table 6-5: The line coverage of program bc using zzuf

To observe and analyse the figure, we can find out that:

e If the fuzzing ratio is too small or too big, the result of coverage is not

good.

35

45.0%
44.0%
43.0%
42.0%
41.0%
40.0%
39.0%
38.0%
37.0%
36.0%
35.0%

e Fuzz testing can gain the high coverage at beginning. But when we use

more test data to do fuzz testing, the improvement of the coverage is

small.

36

--0.1
-2-0.2
0.3
-<0.4
=-sum

7 Conclusions

Scalability is an important issue in symbolic file testing. In KLEE, the
complexity of C standard library is a main reason to bother the scalability.
To address this problem we proposed regular expression constraints to limit
the execution paths and focus on testing part of specifications. Description
of input format is flexible and easily by using regular expression, . Finally we
implement our method on KLEE to reduce the usage memory and enhance
the line and path coverage. We hope this work can help programmers to test

their program easily.

37

8 Future Work

As mentioned at result of HAMPI comparison, context-free language
can handle more situation, so we can add context-free grammar supporting
in KLEE. We can use Lex and Yacc tools to implement this feature.

But describing a context-free grammar usually difficult than describing
regular expression, we can still maintain regular language part for some small
programs testing. We can improve this part by using PCRE [32], which is
short from Perl-compatible regular expressions, to support our work. PCRE
provides some APIs; the important two function is ”pcre_compile()” and
"pere_exec()”. The function pere_compile() can be used to build a data struc-
ture containing regular expression information, and the function pcre_exec()
can be used to match a given string and given compiled regular expression.
We can use pcre_compile() first, then refer pere_exec() to implement a func-

tion which can match constraints and expression.

38

References

[1]
2]

[10]

[11]

[12]
[13]

G.J. Myers. The art of Software Testing. Wiley, 2004.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. USENIX Symposium on Operating Systems Design and Im-
plementation, 2008.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the

2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, and
Brian Gaeke. LLVA: A Low-level Virtual Instruction Set Architecture.
In Proceedings of the 36th annual ACM/IEEE international symposium
on Microarchitecture (MICRO-36), San Diego, California, Dec 2003.

LLVM, http://llvm.org/.
NCTU Online Jduge System, http://progexam.cs.nctu.edu.tw/.
uClibe, http://www.uelibe.org/.

Satisfiability =~ Modulo Theories ~ Competition (SMT-COMP),
http://www.smtcomp.org/.

Clark Barrett and Cesare Tinelli. CVC3. In-Werner Damm and Holger
Hermanns, editors, Proceedings of the 19" International Conference on
Computer Aided Verification (CAV-207), volume 4590 of Lecture Notes
in Computer Science, pages 298-302. Springer-Verlag, July 2007. Berlin,
Germany.

Clark Barrett and Sergey Berezin. CVC Lite: A New Implementation of
the Cooperating Validity Checker. In Rajeev Alur and Doron A. Peled,
editors, Proceedings of the 16" International Conference on Computer
Aided Verification (CAV °04), volume 3114 of Lecture Notes in Com-
puter Science, pages 515-518. Springer-Verlag, July 2004. Boston, Mas-
sachusetts.

Vijay Ganesh and David Dill. A decision procedure for bit-vectors and
arrays. In Werner Damm and Holger Hermanns, editors, Computer
Aided Verification, volume 4590 of Lecture Notes in Computer Science,
pages 519-531. Springer Berlin / Heidelberg, 2007.

The Yices SMT solver, http://yices.csl.sri.com/.

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. Select—a formal
system for testing and debugging programs by symbolic execution. In

39

[17]

[18]

[23]

[24]

[25]

[26]

Proceedings of the international conference on Reliable software, pages
234-245, New York, NY, USA, 1975. ACM.

James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385-394, 1976.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. Exe: Automatically generating inputs of death. ACM
Trans. Inf. Syst. Secur., 12(2):1-38, 2008.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In PLDI °05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implemen-
tation, pages 213-223, New York, NY, USA, 2005. ACM Press.

Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and
explicit path model-checking tools. In In CAV, pages 419-423. Springer,
2006.

J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In ASE °08: Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, pages 443—-446, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

Peach Fuzzing Platform, http://peachfuzzer.com /.
zzuf, http://caca.zoy.org/zzu/.

Patrice Godefroid, Michael Y. Levin, and David A Molnar. Auto-
mated whitebox fuzz testing.. In Network Distributed Security Sympo-
sium (NDSS). Internet Society, 2008.

Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE
‘07: Proceedings of the 29th international conference on Software engi-
neering, 2007.

David Alexander Molnar, David Molnar, David Wagner, and David
Wagner. Catchconv: Symbolic execution and run-time type inference for
integer conversion errors. Technical report, UC Berkeley EECS, 2007.

Valgrind, http://valgrind.org/.

Li-Wen Hsu. Resolving unspecified software features by directed random
testing. Master’s thesis, NCTU, 2007.

C. F. Yang. Resolving constraints from cots/binary components for
concolic random testing. Master’s thesis, NCTU, 2007.

40

[27] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. CIL: Intermediate Language and Tools for Analysis and Trans-
formation of C Programs. In CC ’02: Proceedings of the 11th Interna-

tional Conference on Compiler Construction, pages 213—-228, London,
UK, 2002. Springer-Verlag.

[28] Yan-Ting Lin. Non-primitive type symbolic input for concolic testing.
Master’s thesis, NCTU, 2009.

[29] You-Siang Lin. Cast: Automatic and dynamic software verification tool.
Master’s thesis, NCTU, 2009.

[30] MPlayer, http://www.mplayerhq.hu/.

[31] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and
Michael D. Ernst. Hampi: a solver for string constraints. In ISSTA
'09: Proceedings of the eighteenth international symposium on Software
testing and analysis, pages 105-116, New York, NY, USA, 2009. ACM.

[32] PCRE, http://www.pcre.org/!

41

