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摘摘摘要要要

軟體測試是軟體發展中一個重要的程序，而符號測試則是現今軟體測試中重要的技術之一。若

符號測試範圍能涵蓋到檔案輸入的話，則我們將不需要修改程式碼來標記哪些變數有可能是

符號變數，而可以透過標準輸入直接進行符號測試，符號測試將更為方便且全面。近年來，

拜電腦的運算能力大幅提升及關於減少描述程式之限制式的改善方法不斷地被提出，符號測

試涵蓋於檔案等級已經不再是難以達成的事情。在眾多的符號測試工具之中，KLEE 著眼於

LLVM(Low Level Virtual Machine) 所具備的中介語言對各程式語言及各硬體架構的良好獨

立性，所以架構於 LLVM 之上來進行符號測試，是目前發展較為成熟且較受到矚目的符號測

試工具之一。然而在 KLEE 中，由於符號檔案測試涵蓋了C語言標準函式庫，所以產生了過

多的執行路徑，造成測試一個不到百行的小程式就得花上不少時間及記憶體，而所產的涵蓋新

執行路徑的測試資料更是大部分只跟C語言標準函式庫的程式碼有關，只有一小部分是關於受

測程式的新執行路徑。我們希望透過簡單的實作正規表示式限制符號檔案於 KLEE 之方式，

專注於產生程式預期接收的測試輸入，以便在短時間內能更快的進入新的執行路徑。

關關關鍵鍵鍵字字字：：： 軟體測試、符號測試、正規表示式
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Abstract

Software testing is an important procedure of software development process, and sym-

bolic testing is one of the most important techniques in the domain of software testing. If

we can handle symbolic testing with file level, we can process testing directly via standard

input rather than modifying source code and marking the symbolic variables. Nowadays,

symbolic testing with symbolic files is feasible because of the powerful computing ability

and the techniques about reducing constraints. In various symbolic testing tools, KLEE

based on the top of LLVM(Low Level Virtual Machine) because that LLVM’s assembly

level instruction set is independent of programming languages and architectures. KLEE

is one of well-developed and famous symbolic tools. However, KLEE does symbolic files

testing still have some problems: symbolic files testing cover the C standard library and

generate too many execution paths. The result is: (1) Waste a large amount of time

and run out of memory when test a source code which is less than 100 lines. (2) The

most ratio of test cases which can cover new paths relative testing source code to all

test cases is too small. In other words, we spend too much time on generating new paths

which cover C standard library. We want to improve the efficiency of generating execution

paths by using regular expressions which describes a given format. In this way, we can

explore useful execution paths which is covered the new part of source code in short period.

Keywords: Software Testing, Symbolic Testing, Regular Expression
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1 Introduction

1.1 Problem Descriptions and Motivation

Software testing is a very important stage in procedures of software de-

velopment [1]. If we develop software without testing, we can not prove that

software can satisfy the specifications completely. If the implementation does

not adhere to the specifications, there may be bugs (do not implement the

requirements) and security problems (implement some function which does

not be requested), as Figure 1-1 shows.

Figure 1-1: The relation about specification and implementation

Symbolic testing is one of mainstream techniques in the domain of soft-

ware testing. Symbolic testing is more precise than other testing method,

but it also spent more time and computing resource. In generally, before

doing symbolic testing, we must modify source codes to provide information

that which variable is symbolic. But if symbolic testing can support file level

1



testing, we can do symbolic testing easily by making standard input symbolic.

We choose KLEE [2] as our main symbolic testing tool because KLEE

has following advantages:

• It is a famous and well-developed symbolic testing tool

• It can do symbolic testing with basic file-level supported

• It built on top of the LLVM(Low Level Virtual Machine) [3] [4] [5]

compiler framework. Via LLVM framework, we can validate and check

many programs independent of programming languages and CPU ar-

chitectures (if LLVM supported the programming language and CPU

architecture). In the other words, we can effectively extend the testing

range of programming language.

KLEE doing symbolic files testing with C standard library to provide

detailed path and instruction information about standard library functions.

The advantage is the bug which is dependent on library can be found eas-

ily. But the disadvantage is that the amount of execution paths is growing

rapidly. For example, if we call fscanf function, fscanf function will call vf-

scanf function next. After calling the vfscanf function, vfscanf function call

scan getc function. Because the input is unconstrainted, when we meet the

branch instructions like if, switch, for and while, all conditions of branch

instructions is always satisfiable. Because no execution path is discarded by

unsatisfiablity of constraints, the rate of execution paths growing is too rapid

to handle.

For example : the Figure 1-2 showed above is a source code on NCTU

On-line Judge System [6]. Execute the program via KLEE [2] with symbolic

files and files’ size upper bound is 20 bytes, the result is: 330368 execution

states, only 10225 test cases can exit program normally. Then only 13 test

2



1 #include <stdio.h>

2 #include <stdlib.h>

3 main(int argc , char* argv []) {

4 char buf [1024];

5 unsigned long long i,j,k;

6 while (fgets(buf ,1024, stdin) != NULL) {

7 if (strcmp(buf ,".\n")==0) break;

8 if (strcmp(buf ,".")==0) break;

9 sscanf(buf ,"%llu %llu",&i,&j);

10 if(i == 0)

11 printf("%u\n",j);

12 else

13 printf("%llu\n", (i << 32) + j);

14 }

15 return 0;

16 }

Figure 1-2: source code of test case 1

cases can produce new execution paths. And according our observation (The

relative data will show in evaluations section), the 13 test cases is produced

at early period. In other words, the efficiency of generating new execution

paths is not good enough.

By previous example, we can find out a critical problem: How do we

reduce the execution states efficiently? The main causes of a large number

of execution states are:

1. To arrive the goal about general using, standard library to handle all

possible situation. So the code of standard library is significant com-

plexity.

2. No constraints describes and limits standard input, so all conditions

about branches in standard library are almost possible.

In this thesis, we proposed a method called regular constraint to limit

constraints with regular expression and resolve the above problem. By this

method, we can scale the level of tested program.

3



1.2 Objective

In this thesis, we observe the problem that KLEE does symbolic files

testing with uClibc [7] standard library and generates most execution states

which is only covering paths in standard library code. To resolve the problem,

we do symbolic files testing with focusing on the program’s core function-

ality. In the other word, we want to test the ”specification” part which we

mentioned early. If we want to describe the input data format, use regular

expression is a normal and reasonable method.

So we propose one method to resolve the above problem and implement

the method on KLEE:

• Descript standard input format by regular expression, and combine

regular expression and constraints, to arrive the effect we want.

Because we aim at ”Test the part which programmers expect”, the rules

of on-line judge adhere to our requirement, we use some source code on

NCTU On-line Judge to evaluate.

4



2 Background

2.1 Execution Paths and Constraints

Execution Paths is the set of executed instructions in order. If two ex-

ecuting paths’s executed instructions or their order is not the same, we say

the two execution paths are different. Constraints describe the reservations

about an execution path. By way of converting instructions information to

constraints, we can obtain the description about the limitation of data value

, life time of variable , the relation about variables and the information about

stack and heap. Constraint can be devided into two category:

• Constant constraints: The all information constraints provided is inde-

pendent of user input.

• Symbolic constraints: The information is dependent on user input or

execution environment.

For example, in Figure 2-1, n is an integer user entered. The value of x

depends on n, so line 2 is symbolic constraints. And if we do not consider

the value of x, this function has three execution paths because of if-else in

line 4 to 9.

1 void test(unsigned int n){

2 unsigned int x = 3 * n + 1;

3 unsigned int y = 3 * x - 2;

4 if (x % 3)

5 puts("Path1\n");

6 else if (y % 5)

7 puts("Path2\n");

8 else

9 puts("Path3\n");

10 }

Figure 2-1: An example for explaining execution path

5



2.2 Constraints Solver

The formal name of Constraints Solver is Satisfiability Modulo Theories

Solver. In theory, if we can transform a problem to a satisfiability problems,

we can use SMT(Satisfiability Modulo Theories) solver to resolve our prob-

lems. As known to all, satisfiability problems is NP-complete problems, if

your constraints amount reach the significant degree, the SMT solver may

not resolve the problem certainly. For enhancing the motive to improve the

SMT solver, SMT-LIB arises a competition called SMT-COMP (Satisfiabil-

ity Modulo Theories Competition ) [8]. every year

CVC3 [9](advenced work from CVC Lite [10]), STP [11] and Yices [12]

are some famous SMT solvers using by symbolic testing tools.

2.3 Symbolic Execution

Symbolic testing is one of the most important techniques in the do-

main of software testing. The concept of symbolic testing is proposed in

1970s [13] [14].

In symbolic executions, we use symbols to represent the program variables

and execute the program with these symbols. This method is more powerful

than concrete execution because one symbolic execution can be correspond-

ing to a set of concrete executions.

In Figure 2-1, the function read an integer, does some arithmetic com-

puting, and output depends on symbolic variables. In line 3, the symbolic

variable x will be represented as 3 ∗ n + 1, symbolic variable y will be repre-

sented as 9 ∗ n + 1. During symbolic execution, we can obtain a execution

tree which is the control flow of this program. In Figure 2-1 line 6, you will

choice one of paths depending on symbolic variable. Usually, the execution

will always enter line 7 because symbolic x is not a multiple of 3. But when

we use correct constraints like x = (3 ∗ n + 1)%232 and y = (3 ∗ x− 2)%232 ,

6



we can resolve a counter example that n is 2000000001. If n is 2000000001,

the execution will enter line 7 or 9. Using symbolic execution, we can col-

lect constraints and use constraints solver to get the test case to solve the

execution paths. So find the same bug type of integer overflow easily.

2.4 Concolic Execution

The term ”concolic” is combined ”concrete” with ”symbolic” . As the

word ”concolic” is originated from, concolic execution is a testing technique

that use properly concrete values to replace the symbolic variable. At a

specific time (usually when detecting a branch), we gather all constraints

and give SMT solver the information. The solver will find a counterexample

to try exploring other execution paths.

This method is better for these reasons:

• Avoid generating redundant test cases.

• Usually has better path coverage than other testing method.

EXE [15], DART [16], CUTE [17]and Crest [18] perform concolic testing.

EXE can address bit-level acccurate modeling of memory , but byte-level

memory model has more efficiency and the effect is only a little deterioration.

Crest is advanced work for CUTE, it use Yices [12] as constraints solver and

use CIL insert instrumentation code.

2.5 Fuzz Testing

Fuzz testing is also called ”Random Testing” or ”Brute Force Testing”

because that the test data is generated randomly. Peach [19] and zzuf [20] is

some famous fuzzing tools.The basis of fuzz testing’s theory is described as

following:

7



• Although the efficiency of exploring executing paths per test case is

poorer than other testing tools, the efficiency of generating test cases

is better.

Efficiency =
Found bugs

Test cases
∗ Generating test case

T ime

• The difficulty of designing a fuzz testing tools is easy than other testing

tools.

But in real world, pure fuzz testing usually only finds simple faults

of programs. So it usually combine with other testing method to help other

methods obtain more improvement. For example, Automated White Fuzz

[21] Testing is a work combined with symbolic testing, and Hybird Concolic

Testing [22] is a work combined with concolic testing.

8



3 Related Work

3.1 LLVM Compiler Framework

LLVM (Low Level Virtual Machine) provides a virtual instruction set,

which provides rich, language-independent, type and SSA(Static Single As-

signment) information about instruction operands. Nowadays, it supports

many programming languages and back-ends of machine architecture.

3.2 KLEE Symbolic Virtual Machine

KLEE is a redesigned work from EXE. The biggest different of KLEE

and EXE is that KLEE is a symbolic testing tool which bases on top of LLVM

compiler infrastructure, which has language independent instruction set and

type system. Klee use bitcode, which a middle-end instructions llvm-gcc

or clang produced, as input to do symbolic testing. KLEE execute bitcode

by instruction and instruction, and then convert instruction information to

constraints. KLEE use ExecutionState object to manage the path and con-

straint information.KLEE use some state search algorithm to choose which

state should be executed first. It also cache the queries and their results to

speed up the speed of query.

KLEE use STP as its default constraints solver. But it also design another

constraints solver: Kleaver, which can be presented by KQuery language.

The KQuery language is closely related to the C++ API for KLEE’s Exprs

(which is LLVM instruction appending some information KLEE maintains).
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3.3 Catchconv

Catchconv [23] is based on Valgrind [24] framework. Catchconv combines

symbolic execution and run-time type inference from a sample program run

to generate test cases. And it mentions how to convert program and symbolic

memory address to constrains of STP in detail. The architecture and imple-

mentation of Catchconv can execute query parallel easily, but the amount of

constraints Catchconv generating still too much.

3.4 Alert

Alert [25], [26] is abbreviated from ”Automatic Logic Evaluation for

Random Testing”. Alert is a testing tools using concolic execution technique

and refering EXE and Cute testing framework to implement. It use CIL

[27] (C Intermediate Language) to instrument the source code and produce

an instrumented code. Alert executes with instrumented code and collects

constraints by instrumented part. And it use CVC3 as constraints solver. In

2009, Alert support symbolic testing with files input [28], and use STP as

constraints solver. The method Alert used is ”List & Pick”, list all possible

constraints about files input and pick some of them to union (operation

of ”or”). Alert implement symbolic files testing by instrumented some file

functions of C standard library like fopen, fgets, fseek and fscanf.

CAST [29] is a improvement and modified work from ALERT. It simplify

CIL instrumented part and implement a parser which is written in Ocaml

let user can define universal check self. The most important contribution of

this work is implement of symbolic pointer read/write with symbolic value.

This implement is a significant improvement to the auto generating of exploit

because that if you can control a symbolic pointer and symbolic value, you

almost can access any memory address.

Alert implements many useful features and functions, but its disadvantage
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is the level of tested sources can not scale still now.

3.5 zzuf

As early mentioned, zzuf is a fuzz testing tools with standard input

and network fuzz supported. Zzuf’s primary testing target is media players

(like mplayer [30]), image viewers and web browsers. It has many options

to control generating test cases. For example, it can control the ratio of

difference between original data and generating data. It also can assign the

byte offset range to fuzz. It use the regular expression to match file name,

and decide fuzz the file or not.

3.6 HAMPI

HAMPI [31] is a SMT solver based on top of STP and it is for string

constraints over fixed-size string variables. HAMPI do some implements to

make constraints expressing membership in regular languages and fixed-size

context-free languages. Given set of constraints, HAMPI outputs a string if

constraints are satisfiable. The implement steps of HAMPI are following :

1. Normalize constraints to HAMPI’s core string constraints

2. Translate core string constraints to a quantifier-free logic of bit-vectors

3. Call STP to judge the bit-vector constraints are satisfiable or unsatis-

fiable.

4. If constraints are satisfied, compute and output the string solution.

HAMPI does evaluations of symbolic testing using KLEE. First, HAMPI

conpile the input grammar file into STP bit-vector constraints. Then it con-

verts STP bit-vector constraints into C language code that expresses by API

of KLEE. Finally, it inserts these code to test source code and runs KLEE
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on target program. The line coverage result of experiments is better than

original KLEE.

Figure 3-1: The Comparison of Some Relative Works
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4 Methods

In this thesis, we implement the part of converting regular expression to

constraints and resolving these constraints with original constraints. In this

section, we will describe our method to handle the standard input constraints

with user-defined regular expression information. We introduce that how

does KLEE test with symbolic files first, and explain the reasons that why

do we choose the method. Finally, we display the overview of our method.

The details about implementation will be described at next section.

4.1 The architecture of KLEE with symbol files

As figure 4-1 show, the source code of C language is compiled in LLVM

bitcode by llvm-gcc (or clang) at first. At the next step, KLEE reads the

bitcode and initializes the testing environment. To implement symbolic files

testing, KLEE creates a symbolic buffer and construct the relation between

standard input and symbolic buffer, then KLEE select a state from the set

of states to collect constraints information instrution by instrution. If KLEE

meets the branch instruction (the definition is: according some conditions

like value of a variable, you has two or more basic blocks to choose. For

example, if, case, while and for) or alloc instruction, it will use solver to

check the possible paths, then let forked state to wait until it is selected

by searcher. If there are no execution states waiting to be selected, KLEE

resolves the execution constraints per path to generate the test case which

can explore the corresponding execution path.
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Figure 4-1: Klee Architecture

4.2 The architecture of KLEE with regular expression

symbolic files support

4.2.1 The intuitive idea

The most important key of this thesis is: how do we use regular infor-

mation to limit constraints. Usually, the method we using regular expression

is that let strings to match regular expression. But the situation of handling

constraints is different from handling strings. The character value of a string

is fixed, but the constraints may contains many possible values. Consider the

difference, we consider two methods to handle this problem at first. The first

method is : At KLEE selects a execution state, we use SMT solver to resolve

constraints and get the value which is not contradictory to constraints. If the
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value can not adhere to regular expressions, we discard the execution state.

The problem of this method is: The resolved value can not represent con-

straints, it is only a possible value about constraints. So if a execution state

is discarded, that does not mean the execution state can not satisfy regular

expression. In some cases, this method filter more than 99 percentage of

execution paths that is not contradictory to user-defined regular expression.

The second method is: We use regular expression to generate fixed value

inputs, then convert these inputs to constant constraints. For every input,

we create execution state and add corresponding constant constraints to ex-

ecution state. This method also has some problems:

• The number of possible cases which can satisfy regular expression are

significant.

• Be the same with the problem of fuzz testing, most of generated values

are corresponding the same execution path.

4.2.2 The improved idea

According the analysis above mentioned, the two methods have some

critical problems. The main reason is that we use fixed values to replace

constraints or regular expression in some procedures, so some information is

missing and inaccurate. We consider other methods which does not loss any

information. The third method is ”regular expression expansion” method.

The ”expansion” means that expanding all possible value in non-fixed times

expression range,then we convert these expanded regular expressions to fixed-

length constraints. And we append every constraints to forked states, the

advantage of this method is needless to use SMT solver (There is no failed re-

sult by add constraints because the initial execution state has no constraint.)

The disadvantage is that the number of possible expanding states may be

significant.
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The fourth method is ”checking every time” method. When KLEE’s

searcher select a execution state, we compare the constraints to regular ex-

pression byte by byte. The advantage is we can append no constraints to

states (because of the information of non-fixed times expression can not con-

vert to constraints, so if we use third method, there still is some error), the

disadvantage is that the number of solver query requests is significant. The

number of solver query requests usually are bottleneck of symbolic testing,

so this method is not efficient.

Finally, consider the size of standard input buffer usually has some limit,

the number of possible expanding states can be reasonably limited, we use

third method to implement.

Figure 4-2: Klee Modified Architecture
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4.2.3 The Overview of Flowchart

Our method is described as following: First, at the moment of KLEE’s

searcher selects a state to continue exploring paths, match the path con-

straints to regular expression’s information, see Figure 4-2. If it can be

resolved after adding regular expression’s information, still execute. If it can

be resolved, then discard this execution path.

Because the smallest unit of regular expression is character and the

size of character is byte, we operate adding constraints of regular expression

information in byte level. The flow of our method is showed as Figure 4-3.
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Figure 4-3: KLEE with Regular Expression Matching Logic
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5 Implement

5.1 Data Struct

A regular Expression includes two important type of information. First

type of information is contents of comparison, second type of information is

the number range of match times. So we define two kinds of structure to

record and describe the information of regular expressions.

5.1.1 ByteUnit

Structure ByteUnit consists of the type of contents of comparison. It

consists of two attributes:

• type: We only implement following type about contents of regular ex-

pressions:

– .: all, all possible character.

– \d: digit, from character ’0’ to character ’9’.

– \w: word, same as [a− zA− Z0− 9 ].

– \s: space, \t, \n, \f, \r and \v.

– [...]: bracket, all list characters are possible values.

– [ˆ...]: nbracket , all list characters are impossible values.

• contents: A vector of characters. If the type is bracket, nbracket(not

including beginning ˆ) or other, this attribute contains the character(s).

We handle the contents of bracket or nbracket type at patch function.

5.1.2 TimesExpr

Structure TimesExpr records the match times information (like {?,?},

?, * and +) about some elements of regular expression. It consists of four

attributes:
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• min: An unsigned integer records the minimum number of match times.

• max: An unsigned integer records the maximum number of match

times. If the match times is a fixed value rather than a range, the

value of max is zero.

• nextLevelTEs: A vector contains of TimesExpr objects, and these

TimesExpr are sequencing by order. Because a regular expression usu-

ally contains more than one match times information, and some match

times information usually contains other match times information. For

example (\d{2,4}){3}, the {3} contains the match times information

{2,4} .

• unit: It contains a ByteUnit object.

To explain easily, in regular expression, parentheses represent a Time-

sExpr. If a TimesExpr contains no nextLevelTEs, it must contain a ByteUnit

object.

5.2 Parse Regular Expression to Structure

In this section, we introduce the functions to parse regular expression

and the flowchart of parse procedure.

5.2.1 preparse Function

TimeExpr ∗ preparse(void)

To avoid some regular expression like (\w{2,3})(\d{3,4}) has more than

two TimesExpr after parsing, so we add parentheses at begin and end, then

call parse function to parse. Finally, this function return a TimesExpr to

repersent all regular expression .
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5.2.2 parse Function

void parse(TimesExpr &te, std :: string re)

Parse() is the most important function to handle regular expression to

our defined structures. If there is a right parenthesis, find the corresponding

left parenthesis and create a TimesExpr to represent this parentheses (Notice

that if before the parenthesis has continuous odd ”\”s, the parenthesis only

is a common character). Then call parse function recursively to parse the

part of regular expression in parentheses. In this situation, the TimesExpr

contains many TimesExpr.

If there is not a right parenthesis, we still create a TimesExpr, but this

TimesExpr only contains a ByteUnit. We also assign the corresponding type

according the character parsed.

After parse a TimesExpr, we call times function to check the minimum

and maximum value of this TimesExpr.

In there is no parentheses, we parse ByteUnit and still create a Time-

sExpr to append ByteUnit to TimesExpr.

5.2.3 times Function

unsigned int times(std :: string partnre, unsigned int &min, unsigned int &max)

Function to handle times expression. Set up the value of minimum and

maximum in TimesExpr and return the string length of time expression.

5.2.4 reparse Function

void reparse(TimeExpr &te)
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Function to handle times expression which is redundant: a TimesExpr

is a redundant TimesExpr if its contains no unit and its minimum is 1 and

its maximum is 0. We will erase the redundant TimesExpr to improve effi-

ciency.

5.2.5 Example

We use the regular expression (\d{2,4} )+ to explain the procedures.

1. First, call preparse function to add a pair of parenthesis to (\d{2,4}

)+: ((\d{2,4} )+).

2. Create a TimesExpr object to represent all regular expression, and set

up the minimum and maximum value to 1 and 0.

3. Call parse function, find out the right parenthesis. So find the corre-

sponding left parenthesis and call parse function recursively: \d{2,4}.

4. Find out a ByteUnit: \d, create TimesExpr to contains the ByteUnit

and set the ByteUnit type to digit. Then call times function to set

up the minimum value and maximum value of TimesExpr. Finally,

append this TimesExpr to nextLeverTEs of upper level TimesExpr.

5. Find out a ByteUnit: the space character. Create TimesExpr to con-

tains the ByteUnit and set the ByteUnit type to other. Then call times

function to set up the minimum value and maximum value of Time-

sExpr. Finally, append this TimesExpr to nextLeverTEs of upper level

TimesExpr.

6. Finish parsing the \d{2,4}, call times function and found the ’+’ sym-

bol, so we set up minimum to 1 and maximum to a defined number.

7. The parsing result is showed in Figure 5-1.
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Figure 5-1: The example we handle regular expression (before reparse)

8. Call reparse, the result is showed in Figure 5-2.

Figure 5-2: The example we handle regular expression (after reparse)

5.3 Patch Constraints by Parsed Regular Expression

5.3.1 patch function

void patch(TimeExpr &te, std :: vector < std :: pair < ExecutionState∗, unsigned int >

> &patchstates, bool top)

The parameters patchstates contains the states waiting to be patched

and the patched byte size of the corresponding state. This function to han-

dle these part:
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1. Add constraints to all execution states in patchstates according to reg-

ular expression and the corresponding byte size. After adding con-

straints, increase 1 to the byte size.

2. Fork execution state and maintain the relationship between original

state and fork state (KLEE’s PTree structure).

At beginning, patchstates only contains initial state, and its patched

standard input size is 0. If TimesExpr contains nextLevelTEs, call patch

function recursively with per TimesExpr in nextLevelTEs. If TimesExpr

contains ByteUnit, we patch patchstates according type of ByteUnit and

patched byte size.

1
2 std::vector < std::pair <ExecutionState*, unsigned > >::iterator si = patchstates.begin(),

3 se = patchstates.end ();

4 std::vector < std::pair <ExecutionState*, unsigned > > addStates;

5 while(si!=se){

6 unsigned int count = 0; // record the times

7 for(;count <te.min;count ++){

8 ExecutionState * tmp = si->first;

9 if(si->second == tmp ->symbolics [0]. first ->size)

10 break;

11
12 // generating constraints and add to si ->second byte

13 (si ->second )++;

14 }

15
16 for(;count <te.max;count ++){

17 ExecutionState * tmp = si ->first;

18 if(si->second == tmp ->symbolics [0]. first ->size)

19 break;

20
21 ExecutionState *forkState = tmp ->fork ();

22 addStates.push_back(std:: make_pair(forkState ,si ->second ));

23
24 // generating constraints and add to si ->second byte

25 (si ->second )++;

26 }

27 si++;

28 }

29 patchstates.insert(patchstates.end(), addStates.begin(), addStates.end ());

30 addStates.clear ();

Figure 5-3: The pseudo code about times expression patch

The patching method is described in Figure 5-3 simply. First, we

patch states according the TimesExpr minimum value, then if we adhere

24



to the requirement of minimum value, we try to patch states according the

maximum value. Because all times between minimum and maximum adhere

to requirement, we want to list all possible situation. So we fork state, add

one to a temp vector: addStates, and process with another state.

We explain how we implement some feature in Figure 5-4, Figure 5-5,

Figure 5-6, Figure 5-7 and Figure 5-8.

1 ref <Expr > Space_L = ConstantExpr ::alloc(8, Expr::Int8);

2 ref <Expr > Space_R = ConstantExpr ::alloc(14, Expr::Int8);

3 ref <Expr > CharSpace_L = ConstantExpr ::alloc(31, Expr::Int8);

4 ref <Expr > CharSpace_R = ConstantExpr ::alloc(33, Expr::Int8);

5 ref <Expr > INT_L = ConstantExpr :: alloc (47 Expr::Int8);

6 ref <Expr > INT_R= ConstantExpr ::alloc(58, Expr::Int8);

7 ref <Expr > Upper_L= ConstantExpr :: alloc(64, Expr::Int8);

8 ref <Expr > Upper_R= ConstantExpr :: alloc(91, Expr::Int8);

9 ref <Expr > Lower_L= ConstantExpr :: alloc(96, Expr::Int8);

10 ref <Expr > Lower_R= ConstantExpr :: alloc (123, Expr::Int8);

11 ref <Expr > CHARUD_L= ConstantExpr :: alloc(94, Expr::Int8);

12 ref <Expr > CHARUD_R= ConstantExpr :: alloc(96, Expr::Int8);

13
14 void range_AND(state , L, cur , R){

15 ref <Expr > result1 = SltExpr :: create(L, cur); // L < cur

16 ref <Expr > result2 = SltExpr :: create(cur , R); // cur < R

17 ref <Expr > result3 = AndExpr :: create(result1 , result2 ); // L < cur < R

18
19 solver ->mustBeFalse(state , result3 , failed );

20
21 if(failed) terminateStateOnError(state);

22 else addConstraint(state , result3 );

23 }

24
25 void range_OR(state , L, cur , R){

26 ref <Expr > result1 = SltExpr :: create(cur , L); // cur < L

27 ref <Expr > result2 = SltExpr :: create(R, cur);// cur > R

28 ref <Expr > result3 = OrExpr :: create(result1 , result2 ); // cur < L || cur > R

29 solver ->mustBeFalse(state , result3 , failed );

30
31 if(failed) terminateStateOnError(state);

32 else addConstraint(state , result3 );

33 }

34
35 void range_EQ(state , C, cur){

36 ref <Expr > result1 = EqExpr :: create(cur , C);

37 solver ->mustBeFalse(state , result1 , failed );

38
39 if(failed) terminateStateOnError(state);

40 else addConstraint(state , result1 );

41 }

Figure 5-4: The pre-defined instruction and function
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1 ref <Expr > C= ConstantExpr ::alloc(char1 , Expr::Int8);

2
3 ref <Expr > cur = (state.addressSpace.findObject(state.symbolics [0]. first))->read8(i);

4 func_EQ(state , C, cur);

Figure 5-5: The pseudo code about handling any char

1
2 unsigned int pos;

3 std::vector < ref <Expr > > OrExprs;

4 ref <Expr > cur = (tmp ->addressSpace.findObject(state.symbolics [0]. first))->read8(i);

5
6 for(pos=0;pos <te.unit ->contents.size ();pos ++){

7 if(te.unit ->contents[pos] == ’\\’){

8 ref <Expr > target , result1;

9 switch(te.unit ->contents [++pos]){

10 case ’-’:

11 case ’\\’:

12 case ’.’:

13 target = ConstantExpr ::alloc(te.unit ->contents[pos], Expr::Int8);

14 result1 = EqExpr :: create(cur , target );

15 OrExprs.push_back(result1 );

16 break;

17 default:

18 break;

19 }

20 }

21 else if(te.unit ->contents[pos+1] != ’-’){

22 ref <Expr > target = ConstantExpr :: alloc(te.unit ->contents[pos], Expr::Int8);

23 ref <Expr > result1 = EqExpr :: create(cur , target );

24 OrExprs.push_back(result1 );

25 }

26 else{

27 ref <Expr > limitL = ConstantExpr :: alloc(te.unit ->contents[pos]-1, Expr::Int8);

28 ref <Expr > limitR = ConstantExpr :: alloc(te.unit ->contents[pos +2]+1 , Expr::Int8);

29 ref <Expr > result1 = SltExpr :: create(limitL , cur);

30 ref <Expr > result2 = SltExpr :: create(cur , limitR );

31 ref <Expr > result3 = AndExpr :: create(result1 , result2 );

32 OrExprs.push_back(result3 );

33 pos +=2;

34 }

35 }

36 if(OrExprs.size() == 1){

37 if(te.unit ->type & nbracket)

38 OrExprs [0] = NotExpr :: create(OrExprs [0]);

39 addConstraint(state , OrExprs [0]);

40 }

41 else{

42 ref <Expr > result = OrExpr :: create(OrExprs [0], OrExprs [1]);

43 for(pos=2;pos <OrExprs.size ();pos ++)

44 result = OrExpr :: create(OrExprs[pos], result );

45
46 if(te.unit ->type & nbracket)

47 result = NotExpr :: create(result );

48 addConstraint(state , result );

49 }

Figure 5-6: The pseudo code about handling bracket and nbracket
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1 ref <Expr > cur = (state.addressSpace.findObject(state.symbolics [0]. first))->read8(i);

2
3 range_AND(state ,INT_L , cur , INT_R);

Figure 5-7: The pseudo code about handling IsDigit

1 ref <Expr > cur = (state.addressSpace.findObject(state.symbolics [0]. first))->read8(i);

2
3 range_AND(state , INT_L , cur , Lower_R );

4 range_OR(state , INT_R cur , Upper_L );

5 range_OR(state , Upper_R , cur , CHAR_UD_L );

6 range_OR(state , CHAR_UD_R , cur , Lower_L );

Figure 5-8: The pseudo code about handling IsWord

5.3.2 Example

We use the regular expression (\d{2,4} )+ and sample code like Figure

5-9 to explain the details of our implementation. First, we separate the part

of times expression and part of comparison from regular expression. We can

get a structure like Figure5-2. If the times is big than the min value of times

expression and small than the max value of times expression, We can fork the

execution state, one of execution state try to adhere the max value of times

expression, another execution state is continuing to do next comparison with

other byte constraints. If match the all regular expression, we will mark and

add the forked execution state to set of execution states. According this flow,

we will get the result like Figure 5-10.

1 #include <stdio.h>

2 #include <string.h>

3
4 int main (){

5 char buf [12];

6 int i, j;

7 fgets(buf ,12, stdin);

8 if (buf [6] == ’a’) print("branch !\n");

9 while(sscanf(buf ," %d %d" ,&i,&j)==2){

10 printf("%d %d\n",i, j);

11 }

12 }

Figure 5-9: source code of example using to explain implementation
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Figure 5-10: The example we handle regular expression

28



6 Evaluations

6.1 Compare with Original KLEE

In the section, we use some examples to demonstrate the functionality

of our implementation.

6.1.1 Test case 1

We use regular expression (\d{3} \d{2}.)̇+ to do symbolic file testing

with our implement, and the source code is Figure 1-2. The produced test

cases and the cover paths show in Table 6-1 when buffer size is 8 .

Test Case # Input Contents Cover Line
1 32323220 3232002E 6 9 11 15
2 30303020 3232002E 6 9 13 15
3 30303020 30300a2E 6 9 13 6 8 15

Table 6-1: The test data produced by our method about test case 1

If want to fulfill the regular expression, the execution path including

line 7 is impossible, so all the possible paths we explored. Then we can see

the comparison with original KLEE in Table 6.1.1:

Test data 1 Test data 2 Test data 3
out implement klee klee
16 seconds 8 hours 17 seconds
3 new paths 14 new paths 12 new paths

Table 6-2: Comparison with KLEE

According the compare of last two test data, we can observe obviously

the efficiency of generating new execution paths at early period of executing.
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Compare with first and third test data, At first glance, original KLEE seems

to have more efficient, but analyse the test data carefully, we will found that

most of these execution paths is relative with uClibc [7] standard library, the

new execution paths which is relative with Figure 1-2 is two test cases only,

see Table 6-3.

Test Case # Input Contents New Path?
1 2E000000 00000000 v
2 2E010000 00000000 v
3 2E010101 01010102
4 00000000 00000000
5 10000000 00000000
6 00100000 00000000
7 01010000 00000000
8 30000000 00000000
9 20000000 00000000
10 2D000000 00000000
11 2B000000 00000000
12 41000000 00000000

Table 6-3: The test cases original KLEE produced about test case 1

6.1.2 Test case 2

We use regular expression (\d{2}\n)+ to do symbolic file testing with

our implement, and the source code is Figure 6-1. We set the size of stdin

to 10, and our generating test cases is showed Table 6-4:
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Test Case # Input Contents
1 30311032 32103232 1032
2 31361032 32103232 1032
3 30371032 32103232 1032
4 30321032 32103232 1032
5 30341032 32103232 1032
6 30361032 32103232 1032
7 30351032 32103232 1032
8 30331032 32103232 1032

Table 6-4: The test cases our method produced about example 2

Except the path of test case 2 is generating because of new execution

path about uClibc standard library, other test cases is obviously relative

with line 20-61 of Figure 6-1 . The paths generated is cover all paths we

can observe. The time spending to generating the test cases is 2.3 seconds

in our method. But original KLEE spends 49.3 seconds and can not resolve

any test case. Our method use the memory size of 13.7 megabytes , show as

Figure 6-2, but KLEE use the memory size of 2 gigabytes, show as Figure

6-3. According we observe, Klee can not resolve any execution paths because

that the memory size is not enough. In this test case, the advantage about

adding regular constraints is obvious.
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1 #include <stdio.h>

2 #include <math.h>

3 unsigned int table [31];

4 void func(int n);

5 int main(int argc , char* argv []){

6 int ca = 1, num , tmp , i, j;

7 table [0] = 1;

8 for(i=1;i<31;i++)

9 table[i] = 2 * table[i-1];

10 while(scanf("%s",&num )){

11 printf("case %d:\n",ca++);

12 func(num);

13 printf("\n");

14 if (ca > 10) break;

15 }

16 return 0;

17 }

18
19 void func(int n){

20 unsigned int tmp1 , tmp2 , flag , i, j;

21 if (n == 1){

22 printf("{}\n{1}\n"); return;

23 }

24 else if (n == 2){

25 func (1);

26 printf("{2}\n{1,2}\n"); return;

27 }

28 else if (n == 3){

29 func (2);

30 printf("{3}\n{1,3}\n{2,3}\n{1,2,3}\n"); return;

31 }

32 else if (n == 4){

33 func (3);

34 printf( the answer n == 4 ); return; // change some code

35 }

36 else if (n == 5){

37 func (4);

38 printf( the answer n == 5 ); return; // change some code

39 }

40 else if (n == 6){

41 func (5);

42 printf( the answer n == 6 ); return; // change some code

43 }

44 else{

45 func(n-1);

46 tmp1 = pow(2,n); tmp2 = pow(2,n-1);

47 for(i = tmp2; i < tmp1 ;i++){

48 flag = 0;

49 printf("{");

50 for (j = 0;j<n;j++){

51 if(i & table[j]){

52 if (flag)

53 printf(" ,%d",j+1);

54 else{

55 flag = 1; printf("%d",j+1);

56 }

57 }

58 }

59 printf("}\n");

60 }

61 return;

62 }

63 }

Figure 6-1: source code of example 2
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Figure 6-2: The result and information about our method in example 2

Figure 6-3: The result and information about klee in example 2

6.2 Compare with Other Work

6.2.1 Compare with Catchconv

We use testcase 1, 2 to do test with catchconv. Catchconv also can

explore paths as well as our method, so we compare the time and memory

usage. Figure 6-4 is the comparison result between our work and catchconv,

we can find out that catchconv spends more times and memory than our

method to explore path, and it also need to modify many scripts to do a

testing.

Figure 6-4: The Comparison between our work and catchconv
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6.2.2 Compare with HAPMI

We use program bc and logictree to compare with HAPMI. logictree is a

solver for propositional logic formulas, and bc is a command-line calculator

and simple programming language.

Because HAMPI does not release the script which can convert it con-

straints to KLEE API (like klee assert()), we construct the almost same

environment: one core of 2.66 GHz i7-920 CPU and 1GB of RAM. We also

run these program 1 hour using our defined regular expression and use same

buffer size. Finally, we use the gcov tool to measure the line coverage. The

result is shown as Figure 6-5. Because the difference of tested program ver-

sion, the ELOC (which means ”Executable Lines of Code”) also has some

different. The upper ELOC is measured by us, and lower ELOC is measured

by HAMPI.

Figure 6-5: The Comparison between our work and HAMPI

There are two reason to cause the result:

1. HAMPI does not use symbolic file testing. The affect can be observed

by coverage of original KLEE testing (22.2% VS 27.1%). So HAMPI
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does not need to challenge uclibc library which is more complex than

KLEE original libc library.

2. The language level of HAMPI implemented is Context-free language,

so is can cover more possible cases. For example, HAMPI can handle

anbn problem easily(same number of right and left parenthesis). This

case does not be handled well by regular language.

6.2.3 Compare with zzuf

We use zzuf to do fuzz bc program, the input buffer size is also 6. We

control some parameter like fuzzing ratio to observe the affect. To do fuzz

testing smoothly, we add ”quit\n” to the end of fuzzing file and do not fuzz

the part. The fuzzing ratio is 0.1, 0.2, 0.3 and 0.4, the every fuzzing ratio

test with the number of test data: 1000, 2000, 3000, 4000, 5000 and 6000.

The result is shown as Table 6-5 and Figure 6-6. The ”all” means combining

the fuzzing ratio is 0.1, 0.2, 0.3 and 0.4.

Table 6-5: The line coverage of program bc using zzuf

To observe and analyse the figure, we can find out that:

• If the fuzzing ratio is too small or too big, the result of coverage is not

good.
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Figure 6-6: The figure of coverage comparison using zzuf

• Fuzz testing can gain the high coverage at beginning. But when we use

more test data to do fuzz testing, the improvement of the coverage is

small.
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7 Conclusions

Scalability is an important issue in symbolic file testing. In KLEE, the

complexity of C standard library is a main reason to bother the scalability.

To address this problem we proposed regular expression constraints to limit

the execution paths and focus on testing part of specifications. Description

of input format is flexible and easily by using regular expression, . Finally we

implement our method on KLEE to reduce the usage memory and enhance

the line and path coverage. We hope this work can help programmers to test

their program easily.
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8 Future Work

As mentioned at result of HAMPI comparison, context-free language

can handle more situation, so we can add context-free grammar supporting

in KLEE. We can use Lex and Yacc tools to implement this feature.

But describing a context-free grammar usually difficult than describing

regular expression, we can still maintain regular language part for some small

programs testing. We can improve this part by using PCRE [32], which is

short from Perl-compatible regular expressions, to support our work. PCRE

provides some APIs, the important two function is ”pcre compile()” and

”pcre exec()”. The function pcre compile() can be used to build a data struc-

ture containing regular expression information, and the function pcre exec()

can be used to match a given string and given compiled regular expression.

We can use pcre compile() first, then refer pcre exec() to implement a func-

tion which can match constraints and expression.
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