

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

基於圖形處理器的即時頭髮渲染與模擬

Real Time Rendering and Simulation of Hair on

Graphics Hardware

研 究 生：陳蔚恩

指導教授：黃世強 教授

中 華 民 國 一百 年 五 月

基於圖形處理器的即時頭髮渲染與模擬

Real Time Rendering and Simulation of Hair on

Graphics Hardware

研 究 生：陳蔚恩 Student：Wei-en Chen

指導教授：黃世強 Advisor：Sai-Keung Wong

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

May 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年五月

i

基於圖形處理器的即時頭髮渲染與模擬

研究生: 陳蔚恩 指導教授: 黃世強 教授

國立交通大學資訊科學與工程研究所

摘 要

在這篇論文中，我們展示了一個基於圖形處理器的即時頭髮渲染與模擬實做。

一直以來，有許多研究利用流體力學的方法來處理頭髮模擬的問題。其中一個可

行的方法是用 FLIP (Fluid-Implicit Particle)來維持頭髮所佔有的體積以及處理頭

髮彼此之間的碰撞。我們呈現一個在 CUDA 計算能力 1.1 圖形處理器上模擬演算

法的實做。基於 OpenGL 4.0 繪圖流程，我們的渲染程式可在繪圖硬體上動態地

調整頭髮模型的細節來增進效能。

ii

Real Time Rendering and Simulation of Hair on Graphics

Hardware

Student: Wei-en Chen Advisor: Dr. Sai-Keung Wong

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

Abstract

In this thesis, we demonstrate an implementation of real-time hair rendering and

simulation program on graphics hardware. There have been many researches which

applied fluid dynamics to deal with some problems in hair simulation. One of the

workable methods is applying the FLIP (Fluid-Implicit Particle) method to maintain

the hair volume and to handle the hair-hair collisions. We present an implantation of

the simulation algorithm on graphics card with CUDA compute capability 1.1. Based

on OpenGL 4.0 pipeline, our rendering program is able to dynamically adjust the

detail of hair model on graphics hardware to achieve better performance.

iii

Acknowledgement

感謝黃世強老師的指導，十分慷慨地給予學生經濟上的補助和當助教的機會。

感謝莊榮宏老師、潘雙洪老師抽空擔任口試委員。謝謝實驗室同學們的支持。

謝謝鄭游駿、很高興去年可以當你的室友、可以一起討論 CUDA、寫網路程式作

業，謝謝葉喬之邀我打籃球、雖然我只能當拖累的隊友、還有一起打球的劉政旻

學長，謝謝方士偉、陳奕辰、林冠晨、去游泳和去好市多有找我，還有替研究室

尋找歡樂的氣氛，謝謝盧詩萍幫忙編輯模型還有幫忙做實驗對照的影片，謝謝洪

駿宏、常常讓問一些建議，謝謝王宗敏、李幸宇有打羽球有找我。謝謝陳柏翰學

長花時間幫我改論文和給了很多關於論文、投稿、口試的指導、還請大家吃蛋糕。

 謝謝爸媽的支持，特別排假來學校幫我練習口試報告和聽我口試，還有姊姊，

每次回來都有想到要帶糖果、點心、紀念品給我。謝謝主耶穌，使我真的再一次

快樂起來，給了很多第二次的機會，注入重新崛起的力量。謝謝文俠、竣宇、子

敬子恆、歹 V、家明、凡凡哥和美汎姊的幫助和陪伴。

iv

Content

摘 要... i

Abstract .. ii

Acknowledgement ... iii

Content .. iv

List of Figures ... vi

List of Tables .. viii

Chapter 1: Introduction .. 1

1.1 Motivation .. 1

1.2 Overview .. 1

1.3 Contribution ... 4

Chapter2: Related Works ... 5

2.1 Hair Simulation .. 5

2.2 Hair Rendering ... 6

Chapter3: Hair Rendering .. 7

3.1 B-spline Tessellation .. 8

3.2 Single Strand Interpolation .. 9

3.3 Generation of Deep Opacity Maps .. 11

3.4 Lighting and Shadowing .. 13

3.5 Antialiasing .. 14

Chapter 4: Hair Simulation .. 15

4.1 Solving Constraints .. 17

4.2 The Volume Method Step... 19

4.2.1 The Grid Structure in Fluid Simulation .. 20

4.2.2 Transferring Particle Velocities to Grid .. 22

4.2.3 Making Velocity Field Divergence Free ... 30

4.2.4 Updating Particle Velocities from Grid ... 31

Chapter 5: Communication of Two Threads .. 33

Chapter 6: Experiments and Results .. 35

Chapter 7: Conclusions and Future Works .. 48

7.1 Conclusions .. 48

7.2 Future Works .. 48

Reference ... 49

Appendix A .. 53

Appendix B .. 54

Appendix C .. 56

v

vi

List of Figures

Figure 1: Data flow chart of the system ... 2

Figure 2: Input data of the system.. 2

Figure 3: Control flow chart of the system .. 3

Figure 4: Rendering stage flow chart ... 7

Figure 5: Rendering pipeline of the B-spline tessellation step 8

Figure 6: Rendering pipeline of the single strand interpolation step 10

Figure 7: Rendering pipeline of the deep opacity maps generation step 11

Figure 8: Hair colored according to the layers. .. 12

Figure 9: The image of a deep opacity maps. .. 13

Figure 10: Rendering pipeline of the lighting and shadowing step 14

Figure 11: The procedure for advancing one time step of the system 15

Figure 12: The simulation flow chart ... 16

Figure 13: The distance constraint between two particles ... 17

Figure 14: Distance Constraints ... 18

Figure 15: Two sets of independent constraints ... 18

Figure 16: A scheme for solving distance constraints in one hair................................ 18

Figure 17: Pseudo code of the constraint solver kernel ... 19

Figure 18: Three sub-steps in the volume method step ... 20

Figure 19: A 2D MAC grid cell ... 21

Figure 20: A 3D MAC grid cell ... 21

Figure 21: Two example configurations of the markers .. 22

Figure 22: A 2D example of transferring the velocity of one particle 23

Figure 23: An example of transferring u .. 23

Figure 24: An example of transferring v .. 23

Figure 25: The VISITALLGRIDCELL procedure ... 24

Figure 26: The BUILDTRAVERSALDATA procedure .. 25

Figure 27: The VISITAGRIDCELL procedure ... 26

Figure 28: Configuration of the particles ... 27

Figure 29: An example of running the BUILDTRAVERSALDATA procedure 28

Figure 30: An example of running the VISITAGRIDCELL procedure 29

Figure 31: Pseudo code of making velocity field divergence free 30

Figure 32: Adding the difference of pressures to the u-component of velocity 31

Figure 33: The communication sequence of two threads in one frame 33

Figure 34: Snap shots of a character shaking her head. ... 35

Figure 35: FPS versus number of grid cells between CPU and GPU version 36

file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476799
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476801
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476812
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476813
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476814
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476819
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476821
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476822
file:///C:/Documents%20and%20Settings/SKW/桌面/畢業論文%200517%20No%20C.docx%23_Toc293476828

vii

Figure 36: FPS versus viewing distance .. 38

Figure 37: Snapshots of the hair models in different level of details 38

Figure 38: Comparison between antialiasing turned off/on ... 39

Figure 39: Comparison between using/not using B-spline tessellation 39

Figure 40: Comparison between with/without interpolated hairs 40

Figure 41: Images of different numbers of interpolated hairs 40

Figure 42: Snapshots of hair with different directions of lighting 41

Figure 43: Images of hair with different colors ... 42

Figure 44: Two highlights of hair .. 42

Figure 45: Hair with different length changed at runtime ... 43

Figure 46: Snapshots taken in front of a character with long hair 44

Figure 47: Snapshots taken behind a character with long hair 45

Figure 48: Snapshots of real hair (part1) ... 46

Figure 49: Snapshots of real hair (part2) ... 47

Figure 50: An arbitrary small region of fluid ... 53

Figure 51: Tessellate control shader code of the B-spline tessellation step 56

Figure 52: Tessellate evaluation shader of the B-spline tessellation step 57

Figure 53: Tessellate control shader code of single strand interpolation step 58

Figure 54: Tessellate evaluation shader code of single strand interpolation step 59

viii

List of Tables

Table 1: Comparison between using 1 and 3 kernels ... 31

Table 2: Number of grid cells versus FPS ... 36

Table 3: Number of grid cells versus number of PCG iterations 36

Table 4: Computation time percentage in one time step .. 37

Table 5: Viewing Distance versus FPS .. 37

1

Chapter 1: Introduction

1.1 Motivation

Hair animation has been seen in movies and games. Styling, rendering and

simulation are the main issues in this topic. While in movie industry, the goal is to

pursue film-quality image and a controllable dynamic behavior simulation. Computer

games tend to find a balance between cost and performance, fulfilling the player‟s

satisfaction and the running of games. For hair animation, we implement known

algorithms on graphics hardware for real time hair rendering and simulation.

1.2 Overview

In this section, we describe the data flow of our system in a chart illustrated in

Figure 1. The input of the system is a set of hair data called key hairs (shown in

Figure 2) because extra hairs are generated from this set of hair for rendering. The

input includes number of hairs, number of points per one hair strand, each point‟s

position, velocity and mass and so on. In every frame, the key hair data go through the

rendering stage and the simulation. The rendering stage includes two parts. The first

part of the rendering stage generates a full hair model. The second part of the

rendering stage takes the full hair model together with the head model to produce the

final image. On the other hand, the simulation stage computes the key hair‟s position

and velocity of the next frame. Then they are modified by handling the user input.

Finally, the key hair data are updated when advancing to the next frame.

2

Figure 2: Input data of the system

We use two GPUs (Graphics Processing Unit) in this work. We use multithreading

technique to coordinate two GPUs, one GPU runs the simulation code and other one

runs the rendering code. There are two threads, one is the main thread and the other is

Rendering:

generate hair
Simulation

Handle user

interaction

Rendering:

shadow & lighting

User

interaction

Key hair data

(next frame)

Modified key

hair data

(next frame)

Full hair model

Final image

Key hair data

Head model

Rendering Stage Simulation Stage

Go to next

frame

Figure 1: Data flow chart of the system

3

the worker thread. In each frame, the main thread first sends an event to activate the

worker thread. And then, the two threads are run simultaneously. The main thread

runs the rendering task on GPU One and the worker thread runs the simulation task on

GPU Two. After both tasks are finished, the user interaction is handled. That is the

end of the process of one frame. Then the system might go to next frame or exit the

program. The control flow of the system we described is in the chart illustrated in

Figure 3.

Rendering

(GPU 1)

Simulation

(GPU 2)

Handle user

interaction

Activate the

worker thread

Start

Wait for both tasks

(threads) to finish

Exit

Continue?
Yes

No

Figure 3: Control flow chart of the system

4

1.3 Contribution

 We presented a real-time rendering and simulation system based on graphics

hardware. We follow the work by McAdams [4] to use a volume method borrowed

from the field of fluid simulation. We present a realization of the steps of FLIP used in

the hair simulation based on CUDA. We implement the staggered MAC (marker and

cell) grid structure on the GPU. It allows the central difference to be accurate to

O(∆x2) comparing with the work by Crane [16]. The preconditioned conjugate

gradient method is implemented on the GPU. It has a better convergence than the

Jacobi iteration method in the problem we are dealing with.

We follow the work by Tariq [1] to use a tessellation based hair rendering scheme.

Our implementation is based on the newly available tessellation stage in the rendering

pipeline of OpenGL 4.0. We generate hairs for rendering from simulated key hairs

dynamically using shaders on the GPU every frame. We achieve LOD

(level-of-details) dynamically for rendering.

5

Chapter2: Related Works

 We briefly review the previous works in hair simulation and hair rendering.

2.1 Hair Simulation

Hair Strand Dynamics: There are different dynamic models for simulating the

motion of hair in the past researches. Rosenblum et al. modeled hair with mass-spring

system [45] which was widely used in the field of cloth animation. Anjyo et al.

modeled hair using projective dynamics [44]. Serial rigid multi-body chain was used

to model strands such as hair, ropes or tails [42][39][25][18]. The technique was

applied in the film “Shrek” and “Madagascar” by DreamWorks. Bertails et al. used

the technique based on elastic rod theory and treated hairs as one-dimensional elastic

objects [21]. The mass-spring model with augmented structure could capture more

natural phenomena such as torsion [37][9].

Hair-hair Interaction: To capture the group motion of hair some techniques viewed

hair as a continuum and use fluid simulation based methods. Hadap used SPH

(smoothed particle hydrodynamics) to model hair-hair, hair-air and hair-body

interaction [42]. Bando et al. used loosely connected particles with SPH [36]. Petrovic

et al. used a fixed grid volumetric method which was similar to an Eulerian fluid

approach [23]. Bertails et al. used the hair-hair interaction force base on voxelized

hair density [26]. Tariq and Bavoil handled hair-body and hair-hair interaction

together by voxelizing obstacles in addition to hair [7]. McAdams et al. used a hybrid

method in which a Lagrangian hair simulator and an Eulerian fluid solver were

combined [4].

 Some techniques simulate the collision and interaction on a sparse set of guide

hairs to model the group behavior, such as [24][21][19][39]. In the rendering stage,

more primitives are generated to produce a complete hair model. Chang et al. built

additional triangle strips between two horizontal guide hairs for collisions to model

the volume [39]. Plante et al. used a layered wisp approach which consisted of a

skeleton curve, a deformable envelope and primitives for rendering [37][40].

Deformable lattice approach was used by [27][19].

Level-of-detail methods have been presented in [35][32][33]. Bertails et al. used an

adaptive method that allowed guide hairs to split or merge [35]. The representation of

hair was chosen based on visibility, viewing distance and hair motion in [32][33]. The

LOD technique was adapted in the interactive modeling system of [12].

6

2.2 Hair Rendering

Hair Lighting Model: Kajiya and Kay presented a local scattering model to render

fur [46]. It became commonly used in the field of hair rendering. Marschner et al.

conducted physically experiments and proposed a detailed scattering model [34]. The

model had two reflection highlights and one transmission light. Scheuermann

presented a real time implementation which modeled the two highlights in an

art-directable fashion [28]. Nguyen and Donnelly presented a real time

implementation using shaders [24]. It appeared in the demo by the Nvidia cooperation

which showed off the capability of their graphics card. Neulander proposed an imaged

based lighting technique for hair [29] and was used in the production of the movie

“The Lion, the Witch and the Wardrobe” [17]. Zinke et al. presented a technique that

approximated the multiple scattering of a full head of hair efficiently [5]. Ren et al.

rendered hair with multiple scattering under environment lighting interactively [3].

Sodeghi introduced an approach that provided artist friendly controls over traditional

physically based models [2]. It became part of the motion picture production pipeline

and participated in the Disney film “Tangled”.

 Hair Self-shadow: Hair casts shadow on itself and self-shadow is produced.

Lokovic and Veach presented an off-line method called “deep shadow map” [43]. It

computed the approximate light transmittance at all depth along the light-ray direction.

Each pixel of the map was an approximate function. The technique could render hair

with self-shadow. Kim and Neumann used a set of 2D maps to sample the opacity of

hair along the light-ray direction and rendered hair with self-shadow efficiently [41].

The technique was called opacity maps and was used in the interactive editing and

rendering system of [38]. Koster et al. presented a real time implementation of the

opacity maps using graphics hardware using 3D textures [31]. Nguyen and Donnelly

used the multi-render target feature of graphics hardware to generate 16 maps in one

rendering pass [24]. Sintorn and Assarsson presented a quick-sort for lines using

geometry shader on the GPU [8]. They generated 128 maps interactively using this

method. Mertens et al. used k-means clustering algorithm to efficiently estimate the

hair density along the light-ray [30]. Bertails used light-orient voxels to accumulate

the transmittance in the hair volume [26]. Yuskel and Keyser pointed out that if the

shape of the sampling map matches the shape of the hair, it could reduce the layering

artifact of opacity maps efficiently [6].

7

Chapter3: Hair Rendering

Figure 4: Rendering stage flow chart

In the rendering stage, there are five steps as illustrated in Figure 4. First, we

generate nicer curves from the key hair in the B-spline tessellation pass. And then, we

use the newly generated hair curves to perform single strand interpolation and

produce more hairs. We generate the hair model on the GPU based on the work of [1].

Key Hair

Position

(1) B-spline

Tessellation

(2) Single Strand

Interpolation

(5) Anti-aliasing

(4) Lighting

Shadowing

(3) Deep Opacity

Maps Generation

 Camera

Information

Result Image

8

In step (3), the hairs are used to generate the shadow maps called deep opacity maps.

Each light that casts shadow on the hair has its own set of deep opacity maps.

Generating a set of deep opacity maps is a two-pass rendering process. We render the

hair with lighting and shadows in step (4). Finally we perform the super-sampling

antialiasing to compute the final image.

3.1 B-spline Tessellation

Figure 5: Rendering pipeline of the B-spline tessellation step

Vertex shader

Key Hair

position

Tessellate

control shader

Tessellator

Tessellate

evaluation shader

Geometry

shader

Transform

feedback

Tessellate level

parameter

Tessellated key

hair position, hair

segment tangent

vertex buffers

9

The rendering pipeline of the B-spline tessellation step is shown in Figure 5. The

goal of this step is to generate a smooth hair curve from the original key hair. The key

hair positions are stored as line strips in the vertex buffer. The number of vertices in a

patch is set to four and the input indices are groups of four vertices. The vertex shader

only passes down the data. The layout of the tessellate control shader is set to match

the number of vertices in an input patch. The tessellate control shader takes a

tessellate-level parameter and the tessellator generates primitives based on the

parameter. It also computes the tangent of the segments and sends tangent data to

tessellate evaluation shader as a per-patch constant data. The layout of the tessellate

evaluation shader is set to isolines. It takes the parametric coordinate value as input to

compute this vertex‟s position according to the uniform cubic B-spline formula. It

also computes the tangent. The geometry shader does nothing but passes down the

data. Then the tessellated vertices are sent back to vertex buffers (one for position and

the other for tangent) via transform feedback. We list the tessellate control/evaluation

shader code in Figure 51 and Figure 52 in Appendix C.

3.2 Single Strand Interpolation

The rendering pipeline of single strand interpolation step is shown in Figure 6. The

goal of this step is to generate more hairs from the key hairs to produce a full hair

model. The key hair position, the tangent along with each key hair‟s coordinate frame

and a set of random uv-coordinate are bound to texture buffers. This allows random

access to the key hair position and the tangent in the shaders. The drawing GL-API

call invokes the pipeline to render without binding an actual vertex buffer. The vertex

shader passes down the vertex-ID. The tessellate control shader outputs the

tessellation-level indicating how many hairs are going to be interpolated from a key

hair. The tessellate evaluation shader uses the vertex-ID to identify the segment in a

hair and the key hair is it working. It fetches the corresponding vertex data and

computes the interpolated vertex data. The geometry shader just passes down the

primitive data. Then the hair positions and tangents are collected in two vertex buffers

after transform feedback. We list the tessellate control/evaluation shader code in

Figure 53 and Figure 54 in Appendix C.

10

Figure 6: Rendering pipeline of the single strand interpolation step

Tessellated key

hair position,

tangent

Key hair tangent

Key hair position

Key hair coordinate

frame

Texture buffer

A set of random uv

coordinates

Bind data to buffer

Tessellate

level

No vertex buffer input

Fetch from buffer

Interpolated hair

position, tangent

Vertex shader

Tessellate

control shader

Tessellator

Tessellate

evaluation shader

Geometry

shader

Transform

feedback

11

3.3 Generation of Deep Opacity Maps

The two-pass deep opacity maps generation is illustrated in Figure 7. This is the

hair self-shadowing technique by [6].

Figure 7: Rendering pipeline of the deep opacity maps generation step

The first pass of generating the deep opacity maps is to render a depth map. Hair

geometry is rendered from the light‟s perspective. A single channel floating point

texture is used as the render target. Each pixel of the map is records the starting depth

Hair position

Channel 1-3:

Layer 1-3 opacities

Channel 4: Per pixel

starting depth

Vertex shader

Geometry

shader

Pixel shader

Depth map: per

pixel starting depth

Enable blending.

Disable depth test

Hair position

Vertex shader

Geometry

shader

Pixel shader Bind texture

Render from light‟s

perspective view

Deep opacity maps:

Texture with 4 floating

point channels

12

value of the hair geometry seen from the light. The vertex shader passes the view

space depth value in addition to the clip space position. The geometry shader then

passes down all the data. In the pixel shader, it writes out the depth in the view space.

After all the hair geometry is rendered, the pixels record the starting depth value.

 The second pass accumulates the opacity of hair geometry and save the result to a

texture. We choose to use three layers as it was shown effective enough in [6]. The

distances between each layer are adjustable parameters. This pass is rendered with the

blending enabled and the depth test disabled. The depth map generated from last pass

is bound as the input texture. The vertex shader and geometry shader are the same as

the first pass. The pixel shader computes the layer a pixel belongs to according to its

depth value, the starting depth of hair geometry (fetched from the depth map texture)

and the separation distances of the layers. A pixel contributes opacity to its layer and

the layers behind. We store the accumulated opacities of the three layers in three

channels of the texture (channel RGB). The depth map from the first pass is copied to

the alpha channel (channel A). It allows us to access just one texture when using the

deep opacity maps to compute the shadows.

Figure 8: Hair colored according to the layers.

 The left side of Figure 8 shows that the pixels in a layer of the deep opacity maps

resemble the shape of hair geometry. The arrow indicates the direction of the light

source. Pixels of each layer are marked with different colors. The shape of the red

color pixels resemble the shape of hair geometry seen from the light‟s point of view.

The second layer and third layer follow the shape of the first layer. The right side

shows the hair colored according to the layers.

13

Figure 9: The image of a deep opacity maps.

The image of a deep opacity maps with RBG channels correspond to the

accumulated opacities in the three layers is shown Figure 9. If a pixel is in the first

layer, it contributes its opacity to all of the three layers. The RGB channels have the

same value, so the color we see in the image is white. If a pixel is in the second layer,

it contributes its opacity to the last two layers. The value of the R channel is zero and

the GB channels have the value, so the color seen is cyan. If a pixel falls in the third

layer, it contributes its opacity to the last layer. Only the B channel have nonzero

value, so the color seen is blue.

3.4 Lighting and Shadowing

The pipeline of the lighting and shadowing step is shown in Figure 10. This step

uses the vertex buffer generated from the interpolated steps to draw the hair geometry

with lighting and shadowing. We proceed with the shading model used in [28]

together with the deep opacity maps to compute shadows. As in [28] we fake the

physically experimented hair scattering model by [34] by shifting the tangents to

produce two specular highlights. We use two noise textures. One is used to break the

strong highlights. And the other is a random noise to the tangent shift value. For each

light that causes hair to cast self-shadow, we look up the deep opacity maps to

compute shadows.

 The vertex shader computes the clip space position, the view vector for lighting, the

world space position and the tangent and the position in light‟s space for each light

that induce hair self-shadow. The geometry shader passes down all the data to the

pixel shader. The pixel shader does all the heavy work. It first shifts the tangent

interpolated in the rasterize-stage. It computes the color according to the shading

model for each light, then multiplies the color by the shadow value computed using

the deep opacity maps.

14

Figure 10: Rendering pipeline of the lighting and shadowing step

3.5 Antialiasing

 We use the super-sample antialiasing technique. We render the scene to an image

twice the size of the displayed image. And then we take extra samples around the

original location of the pixel and compute the average color value of the samples. And

shrink the image to the size we want. In step (4), we render the scene to a texture.

And in step (5) we use the texture as the input and in take five samples around the

location of the pixel to compute the average color in the pixel shader to produce the

final image.

Deep opacity maps

Light 1, 2

Hair highlight

noise texture

Texture

Hair tangent shift

noise texture

Hair vertex buffer

Parameters:

light, hair

Vertex shader

Geometry

shader

Pixel shader

15

Chapter 4: Hair Simulation

The simulation flow chart is shown in Figure 12. Our simulation approach is

combined from the work by McAdams et al. [4] and Muller et al. [14]. We follow

McAdams et al. [4] in using a volume technique from fluid simulation and follow the

integration scheme and constraint formulation by Muller et al. [14].

 In each time step, the input includes the position and velocity of the particles. We

add external forces like gravity, fluid force or elastic spring force and compute the

positions and velocities. We use elastic spring to model the force within a single hair

[4]. These forces are adjustable and can be turned on or turned off. We require the

system to meet some constraints (e.g. length constraint, angle constraint). The

position and velocity are modified when solving the constraints iteratively. The next

three steps are the sub-steps of the volume technique proposed by [4]. First, we

transfer the velocities on the particles to the grid. Then we modify the grid velocities

so that the divergence of the velocity field is zero. Making the velocity field

divergence free is equivalent to making the fluid incompressible in fluid simulation.

Finally we use the divergence-free velocity field on the grid to update velocities of the

particles.

The procedure for advancing a time step of the system is outlined in Figure 11.

Figure 11: The procedure for advancing one time step of the system

The symbol 𝑣𝑖
𝑛, 𝑥𝑖

𝑛 is the velocity and position of the 𝑖𝑡ℎ particle at time 𝑡𝑛 and

𝑣𝑔𝑟𝑖𝑑
𝑛 is the velocity on the grid structure which is explained in 4.2

1 Compute forces such as gravity

2 Compute velocity and position by applying the forces 𝑣𝑖
𝑛 → 𝑣𝑖

∗𝑛, 𝑥𝑖
𝑛 → 𝑥𝑖

∗𝑛

3 Solve constraint and modify position and velocity 𝑣𝑖
∗𝑛 → 𝑣 𝑖

𝑛, 𝑥𝑖
∗𝑛 → 𝑥 𝑖

𝑛

4 Proceed to the volume method step and modify the velocity

 a) Transfer particle‟s velocity to the grid 𝑣 𝑖
𝑛 → 𝑣𝑔𝑟𝑖𝑑

𝑛

 b) Make the grid‟s velocity field divergence free 𝑣𝑔𝑟𝑖𝑑
𝑛 → 𝑣𝑔𝑟𝑖𝑑

𝑛+1

 c) Update particle‟s velocity from the grid velocity 𝑣𝑔𝑟𝑖𝑑
𝑛+1 → 𝑣𝑖

𝑛+1

5 Compute final position 𝑥 𝑖
𝑛 → 𝑥𝑖

𝑛+1

16

Figure 12: The simulation flow chart

Add Force:

Gravity, Fluid Force

Compute Velocity

Position

Solve Constraints

(b) Make Velocity

Field Divergence

Free

(a) Transfer Particle

Velocities to Grid

Grid View

Particle View

Input Position

Velocity

Final Position

Velocity

(c) Update Particle

Velocities from Grid

17

4.1 Solving Constraints

We formulate and solve the constraints as in [14]. We employ the distance

constraint for each segment of hair.

The case we are considering is illustrated in Figure 13. 𝐩1, 𝐩2 are the points of a

segment. w1, w2 are the inverse masses of the particles. The distance constraint

function is C(p1, p2) = |𝐩1 − 𝐩2| − d. ∆𝐩1, ∆𝐩2 are the projection steps applied to

𝐩1, 𝐩2.

Figure 13: The distance constraint between two particles

The formulas for projecting the distance constrain:

∆𝐩1 = −

w1

w1 + w2

(|𝐩1 − 𝐩2| − d) ∙
𝐩1 − 𝐩2

|𝐩1 − 𝐩2|
 (1)

∆𝐩2 = +

w2

w1 + w2

(|𝐩1 − 𝐩2| − d) ∙
𝐩1 − 𝐩2

|𝐩1 − 𝐩2|
 (2)

Muller used Gauss-Seidal iterative constraint solver in [14]. Tariq implemented the

solver using the geometry shader and the stream-out on DirectX 10 graphics cards and

uses Direct Compute on cards supporting DirectX 11 in [1]. We follow the algorithm

of [1] and implement on CUDA capable GPU. First we split the constraints into

disjoint sets. Then we can project all the constraints in a set in parallel. The distance

constraints can be separated into two sets. An example scenario is illustrated in Figure

14. In the figure, the circles represent the particle and the lines are the segments of

hair. We generate a distance constraint for every segment. The two sets of constraints

that can be projected in parallel (marked with bold lines) are illustrated in Figure 15.

∆𝐩1

∆𝐩2

𝐩1

𝐩2

d

w1 =
1

m1

w2 =
1

m2

18

The scheme for solving distance constraints in one hair is illustrated in Figure 16.

The first step is to load the positions from global memory into share memory. Step 2

is projecting set one of the distance constraint. Step 3 is projecting set two of the

distance constraint. Step 4 goes back to step 2 to iterate through the projection

routines. We repeat step 2 and step 3 N times, where N is an adjustable parameter. We

store the result position from share memory to global memory in step 5.

1) Load into share memory

2) Project set 1 in parallel

3) Project set 2 in parallel 4) Iterate

N times

5) Store to global memory

Set 1 Set 2

Figure 15: Two sets of independent constraints Figure 14: Distance Constraints

Figure 16: A scheme for solving distance constraints in one hair

19

Figure 17: Pseudo code of the constraint solver kernel

The pseudo code of the constraint solver kernel is listed in Figure 17. We use one

block of threads to solve the distance constraints of one hair. The number of threads

per block is equal to the number of vertices per hair. The share memory size per block

is equal to the number of segments per hair (number of distance constraints per hair)

times the size of float4 (32*4 bytes). We pack the position (float3) and inverse mass

(float) into the float4 data type.

Note that as stated in the CUDA programming guide [13], the __syncthread() is

allowed in conditional statement only if the condition is evaluated the same by all the

threads of an entire block. As a result, the __syncthread() instruction is placed outside

the if-statement scope.

4.2 The Volume Method Step

There are sub-steps as we illustrated in Figure 18. We follow the approach of [4]

and adapt the FLIP (fluid implicit particle) method of [22]. FLIP is a hybrid method

using both particles and grid to simulate fluid. It was proposed by [47] and applied in

graphics by [22]. It has the advantage of maintaining more details from being

smoothened by numerical dispatching compared with an Eulerian approach

(grid-based approach). In this chapter we introduce briefly the grid structure first and

then explain the each of the sub-steps.

extern __shared__ float4 shPos[] //position in shared memory

// tid: thread's id in a block

// id : thread's id

shPos[tid] = g_pos[id] // load from global memory

__syncthreads()

for i=0 to MaxIteration-1

if tid < Half //Half = segments per hair/2

 projectDistCons(&shPos[tid*2], &shPos[tid*2 +1])

__syncthreads()

if tid < Half2 //Half = (segments per hair-1)/2

 projectDistCons(&shPos[tid*2 +1], &shPos[tid*2 +2])

__syncthreads()

g_pos[id] = shPos[tid] // store to global memory

20

Figure 18: Three sub-steps in the volume method step

4.2.1 The Grid Structure in Fluid Simulation

We use the staggered MAC (Marker and cell) grid structure. A two dimensional

MAC grid is shown in Figure 19. We use the notation �⃗� = (𝑢, 𝑣) for the velocity, u

is the component in x-direction and v is the component in y-direction. The notation

ui+1/2,j is the u-component of the velocity stored at the center of grid cell face

between cell (i, j) and (i+1, j). The notation vi,j+1/2 is the velocity‟s v-component

located on the center of the grid cell face between cell (i, j) and (i, j+1). Notation

Pi,j is the pressure at the center of grid cell (i, j). The velocities are stored on the grid

cell faces and the pressures are stored at the centers. The u-components and the

v-components of the velocities are stored at different faces. The blue squares mark the

locations where u-components are stored and the orange squares mark the locations

where v-components are stored. The blue and the orange arrows resemble u and v

2.Make the grid velocities field divergence free

3.Update from grid 1.Transfer particle velocities to grid

21

respectively. The red circles mark the locations where the pressure is stored.

Figure 19: A 2D MAC grid cell

A three dimensional MAC grid cell is illustrated in Figure 20. The black lines are

the boundaries of this cell and gray hashed lines are only supplemental lines that help

us to see the squares are located at the centers of the faces. The notation for velocity

in 3D is �⃗� = (𝑢, 𝑣, 𝑤). The blue squares are where the u component is sampled. The

orange squares are the locations where the v component is sampled. The green squares

are the locations where the w component is sampled. The red circle at the center of the

cell is where the pressure is stored.

Figure 20: A 3D MAC grid cell

 The meaning of the markers in a two dimensional MAC grid is shown in the left

𝑢
i+

1
2
,j
 𝑃i,j

𝑣
i,j+

1
2

y

x

𝑃i−1,j

𝑃i,j−1

𝑣
i,j−

1
2

𝑢
i−

1
2
,j

𝑢
i+

1
2
,j,k

𝑃i,j,k

𝑤
i,j,k+

1
2

𝑣
i,j+

1
2
,k

z

y

x

22

side of Figure 21. The green dots are fluid particles. The cells containing any fluid

particles are marked as fluid hence we see the capital „F‟ in blue square. The cells that

are solid are marked as „S‟ and the cells that are air are marked as „A‟. In our

application, the hair control points are the fluid particles as shown on the right side of

Figure 21.

By using the staggered grid, we get a more accurate central difference. It is

beneficial in the step of making fluid incompressible as mentioned in [20].

4.2.2 Transferring Particle Velocities to Grid

We explain the scenario of velocity transfer in the two dimensional case first.

In Figure 22, the black grid is the staggered MAC grid. The black circle represents the

position of a particle. The orange arrow is the particle‟s velocity vector u⃗ = (u, v)

(u⃗ = (u, v, w) in 3D). We are going to transfer the u-component of the velocity onto

the center of vertical grid faces and the v-component onto the center of horizontal grid

faces. We transfer velocities to the center of faces within the distance of one grid cell

size. We refer to the center of faces where the u-component is stored as the grid‟s

u-faces and the center of faces where the v-component is stored as the grid‟s v-faces

in the rest of the paragraphs. We draw blue squares on the four u-faces that have a

nonzero transferred value and purple (magenta) squares on the four v-faces with

nonzero transferred value.

Figure 21: Two example configurations of the markers

23

Figure 22: A 2D example of transferring the velocity of one particle

The idea of transferring velocity u-component to the grid‟s u-faces is illustrated in

Figure 23. The blue square resembles the u-faces. The arrows originated from the

squares indicate the horizontal velocities on the u-faces.

In the following paragraphs, we describe how to traverse the particles in each grid

cells parallelly. And we use this procedure to transfer the velocities on the particles to

the grid. We follow the work of [Gre07] and modify their algorithm.

Algorithm overview: The procedure of visiting all the grid cells,

VISITALLGRIDCELL, is listed in Figure 25. After the arrays are initialized, we build the

data used for the traversal in the BUILDTRAVERSALDATA procedure (line 13). Then we

visit each of the cell parallely from line 16 to line 19.

The BUILDTRAVERSALDATA procedure is listed in Figure 26. We sort the data

(position, velocity) of the particles by its grid cell id (line 17). The cell id of a particle

is the id of the cell where this particle is located. Then the data of the particles in the

same cell are placed together in the data arrays. We record the array index of the first

particle of each cell in an array start_index from line 20 to line 25. If there is no

Figure 23: An example of transferring u Figure 24: An example of transferring v

24

particle in a cell then the value of the array is the initial value Np, the number of

particles.

The procedure of visiting a grid cell, VISITAGRIDCELL, is listed in Figure 27. This

procedure takes the sorted data of the particles, position, velocity and cell id, and the

lookup data start_index as input. We first get the array index of first particle by

looking up in the start_index. Then we iterate through the particles in the for-loop

(line 11). If the cell does not contain any particle, then the value of i_start is Np (the

default value). In this case the termination condition of the for-loop is reached and the

procedure ends. In the for-loop, there is another termination condition when the next

cell id is different from the first id (line 15). It is because the data of the particles in a

cell are placed together in the array. If the cell id is different from the first particle,

then it means this particle belongs to anther cell. Consequently, the for-loop is exited.

Figure 25: The VISITALLGRIDCELL procedure

1 procedure VISITALLGRIDCELL(

2 in nx, ny, nz //are the number of grid cells in x, y, z dimensions

3 in Np // number of particles

4 in p[Np] // particle‟s position

5 in v[Np] // particle‟s velocity)

6 begin

7 // initialization

8 Ncell = nx*ny*nz // total grid cells

9 sorted_cell_id new array [Np] // particle‟s cell id after sorting

10 start_index new array [Ncell]

11 p_sorted new array[Np], v_sorted new array[Np],

12 // build

13 BUILDTRAVERSALDATA (Np, Ncell, p, v,

14 id_sorted, p_sorted, v_sorted, start_index)

15 // traversal

16 for each (i,j,k) 1<=i<nx-1, 1<=j<ny-1, 1<=k<nz-1 in parallel

17 compute cell id : id=i+nx*(j+ ny*k)

18 VISITAGRIDCELL (id, Np, sorted_cell_id,

19 p_sorted, v_ sorted, start_index)

20 end

25

Figure 26: The BUILDTRAVERSALDATA procedure

1 procedure BUILDTRAVERSALDATA (

2 in Np // number of particles

3 in Ncell // number of cells

4 in p[Np] // particle‟s position

5 in v[Np] // particle‟s velocity

6 out sorted_cell_id [Np] // particle‟s cell id after sorting

7 out p_sorted [Np] //

8 out v_sorted [Np] // particle‟s velocity after sorting

9 out start_index [Ncell]

10 // starting particle‟s index in p_sorted, v_sorted array)

11 begin

12 // initialization

13 for each i, 0<=i<Ncell in parallel

14 start_index[i] = Np

15 //sorting

16 compute particle‟s cell id by its position in parallel

17 sort particle‟s position and velocity by its cell id

18 output: p_sorted[], v_sorted[], sorted_cell_id[]

19

20 for each i, 0<=i<Np in parallel

21 if i!= 0 then

22 if sorted_cell_id[i-1]!= sorted_cell_id[i] then

23 start_index[sorted_cell_id[i]]=i

24 else

25 start_index[sorted_cell_id[i]]=0

26 end

26

Figure 27: The VISITAGRIDCELL procedure

We give a two dimensional example in Figure 28 and the configuration of the data

structures is shown in Figure 29. The configuration of the particles is in shown in

Figure 28. Each square represents a cell and the black number in each cell is the id of

this cell. The blue circles represent the particles. The particles actually are

volume-less in our model, but we draw the circles big enough for visualization. The

white numbers in the circles are the id of the particles. For the computing the id of a

cell, we use the following equation:

 cell(i, j) id = i + 𝑛𝑥 ∙ j (3)

nx is the number of grid cells in the x dimension, which is 4 in this case.

 We start running the VISITALLGRIDCELL procedure, after initialization (line 8-11),

we step into the BUILDTRAVERSALDATA procedure.

In line 13-14 of BUILDTRAVERSALDATA, each element of the start_index array is

initialized the number of total particles, Np, which is 6.

 In line 16, the particle ids are computed. We show the idea in Figure 28. We find

where the particles are and see the cell ids, which are the numbers labeled on the cells.

For example, we see particle with label 0 is located at the cell label 9, so its cell id is

9.

1 procedure VISITAGRIDCELL (

2 in id // cell id

3 in Np // number of particles

4 in sorted_cell_id [Np] // particle‟s cell id after sorting

5 in p_sorted [Np] //

6 in v_sorted [Np] // particle‟s velocity after sorting

7 in start_index [Ncell]

8 // starting particle‟s index in p_sorted, v_sorted array)

9 begin

10 i_start = start_index[id]

11 for each i, i_start <= i < Np

12 //visit particle, its position, velocity are:

13 //p_sorted[i], v_sorted[i]

14 id_start = sorted_cell_id[i_start]

15 if i+1 >= Np || id_start != sorted_cell_id[i+1] then

16 break // finish visiting all the particles in this cell

17 end

27

We sort the id of cells and id of the particles according to the id of cells. The cell

ids of the particles before sorting and after sorting are shown in the 2
nd

 and 3
rd

 column

in Figure 29. The particle data (position and velocity) before sorting and after sorting

are shown in the 4
th

 and 5
th

 column in Figure 29.

In line 20-25 of BUILDTRAVERSALDATA, we fill data into the start_index array.

When i=0, sorted_cell_id[0] is 4, then start_index[4] is 0.

When i=1, sorted_cell_id[0] == sorted_cell_id[1], nothing changed.

When i=2, sorted_cell_id[1] is 4 and sorted_cell_id[2] is 6, then start_index[6] is 2.

When i=3, sorted_cell_id[2] == sorted_cell_id[3], nothing changed.

When i=4, sorted_cell_id[3] == sorted_cell_id[4], nothing changed.

When i=5, sorted_cell_id[4] is 6 and sorted_cell_id[5] is 9, then start_index[9] is 5.

The result of star_index array is shown in the last column in Figure 29.

Figure 28: Configuration of the particles

28

Figure 29: An example of running the BUILDTRAVERSALDATA procedure

We step out of the BUILDTRAVERSALDATA procedure and go to line 16 of

VISITALLGRIDCELL. We visit all the cells in the parallel for-loop and step into

VISITAGRIDCELL in line 18.

We choose the cell with id 6 as the example to show the VISITAGRIDCELL

procedure. In line 10 of VISITAGRIDCELL, the i_start = start_index[6] is 2. Then the

for-loop in line 11 becomes: for each i, 2 (i_start) <=i<6 (Np). The id_start is 6

When i=2, we visit particle with P1, V1. id_start is 6 and sorted_cell_id[3] is 6, the

for-loop continues.

When i=3, we visit particle with P2, V2. id_start is 6 and sorted_cell_id[4] is 6, the

for-loop continues.

When i=4, we visit particle with P4, V4. id_start is 6 and sorted_cell_id[5] is 9, the

termination condition is reached and we exit the for-loop. Then the procedure ends.

The above operation is shown in Figure 30. In the figure, the first arrow indicates that

we get i_start by looking-up start_index[6]. The particle data that are visited is

colored with blue. The second arrow indicates that we reach the termination coniditon

of the for-loop when id_start (6) and sorted_cell_id[i+1] (9) is different.

We run the VISITAGRIDCELL procedure with the cell with id 9 as another example.

In line 10 of VISITAGRIDCELL, the i_start = start_index[9] is 5. Then the for-loop in

line 11 becomes: for each i, 5(i_start) <=i<6 (Np). The id_start is 9

When i=5, we visit particle with P0, V0. i+1 is 6 >= Np, the for-loop terminates.

29

Let us choose the cell with id 7 (without any particle) and run the VISITAGRIDCELL

procedure. In line 10 of VISITAGRIDCELL, the i_start = start_index[7] is 6. Then the

for-loop in line 11 becomes: for each i, 6(i_start) <=i<6 (Np). After that the procedure

ends.

We apply the VISITALLGRIDCELL procedure to transfer one of the velocity

components. In the body of the parallel for loop (line 17-19), we visit all the

neighboring cells instead of visit just one cell. The VISITAGRIDCELL procedure is

modified to output the weighting and the weighted velocity component of the visited

particle. And then the velocity outputs from the VISITAGRIDCELL are accumulated and

stored to the grid.

The three components (u, v, w) of the �⃗� = (𝑢, 𝑣, 𝑤) are stored on the staggered

structure. When we transfer u, we shift the origin of the grid by half a cell size along

the y, z direction. So that the location of where u becomes the grid points. Similarly,

we shift the origin of the grid along the x, z direction by half a cell size when

transferring v. We run the modified VISITALLGRIDCELL procedure three times to

transfer the velocity components u, v and w, respectively.

We store the data used for traversal on the texture memory for acceleration because

of the uncoalesced memory access pattern.

Figure 30: An example of running the VISITAGRIDCELL procedure

30

4.2.3 Making Velocity Field Divergence Free

In this step, we are going to make the divergence of the velocity field on the grid

become zero. We solve the linear system of pressure equations derived from the

incompressible inviscid Navier-Stoke equations. Then we add the gradient of pressure

to the grid velocities to satisfy the divergence free condition. We give a brief

explanation of why making the velocity field divergence free preserves the

incompressible feature of fluid in Appendix A. And a brief derivation of the pressure

equation is given in Appendix B.

The pseudo code for this step is listed in Figure 31.

Figure 31: Pseudo code of making velocity field divergence free

In line 3, we compute the divergence of the velocity. In line 4, we formulate the

matrix of the corresponding poisson system base on the [11] and [16]. In line 5, we

compute the preconditioner required by the method. For the CPU version, we use the

modified incomplete Cholesky and for the GPU version, we use the Jacobi

preconditioner which is the diagonal of the original matrix.

In line 6, we solve the system of linear equation of pressure using the

preconditioned conjugate gradient method as in [11]. In line 7 of Figure 31, we add

the gradient of pressure to the velocities by:

u⃗ n+1 = u⃗ n −

∆t

ρ
∇p (4)

 The case for adding the gradient of pressure to the u component is illustrated in

Figure 32. We add the difference of the two red circles to the blue arrow in between

when one of the two cells is fluid and neither one is solid. The operations for v and w

component are carried out similarly.

1 void make_velocity_field_divergence_free()

2 {

3 compute_divergence(); //get r=div(u)

4 compute_poisson_coefficient(); //get matrix A

5 compute_preconditioner(); //preconditioner depends on A

6 solve_pressure(); //solve A p = r

7 add_pressure_gradient(); //u += grad(p)

8 }

31

Figure 32: Adding the difference of pressures to the u-component of velocity

When we implement this routine on the GPU, we put the cell marker and the

pressure on texture memory for acceleration since the access pattern is not coalesced.

We write a version which only uses one kernel function to do all the computation. We

profile the routine using the CUDA profiler provided by Nvidia. There are many

uncoalesced load of the global memory (access of u, w, and v). Then we write another

version which splits the task into three kernel functions, each does the u, v, and w

computation. And the profiler shows that the second version performs better than the

first version, see Table 1. We presume the coalesced memory load/store save more

time than the cost arisen by launching two more kernels.

Table 1: Comparison between using 1 and 3 kernels

add_pressure_gradient()

implementation

GPU time

(usec)

1 kernel 17051

3 kernels 13255

4.2.4 Updating Particle Velocities from Grid

 We update the velocities on the particles from the newly computed divergence free

velocities on the grid. We follow the work of [4] and use the formula to update the

velocity of the i
th

 particle.

 v i = α(vi + Lerp(xi, vgrid − vgrid
∗)) + (1 − α)Lerp(xi, vgrid), (5)

where Lerp(x, v) is the trilinear interpolation at the position x in the vector field v. vi

is the particle velocity before update, v i is the particle velocity after update and xi

is the particle position. vgrid is the divergence free grid velocities and vgrid
∗ is the

velocities before divergence free operation. 𝛼 is in the range [0, 1]. It is the

parameter that controls the percent of FLIP and percent of PIC (particle in cell [48]) in

the update. vi + Lerp(xi, vgrid − vgrid
∗) is the term for FLIP update and

Lerp(xi, vgrid) is the term for PIC update. When α = 1, it is the pure FLIP update

and α = 0 is the pure PIC update. PIC has more numerical dissipation while FLIP is

capable of producing detail but may develop noise.

𝑃i+1,j,k

y

x

𝑃i,j,k

𝑢
i+

1
2
,j,k

z

𝑢
i+

1
2
,j,k

+=
∆𝑡

𝜌

(𝑃i+1,j,k − 𝑃i,j,k)

∆x

∆x

32

 For the implementation on the GPU, each thread loads the location of the particle

and performs Lerp(x, v). We put both (vgrid − vgrid
∗) and vgrid on the texture for

acceleration.

33

Chapter 5: Communication of Two

Threads

 We use a threading mechanism for the coordination of two GPU. The

communication sequence in each frame is shown in Figure 33.

Figure 33: The communication sequence of two threads in one frame

W
ait

W
ait

Start

Event

End

Event

Ack

Event

R
u
n
 R

en
d
er C

o
d
e o

n
 G

P
U

 1

R
u
n
 S

im
u
latio

n
 C

o
d
e o

n
 G

P
U

 2

Set event

Set event

Return from wait

Set event

Reset event

Reset event

Reset event

Reset event

Set event
Return from wait

Return from wait

W
ait Return from wait

W
ait

Main

Thread

Worker

Thread

34

 There are two threads in our scenario. One is the main thread and the other is the

worker thread. There are three event objects. They are start-event, end-event, and

ack-event (acknowledge-event). We create these event objects with the property of no

automatic state reset. Consequently, we reset the state of the event object manually.

The start-event is the event for the main thread to tell the worker thread to run its task

in this frame. The end-event is for the main thread to tell the worker thread that this

frame has finished and synchronize the result. The ack-event is for the worker thread

to send an acknowledgement back to the main thread as a reply and let the main

thread to reset the state of the event objects.

In the beginning of a frame, the worker thread is waiting for the start event. The

main thread sets the start-event and waits for the ack-event from the worker thread.

After the start-event is set, the worker thread returns from the wait state and sets the

ack-event then start running the task of this frame. After it finishes the task, it waits

for the end-event. After the ack-event is set, the main thread returns from the wait

state and resets both the start-event and ack-event. Then it runs the task of this frame.

There are two possibilities at the end of the frame. One is that the main thread

finishes its task first. The other is that the worker thread finishes its task first. In the

first case, the main thread finishes its task. Then sets the end-event and waits for the

ack-event from the worker thread. The worker thread has not finished yet, so the main

thread remains in the wait state. When the worker thread finishes its task, it waits the

end-event and returns from the wait state immediately. This is because the end-event

has been set, then it sets the ack-event and goes to wait for the start-event in the next

frame. Then the main-thread returns from the wait state when the ack-event is set. The

main thread reset both the end-event and the ack-event and goes to the next frame. In

the second case, the worker threads finishes first and waits for the end-event. It

remains in the wait-state until the main thread finishes its task and sets the end-event.

When this happens, the worker thread returns from the wait state and sets the

ack-event then goes to the next frame. The main thread sets the end-event and waits

for the ack-event. It immediately returns from the wait state since the ack-event has

been set. Then it resets both the end-event and the wait-event and goes to the next

frame.

We assign the main thread to run the rendering code and assign the worker thread to

run the simulation code. Because CUDA context association is thread dependent, so

all the thread dependent API calls must be called on the worker thread. So in the setup

stage, we let the worker thread run the setup code first before going into the frame

loop. The rendering API calls are performed on one graphics card and the simulation

API calls falls on the other graphics card.

35

Chapter 6: Experiments and

Results

Hardware specification: The simulation code runs on a GPU with CUDA compute

capability 1.1 or above. The GPU we used was a Nvidia GeForce 9600GT. It was the

middle-end consumer product of the GeForce 9000-GT series launched in Feb. 2008.

It had 64 CUDA cores. Its graphics clock speed was 650 MHz and its memory

bandwidth was 57.6 GB/sec. The rendering code requires a GPU that supports

OpenGL 4.0 or above. We ran the rendering code on a Nvidia GeForce GTX480. It

supported OpenGL 4.1. It was launched in March 2010. It had 480 CUDA cores. Its

graphics clock speed was 700 MHz and its memory bandwidth was 177.4 GB/sec.

The CPU we used was Intel i7-930. It was launched in the 1
st
 quarter of 2010. It had 4

cores and 8 threads with clock speed 2.8 GHz.

Development environment: The operating system was Microsoft Windows XP

Professional with service pack 3. The GeForce driver installed was version 260.99.

The development tool we used was Microsoft Visual Studio 2008. The Nvidia GPU

Computing SDK version was 3.10. The BSGP compiler version was 2.0 by Huo [10].

Results: The snap shots from the motion of a character shaking her head are shown

in Figure 34. The number of key hairs, hairs rendered and primitives rendered were

1750, 28000 and 560000 respectively. There were three lights in the scene. Two sets

of opacity maps were generated for the two spot lights which casted shadows. The

number of simulated particles is 10500. The Flip grid is 32x32x32. The number of

iteration of the constraint solver was 20.

Figure 34: Snap shots of a character shaking her head.

36

Table 2: Number of grid cells versus FPS

Number of grid cells

vs. FPS
163 323 643

CPU 21.8 13.3 3.19

GPU 96.2 86.5 37.7

Speedup 4.4x 6.5x 11.8x

The shows the performance comparison between the CPU and the GPU code is

shown in Table 2. The performance was measured in FPS, frames per second. The

result is also plotted in Figure 35. The speedup increased as the number of grid cell

increased. The difference of the CPU and the GPU version of Flip was the

preconditioner used in the precondition conjugate gradient (PCG) method. We chose

the modified incomplete Cholesky (MIC) as [11] for the CPU code. We used the

Jacobi preconditioner for the GPU code. We used the better preconditioner in the CPU

code because some required computations were more difficult to realize on the GPU.

Figure 35: FPS versus number of grid cells between CPU and GPU version

Table 3: Number of grid cells versus number of PCG iterations

Number of grid cells

vs.

number of PCG iterations

163 323 643

CPU 5.27 5.91 5.21

GPU 17.0 20.1 16.6

Table 3 shows the number of grid cells vs. number of PCG iterations of the GPU

and CPU code. The tolerance for the PCG is 10−5. The preconditioner of the CPU

0

20

40

60

80

100

120

512 4096 32768 262144

FP
S

Number of grid cells

CPU

GPU

37

version makes the PCG to converged faster than the GPU version as shown by Table 3.

The performance of the GPU version was better than the CPU version even though

the preconditioner was inferior.

Table 4: Computation time percentage in one time step

The percentage of time

spent in one time-step
CPU GPU

Solving constraints 31.4% 19.4%

Volume method 65.7% 76.6%

Compute force

velocity position
2.9% 4.0%

The computation time percentage is shown in Table 4. The most time consuming

process is the volume step both in the GPU version and the CPU version. The time

spent in the volume step in the GPU version is a higher because PCG took more

iterations and the velocity transfer was more time consuming.

 We used the viewing distance to adjust the number of hair segments generated in

the rendering stage. When we viewed the hair model closely, we needed a detailed

model. Whew we viewed the hair model from a far distance, we didn‟t need a detailed

model and we used a coarse model. We used lesser segments when the camera was far

and used more segments when the camera was near. This was the level-of-detail

(LOD) method we used for rendering. Table 5 shows the FPS at different viewing

distances with different screen resolution. The result is plotted in Figure 36. Because

the number of pixel processed affected the rendering performance, therefore we

measure FPS at different viewing distance with different screen resolutions. Figure 37

is the snapshots of the hair model adjusted for performance at different camera

distances. We can observe that the FPS didn‟t increase when the viewing distance

increased beyond a certain value. It was because the rendering task and the simulation

task were run simultaneously in the process of one frame. Even if the render task was

finish first, we had to wait until the simulation task finish to enter the next frame.

When the simulation cost became higher than the rendering cost, the increase of

rendering performance would not reflect on FPS anymore. And the simulation became

the performance bottleneck.

Table 5: Viewing Distance versus FPS

Viewing distance

vs. FPS

0.2 0.4 0.6 1.0 1.5 3.0

FPS (800x600) 25 44 63 98 136.1 136.1

FPS (1024x712) 20.6 40.2 59.6 93.2 136.1 136.1

FPS (1152x802) 18.3 36.9 56.1 88.7 136.1 136.1

FPS (1280x968) 15.9 31.9 50.9 83.2 136.1 136.1

38

Figure 36: FPS versus viewing distance

Figure 37: Snapshots of the hair models in different level of details

We used 2x super-sample antialiasing (SSAA) with a down-sampling filter pixel

which takes five samples around a pixel. We show the comparison between the image

with antialiasing turned off and the image with antialiasing turned on in Figure 38.

The image with antialiasing turned off is shown in the left side of Figure 38 and the

image with antialiasing turned on is shown in the right side of Figure 38. The image

on right side has fewer jagged lines than the image on the left side and the

down-sampling filter makes the lines looked thinner.

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5

FP
S

Viewing Distance

800x600 1024x712 1152x802 1280x968

39

Figure 38: Comparison between antialiasing turned off/on

 The comparison between the hair curves with B-spline tessellation and the hair

curves without B-spline tessellation is shown in Figure 39. The hair curve with

B-spline tessellation is shown in the left side of Figure 39 and the hair curve without

B-spline tessellation is shown in the right side of Figure 39. The hair curves on the

left side were smoother than the hair curves on the right side.

Figure 39: Comparison between using/not using B-spline tessellation

The comparison between the hair model with interpolated hairs and the hair model

without interpolated hairs is shown in Figure 39. The hair model with interpolated

hairs is shown in the left side of Figure 39 and the hair model without interpolated

hairs is shown in the right side of Figure 39. The image on the left side has more hairs

than the image on the right side.

40

Figure 40: Comparison between with/without interpolated hairs

 The images of different numbers of interpolated hairs are shown in Figure 41. The

original hair model is shown in the top left image. It had 1750 hairs. The number of

hairs in the top right image was 4 times the number of hairs before interpolation (7000

hairs). The number of hairs in the bottom left image was 8 times the number of hairs

before interpolation (14000 hairs). The number of hairs in the bottom right image was

16 times the number of hairs before interpolation (28000 hairs).

Figure 41: Images of different numbers of interpolated hairs

 Images of hair with different lighting directions are shown in Figure 42. The lights

were on the left side of the head in the top left image. The lights were in front of the

head in the top right image. The lights were on the right side of the head in the bottom

left image. The lights were behind the head in the bottom right image.

41

Figure 42: Snapshots of hair with different directions of lighting

View direction

Light direction

View direction
Front

Back
Light direction

 Head

Back

 Head

Front

Back

 Head

Front

 Head

42

Images of hair with different hair colors are shown in Figure 43. The hair was

brown in leftmost image. The hair was black in the middle image. The hair was

yellow in the rightmost image.

Figure 43: Images of hair with different colors

 We shifted the tangents to produce two highlights. There was one white highlight

and one dark-brown highlight on the hair shown in Figure 44.

Figure 44: Two highlights of hair

 We could reset the constraints of hair to change the length of hair at runtime. We

didn‟t change the length of segments near the hair root. We only changed the segment

near the tip of the hair. The hairs were set shorter on the left side and the hairs were

set longer on the right side as shown in Figure 45.

43

Figure 45: Hair with different length changed at runtime

We animated a character with long hair shaking her head. The snapshots taken in

front of the character are shown in Figure 46. The snapshots taken behind the

character are shown in Figure 47.

44

Figure 46: Snapshots taken in front of a character with long hair

(5)

(1) (2)

(3) (4)

45

Figure 47: Snapshots taken behind a character with long hair

Because the goal of computer animation is to imitate the real world, we compare

the hair animated by the computer program with the hair in the real world. The

snapshots of the real hair are shown in Figure 48 (part 1) and Figure 49 (part 2).

The highlight of the hair from the real world video glistened more smoothly and

brightly than the computer animated highlight. And the majority of the real hairs

moved as a whole group while the computer animated hairs seemed to be moving

more independently.

(5)

(1) (2)

(3) (4)

46

Figure 48: Snapshots of real hair (part1)

47

Figure 49: Snapshots of real hair (part2)

Limitations: There are gaps between the animated result and the real world. The

hair motion had some artifacts. The dynamics model we implemented didn‟t support

curly hairs. It could not simulate the twisting phenomenon. Besides, it could only

maintain part of the input hair style. For hair-body collision detection, only simple

shapes (sphere and capsule) were used. Hair-hair collisions were not handled. Only

the render part had LOD. The hair interpolation had artifacts.

48

Chapter 7: Conclusions and Future

Works

7.1 Conclusions

 In this thesis, we present a hair rendering implementation that renders 1.5 million

hair segments with self-shadow in real time on graphics card supporting OpenGL 4.0.

We generate hairs dynamically on the GPU to avoid the data transfer across the PCI-E

bus. Since we generate the hairs dynamically every frame, we can control the amount

of hairs generated to achieve the level-of-details of the hair model to increase

performance. We implement a real time self-shadow technique and a hair lighting

model with two color highlights.

We present a realization of the Flip algorithm used in the work by McAdams [4] for

simulation hair on the graphics hardware with CUDA compute capability 1.1. We

parallelize the step of transferring particle velocities to grid (This step is call

“rasterize velocities to grid” in [4]). We realize the pressure projection step used in an

Eulerian fluid solver on the GPU using the preconditioned conjugate method.

7.2 Future Works

The hair model consumes a lot of editing time. It would be a research direction for

editing the hair model interactively to achieve the feature of “what we see is what we

get”. The interpolation scheme has drawbacks. It could make hairs interpolated from

the same key hair look too similar and tufts of hairs look too different from each other

when the key hairs are too different.

 In the future, we will add the Eulerian fluid to simulate the wind interacting with

the hair like [1]. We will add LOD support to the simulation program.

 We would like to investigate the possibility of adding the environment lighting

[17][29] support to the renderer. Currently, if we add a skybox as the background, the

lighting of the hair doesn‟t blend into the scene because the light source doesn‟t match

the environment image.

49

Reference

[1] C. Yuksel, and S. Tariq, “Advanced techniques in real-time hair rendering and

simulation”, in ACM SIGGRAPH 2010 Courses, pp. 1-168, Los Angeles,

California, 2010.

[2] I. Sadeghi, H. Pritchett, H. W. Jensen et al., “An artist friendly hair shading

system”, ACM Trans. Graph., vol. 29, no. 4, pp. 1-10, 2010.

[3] Z. Ren, K. Zhou, T. Li et al., “Interactive hair rendering under environment

lighting”, ACM Trans. Graph., vol. 29, no. 4, pp. 1-8, 2010.

[4] A. McAdams, A. Selle, K. Ward et al., “Detail preserving continuum

simulation of straight hair”, ACM Trans. Graph., vol. 28, no. 3, pp. 1-6, 2009.

[5] A. Zinke, C. Yuksel, A. Weber et al., “Dual scattering approximation for fast

multiple scattering in hair”, ACM Trans. Graph., vol. 27, no. 3, pp. 1-10,

2008.

[6] C. Yuksel, and J. Keyser, “Deep Opacity Maps”, Computer Graphics Forum,

vol. 27, no. 2, pp. 675-680, 2008.

[7] S. Tariq, and L. Bavoil, “Real time hair simulation and rendering on the GPU”,

in ACM SIGGRAPH 2008 talks, Los Angeles, California, 2008.

[8] E. Sintorn, and U. Assarsson, “Real-time approximate sorting for self

shadowing and transparency in hair rendering”, in Proceedings of the 2008

symposium on Interactive 3D graphics and games, pp. 157-162, Redwood City,

California, 2008.

[9] A. Selle, M. Lentine, and R. Fedkiw, “A mass spring model for hair

simulation”, ACM Trans. Graph., vol. 27, no. 3, pp. 1-11, 2008.

[10] Q. Hou, K. Zhou, and B. Guo, “BSGP: bulk-synchronous GPU programming”,

ACM Trans. Graph., vol. 27, no. 3, pp. 1-12, 2008.

[11] R. Bridson, Fluid simulation for computer graphics: AK Peters Ltd, 2008.

[12] K. Ward, N. Galoppo, and M. Lin, “Interactive virtual hair salon”,

Presence-Teleoperators and Virtual Environments, vol. 16, no. 3, pp. 237-251,

2007.

[13] Nvidia, CUDA Programming Guide: NVIDIA Corporation, 2007.

[14] M. Müller, B. Heidelberger, M. Hennix et al., “Position based dynamics”,

Journal of Visual Communication and Image Representation, vol. 18, no. 2, pp.

109-118, 2007.

[15] S. Green, “Cuda particles”, NVIDIA Whitepaper, 2007.

[16] K. Crane, I. Llamas, and S. Tariq, "Real-time simulation and rendering of 3D

fluids," GPU Gems 3, pp. 633-675: Addison Wesley, 2007.

50

[17] B. Hiebert, J. Dave, T.-Y. Kim et al., “The Chronicles of Narnia: the lion, the

crowds and rhythm and hues”, in ACM SIGGRAPH 2006 Courses, Boston,

Massachusetts, 2006.

[18] S. Hadap, “Oriented strands: dynamics of stiff multi-body system”, in

Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pp. 91-100, Vienna, Austria, 2006.

[19] R. Gupta, M. Montagnol, P. Volino et al., “Optimized framework for real time

hair simulation”, Advances in Computer Graphics, pp. 702-710, 2006.

[20] R. Bridson, R. Fedkiw, and M. Muller-Fischer, “Fluid simulation”, in ACM

SIGGRAPH 2006 Courses, Boston, Massachusetts, 2006.

[21] F. Bertails, B. Audoly, M. P. Cani et al., “Super-helices for predicting the

dynamics of natural hair”, Acm Transactions on Graphics, vol. 25, no. 3, pp.

1180-1187, Jul, 2006.

[22] Y. Zhu, and R. Bridson, “Animating sand as a fluid”, ACM Trans. Graph., vol.

24, no. 3, pp. 965-972, 2005.

[23] L. Petrovic, M. Henne, and J. Anderson, Volumetric methods for simulation

and rendering of hair, Tech. rep., Pixar Animation Studios, 2005.

[24] H. Nguyen, and W. Donnelly, "Hair animation and rendering in the nalu

demo", GPU Gems 2, pp. 361–380: Addison Wesley, 2005.

[25] B. Choe, M. G. Choi, and H.-S. Ko, “Simulating complex hair with robust

collision handling”, in Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pp. 153-160,

Los Angeles, California, 2005.

[26] F. Bertails, C. Menier, and M. Cani, “A practical self-shadowing algorithm for

interactive hair animation”, in Proceedings of Graphics Interface 2005, pp.

71-78, Victoria, British Columbia, 2005.

[27] P. Volino, and N. Magnenat-Thalmann, “Animating complex hairstyles in

real-time”, in Proceedings of the ACM symposium on Virtual reality software

and technology, pp. 41-48, Hong Kong, 2004.

[28] T. Scheuermann, “Practical real-time hair rendering and shading”, in ACM

SIGGRAPH 2004 Sketches, pp. 147, Los Angeles, California, 2004.

[29] I. Neulander, “Quick image-based lighting of hair”, in ACM SIGGRAPH 2004

Sketches, pp. 43, Los Angeles, California, 2004.

[30] T. Mertens, J. Kautz, P. Bekaert et al., “A self-shadow algorithm for dynamic

hair using density clustering”, in ACM SIGGRAPH 2004 Sketches, pp. 44,

Los Angeles, California, 2004.

[31] M. Koster, J. Haber, and H.-P. Seidel, “Real-Time Rendering of Human Hair

Using Programmable Graphics Hardware”, in Proceedings of the Computer

51

Graphics International, pp. 248-256, 2004.

[32] K. Ward, M. C. Lin, J. Lee et al., “Modeling Hair Using Level-of-Detail

Representations”, in Proceedings of the 16th International Conference on

Computer Animation and Social Agents (CASA 2003), pp. 41, 2003.

[33] K. Ward, and M. C. Lin, “Adaptive Grouping and Subdivision for Simulating

Hair Dynamics”, in Proceedings of the 11th Pacific Conference on Computer

Graphics and Applications, pp. 234, 2003.

[34] S. R. Marschner, H. W. Jensen, M. Cammarano et al., “Light scattering from

human hair fibers”, ACM Trans. Graph., vol. 22, no. 3, pp. 780-791, 2003.

[35] F. Bertails, T.-Y. Kim, M.-P. Cani et al., “Adaptive Wisp Tree: a

multiresolution control structure for simulating dynamic clustering in hair

motion”, in Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pp. 207-213, San Diego, California,

2003.

[36] Y. Bando, B.-Y. Chen, and T. Nishita, “Animating Hair with Loosely

Connected Particles”, Computer Graphics Forum, vol. 22, no. 3, pp. 411-418,

2003.

[37] E. Plante, M. P. Cani, and P. Poulin, “Capturing the complexity of hair

motion”, Graphical Models, vol. 64, no. 1, pp. 40-58, 2002.

[38] T. Y. Kim, and U. Neumann, “Interactive multiresolution hair modeling and

editing”, Acm Transactions on Graphics, vol. 21, no. 3, pp. 620-629, 2002.

[39] J. T. Chang, J. Jin, and Y. Yu, “A practical model for hair mutual interactions”,

in Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pp. 73-80, San Antonio, Texas, 2002.

[40] E. Plante, M.-P. Cani, and P. Poulin, “A layered wisp model for simulating

interactions inside long hair”, in Proceedings of the Eurographic workshop on

Computer animation and simulation, Manchester, pp. 139-148, UK, 2001.

[41] T.-Y. Kim, and U. Neumann, “Opacity Shadow Maps”, in Proceedings of the

12th Eurographics Workshop on Rendering Techniques, pp. 177-182, 2001.

[42] S. Hadap, and N. Magnenat-Thalmann, “Modeling Dynamic Hair as a

Continuum”, Computer Graphics Forum, vol. 20, no. 3, pp. 329-338, 2001.

[43] T. Lokovic, and E. Veach, “Deep shadow maps”, in Proceedings of the 27th

annual conference on Computer graphics and interactive techniques, pp.

385-392, 2000.

[44] K. Anjyo, Y. Usami, and T. Kurihara, “A simple method for extracting the

natural beauty of hair”, ACM SIGGRAPH Computer Graphics, vol. 26, no. 2,

pp. 111-120, 1992.

[45] R. Rosenblum, W. Carlson, and E. Tripp, “Simulating the structure and

52

dynamics of human hair: Modeling, rendering and animation”, The Journal of

Visualization and Computer Animation, vol. 2, no. 4, pp. 141-148, 1991.

[46] J. T. Kajiya, and T. L. Kay, “Rendering fur with three dimensional textures”,

SIGGRAPH Comput. Graph., vol. 23, no. 3, pp. 271-280, 1989.

[47] J. U. Brackbill, and H. M. Ruppel, “FLIP: A method for adaptively zoned,

particle-in-cell calculations of fluid flows in two dimensions”, Journal of

Computational Physics, vol. 65, no. 2, pp. 314-343, 1986.

[48] F. H. Harlow, “The Particle-in-Cell Method for Numerical Solution of

Problems in Fluid Dynamics”, in Experimental Arithmetic, High-Speed

Computations and Mathematics, pp. 269-269, 1963.

53

Appendix A

We give an informal explanation of why making the velocities divergence free

preserves the incompressible feature of fluid here.

Figure 50: An arbitrary small region of fluid

Consider the case shown in Figure 50. The box is an arbitrary small region of fluid,

∂Ω is its boundary surface, n̂ is the surface normal vector and u⃗ is the velocity. The

change of volume with respect to time is:

 d

dt
volume = ∯ u⃗ ⋅ n̂

∂Ω

 (6)

If the volume doesn‟t change, we get:

∯ u⃗ ⋅ n̂

∂Ω

 = 0 (7)

Apply the divergence theorem

∭ ∇ ∙ u⃗

Volume

= ∯ u⃗ ⋅ n̂
∂Ω

 (8)

We get:

∭ ∇ ∙ u⃗

Volume

= 0 (9)

Because this equation must hold for any arbitrarily chosen region of fluid, the

integrand must equal to zero. Hence we have:

 ∇ ∙ u⃗ = 0 (10)

We see that the incompressibility condition is equivalent to making the velocities

divergence free.

54

Appendix B

We are going to start with the split incompressible fluid equations without viscosity,

see [11].

The equations are:

 Dq

Dt
= 0 (advection) (11)

 ∂u⃗

∂t
= g⃗ (body force) (12)

 ∂u⃗

∂t
+

1

ρ
∇p = 0 such that ∇ ∙ u⃗ = 0

(pressure/incompressibility)

(13)

In these equations, „q‟ is a generic quantity like velocity, density or temperature, u⃗ is

the velocity of the fluid, g⃗ is gravity, ρ is the density of the fluid and p is pressure.

Assume

 ∂u⃗

∂t
=

u⃗ n+1 − u⃗ n

∆t
 (14)

We substitute the derivative of velocity into the pressure equation:

 u⃗ n+1 − u⃗ n

∆t
+

1

ρ
∇p = 0 (15)

We can rearrange the equation to get:

u⃗ n+1 − u⃗ n +

∆t

ρ
∇p = 0 (16)

We take the gradient on both side of the equation and rearrange it:

∇ ∙ u⃗ n+1 − ∇ ∙ u⃗ n +

∆t

ρ
∇ ∙ ∇p = 0 (17)

Since we require the velocity field to be divergence free, we set∇ ∙ u⃗ n+1 = 0. Hence

we get:

−

∆t

ρ
∇2p = ∇ ∙ u⃗ n (18)

This is the Poisson equation we are going to solve in order to find out the pressure

that makes the velocity field divergence free.

On the staggered MAC grid, we use central difference to approximate the divergence

of velocity in a fluid cell (i,j,k) :

(∇ ∙ u⃗) i,j,k ≈

u
i+

1
2
,j,k

− u
i−

1
2
,j,k

∆x
+

v
i,j+

1
2
,k

− v
i,j−

1
2
,k

∆x
+

w
i,j+

1
2
,k

− w
i,j−

1
2
,k

∆x
 (19)

55

Here ∆x is the width of the grid cell.

Similarly, we approximate the Laplacian of pressure with:

∇2p =

6pi,j,k − pi+1,j,k − pi,j+1,k − pi,j,k+1 − pi−1,j,k − pi,j−1,k − pi,j,k−1

∆x2
 (20)

Then we have the pressure equation in a fluid cell (i, j, k):

 −∆t

ρ
(
6pi,j,k − pi+1,j,k − pi,j+1,k − pi,j,k+1 − pi−1,j,k − pi,j−1,k − pi,j,k−1

∆x2
)

= (

u
i+

1
2
,j,k

n − u
i−

1
2
,j,k

n

∆x
+

v
i,j+

1
2
,k

n − v
i,j−

1
2
,k

n

∆x
+

w
i,j+

1
2
,k

n − w
i,j−

1
2
,k

n

∆x
)

(21)

We consider two boundary conditions:

If cell (i+1, j, k) is air, we assume it is a free boundary with zero pressure, and then we

set the term pi+i,j,k to zero:

 pi+i,j,k = 0 (22)

If cell (i+1, j, k) is solid, then we substitute pi+i,j,k with:

pi+1,j,k = pi,j,k +

ρ

∆t
∙ (u

i+
1
2
,j,k

n − usolid) (23)

We can arrange the system of linear equations of pressure into a matrix form A ∙ p = r:

(
A11 ⋯ A1N

⋮ ⋱ ⋮
AN1 ⋯ ANN

)

(

⋮
pi,j,k

pi+1,j,k

pi+2,j,k

⋮)

= (

r1
⋮
rN

)

indices 0 ≤ i < Nx, 0 ≤ j < Ny, 0 ≤ k < Nz

and N = Nx ∙ N𝑦 ∙ N𝑧 is the total number of grid cells

(24)

We solve this pressure equation for updating the velocities. Note that we

temporarily ignore the term ρ/∆t in solving pressure because when we add the

gradient of pressure to obtain the divergence free velocities, this term appears on both

side of the equation and could be cancelled.

56

Appendix C

We list the tessellate control/evaluation shader code of the rendering pipeline in

step (1) of the rendering stage in Figure 51 and Figure 52.

Figure 51: Tessellate control shader code of the B-spline tessellation step

1 layout(vertices = 4) out;

 2 in vec3 vPosition[];

 3 patch out vec3 tcTangent[3];

 4 uniform vec2 tessLevelOuter;

 5 #define ID gl_InvocationID

 6 void main()

 7 {

 8 gl_out[ID].gl_Position = vec4(vPosition[ID], 1);

 9 tcTangent[0] = vPosition[1]-vPosition[0];

10 tcTangent[1] = normalize(vPosition[2]-vPosition[1]);

11 tcTangent[2] = vPosition[3]-vPosition[2];

12 gl_TessLevelOuter[0] = tessLevelOuter[0];

13 gl_TessLevelOuter[1] = tessLevelOuter[1];

14 }

57

Figure 52: Tessellate evaluation shader of the B-spline tessellation step

1 layout(isolines, equal_spacing) in;

 2 patch in vec3 tcTangent[3];

 3 precise out vec3 teTangent;

 4 void main()

 5 {

 6 float u = gl_TessCoord.x, v = gl_TessCoord.y;

 7 vec4 p0 = gl_in[0].gl_Position, p1 = gl_in[1].gl_Position;

 8 vec4 p2 = gl_in[2].gl_Position, p3 = gl_in[3].gl_Position;

9 float uu = u*u, uuu = uu*u;

10 float b0 = (1.0-u)*(1.0-u)*(1.0-u)/6.0;

11 float b1 = (3.0*uuu - 6.0*uu +4.0)/6.0;

12 float b2 = (-3.0*uuu + 3.*uu + 3.*u + 1.0)/6.0;

13 float b3 = (uuu)/6.0;

14 precise vec4 outPos =

15 fma(p0,vec4(b0),p1*b1) + fma(p3,vec4(b3), p2*b2);

16 gl_Position = outPos;

17 float Bt[3];

18 Bt[0] = 0.5f*uu - u + 0.5f;

19 Bt[1] = -uu + u + 0.5f;

20 Bt[2] = 0.5f*uu + 0 + 0;

21 teTangent = tcTangent[2]*Bt[2] +

22 fma(tcTangent[0],vec3(Bt[0]),tcTangent[1]*Bt[1]);

23 }

58

We list the tessellate control/evaluation shader code of the rendering pipeline in

step (2) of the rendering stage in Figure 53 and Figure 54.

Figure 53: Tessellate control shader code of single strand interpolation step

1 layout(vertices = 1) out;

 2 uniform vec2 tessLevelOuter;

 3 in int vVertexID[];

 4 patch out int tcVertexID;

 5 void main()

 6 {

 7 tcVertexID = vVertexID[0];

 8 gl_TessLevelOuter[0] = tessLevelOuter[0];

 9 gl_TessLevelOuter[1] = tessLevelOuter[1];

10 }

59

Figure 54: Tessellate evaluation shader code of single strand interpolation step

1 layout(isolines, equal_spacing) in;

 2 uniform samplerBuffer keyHairPos;

 3 uniform samplerBuffer hairTangent;

 4 uniform samplerBuffer coordFrame;

 5 uniform samplerBuffer clumpCoord;

 6 uniform mat4 Projection;

 7 uniform mat4 Modelview;

 8 uniform float clumpWidth;

 9 uniform float rootWidth;

10 uniform float tipWidth;

11 uniform int numSegmentPerHair;

12 patch in int tcVertexID; //<-workaround: gl_PrimitiveID missing

13 out vec3 teTangent;

14 void main()

15 {

16 float u = gl_TessCoord.x;

17 float v = gl_TessCoord.y;

18 int vertexID = int(u * gl_TessLevelOuter[1] + 0.5);

19 int interpHairID = int(v *gl_TessLevelOuter[0] + 0.5);

20 int hairID = tcVertexID / (numSegmentPerHair);

21 int vertexIndex = 2*tcVertexID + vertexID;

22 vec2 coord = texelFetch(clumpCoord, interpHairID).xy;

23 vec3 yAxis = texelFetch(coordFrame, hairID*2).xyz;

24 vec3 zAxis = texelFetch(coordFrame, hairID*2 +1).xyz;

25 vec3 offset = yAxis * coord.x + zAxis *coord.y;

26 int vertexID2Root = vertexID+tcVertexID%(numSegmentPerHair);

27 float ratio = float(vertexID2Root)/float(numSegmentPerHair);

28 offset *= (clumpWidth* (rootWidth *(1.0-ratio) + tipWidth *

ratio));

29 vec3 vertPos = texelFetch(keyHairPos, vertexIndex).xyz;

30 vertPos += offset;

31 gl_Position = vec4(vertPos, 1.0);

32 teTangent = texelFetch(hairTangent, vertexIndex).xyz;

33 }

	摘　要
	Abstract
	Acknowledgement
	Content
	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Contribution

	Chapter2: Related Works
	2.1 Hair Simulation
	2.2 Hair Rendering

	Chapter3: Hair Rendering
	3.1 B-spline Tessellation
	3.2 Single Strand Interpolation
	3.3 Generation of Deep Opacity Maps
	3.4 Lighting and Shadowing
	3.5 Antialiasing

	Chapter 4: Hair Simulation
	4.1 Solving Constraints
	4.2 The Volume Method Step
	4.2.1 The Grid Structure in Fluid Simulation
	4.2.2 Transferring Particle Velocities to Grid
	4.2.3 Making Velocity Field Divergence Free
	4.2.4 Updating Particle Velocities from Grid

	Chapter 5: Communication of Two Threads
	Chapter 6: Experiments and Results
	Chapter 7: Conclusions and Future Works
	7.1 Conclusions
	7.2 Future Works

	Reference
	Appendix A
	Appendix B
	Appendix C

