B SE A 2
YR S T

RN

i

- B#E Widget B* 2Nz T 2B

A Cross-platform environment for.mobile Widget-based
application

CEE RN A
TR ST SRR VA

H[ﬁ'- Nl Jue A Je F A k|

- 3% & Widget &% £258 s SR B

A Cross-platform environment for mobile Widget-based application

By oA e R Student : Kuei-An Yang
1 T 2T Advisor : Shyan-Ming Yuan
Bz o2« F
A S S - B A
I S

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2010

Hsinchu, Taiwan, Republic of China

PEARAY 4 EST

- B #% & Widget & * 25\ s Sk B

il

Fii gt R TR ¥

Wzl g

‘«‘“%

AFLE B T T AT

EE

AP iTd A E a S > Widget 583 e * A28 i * enT SIRB 0 A A
BTN LA TR - R T LY AR R U 2 B
FEIH 6 T 5 blde & Windows Mobile #7F 3 7 Widget - ¥ — fa#g 3| 0|
Fi k- BE O enT D iEfest B E T 0 B4 Yahoo! Go ¢ Yahoo! Go 2 #7
YLy 3L 3ERE S ihiE A FZ U ISR SR 2 PR SRS E ahp
FHFA T GRS MEER FEREEF L CRE AR &0 2 G { A1

Z

W

o 23 F SR e o

Apache Shindig ¥ - 3% PR By 7 0Pl g* /28T 5 > HiE U

Widget XML ## = HTML 4v JavaScript 7425 o ¥ — * & > Google Gears #
MR EREARET BT ITRLT o T A WiE- BT S A aER
B AR IRE Mm-S AR E > Widget 2 AHBRFE - BFHR

PR IR -

Baks 7@ R 428 T 5 ~ Apache Shindig ~ Google Gears

iii

A Cross-platform environment for mobile Widget-based application

Student: Kuei-An Yang Advisor: Shyan-Ming Yuan

Department of Computer Science and Engineering

National Chiao Tung University

Abstract

Today, mobile application platform for Widget can basically be divided into two
types: One is to develop productsfor its-.own system only; application is not portable
to other platforms, such as: Windows Mobile Widgets.... Another is to provide a
common platform for applications development; such as: Yahoo! GO. Yahoo! Go is
able to support many mobile platforms, because Yahoo must spend a lot of time and
invest heavily in technical resources to overcome many compatibility problems.
However, this design concept will-make the-platform must be accompanied the
transaction of environment to do regular updates and corrections, even substantial

changes.

Apache Shindig is a server-side-based Web application platform and can be rendered
Widget XML into html code. On the other hand, the Google Gears technology makes
the offline application execution possible. In order to create a Cross-Platform
environment which can be easily maintained, in this thesis, we will integrate these
two functionalities together, and propose a Web-based mobile application execution

desktop environment.

Keywords : mobile application platform, Apache Shindig, Google Gears

I

Acknowledgement

i @ Eenig ¥ Bofs A B kPR LSk b+ o G R
R E A E o NG B FIEA S o TRE R e iS - 2 R F
FREFORERT ORITEFFALZOM 5 - AT RE > g IIEH
TR D o F RA R, el o RE AR FH AL B
TN EEEOER -

£ 5 AnEES B A s A AT hR £
FAP O aRT g o REFAPRA S P e B
R N E A A F S g
¥epd & > @ ¥ BAEY 1 (TP UL

B PR # ?éév’ﬂ%f’%}‘if* & .%*’m%“%*f“i’é% Liakd v e A
PR X P AN AT SRR R R e R BT R AN
7] Bug P mo b B St o 3 ﬁi“iMJ SESE R ik

BT Aot § aE b ’i“\i@&* ki AL Fr L ENFLA AR
Fend BT o B3 2 A LA R p 2t B2 0 4 B
Fang Fe 3V 3RY 7 oA 5 il §32 0 T L AART B > kg #fe
efk eI SEEF A o

ABE BB L P A ERE > F L RN E A G D] ik
Bd AN p R ARG R4 G pho mLﬁﬁﬂﬁﬁﬁﬂjﬁ
AFERE B ALZRBA N AATERFER L ORE S
B T N E Al BAE AR A oagk
@%’I»IF%;%JT\ 22F I S B 2 e 4 o

R

il

Table of Contents

AcCKNOWIedgement........cccccerrerrrrssnnnsnnneeeeecscccssssssssssssssssssssssssssssssssssssssnell
Table Of CONLENTS....ccceevvrriciirriesssnrncssssnicssssssnsssssssessssssessssssssssssssssssnns iii
LISt Of FiUIES «cuuveeriiieirivnnniicisssssnnneicsssssnnsnecsssssssssessssssssssssssssssassssssssne \4
LiSt Of Tables....ccccuiiiiivnriiisisnicissnniiisssnicsssnnnicsssssncsssssencssssncsssssancsess Vil

Chapter 1 INtroductionu....eeeeeeeeeeeececcssscssscsssssssssssssssssesssessssssssssssssssssanss 1

| B B () TSSO UPSPR 1
1.2 MOUVALION c.cetiiiieiiieiiieeeeee e e aaeaeaeeees 3
1.3 ReSearch ObJECtiVES. ...cceeeuiieiieiiiee ettt ettt 4
1.4 Research Contributionc.ci it isaineieeeeieeeeeeeeeeeecee e aaeaeeeeees 6
1.5 Outline of the TReSIS.... o it e e ettt ee e e e eerrrree e e e e eeennnees 7

2.1 GoOogle Gadget......oiu..eee i i st et e ettt et 8
2.1.1 Introduction of Google Gadget .i..........c...iiivrnrieeeeiie e 8
2.1.2 Main APIs.of Google Gadgetc.liiimnreeeniiiieiiiie e 9
2.1.3 A sample of Google Gadgeto..ocvieeededeiie e 9

2.2 GOOZIE GEATSeee i iitiisieniee ettt e e d e ettt ettt e e e 10
2.2.1 Introduction of GOOZIE Gears ... iiii ie st eiieeeiiiieeeeitee e 10
2.2.2 System architecture and off-line theory of Google Gears................. 11
2.2.3 The information security of Google Gears............cccceeeeiuieeeniineennnee 16
2.2.4 The functions of Google Gears API.........ccccocceieriiiiiiniiiiiniieee, 16

2.3 Apache SHINAig.....ccoueiieeiiiie it e 17
2.3.1 What is Apache Shindig?ccoooiiiiiimiiiiiiiiiiii e 17
2.3.2 Five different servlets in Apache Shindigccccoviiiiiiiiiiennnn. 18

2.4 Related WOTKS ...ccooiiiiiiiiiiiiiiiie ettt 19
2.4.1 YAh0O! GO .eevviiiiiiiiiiiiie ettt e 19
2.4.2 Web Page Tailoring Toolccooooieiimiiiiiniiiniiicieec e 21
2A3HTML 5. 23

Chapter 3 System DesSi@N........ccccceeeiinninnscsssssnnennsassneseeecccsssssssssssssssssses 25

BT OVEIVIEW .ottt e et ee e e e et e e e eeaee e e e et eeeeenaaeeeeeaes 25
3.2 System ATCRItECTUIE..........eiiiiiiiiiiiiiee ittt 27
3.2.1 MODIIZE SEIVICE ..ot e e e eeaas 29

iii

3.2.2 RSS Handler/Parsing Wid@et.........ccoovueeeimiiierinniiieeniieeenieee e 31

3.2.3 SYNC SETVICE .eeeeneeiiieeiiiee ettt ettt e e et ee e 32
3.3 The behavior of Mobile device..........ccoovuiiiriiiiiiniiiiiiiiiieceieee e 32
3.4 SUIMIMATY «.evviieeeieie ettt ettt e e e ettt e e e e e s ettt e e e e e s eaieeeeeas 33

Chapter 4 System Implementationccccccceeeeeeeeeeccccccsscssscsssnnsesssees 35

4.1 Application Developmentc.eeeveiiiieiiriiiee et 35
4.1.1 Sequence Diagram of Application Development.........ccccccceeeenneeee. 35
4.1.2 Implement details of Rewriting Widgetccccevveiiiiinniiieeeeene. 36

4.2 USET SUDSCIIPHON. ¢ecuetieeiiiiiit ettt ettt ettt e e st e e ssbeeeens 38
4.2.1 Sequence Diagram of User Subscription..........cccceeeeceeeeeeieeeeneeennn. 38

4.3 Implementation of the two demonNStrations...........eeeevrvierernieeeerniieeeenieeen. 39
4.3.1 Sequence Diagram of To-Do LiSt......ccceccieiiiiiiiiiiiiiiieeieee e, 39
4.3.2 Implementation of Sync ServiCe........cccevvueeierniieiriniieeeniieee e, 40
4.3.3 Sequence Diagram of RSS Widgetccccveviiiiiiiiiiiiiiieceeee, 42

4.4 The other problems we encountered ...l eeeinieiernieieeieeeeieee e 45

4.5 Implementation of caching Remote WebPages:............cccoeeceviiniinnenne.n. 47

4.6 SUMMATY ...ovveeere it it et et et 49

Chapter 5 System Demonstration & Evaluation.............ccccceevnreeennns 50

5.1 BaSIiC OPETALION tittuunrereenniieees it eeiinneeeaeaueiees s e siae e eeeneeeeeaanseeeseaneeeeaanns 50
5.1.1 Developeruploads Widgets uueeessssumseeees tebeitinieeeriiiiie e 50
5.1.2 User selects Widgets «o: ... i e et 51
5.1.3 Do operation in‘mobile phone......:iocii e 53

5.2 The Demo of To-Do LiSt..... i i 55
5.2.1 Functional test and Synchronization test in on-line state................... 55
5.2.2 Test the off-1ine OPErationcccceeeeiiieieiiiieee e 57

5.3 The Demo of RSS type Wid@et.......ccueeiiriiiiiiniiiiiiiiiieeeiiee e 61

5.4 System Evaluationccccoeiiiiiiiriiiiin ettt 63

Chapter 6 Conclusion and Future Work.........eeeeeiiiecciccisccsscsccnseeeeee. 600
Reference and Bibliography..........ccccecccseeeicccsssssnnrecccssssnsseccssssssssseenes 68
APPENAIX A coiiiirrrneniiccsssssnsescss 71

List of Figures

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:

Figure 4-5:

TO-DO LISt ittt e 5
RSS type of Wid@et.......oeieieiiiiieee e 6
Sample of Google GadELc..eeeieiiiiiiiiiie e 9
Traditional TEQUESES ...c..uvveeiiiiiiieiieiiiee ettt 12
Join the data JaYeroeviiiiiiiiiiii e 12
Data SWItCh JaYeTccc.eiiiiiiii e 13
Database of GOOZIe GEATSccccuviireriiieeeeiiee et 13
Sync Engine of Google GEars..........ccueeerriieiiniiieiiniiiiceiiieee e 16
The Class diagrams.of these five servIets..a.....cccevviiiiiiniiiiiiniiieiieeen, 19
Yahoo! GO SOftWATE. ...oooiiiiit ot e e bttt et e 20
Page Tailor in-Web BIOWSETccitiiiiieeie it 22
OVETVIEW ...oo ittt it aitecssiiessiti b s e e 26
System ArChiteCtUIE.. ..o ettt 29
Web Page Tailoring SYSteM veiciiiiie et 31
Combined With OUE SYSEIMcceeiuiiieeiiiiee et et ee e 32
Display Of Tailor......coveiiiiiiiiiieeee e e 33
RSS HandlIercooimiiiiiiiii it 33
SYNC SETVICE . neeiieieiiiiee ettt ettt et e et e e e e e et ee e e 34
The behavior of mobile deViCeccceeveviiriiiiiiiiiiiiiiicccce e, 35
Sequence Diagram of Application Development..........cccccceeeeeniieeennnnee. 37
CACKE TISt .. 39
Sequence Diagram of User SubsScription...........cccceeveveeeeeiiieeeeniiee e, 40
Sequence Diagram of on-line To-Do LiSt.........cccceiviiiiiiiiiiiiiniieeee, 41
Sequence Diagram of off-line To-Do LisSt.........cccccvviieriiiiniiiiiiiieeeeees 42

v

Figure 4-6: Prefs function...........ceooiiiiiiiiiiiiiiiiic e 42

Figure 4-7: Implementation of Save/Load...........cccoevvieiiniiiiiniiiiiiiiiiecieee e, 43
Figure 4-8: Sequence Diagram of on-line RSS Widgetcccccooiiiiiiiiiinnnen. 44
Figure 4-9: Sequence Diagram of off-line RSS Widget............ccccoiiiiiiiiiiiiininen. 45
Figure 4-10: Add off-1ine linkK......cccocoueiiiiiiiiiiniiiii e, 45
Figure 5-1: Developer uploads the widget filecccovviiiiiiiiiiinniiiiiceen, 52
Figure 5-2: Uploaded..........ooiiiiiiiiiiiieeeee ettt e 53
Figure 5-3: The user’s HOmMePaZecoeeeueiiiiiiieieeiiee ettt 54
Figure 5-4: User Management Interface.............cccoovvieeiiniiiiiniiiiiiniiciiicec e, 54
Figure 5-5: The user’s selection completed..........cooovieeiiniiiieriiiiieiniiieeinieee e 55
Figure 5-6: Users’ Homepage in mobile device. i it eniiiiiiiiiiieeeieee e, 56
Figure 5-7: Users’ Widget Interface ..o .. o ittt 56
Figure 5-8: User allows GOOZIE GEATLSceeettmuitemaiuueeeeiiiiitie e eeiieeeeeieeeenieeeens 57
Figure 5-9: To-do-List Widget in desktop Browser..........o.occieriiiieiiniieiinieeeeeen, 58
Figure 5-10: Add new items on mobile browser.........cocl i iiiin e, 58
Figure 5-11: Completed the add aCtion e ueeeeessiieiieiteeee e 58
Figure 5-12: Real time synchronizationcccoecueeiiniieeeriiieee e, 59
Figure 5-13: Setting toolbar of mobile phone..............cccooviiiiiiiiiiinniiiiiieceen, 60
Figure 5-14: The network status of mobile phoneccccoeviiiiiiiiiiiiiee, 60
Figure 5-15: The network of mobile phone has been shut down................ccccoooeei. 60
Figure 5-16: Offline users’ iNterfaceceeevuiieiiniiieiiniiiien e, 61
Figure 5-17: Demo of To-Do-List WidZeLtccc.eveiimiiiiiiniiiieniiiiie e, 61
Figure 5-18: Functional teStNgc.ceeeiiiiiiiieiiiee ettt 62
Figure 5-19: Connection SELHNGceeiiiuiiiririiieeeeiieee et ee et e eieee e e 62
Figure 5-20: After synchronizationccceeoueeeiiniiieiiniieeen e 63
Figure 5-21: On-line Request MESSAZEcccevmiiiiimiiiieiiiiiiien et 64

Figure 5-22: Cache finish MeSSage.......ccccuueeiiriiiiiiniiieiiniiiee e 64

Figure 5-23: Go to the remote Webpagecccvveiiiiiiiiiniiiiiniiie e, 64
Figure 5-24: Shows the real CONtENt........ccuuiiiiiiiiiieiiie e 64
Figure 5-25: Off-line Request MeSSageccouuiieeeiiiieiiiieee e 65
Figure 5-26: Shows the tailored content..............cceovvieeiiniiiierniiiie e, 65

vii

List of Tables

Table 4-1: Comparison table of Mobilize effectcccoveeeeriiiiiiniiciinieeeen, 47
Table 5-1: Comparison table of different platformcccoeeiiiiiiiiiiiiiie, 66
Table 5-2: Means and standard deviations from the “Usability Score™ 67

viii

Chapter 1 Introduction

1.1 Preface

With the performance's promotion of mobile devices, and the progress of wireless
communication technology, mobile network-based software in the handheld mobile
device is not only feasible; it began to be taken seriously. We can imagine the future,
more and more of the traditional web software gradually migrates to mobile devices

to meet the business, life, entertainment, and many other needs.

However, in wireless networks based, besides. the feasibility of developing Web
applications [1], there are many issues that need to-be considered: first, mobile device
software must be installed-on hundreds of different operations, different platforms, it
makes deployment and distribution -for the -application” software more difficult.
Presently, the market position of the platform, the more there is Java ME [2],
Windows Mobile [3], Symbian [4],' BREW. [5], Mobile Linux [6], and the Google
open platform Android [7]. Such diversity of platforms and with the development

model gave software developers more difficulties.

In addition, network-based applications for mobile devices are vulnerable to the
surrounding environment, such as telecommunications services, it is easy to
receive network connectivity problem caused by terrain, buildings, rate of movement,
and it is hard to maintain uninterrupted connection. Those make multiplayer mobile

applications more challenging.

In recent years, the uses of mobile devices become more and more popular. Most
people have mobile devices, even while some people have two or more mobile
devices. On the other hand, more and more applications for mobile devices have been
developed. Using the mobile device to handle personal affairs is a part of modern life.
The mobile application is one of the essential software for new generation of mobile

devices.

However, the operation of the mobile environment has been a lot of restrictions,

including:

1. The limited computing power of mobile devices:
The complicated operation: is not suitable for use on mobile devices; making
computing time cannot.be applied-too long.

2. The limited storage space for mobile devices:
The memory of mobile devices is-generally much smaller than the personal
computer, cannot save or-share alot of space for large files.

3. Connectivity for mobile devices will be affected by the movement:
Mobile devices, by definition, is used when we move, it is difficult to guarantee
that there will be a stable environment where the network connection. For
example, move to the basement, tunnels, elevators and other confined space, will
make the connection lost, cannot access network resources.

4. The limited interface for mobile devices:
The input interface of mobile devices is usually little more than the average
number of personal computers, it is difficult to support fast keyboard input and
mouse operations. On the other hand, the output screen of mobile devices is also
much smaller than the personal computer. We cannot put too much information in

the same screen at the same time because of too small to read. Therefore,

2

applications for mobile devices must be adjusted to meet the user easy to use.

1.2 Motivation

Today, mobile application platform can basically be divided into two types:

One is to develop products for its own system only; application is not portable to
other platforms, such as: Android market [8], I-phone App [9], Windows Mobile
Widgets [10] ... Another is to provide a common platform for applications
development, such as: Yahoo! GO [11]. Yahoo! Go provides the JavaScript [12] with
XML [13], Widget written [14], and for different mobile devices to provide a

different execution environment for Widget platform.

Widget is one kind of web.applications and it is compact. and easy to develop using
standard web technologies such as: HTML, CSS and JavaScript, so most of the
program developers have the ability to-develop such applications. Therefore, more

and more developers join the rank of Widget development.

Yahoo! Go is able to support many mobile platforms, because Yahoo must spend a lot
of time and invest heavily in technical resources to overcome many compatibility
problems to develop for different platforms in different execution environment.
However, this design concept will make the platform must be accompanied the
transaction of environment to do regular updates and corrections, even substantial
changes. For this reason, I thought maybe we can build a Browser-based platform. It
can reduce the overhead for the developer to correct the platform in order to be

suitable for varies device.

The Browser-base Widget engine can also be divided into two categories, one is

3

implementation of client-side, and the other is the implementation of server-side. The
benefit implemented by client-side is that we don’t need a server to be required to
provide Widgets, but this kind of engine cannot be transferred to the other browsers
because of the different core of browser. In contrast, the benefits of server-side widget
engine is easy to cross-platform and also can run in different browsers, the
disadvantage is that this engine can only be used on-line, when off-line status, they

become useless.

1.3 Research Objectives

This thesis will use the existing standard mobile browser as execution environment,
and develop a Cross-platform &Cross-browser execution environment for mobile
Widget applications. Usethe browser as an interface; developer can perform the same
Web applications on different platforms. Besides, we will choose a server-side widget
engine to let this environment can work in the different mobile browser. Moreover,
we will find a mechanism that allows applications to operate offline. Finally, we will

design a user-friendly interface which provides users controlling our system easily.

Basically, the current type of widget can be divided into three types, the first type is
the information provided by the remote server, such as: weather forecasts, RSS news,
business information, etc. The second type is the content will be stored some records
in database, such as: To-do list, Notepad, etc. The third type of Widget, the main part
is composed by other services, such as: Dictionary services, Search services, On-line

Map, etc.

Because of XML tag of Google Widget is supported by a considerable number, and

4

even some grammar can be used in the other Google services such as Google maps.
So many grammars, it is difficult to be completed in this thesis, therefore, we expect

to select some important and basic grammar to support.

In this thesis, we will make a To-Do List and a RSS Widget to show how our system
works and how the program developers let their Widget to support off-line
functionality.

The pictures as follows:

1. To-Do List

Your Do-Do List

Survey Google Gears (ctecked)
Presentation Preparation (ctecmi)
Date with Susan (dedzd)
Talk to John about hisjob ~ (ce=i)
Test Yahoo! Go program ((checkzd)

| (AddwoToDolist)

Figure 1-1 To-Do List

As above, the users record what they want to do through this To-Do List on mobile
devices. And, if the user has added a new item to this To-Do List in off-line state, the
data will first buffer to the local database of this mobile device. Waiting for users to

re-connect to the network, it starts to do data synchronization.

2. RSS Widget

CHhMN Mews: Bloos

Exchange Behind the b
Hotehook sargEh SCEnEs

The conversation continues
This is the final past for the Exchange Moteboak, For
the last 18 months, we've used this blogto he ..

-Repotter hits (and lives) the road
Hawe yaou ever had the urge to chuck everything and
just go an the road to explore the country? Wiell,

FReporter meets multiple candidates
Joshua Dohias, a graduate student at the University of
MHew Hampshire, loved the idea of having a "fr ...

YWedding cake draws widespread reaction
YWewve heen doing I-Repor for over a year now, and
every so often, there's one that takes all of us ..

Crisis in Pakistan
Armidst the crisis in Pakistan, we received a photo
showing a student protest Monday, Movernber 5, at ..

Dhin school shooting holds meaning for FReparter
Jerermy Burnside of East Lake, Chio, left work
Wednesday, October 10, and walked several blocks to
Su ... v

Figure-1-1 RSS type of Widget

As the above diagram, this is a simple RSS [16] style widget, through this widget,
users can use the simple way to'read news or events for each outline, if they press
more interested in the subject, they can also through the hyperlinks into the original
page to read it. After the implementation of our system, we hope to achieve that
anyone can read the news list under each tab in off-line state. We also hope that we
can spend the least space to read the original news to achieve the effect of offline

reading.

1.4 Research Contribution

In order to achieve the objectives mentioned in section 1.3, we have encountered
many difficulties during implementation. This thesis discusses those problems

encountered and our corresponding solutions. The major contributions of this research

are listed below:

1.

2.

The developers of Widget engine do not need to solve the compatibility problem.
The Widget programmer can easily let their application work on different

environment and does not to take care of off-line operation.

1.5 Outline of the Thesis

This dissertation is divided into six chapters. Following is a brief description of the

content of each chapter:

1.

In Chapter 2, the background of developing this system and the related work
including some commercial products are introduced.

In Chapter 3, an overview of the-proposed system and its major components are
given.

In Chapter 4, the "implementation details; problems encountered, and our
corresponding solutions.are.illustrated.

In Chapter 5, using practical examples show the widgets work in our system and
compare our system with the other platform.

In Chapter 6, we dwell on conclusion and future work for referencing.

Chapter 2 Background

This chapter will give you the background of our research. And we give an
introduction on other related work including several commercial products and

academic efforts on this topic.

2.1 Google Gadget

2.1.1 Introduction of Google Gadget

Google Gadget and Yahoo Widget [17] jare also the desktop Widgets. They are using
JavaScript write small programs to-facilitate interesting features. Google Gadgets are
dynamic web content [18]-that can be games, mini applications, news feeds, maps or
any content. Members of ‘Google's site can-add them to their iGoogle page. With
Google Gadgets anyone who has a Goeogle account can create and publish them. Other
users can add the Gadget to their iGoogle page or alternatively web designers can

copy and modify the Gadget and put it on their web site.

Currently Google Gadget can be used in conjunction with other Google API to create
more diversified small tools, such as: Google Maps API, Google AJAX Search API,
Google Calendar API, and Google Translate API. As long as include the library of

those API in the code that we can successfully use these services in the gadget.

2.1.2 Main APIs of Google Gadget

The gadget APIs consist of a few simple building blocks: XML, HTML, and

JavaScript.

® XML is a general purpose markup language. It describes structured data in a way
that both humans and computers can read and write. We will write the XML file
to specify a gadget contains instructions on how to process and render the gadget.
The XML file can contain all of the data and code for the gadget, or it can have
references for where to find the rest of the elements.

® HTML is the markup language used to format pages on the internet. The static
content of a gadget is typically written in HTML. HTML looks similar to XML,
but it's used to format.web documents rather than to describe structured data.

® JavaScript is a scripting language we can use to add-dynamic behavior to our

gadgets.

2.1.3 A sample of Google Gadget

The simplest gadget is just a few lines of code. This gadget displays the message

“Hello, world!”

<7xml wersion="1.0" encoding="UTF-3" 7=
<Module>-
<ModulePrefs title="hello world example™ [=
<Content type="html™>-
< [CDATA[
Hello, world!
11=
</Contents>
< /Modules

Figure 2-1 Sample of Google Gadget

Note the following about the "Hello World" example:

Because Google Gadgets are specified in XML. The first line is the standard way

to start an XML file.
The <Module> tag indicates that this XML file contains a gadget.

The <ModulePrefs> section in the XML file specifies characteristics of the
gadget, such as title, author, preferred sizing, and other optional features. The

users of this gadget cannot change these attributes.
The <Content type="html"> indicates that the gadget's content type is HTML.

The <! [CDATA[...]]>1is used to enclose HTML when a gadget's content type
is html. It tells the gadget parser that the text within the CDATA section should
not be treated as XML. The CDATA section typically contains HTML and

JavaScript.

2.2 Google Gears

2.2.1 Introduction of Google Gears

Google Gears is an open-source browser extension. It supports for off-line web

applications, can be used in desktop computers or handheld devices. Applications can

obtain resources form the local storage that we pre-fetch it. It can be used for full text

search in a database. It uses asynchronous JavaScript [12] operations to help improve

responsiveness of application.

Google Gears API contains a variety of different components, so that web browsing

has more new features. The more significant elements of Gears such as for example:

10

LocalServer: Provide a local server cache and application resources (In HTML,

JavaScript, images mainly)

Database: Database stores data locally in a fully-searchable relational database

WorkerPool: Low resource consumption of asynchronous operation, maintain

the interactive response of Web Application

Google Gears can be used in desktop computers or handheld devices on different

operating systems. As follows:

Windows XP/Vista

Mac OS/X

Linux

Windows Mobile 5.0/ 6.0
Internet Explorer Mobile 4.01+

Opera Mobile 9.51 (Presto build 2:1.0+) (Windows Mobile 6 touch screen only)

2.2.2 System architecture and off-line theory of Google Gears

Google Gears for development purposes is how to make web applications to reach

off-line browsing. However, to promote off-line feature, there are always some issues

that must be considered:

I. How to set the data layer
II. Decide when to take online or offline, or connection strategy
III. Select how applications present in on-line or off-line state

IV. How to construct the synchronization functionality

11

We illustrate in accordance with the above four issues as following:

I. How to set the data layer

The traditional web applications, users should be through the application
programming interface to send requests directly with the remote server. There is no

data layer between the two settings:

Clignt
o —
Application Ul
—

Figure 2-1 Traditional requests

Google Gears join the data layer-on the local side; it is' an access point to store
information what applications request for. So the remote data will have a place to
store on the local side. And then, the application interface will obtain information

sources from remote capture, change to.obtain the data layer. As shown below:

Client

— —
Application Ul Data Layer
+— e

Figure 2-3 Join the data layer

Then add data switch layer, used to determine the source of pages of information is
from an data layer (locally),or directly from the Internet (external) to obtain, it still
can both use; when the information of data layer needs update, this layer can decide

when to write data locally, or sent to Server for synchronization. As shown below:

12

Client

Figure 2-4 Data Switch layer

Google Gears use another way to create a new local data layer; the layer uses a Gears
database instead of going to the web server for data. In the off-line case, data switch
layer request information for the Local Data Layer, and then Local Data Layer get

webpage data from the Google Gears database:

Client

ﬁppllcatim ul : Data Switch ‘_ Data Layer

" Local _’
Data Layer

Database

ty

Figure 2-5 Database of Google Gears

II. Decide when to take on-line or off-line, or connection strategy
Off-line web technology need to consider when to use local information or replace the
server directly connected at different timing, known as the "connection strategy".
Although the better efficiency is that access information from the local, but actually, a
local server, not all suitable to replace the information provided by remote server.
For example:

® Source server for the real-time stock quote system

® Server contains huge amount of information

13

Based on the speed of local side is faster than the remote, so the better approach is

still possible store by the local side. In comparison, the greater amount of information

stored on the need to synchronize the greater amount of information.

III. Select how applications present in on-line or off-line state

There are two modes that applications are displayed or not in off-line state.

The two kinds of differences:

The application displays off-line mode:

There will be some differences between on-line and off-line state. Sometimes

users need to switch the mode themselves.

Such as: Google Reader: It will connect with server.in on-line state or use local
offline storage. Information will be synchronized each time when the users
switch. This model is relatively easier to implement. Drawback is that users need
to remember to do mode switching, or sudden off-line will be no information
available; if the network quality is.unstable, users need to get alternative use for

the model.

The application does not display off-line mode: There will not be any significant
difference. The user does not need to switch connection mode, the program will
operate automatically.

Such as: GearPad: It is destined for off-line execution environment, so at any
time if we lose network connectivity will not be affected. This model allows
users to ignore the state of mode switching network, even in the unstable
network can continue to use as usual. Drawback is not easy to implement, we

need to avoid consuming too many resources for background synchronization,

14

then decrease the overall performance. Synchronous operation has nothing to do

with user activity, so testing difficult.

IV. How to construct the synchronization functionality

Usually, through the operation of program, the contents of the local and server will be
different, when the connection of network works, the contents need for
synchronization; synchronous operation mode can be used manually or background.
However, Google Gears does not provide synchronization engine, which must

implement by the application developer according to their own development.

B Manual synchronization

As the manual synchronization is not at definite time, so-every time they must pay
attention to the problemrof load limits. In" addition, users: may not understand the
situation on the network, only find the network is not available when they try to
synchronize, or forgot to synchronize before they enter an environment which
network is not available. Manual synchronization with easy to implement, but require

user participation features.

B Background synchronization

In a network available environment, the application can be continued synchronization
between the local side and server, and detect the network connection before doing
synchronization. In such way, if a sudden failure or instant off-line, we still can

maintain the latest information.

15

Below is the Google Gears chart includes background synchronization.

Client

Application Ul Data Switch 7

*_ : “_ "‘— La?er *_
Local —> —>

- Data Layer <+ <+

Database

vt

Figure 2-6 Sync Engine of Google Gears

2.2.3 The information.security of Google Gears

Google Gears [15] uses the Same Origin Policy [19], which specifies the source of
information on the local side for access. In order to protect users, each site for the first
time produce off-line information before, the warning dialog will be presented, every
web sites is essential that users /permission to-the implementation of Google Gears.
All the local information will differentiate their accounts; it cannot be used

interchangeably in order to protect personal privacy.

2.2.4 The functions of Google Gears API

The functions of Google Gears API all are summarized as follows:

® Factory: The Factory class is used to instantiate all other Gears objects.

® Database module: It provides browser-local relational data storage for web
application...

® HittpRequest module: Let the WorkerPool have ability of HTTP request.

16

® [ocalServer module: It allows a web application to cache and serve its HTTP
resources locally, without a network connection.

® Timer module: It’s a timer to provide time records for the use of other API.
® WorkerPool module: This API allows web applications to run JavaScript

code in the background, without blocking the main page's script execution.

2.3 Apache Shindig

2.3.1 What is Apache Shindig?

Apache Shindig is a server-side-based Web application platform and can be rendered

Widget XML into html code.

Apache Shindig provides two languages (Java, PHP) reference implementation in this

project; we constructed a PHP version of the implementation.

Shindig itself is divided into four main parts:

1. Gadget Container JavaScript:
Required for general gadget JavaScript, and manage security, communication, UI
layout, and feature extensions.

2. Gadget Rendering Server:
It is used to render Gadget XML format into JavaScript and Html.

3. OpenSocial Container JavaScript: We don’t use it in this thesis.

4. OpenSocial Data Server: We don’t use it in this thesis.

17

2.3.2 Five different servlets in Apache Shindig

Shindig contains 5 different servlets, which are described below:

Each servelts is the subclass of HttpServlet, and serve as independent entry points at

runtime.

1.

GadgetDataServlet:

It takes requests for loading social data from file into DataObjects.

It takes requests for OpenSocial APIs.

GadgetRenderingServlet:

It converts Gadget Xml into HTML.

In this thesis, we must do some fix in this part.

Proxy Servlet:

It provides URL Gadgets to connect to the remote URL, and fetches the contents
then turns into JSON format and sends it back.

In this thesis, we must understand how the Proxy Servlet fetches the remote
contents and then make some amendments for our system.

JsServlet:

It is used for Loading JavaScript libraries from external sources in URL gadgets.
RpcServlet

It is used to handle RPC metadata requests.

18

JsServlet HttpServiet
{From http } ProxyServiet
Attribites
; Asibutes {From http }
Operations : -
public JsSenlet]) Cperations ~ Dperations
/ public HitpServiet]) public ProxyServiet] J
GadgetRenderingServiet RpcServiet \
9 Fiay: 9 {‘:_mm e GadgetDataServiet
{Fram hitp } i { From soeial }
Attributes Attriburte s -
z private CrossSenvletState CrossSenvletState - Attributes
Cperations private CrossServietState crossSernvletState
public GadgetRenderingSemnlet]) Operations -
public RpeServiet] ; Operations
public GadgetDataSernlet])
public CrossServietState getCrossServietState() .
public CrossServietState getCrossServietState()
public void setCrossServietState(CrossServietState val) : .
public void setCrossServietState(CrossServietState val)

Figure 2-7 The Class diagrams of these five servlets

2.4 Related Works

In order to understand the. other's platform with our differences and know what we

should take care when weimplement such a platform.

The following sections we will introduce several other related applications platform.
And also provides Html 5 [20] introduction to understand how we use the next

generation browser and the possibility of making web application

2.4.1 Yahoo! Go

When an Internet company wants to provide mobile services, he must face a problem
that is a large number of mobile phone operating system, and different brands of cell
phones have their specific functions, or different browser set in numerous mobile
phones. In order to solve this problem, Yahoo! Go offers an environment (a

Java-based phone application) for the current site can be simple and easy for operators

19

to put their services on mobile phones, and not worry about what underlying
technology used in the background. But to achieve this goal, Yahoo! may own a lot of
compatibility issues to overcome. Actually, Yahoo! announced in late December 2009
that Yahoo! Go along with technical support for it would be discontinued on January

12, 2010. About January 22nd, Yahoo! Go no longer works.

Yahoo! Go aims to their application in each mobile phone can run normally, it must
be compatible with the operating system of various mobile phones. He must be for
different mobile phones or browsers to be adjusted to ensure that the function is
normal and display successfully. As long as the phone supports Yahoo mobile
developer platform, website operators just follow-the development of specifications in
accordance with written Widget; it-will be able to provide existing web services for

mobile phone users who have installed Yahoo! Go software:

Ed v Flickrm™

= N EEERE =B
Y& = EE 5 E R LR
L ¢ 50000
WY e 3 BB RT

BB . gvg%gﬁﬁfﬁﬁﬁ

AR -
= @ R

Figure 2-8 Yahoo! Go software

Yahoo! GO has a lot of services covered the basic news browse, read mail, weather
forecasts, even to view the latest Flickr photos. Other features include Yahoo search

engine, we can easily search for other sites, as long as input the site name, for

20

example, enter: 01, mobile search will bring MobileO1 website link, click on the link,
we can immediately visit the site; Other built-in features include Yahoo News,
entertainment, finance, weather, sports, it would be a RSS receive service, not to
endure lengthy downloads or start connections, we can update at any time the latest

current affairs of life.

Yahoo! Go uses Widget for the conceptual design. Widget is designed to immediately
access the site resources. Furthermore, taking into account the small window, it is
designed to let user reading comfortable. The developers can use Yahoo! Widget tool
produces self-developed Widget. Yahoo! Widget is a technology using a JavaScript
open source platform, to support- Windows and-MacOS X operating system. Yahoo
Widget tool provides thousands of desktop mini-applications, these tools in the Yahoo
Widget platform to run mini-applications, called the Widget tool. By these Widget
tools, users can link to Yahoo's. web services to obtain all the required personal

information.

Yahoo! Go developed to version 3.0, open advertiser embedded advertising, and to
provide external developers to use Yahoo's Widgets functionality, design more
diverse content for mobile users, so that external developers can put into the keyword

advertising to create revenue.

2.4.2 Web Page Tailoring Tool

As mobile devices become more popular, the opportunity to use them to go to the
Internet becomes more and more. However, the vast majority of pages are designed

for the computer. When using the mobile device browsing these pages, because the

21

screen size limit, the user might always have to scroll in very inconvenient way.
Although some websites specifically for mobile devices provide an additional mobile
version, but through this approach, Web developers should spend more time to design
and maintain the same sites; In addition, some commercial web pages that will let
original content of the page to re-layout, for example: let Web into long strips in order
to remove the scroll trouble. However, the re-layout the web pages may not be able to
allow users to quickly find the desired information, because still there is some

unimportant information.

* || After defining your browsing sequence, click

HERE to save AutoSave [OFF

132 killed in violence across Iraqg

[Aspate of weekend violence, concentrated near
T <. _|ithe lragi capital. has claimed 32 lives — most of
||t them civilians - and leveled six Shiite shrines,
E evidence that sectaiian tensions are still strong.

Figure 2-9: Page Tailor in Web browser

In view of this, Chi-Yang Tsa from National Chiao Tung University [21] creates a
web system to help users to get what portion they want to read. The system can
determine Web pages according to users’ personal preferences. And it facilitates the

mobile user to read the small screen.

The main principle is to allow users to use JavaScript to select what part they want to
read. As the Dom tree [22] of html can be expressed as an internal way, so this tool
will be transform the areas user selected into a Dom tree path, and save to the

database.

22

When users actually access, they will set up a Muffin server [23] of this system as a
proxy server. This server is a World Wide Web filtering system written entirely in
Java that can filter any HTTP data sent and received by user's Web browser. This
system is rewritten muffin server and according to the Dom tree path which is saved
in the database as a basis for filter data. Users only set a range once and the other

pages in the same path of the web can be made by the same set to do filter.

2.4.3 HTML 5

HTML 5 is a new network standard, aiming ,to replace the existing HTML 4.01,
XHTML 1.0 and DOM Level 2 HTML standards. It hopes to reduce the need for
browser plug-in-based rich internet-application, such as. Adobe Flash, Microsoft

Silverlight [24], and Sun JavaFX [25] needs:

HTML 5 provides some new-elements and attributes to reflect modern usage of the
typical Web site. Some of them are technically similar <div> and label, but
has some meaning, such as <nav> (navigation block) and <footer>. The tags will help
search engines to index order, small screen devices and the visually impaired. It
provides new functionality for other new requirements, such as <audio> and <video>
tag. Some HTML 4 tags will be removed, including the tags used solely for display,
such as and <center>, because they have been replaced by CSS.

Currently Firefox, Google Chrome, Opera and Safari (version 4 and above) has

supported HTMLS technology.

Here is a list of the APIs of HTML 5:

23

¢ The Contacts API « XMLHttpRequest level 1/2

e Selectors API Level 1/2 e File API

e Programmable HTTP Caching and Geolocation API Specification

Serving e HTML Canvas 2D Context
¢ Indexed Database API ¢ HTML Microdata
¢ Web Workers ¢ Capture API
e Web Storage ¢ Notification API

e Web SQL Database

e Server-Sent Events

Here a few of API in the future will-replace the Google Gears, so we illustrate with

them:

B Web SQL Database:
As Google Gear, the browser will has a local ‘database functionality, which
provides a local SQLite database as the core, this way, people in the Client-side
can have a simple SQL database for information, so let the front page to access

it.

B Web Storage:
A Name-Value-based data storage area used for HTML & JavaScript, the
information stored there will continue to be a local database file, even turn off

the Browser will not disappear, it can be used as a storage area similar Cookie.

24

Chapter 3 System Design

Mobilize Service

Remaote Server
\ /
Widget engine
1
R e
Developer
\ &
User-desktop

Figure 3-1: Overview

3.1 Overview

At first, Application Developers write Widget according to their needs. Because we
use Apache Shindig which is an Open Source to be modified as a Mobile Desktop
Server, so as long as follow the standard Google Widget rules, the widget they write
can be easily used in our system.

Application Developer may put the complete picture which is required for the
development of the Widget and RSS list xml or the website information on their
Application Server.

Because Google Widget can contain JavaScript syntax, so the application

25

functionality required to conduct and support Google Gears are able to be included in

the form of JavaScript in the Widget XML file.

This system process is as follows:

Stepl :

When the developer completed development of its own widget, then they can through
the entrance page we set up to upload the icon which is representative of this widget
and the widget xml into our server.

In addition, if the widget produced by developer will get the information through the
remote server side that we can use tailor tool to set the information provided by
remote server, in order to let remote server's Web . content more suitable for the mobile

platform.

Step2 :
In this step, user can through our entrance pages to select want the widget they want,
including each user and their selected widget will be recorded in the our server's

database (this database created and designed by us).

Step3 -
Our Widget engine will be obtained in accordance with developer upload widget xml,
parse each of which tab is based on remote xml, and he crawled down (in order to

meet the gears in the mechanism), then to rewrite the contents inside.

Step4 -
The Widget engine adapted by us will let the remote xml crawled by step3 to do an

extra parse, and according to the link found after parse, send these http-request for

26

each one. After the response received, and we will go through a proxy server to do

extra tailor treatment

Step5 -
Under the environment of the mobile user when the selection has been completed, as

long as the first connected to the our server can get their widget

Step6 :

In the first through to our server to get users’ own widgets, Server will keep the
content of html required by off-line state in the Gears of the local layer, so that the
future for off-line use. In addition to the first access; the rest of the time only when the

content of html changes, then we just-verify the content of local layer

Sync :

If the developer’s widget designed to record some of the specific items needed (ex:
To-do List), it will use the database belongs to Gears to record the transactions of the
machine, and when on-line state, it will be through the internal system to achieve the

backend synchronization.

3.2 System Architecture

27

Widget engine

RSS Handler Offline Handler

© | |

o
A

Figure 3-1 System Architecture

Within a single view on our system can be divided into four component, these are the
Sync Service, Mobilize Service, RSS-Handler, Off-line Handler.
Below we elaborate on the four components to be:
B Widget engine: Correctly render the content from the widget to the html results.
® Off-line handler: Let the Widget application can be used off-line to become
a general application.
® DMobilize Service: Let web pages be mobilized, and reduce the burden of
mobile space for off-line read.
® Sync Service: In the online state, synchronize the server-side data and
mobile data, maintain the mobility feature in our system.
® RSS Handler: Let our server-side Widget engine can be able to follow Same

Origin Policy, and let data has multiple meaning.

28

3.2.1 Mobilize Service

"

=
[

After Mobilize
—

Tailored Webpage(Stored as JPEG)
Original Webpage

Figure 3-5 Display of Mobilize
The Figure 3-5 show the Tailored Webpage after mobilized by our service.

Legend

HTTP requestresponse

= == = Download the mobile code
Save/lead configurations

Web Server (e.g. CNN.com)

e

Web Puge Tailoring System
developer (Proxy Server)

Figure 3-3 Web Page Tailoring System

29

Developer can use the desktop browser to go to their own web pages, and then select
the tailor part for mobile.

Carried out as follows:

1. Loading external JavaScript Libraries

2. Select the main part of the supply of mobile browser viewing

3. Write what they select into Webpage Tailoring system

o
Legend

— HTTP reguest/response
——== Createsnapshot

V2

—
< -
/ Web Server (e.g. CNN.com)
s

- - —

Web Page Tailoring System

Widget engine (Proxy Server)

Tailored image for mobile

Figure 3-4 Combined with-our system

The Widget engine which is rewritten by our system will be in accordance with the
original content from the RSS List xml to get link, and then one by one through the
webpage Tailoring System to collect information from Web Server.

It can be seen from the figure the original page data, if this domain has been set before,
then post the information after Tailoring System will become streamlined many.

As Widget engine where the browser we have already set it will be collecting
information through a Proxy Server, so the resulting content with Tailoring System
will be seen within the same, also, we use a SiteShoter program to save Web page

data which the browser render out as jpeg format for offline use.

30

3.2.2 RSS Handler/Parsing Widget

Widget
[

XML files
|

pp

A
LY

A Y
Parse/Rewrite widget \ 1

Web Server
{Offer RSS xml)

Y
~

Figure 3-6 RSS Handler

After developer upload the widget which is completed development, Widget engine
will begin to parse this widget. Our system will rewrite each sub-page’s link and
points to our own domain, and then one by one through the Internet send request to
their Web Server in order to obtain the corresponding RSS List xml. Basically the
RSS List xml is one type of material within the widget.

In order to allow Gears to access, we must download this RSS List xml.

In addition, for the purpose of dealing with subsequent Tailor tool, the various
sub-projects in RSS List xml will also has been changed by server to be saved into the

image file format of a link.

31

3.2.3 Sync Service

Legend
——— HITPrequest/response Widget engine
---- Savefload item
Internet »
- \\
~
E -
.-
-
Server DB
¥
L
User £ -
.
Mobile)
Device local DB

Figure 3-7 Sync Service

Each time, when user on line and use the To-do list that the type of widget will use
the database. We include the JavaScript code in the widget will periodically call
synchronization function, as the synchronization function is accomplished by the Ajax,

all the action on or synchronization are automatically in the background.

3.3 The behavior of Mobile device

32

Mobile
Device

Application W

Figure 3-8 The behavior of mobile device

Before the off-line state, the user as long as-download the registered Widget and all
related files then stored in Google Gears. It can be maintained in the off-line as the
normal use of these applications after connection lost.

The only difference is that, if the types of widget such as To-do List widget will stop
synchronization in the offline with the Server-side; and Feed type of widget change
the original request which is sent to Application server into the other request Gears

offer and go to their local layer to obtain information.

3.4 Summary

In the beginning of this chapter, we introduce how our system works. A developer

uploads their Widget using PC or laptop and then through our system, users can easily

33

download the widget and the other related off-line data into their mobile device. In

addition, this system implements a browser-based offline web application

environment for Widget,

The main components are:

1.

2.

Use Widget engine by we rewrite to render widget xml into html & JavaScript.
Using RSS handler to let our server-side Widget engine can be able to follow
Same Origin Policy, and let data has Multiple meaning

Using off-line handler to let the Widget application can be used offline to
become a general application.

Implement sync handler to let the Widget application which has database can be
synchronized with our server.

Using mobilize service for web-pages be mobilized, and reduce the burden of

mobile space for off-line reading.

Next, we describe the major components in our system: RSS Handler, Mobilize

Service, and Sync Service. The/design concepts and functions provided by each

component are detailed in separate sections.

34

Chapter 4 System Implementation

In this chapter, we will describe the implementation details of the major components
in our system by sequence diagram and some figures. And introduce what problems
we encountered during implementation. Of course, our solutions to these problems are

also depicted.

4.1 Application Development

4.1.1 Sequence Diagram of Application Development

‘ Developer ‘ ‘ Our Server ‘ ‘ Proxy Server ‘ ‘ Remote Server

1 develop

Upload widget XML

Upload widget icon

i
m Set tailor-make area

:I Parse and Rewrite
widget XML

Request RSS List

Ruturn the complete data

Ruturn the tailored data

Create offline
Website Snapshot

Return success result

i éend website url which should be cache'd

Figure 4-1 Sequence Diagram of Application Development

As shown in Figure 4-1, at first, developer built their applications according to the
standard Google Widget. And he made the application icon, as users click on the basis
of the phone. After completing its development Widget XML and icon images, then

upload to our Application Server. If this widget is belong to RSS type then the tailor

35

tool can be used to tailor the area to be set by developer. Later, our Server will parse
the widget xml developer uploaded. The reason that we parse it is in order to identify
what type of widget written. And then our system will grab the remote xml as that
reference the contents of the Widget xml. In addition, the content of RSS widget can
be changed to be able to operate with Gears in the form of what we rewriting. This is
because Google Gears downloaded file must be in the same domain of Server.
Therefore, once our Server received the registration requirements of the application,
our system will automatically be related to XML and image files, and then download
it to the Our Server. The reason for this is to facilitate in the future for the Google
Gears in mobile phone to download. In addition, if the type of widget is RSS, in order
to be able to read offline links which'is correlative with various actual content of RSS
News, we will do the second parse forthe RSS xml.

After we got all the News.Link, we will send requests to the Remote Web Server. At
first, Remote Server will return the complete page. However, through the proxy server
which is established by us, the pagewill be modified in'the form for mobile use.
Finally, it can be achieved by a Snapshot program from a complete page to turn into
the image file jpeg format.

Completed, we will notify developer “Upload successful” message.

4.1.2 Implement details of Rewriting Widget

Next, we began to discuss the real problems we encounter. Firstly, because the
operation of off-line mode is to use Google gears mechanism. The Google gears itself
in accordance with the Json [27] file to access the list of information contents.
However, due to security issues, all items of the list in Json file content must be the

same domain with program server which is provided this Json file. For this purpose,

36

we must copy all the information which we need to read it in off-line state to our own
server. For this reason we must analyze what information is generated by the
developer will be using in the widget, in this thesis we study the most two basic type
of widgets written by developer. In the first type of widget, that is one kind of RSS
news, developer sets widget content is provided by these external links, this is why we
have to resolve where the external links the widget's position in. After the real
contents of these external links were dumped to our server, it just completes the first
step of the parse work. After crawl down the external RSS list xml, we will conduct a
second parse. However, part of the discussion with the SiteShoter, we will explain it

later.

B How to add the local links into cache list

20

z "betaManifestVersion®™: 1,

3 Mrersion™: Mwersion 1.0,

4 fentries®™: [

L { M"url": "go offline.html"},

[{ M"url": "go offline.js"i,

7 { Murl®: "http://140.113.58.199/new xml/test. xml"},
= { Murl®: "http://140.113.58.15959/img txt/BBCHNews 59.txt"},
a { M"url": "gesars init.js"}

10 1

11}

Figure 4-1 Cache list

The "entries" attribute contains an array of URLs that we wish to capture and have
available offline. For every file and image that we wish to capture, add a "url" entry
into the "entries" array. Follow this format we show it like the above sample manifest
file. In this place we will fill the real link of local server which we covert it from

remote server in the Json file.

37

4.2 User Subscription

4.2.1 Sequence Diagram of User Subscription

User

Loop

Our Server

Subscribe widget

Subscription result

Download offline data

Return offline data

— Ren der—|

Shown in Figure 4-3, if the user's mobile device maintain in on-line state, users will
be provided through the Server page, select what he want to subscribe for the
widget. After successful subscription, Server will return a successful subscription
message to notify the user. Thereafter, the user then subscribe to all the relevant files
Widget, by way of Google Gears to download. (At this point the page file will
includes the main webpage and related image file) Since the required application
logic can be included in the pages written in JavaScript, so when the user is off-line,

he can use Widget stored in Google Gears and the relevant application files for offline

operation.

|
|
|
4
|
|
|
|
|
1
1
I
I
I
1
t
I
I
|
|
|
|
|
|
|
|
|
|
I
|
I
1
1
1
1
1
1
I
I
|
|
|
|
|
|

Figure 4-3 Sequence Diagram of User Subscription

38

4.3 Implementation of the two demonstrations

4.3.1 Sequence Diagram of To-Do List

Server ‘ ‘ Server's database

[Gears database | ‘ Gears local server ‘ ‘ User ‘ ’0ur
| I 1

| I

| |

| |

| |
ol A

| I

ID/Password

I

I

I

I

I
.

Request todo-list widge

Render todo-list HTML con
Save offline todo-list HTML content
il B el i

tent

|

|

I

I
o i

alt | |condition1]

Save todo-items to gears database

if the data in server's db is newer than in gears db ﬁ

Add todo-items

Upload
11

Figure 4-4 Sequence Diagram of on-line To-Do List

if the data in gears db is newer than in server's db B‘

As shown in Figure 4-4, if the user's mobile device maintain in on-line state, users

enter the account number and password to login our server. Sign in to our server to

obtain To-Do-list of the HTML content and then store it in the Gears local layer for

offline access. If the version of information stored in server’s database is newer than

stored in the Gears database, the system will automatically update to the new data into

the Gears database; contrary information in Gears database will be uploaded to

server’s database. Also in the To-Do-list when users add a new item, the system will

write information on the local end of Gears database firstly and automatically

uploaded to the server’s database for synchronized action.

39

User Gears local server Gears database
i | i
I 1 I
I 1 I
I 1 I
2B = I 2
Request todo-list widget
i Request todo-items
Response todo-items
Response offline todo-list
opt
' Add todo-items

Figure 4-5 Sequence Diagram of off-line To-Do List

As shown in Figure 4-5, the user's-mobile device offline, when users want to use the

To-do list gadget, the user will be through the local server to the Gears database to

obtain information, and then back passed to the user. If users add the To-do list new

items in off-line state, the system will be in the first write to the Gears database, until

the connection work then do synchronized movements.

4.3.2 Implementation of Sync Service

k]
29[gadgets.Prefs.prototype.set = function(key,
100 var hneedlUpdate = Lalse:
101
1oz var need storesvalue:
103
104 Insert local dbnesd store):

Figure 4-6 Prefs function

40

value) {

49

E0 function saveltems|(){

£l prefs.set (Titems", JEON.stringifviitems)):
£z _gel{"newltemInput™) .focus () ;

E3 H

Figure 4-7 Implementation of Save/Load

The origin Shindig server provided the function “Prefs” to allow developer to write
information on the storage and how to handle the materials, etc., but it did not set
“Prefs” function of actual behavior, so we have to write server-side custom storage. In
addition, client's behavior, we must be written within the server side, including within
the JavaScript with the transmission to client. As part of sync is to be behind the deal,
so our front-end is to use AJAX framework to complete it. Besides, because the actual
program writing, and the convenience of comparison, we keep all items which is
present by Json format together to-enter into the database, not only keep a single 1
items in such a mechanism in place, in this way, we only compare the serial number
of ID that we know what'we write at first. Another point is that, since the purpose of
this thesis is that we can use widget smoothly in the offline state, so all available
information will be stored firstly in the phone side and then go to complete the sync

action.

B Do developers can write the sync function by themselves?

Another point in the sync part needs to be mentioned, that is, if the developer can
write their own sync methods or not? After writing the original widget and developer
offer their widget to igoogle platform, they do not need sync function, because all the
stored data will be kept to the Google server. But the way we structure, data must be
stored in the server side and the other local side. However, this behavior of store will
go through their library from the server to actually execute, and we rewrite the library

from the server side to complete the sync correction features. So even if the

41

developers to customize the other sync function, it is unable to change the library.
Therefore, that conclusion is developer cannot be completed to do the sync action

without our help.

4.3.3 Sequence Diagram of RSS Widget

l Gears local server ‘ User Remote Server
| |

]
| 1 | |
| 1 | |
! 1 | |
| 1 | |
L L i il L,

ID/Password
Return widget List
Request RSS widget
Render RSS HTML content
Save offline RSS HTML content
opt

Request webpage data

Return webpage data

Figure 4-8 Sequence Diagram of on-line RSS Widget

If the user wants to use this type of RSS widget xml, it’s nothing different with the
above To-do list widget. Log in first through our server, and get selected in the widget,
and when the first transmission or the information content of transaction, we put the
html results which is rendered out by Server into Gears. If in the on-line state, we
want to connect to external resources, the way it just like that we usually use a normal

Webpage, request for the external resources, and then receive information.

42

User Gears local server

|

I

|

I

|
A

'______

Request RSS widget

| Get offline webpage data

Response RSS HTML content

Figure 4-9 Sequence Diagram of off-line RSS Widget

If this type of widget is in_ off-line state, so basically, all requests will be shifted to

gears, the gears of the local layer to-provide all necessary information.

1=[H] <items

12 <title>Israel to free flotilla activists</titlex
zZ0
zl
ZEZ

23 <guid isPermalink="false"rhttp://news.bbe.co.uks/1/hifvorld/middle east/ 102109
24 <pubDatexWed, 0Z Jun 2010 00:53:25 GMNT</publatex

25 <categoryrMiddle East</categorys

z& <media:thumbnail width="66" height="49" url="http://newsimg.kbbc.co.uk/wedia i
27 </ item:>

Figure 4-10 Add off-line link

In order to allow user collect information from local server in off-line state. We add
the local link corresponding with the original link in the back of original link. So the
client-side can easily obtain information from the same place when context switching

between the two mode.

In addition, it may encounter some difficulties or something needs to be changed in

43

implementing this idea.

B Replace the HttpRequest function by the similar library of Google Gears

When the on-line state, we can use HttpRequest to get the webpage data from the
remote server. In order to meet off-line, we will be changed to use gears to provide
HttpRequest information to the local side. (Because we cannot know the actual
location to store the offline data in gears, so if we want to get the offline data to
handle, it only such this way can only be used) But according to the actual situation to
the presumption, gears do not complete some access. For example: offline Send
HttpRequest to fetch xml data, if the information is too large, then it will appear
errors.

So we condescend to such a result to do transaction with the format of our data

storage.

B Some JavaScript is not supported in off-line state

In addition to different JavaScript behavior on different browsers, nearly completion
of the program also had another very troublesome problem. In the offline state, some
JavaScript is not supported. Since the behavior of certain programs we hope to be able
to handle at the back-end. For example, we must judge off-line and on-line or not
right now. At first, we use Ajax architecture to implement this behavior. And we deal
with the results then set it to be synchronously responded.

Such as the following way :

XMLHttpRequestObject.open ("GET", url, false);

//The flag “false” means it must be synchronized.

Originally in the on-line state, operation as they were set, it is very successful. But
once the change is set to off-line status, it just finds the program cannot successfully

work. Later it was found that mobile browser does not support off-line Ajax.

44

Therefore, the original handling of Ajax must be changed to do a similar deal. We just
can use the library of gears to do so. But the library of gears has provided inadequate.
For example, we can use the flag to set synchronization response in the originally
Httprequest.open function. However, there is no such flag in gears. Therefore, the

original structure has to be rewritten with do such acts.

4.4 The other problems we encountered

B The version of Apache Shindig Server

As the Shindig is an open source, so when we developed this service, at the same time
Shindig is still doing amendment. At first'time, when we finish a written program, it
sometimes cannot be used after we update the version of Shindig server. Then
understand why, we put the prograni fixed in the present version. The current version
we have taken tags-1.1-BETA2. However, after testing, there are still some widget
has been developed in accordance with the Google widget format cannot work
successfully in the Shindig server. But, if we keep the structure and direction of this
thesis to do an amendment, basically, we will not need to fix it too much after the

final version appears.

B Cache issues of implementation

According to the framework adopted in this thesis and the use of language, the most
common problems when we are writing are cache issues. Browser will always
automatically cache website data. Ajax request made using a cache of the issue will
arise; Shindig server will be temporary space issue. Offline operation of gears also
needs to update the version of Json file, and then that would be to download the new
transaction. These problems are after repeated testing to know to understand.

Basically, it does no problem in our architecture, under these conclusions really be

45

difficult to debug.

The following sets out the various cache-related solutions:

1.

Browser cache problem

A. From the Safety menu in the upper right, click Delete Browsing History

B. Deselect Preserve Favorites website data, and select Temporary Internet
files, Cookies, and History.

C. Click Delete.

Using Ajax to send request, the cache of issue have produced

Set Header : request.setRequestHeader ("If-Modified-Since", "0");

Shindig server have temporary space of issue

Clear “tmp” folder generated by Shindig server side in the local machine.

Update the contents of gears in-off-line state

Change the json file:which is called tutorial_manifest.json. And then, update the

", n

number of this sentence 'Version': "version 1.4".

No a good debug tool of mobile browser

In addition to cache problems, we use JavaScript to implement the action what the

Shindig server do. Because there is no comprehensive debug tools. In many cases,

only some clerical error, no complier (similar to ¢ or java) will tell you where the

error occurred. We just find out a little bug will spend a lot of time. Combined

according to different browser, the JavaScript support varies. Sometimes we use the

same operation can be worked on IE, but using chrome appear the errors. Even on the

table browser support, the operation transferred to the mobile terminal does not work

sometimes. The browser on mobile environment even does not have debug tools can

be used (such as Firefox’s firebug [28]). This again hinders the development.

46

4.5 Implementation of caching Remote WebPages

B The reason to use SiteShoter

Originally, we want to use the structure of Tung-Hing Chow’s thesis [29] to cache the
real webpage content which is pointed by RSS link to present in offline state. But, in
fact, when we do so, we found that because the kind of structure that is to use Httrack
to complete the original data crawl. Unfortunately, there are many server provided
RSS news; they use a rewrite module practical guide to re-link position. (It is a
redirect rule).
Ex:http://www.cnn.com/exchange/blogs/notebook/2008/03/conversation-continues.ht
ml?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+rss/cnn_exc

hangenotebook+ (Blog: +Exchange+Notebook)

Therefore, when we use Httrack this program, “we ‘cannot fully grasp the
corresponding information'and files what we should grasp.
(Because the architecture of Httrack-is to capture the information which is upper or

lower with the relative path)

Before mobilize After mobilize

/hierarchical (save as a jpeg)
Single remote webpage 0.8 mb 0.25 mb
Completely Widget 20 mb 6.25 mb

Table 4-1 Comparison table of Mobilize effect

In addition, we may have to spend just one page a few kilobytes of space to access the

required images or information. A widget is likely to be five or six themes, if there

47

will be five RSS news for each theme. Then there will be 25 pages about the
information. In order to grasp it down after the developers upload their widget, it is
equivalent to 25 * 0.8 mb = 20 mb of space to maintain a widget. And in this way,
then user must wait for a very long time to download the widget available offline, and
also waste short of storage space for mobile phones. So we try another way to

complete the offline Web page => Store the content as image format in advance.

The beginning we wanted to integrate this application with the our server and
implement by PHP language. However, after we actually write it, it shows that we can
complete the basic snapshot. But we do not know how to store a bar web page to a
picture. Maybe we can take the time to continue the implement, and then we can
complete it, but it deviate from our-original direction. So we look for a program to

implement what we need,-and the program is Siteshoter.

B Implementation of Permission issue

In addition, the implement of this part still encounters a problem. Siteshoter will open
a browser in the background, and visit the designated website (that is the received
parameters of the program). But if when we calls this Siteshoter program on the web
server environment, Operating System will treat it as a request from the web service.
In this case the inherited permissions cannot use another tailor services together. So
we have also set up a java server to call this program. Let its property belonging to his

application level. Then, another website tailor tool can be operated normally.

B Set Time issue of SiteShoter
After the second parse, our server will write the links of webpage that we want to use

Siteshoter to crawl in the same batch. So in the next update, they can deal with actions

48

in one step.

But, processing in Siteshoter also encountered a problem. Since each web page will
use a new browser to handle. But we must set a time to do the crawl action. If at that
time point when the browser is not completely capture the content of webpage down.
Then the content is going to be wrong. Maybe the time point can be postponed, but
the time of each page we crawl it will be prolonged, then the overall waiting time will

become longer.

4.6 Summary

This chapter includes all the implementation details of the major components that
together compose our Browser-based web application platform. The implementation

issues and their corresponding solutions are addressed here,.too

49

Chapter 5 System Demonstration & Evaluation

In this chapter, we will present a demonstration for our system. In this demonstration,
we will describe a general scenario with a handheld device of Android which is
installed “Google Gears” already in its browser. Moreover, there will be an evaluation

of the comparison between our system and related works at the end of this chapter.

5.1 Basic Operation

5.1.1 Developer uploads widgets
Step 1: Go to the developer page: http://<Server IP>/portal/index_developer.php

Step 2-1: Specify the file name to upload files and select the xml file, thumbnail and
the applicable browser then press the [upload] button.

/= hitp://140.113.88 199/upload_sxmlfindex_developer php - Windows Internet Explorer

@Hv £ it /140,113 88,199 v (&) [+][x] |43 o~
BEE REEQ WO FHETFW IRD HAm

O BRRE L @ - g BiDER g RER Hotmil g

@ it 140113 53 190uplond_sanlfindex:_developer php G- B 1 i - WEER- Z2EO- TEO- @- 7

Upload File

Name: phata
Selectfile: |C-\AppSenwwwiupload [#

Selecticon” |C-\AppServiwwwiupload_ | #
Select browser: [¥]Opera i[¥]Safari [1Mobile IE

www

CFFTErER

id name | icon sutible version

1 clock @ Opera

2| NBA g Safari

3 \world_map w/ Mobile TE
4 ToDoList ‘_-j Safari Mobile [E
5| game ‘%) Opera

6 mail Safari Mobile TE

7 money ||+ Opera Safari Mobie [E

@ A R

Figure 5-1 Developer uploads the widget file

50

Step 2-2: After a successful upload, the file will be shown below

/2 hitp://140.113 88 199/upload _smlfindex developer php - Windows Internet Explorer

@@v &) niv 4011288108 o [&][+][x] [

BEE REED RO EHSEEW IRD SHA®R
i BRE s @ - g BiTER g REM Hotmil g -
@ hitp:#140 113 88,198 uplosd_sxmlindex_devsloper pho M- B O - @E®- EZREO- TEO- @-

»

=**Upload File***

Name:
Select file:
Select icon: '

Select browser: []Opera [Safari [1Mobile IE

EfFTEtER
id| name |icon sutible version
1 ok) Opera
2| NBA Eg Safari
3 world_map w Mobile TE
4| ToDoList L] Safari Mobile IE

5 game **) Opera
6 mal Safari Mobile IE
7 money |- Opera Safari Mobile [E

8 photo g} Opera Safri

S & FhEE 45 - ®100% -

Figure 5-1 Uploaded

5.1.2 User selects widgets

Step 1: Enter the user login page, click on [new user] to register new user.

Website: http:// <Server IP> / portal / login.php
Step 2: Register for a new account
Step 3: Back to the login page, enter the registered account, and the password.

Step 4: Enter the user home page, click the icon on the left side management

interface.

51

{2 http-//140.113.88.199fupload_sanl/select. php - Windows Internet Explorer

@\:‘/v] v 4011388109 h | (&[4 [%] [*F o (2]~
#BREE REED WO HFHRFW IAD HE@

Y BORE | @5 . B EEER B B Hotnal] FEY -

| @ ht140.113.99 199huplond,_salieest pho [- B = - @EQ- Z2RG- TREQ- @- 7

Wiilluser L3 HERG! FeHL

TEETHE htp:#140.113.56.19%plosd_anlinser PG & FEES Sy - ®iN% -

Figure 5-3 The user’s Homepage

Step 5: Enter the management interface;-the- existing file will be displayed in the
bottom, and the top will show the selected files.

40.113.88 199/upload_xmlfindex_user.php - Windows Internet Explorer =13
@'C © [o 14011388 189 plne ol ser.phy DIEEIENR] |[2]-
BEO #HHE BAC H#HEFW IRD HE®D
S BURE |y @EROEE - §BIEN £ REM Homi g FEEIES -
(@ tp1 40,113 58 195 upond_suiliudese et php] - B L om - #EE- ®3Ee- TAQ- @
Btuser A JEBE! Bt
TERERNEEEE

id |name jicon |sutible version

Bl

id| mname [icon| suible version

1| dock @.opaa =
2| wNBA g Safari =
3 |world_map | §) Mobile IE
4| ToDoList |] Safari Mobile IE | get |
5| game (%) Opera [get
6| mal Safari Mobile [E

7| money |» |Opera Safari Mobile IE
8| photo ﬁ Opera Safari || get

Bl & MG 45 -| Ri0g -

Figure 5-4 User Management Interface

52

Step 6: Users can select the widget they want to use, here we select To-Do-List as an
example, click the [get] button, the user's file list will add this widget. Users can also

click the [remove] button, the widget from the list will be removed.

e mm;ﬂuu.l13.sn.lsgﬁuplund,m-.uindgx,um.pm = W;n-\invs ln|=n‘l=‘|-Explul=I - i i EH@E\
@.\Z- | repinan1388.199 v [Bl[%][x] [*¥ [
BEEO REE A0 IHEFW IAD HEE
i FBE | @ -) BEITE | REA Hotmail) 2
(€ hitp:/140 113 88 19%upload_amlindex_user php | [| o @ v @E®- E2ES- TEO- @- 7
Brluser 1 iE A fgh! 20
HEREAEEEE

icon | sutible version

Safari Mobile IE
EFEEE

id| name |icon| sutible version
1 cock () Opera e
2| NBA g Safari get
3 world map &) Mobile IE
4 ToDelList j Safari Mobile IE
5| game *4) Opera get
6 mail Safari Mobile IE
7| money [»7 |Opera|Safari Mobile IE
§ photo [l Opera Saferi -

& s Sy~ HIOP -

i
=

Figure 5-5 The user’s selection completed

5.1.3 Do operation in mobile phone

Step 1: Switch to mobile user’s login page, enter the registered account, password.
Website: http:// <Server IP> / portal / login.php

Step 2: Go to the user’s home page, click the icon on the right side of the user

interface.

53

Figure 5-6 Users™ Homepage in mobile device

Step 3: Users can click on.any icon to use the widget.

Figure 5-7 Users’ Widget Interface

54

5.2 The Demo of To-Do List

5.2.1 Functional test and Synchronization test in on-line state

Step 1: From the user’s interface, click on To-Do-List icon, it will appear Google
Gears prompt message, select "I trust this site", press the lower right corner [allow] ,

so we can enable offline functionality.

indows Internet Explorer =3
DIEISENR [[2]-

ST | TAEE Hotmedl g FERREE -

5'85'5:3 @ hpa140 11368 199Aplosd. . | @ hip:#140.113 56.1990upined. -!L?ﬁhﬂp.#MUllBEBlggi‘s}u. x. |t B = - #ER- RREg- TAQ- @ O
Gears ERHEEL [X)

AR Gears ERMEIE Lt EA -

http:/i140.113.88.199

IELE3Fi5: http:/140.113.88.199/shind igfphp/gad gets/ifrPurl=hitp:2140 113 B8, 19%upload _sxmlbanl'Te (6608 TG A - H100% -

Figure 5-8 User allows Google Gears

Step 2: Enter To-Do-List Widget page, in the top field, enter the new item we want to
matter, right click the [Add] button.

55

{2 hitp:#/140.113 88.199 /shind igfphp/ gad getsfifr?url=hip:#/140.113.88.199/upload xmlxmlToDoList - Windows Internet Explozes

[tp 1401 13 88 199 Ernbiglphpleed ot Pusl-hip 1140.1 3 82 190 plond_sashenlToboLiotoonl (9] () [92) [[BRG e

-y -
BEE REE® RO BOSEELW IRD SHED

T BRORE o5 @i - g BENEE) REM Hotmeil g FHERIEE -

(@ hitp:#140.113 88.199/shind igfphp/epd petvifrhurl=htp /. | fi- B

»

o - @E® - EXRES - TEOQ)- @-

New ftem: |
17:00 go to school
9:00 eat lunch
10:00 eat dinner
11:00 go home

& FRRE 4 - ®0w -

Figure 5-9.To-do-List Widgetin desktop browser

Step 3: Switch to the mobile phone;-it canload all items we have entered successfully;

it means the function of synchronization is normal: Then, we add a new item in the

top filed.

Figure 5-10 Add new items on mobile browser Figure 5-11 Completed the add action

56

Step 6: Switch to the desktop’s screen, it shows the item we added
=> It means the function of real time synchronization is normal

/= hitp:/7140.113.88 199/shindigfphpigad getsfifs?url=hitp-//140.113 88 199/upload_samlimlToDoList - Windows Internet Explorer [Z\[Elgl

N 5
el &) v 14011388199 (&%= [o]
BEEO RED WRO MBEL TRD HEO
o BRE | @ v | BEER g BEE Hoed g -

(€ hitp7140.113.88.199shindigiphpiged getsirPul=hitps/. - B oo - BED- REED- TAQ- @
New \Iem‘ [Add]
7:00 go to school ¢
9:00 eat lunch X
10:00 eat dinner X
11:00 go home X
12:00 sleep X

& FrER sy - Ri0% -

Figure 5-12 Real time synchronization

5.2.2 Test the off-line operation

Step 1: Set the phone offline = open the mobile phone's Settings tool.

57

BRE®H

IQApp Market Messaging Music

& 5 0

PIMS rmerm Settings Solitaire

BE QA

testO1App Vegas Pool Voice Dialer
Sharks '

M
- -

Voice Search WeatherBug Wikitude AR YouTube
Travel Gui...

Figure 5-13 Setting toolbar of mobile phone

Step 2: cancel the green Wi-Fi check mark to abort the connection.

Wi

Connected to DCSLab2

Wi-Fi settings
Set up & manage wireless access
points

Bluetooth
Turn on Bluetooth
Bluetooth settings

Manage connections, set device name
& discoverability

VPN settings

Se & manage Virtual Private
S

Mobile networks

Figure 5-14 The network status of mobile phone

Wi-Fi

Turn on Wi-Fi

Wi-Fi settings
Set up & manage wireless access
points

Bluetooth
Turn on Bluetooth
Bluetooth settings

Manage connections, set device name
& discoverability

VPN settings
Set up & manage Virtual Private
s (VPNs)

Mobile networks

i

Figure 5-15 The network of mobile phone has

been shut down.

Step 3: In the offline state, go into the user interface, the user has selected two widgets.
Click the left icon to enter the To-Do-List page

Figure 5-16-Offline users’ interface.

Step 4: In offline state, this- widget will load data from local.server’s database.

Since then, we can try to add a new item. to.the list.

Figure 5-17 Demo of To-Do-List widget

59

Step 5: After we add an item to the list in offline state, it still work normally.

Figure 5-18 Functional testing

Step 6: re-open the connection.
Ah

Wi-Fi

Obtaining IP addr

Wi-Fi settings ’ .
Set up & manage wireless access
points

Blue;:ooth .

Turn on Bluetooth

Bluetooth settings .

Manage connections, set device name
& discoverability

VPN settings

Set up & manage Virtual Private
Networks (VPNs)

Mobile networks

options for roaming, networks,

Figure 5-19 Connection Setting

60

Step 7:
After connecting, the mobile phone will be automatically synchronized with the
server’s database. It can be seen from the desktop browser, it appears the new item we

added in mobile phone automatically.

{2 hitp:+/140.113 88.199/shindigfphp/gad getsfifrPurl-http-#/140.113 88 199/upload smlxmUToDoList - Windows Internet Explorer

(o B amisess v|[@][4] (x| [*3 |2

BED REE RO HISEEW IAD SA@D

r HEIBE | @ - £ BiTER g RE Homal @)

| € nitp:/1140.113.88. 199/ shindigfphplged getifrTrl=htipi.. | -8B O o - BE®- ®ERE@- TAEQ- @- 7
Newltem‘ [Add]
7.00 go to school X
9:00 eat lunch X
10:00 eat dinner X
11.00 go home X
12:00 sleep x
13:00 wake up X
B & FEERER ¢ - Ri0% -

Figure 5-20 After synchronization

5.3 The Demo of RSS type Widget

Step 1: From the user’s interface, click on RSS icon, it will appear Google Gears
prompt message, select "I trust this site", press the lower right corner [allow] , so we

can enable offline functionality.
When RSS Widget loading, it will appear “On-line Request” message to tell us it is
online state. After caching all offline data, it will also show a message to notify us.

61

V] O @ 2218

The page at ‘http/
/140.113.88.199' says:

On-line_Request

Figure 5-21 On-line Request Message Figure 5-23 Cache finish Message

Step 2: When it is online state, go to-remote webpage, it will show the real RSS

content of this webpage.

¥ ONE-MINUTE

B act updated at 1600
S hMednesday. 2 JusePrin

Gaza flotilla
Israel frees
foreign

Figure 5-23 Go to the remote webpage Figure 5-24 Shows the real content

62

Step 3: When RSS Widget loading in offline state, it will appear “Off-line Request”
message. If we go to the remote webpage, it will show the tailed page now.

® The page at ‘http:/
/140.113.88.199' says:

Off-line Request

Figure 5-45 Off-line Request Message Figure 5-26:Shows the tailored content

5.4 System Evaluation

Through the previous chapters and the demo of this chapter, we should be able to
clearly understand the contribution of this thesis. In addition to cross-platform and
easy maintenance features, we can through the following table to compare the
differences with other platforms. As we use the widget engine Apache Shindig is
implemented by server-side, so the action to render Widget does not use the mobile
device's resources, in other word, we can save the mobile CPU's utility. In addition, in
such a situation, if the Widgets have used External API, we can use some way to

make offline information be presented in the future. In addition, widget engine is

63

implemented by server-side can has the portable ability; we can get our information
from anywhere, the server will store what widget we use and what data we store.
Although, igoogle itself has many similar characteristics with us, but it has one of the
most deadly shortcoming is the lack of off-line use, this shortcoming is not conducive

to mobile device; that is our greatest intention quoted Google gears mechanism.

Cross Platform No Yes Yes Yes Yes
Cross Browser No No No Yes Yes
Mobility No No No Yes Yes
Easy to Maintain Yes No Yes Yes Yes
Render Widget/
. Local Local Local Server Server
Save CPU utility
On-line: Yes
Use External API No No No Yes

Off-line: Extension

Off-line Use Yes Yes Yes No Yes

Table 5-1 Comparison table of different platform

5.5 Usability test

When this system is completed, we have considered the works of “Jakob Nielsen” [32]
and do a Usability test for users to see if our system can be accepted by general
users or not. In addition, the content of these questions is referred to Benbunan-Fich’s

thesis [31]. The thesis referred to what the establishment of commercial web content

64

should be aware. Therefore, we use these issues as our guideline. From the result of
Figure 5.2, except some users were dissatisfied for the repetitive message to present

on-line status, on the whole, ours system was favorably reviewed.

Usability testing result
Fasy
> 4.21 4.17
: 4 383 3.91 . 4.024
4
=
3 3
£ L1
2 ean
1
0
Difficylt Appeal Content Ease of Use Performance Supoort Total

Table 5-2 Means and standard deviations from the ‘‘Usability Score”

65

Chapter 6

Conclusion and Future Work

In our system, we create a Widget engine environment to achieve cross-platform &
cross-browser feature and let the applications allow off-line operation. And we
provide Sync service to maintain mobility property. Moreover, we add Mobilize
service to enforce the possibility of off-line use. But, this system is just proposed a
prototype, and does not complete all of the widget functions that we can use, such as:
The widget includes Google Translate API can [30] not be used in offline state,
because this kind of API is another type of web service, unless we can complete the
same function in client-side, or this service is difficult to use in our system. But there
is a way to try in the future is that we-just store the content-we have been indexed (or
searched), then rewrite the API. It still provides the original service in on-line state.
But when offline, we can use some simple way corresponds to the on-line behavior.
For example: when we use Google Translate API'in off-line state, the web application
will first check whether this has been the search terms, and the existence of this record
stored in the local database. If do so, the web application can be just shown the result

from local machine. The same way are equally available in the Google Maps API, etc.

A difficulty of development we encountered is that our system is used by JavaScript
to write the program, although there is “Script Debugger for Windows” or “JavaScript
debugger for Firefox” as a debug tool. However, when it executes on mobile device or
desktop sometimes still be different or the debugger cannot determine the behavior of
errors. So, we really need a good debug tool for mobile environment to develop the

off-line web application. It will be easier for engineer to develop such applications as

66

we made. And some problems like browser cache, etc. We also need some good

mechanism to remind the system developers the related errors may occur.

In addition to the above mentioned that we need to reinforce the integrity of the
widget. Google in this year (2010) has also been announced that it won’t develop
Google gears in the future. The reason is the HTMLS coming of the future. The spec
for HTMLS have offline storage and will be implemented the related issues including
in the new generation of browser. However, as HTMLS is not universal, and there is
no mobile browser that supports. Therefore, the implementation of our system still
uses Google Gears to finish off-line operation. Although the future HTMLS will be
replaced Google Gears. But, the overall structure and operation of the system won’t
be compared too far with us. The implementation of the system and the problems we

faced also can be a reference to create the new off-line web-application.

67

Reference and Bibliography

(11

(2]

[3]

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

Web applications, Retrieved July 16, 2010, from

http://www.w3.0rg/2008/webapps/wiki/Main_Page

Java ME, Retrieved July 16, 2010, from

http://java.sun.com/javame/technology/index.jsp

Windows Mobile, Retrieved July 16, 2010, from

http://www.microsoft.com/windowsmobile/en-us/help/default. mspx

Symbian, Retrieved July 16, 2010, from http://developer.symbian.org/

BREW, Retrieved July 16, 2010, from

http://brew.qualcomm.com/brew/en/developer/overview.html

Mobile Linux, Retrieved July 16, 2010, from

http://www linuxfoundation.org/collaborate/workgroups/mobile-linux/mobile p

latform guidelines_summary

Android, Retrieved July 16,.2010, from

http://code.google.com/intl/zh-TW/events/i0/2010/sessions/beginners-guide-an

droid.html
Android market, Retrieved July 16, 2010, from

http://www.android.com/market/#app=com.epocrates

Iphone App, Retrieved July 16, 2010, from

http://developer.apple.com/programs/iphone/develop.html

Windows Mobile Widgets, Retrieved July 16, 2010, from

http://msdn.microsoft.com/en-us/library/dd721906.aspx

Yahoo! GO, Retrieved July 16, 2010, from http://mobile.yahoo.com/go

JavaScript & AJAX, Retrieved July 16, 2010, from

68

http://www.w3.org/standards/webdesign/script.html

[13] XML, Retrieved July 16, 2010, from http:/www.w3.org/TR/REC-xml/

[14] Widgets, Retrieved July 16, 2010, from http://www.w3.org/TR/widgets/

[15] Google Gears, Retrieved July 16, 2010, from http://gears.google.com/

[16] RSS, Retrieved July 16, 2010, from http://cyber.law.harvard.edu/rss/rss.html

[17] Yahoo Widget, Retrieved July 16, 2010, from http://widgets.yahoo.com/

[18] Dynamic Web Content, "The Information Revolution", J. R. Okin. ISBN
0976385740. Ed. Ironbound Press, 2005. 350 pp
[19] Same Origin Policy, Retrieved July 16, 2010, from

http://taossa.com/index.php/2007/02/08/same-origin-policy/

[20] Html 5, Retrieved July 16, 2010, from

http://www.w3.org/TR/2010/WD-html5-20100304/

[21] Chi-Yang Tsai, Shyan-Ming Yuan, “Web Page Tailoring Tool for Mobile
Devices” , W= il « § > T FHF M LITH > » AF® 95 & 6 7

[22] Dom tree, Retrieved July 16, 2010, from http://www.w3.org/DOM/

[23] Muffin server, Retrieved July 16, 2010, from Retrieved July 16, 2010, from

http://muffin.doit.org/

[24] Silverlight, Retrieved July 16, 2010, from http://www.silverlight.net/

[25] Sun JavaFX, Retrieved July 16, 2010, from http://java.sun.com/javafx/

[26] SiteShoter, Retrieved July 16, 2010, from

http://www.nirsoft.net/utils/web_site screenshot.html

[27] D. Crockford. The application/json media type for javascript object notation
(JSON). Request for Comments 4627, The Internet Society, July 2006.

[28] Firebug, Retrieved July 16, 2010, from http://getfirebug.com/whatisfirebug

[29] Tung-Hing Chow, Shyan-Ming Yuan, “An Offline Browsing Mechanism for

Mobile Devices” , W= 2 ~ & > T FERALITH? > AR I8 & 6 ?

69

[30]

[31]

[32]

Google Translate API, Retrieved July 16, 2010, from

http://code.google.com/intl/zh-TW/apis/ajaxlanguage/documentation/

Benbunan-Fich, R. "Using protocol analysis to evaluate the usability of a
commercial Web site." Information & Management (39) 2001, pp 151-163.
Jakob Nielsen, Usability Engineering, Morgan Kaufmann Publishers Inc., San

Francisco, CA, 1995

70

Appendix A:

System Usability Scale

1. | think that | would like to
use this system freguently

2. | think this user interface is suitable for
small screen

3. | thought the system was easy
o use

4. | think that | would need the
support of a technical person to
be able to use this system

5. lfound the various functions in
this system were well integrated

. I think it's easy to find the buttun
| wanted to press

7. | can figure out path I've completed

&.| think the system has a good
performance

9. | felt very confident using the system

10. | think this system give me more
convience

71

Strangly
disagree

Strongly
agree

I

1 2 3 4 5
I | | I |

1 2 i 4
I | | I |

1 b 3 4 5
I | | I |

1 2 3 4
I | I I

| 2 3 4 5
I | | I |

1 2 i 4 5
I | | I |

1 2 E] 4

