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Migrating Java Threads with Fuzzy Control on Asymmetric
Multicore Systems for Better Energy Delay Product

Student : Hsin-Ching Sun Advisor : Dr. Wuu Yang

Department of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Asymmetric multicore systems had been:studied as a new
hardware platform toward performance-power efficiency for the
execution of application programs. Each-core in the system has
distinct performance and power-characteristics. When exploiting
asymmetric multicore systems, a major issue is to distribute
threads to various cores. In this work, we build a pseudo
asymmetric system by dynamic voltage frequency scaling (DVFS)
mechanism on Intel core i7 920 for physical power measurement
and implement a tool agent for regular JVM to form an
asymmetric-aware JVM that supervises the execution of Java
threads and migrates threads with fuzzy-control scheduler. For
result inspection, we consider energy delay product (EDP) as a
metric to reveal the compromise between performance and energy
use. The major results include: Our fuzzy-control scheduler
results in EDP benefit for scimark.fft.large and lower overall
energy consumption.



Ehdege > ARGET € Liede ARG AP S BARS HF
o~ s ihp d e et o R RREF R A dEF -

LR AR FFIAHF IR EER I B PR
WE AR T R Pk o

BpPEF LA F L RHRITOFE > AN By OPTiE S
T‘—Er R Lo },\P i IFB/Fﬁ”Z gq:'ﬁ "'E'_‘f

CANP RGBT R E L P AR EIL F R EF R F o F R
Fehh By A RDERN  GREEFOEREL G BP{REMHR -

B221 0 B - B R S B ARG TR B R DR o &
T~ B89 s rush o BiE A~ ,\jﬁ'm €T o AR TR B QR

) K 2
i 7‘8(:1\‘.3!

Bl ek ? FOfAPEO7REH A HEP F o BFa LA =
s E R Ravik o Ge ] §14 % ]

BT A EBIH P AP S PSR F A R F IR
€M ATRE b A L 4R 4G R ;P

B FAR BPR AR A s F

[N
E-
ES
p
T

R
- BAATSIER o
The work reported in this paper is partially supported by National

Science Council, Taiwan, Republic of China, under grants NSC
99-2220-E-009-048- and NSC 99-2220-E-009-049-.



Contents

%

Abstract

List of Figures
List of Tables

1 Introduction
1.1  Asymmetric Multicore Systems . . . . . . .. ... ... ...

1.2 Toward Better Performance Power Efficiency . . . . . . . . ..
2 Related work

3 Implementation
3.1 Linux Performance Counter System and Java Threads . . . . .

3.2 JVM Tool Interface . . . . . . . . . . . . ...

3.3 Migration Mechanisms . . . . . .. .. .. ... ... ... .

ii

iii

iv

vil

ix



3.3.1 IPC scheduler

3.3.2 LLC-miss scheduler

4 Experiment

4.1

4.2

4.3

4.4

4.5

Hardware Configuration
Software Environment
12V2 Rails Measurement

Benchmark Configuration

Destination Core Preference .

5 Experiment Result

5.1

5.2

2.3

[PC scheduler
5.1.1 Time increase
5.1.2  Energy Reduction
5.1.3  Energy Delay Product
LLC-miss scheduler
5.2.1 Time increase
5.2.2  Energy Reduction
5.2.3 Energy Delay Product

Migration overhead

6 Conclusion and Future works

Bibliography

vi

18

18

19

21

21

22

24

25

25

27

30

33

33

33

34

34

37

39



List of Figures

1.1

1.2

1.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

5.1

An asymmetric multicore system that consists of four cores in

Data structure in the agentthread ~. . . . . . . .. . .. ...

Migration decision through fuzzy control-system . . . . . . ..

Mapping between Java threads and Linux threads . . . . . . .
JVM and the agent. . . .. . oo L Sl oo
Membership functions forIPC ... . . . . ... ...
Membership functions for IPC difference . . . . . . . ... ..
Membership functions for destination core . . . . . . ... ..
Inference rules for IPC scheduler. . . . . . ... ... .. ...
LLC-miss scheduler modeling. The unit in LLC-miss domain

and difference domain is 100 thousand. . . . . . . . . . . . ..

Power measurement through 12V2rails . . . . . . . . . . . ..

Output variable for Asym A and Asym B. . . . . ... .. ..

Time increase ratio under asym A for IPC scheduler . . . . . .

vil



5.2

2.3

5.4

2.5

2.6

2.7

5.8

2.9

5.10

5.11

5.12

5.13

Core selection for IPC scheduler under asym A . . . . . . . ..
Time increase ratio for IPC scheduler under asym B . . . . . .
Core selection for IPC scheduler under asym B . . . . . . . ..
Energy reduction rate for IPC scheduler under asym A . . . .
Energy reduction rate for IPC scheduler under asym B
Relative energy delay product for asymmetric configuration A
Relative energy delay product for asymmetric configuration B
Time increase ratio for LLC-miss scheduler under asym A
Core selection for LLC-miss scheduler under asym A . . . . .
Energy reduction rate for LLC-miss scheduler under asym A .

Relative energy «delay product for LLC-miss scheduler under

Time increase in_symmetric configuration with fuzzy-control

scheduler . . . . . @ e

viii

29

29

30

31

32

32



List of Tables

4.1

4.2

5.1

5.2

Intel i7 specification . . . . . . . . . . . ... ... 19
4 configurations in our experiment . . . . . . .. .. ... ... 20
Base running time and power consumption under sym2.66 . . 25
The number of migrations per second . .. . .. ... .. ... 35

1X



Chapter 1

Introduction

Asymmetric multicore systems lead to a better utilization of resource under
proper use. The questionis hew to distribue these distinct cores for different
requirement. This thesis presents a plug-in scheduler for regular JVM to form
an asymmetry-aware JVM¢ This‘asymmetry-aware JVM utilizes underlying
hardware performance counters for scheduling decisions. The goal is toward

better energy delay product.

1.1 Asymmetric Multicore Systems

Computer processor development in the form of single-core systems had
reached the limit in terms of power consumption, memory gap, and thermal
control. Chip validation also becomes more and more difficult when 1C chips
get more and more complex. Although multicore systems had then become

the solution for single core development difficulties, a problem concerning
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Figure 1.1: An asymmetric multicore system that consists of four cores in a

chip.

the utilization of power and performance in multicore systems is raised since
under-utilized cores waste energy. To address the energy-saving problem,
many researchers proposed the asymmetric multicore architecture in order
to achieve better performance power efficiency [7,9,11,12,14,15].
Asymmetric multicore systems (ASYMS) consist of several cores (with
identical or different ISA). These cores deliver different performance and
power characteristics. Figure 1.1 shows a 4-core system. The larger core is
usually faster and more complex and consumes more energy. Different cores
fit different performance and/or energy requirements for different applica-

tions.
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Figure 1.2: Data structure in the agent thread

1.2 Toward Better Performance Power Effi-
ciency

When it comes to ASYMS, the software or the OS must be aware of this
hardware asymmetry [6,7,13,20].-A more aggressive thread-scheduling policy
is required compared to traditional scheduling policies whose sole purpose is
load balancing among the cores. There are two issues in scheduling ASYMS:
performance [6,8,10, 14, 18] ‘and-power efficiency [7,11,13,15]. In this work,
we propose a new scheduling mechanism based on fuzzy control for ASYMS.
Our objective is to achieve better performance and power efficiency. We
build a pseudo asymmetric single-ISA multicore system with Intel core-i7.
Each core runs in different frequencies, controlled by the dynamic voltage
frequency scaling (DVFS) mechanism [17] for physical power measurement.

We implement our schedulers through JVM tool interface for regular JVM
to form an asymmetry-aware JVM. The asymmetry-aware JVM creates a
monitor thread, called the agent, which monitors all active Java threads.

Figure 1.2 gives the scenario of monitoring. Each java thread is bound with
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Figure 1.3: Migration decision through fuzzy control system

performance counters. Inside the agent.thread is a fuzzy-control scheduler,
which makes scheduling decisions for all Java threads based on statistics
obtained from the hardware performance-counter in Intel i7-920. Figure 1.3
shows the flow of the fuzzy-control scheduler. The fuzzy control scheduler
makes the migration decision based on the imprecise statement: a thread
should migrate to a more powerful core when the utilization of the current
core is good. Here, we use the number of executed instructions per cycle
(IPC) as the utilization index, although our early result shows that IPC may
not be enough as an utilization index. Our heuristic is that threads with a
high instruction-per-cycle index should be moved to faster cores [7]. A result
in a previous study [7] also shows that these CPU-intensive programs will
get more speedup when they run on cores with higher frequency.

We try to use the number of last-level cache (LLC) misses as another



index too. The heuristic for this shceduler is to distribute java threads among
slower cores when there are any amount of LLC misses.

The overhead caused by the agent is aslo under our consideration. One
of the most significant overhead is the migration overhead since there might
be a lot of thread migrations [14,17].

This thesis is organized as follow: Chapter 2 describes important related
works in asymmetric multicore systems era. Chapter 3 gives the overall im-
plementation of asymmetry-aware JVM. The entire testing environment is
depicted in Chapter 4. Chapter 5 shows the experiment results that include
time increase ratio, energy use and EDP benefit. Chapter 6 gives the con-

clusion.



Chapter 2

Related work

An early study [11] addressed the potential of pewer reduction in single-ISA
heterogeneous multicore “architectures. During program execution, systems
software dynamically chooses an appropriate core to meet the specific perfor-
mance and power requirements [11]. Several off-the-shelf processor specifica-
tions were used to model the architectures for die space, performance, and
power simulation. Our work starts with the same perspective of choosing
appropriate cores for applications under performance requirements, but it
differs in that we use a fuzzy-control scheduler in choosing cores.

A study of making use of the asymmetric multicore systems for power
efficiency was in [7], in which the mechanisms of exploiting asymmetric mul-
ticore system were classified into thread-level parallelism specialization and
microarchitecture specialization. In thread-level parallelism specialization,

an application is divided into one or several sequential threads and several



parallel threads. The sequential threads run on faster cores while the par-
allel threads run on slower cores. A performance study of this thread-level
parallelism specialization was provided in [10]. In microarchitecture special-
ization, an application (especially for single-thread application) experiencing
different phases [19] during execution would have its CPU-intensive phases
run on faster cores or have its memory-intensive phases run on slower cores.
Our work belongs to the category of microarchitecture specialization. We
uses hardware performance counters [3,7], which were described to be an ef-
fective way for on-line utilization estimation, to determine the various phases
during execution.

Dynamic Voltage Frequency-Scaling (DVES) is a sophisticated scheme
toward power management. In contrast to traditional DVFS usage that
changes the voltage and frequeney dynamically’ depending on requirements,
a different DVFS usage in [17]promises-to provide better performance power
efficiency. With a fixed but different voltage/frequency setup for each core
in a multicore system, threads of the running program quickly migrate to
different cores in order to adapt to the time-varying execution phases [17].
The work [17] is a form toward asymmetric sigle-ISA multicore systems.

Our work is similar to [17]. Since the asymmetric single-ISA multicore
systems are not yet being built, a simple way to make the system asymmetric
is to use different frequency setting for each core [7,9,18]. A difference is that
we investigate the benefit of using the fuzzy heuristic to schedule the threads.

The same DVFS usage to form a physical asymmetric system was used in



several researches [6,8,13,14].

The fuzzy-control theroy is a modern control method [22-24]. Previous
work [16] revealed a fantastic way to combine the DVFS usage with the fuzzy
control system at electronic level. In this work [16], the electricity current and
the variation of the current are assumed to represent the work load of CPU
and to serve as the input of the fuzzy control system. The supply voltage
which is the output of the fuzzy control system changes dynamically on need.
The use of variation gives an inspiration that we can use the instruction-per-
cycle (IPC) and its history to predict_future utilizaton and make mirgation

decisions accordingly.



Chapter 3

Implementation

3.1 Linux Performance Counter System and

Java Threads

Linux Performance Counter Subsystem is a-kernel-based subsystem that pro-
vides a framework for collecting performance data. The performance events
can be hardware performance counters or software events like page faults or
context switches. Linux provides a simple system call sys_perf_event open

for these performance counters:

int sys_perf_event_open(
struct perf_event_attr *hw_event,
pid_t pid, int cpu, int group_fd,

unsigned long flags);



Hotspot JVM

Java
thread

javaThread

osThread

pthread library

Linux

Figure 3.1: Mapping between Java threads and Linux threads

This system call returns a file descriptor through which a user program can
read various hardware perfomance counters.

Both threads or processes can be monitored through the subsystem with
the necessary privileges.

Since a Java process relies on Linux for process or thread creation in our
environment, all the performance counters of spawned threads could be easily
monitored.

Note that the mapping between Java threads and Linux threads is implementation-

dependent. The JVM in our implementation is Java HotSpot Virtual Ma-

10
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Figure 3.2: JVM and the agent

chine [4]. The mapping between Java threads and Linux threads is provided
by the pthread library. It is an 1-1 mapping as shown in Figure 3.1. This
means that we can use Linux Performance Counter Sytem to monitor the

Java threads.

3.2 JVM Tool Interface

The JVM Tool Interface (JVMTI) provides a programming interface to in-
spect the state and to control the execution of applications running in the

Java virtual machine. The monitor thread, called the agent, is a dynamic

11



linking library, which can be loaded by any JVMTI-capable JVM as shown
in Figure 3.2. Since the mapping between Java threads and Linux threads is
1-1, we may monitor the creation of Java threads through JVMTTI and regis-
ter the mapping between Java threads and Linux threads. This mapping is

used to interpret the performance counter statistics.

3.3 Migration Mechanisms

We implement two fuzzy-control scheduler fors our asymmetric-aware JVM:
The IPC scheduler and the LLC-miss schediuler. Each scheduler is a closed
control loop that takes different input and makes migration decisions peri-
odically. These fuzzy-control schedulers act like a. headphone volume control
that one will shift the volume left when the-headphone sounds loud, or shift
right otherwise.

A fuzzy-control scheduler consists of three parts: a fuzzification part, an
inference engine with a set of rules, and a defuzzification part. The fuzzi-
fication part converts a quantitative value into a qualitative value. Several
linguistic variables may then be used in the inference engine. The inference
engine comes with a set of rules, which are based on human knowledge over
the controlled object to infer output fuzzy sets. The defuzzification part con-
verts the output sets to a crisp number, which is used to control the intended
device.

Here, we use the IPC fuzzy-control scheduler as an explanation for heuris-

12
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Figure 3.3: Membership functions for IPC

Negative Zero Positive

-2 -1 0 1 2 Difference domain

Figure 3.4: Membership functions for IPC difference

tic construction.

3.3.1 IPC scheduler

In the fuzzification part, there are linguistic variables. A linguistic variable
stands for a human concept like “age” or “temperature” and has values like
23 years old or 31°C. A linguistic variable is associated with one or more
membership functions like “old” or “hot” that specify the degree a given
input value describes the concept, for example, how old or how hot.

We have two input linguistic variables in our case: the number of in-
structions executed per cycle (IPC) and the IPC difference. Since each core
in i7-920 processor is ideally four-issue capable, we define a general domain

for IPC values within 0-3.5. The IPC variable divides the general domain

13
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0.5

0 1 2 3 4

Destination Core

Figure 3.5: Membership functions for destination core

of IPC values into five membership functions. These are bad, not good,
normal, good and excellent, as shown in Figure 3.3. Althought there are
many possible choices of .the shapes of membership-functions, like Gaussian,
trapezoid, triangular, etc., all these do mnot influence the output in a sig-
nificant way according to [16].-So_we choese the triangular and trapezoid
membership functions in our case because of lower computational complex-
ity of these shapes. The same choices are picked for the membership function
for IPC difference, as shown in Figure 3.4.

The overlaps between these membership functions are 50%. This implies
that an IPC input value will hit at most two membership functions. Similarly
for the IPC difference. Thus, the inference engine will have four different rules
at most to do an inference.

The design of output variable depends highly on the target ASYMS.

Figure 3.5 gives the basic design of output variable for destination core in

14



RULES Bad Not good Normal Good Excellent

Neg 0 0 1 2 3
Zero 0 1 2 2 3
Pos 0 2 3 3 3

Figure 3.6: Inference rules for IPC scheduler

our environment. Since we will have four cores with different frequencies in
our experiment environment, the output variable, destination core, should
have four membership functions:' core 0, core 1, core 2, core 3. The
number of membership functions for destination core depends on how many
performance capabilities wetcan differentiate from the underlying ASYMS.
In our case, we could have four different cores’ at most in terms of clock
frequency. Note that we ‘can. define the four‘membership functions with
different area to reflect the preference for cores. For example, if there is one
core with much slower frequency than the three, we would not prefer to use
the much slower one and thus define the associated membership function
with smaller area to influence the decision made by the final defuzzification
part.

The inference enegine consists of inference rules, which are based on our
domain knowledge, to infer implied membership functions. Since we have
five membership functions in the IPC variable and three in the IPC varia-

tion variable, the inference engine should consist of fifteen rules. Figure 3.6

15



presents the 15 synthetic rules. For example, if the IPC is good and the
difference is positive, the destination core is core 3. The inference logic used
in our case is Zadeh inference engine [22]. Finially, the inference will usu-
ally produce four implied membership functions which will then be used in
defuzzification process.

The defuzzification part converts the implied fuzzy sets into a crisp num-
ber that serves as a control signal. There are several common defuzzification
methods, such as centroid, average center, mean of maxima, etc. [16,22]. We
choose the centroid method because it is popular and this method will react
to different area of membership function when we have preference for some
cores [22]. The calculated centroid will fall within one of the membership
functions. Controled threads will be migrated to the destination accordingly.
For instance, if the calculated centroid is 2.3, the thread is migrated to core

2.

3.3.2 LLC-miss scheduler

As for LLC-miss scheduler, we use the number of 11c-load-miss, which is
provided by the Linux performance counter system, as the input of fuzzy-
control scheduler. (the system provides LLC events like load-reference, store-
reference, load-miss and store-miss. We use the llc-load-miss as a starting
point for control modeling.) Figure 3.7 gives the overall design of LLC-miss
scheduler. The major problem in designing the LLC-miss scheduler is to

answer the question: how many amount of LLC misses do we consider it a

16
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Figure 3.7: LLC-miss scheduler modeling. The unit in LLC-miss domain and

difference domain is 100 thousand.

great amount. We choose the amount in Figure 3.7 from profiling data of
benchmarks in our experiment. “As a net effect, threads experiencing more
than 3 hundred thousand LLC misses in one schedule period are scheduled
to slower cores. The difference is derived from current and previous LLC
misses as a prediction of increasing or decreasing trend. The design in output

variable, inference part, and defuzzification part is the same in IPC scheduler.

17



Chapter 4

Experiment

4.1 Hardware Configuration

The hardware platform .we use in our experiment is an Intel core i7-920
processor, which has four coresin a chip. A’ detail list of specification is
shown in Tabele 4.1. Note that/We turn off both the Intel Turbo Boost
Technology and the Intel Hyper-Threading Technology to eliminate their
effect on performance and power consumption.

It should be mentioned that there is a L3 shared cache in Intel i7-920.
According to previous research [21], the shared cache prevents serious per-
formance loss from thread migration. So we expect that we will not suffer

much performance loss from thread migration in our experiments.

18



Table 4.1: Intel i7 specification

Processor Number

# of cores

# of threads

Clock Speed

Max Turbo Frequency
L1 Cache

L2 Cache

L3 Cache
Lithography

Motherboard

i7-920

4

8

2.66 GHz

2.93 GHz

32KB L1 data, 32KB L1 instruction per core
256KB per core, inclusive

8 MB shared cache

45 nm

GIGABYTE GA-EX538-UD3R

4.2 Software Environment

The operating system used in the experiments is Debian GNU/Linux built
upon kernel version 2.6.32. The kernel provides the acpi-cpufreq module for
controlling the frequency of cores. We use this module to set up the asymmet-
ric environment. The available frequencies provided by this module for the
hardware include 2.66GHz, 2.53GHz, 2.39GHz, 2.26GHz, 2.13GHz, 2.00GHz,
1.86GHz, 1.73GHz, and 1.60GHz. Table 4.2 shows the 4 configurations used
in our experiments. The symmetric configuration sym2.66 consists of four
cores, all running with the highest frequency. The asymmetric configuration
A makes use of the highest four distinct frequencies. We also test our control

system under a more extreme environment like asymmetric configuration B.

19



Table 4.2: 4 configurations in our experiment

cpUO CPU1 CPU2 CPUS3

Sym2.66 | 2.66GHz 2.66GHz 2.66GHz 2.66GHz
Asym A | 2.26GHz 2.39GHz 2.53GHz 2.66GHz
Sym2.26 | 2.26GHz 2.26GHz 2.26GHz 2.26GHz

Asym B | 1.60GHz 2.13GHz 2.39GHz 2.66GHz

MB T

Power
supply

il

12v2

CPU

mete

N J

Figure 4.1: Power measurement through 12V?2 rails

Configuration sym2.26 is provided to realize the worst performance loss in
Asym A.

Note that we rely on the system call sched_setaffinity to do the actual
migration. By specifing a CPU mask to target thread, we are allowed to bind

target thread to one or a subset of all logical cores under proper privilege.

20



4.3 12V2 Rails Measurement

According to EPS12V specifications [1], i7 processor power is provided by
12V2 rails. We make an instrument to these rails as shown in Figure 4.1.
The power meter used in our experiments is NI-4065 digital multimeter. The
meter provides both current and timing data. The power consumption is
derived through these data. Project SIKULI [2] is used in the measurement

for test automation.

4.4 Benchmark Configuration

SPECjvm2008 is our experimental benchmark. We configured the bench-
mark suite to use lagom {5] workload; in which every application in the suite
does a fixed amount of work in one rin.--The number of threads in each
application is set to one so that there should be one active computational
thread during application execution. An exception is sunflow because mul-
tiple active threads is required during the execution. Note that we did not
provide the measurement data of sunflow since all the cores in our hardware
require running when testing this application, and the current during the

measurement is beyond the capability of our power meter.

21



Available performance choice (GHz) Asym A

1
—core 0
0.5 + core 1
—core 2
0 —core 3
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1 1 1 1 Asym B

Available performance choice (GHz)

-1.73 186 200 213 226 239 253 -

1

—core 0
0.5 corel
—core 2
0 —core 3
0 2 4 6 8 10 12
>— )
1 2.5 3 3.5

Figure 4.2: Output variable for Asym A and Asym B

4.5 Destination Core Preference

As stated before, we desine the output variable, destination core, to react to
the different perfomance gap between cores. When there is a big performance
gap between two destination core, a reasonable selection of cores is trying not
to select the core which is much slower. As a result, we design two output
variables for Asym A and Asym B as shown in Figure 4.2. As for Asym B,
each destination membership function has different bottom which results in
different area. The bottoms are calculated as follows: The bottom of slowest
destination core is always one. If there is one more choice between two

destination cores, we increase the bottom of faster one by 0.5. For example,

22



there are three more choices between core 0 and core 1 in asym B, so the
bottom of core 1 is calculated as 1 + 1.5 = 2.5, and so on. In this way, the

core 0 will have less chance to be selected.

v

\ 7596




Chapter 5

Experiment Result

Table 5.1 gives the baseline data (execution time and power consumption),
which is measured in the symmetric configuration sym2.66. Although we
configure the SPECjvm2008 to ‘use only one benchmark thread, each ap-
plication may still create multiple threads. These threads stay in the wait
state most of the time. Exceptional applications compiler.compiler and com-
piler.sunflow consume more power than others during one run because the
two applications require two cores to run two threads simultaneously in some
time.

Note that we test the LLC-miss scheduler in asym A for now. The exper-

iment results for IPC scheduler in both asym A and asym B are provided.

24



Table 5.1: Base running time and power consumption under sym2.66

application sec watt | application sec watt
cmpiler.compiler | 18.04 | 22.5 | scimark.fft.large 28.73 1 10.9
compiler.sunflow | 32.08 | 17.9 | scimark.lu.large 33.6 | 14.3
compress 78.15 | 13.4 | scimark.sor.large 97.42 | 11.1
crypto.aes 94.96 | 14.1 | scimark.sparse.large | 50.44 | 13.7
crypto.rsa 148.6 | 14.6 | scimark.monte_carlo | 1609 | 15.2
crypto.signverify | 116.8 | 13.7 | scimark.fft.small 86.29 | 14.4
derby 96.49 | 11.9 |.scimark.lu.small 99.65 | 16.3
mpegaudio 128.6.[ 13.6 | scimark.sor.small 112.2 | 10.9
serial 464 | 139 | scimark.sparse.small | 48.86 | 15.9
xml.transform 28.70 | 17 xml.validation 29.35 | 14.9

5.1 IPC scheduler

5.1.1 Time increase

Figure 5.1 gives the ratio of the execution time in asymmetric configuration
A relative to the baseline (i.e., the symmetric configuration sym2.66) under
our fuzzy-control scheduler. We also provide the execution time in symmet-
ric configuration sym2.26. (Note that 2.26GHz is the lowest frequency in
configuration asym A.) This gives an upper bound in time increase ratio.
Smaller increase in execution time should indicate that memory operations

are more critical for the application. Figure 5.2 shows the breakdown of the
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Figure 5.1: Time increase ratio under asym-A for [PC scheduler
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Figure 5.2: Core selection for IPC scheduler under asym A
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execution time for each application that are dedicated to each core with the
fuzzy-control scheduler under asym A. This demonstrates the selection made
by the fuzzy-control scheduler.

The time increase ratio in Sym2.26 indicates that application scimark.fft.large
and scimark.lu.large are less sensitive to the change of frequency, especially
for scimark.fft.large. The fuzzy-control scheduler made a right choice to use
slowest core mostly for it.

As for scimark.sor.large and scimark.sor.small, the scheduler choose slower
cores since these applications remain in low IPC state during the whole exe-
cution. In contrast, application crypto.aes, crypto.rsa, scimark.monte_carlo
and scimark.sparse.small.arve forced to use fastest core.

For others applications, the choices made by the fuzzy-control scheduler
result in less performance loss than that in sym2.26 because the use of each
core is in a balance.

Figure 5.3 shows the time increase ratio under asymmetric configuration
B. The breakdown of execution time in each core for asym B is provided in
Figure 5.4. The results are similar to that under asym A except that core 0
has less chance to be selected. This prevents a great performance loss from

choosing the slowest core like scimark.sor.* did under configuration asym A.

5.1.2 Energy Reduction

We calculate the average energy consumption from the power meter readings.

Figure 5.5 gives the energy reduction rate in asymmetric configuration A
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Figure 5.3: Time inerease ratio for [PC scheduler under asym B
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Figure 5.4: Core selection for IPC scheduler under asym B
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Figure 5.5: Energy reduction rate for IPC scheduler under asym A
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Figure 5.6: Energy reduction rate for IPC scheduler under asym B
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Figure 5.7: Relative energy delay product for asymmetric configuration A

relative to the baseline. The energy reduction result in asym B is given in
Figure 5.6. Energy consumption is reduced to97% and 93% at average in

asym A and asym B respectively.

5.1.3 Energy Delay Product

We compare EDP in asymmetric configuration A under the fuzzy-control
scheduler and EDP in the symmetric configuration sym2.66 without a sched-
uler. Figure 5.7 presents the result in EDP benefit. The fuzzy-control sched-
uler chooses faster cores mostly for crypto. *, mpegaudio, scimark.monte_carlo,
scimark.lu.small and scimark.sparse.small since these applications exhibit
high TPC state during entire execution. Although the scheduler makes right
choices for these applications, there is a slight increase in EDP. Application

scimark.fft.large reveals a positive benefit in EDP reduction.
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Figure 5.8: Relative energy delay product for asymmetric configuration B

The EDP reduction results for-other applications in asym A are not well,
especially for scimark.sor.”® which is known as CPU-intensive application in
Figure 5.1. A post-review.on performance counter statistic of these applica-
tions shows the IPC may not always indicate the right intensiveness (CPU
or memory). This should lead to amew design of fuzzy scheduler that takes
other metric (e.g., last-level cache miss) into consideration.

The EDP reduction rate in asym B is provied in Figure 5.8. There are
more applications which show positive benefit than that in asym A. For these
applications, the use of lower frequency might increase the EDP benefit in

their memory-intensive part.
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Figure 5.9: Time increase ratio-for LLC-miss scheduler under asym A
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Figure 5.10: Core selection for LLC-miss scheduler under asym A
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Figure 5.11: Energy reduction rate for LLC-miss scheduler under asym A

5.2 LLC-miss scheduler

5.2.1 Time increase

Figure 5.9 and Figure 5.10.give time increase ratio and core selection for
LLC-miss scheduler under asym A’ respectively. Considering the intensive-
ness shown in sym2.26, the scheduler makes right decisions for most of the

applications except scimark.fft.small.

5.2.2 Energy Reduction

Since the scheduler decides to use faster core for most of the applications,

there are little benefits in energy reduction.
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Figure 5.12: Relative energy delay product for LLC-miss scheduler under

asym A
5.2.3 Energy Delay Product

Figure 5.12 presents the EDP benefit for LLC-miss scheduler. Again, we
have best benefit for scimark.fft.large. Strictly speaking, scimark.fft.large is
the only memory-intensive application in SPECjvm2008. Others are that
sensitive to the change of frequency. This leads to a question that how do
we identify this kind of memory-intensive with performance counter statistic,

especially in a short time period.

5.3 Migration overhead

We measure the overhead by running the benchmarks in the symmetric con-

figuration sym2.66 with the IPC scheduler since this scheduler made more
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Figure 5.13: Time increase in symmetric configuration with fuzzy-control

scheduler
Table 5.2: The number of migrations per second

application migr/s | application migr/s
cmpiler.compiler’| 64.26° | scimark.{ft.large 32.94
compiler.sunflow | 69.12.[ scimark.hi.large 82.38
compress 65.92 | scimark.sor.large 78.54
crypto.aes 11.61 | scimark.sparse.large | 85.86
crypto.rsa 0.27 scimark.monte_carlo | 0.16
crypto.signverify | 46.43 | scimark.fft.small 78.70
derby 65.40 | scimark.lu.small 89.82
mpegaudio 86.06 | scimark.sor.small 69.34
serial 82.95 | scimark.sparse.small | 0.30
xml.transform 62.48 | xml.validation 59.40
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migrations than LLC-miss scheduler. Figure 5.13 gives the increase ratio of
execution time and Table 5.2 shows the number of migrations per sec. Al-
though the IPC scheduler causes massive migrations every second for most
of the applications, we do not see relevent increase in execution time. This
result should be consistent with previous research [21] which stated the ad-
vantage of having a shared cache between cores for thread migration overhead
prevention. We believe that the increase of execution time in the asymmetric

configuration should be due to the use of lower frequency.
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Chapter 6

Conclusion and Future works

Asymmetric multicore systems had beemstudied as a new hardware platform
toward performance power efficiency. The major question is how to deal with
the scheduling problem [7:8,14,18,20}."As aresult, we present a fuzzy-control
scheduler based on performance‘counter statistic on JVM. The experiment
results shows that the fuzzy-control schedulers exhibit EDP benefit for one
memory-intensive application. One of the major future work is to precisely
identify this kind of memory-intensive application with performance counter
statistic.

Although we do not provide power reduction rate data, we achieve the
best 85% power reduction rate at average for entire SPECjvm2008. This is
important to the development of ASYMS. Although the fuzzy-control sched-
ulers make right decisions for several applications, there is still improvement

we can make in th future work. The results also show that the migration
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overhead is negligible in our ASYMS and the major cause of performance
degradation is the use of lower frequency.

Migration overhead should be a factor in designing the membership func-
tion. However, our environment consists of several cores in the same chip.
These cores share some cache, such as L3 cache. Thus, the migration over-
head is expected to be quite insignificant. When the fuzzy-control scheduler
is scaled up to thousands of chips and thousands of cores, the membership
functions should be adjusted to take into account the migration overhead.

Since we are exploiting the micro-architecture specialization, a future
work could contain experiments on exploiting the thread-level parallelism
specialization. Future works should also include more detailed tests in dif-
ferent frequencies to understand the effect on performance and fine tuning
on our fuzzy-control scheduler.

The work here is incomplete. One-should first discover the relationship
between performance counter statistic and program intensiveness. A more
complete work may be to include the learning process of fuzzy control to be

more certain about the relationship above.
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