A Re R G A A TR AR TR

Applying Folksonomy-Based Approach ta Support Collaborative
Testing-of Web Applications

Wk RO REE R AT RET R AR L TR

Applying Folksonomy-Based Approach to Support Collaborative
Testing of Web Applications

oro2 i R Student : Kuo-Chang Huang
ERER Y EE Advisor : Dr. Shian-Shyong Tseng
B2 i w8
F oA Id G T
Ao A= i)
A Thesis

Submitted to Institute of Computer-Science and Engineering
College.of Computer.Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
July 2010

Hsinchu, Taiwan, Republic of China

L = A -

SRR AR T BT AR EITVRED 2

A
o+
4=
wht
.|
Sy
NN

RSl LR

12T RFRER

FaRpAEH1LEFY

#F £

Wp o RT A AT AR LR RS R T R
N- BEY LR R o - NI RPRAR R > RRERAIAEY RET TR
BRGEAR B E A SR ST AR A (R R T B E ko Al A2
AR 3 5 E R R e ARSI R ATk T) o KA o A
Me s FPRERLILAAN S HEREMRRE 2 L HRIFE G o TG IR
- B ERHY RIIPAT et iy A PLRET A ie - JA|hE 0F
FORR e RERR A F R LT T R4 TR o B TRAAY
HERY LTV RIEEY o P HTEERIE LS OPREAR APRDT -
B Wi 5 AHPRRE D 2 L L FNRGED 2 R APk s 2 4g i 4p
HRAORALEL o BRREFAT P > - Brox Bt 5 A#HaS FFE N R AL B
Bho P RBRHRERET AP AR D S ARES § EARE T 2o

e F SR AT T g bt B #-T 90% o
Mot : + B o8 & IENRIE - RRAT 250 RIRS T~ # R

24P R LR 2

Applying Folksonomy-Based Approach to Support

Collaborative Testing of Web Applications

Student: Kuo-Chang Huang Advisor: Dr. Shian-Shyong Tseng
Institute of Computer Science and Engineering
Nation Chiao Tung University

Abstract

As the quantity and breadth of Web-based software systems continue to grow rapidly,
assuring the quality and reliability of this software domain is becoming critical.
Software testing processes, in general, are. labor-intensive processes and involve
substantial collaboration betweentesters,.developers;.and. even users. Recently, many
approaches have been proposed to-address Web application testing and collaborative
testing in software engineering domain. However, most collaborative testing tools just
focus on testing processes and generating-bug-report. There are no tools supporting
collaboration test with the ‘consideration of communication requirement and testing
resource constraints under test scheduling.”Under Internet environment, there are a
large amount of various and experienced human resource. And it is appropriate for
collaborative testing of software functionality and usability by utilizing folk resource on
the Internet. To test Web application with folk testers on Internet, we proposed a
two-phase folksonomy-based approach to support collaboration and then constructed a
prototype tool accordingly. The experimental results show that our approach is effective,

and that the average reduction rate for testing effort is almost 90%.

Keywords: folksonomy-based approach, collaborative testing, web application testing,

test convergence, functional testing, program dependence diagram.

LA RS & REERGHE- 2 BERPHIYRAEH Y DR
FARLEMA R R §RREF XF R REFOIFFA - B
FL OGS BV o pes) L TR] o S TR R AR AL
LR FH AL A o 2 BEUPHAT REFLEAF I TR
LR R R PR RR e AR RIS O R

w2 LR EE LR

FAERIALF]EARS o BAFSERPIEEPELP D ANEL R

BHEEZZEEL S RHEPZ e DBEAEIOE R AL B H T o 4 BT
REHA L T HE R FRNERT L2 FEL O HHEFT S
=+

HE AT e Ao qE o ARAABRE DB W R E B ER - B

EF0 0 A & RAP - BRIMAHF ST LS KB VBB L v BANE - F 5

&

oo ARGRFRE) soegll
Befs AR A RAZ M B i TN 2 2 e T 0 Bl S R
o g R Z € i et R R e o BT s

Emmumg;’g;wﬁﬂﬁiﬁﬁﬂwﬁi§%%6%*fﬁ’?ﬂﬁ?éﬁ?7~@*%ﬁ’¥

—\

ALLCAGE 3 TR0 > VAR o W SR R) 3 B AL 2 R

N -

2.

A

E

Ry

34

BHATF B 0 B R MR A A K R AR L FL o

Table of Content

BB iii
ADSEFACT. ...t \Y;
BR BB ettt b b e Rt bR b b e R b bRt E bt R b e e b Vv
Table Of CONTENT ..o vi
LIST OF FIQUIES ...ttt viii
LISt OF TABIES......ceeee s IX
Chapter 1. INTrodUCTION........coiiiiiiee e 1
Chapter 2. Related WOTK..........coooiiiiiiiiiieeeee s 4
2.1 Web application testing approach ... 4
2.2 Collaborated-Based approachqin Software ENgineering..........ccccocvvvvvevennn 6
2.3 Folksonomy-Based apprOaChi=ii.............. il i 7
2.4 Program slicing and program dependence diagramccocoeerereninninennenns 9
Chapter 3. Folksonomy-based approach’for collaborativetestingcc.ccevvennene 11
3.1 Motivation EXamMPIE........ oot ciiiunsieeeeeib b da i seeeeeeneesseeseeeneesseeneeanes 12
3.2 Problem definition:job assignment in collaborativestesting............cccccoeee..e. 16
3.2.1 Problem definition....... i i it i e free e e B 16
3.2.2 NP-Complete probleml e 19

3.3 Dependence graphs and Folksonomy-base approach...............ccooovviinnn, 22
3.3.1 Dependence graphi..........o i e 22
3.3.2 Folksonomy-based approach for Web application testing 24
Chapter 4. Folksonomy-Based Collaborative Testing Algorithmcccceeeneee. 25
4.1 System Architecture of Proposed Model.............cocoiiiiiinicice 26
4.2 Dependence graph definitioncoceiiiiiiie e 27
4.3 CONSTIUCTION PRESE ..o 29
4.3.1 The Example of Construction Phase ..., 31
4.3.2 Construction Phase AIgorithm..........cccoviiiiiiiiiee e, 33

4.4, TESTING PRASE ..ot 36
4.4.1 Collaborative Testing EXample.........ccccooiiiiiiiiinieeee e, 36
4.4.2 Collaborative Testing Algorithm ..o, 38
Chapter 5. Implementation and EXPErimentcccocovvviiiieienenc e, 42
5.1 System IMpPIemMENTatioNccooiiiiiiiiieeie s 42

5.2 Experiments and ReSUILS ..o 45

5.2.1 Experiment | - Dependence graph constructionc.ccoevvvveieicnennenn 45
5.2.2 Experiment Il — Performance Evaluate Simulationccccccceevenee. 47
5.2.3 Experiment I11 — Performance Evaluation for Folksonomy-based
CollaboratiVe TESTINGcoveiiririieieieee e 51
Chapter 6. CONCIUSIONouiiiiiiiiieee e 53
RETEIEINCES ...ttt 54

Vii

List of Figures

Figure 1. Folksonomy testing SCENAITOcueveieriiriiieiesieeee e 12

Figure 2. Three-level dependence graph example:”BookStore” web application.. 23

Figure 3. Collaborative testing eXxample ... 24
Figure 4. System arChiteCtUIeccooiiiiiiiece e 26
Figure 5. Dependence graph construction example: Node Detection 32
Figure 6. Dependence graph construction example: Edge Construction 32
Figure 7. Collaborative testing example ... 37
Figure 8. Collaborative testing systemymadule architecture............cccocvvvviviennn. 43
Figure 9. Administration windews for User sesSion l0gsccccocvviveienincnennn, 43
Figure 10. Testing flows of collaborative teSting SYSteMooververereniniiieieens 44
Figure 11. Dependence graphiStatiStiC reSUIT . .o it ieves e 46
Figure 12. “BookStore” 'web application with 10 support threshold 48
Figure 13. “BookStore” web application with 20 support threshold 48
Figure 14. “BookStore” web‘application with 30 support threshold 48

Figure 15. “BookStore” web application with Non-Guiding testing approach....... 49
Figure 16. “BookStore” web application with Guiding testing approach 49
Figure 17. Costing time comparing with different web application........................ 50

Figure 18. Statistics of tester quantity and bug report about two kind of approach

.. 51
Figure 19. Costing time of all testers spend on each page..........ccccocevvniniiiniennenn 52
Figure 20. Total completion time COMPAaring.........ccocvviiirininieiee e 52

viii

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

List of Tables

Job-Page CoOVEred MatriX........cccocveiieiiie et 13
JOb exXecution tIME MALFIX.......c.coiviiiiieiesie e 13
Page confirmed MatriX........coccooeiieiiie e 14
Tester trustWOorthy MatriX........ccoeviieieeie e 14
Notations of Job assignment problem definitionc.ccccooiiiiiiinenn, 17
Property Of PAtternScccvoiieiiee e 30
Notations of Folksonomy-Based Testing Algorithmccocovviiiiennen, 39
Dependence graph statistiC result ..., 45

Chapter 1. Introduction

As the quantity and breadth of Web-based software systems continue to grow
rapidly, assuring the quality and reliability of this software domain is becoming critical.
Low reliability of software can result in serious detrimental effects for businesses,
consumers, and the government as they increasingly depend on the Internet for routine
daily operations. A major impediment to producing reliable software is the labor and
resource-intensive nature of software testing. Software testing processes, in general, are
labor-intensive processes and involve substantial collaboration between testers,
developers, and even users. In testing, testers are requested to assess software in
restricted time, and report bugs back to the development team. In collaborative testing,
testers need to share the test sesult and test.status.to the others. Since the test results are
needed to report to developer and-users, “the communication is necessary under test
processes. In some online collaborative software testing, 'such as Web application
testing, game beta testingy"0pen-source software-testing, how to utilize a large amount
of human resources on the Internet to perform test is.interesting, so a collaborative tool
to support collaborative testing is necessary. Under the situation of a complex
architecture of Web application, the problem of how to perform testing rapidly and
support collaborative work automatically should be considered for Web applications
testing.

Recently, many approaches have been proposed to address Web application testing
and software engineering collaboration. In [31], Whitehead classified collaboration
tools of software engineering into four categories, model-based collaboration tools,
processes support tools, awareness tools, and collaboration infrastructure. However, to
the best of our knowledge all existing collaborative testing tools just focus on testing

processes and generating bug report. There are no tools supporting collaboration test

with the consideration of communication requirement and testing resource constraints
under test scheduling. Under Internet environment, there are a large amount of various
and experienced human resource. And it is appropriate for collaborative testing of
software functionality and usability by utilizing folk resource on the Internet. To test
Web application with folk testers on Internet, we proposed a folksonomy-based
approach to support collaboration and constructed a prototype tool with proposed
approach.

In collaborative testing, we are concerned with the following issues
[18][24][34][38]. (1) Software testing are inherently cooperative, requiring many
testing engineers to coordinate their efforts to. perform a software system testing. To
coordinate this effort, we guide test-activities and share information each other over the
entire testing process. How:to propose-a collaboration.technelogy within testing process
IS an interesting issue in. collaborative testing.(2) In Web application testing, the
combination of path exeeutions and input parameters may-cause test case explosion
problem. With a large amount. of ‘test cases and restricted resources, how to assign the
required test cases or jobs to corresponding-testersibecomes an important research topic.
(3) Web applications typically involve complex, multi-tiered, heterogeneous
architectures including Web sites, applications, database servers, and clients. How to
perform Web application modeling for testing and consider a variety of situations to be
able to handle the testing of various components in these architectures is also a
challenging issue.

In our research, we propose a folksonomy-based testing approach that addresses
these issues by analyzing user sessions to guide folk testers during testing period,
potentially reducing the effort involved in testing. The two-phase folksonomy-based
testing approach is proposed to support collaborative testing. Phase 1 is Web

application program dependence graph construction. We represent program
2

constructions and information flows of Web application with the defined three levels
program dependence graphs, code-level dependence graph, function-level dependence
graph, and page-level dependence graph. Phase 2 contains folksonomy-based
collaborative testing. We implement a prototype system to evaluate our proposed
approach. With our collaborative testing tool, we can collect user sessions logs of
participated testers during testing processes. To support collaborative testing, we further
analyze the user session logs and guide the test activities. The results will be analyzed
and utilized to improve the way of collaborative testing. In the experiment, we simulate
the collaborative test activities with our proposed model. The experimental results show
that our approach is effective and well. perfermance in testing and defects revealing.
And the average reduction rate for testing effort is almost.90%.

The main contributions.of this-research are as follows:

1. Model Web application with the dependencies, data: dependence and control
dependence, and propose~the formulation of the. Web application for collaborative
testing.

2. Define the collaborative testing-problem: as ‘ILP-formulation and prove the
problem is NP-Complete.

3. Propose a folksonomy-based approach to support collaborative test of Web
applications and implement a prototype tool based upon the approach.

4. Evaluate the experiments of the effectiveness of the proposed folksonomy-based
approach.

The remainder of this research is organized as follows: Chapter 2 discusses related
works. Chapter 3 gives an overview of the proposed approach. Chapter 4 explains how
the test approach is performed in test scenarios. Chapter 5 explains how the
experimental design and experimental result. Section 6 presents the conclusion and

proposes future work.

Chapter 2. Related Work

2.1 Web application testing approach

Recently, many approaches have been proposed to address Web application testing.
We briefly describe relevant studies as follows. Ricca et al. [17] described an approach
based on UML model for high level abstraction Web application. Similar to their
approach, Jia et al. [48] presented a technique based on formal specification instead of
UML model. These approaches are not appropriate to cope with dynamic behavior of
modern Web application. Kung et al. [12] presented an approach based on multiple
models of Web application under test. Andrews et al. [1] proposed a system-level
testing technique that combines test'generation based on finite state machines with
constraints. These approaches -have state.space exploesion problem if the Web
application is very complicated.

Deng et al. [49] proposed an approach-based on static analysis for recovering the
model of Web application=In their approach;the-model of the Web application is built
by scanning its source code to identify links and names of input parameters. However,
their approach only identifies the names of iinput parameters without considering its
domain information, such as parameter types, relevant values of the parameters, so it
might not be applied directly to generate test case. William et al. [47] presented a
technique for automatically discovering Web application interfaces based on a
two-phrase static analysis algorithm. To generate test cases, the problem of how to
model the behavior of Web application should be considered in Web applications
testing.

User-sessions-based approach is a convenient way to collect test cases. Elbaum et
al. [42] proposed the user-session-based approach to test Web application by

transforming user sessions into test cases, where different strategies can be applied to

construct test cases for the collected user sessions [42], [30]. The promising results
demonstrated the fault detection capabilities and cost effectiveness of
user-session-based testing. In addition, they observed that the effectiveness of
user-session-based testing can be improved as the number of collected sessions
increases; however, the cost of collecting, analyzing, and replaying test cases also
increases. User-session-based testing techniques are complementary to the testing
performed during the development phase of the application [8], [20], [17], [29], [7],
[49], [34].

It is a serious problem that how to select test cases from a large number of test
cases when testing the application. Since test suite reduction has several advantages,
such as reducing the cost of executing, validating, and managing test suites as the
application evolves, the test suite reduction is important for Web application testing.
Several test suite reduction techniques have beenproposed [37], [45], [28], [26], [13],
[41], [14], [15]. Harrold=et al. [37] developed a.test suiterreduction technique that
employs a heuristic based. on “the> minimum~cardinality hitting set to select a
representative set of test cases that satisfies-a-set of testing requirements. Harder et al.
[36] proposed an operational-abstraction-based minimization technique that can be
executed incrementally, but dynamically generating operational abstractions can be
costly. In this research, we propose a novel approach to support collaborative testing for

Web application and construct a new model with folksonomy-based approach.

2.2 Collaborated-Based approach in Software Engineering

In software engineering, participants have adopted a wide range of communication
and collaboration technologies to assist in the coordination of project work[31].
Engineers have developed a wide range of model oriented technologies to support
collaborative work on their projects. These technologies span the entire lifecycle,
including collaborative requirements tools [3], collaborative UML diagram creation,
software configuration management systems and bug tracking systems. Process
modeling and enactment systems have been created to help manage the entire lifecycle,
supporting managers and developers in assignment of work, monitoring current
progress, and improving processes [19].[5]. JAn.the commercial sphere, there are many
examples of project management software, including/Microsoft Project and Rational
Method Composer. Several.efforts-have created standard interfaces or repositories for
software project artifacts; ‘including WebDAV/DeltaV [32] [16] and PCTE [33].
Web-based integrated development environments serve ‘to integrate a range of
model-based (SCM, bug tracking ‘systems) and unstructured (discussion list, web pages)
collaboration technologies.

There are many researches related to collaborative testing. However, most
collaborative testing tools above just focus on testing processes and generating bug
report. There were no tools supporting collaboration test with considering
communication requirement and testing resource constraints under test scheduling in
fact. To test Web application with folk testers on Internet, we proposed a
folksonomy-based approach to support collaboration and constructed a prototype tool

with proposed approach.

2.3 Folksonomy-Based approach

A folksonomy is a system of classification derived from the practice and method
of collaboratively creating and managing tags to annotate and categorize content; this
practice is also known as collaborative tagging, social classification, social indexing,
and social tagging. Folksonomy, a term coined by Thomas Vander Wal, is a
portmanteau of folk and taxonomy.

General overviews on folksonomy systems and their strengths and weaknesses
are given in [46][4]. In [40], Mika defined a model of semantic social networks for
extracting lightweight ontologies from del.icio.us. Recently, work on more specialized
topics such as structure mining on folksonemies—e. g. to visualize trends [35] and
patterns [9] in users’ tagging behavior—as well as‘ranking of folksonomy contents [2],
analyzing the semiotic dynamics-of-the-tagging vocabulary, or the dynamics and
semantics [23] have beenspresented.

In the literatures, the existing approaches usually: focus on the collaborative
filtering and information retrieval areas. AutoTag [21],/e.g., is a tool that suggests tags
for weblog posts using information: retrieval-technigues. Xu et al. [50] introduced a
collaborative tag suggestion approach based on the HITS algorithm [27]. A goodness
measure for tags, derived from collective user authorities, is iteratively adjusted by a
reward-penalty algorithm. Benz et al. [11] introduced a collaborative approach for
bookmark classification based on a combination of nearest-neighbor classifiers. A
keyword recommender plays the role of a collaborative tag recommender, but it is just a
component of the overall algorithm. Besides, the standard tag recommenders, in
practice, are services that provide the most-popular tags used for a particular resource.
This is usually done by means of tag clouds where the most frequent used tags are
depicted in a larger font or otherwise emphasized.

The approaches described above address important aspects of the folksonomy,
7

collaborative intelligence. Collective intelligence is a shared or group intelligence that
emerges from the collaboration and competition of many individuals and appears in

consensus decision making in bacteria, animals, humans and computer networks.

2.4 Program slicing and program dependence diagram

Much related work has been performed over the past ten years in the area of
dependence-based program representations. The traditional syntactic view of software
dependency had its origins in compiler optimizations, and focused on control and
dataflow relationships [25]. This approach extracts relational information between
specific units of analysis such as statements, functions or methods, and source-code
files. Dependencies are discovered, typically, by analysis of source code or from an
intermediate representation such as bytecodes or abstract syntax trees. These
relationships can be represented either by a data-related dependency (e.g., a particular
data structure modified by a function_and used.in another function) or by a functional
dependency (e.g., method A calls method B).

The work by Hutchens and Basili-[22] and Selby and Basili [43] represent of the first
use of dependency data insthe context of a system’s propensity for failure. Based on the
concepts of coupling and:cohesion. proposed by Stevens et al<[44], Hutchens and Basili
[22] presented metrics to assess the structure of a'system in terms of data and functional
relationships, which were called bindings.~Fhe -authors used clustering methods to
evaluate the modularization of a particular system. Selby and Basili [43] used the data
binding measure to relate system structure to errors and failures. They found that
routines and subsystems with lower coupling were less likely to exhibit defects than
those with higher levels of coupling. Similar results have been reported in
object-oriented systems. Chidamber and Kemerer [10] proposed a set of measures that
captures different aspects of the system of relationships between classes. Briand et al.
[6] found that the measures of coupling proposed by Chidamber and Kemerer were
positively associated with failure proneness of classes of objects.

In this research, we use program slicing techniques to construct dependence graphs.

To represent Web application, the three-level dependence graphs are constructed in
9

Chapter 3. And different graphs stand for different semantic meanings of software

testing.

10

Chapter 3. Folksonomy-based approach for collaborative

testing

In this chapter, we will introduce our proposed approach to support collaborative
testing for Web application. First, we describe a motivating example of job assignment
problem. Then, we define the job assignment problem based upon mathematical
definition. We construct our problem model as ILP-formulation by considering
resources constrains and job assignment under testing. The problem is proved as an
NP-Complete problem. We reduce the problem to minimal representative set problem
and prove the problem is NP-Complete. In the last section of Chapter 3, we propose the
heuristic ideas, dependence graphs and-folksonomy-based approach, to solve the

problem.

11

3.1 Motivation Example

Under Internet environment, there are a large amount of various and experienced
human resource. And it is appropriate for collaborative testing of software functionality
and usability by utilizing folk resource on the Internet. However, people usually
execute some specific popular function of the application when they face a new system
without interact each other. When participated testers focus on specific popular
functions, the resources are wasted in overlapped and duplicated testing. And the lack
of testing of the other pages will result in unequal distribution of resources and slow
test convergence. In this situation, it seems.that the problem is associated with job

scheduling and resource allocation.

m TesterA:
s 15253 80sec
s 12455 " 120sec
s 15453 120sec

m JesterB:
s 12253 120sec
m 12455 180sec

ShoppingC
art.aspx
BookDetail.
aspx

m JesterC':

m 12451 120sec
s 1-2->3->4 " 160sec

ShoppingC
artRecord.
aspx

Figure 1. Folksonomy testing scenario

12

Table 1. Job-Page covered matrix

Page 1 Page 2 Page 3 Page 4 Page 5
Job 1 1 1 1 0 0
Job 2 1 0 0 1 1
Job 3 1 0 1 1 0
Job 4 1 1 1 1 0
Table 2. Job execution time matrix
Tester A Tester B Tester C
Job 1 80 sec 120 sec 80 sec
Job 2 120 sec 180-sec 120 sec
Job 3 120 sec 180 sec 120 sec
Job 4 160 sec 240 sec 160 sec

As shown in Figure 1, a/simple application is/ excerpted from the online
open-source project, “Bookstore”’[http://www.gotocode.com/], which contains five Web
pages and 4 jobs, where each job consists.of-several pages and possible executed paths.
For example, the Job 1 in Figure 1 can be represented as (P1>P2->P3). As a result, the
job-page covered matrix is formed as Table 1. The testing finishes when all of pages are
executed at least one time. There are four testers participated in this testing and the job
executing time for each tester can be estimated by summarizing corresponding page
executing times. Tester A executes Job 1, consisted of page 1, 2, and 3, with 80 seconds
in this testing. The Job execution time matrix is shown in Table 2 by summarizing
execution times of testers.

We want to find out the minimal job quantity which can cover the whole page and

make the minimal execution time of the maximum execution time of the user. When

13

http://www.gotocode.com/

testing begins, tester A, tester B, and tester C execute pages respectively. The testing is
terminated after all of the pages can be executed at least one time. For the sake of
testing, the testers should coordinate the jobs respectively and cooperate to get work
done quickly. One of the solutions of this case is shown below:

Job 1: Tester A spends 80 Seconds.

Job 2: Tester A spends 120 Seconds.

However, we should further consider other factors in our testing according to the
real environment. First, what is “testing done” under testing? Each page should have
same standard or not? We create the confirmed criteria for each page based on different
complexity. In the page confirmed matrix,.each page has he own threshold of testing
quantity substitute for test once. Second, should we trust the testing results of testers?
Based on folksonomy-based approach, we create the tester trustworthy matrix with

testers. By considering these constraints, the problem is more complex than original

one.
Table'3. .Page confirmed matrix
Page 1 Page 2 Page 3 Page 4 Page 5
Confirm condition 10 10 10 8 8
Table 4. Tester trustworthy matrix
Tester A Tester B Tester C
Trustworthy 1 0.5 0.7

Based on description above, we discover that the purpose of the proposed testing
is to find the “maximal” completion time of the participated testers. And the key point

is how to assign jobs to testers and guide testers to the required regions to achieve the

14

“minimal” total completion time. It is a job assignment problem with resource
constrains. And we can conclude some proposed problems below:

(1) Testing resource constrains should be considered in testing.

(2) What is the stop criteria of testing?

(3) How can we trust the testing results of participated testers?

15

3.2 Problem definition: job assignment in collaborative testing
3.2.1 Problem definition

In this section, we define the proposed problem we mentioned above with
mathematical formulation. In Table 5, we show the notation definition used in the
formulation. The model of proposed problem, job assignment problem, is formulated as
ILP formulation in Definition 1.

We adopt three variables to represent jobs, testers, and Web pages. The variable i
represents the iy job sequence, the variable j represents the jy, tester, and the variable k

represents the ki, page of the web application. We use three binary decision variables to

represent the status of variables i, j, andkiThe variable J; equals 1 if the iy job assign
to tester j and response successfully. Thewariable ¢, “equals 1 if job I is legal. And the
variable d . equals 1 if'pagemnrhas adependence edge link'to page m. Some variables

are defined according to the constraints of‘above variable, The variable H; stands for

testers’ total working hours, andis used to represent.the total completion time limit of

jin tester. The function T(P, j) stands for the ixjob completion time of tester j. The
variable W, stands for the trustworthy weight of tester j. And each tester has his own

trustworthy weight when he executes testing works. The variable S, stands for the

support threshold of ki, page, each page has his own testing terminate condition.

16

Table 5. Notations of Job assignment problem definition

i : ith job sequence ; j : jth tester ; k : kth page

o; = ith job assign to tester j and response successfully
T(P,) = ith job costing time of tester j

W; = trustworthy weight of tester j to do ith job

S = support threshold of kth page
¢, =jobiis legal
d,, = page n has a dependence edge to page m

H; = total testing time limit of jth tester

17

Definitionl: Job assignment problem definition

Objective function:

time j

1 min max > 5,4, T (P, j)

Subject to:
2. 85, {01}
3. T(P,j)eR*

ijri

5.). D 8 xW, =S,

i {ifkeR}

6. S, >0

4. > 50 T(P,j)<H,
j

7. d,, {0}

f. _ 0, Ifd,, !_:O,misthestartnodeofPi
8 i . otherwise

9. 0<Ww; <1

In Definition 1, the Job assignment problem can be modeled as ILP-formulation
with these variables. The objective function (1) minimizes the total completion time.
The constraint (2) ensures the testing job is assigned. The constraint (3) ensures the job
costing time is a positive real number. The constraint (4) ensures each tester has
reasonable total testing time, avoid the overloading. Constraints (5) and (6) ensure each
page has enough testing quantity and it is a positive number. Constraints (7) and (8)
ensure the job should be illegal, and the starting page should be in-degree dependence
edge. Finally, constraint (9) ensures the value of user trustworthy weight should from

zero to one.

18

3.2.2 NP-Complete problem

This section shows the job assignment problem in this study domain is a
NP-Complete problem. First, we will show this problem is an NP-problem. Second, we
reduce the “Optimum representative set”[39] NP-Hard problem to our problem to show

it is an NP-Complete problem.

The corresponding decision problem of job assignment problem:

JAP={<GJ,U,D,S,W,H,T,k>}
G=(V,E) is a complete directed graph.
Jis a set of walks in G.

U is a set of testers.

D is a function from V xVa—Z,

S is a function from V —-R[

W is a function from J xJ —[0,1]

H is a function from U — R*

Tisafunction from J > R"
And there is an assignment with total cost at most k.

Thm Job Assignment Problem (JAP) is NP-Complete
Proof:

We first show that JAP belongs to NP. Given an instance of the problem, the
verification algorithm checks that the sum of the trustworthy W; of assigned legal test
paths of every tester | of each page k exceeds the threshold Sk, the sum of the execution
time of assigned legal test paths of each tester | does not exceed the threshold H;, and
checks whether the maximum of the sum of the execution time of assigned legal test

paths of each tester is at most k. This process can certainly be done in polynomial time.
19

To prove that JAP is NP-Hard, we show that RS < JAP. Let R ={Ri|i =1...,n},

-Pp
T ={T, |Ti c R,i=1...,m} and k be an instance of RS. We construct an instance of JAP

as follows. We form the complete directed graph G=(V,E) where V=R and

E ={(, j)|i, jeVv,i=j} and we define the test job set
J={PNV(P) =T, Piis apathand V(Pi) = V(Pj),if i = [},

the tester set U={1},
the dependence function d by d(i,j)=0 Vi, j,
the confirm function S by S(i)=1 VieU

the trustworthy function w by w(i,j)=2 VieU, jeT

the human resource functionH by H (i) =|V|s{T Wi €U

the execution time functiontbyt(P; 1) =L VP €T, jeU.

The instance of JAPris then <G, J;;Uyd, S, W, H, T, k>pwhich is easily formed in

polynomial time.

We now show that there is a representative sef T>with [T'|=k if and only if graph

G’ has an assignment & of the maximum total cost at most k. Suppose that there is a

representative set T° with size k. Therefore, there exists an assignment & such that
5, =1 if T, eT', otherwise 5, =0 because U{T,[T, eT}=R=V, the trustworthy
of tester is 1, the confirm threshold of each page is 1, and the human resource of tester
is |R|-[T|. Thus, this assignment & is a feasible solution and the maximum total cost
is k. Conversely, suppose that there is an assignment & with the maximum total cost
is k. Then, there existed a subset of T, T'={T[T,=V(P).5, =1

Because ¢, =T(P.)=1Vi , and m?xZ@jéiT(Pi, i) 225“ =k , [T]=k .

20

>.8 D W,=S, =1LvkeV , this implies that for each requirement

i {ilkev (R}

reR=V,3T, eT' suchthatr eT,. Therefore, T" is a representative set with size.

Hence, JAP is NP-Complete #

21

3.3 Dependence graphs and Folksonomy-base approach
3.3.1 Dependence graph

A Web application composed of Web pages. Pages interacts each other with some
methods, such as: Web submit form, transfer data through URL, transfer data through
sessions and cookies, and access database. The methods construct the dependence
relationships in Web applications. According to these dependence relationships, we can
represent the Web application with a dependence graph with different testing level,
page level, function level, and code level. We construct the page-level dependence
graph, function-level dependence graph, and code-level dependence graph with the idea
of program structures. The dependence graphs can cover different program semantic
levels that stand for the different testing level. The.different dependence graph means
different usability testings.page-level testing, function-level testing, and code-level
testing. In code level, thesdependence graph is‘constructed by code block. In function
level, the dependence graph is constructed by functional statements. And in page level,
the dependence graph is constructed.by Web pages.

We represent Web application with-dependence graphs. The dependence graphs
are shown in Figure 2. Nodes in the page level dependence graph stand for Web pages.
The arrow means control flow of Web application. The page is composed of several
functions and function is composed of code block. For example, the page
“ShoppingCartRecord.aspx” contains 8§ functions, “page init()”, “page load()”,
“page how()”, “page nload()”, “update click()”, “delete click()”, and “cancel click()”.
And the “update click()” function contains 6 code blocks. Nodes in the code-level

dependence graph stand for compound statements in functions, example show

compound statements contains in the “update click()” function.

22

Requirement Level - BookStore

Book
Detail
“k
AdvSear SN _ e == 7

Function Level - ShoppingCartRecord

Page_| Page_ Page_5 Page_U
nit Load how nload

23

3.3.2 Folksonomy-based approach for Web application testing

In collaborative testing, the test result will be affected by each participated tester.
And it is interesting that how to incorporate testers’ contributions to finish the testing.
In this research, we try to incorporate the testing results of testers and finish the testing
with folksonomy-based approach. With the idea of folksonomy-based approach, we
incorporate the folk testers in collaborative testing. We collect the session logs of testers
and incorporate the testing result to conduct current collaborating situation iteratively.
Then, we compute and assign the new testing objective to testers. When a testing block
has enough simple testing quantity, and do not exist any obvious mistake until now, we
want to guide tester to other testing bloek. which have not enough simple testing
quantity. Finally, the test finish.until all testing blocks is assigned or done. Figure 3
shows the collaborative testing example with folksonemy-based approach, when testing

block 1 achieve the confirm condition, we will guide tester to-execute testing block 2.

Testing block 1

Default.aspx

Testing block 2

ShoppingC

books.aspx
P art.aspx

BookDetail.
aspx

Figure 3. Collaborative testing example

ShoppingC
artRecord.
aspx

24

Chapter 4. Folksonomy-Based Collaborative Testing

Algorithm

In this chapter, the folksonomy-based approach we proposed is used to support
collaborative test. To perform test in Web application, there are two main phases in our
proposed algorithm as shown in Figure 4. In Phase 1, we construct the dependence
graphs by program slicing technique. We transform the source code into PDG, program
dependence graphs. In phase 2, the testing phase contains collaborative testing

algorithm.

25

4.1 System Architecture of Proposed Model

Figure 4 shows the two phases approach of our proposed methodology. In phase 1,
we transform web application to corresponding dependence graph by graph
construction algorithm. The Web application is represented as dependence graphs. It
helps us to realize that the dependence relationships in a web application. In the testing
phase, a testing job will be proposed for each tester according to computed results of
the collaborative testing algorithm. The collaborative testing algorithm refers
dependence graphs, user profiles, and user session logs, and computes the next test
targets. After testing of each round, system will.assign a new job to tester until all of the

testing will be finished.

Phase I. Construction Phase Phase II. Testing Phase
Web Site on@ \ m
— Dependence graph = = % Collaborative Testing ’S]
- Algorithm 2
Graph 1 ~
» Construction 1 A <
Algorithm ! |
: User =
~ Session log
¥ I
&9 L
\&;\ W, 4 profile
Folksonomy tester

registration

Figure 4. System architecture

26

4.2 Dependence graph definition

In this section, we define dependence graph based upon graph theory. There are
three dependence graphs in our methodology. Each graph has its own vertexes and
edges. We define the vertexes of dependence graphs with Vp ~ Ve and V¢ which means
page, function and compound statement respectively. And there are five types of edges
in the dependence graph, Ep, Ef, Ec, Epr, and Erc. Ep, Er, and Ec stand for the edges
between Vp, Vi and Vc. Epr represents the edges between Vp and Vg, and Egc
represents the edges between Ve and Vc. The edges Epr and Erc are used to connect
different level graph of dependence graphs. And we use the edges to represent the
hierarchical relationships between dependence_graphs. The page contains several

functions and the function consists of statements.

27

Definition2: Dependence graph definition

Dependence directed graph
G=(V,E)

V =V, UV UV, where

Ve ={Pi|Pi is a page} is the set of page
V. ={F,|F, is a functior}} is the set of function

V. ={C,|C, is a codestatement} is the set of code statement
E=E,UE UE; UE,- UE.. where

E. ={(P.P,.I,)P.P;eV,,1, 1}

i i
E. ={(F.F;,1)F.F eV, 4, &1}
E. ={(C..C;.1)C;.C; €¥¢, i 1}
Epe ={(P,.F))|P €V, F, €V,}
Erc ={(F..C))|F €V;.C, eV¢}

| ={V,V, is a variable} is the set of variable

28

4.3 Construction Phase

To construct the dependence graphs from program codes, we analyze the program
structures of Web application according to the properties of the C# .net language. We
arrange Table 6 to record the information of each program structure patterns which will
affect graph construction. In Table 6, we classify nodes, edges, and patterns according
to different level, page, function, and code. The slot “pattern” shows the logic
relationship between nodes and edges. Based on the syntax of each pattern, we can

detect nodes and edges from Web application and form the dependence graphs.

29

Table 6. Property of Patterns

Level Syntax Pattern

None None o ©

Page NavigateUrl <« ©

Page Response.Redirect <«
Function Function caller <«

Code

Code

Code

Code

Code

Code Switch s

SWITCH
Code Try...Catch...Final

30

4.3.1 The Example of Construction Phase
After defining the dependence graph, we present an example of dependence graph
construction in this section. As shown in Figure 5 and Figure 6, the construction phase

contains six main steps.

Step 1: Detect the nodes in the page level

According to the “Property of Patterns” in Table 6, each page file in the web
application can be constructed as nodes in the page level.

Step 2: Detect the nodes in the function level

According to the “Property of Patterns’in Table 6, we can detect functional nodes
that declaring in source .codes:” We construct-nodes in the function level with
detection.

Step 3: Detect the nodes in:the code level

According to the “Property of Patterns” in Table 6, we can detect the nodes of code
level dependence graph#rom source code."We construct nodes in the code level, and
each node in the code level dependence-graph is'a. compound statement.

Step 4: Construct the edges

According to the “Property of Patterns” in Table 6, we can connect nodes in
dependence graphs with corresponding edges. And we connect different

dependence graphs with edges to represent hierarchical relationships.

31

Requirement

Step1:
Scanthe to Shopping
CartRecor
construct the graph d.aspx
Step 2 - Function
void ShoppingCartRecord_Action(Src, E)
{ ShoppingCa ShoppingCar
?;ol ShoppingCartRecord_update_Click(Src, E) "R‘:;"O':'—A 'R:::"(dli“k"d
Step 3 :
Compound code statement Code Level

L] bool ShoppingCartRecord_update_Click{Object Sre,

EventArgsE) {
Cl . string sWhere ="' fforder id o
. string sSQL ="";
= inta=intMinValue;
-
Cz L] | bool bResult=ShoppingCartRecord_Validate(}:

L] if(bResult)

{

- sWhere = sWhere + "order_id="+
C3 CCUtlity.ToSQL{p_ShoppingCartRecord_order_id.Val
ue, FieldTypes.Number);

= U

Figure 5. Dependence,graph construction-example: Node Detection

Step 4 :

Scanthe to

construct the graph e

<asp:Hyperlink id=Items_Field1l NavigateUrl="<%#
"ShoppingCartRecord.aspx"+"?"+"order_id="+Serve
..

Shopping
CartRecor
d.aspx

order _id

Shopping
Cart.aspx

void ShoppingCartRecord_Action(Src, E) et
{ ShoppingCa ShoppingCa
_ . . rtRecord_A > rtRecord_u
PResuIt—ShopplngCartRecorcl_update_Cl|ck(5rc,E} ction pdate.Click
¥
bool ShoppingCartRecord_update_Click(Src, E)
if(bResult)
{C1}
ELSE

sSQL = sSQL + " where " + sWhere;

Figure 6. Dependence graph construction example: Edge Construction

32

4.3.2 Construction Phase Algorithm

Algorithm I shows the constructing steps of dependence graphs. First, it will detect
all of the nodes which exist in the graph, and then construct edges by each node like the
example in chapter 4.3.1. The function “SlicePageToFunction” will slice page into
functions which contains in that page, and the function
“SliceFunctionToCompoundStatement” will slice function into compound statements
which belong to the function. The subroutine “EdgeConstruction” will construct the

edges based on the property of each pattern in the nodes.

33

Algorithm I. Three-Level Program Dependence Graph Construction Algorithm

Input:
Page code blocks {Bs’,...,Bp"}
Pattern set of declare function Pg
Pattern set of declare code Pc
Tp where T, =P, UP- UP,
Output : Dependence graph » G=(V, E) where
V =V, UV UV.,E=E, UE. UE. UE UE_.
Method:
initial:
Stepl:Add Bpi into Vg
Step2:For each Bpi in Vg
2.1:let Fi = Bpi , F = {F1,....Fn}
2.2:F’ = SlicePageToFunction(F,Pg)

2.3:IF |F|=|F| THEN Retum'F t0:2.2

2.4:Add F’ into Vi, Add:CNET into/Eg
Step3:for each Bei in VEIC, = (B L)
3.1:let Ci = Bgi where
3.2:C’ = SliceFunction ToCompoundStatement (C,P¢)

3.3:IF [C|#|C| THEN ReturnC’t03:2

3.4:Add C’ into V¢
Step4:for each Bgi in VF
4.1:EdgeConstruction (Bei ,P)
Step5:for each Bpi in VR
5.1:EdgeConstruction (Bpi ,P)
Step6:for each Bgi in Web application
6.1:EdgeConstruction (Bri ,P)

34

Subroutine of Algorithm I: SlicePageToFunction

Input: Code block B, P

Output: Code block B’

Method:

Stepl: According to the Pg find the sub code block starting line of B.
Step2: According to the Pg find the sub code block ending line of B.
Step3: Add sub code block to B’.

Step4: Return B’.

Subroutine of Algorithm I: SliceFunctionToCompoundStatement

Input: Code block B ,P¢

Output: Code block B’

Method:

Stepl: According to the Pc find the sub code block starting line of B.
Step2: According to the Pc find the sub'code block ending line of B.
Step3: Add sub code block te:B’.

Step4: Return B’.

Subroutine of Algorithm |I: EdgeConstruction

Input: Code block B , Bswhere pi= P \JP- UP;

Output: Dependence graph of each level.

Method:

Stepl: According to the different pattern.in.P-construct dependence edge of nodes.
Step2: Return Dependence graph of each'level.

35

4.4. Testing Phase
4.4.1 Collaborative Testing Example

Figure 7 presents a collaborative testing example. We can split a dependence graph
into testing blocks as shown below.

First, we pick up a minimal value of support/support-threshold which stands for
the testing node that needed to be tested. In this example, the testing node is page
“MemberInfo”. Then system will decide the testing block 3, node “MemberInfo”, is the
most needed testing block. Based on computing result of our algorithm, the page
“AdminMenu” will be assigned to tester A based on dependence graphs.

Finally, we collect the user session dog.and trustworthy weight of tester. The
system will change the states of .nodes by analyzing-user session logs. In our example
the pages “AdminMenu”,»”MemberGrid”;, "MemberInfo”,;7and "MemberRecord” are
contained in the user session log of tester A. And-these pageswill change their support
value according the trustworthy. valueof tester A. The- support value of page
“AdminMenu” will increase by ‘one, same as remain pages. We adjust the support
values for each page iteratively. Pages will-confirm if the support and support threshold

is equal to or bigger than the support threshold.

36

Testing block 1

I
S -
o
I
| | :
| ‘ | |
i I |
e e e L e s, e e :
r*———‘—"'—ﬂrj— = nl
I ShoppingCar b S 5| I
I t.aspx | | |
I] S I
i P : [
I; ShoppingC I I I
| "= artRecord. 41 | | T |
em g
aspx y
fo.aspx min(S /7T
et | .- T (57T5),
Testing block 2 Testing block 3
Tester A, W, = 1 __ Dependence edge
Usersessionlog : [->2—>3—>4 77T > Non-dependence edge

Fngfe_ 7. Collaborative testing exafh'ple

37

4.4.2 Collaborative Testing Algorithm
In this section, we introduce our proposed collaborative testing algorithm based on
the idea in Chapter 3.3. First, we define the notations according to the problem

definition which considering the attributes in testing. The notation U means the set of

folksonomy tester, and the notation L, means the user session log, a user session log
is a collect set of pages access logs and user id. The notation W, means the trustworthy

weight of user, L, . The notation F, means the fail ratio of node i, and the formulation
is shown below. The notation T. stands for the fail ratio threshold of node, the

formulation F, >R_' means that thesnode i is unreliable and need to be tested. We
used the notation M, to represent the [complexity that‘based on line of code. The
notation S, means the testing quantity of node-i, and-the notation TSi stands for the

support threshold of node i. When'S, >T:" the node i is a confirmed node and it needs

no more test.

38

Table 7. Notations of Folksonomy-Based Testing Algorithm

Folksonomy user:

U ={u;u; is a folksonomyuser} is a set of user
User session log of User:

L, ={1;|vi}

|, =(P|F;) where P =(V;...,Vy)

F; ={V,)V, is reportedas fail, V; eV (P,)}

Trustworthy weight of User:
W, €[0]] ; initial by User
Fail ratio of node i:

i > W, [Py NV)
ZWU}{IJN(PJ)H{VJ}?&¢}|’

UGU,Ij eL,

Complexity:
M; = #line of code in Node:i

Support of Node i:
S, :ZWU}'{IJN(Pj)ﬂWi}¢¢H ,where ueU,l, L,
Fail ratio threshold is T,

Support threshold of Node i:
T, =cx M,

Anode i is confirm IF S, > T

The folksonomy-based testing algorithm is shown in the algorithm Il. We try to

confirm all nodes in dependence graphs to finish the test. In step 1, we initialed four

39

type nodes in the dependence graphs according. In step 2, for each node in the graph,
we pick up a needed testing node by ranking the support value, and compute a proposed
node in step 3 according our dependence graphs. We start guiding tester with the
subroutine “GuidingTester” to find out the most suitable starting node and assign to
tester. The starting node is computed by our proposed algorithm with dependence
graphs. In step 4, the collecting user session logs are used to change the current testing
status, page support threshold. Finally, we check the whole system state in dependence

graphs. The testing is done if all nodes confirmed, or return to step 2.

Algorithm 11. Folksonomy-Based Testing Algerithm

Input:
User Profile (personal trustworthiness)
Dependence Graph G=(V,E)
Output:
Guided test component: the start:node with inputs
Method:
initial:V'=¢,E'= E , for each node Ni in V where V =V, UV UV,
InitialMetadata (Ni)
Stepl:for each node in V’
1.1:Ni = minimal(S/TS) of nodei
Step2:Guiding
2.1: GuidingTester (Ni)
Step3:Mapping

3.1:for each node ninclude in L, , n.S=n.S+Wu

Step4:IF (S, >T,', Vi) THEN (Testing Finish) ELSE (return to stepl)

40

Subroutine of Algorithm I1: InitialMetadata

Input:Code block B, P

Output:Code block B’

Method:

Stepl:Set up the code block B’ where X and Y is the TF and TS of B which
compute by the code block complexity of B and the different pattern in P

B’.FailRatio « 0

B’.Support < 0

B’.TF «— X

B’ Ts <Y

Step2:return B’

Subroutine of AlgorithmI1: GuidingTester

Input:Node N’
Output:User Session Log Ly
Method:
initial:starting page P =N’ ; testing sequence stack S, push Pto S
Stepl:IF (exist dyp) AND (P isn’t a Default page)
THEN (P = M) AND (push P to S) AND (Repeat Step1)
Step2:(assign S[top] to Tester) AND (pop S)
Step3:IF (S isn’t Null)
THEN (guiding S[top] for tester) AND (pop S) AND (Repeat Step2)
Step4:According to the suggested page of tester, hiding other page link button of

confirm page until testing finishes(user interface).

41

Chapter 5. Implementation and Experiment

5.1 System Implementation

In this section, we implement the software system to support collaborative testing
with our proposed methodology, so called collaborative testing system. We evaluate the
performance of our approach by three experiments. The architecture of our
collaborative testing system is shown in Figure 8. The system contains six main
modules, “User Interface”, “Test Guiding Module”, “User Session Module”, “Bug
Report System”, “Admin Module”, and “Graph Construction”, and three databases,
“User Profile Database”, “User Session Log Database”, and “Dependence Graph
Database”. The “User Interface”: provides. interact interface to participants. The
module “Graph Construction” “transforms . web: application into a corresponding
dependence graph. The “Admin Module ™ is the administration functions provided to
system administrator to monitor the testing;‘asshown in Figure 9. The “Test Guiding
Module” provides a testing objective for testerswIn Figure 10, we describe the testing
flows for collaborative testingsystem. The module “Bug Report System” provides bug
report function for tester. The “User Session Module” records user session log and

change the testing state immediately.

42

Tester Admin

User Interface

~ \ O N
Test Guiding User Session
Module Module
. J _ J
~ ™ £ k.
Bug Report Admin Module

System
\ J \ J
Graph Construction

User Session

User Profile
Database

Graph
Database

Figure 8.

J O =nznz
€ 5 C fi f hup/140.11387.183estingprogra > B- &~
[FLE0 3 811) QUATEXAES [facebock | NN [l J2AIRARE) Precagan3TRE) TeegProgram () auAn) *2RAD tos *» Cxean
Guiding Frame R ALEAImIn
[T F
WHAR | | Suppot BT . . s. F
PageName SupportTs FailRatio Tf Confirm Extend F s TsFailRatio T1 C xtend
AdvSearch 31 00% O%Fal |[Exaeed)[Books 1 0 0% o%Fal |[Eaed)
BookDetal o olo% 0% [Bxtend | [VascateNumenc) olo% 0% |(Extend
Books 279 0 0% 0%Fal | Bxms)|Page_Load 3 0 0% o%Fal |[Baseds)
CCPager 273 0 0% O%Fail |[Exeed)|Page_Unicad 3 0 0% lo%Fal |[Exaees
Defaut 135 0 0% O%Fal |[Exed)|Page_tnt 1 00% 0%Fal |[Boaed)
Footer 353 0 0% O%Fal || Exesd] jntaizeComponent 1 00% 0%Fal |[Eaes
Header 353 0 0% O%Fal || Bxed]|Page_Show 1 0o% lo%Fal |[Eaed)
Login 105 0 0% :os.:m | Bxtens | [Resuts_Repeater_temDataBound '.244 0 io% :O%:le Extend 4
Myinfo 0 0 0% 0% | Extend | |Results_pager_navigate_completed 1 0 0% 0% Fail | Extend
Registrabon 46 0 0% O%Fal || Exesd)Resuts_Bind 2 0 0% lo%Fal (B
ShoppngCant 150 0 0% O%Fal || Exees)|Search_ Show i 00% O%Fal |[Baws
ShoppingCarntRecord0 00% 0% | [©xaend) [Search_search_Cick 0 oo% low [Extend
Adenu_Show I 00% 0%Fal | Eaws
Total_Repeater_temDataBound 0 00% 0% [
Total_Open 19 0 0% 0%Fal |[Eaes)
Total_Bind 1 0o% lo%Fal (B
NodeNumber Support Ts FailRatio Tf Confirm
7 I 0 0% O%Fail g
8 i 0 0% o%Fa
o 1 N nec MoCalt

Figure 9. Administration windows for User session logs

43

1.
Guiding Frame 5 ¥ 7
" : N (32] ki
v
#e32 1 [4BD P
" Register testing account
SR oo :
and login
FEEDETE . :ixxxx
BT
2.
Guiding Frame Choosing.the testing application and gryEETester
/ start testing
PR FENERAP Bookstore v |
3.
é - ™S
u‘lne H a:;u Shopping Cart Sign | %
< ookStore ome Registration Shopping Ca ign In &
l ____________________________ Guidinghint

85955 1512 ShoppingCartianisk
AT EIBUG "Whal Wete Reading T0% 4T R IRSIRICHRE |

“ Recommended Titles What We're Reading

Category | Al ¥ G ek e A Sharp Combination
Title e Development : Step = To get inside C#,
[by Step e Microsoft's new 00
: w € Laad programming
Advanced search Web Database 'ic¢ Preview of C#t as a
F———— Development . .o guide. It offers a
. TR R preview of Visual
S overview of the NET
Programming MySOL & PHP From framework, and demonstrates how C#is
Databases

Scratch

HTML & Web design
Wade Maxfield

integrated with ASP+, ADO+, and COM+
in .NET applications. You'll get examples

of Cdin artian tan

/and bug|hint

BugReportSysten

A

HIRITERMEH
ReportB

—
oQ

[0 ¥R A5 Th

Figure 10. Testing flows of collaborative testing system

44

5.2 Experiments and Results

5.2.1 Experiment | - Dependence graph construction

In this experiment, we transform three web applications “BookStore” -~
“Classifieds”[http://www.gotocode.com/] and
“OO0OLAYScience” into dependence graph respectively according to our proposed
approach, and the statistic result is shown in Table 8 and Figure 11. According to these

result, it is found out that the complexity of dependence relationships of Page-Level is

an

much higher than Function-Level and Code-Level.

e-learning

Table 8. Dependence;graph statistic result

Application Name & Level | Type' | Quantity
BookStore
Page-Level Node 25
Edge 152
Funetion-Level Node 352
Edge 350
Code-Level Node 836
Edge 1409
Classifieds
Page-Level Node 16
Edge 101
Function-Level Node 253
Edge 293
Code-Level Node 541
Edge 912

45

http://www.gotocode.com/

OOLAYScience
Page-Level Node 43
Edge 284
Function-Level Node 74
Edge 174
Code-Level Node 396
Edge 732
1600
1400
1200
1000
800 [BookStore
600 B Classifieds
400 LJOOLAY Science
O L

PL- PL- “FD- “EL-"CL="CE-
Node Edge Node-Edge Node Edge

Figure 11. Dependence graph statistic result

46

5.2.2 Experiment Il — Performance Evaluate Simulation

In general, folksonomy testing needs a large amount of human resource to perform
test. In this paper, we implement a simulating system to evaluate the performance of
our proposed approach. We propose three experiments with different parameter value to
show the relationship between parameter and result. In our simulation each virtual
testers has own trustworthy weight from 0.1 to 1, and accesses pages with different
execution time. We simulate the testing activities of testers and collect testing session
logs to perform our folksonomy-base approach. We guiding tester with our own
method.

In the first experiment, we try to find out the relation between total completion
time and tester quantity by using the same web application “BookStore”. Figure 12 ~
Figure 13 and Figure 14 show the-charts-with different support threshold value with
10 ~ 20 and 30, that means.a page called a confirm-page if and-only if every nodes in the
Code-Level can be execute by 10 + 20 and 30 times. Observing these charts we can
conclude some conclusions‘below.

(1) The experimental results: show-that-the evaluation of our approach is more

efficient and well performance than traditional one. The average reduction rate
for testing effort is almost 90%.
(2) The more testers participate in testing, the shorter completion time we get. But

the reduce rate also grow much slowly with more testers.

47

Time unit

9000

8000 \
7000 \
6000 \

5000 \./\

4000
3000 \‘—“\—-‘..______.
2000
1000 l\-\._____-________
0 : ; . ; : .

100 300 500 700

900 1100 1300

——Non-Guiding

-=-Guiding

Tester quantity

Figure 12. “BookStore” web application with 10 support threshold

Time unit

20000

18000 \
16000

14000 \
\

12000
\

10000 \
8000

6000

4000

2000

0 T T T
100 300 500

Time unit

700

v v
Figure 13. “BookStore” Wezﬁiﬁ

900 1100 1300

——Non-Guiding

-=-Guiding

Tester quantity

n with 20 support threshold

20000

18000 ‘\
16000

14000 \
12000

10000

——Non-Guiding

8000

6000 ,gﬁ

-=-Guiding

4000 - ~_
2000 —
0 T T T T T 1

100 300 500

700

900 1100 1300

Tester quantity

Figure 14. “BookStore” web application with 30 support threshold

48

In the second experiment, we try to find out the relation between total completion
times with different support threshold by using the same web application “BookStore”.
Figure 15 and Figure 16 show the charts with different testing approach,
“Non-Guiding” and “Guiding” approach respectively. Observing these two charts we
can conclude that total completion time is almost in direct ratio with different value of

support threshold. The much higher threshold value, the higher completion time we get.

Time unit
20000
18000
16000
14000
12000
10000

8000
6000
4000
2000

0

Threshold
--10
-=-20

30

100 300 500 700 900 1100 1300 Tester quantity

Figure 15. “BookStore” web.application with-Non=Guiding testing approach

Time unit
4000

3500

3000

2500 - Threshold
--10
-=-20
30

2000

1500

1000

500 - e -

0
100 300 500 700 900 1100 1300 Tester quantity

Figure 16. “BookStore” web application with Guiding testing approach

49

In the third experiment, we try to compare the total completion time with different
web application execute by two kind of testing approach, and with the 100 testers and
10 support threshold show on Figure 17. According to Figure 17 we can find out that
“O0LAYScience” web application has the biggest different between “Non-Guiding”
and “Guiding” approach. We refer all these results to the complexity of web application.
According to the result of “Experiment I - Dependence graph construction”, we can
know “OOLAY Science” web application has the maximum of nodes in the Page-Level.
Because of this property, some pages existed in the “OOLAY Science” web application
will much harder to execute by tester because the execution path which include those
pages is too long to execute from beginning to.end. Therefore, the effect of “Guiding”

approach will much obvious also.

Time unit
20000 -
18000
16000 -
14000
12000 -
10000

8000 -
6000
4000 -
2000

0

B Non-Guiding
B Guiding

BookStore Classifieds OOLAYScience

Figure 17. Costing time comparing with different web application

50

5.2.3 Experiment 111 — Performance Evaluation for Folksonomy-based
Collaborative Testing

In this experiment, we create a real testing environment of ‘“BookStore” web
application provide for folksonomy testers which existed on the social network
“Facebook” to participate our testing. This experiment cans division into two different
testing approaches, “Non-Guiding” and “Guiding” respectively, but same as other
conditions, and the value of support threshold in this experiment is 10. Figure 10 shows
the testing flows of collaborative testing system with “Guiding” approach. The
difference between “Non-Guiding” and “Guiding” is the guiding hint and the bug hint
suggestions show on Figure 10, “Non-Guiding’> approach non-exist these suggestions.

In this experiment, we hide three bugs in the**BookStore” web application, vote
image error ~ registration E-mail effor and modify shopping quantity error. Figure 18
shows the information about this experiment, more testers will report more bug reports,
but still existed much garbage bug reports; and in this experiment, “Non-Guiding” and
“Guiding” approach has the same'ability in the'bug detection, “Non-Guiding” approach
find out image error and modify shopping-quantity error, “Guiding” approach find out

image error and registration E-mail error.

Numbers
30

25
20

15
B Non-Guiding

10 B Guiding

Total testers Bugreport Garbagebug Avaiablebug
quantity report report

Figure 18. Statistics of tester quantity and bug report about two kind of approach

51

Figure 19 shows the costing time of all testers spend on each page, to observe this
result of experiment we can understand “AdvSearch” and ”MyInfo” is the bottleneck in
testing.

Figure 20 shows the total completion time comparing of two different guiding

approaches, and the reduction rate for testing effort is almost 90% also.

Time unit

40000
35000
30000
/ \
25000
/[\

20000

15000 /1 \\
10000 / \ e ——Non-Guiding

5003 ; i = ':/F ; -=-Guiding

Time unit
70000

60000 -

50000 -

40000 -
B Non-Guiding

30000 ® Guiding

20000 -

10000 -

0,

Total completion time

Figure 20. Total completion time comparing

52

Chapter 6. Conclusion

In this thesis, we propose our folksonomy-based approach to support collaborative
testing for Web application. In construction phase, we define the 3-level dependence
graphs to represent the structures of web application. The different dependence graph
means different usability testing, page-level testing -~ function-level testing and
code-level testing. According to the dependence graphs, we can realize the structures of
web application and help us assign jobs in testing. According to the real testing
situation, we model the job assignment problem with a mathematics formulation, and
prove that the problem is an NP-Complete problem. By reducing the “Optimum
representative set”’[39] problem to our problem: We propose our approach to support
testing with the collaborative.idea. Finally, we.implement a collaborative testing system
to evaluate our proposed=model, -the-experiment results show that our approach is
effective and well performance in testing and defect revealing. And the average

reduction rate for testing effort is almost.90%:

53

References

[1] A. A. Andrews, J. Offutt, and R. T. Alexander, “Testing Web applications by
modeling with FSMs”, Software Systems and Modeling, Jul. 2005, pp. 326-345.

[2] Andreas Hotho, Robert J aschke, Christoph Schmitz, and Gerd Stumme.
Information retrieval in folksonomies: Search and ranking. In York Sure and John
Domingue, editors, The Semantic Web:Research and Applications, volume 4011 of

Lecture Notes in Computer Science, p.411-426, Heidelberg, June 2006. Springer.

[3] B. Boehm and A. Egyed, "Software Requirements Negotiation: Some Lessons
Learned,” in the 20th International Conference on Software Engineering(ICSE'98),
Kyoto, Japan, 1998, pp.503-507.

[4] Ben Lund, Tony Hammond, Martin Flack; and Timo Hannay. Social Bookmarking
Tools (11): A Case Study -«Connotea. D-Lib Magazine, April 2005.

[5] B. S. Lerner, L. J. Osterweil, Stanley M. Sutton Jr.; and/A. Wise, "Programming
Process Coordination_in Little-JIL Towardthe Harmonious Functioning of Parts for
Effective Results," in European Workshop on Software Process Technology, 1998.

[6] Briand, L.C., Wust, J., Daly, J.W.and Porter, D.V,Exploring the Relationships
between Design Measures and‘Software Quality. in Object-Oriented Systems. The

Journal of Systems and Software, 51, pp. 245-273, 2000.

[7] C. Fu, B. Ryder, A. Milanova, and D. Wonnacott, “Testing of Java Web Services for
Robustness,” Proc. ACM SIGSOFT Int’l Symp. Software Testing and Analysis, pp.
23-34, 2004.

[8] C.-H. Liu, D.C. Kung, and P. Hsia, “Object-Based Data Flow Testing of Web
Applications,” Proc. First Asia-Pacific Conf. Quality Software, pp. 7-16, 2000.

[9] Christoph Schmitz, Andreas Hotho, Robert J aschke, and Gerd Stumme. Mining
association rules in folksonomies. In V. Batagelj, H.-H. Bock, A. Ferligoj, and A. ~
Ziberna, editors, Data Science and Classification: Proc. of the 10th IFCS Conf.,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 261-270,

Berlin, Heidelberg, 2006. Springer.
54

[10] Chidamber, S.R. and Kemerer, C.F. A Metrics Suite for Object-Oriented Design.
IEEE Trans. on Soft. Eng., pp. 476-493, 1994.

[11] D. Benz, K. Tso, and L. Schmidt-Thieme. Automatic bookmark classification: A
collaborative approach. In Proceedings of the Second Workshop on Innovations in

Web Infrastructure (IWI 2006), Edinburgh,Scotland, 2006.

[12] D. C. Kung, C. H. Liu, P. Hsia, “An object-oriented Web test model for testing
Web applications”, in Proceedings of IEEE 24™ Annual International Computer
Software and Applications Conference, Taipei, Taiwan, Oct. 2000, pp. 537-542.

[13] D. Jeftrey and N. Gupta, “Test Suite Reduction with Selective Redundancy,” Proc.
21st IEEE Int’l Conf. Software Maintenance, pp. 549-558, 2005.

[14] D. Leon, W. Masri, and A. Podgurski, “An Empirical Evaluation of Test Case
Filtering Techniques Based on Exercising Complex Information Flows,” Proc. 27th
Int’1 Conf. Software Eng.qpp: 412-421, 2005.

[15] D. Leon and A.. Podgurski, “A Comparison of Coverage-Based and
Distribution-Based Teehniques for Filtering and Prioritizing Test Cases,” Proc. 14th
Int’1 Symp. Software ‘Reliability Eng., pp. 442-453, 2003.

[16] E. J. Whitehead, Jr. and Y. Y. Goland; *WebDAV: A Network Protocol for
Remote Collaborative Authoring on the Web," in-6th European Conference on
Computer Supported Cooperative/Wark (ECSCW'99), Copenhagen,Denmark, 1999,

pp. 291-310.

[17] F. Ricca and P. Tonella, “Analysis and Testing of Web Applications”, In
Proceedings of the 23rd International Conference on Software Engineering, Toronto,
Ontario, Canada, 2001, pp.25-34.

[18] G. A. D. Lucca and A. R. Fasolino, “Testing Web-based Applications: The State of
the Art and Future Trends”, Information and Software Technology, 2006(48):
1172-1186.

[19] G. A. Bolcer and R. N. Taylor, "Endeavors: a Process System Integration
Infrastructure,™ in 4th International Conference on the Software Process (ICSP'96),

Brighton, UK, 1996, pp. 76-89.
[20] G. Di Lucca, A. Fasolino, F. Faralli, and U.D. Carlini, “Testing Web Applications,”
55

Proc. 18th IEEE Int’l Conf. Software Maintenance, pp. 310-319, 2002.

[21] Gilad Mishne. Autotag: a collaborative approach to automated tag assignment for
weblog posts. In WWW ’06: Proceedings of the 15th international conference on
World Wide Web, pages 953-954, New York, NY, USA, 2006. ACM Press.

[22] Hutchens, D.H. and Basili, V.R. System Structure Analysis: Clustering with Data
Bindings. IEEE Trans. on Soft. Eng., 11, pp. 749-757,1985.

[23] H. Halpin, V. Robu, and H. Shepard. The dynamics and semantics of collaborative
tagging. In Proceedings of the 1st Semantic Authoring and Annotation Workshop

(SAAW’06), 2006.

[24] H. Miao, Z. Qian, and B. Song, “Towards automatically generating test paths for
Web application Testing,” International’ Sympothium on Theoretical Aspects of
Sotware Engineering, 2nd IFIP/IEEE, 2008.

[25] Horwitz, S., Reps, T.,‘and Binkley, D.“Interprocedural slicing using dependence

graphs. ACM Trans. on Programming Languages and Systems, 22, pp. 26-60, 1990.

[26] J. A. Jones and M. J. Harrold, “Test Suite Reduction and Prioritization for
Modified Condition/Decision Coverage,” IEEE “Trans. Seftware Eng., vol. 29, no. 3,
pp. 195-209, Mar. 2003.

[27] Jon M. Kleinberg. Authoritative sources'in a hyperlinked environment. Journal of

the ACM, 46(5):604-632, 1999.

[28] J. Offutt, J. Pan, and J. Voas, “Procedures for Reducing the Size of
Coverage-Based Test Sets,” Proc. 12th Int’l Conf. Testing Computer Software, pp.
111-123, 1995.

[29] J. Offutt and W. Xu, “Generating Test Cases for Web Services Using Data
Perturbation,” Proc. Workshop Testing, Analysis, and Verification of Web Services,
2004.

[30] J. Sant, A. Souter, and L. Greenwald, “An Exploration of Statistical Models of
Automated Test Case Generation,” Proc. Third Int’l Workshop Dynamic Analysis,
May 2005.

[31] J. Whitehead, “Collaboration in Software Engineering: A Roadmap,” Future of
Software Engineering (FOSE’ 07), 2007.

56

[32] L. Dusseault, WebDAV: Next-Generation Collaborative Web Authoring, Prentice
Hall PTR, 2003.
[33] L. Wakeman and J. Jowett, PCTE: The Standard for Open Repositories: Prentice

Hall, 1993.

[34] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb:Automatically Testing
Dynamic Web Sites”, In Proceedings of 11th International World Wide Web
Conference, Honolulu, HI, USA, May 2002, pp. 654-668.

[35] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and A. Tomkins.
Visualizing tags over time. In Proc. of the 15th International WWW Conference,

Edinburgh, Scotland, 2006.

[36] M. Harder, J. Mellen, and M.D. Emsty “Improving Test Suites via Operational
Abstraction,” Proc. 25th Int’l Conf. SoftwareEng:, pp. 60-71, 2003.

[37] M. J. Harrold, R. Gupta, and M. L. Soffa, “A Mecthedology for Controlling the Size
of a Test Suite,” ACM: Trans. Software Eng. and Methodology, vol. 2, no. 3, pp.
270-285, July 1993.

[38] M. Wang, J. Yuan, H.-Miao, and G Tan, “A static analysis approach for automatic
generating test cases for Web,applications,” International Conference on Computer

Science and Software Engineering, 2008.

[39]M.R. Garey, D.S. Johnson, In: ViKlee (Ed.), Computers and intractability, a guide
to the theory of NP-completeness, Freeman, New York, 1979.

[40] Peter Mika. Ontologies Are Us: A Unified Model of Social Networks and
Semantics. In Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A.
Musen, editors, ISWC 2005, volume 3729 of LNCS, pp.22-536, Berlin Heidelberg,

November 2005. Springer-Verlag.

[41] S. M. Master and A. Memon, “Call Stack Coverage for Test Suite Reduction,” Proc.
21st IEEE Int’l Conf. Software Maintenance, pp. 539-548, 2005.

[42] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II, “Leveraging User Session
Data to Support Web Application Testing,” IEEE Trans. Software Eng., Vol. 31, No.
3, pp. 187-202, Mar. 2005.

57

[43] Selby, R.W. and Basili, V.R. Analyzing Error-Prone System Structure. IEEE Trans.
on Soft. Eng., pp. 141-152, 1991.
[44] Stevens, W.P., Myers, G.J. and Constantine, L.L. Structure Design. IBM Systems

Journal, 13, pp. 231-256, 1974.
[45] T. Y. Chen and M. F. Lau, “Dividing Strategies for the Optimization of a Test
Suite,” Information Processing Letters, vol. 60, no. 3, pp. 135-141, Mar. 1996.

[46] Tony Hammond, Timo Hannay, Ben Lund, and Joanna Scott. Social Bookmarking

Tools (I): A General Review. D-Lib Magazine, April 2005.

[47] William G. J. Halfond and Alessandro Orso, “Improving test case generation for
Web applications using automated interface discovery”, ESEC/FSE’07 Sep., 2007,
pp. 145-154.

[48] X. Jia and H. Liu, “Rigorous and automatic testing of Web applications”, In 6"
IASTED International Coenference on.Software Engineering and Applications, Nov.
2002, pp. 280-285.

[49] Y. Deng, P. Frankl, and J."Wang, “Testing Web Database.Applications,” SIGSOFT
Software Eng. Notes,Vol. 29, No. 5, pp. 1-10, 2004.

[50] Zhichen Xu, Yun Fu, Jianchang Mao, and: Difu:Su. Towards the semantic web:

Collaborative tag suggestions: In.Proceedings of the Collaborative

58

