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File-Based Sharing For Dynamically Compiled
Code On Dalvik Virtual Machine

Student: Yao-Chih Huang Advisor: Dr. Wuu Yang
Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Memory footprint is considered as an important design issue for
embedded systems. Sharing dynamically compiled code among virtual
machines can reduce memory footprint and recompilation overhead. On the
other hand, sharing writablenative code may cause security problems, due to
support of Native function call such as JNI. We propose a native-code sharing
mechanism that ensures the security for Dalvik. virtual machine on the
Android platform. Dynamically generated code is saved in a file and is shared
with memory mapping when other VMs need the same code. Protection is
granted by file-access permissions. To improve the security, we implement a
daemon process, named Query Agent, to control all accesses to the native
code and maintain all the information of traces, which are the units of the
compilation in the Dalvik VM. We implement our code sharing mechanism
on Android version 2.1 system, and experiment on an arm-based system. We
get 45% code-cache size reduction and 9% performance improvement from

eliminating recompilation overhead.

Keywords : Dalvik Virtual Machine, Android, memory footprint, JNI,
Trace-Based JIT Compiler, File-Based sharing, code sharing.
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Chapter 1

Introduction

Embedded systems are resource-constrained environments when compared
with general-purpose computers, such as personal.computers (PC). Usage
of memory would affect the overall efficiency of an embedded system. So,
maximizing the memory efficiency and reducing the memory footprint are
important issues.

The memory footprint of an embedded system consists of two parts: the
footprint of applications and that of the underlying operating system. In this
paper, we would focus on memory footprint reduction of applications [1].

Sharing libraries is a common way to reduce memory footprint [2, 3].
A shared library would be loaded into memory when needed and would be
dynamically shared among many processes. Today, the shared library is a

common practice in many system designs



Dalvik virtual machine, similar to Sun Hotspot virtual machine [4], would
identify hot methods and compiles them into native code with a dynamic
compiler at run time.

Generally speaking, native code that is generated by a dynamic compiler
would be stored at a memory area called code cache. In the Android platform,
every virtual machine would allocate its own code cache. Thus, native code
might be duplicated in several code cache and result in wasting of memory.
On the other hand, same native code may be compiled repeatly and result
in reduced performance.

So, sharing native code in the code cache among virtual machines can
reduce memory footprint: This sharing approach also avoids repeated com-
pilation of the same code and hence improve performance.

There exist two works about code sharing in VM : shMVM and MVM
[5]. Both of them share class meta-data, bytecode and dynamically compiled
code across multiple virtual machines. In shMVM, each virtual machine
runs in a separate OS process while MVM executes many VMs at the same
time within the same OS process. Both systems were derived from the Sun
Hotspot virtual machine.

FX!32 is a profile-directed binary translator [6]. It has two common tech-
niques : emulation and binary translation. The first time an x86 application

runs, the emulator generates an execution profile data. After the application



exits, the background optimizer would generate the native code according to
the profile data. The profile data and native code are saved on disk. This
is similar to our approach, but the difference is that FX!32 can’t share the
native code.

In our work, we only share dynamically compiled code across multiple
Dalvik VMs on Android platform. Nevertheless, sharing native code may
cause security problems from malicious memory modification, due to sup-
port of JNI features in Dalvik VM. Attacker can modify shared native code
through JNI without restrictions:

To resolve this problem; we propose a file-based sharing mechanism for
dynamically compiled code. Native code is saved in-shared file and is shared
with memory mapping when. other VMs need the same native code. Pro-
tection is granted by file-access permissions. To improve the security, we
implement a daemon process, named Query Agent, to control all accesses to
the native code and maintain all the information of traces. Note that traces
are the units of compilation in the Dalvik VM.

We implement our code sharing mechanism on the Android version 2.1
system, and experiment on an arm-based experiment board (named beagle-
board). Beagleboard is low-cost, fan-less single-board computer build on the
Texas Instruments OMAP3530 processor. OMAP3530 uses ARM Cortex-A8

as application processor [7]. Android version 2.1 comes with a trace-based



just-in-time (JIT) compiler. In our experiment, we obtain 45% code-cache
size reduction and 9% performance improvement from eliminating repeated
compilation.

The rest of this paper is organized as follows : The next section gives a
brief background about the Android platform, JNI and trace compilation.
Section 3 presents our file-based sharing mechanism architecture. Section 4

gives an experimental result. Section 5 is the conclusion.



Chapter 2

Background

In this section, we will introduce Dalvik VM and java Native Interface. In ad-
dition, we also introduce.trace-based dynamic compilation which is adopted

Dalvik VM.

2.1 Overview Android Platform And Dalvik

Virtual Machine

Android is a very popular platform in mobile device market. The Android
platform is the product of the Open Handset Alliance (OHA), a group of
organizations collaborating to build a better mobile phone. The group is led
by Google and the other companies in 2007.

Android is a complete operating environment based on the Linux ker-

b}



nel version 2.6. It takes Apache Harmony Java class library as core library.
Android applications is written in the Java programming language, but An-
droid applications can’t run within Java virtual machine directly. They must
execute through Dalvik VM. Dalvik VM has its own instruction set whose
name is the dalvik bytecode (dex code). Every Android application has to be
translated to the dex code, from java bytecode. There is a build-in tool called
dx is used to translate Java class files (.class) to dex file. Many classes are
covered in a single dex file. Duplicate strings and superfluous constants used
in multiple class would be contained only once'in dex file to save storage.
Dalvik VM is not similar to Java VM and most virtual machine we know
is stack-based machine. ~Dalvik VM is register-based machine. It can help
product better performance than stack-based machine. For example, register-
based machine can eliminate redundant memory operation like push and pop.
Dalvik VM implements simple garbage collectioon mechanism (mark-
sweep). It can’t translate the class to another class type arbitrary. With
the Dalvik VM, is executed within each android application within an OS
process. Thus, several Dalvik VMs will be executed simultaneously on the

Android platform [8, 9, 10, 11].



2.2 Java Native Interface

The Java native interface (JNI) is a powerful feature of the Java language
[12]. Java application could use native code written in other programming
languages such as C or C++, just like code written in the Java programming
language.

Before Android version 2.1, Dalvik VM only have interpreter. To improve
performance of applications, Dalvik VM offers JNI feature. Application can
access native library through JNI.

However, JNI may violate Java’s safety feature [13, 14]. The most obvious
part of the security problem come from inherently unsafe C code that can
read /write memory address arbitrary. Especially, if we share writable native
code across multiple virtual machines, someone with bad intentions may
crash the system by modifing shared native code through JNI. Thus, we
propose a file-based code cache to prevent this problem by setting of a shared

file-access permissions.

2.3 Trace Compilation In Dalvik VM

Traditional Just-In-Time (JIT) compilers in VMs, such as Sun’s Hotspot
VM, are method-based, which takes individual methods as compilation units.

It would detect hot methods and converts them to native code. However,



not the entire method is worth to compile. Although a hot method often
contains performance-critical parts, such as loops, but it usually also includes
some slow paths and non-loop code [15, 16, 17]. Nevertheless, method-based
compiler always analyze and compile entire method, even it only has some
worth compiling parts.

Trace-based compilation takes a finer granularity of translation and a
different hot-code detection approach. It would gather run-time statistics
of the interpreted bytecode to determine hot traces. When certain taken
of backward branch occur frequently, it means that might have a loop and
a loop header would be ddentified.  Once it identifies such loop header, it
would start to follow execution of the interpreter to record the sequence
of executed bytecode instructions.  The record would terminate when the
interpreter return to the loop start point eventually since it begin with the
loop start point. The resulting sequence of bytecode instructions is what we
called a trace. In other words, traces represent a single iteration through a
loop, and trace guarantees be the hot code in the entire program.

In Dalvik VM, the trace compiler looks for chunks of bytecode instructions
that are executed frequently by interpreter. It then converts these hot chunks
to straight-line code and store it in the code cache. It has tight integration
with the interpreter and only compiles small chunks that are important in

each application [18, 19].



Chapter 3

Overview of File-Based Native

Code Sharing Mechanism

To reduce memory footprint, native code generated by the JIT compiler is
made sharable. On the other hand, this approach may raise security issues.
An attacker could modify shared native code through JNI without any re-
striction. In order to solve this security problem, we propose a file-based
sharing mechanism for dynamically compiled code.

Figure 3.1 shows the architecture of our code sharing mechanism. Each
Dalvik VM (DVM) can save native code into a shared file after translating
hot traces in dex code to native code. Other Dalvik VMs can obtain (the
entry point of) the native code of the trace it needs by asking the query
agent. DVM executes the shared code from a memory-mapped shared file.

9
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Figure 3.1: Architecture-of File-based Sharing Mechanism for Dynamically

Compiled Code.

In this section, we introduce trace tags, which are used to identify different

traces, and the file-based sharing mechanism. Moreover, we implement a

daemon process, named Query Agent, to enforce security by controlling the

file-write permissions and compiled code write address.

3.1 Trace Tag

To search for a particular trace, we need a unique tag to identify each trace.

Consider Figure 3.2. In Dalvik VM, the interpreter would record the ad-
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dress of an instruction that is a potential trace header. (A potential header
is the target of a backward branch instruction.) The counter of this poten-
tial header will be incremented ecah time it is executed. When the counter
reaches a predefined threshold, the interpreter would begin to record a trace
that starts from the potential trace header and ends at a control-flow in-
struction, such as if. JIT would be notified after the interpreter enqueues
the trace. JIT translates the trace into native code. Finally, it would update
the hash table according to the trace header’s address.

Figure 3.3 is an example of trace construction in Dalvik VM for the
fixSlashes method in the.File class.. The number in a circle is the offset of
the first instruction of a-trace (not showned here) in the fizSlashes method.
A round rectangle represents a trace. A trace may contain one or more basic
blocks. As Figure 3 shows, every trace ends at a control-flow instruction, and
different traces would start from different starting addresses even though they
may contains other traces.

In other words, the original Dalvik VM identifies a trace by it’s trace
header address. However, a trace header’s addresses may be different in
the different Dalvik VMs. Thus, we must design a new tag that uniquely
identifies a trace across all different virtual machines.

In this work, We use the combination of the string that represents the
signature of the method which the trace belongs to, every opcode in this

12
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0x24 if-ne
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Ox1la const/16
Ox1c if-ne

e

Figure 3.3: Example of Trace.
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TRACEINFO (2): 0x4177b594 Ljava/io/File;fixSlashes
Compiler: Building trace for fixSlashes, offset 0x16
0x0049 aget-char

0x0065 sget-char

0x0013 const/16

0x0033 if-ne

Trace Tag : Ljava/io/File;fixSlashes:49:65:13:33,0x16
After Hash function : 3183876070, 0x16

Figure 3.4: Example of Trace Tag.

trace, and the offset of the«drace header-inthe method as the tag of a trace.
Consider the simple trace in<Figure 3.4. This trace belongs to the fixSlashes
method and the trace header’sioffset in the method head is 0x16. Then we
use the pair Ljava/i0/File;fizSlashes:49:65:13:33 and 0zx16 as the tag of this
trace. Nevertheless, in order to reduce memory usage and the number of
string comparison operations, we will hash the first part into a number. So,

we take the pair 3183876070 and 0x16 as the tag in our system.

3.2 File Permission and Query Agent

To avoid malicious and illegal memory modification, we protect the shared
native code with file-access permissions. The write permission is enabled

only before storing native code.

14



To improve the security, we create a daemon program Query Agent.
Query Agent maintains a global hash table that contains information about
all traces, such as offset of native code in the shared file, trace tags, and
the instruction set that is used. The file-access permissions are controlled by
Query Agent.

When a Dalvik VM compiles a piece of code, it asks the Query Agent to
allocate a starting address for the generated native code. A Dalvik VM also
asks the Query Agent for the offset of the native code that are compiled by
other VMs. With this approach, we not only control accesses to the shared

file but also reduce redundant trace compilations.

3.3 Workflow of the File-Based Native-Code

Sharing Mechanism

Figure 3.5 and Figure 3.6 show the workflow of the file-based native-code
sharing mechanism. Before each compilation, the compiler thread asks Query
Agent to check whether it already has the native code of the trace. According

to Query Agent’s reply, there are three cases:

i. There is compiled native code for the trace we query. In this case,

we do not need to compile the trace. Instead, the hash table of this

15
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11.

1ii.

Dalvik VM records related trace information. In this case, Query Agent

returns the native code’s entry offset.

Some other VM is compiling the same trace currently. In this case, we
do not need to compile the trace. Instead, in the local hash table, the
offset of the trace is -1 temporarily. Later, the actual offset of the trace

will be recorded in the local hash table.

This trace has not been compiled before. In this case, JIT asks the
Query Agent to allocate an installation offset and compile the trace.
Dalvik VM records in the hash table and the global hash table informa-
tion about the trace, including the trace tag, header size, instruction

set and installed offset, of native code after compilation.

Since in the Android system; several Dalvik VMs may run concurrently,

synchronization among multiple VMs must be considered. Sometimes, sev-

eral VMs may happen to request to compile the same trace. The fist requester

will compile the trace.

In addition to compiled native code, the shared file also includes some

VM helpers (called template code). As Figure 3.7 shows, the template code

is placed on the top of the code cache so that it can be invoked with a single

instruction. The trace compiler will generate a compilation layout for each

trace. A compilation layout contains native code body, chaining cells, trace

18



Execution count Template code

— Offset to chain cell counts

s <
Compilation layout

Code Body > \
Compilation layout

> {
ChainingCells Compilation layout

>  Chainingcell counts Compilation layout

N
Z

Trace Description o
Compilation layout

Literal pool

Figure 3.7: Compilation Layout And Content Of Code Cache.

description and the literal poeol. ~Since-every trace ends at a control-flow
instruction, it must jump to some point. The chaining cell stores the target
of the last branch instruction in a trace.

Currently, we use a single shared file to store native code of all traces,
because it is simpler to manage. Multiple shared files may cause internal
fragmentation due to the memory mapping requirement.

Our approach is similar to the Ahead-Of-Time (AOT) compiler. Actually,
this design can support both an AOT compiler and a JIT compiler. We

choose to use a JIT compiler to implement our mechanism in this work. In

19



Full program
4,695,780 Bytes

Hot methods

¥ 396,230 Bytes
8% of Program

Hot Traces
103,996 Bytes

26% of Hot methods
2% of program

Figure 3.8: The Proportion Of Trace In The system _server.

addition, Android version 2.1 already has a JIT compiler, which can help us
to implement our design. On the other hand, the JI'T compiler just keeps the
hot portion of the class library in the code cache, and it guarantees all the
code in the code cache is frequently used. Figure 3.8 presents the proportion
of traces in the system_server. As the figure shows, the total size of all traces
is just 2% of the whole program. Although the JIT compiler compiles the

traces (into native code) at run time, but the cost is negligible in the long
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Before unmap : codeCache : 0x41b97000 After unmap : codeCache 0x41b98000
0x41b9745f: Idr rO,[r5,#12] 0x41b9845f: Idr r0, [r5,#12]
0x41b97461: movs rl,#28 0x41b98461: movs rl1,#28
0x41b97463: Idr r2,[r5,#16] 0x41b98463: Idr r2,[r5,#16]
0x41b97465: cmp r0,#0 0x41b98465: cmp r0,#0
0x41b97467: beq.n 0x41b9747a 0x41b98467: beq.n 0x41b9847a
0x41b97469: str r2,[r0,r1] 0x41b98469: str r2,[r0,r1]
0x41b9746b: Idr r3,[r5,#12] 0x41b9846b: Idr r3,[r5,#12]
0x41b9746d: movs r0,#24 0x41b9846d: movs r0,#24
0x41b9746f: Idr r3,[r3,r0] 0x41b9846f; Idr r3,[r3,r0]
0x41b97471: Idr rO, [r5, #8] 0x41b98471: Idr r0, [r5, #8]
0x41b97473: cmp 3,10 0x41b98473: cmp r3,r0
0x41b97475: str r3,[r5, #0] 0x41b98475: str r3,[r5,#0]
0x41b97477: beq.n 0x41b97480 0x41b98477: beq.n 0x41b98480

Figure 3.9: Memory Map Same Native Code To Different Address

term. If we choose AOT eompiler, we have to use shared native code through
JNI. It would cause a lot"of overhead:

In general, we have to consider.the relocation issues of native code after
mapping. However, we found the code generated by the Dalvik JIT compiler
is already position independent. We map same native code to different ad-
dress, as figure 3.9 shown, every address of branch target with the mapping
address changed. Actually, the address of branch target would be computed
at runtime. So, we think the code generated by Dalvik JIT compiler is posi-
tion independent. Thus, we do not need to handle relocation issues.

With the execution of system, code cache would fill up eventually. In the

Android version 2.1, Dalvik VM would terminate the compile request until

21



VM restart. But in the Android version 2.2 (froyo), Dalvik VM would flush

whole code cache. Our work was implemented at Android version 2.1, thus

we follow the version 2.1’s approach.

idx:6
idx:7
idx: 8

idx: 6
idx:7
idx: 8

Collision!

Start Full Codecache | headerSize | Instruction | chain
Offset | signature offset set
14 3870789809 136 3 2 512
25 2578374 376 3 2 512
Collision Handle
Start Full Codecache | headerSize | Instruction | chain
Offset | signature offset set
14 3870789809 136 3 2 o3
25 278ITAITT 376 3 2 512
32 3213546655 443 3 2 512

Figure 3.10: Hash Collision Handle

To maintain the information of native code, we use many hash tables,

but hash table is hard to avoid collision. We would find the first empty

entry after collision entry when collision happened and record the first empty

entry number. Figure 3.10 is an example of collision handle. When collision

happened at index 6, we will find the first empty entry at index 8, and record
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index 8 at index 6’s chain field.
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Chapter 4

Experimental Results

We merge our mechanism into Oxdroid, which. is the Android version ported
to Beagleboard by 0xlab.[20]. Performance and memory usage are evaluated
for our design.

Ten applications are chosen from the Android market and executed au-
tomatically using SIKULI scripts [21]. The ten applications consist of two
benchmarks to test CPU performance on the Android platform, one appli-
cation for searching data from many search engines, and seven interesting
games. Information about applications is shown in Figure 4.1.

We start one application every 2.5 minutes. Some applications would be
terminated by the Activity Manager in Android when memory space is not
enough to execute the next application. In our experiment, at most four

applications run simultaneously in the system. Figure 4.2 shows the change
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Application Name

Description

rowboat a set of performance test applicationsfor the
Android Platform
Benchmark Tool measure phone performance
MultiSearch Search simultaneouslyon all selected engines

Frozen Bubble

Frozen Bubble game

Bs09lite

Baseball game

Replicalsland

Replicalsland game

Tossit Tossitgame
Air Attack Air attack game
Jewels 1.6 Jewelsgame v1.6

SoccerUnleashed

Soccer game

Figure 4.1: Application List.
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Figure 4.2: Code Cache Size Result.
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Figure4:3: Caffeinemark Result.

of total code cache size ‘during our experiment.  As the figure shows, the
total code cache size under our mechanism-is smaller than under the original
model. There are two reasons: (1) all applications can utilize the native code
generated by previous applications; and (2) we reuse the template code for
every Dalvik VM. In summary, code cache size is reduced by 45% in our
experiment.

For performance evaluation, we use the Caffeinemark benchmark to evalu-
ate performance. We execute Caffeinemark ten times to calculate the average
score. 9% improvement on the overall score is obtained from the reduction

of recompilations. Except the first iteration, all other iterations can benefit
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from reusing the native code generated. As Figure 4.3 shows, logic got the
best performance improvement, because logic constructs the most traces in
the Caffeinemark benchmark. [logic has more opportunity to eliminate re-
peated compilations than other benchmarks. Thus it can get the highest
reductions. However, sieve presents a little decrease because it does not

construct enough traces to amortize the overhead of our design.
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Chapter 5

Future Work

Our work still have some overhead due to maintain information of the trace,
and check whether have same native code or not by asking Query Agent. It
could eliminate redundant-checking overhead by optimize whole workflow, or
make a single independent process to do the compilation of the whole system.

Currently, we delete the shared file when the Android system shutdown.
We could reserve the shard file and related information of trace within Query
Agent, and reuse it to make start up time of the Android system faster than
original system.

In Android, to reduce power consumption and prevention malicious attack
from network, there have a restriction which every application if it need
network ability, it should register toward operating system. To protect the

security further and reduce duplicate native code, we apply daemon process
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and communicate by socket in our mechanism. So, if we want to make
every application can communicate with daemon process, we have to open
the network ability for every application even this application doesn’t need
the network ability. However this way would make the whole system under

exposure to dangerous.
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Chapter 6

Conclusion

In this paper, we present a native-code sharing mechanism. We share na-
tive code generated by the Just-In-Time compiler at runtime across multiple
virtual machines. To avoid malicious and illegal ' memory modification, we
propose file-based code cache to‘share native code by memory mapping and
protect native code by controlling file-access permissions. To enforce file per-
missions and avoid repeated compilation of the same trace, we implement a
daemon process, named Query Agent. At last, we get 45% code cache size
reduction from native-code sharing and 9% performance improvement from

avoiding of repeated recompilaions of the same code.
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