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在 Dalvik 虛擬機器上對動態編譯碼的檔案

基礎式共享 

 

 

學生:黃曜志         指導教授：楊 武 博士 

國立交通大學資訊科學與工程研究所 

摘 要  
 

    在嵌入式系統的環境中，記憶體的使用量被視為是一個重要的議題。

共享不同虛擬機器之間的動態編譯碼，可以減少重複編譯所產生的記憶

體使用量以及改善效能。另一方面，因為 Dalvik 虛擬機器提供了 Java 

Native Interface(JNI)，所以共享可寫入的原生碼可能會造成安全性的

問題。為此，我們提出一個對於 Dalvik 虛擬機器在 Android 平台上可

以確保安全性的原生碼共享機制。動態產生的原生碼會被存在檔案中，

當其他的虛擬機器需要相同的原生碼時，可以透過記憶體映射的方式來

分享原生碼。並且藉由控制檔案權限，來確保安全性。為了改善安全性，

我們實作了一個取名為 Query agent 的 daemon process，用來控制所有

原生碼的存取及保存所有原生碼相關的資訊。我們實作原生碼的共享機

制在 Android 2.1 的版本上，並且在 arm 基礎的系統上做實驗。我們獲

得了 45% 程式碼快取大小的縮減，並且藉由消除重複編譯的負擔來取得

9%的效能改善。 

 

 

關鍵字 : Dalvik 虛擬機器、Android、記憶體使用量、JNI、Trace-Based 

JIT Compiler、檔案基礎分享、程式碼分享 
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Abstract 

                         
Memory footprint is considered as an important design issue for 

embedded systems. Sharing dynamically compiled code among virtual 

machines can reduce memory footprint and recompilation overhead. On the 

other hand, sharing writable native code may cause security problems, due to 

support of Native function call such as JNI. We propose a native-code sharing 

mechanism that ensures the security for Dalvik virtual machine on the 

Android platform. Dynamically generated code is saved in a file and is shared 

with memory mapping when other VMs need the same code. Protection is 

granted by file-access permissions. To improve the security, we implement a 

daemon process, named Query Agent, to control all accesses to the native 

code and maintain all the information of traces, which are the units of the 

compilation in the Dalvik VM. We implement our code sharing mechanism 

on Android version 2.1 system, and experiment on an arm-based system. We 

get 45% code-cache size reduction and 9% performance improvement from 

eliminating recompilation overhead. 

 

Keywords :  Dalvik Virtual Machine, Android, memory footprint, JNI, 
Trace-Based JIT Compiler, File-Based sharing, code sharing. 
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Chapter 1

Introduction

Embedded systems are resource-constrained environments when compared

with general-purpose computers, such as personal computers (PC). Usage

of memory would affect the overall efficiency of an embedded system. So,

maximizing the memory efficiency and reducing the memory footprint are

important issues.

The memory footprint of an embedded system consists of two parts: the

footprint of applications and that of the underlying operating system. In this

paper, we would focus on memory footprint reduction of applications [1].

Sharing libraries is a common way to reduce memory footprint [2, 3].

A shared library would be loaded into memory when needed and would be

dynamically shared among many processes. Today, the shared library is a

common practice in many system designs
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Dalvik virtual machine, similar to Sun Hotspot virtual machine [4], would

identify hot methods and compiles them into native code with a dynamic

compiler at run time.

Generally speaking, native code that is generated by a dynamic compiler

would be stored at a memory area called code cache. In the Android platform,

every virtual machine would allocate its own code cache. Thus, native code

might be duplicated in several code cache and result in wasting of memory.

On the other hand, same native code may be compiled repeatly and result

in reduced performance.

So, sharing native code in the code cache among virtual machines can

reduce memory footprint. This sharing approach also avoids repeated com-

pilation of the same code and hence improve performance.

There exist two works about code sharing in VM : shMVM and MVM

[5]. Both of them share class meta-data, bytecode and dynamically compiled

code across multiple virtual machines. In shMVM, each virtual machine

runs in a separate OS process while MVM executes many VMs at the same

time within the same OS process. Both systems were derived from the Sun

Hotspot virtual machine.

FX!32 is a profile-directed binary translator [6]. It has two common tech-

niques : emulation and binary translation. The first time an x86 application

runs, the emulator generates an execution profile data. After the application
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exits, the background optimizer would generate the native code according to

the profile data. The profile data and native code are saved on disk. This

is similar to our approach, but the difference is that FX!32 can’t share the

native code.

In our work, we only share dynamically compiled code across multiple

Dalvik VMs on Android platform. Nevertheless, sharing native code may

cause security problems from malicious memory modification, due to sup-

port of JNI features in Dalvik VM. Attacker can modify shared native code

through JNI without restrictions.

To resolve this problem, we propose a file-based sharing mechanism for

dynamically compiled code. Native code is saved in shared file and is shared

with memory mapping when other VMs need the same native code. Pro-

tection is granted by file-access permissions. To improve the security, we

implement a daemon process, named Query Agent, to control all accesses to

the native code and maintain all the information of traces. Note that traces

are the units of compilation in the Dalvik VM.

We implement our code sharing mechanism on the Android version 2.1

system, and experiment on an arm-based experiment board (named beagle-

board). Beagleboard is low-cost, fan-less single-board computer build on the

Texas Instruments OMAP3530 processor. OMAP3530 uses ARM Cortex-A8

as application processor [7]. Android version 2.1 comes with a trace-based
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just-in-time (JIT) compiler. In our experiment, we obtain 45% code-cache

size reduction and 9% performance improvement from eliminating repeated

compilation.

The rest of this paper is organized as follows : The next section gives a

brief background about the Android platform, JNI and trace compilation.

Section 3 presents our file-based sharing mechanism architecture. Section 4

gives an experimental result. Section 5 is the conclusion.
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Chapter 2

Background

In this section, we will introduce Dalvik VM and java Native Interface. In ad-

dition, we also introduce trace-based dynamic compilation which is adopted

Dalvik VM.

2.1 Overview Android Platform And Dalvik

Virtual Machine

Android is a very popular platform in mobile device market. The Android

platform is the product of the Open Handset Alliance (OHA), a group of

organizations collaborating to build a better mobile phone. The group is led

by Google and the other companies in 2007.

Android is a complete operating environment based on the Linux ker-
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nel version 2.6. It takes Apache Harmony Java class library as core library.

Android applications is written in the Java programming language, but An-

droid applications can’t run within Java virtual machine directly. They must

execute through Dalvik VM. Dalvik VM has its own instruction set whose

name is the dalvik bytecode (dex code). Every Android application has to be

translated to the dex code, from java bytecode. There is a build-in tool called

dx is used to translate Java class files (.class) to dex file. Many classes are

covered in a single dex file. Duplicate strings and superfluous constants used

in multiple class would be contained only once in dex file to save storage.

Dalvik VM is not similar to Java VM and most virtual machine we know

is stack-based machine. Dalvik VM is register-based machine. It can help

product better performance than stack-based machine. For example, register-

based machine can eliminate redundant memory operation like push and pop.

Dalvik VM implements simple garbage collectioon mechanism (mark-

sweep). It can’t translate the class to another class type arbitrary. With

the Dalvik VM, is executed within each android application within an OS

process. Thus, several Dalvik VMs will be executed simultaneously on the

Android platform [8, 9, 10, 11].
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2.2 Java Native Interface

The Java native interface (JNI) is a powerful feature of the Java language

[12]. Java application could use native code written in other programming

languages such as C or C++, just like code written in the Java programming

language.

Before Android version 2.1, Dalvik VM only have interpreter. To improve

performance of applications, Dalvik VM offers JNI feature. Application can

access native library through JNI.

However, JNI may violate Java’s safety feature [13, 14]. The most obvious

part of the security problem come from inherently unsafe C code that can

read/write memory address arbitrary. Especially, if we share writable native

code across multiple virtual machines, someone with bad intentions may

crash the system by modifing shared native code through JNI. Thus, we

propose a file-based code cache to prevent this problem by setting of a shared

file-access permissions.

2.3 Trace Compilation In Dalvik VM

Traditional Just-In-Time (JIT) compilers in VMs, such as Sun’s Hotspot

VM, are method-based, which takes individual methods as compilation units.

It would detect hot methods and converts them to native code. However,
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not the entire method is worth to compile. Although a hot method often

contains performance-critical parts, such as loops, but it usually also includes

some slow paths and non-loop code [15, 16, 17]. Nevertheless, method-based

compiler always analyze and compile entire method, even it only has some

worth compiling parts.

Trace-based compilation takes a finer granularity of translation and a

different hot-code detection approach. It would gather run-time statistics

of the interpreted bytecode to determine hot traces. When certain taken

of backward branch occur frequently, it means that might have a loop and

a loop header would be identified. Once it identifies such loop header, it

would start to follow execution of the interpreter to record the sequence

of executed bytecode instructions. The record would terminate when the

interpreter return to the loop start point eventually since it begin with the

loop start point. The resulting sequence of bytecode instructions is what we

called a trace. In other words, traces represent a single iteration through a

loop, and trace guarantees be the hot code in the entire program.

In Dalvik VM, the trace compiler looks for chunks of bytecode instructions

that are executed frequently by interpreter. It then converts these hot chunks

to straight-line code and store it in the code cache. It has tight integration

with the interpreter and only compiles small chunks that are important in

each application [18, 19].
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Chapter 3

Overview of File-Based Native

Code Sharing Mechanism

To reduce memory footprint, native code generated by the JIT compiler is

made sharable. On the other hand, this approach may raise security issues.

An attacker could modify shared native code through JNI without any re-

striction. In order to solve this security problem, we propose a file-based

sharing mechanism for dynamically compiled code.

Figure 3.1 shows the architecture of our code sharing mechanism. Each

Dalvik VM (DVM) can save native code into a shared file after translating

hot traces in dex code to native code. Other Dalvik VMs can obtain (the

entry point of) the native code of the trace it needs by asking the query

agent. DVM executes the shared code from a memory-mapped shared file.

9



Figure 3.1: Architecture of File-based Sharing Mechanism for Dynamically

Compiled Code.

In this section, we introduce trace tags, which are used to identify different

traces, and the file-based sharing mechanism. Moreover, we implement a

daemon process, named Query Agent, to enforce security by controlling the

file-write permissions and compiled code write address.

3.1 Trace Tag

To search for a particular trace, we need a unique tag to identify each trace.

Consider Figure 3.2. In Dalvik VM, the interpreter would record the ad-
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dress of an instruction that is a potential trace header. (A potential header

is the target of a backward branch instruction.) The counter of this poten-

tial header will be incremented ecah time it is executed. When the counter

reaches a predefined threshold, the interpreter would begin to record a trace

that starts from the potential trace header and ends at a control-flow in-

struction, such as if. JIT would be notified after the interpreter enqueues

the trace. JIT translates the trace into native code. Finally, it would update

the hash table according to the trace header’s address.

Figure 3.3 is an example of trace construction in Dalvik VM for the

fixSlashes method in the File class. The number in a circle is the offset of

the first instruction of a trace (not showned here) in the fixSlashes method.

A round rectangle represents a trace. A trace may contain one or more basic

blocks. As Figure 3 shows, every trace ends at a control-flow instruction, and

different traces would start from different starting addresses even though they

may contains other traces.

In other words, the original Dalvik VM identifies a trace by it’s trace

header address. However, a trace header’s addresses may be different in

the different Dalvik VMs. Thus, we must design a new tag that uniquely

identifies a trace across all different virtual machines.

In this work, We use the combination of the string that represents the

signature of the method which the trace belongs to, every opcode in this

12



Figure 3.3: Example of Trace.
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Figure 3.4: Example of Trace Tag.

trace, and the offset of the trace header in the method as the tag of a trace.

Consider the simple trace in Figure 3.4. This trace belongs to the fixSlashes

method and the trace header’s offset in the method head is 0x16. Then we

use the pair Ljava/io/File;fixSlashes:49:65:13:33 and 0x16 as the tag of this

trace. Nevertheless, in order to reduce memory usage and the number of

string comparison operations, we will hash the first part into a number. So,

we take the pair 3183876070 and 0x16 as the tag in our system.

3.2 File Permission and Query Agent

To avoid malicious and illegal memory modification, we protect the shared

native code with file-access permissions. The write permission is enabled

only before storing native code.

14



To improve the security, we create a daemon program Query Agent.

Query Agent maintains a global hash table that contains information about

all traces, such as offset of native code in the shared file, trace tags, and

the instruction set that is used. The file-access permissions are controlled by

Query Agent.

When a Dalvik VM compiles a piece of code, it asks the Query Agent to

allocate a starting address for the generated native code. A Dalvik VM also

asks the Query Agent for the offset of the native code that are compiled by

other VMs. With this approach, we not only control accesses to the shared

file but also reduce redundant trace compilations.

3.3 Workflow of the File-Based Native-Code

Sharing Mechanism

Figure 3.5 and Figure 3.6 show the workflow of the file-based native-code

sharing mechanism. Before each compilation, the compiler thread asks Query

Agent to check whether it already has the native code of the trace. According

to Query Agent’s reply, there are three cases:

i. There is compiled native code for the trace we query. In this case,

we do not need to compile the trace. Instead, the hash table of this

15
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Dalvik VM records related trace information. In this case, Query Agent

returns the native code’s entry offset.

ii. Some other VM is compiling the same trace currently. In this case, we

do not need to compile the trace. Instead, in the local hash table, the

offset of the trace is -1 temporarily. Later, the actual offset of the trace

will be recorded in the local hash table.

iii. This trace has not been compiled before. In this case, JIT asks the

Query Agent to allocate an installation offset and compile the trace.

Dalvik VM records in the hash table and the global hash table informa-

tion about the trace, including the trace tag, header size, instruction

set and installed offset of native code after compilation.

Since in the Android system, several Dalvik VMs may run concurrently,

synchronization among multiple VMs must be considered. Sometimes, sev-

eral VMs may happen to request to compile the same trace. The fist requester

will compile the trace.

In addition to compiled native code, the shared file also includes some

VM helpers (called template code). As Figure 3.7 shows, the template code

is placed on the top of the code cache so that it can be invoked with a single

instruction. The trace compiler will generate a compilation layout for each

trace. A compilation layout contains native code body, chaining cells, trace

18



Figure 3.7: Compilation Layout And Content Of Code Cache.

description and the literal pool. Since every trace ends at a control-flow

instruction, it must jump to some point. The chaining cell stores the target

of the last branch instruction in a trace.

Currently, we use a single shared file to store native code of all traces,

because it is simpler to manage. Multiple shared files may cause internal

fragmentation due to the memory mapping requirement.

Our approach is similar to the Ahead-Of-Time (AOT) compiler. Actually,

this design can support both an AOT compiler and a JIT compiler. We

choose to use a JIT compiler to implement our mechanism in this work. In

19



Figure 3.8: The Proportion Of Trace In The system server.

addition, Android version 2.1 already has a JIT compiler, which can help us

to implement our design. On the other hand, the JIT compiler just keeps the

hot portion of the class library in the code cache, and it guarantees all the

code in the code cache is frequently used. Figure 3.8 presents the proportion

of traces in the system server. As the figure shows, the total size of all traces

is just 2% of the whole program. Although the JIT compiler compiles the

traces (into native code) at run time, but the cost is negligible in the long

20



Figure 3.9: Memory Map Same Native Code To Different Address

term. If we choose AOT compiler, we have to use shared native code through

JNI. It would cause a lot of overhead.

In general, we have to consider the relocation issues of native code after

mapping. However, we found the code generated by the Dalvik JIT compiler

is already position independent. We map same native code to different ad-

dress, as figure 3.9 shown, every address of branch target with the mapping

address changed. Actually, the address of branch target would be computed

at runtime. So, we think the code generated by Dalvik JIT compiler is posi-

tion independent. Thus, we do not need to handle relocation issues.

With the execution of system, code cache would fill up eventually. In the

Android version 2.1, Dalvik VM would terminate the compile request until

21



VM restart. But in the Android version 2.2 (froyo), Dalvik VM would flush

whole code cache. Our work was implemented at Android version 2.1, thus

we follow the version 2.1’s approach.

Figure 3.10: Hash Collision Handle

To maintain the information of native code, we use many hash tables,

but hash table is hard to avoid collision. We would find the first empty

entry after collision entry when collision happened and record the first empty

entry number. Figure 3.10 is an example of collision handle. When collision

happened at index 6, we will find the first empty entry at index 8, and record

22



index 8 at index 6’s chain field.
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Chapter 4

Experimental Results

We merge our mechanism into 0xdroid, which is the Android version ported

to Beagleboard by 0xlab [20]. Performance and memory usage are evaluated

for our design.

Ten applications are chosen from the Android market and executed au-

tomatically using SIKULI scripts [21]. The ten applications consist of two

benchmarks to test CPU performance on the Android platform, one appli-

cation for searching data from many search engines, and seven interesting

games. Information about applications is shown in Figure 4.1.

We start one application every 2.5 minutes. Some applications would be

terminated by the Activity Manager in Android when memory space is not

enough to execute the next application. In our experiment, at most four

applications run simultaneously in the system. Figure 4.2 shows the change

24



Figure 4.1: Application List.

Figure 4.2: Code Cache Size Result.
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Figure 4.3: Caffeinemark Result.

of total code cache size during our experiment. As the figure shows, the

total code cache size under our mechanism is smaller than under the original

model. There are two reasons: (1) all applications can utilize the native code

generated by previous applications; and (2) we reuse the template code for

every Dalvik VM. In summary, code cache size is reduced by 45% in our

experiment.

For performance evaluation, we use the Caffeinemark benchmark to evalu-

ate performance. We execute Caffeinemark ten times to calculate the average

score. 9% improvement on the overall score is obtained from the reduction

of recompilations. Except the first iteration, all other iterations can benefit

26



from reusing the native code generated. As Figure 4.3 shows, logic got the

best performance improvement, because logic constructs the most traces in

the Caffeinemark benchmark. logic has more opportunity to eliminate re-

peated compilations than other benchmarks. Thus it can get the highest

reductions. However, sieve presents a little decrease because it does not

construct enough traces to amortize the overhead of our design.
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Chapter 5

Future Work

Our work still have some overhead due to maintain information of the trace,

and check whether have same native code or not by asking Query Agent. It

could eliminate redundant checking overhead by optimize whole workflow, or

make a single independent process to do the compilation of the whole system.

Currently, we delete the shared file when the Android system shutdown.

We could reserve the shard file and related information of trace within Query

Agent, and reuse it to make start up time of the Android system faster than

original system.

In Android, to reduce power consumption and prevention malicious attack

from network, there have a restriction which every application if it need

network ability, it should register toward operating system. To protect the

security further and reduce duplicate native code, we apply daemon process
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and communicate by socket in our mechanism. So, if we want to make

every application can communicate with daemon process, we have to open

the network ability for every application even this application doesn’t need

the network ability. However this way would make the whole system under

exposure to dangerous.
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Chapter 6

Conclusion

In this paper, we present a native-code sharing mechanism. We share na-

tive code generated by the Just-In-Time compiler at runtime across multiple

virtual machines. To avoid malicious and illegal memory modification, we

propose file-based code cache to share native code by memory mapping and

protect native code by controlling file-access permissions. To enforce file per-

missions and avoid repeated compilation of the same trace, we implement a

daemon process, named Query Agent. At last, we get 45% code cache size

reduction from native-code sharing and 9% performance improvement from

avoiding of repeated recompilaions of the same code.
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