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Abstract

Multiple antenna based Multiple-Input Multiple-Output (MIMO) systems employ-

ing Orthogonal Frequency Division Multiplexing (OFDM) have the potential of achieving

the capacity promised by information theoretical prediction. Though much progress to-

ward a practical high rate MIMO-OFDM system has been made, many related system

design issues remain to be settled. This thesis sets forth to solve the critical issue of the

preamble design for MIMO-OFDM systems.

We present a systematic method based on the frequency (transform) domain char-

acterization to generate a new family of sequences with the desired autocorrelation and

cross-correlation properties. Sequences having the desired properties can then be gen-

erated by taking inverse transform of some finite constellation points (BPSK, QPSK,

... etc.). We also demonstrate that some existing sequences can easily be generated by

our approach but our new family of sequences renders less constraints. The proposed

approach can easily be extended to synthesize two dimensional arrays or even higher

dimensions waveforms that possess the desired multi-dimensional correlation properties.

A preamble structure based on our new sequence family is suggested and algorithms

for frequency offset and channel estimations in MIMO-OFDM systems are developed.

Both theoretical analysis and computer simulation show that these algorithms yield

optimal performance.
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Chapter 1

Introduction

It has been shown that the capacity of a wireless communication system can be

greatly increased by employing multiple transmit and receive antennas. The Orthogonal

Frequency Division Multiplexing (OFDM) scheme, because of its proven superiority

over other wideband transmission alternatives, is a natural candidate choice for use in

conjunction with the Multiple-Input Multiple-Output (MIMO) technique. Although the

data rate of a MIMO-OFDM system can be increased drastically, the number of system

parameters that need to be estimated in either the initial link set-up stage or the regular

transmission stage increases as well.

Efforts to extend some existing OFDM based standards or products like the Local

Area Network (WLAN) (IEEE 802.11a) and Direct Video Broadcasting (DVB) such

that they are compatible with a MIMO scenario have been actively pursued recently.

The main purpose of this thesis is to design a preamble structure that is optimal for

MIMO-OFDM based WLAN systems. The main utility of a preamble is to facilitate

the receiver’s synchronization and channel estimation tasks (data-aided synchronization

and channel estimation) with as little overhead as possible. An ideal preamble wave-

form should therefore has high time and frequency resolutions while render little or no

ambiguity, be it resulted from multiple propagation paths or interference bearing simi-

lar structures. These desired properties usually entail a preamble that has a Dirac-like

auto-correlation (AC) and, if a family of preambles is in question, zero cross-correlation
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(CC). Practical considerations also require that the length of the preamble be arbitrary

and the family size be as large as possible while maintaining the above two properties.

Unfortunately, as far as a family of preamble sequences is concerned, one can not have

all the nice properties simultaneously. The trade-offs are discussed in Chapter 2.

It is instructive to consider a multiple-transmit-antenna signal as sum of different

user signals in a multiple access systems. Our investigation begins with the consideration

of some signature sequences that are being used in CDMA systems. Gold code [1] is a

popular choice but it is not appropriate for use as a training sequence of an OFDM system

for the following two reasons. Firstly, the length of the Gold code is limited to 2m−1 while

an OFDM frame size is often a power of 2 because of FFT implementation. Secondly,

the mutual interference caused by cross-correlation is not as low as desired especially

when short period code is used. Scholtz and Welch presented a class of sequences based

on [2] Group Characters. These sequences have similar autocorrelation properties as

m-sequences, and their cross-correlations can be smaller than those of Gold codes. But

the sequence duration must be a prime number and the cross-correlation is still not low

enough when the sequence duration is short. Walsh-Hadamard sequences are orthogonal

(zero cross-correlation) in a frame-synchronous condition but do not possess the desired

Dirac-like autocorrelation property, suffering from severe self-interference when multiple

propagation paths exist.

As one cannot have both the ideal auto-correlation and cross-correlation, an alter-

nate design philosophy is to sacrifice some of the desired properties that do not bring

in either self interference or interference from other system users. For example, the

autocorrelation at time-lags larger than the transmission channel’s multipath delay do

not contribute to self-interference (inter-symbol interference, ISI). A set of sequences,

called the PS sequences does have some desirable properties that can be applied to be

the preamble design for the case of interest to us. In the ensuing chapter we present a

new family of preamble sequences that have the desired AC and CC properties similar to
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those of the PS sequences but have less constraint on the sequence durations. We pro-

pose a transform (frequency) domain approach such that the AC and CC requirements

are directly transformed into the frequency domain identities. Although this approach

has been suggested to generate complex sequences with Dirac-like aperiodic AC property

and study some combinatorial design problems, as far as we know, it has never applied

to the design of preamble sequences with predetermined periodic AC and CC functions.

Our approach also has the benefit of interpreting the PS sequences from the fre-

quency (transform) domain’s viewpoint. The sequences proposed in [8] have perfect AC

properties and were used to generate the PS sequences. In Chapter 3, we explain why

the sequences of [8] can have perfect AC properties by using similar concepts of chapter

2. In Chapter 4, We extend the concepts developed for one-dimensional sequences to

multi-dimensional array sequences. In Chapter 5, we propose a preamble structure for

MIMO-OFDM WLAN systems, and show why our new sequence has some flexibility

when applied in OFDM systems. Chapter 6 presents algorithms for frequency offset

estimation and channel estimation. We show that the proposed preamble structure can

achieve the lower bound of the channel estimation mean square error.
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Chapter 2

Orthogonal Sequences and Related
Properties

Park et al. [3] invented a set of sequences (called PS sequences) that has excellent

periodic autocorrelation and cross-correlation properties. The periodic AC of the se-

quence is 0 except at periodic intervals and the CC function between properly selected

sequences is identical to 0 everywhere. Because of the AC and CC properties, they

propose to use the PS sequences as the signature sequences for a cellular CDMA sys-

tem that operates in an environment whose delay spread is less than the period of the

sequences. Without the bandlimiting effect, such a system is free from ISI and multiple

access interference (MAI) that limit the system capacity.

Our main interest is to find proper training sequences for use in a preamble so that a

MIMO-OFDM receiver can easily accomplish the link setup process within the pream-

ble period. The setup process includes at least package detection, frame and frequency

synchronization and channel estimation. Such a synchronization procedure involves the

detection and estimation of some signal and channel parameters in a multiple antenna

scenario. Conventional maximum likelihood (ML) paradigm solves this data-aided es-

timation and detection problem by an estimator-correlator type receiver structure and

necessitates the ideal AC and CC properties on the part of the training sequences. As

will become clear in the next section that one can not have both ideal AC and CC

properties. The next best thing one can have is something similar to the PS sequences,
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assuming a known delay spread channel. In that situation we can employ the PS se-

quences, using different members of the family in different transmit antennas during the

preamble period. To remove the constraint on the PS sequence length, we propose a new

family of sequences which have similar AC and CC behavior. Instead of using the ad

hoc approach of [3], we interpret the AC and CC requirements in the transform domain

and provide a simpler and more natural derivation. We offer a new simple derivation of

the PS family and show that the new family of sequences is a generalization of the PS

sequences.

2.1 Welch bound (Sarwate bound)

Sets of periodic sequences with good correlation properties are desired in many

communication applications. Oftentimes we hope to have a set of sequences whose AC

function has a single peak at the zero delay and whose CC values are identically zero.

Such sequences can be used to avoid or minimize the interference from other antennas

(or other users) and eliminate the ISI due to a multi-path channel. However, it is

observed that a set of sequences having good AC properties, e.g., PN sequences and

Gold sequences, does not have good CC properties. On the other hand, the ideal AC

requirement can not be met if the set has good CC properties. Walsh-Hadamard code

is a typical example. In fact the bounds on CC and AC of sequences derived in [4] and

[5] indicate that there is a tradeoff between AC and CC when designing sequences. For

convenience of reference we present these bounds in the followings.

Theorem 1 Let X denote a set of K complex-valued sequences of period N , i.e., for

every sequence u ∈ X, ui = ui+N , for all i ∈ Z, Z being the set of integers. The periodic

CC function θ(u, v)(·) for sequences u, v ∈ X is defined by

θ(u, v)(l) =
N−1∑
i=0

uiv
∗
i+l, l ∈ Z, (2.1)

where and a∗ denotes the complex conjugate of a.
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The periodic AC function θ(u)(l) for the sequence u is just θ(u, u)(l). We assume that

θ(u)(0) = N for all u ∈ X then it is obvious that |θ(u)(l)| ≤ N and |θ(u, v)(l)| ≤ N for

all u, v ∈ X. For the set X, the maximum periodic CC magnitude θc, and the maximum

out-of-phase periodic AC magnitude θa defined by

θc = max{|θ(u, v)(l)| : u, v ∈ X, u �= v, 0 ≤ l ≤ N − 1}

θa = max{|θ(u)(l)| : u ∈ X, 0 < l ≤ N − 1}

must satisfy

Theorem 2 For any set X of K sequences of period N satisfying θ(u)(0) = N for all

u ∈ X,

(
θ2

c

N

)
+

N − 1

N(K − 1)

(
θ2

a

N

)
≥ 1. (2.2)

The proof was given in [5]. Invoking this theorem, we assign properly-selected sequences

with period N(N ≥ 2) to different transmit antennas. For a MIMO receive it is necessary

to separate signals emitting from different transmitting antennas, or equivalently, it

should have the capability to resolve and estimate the impulse response of each sub-

channels between any pair of transmit-receive antennas. One way to achieve near-

optimal channel estimation is to use pilot sequences that have perfect CC properties,

i.e., θc = 0. If there are K transmit antennas, we need at least K different preamble

sequences. The above theorem implies that θa ≥ N
√

K−1
N−1

and, for a MIMO system with

two transmit antennas (K = 2), we have θa ≥ N√
N−1

≥ √
N . Thus even for a set of

only two sequences of length N with perfect CC properties, i.e., θc(l) = 0 for all l, it is

impossible for them to yield the ideal AC function θa(n) = 0. If we use these sequences

as the training signals in the system, the received signal will be interfered by their delay

versions in a multi-path environment. The above discussion convince us that instead

of trying to find a set of sequences with ideal correlation properties, we might as well

focus our attention on finding some set of sequences that have nonzero AC values at
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some desired positions n’s whose corresponding AC values θ(u)(n) = nl �= 0 meet our

requirements.

2.2 A new set of orthogonal sequences

In this section, we present a new set of sequences having some desired periodic AC

and CC properties. This new family of sequences is a generalized version of what had

been referred to as the PS sequences [3]. Notations and definitions are given first and

then a class of sequences to be used to generate the new family is introduced before

presenting the derivation of the new sequences and the associated properties.

2.2.1 Notation and definitions

Definition 1 Let us define the N × N DFT matrix with index m as

F (N,m)(k, l) = [W−klm
N ] = (Wm

N )−kl, (2.3)

where m is a natural number, k, l = 0, 1, . . . , N − 1, WN = ej2π/N and j =
√−1.

Definition 2 The diagonalized matrix D({xl}) associated with the sequence {xl} is de-

fined as

D({xl}) = diag({xl}). (2.4)

Definition 3 The quotient and residual functions Q and R corresponding to the devisee

and divisor (α, β) are defined as

Q(α, β) = q, R(α, β) = r, (2.5)

where α and q are integers, β is a natural number, and α = qβ+r with r = 0, 1, . . . , β−1.

The above definitions are adopted from [3] for convenience of comparison.
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2.2.2 FZC sequences

The well-known complex sequences, Frank-Zadoff-Chu (FZC) sequences [6], [7] ren-

der a Dirac-like periodic AC functions whose values are zeros for all non-zero lags. More

specifically, a FZC sequence {ak} of length N has entries of unity-modulus complex

numbers, i.e., ak = ejαk , k = 0, . . . , N − 1. When N is even, they are given by

ak = exp

(
j
Mπk2

N

)
, (2.6)

where M is an integer prime to N , while if N is odd,

ak = exp

(
j
Mπk(k + 1)

N

)
, (2.7)

where M is also an integer prime to N . It is proved that for any such length N sequence,

θ(a)(n) = Nδ(n), for n = 0, 1, . . . , N − 1. The single maximum of magnitude N occurs

at n = 0.

2.2.3 Generation of the new set of sequences

We now introduce a procedure to generate a family of sequences of length N = KNc

based on the FZC code. To begin with, we need a length-Nc sequence having perfect

AC property, i.e., the AC function of this sequence is zero for all non-zero delays. This

sequence will be refer to as the basis or the generating sequence henceforth. FZC se-

quence is a good candidate that meets our need. Denote the FZC code of length Nc by

the Nc-by-1 vector �x and let �c0,�c1, . . . ,�cK−1 be the sequences to be generated which have

the desired AC and CC properties with the vector �ci being the ith sequence of length

N .

Taking the Nc-point DFT of the vector �x, we obtain

X(k) =
Nc−1∑
n=0

xiW
kn
Nc

,WNc = e−j2π/Nc , and 0 ≤ k < Nc. (2.8)

The N -DFT of the vector �ci is

Ci(λ) =
N−1∑
n=0

ciW
λn
N ,WN = e−j2π/N , and 0 ≤ λ < N. (2.9)
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Using following assignments on Ci(λ) and λ

Ci(λ) =

{
KX(k) ; λ = Kk + i,

0 ; otherwise,
(2.10)

and taking the N -point IDFT on Ci(λ), we obtain a set of sequences of length N . This

procedure is illustrated in Fig. 2.1.

2.2.4 Properties of the new set of sequences

1. Autocorrelation function:

Let cl,i represents the lth element in the sequence vector �ci. The AC function of the

new sequence �ci is given by

θ(ci)(n) =
N−n−1∑

l=0

cl+n,ic
∗
l,i +

N−1∑
l=N−n

cl+n−N,ic
∗
l,i

= NW ni
N δ(R(n,Nc)) (2.11)

Before proving the AC function above, we need introduce some simple lemmas:

Lemma 1 The periodic autocorrelation function of x(n), θ(x, x)(n), is equivalent to the

circular convolution function between x(n) and x∗(−n).

Proof :

The periodic autocorrelation function of a sequence of length N , {x(n)}, is defined as

θ(x, x)(n) �
N−1∑
τ=0

x(n + τ)x∗(τ). The circular convolution function between x(n) and

x∗(−n) is

x(n) � x∗(−n) =
N−1∑
τ=0

x(n − τ)x∗(−τ)

=
N−1∑
τ=0

x(n + τ)x∗(τ)

= θ(x, x)(n) (2.12)

Using the same argument, we conclude that the cross-correlation function θ(x, y)(n) is

equivalent to x(n) � y∗(−n).

9



Lemma 2 For any two sequences x(n), y(n) with perfect CC property, i.e., θ(x, y)(n) =

0 for all integer n, their DFT’s must satisfy

X[k]Y [k] = 0, ∀ k.

Proof :

Perfect CC function implies θ(x, y)(n) = 0 for all n, or equivalently, as implied by

Lemma 1, x(n) � y∗(−n) = 0. Taking DFT on both sides, we have X[k]Y ∗[k] = 0.

Proof of (2.11)

Lemma 1 implies that the AC function for �ci is given by

θ(ci, ci)(n) = ci(n) � c∗i (−n). (2.13)

Taking N -point DFT on both side, we have

Θci,ci
(λ) = Ci(λ)C∗

i (λ), 0 ≤ λ < N. (2.14)

Substituting (2.10) into (2.14), Θci,ci
(λ) can be expressed as:

Θci,ci
(λ) =

{
K2X(k)X∗(k) ; λ = Kk + i,

0 ; otherwise,
(2.15)

where X(k)’s ares the Nc-point DFTs of the FZC sequence �x which is of length Nc.

Since �x is an FZC sequence, the AC function of �x is

θ(x, x)(n) = x(n) � x∗(−n) = Ncδ(n). (2.16)

Taking Nc-point DFT on (2.16), we have

Θ(x, x)(k) = X(k)X∗(k) = Nc. (2.17)

Comparing (2.15) and (2.17), we find out that Θc0,c0(λ) is an rate-expanded version of

Θ(x, x)(k), and K is the expanding rate. That is,

Θc0,c0(λ) =

{
K2Θ(x, x)(k) = K2Nc ; λ = Kk,

0 ; otherwise.
(2.18)
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Hence we can expect that the AC function of the newly generated sequence �c0 be periodic

with period Nc, i.e.,

θc0,c0(n) = Nδ(R(n,Nc)), (2.19)

where R(·) is defined in (2.5). The other Θci,ci
(λ)’s for 0 < i < K are simply frequency-

shifting functions of Θc0,c0(λ), i.e.,

Θci,ci
(λ) = Θc0,c0(λ − i). (2.20)

Fig. 2.2 gives a graphic explanation on this relation. The frequency-shifting operation

induces a phase rotation in time-domain. This means that

θci,ci
(n) = W ni

N θc0,c0(n) = NW ni
N δ(R(n,Nc)), (2.21)

where WN is defined by ej2π/N as before. The AC function has a nonzero value only

when R(n,Nc) = 0; i.e., n = INc, where I is an integer. One can control the interval

(period of the AC function) by choosing the value of Nc properly. Fig. 2.3 is a typical

plot for the AC function of the new sequences. In this example, the sequence length is

N = KNc = 2 × 32.

2. Crosscorrelation function:

Let us denote two new sequences as �ci and �cj. The CC function of the two sequences

is 0 if i �= j.

Proof :

From (2.15), we have ∀λ,

Θci,ci
(λ)Θcj ,cj

(λ) = 0, for i �= j, and 0 ≤ i, j < K. (2.22)

Substituting (2.14) into the equation above, we have:

Ci(λ)C∗
i (λ)Cj(λ)C∗

j (λ) = 0, for i �= j, and 0 ≤ i, j < K. (2.23)

It implies that

Θci,cj
(λ)Θ∗

ci,cj
(λ) = 0, for i �= j, and 0 ≤ i, j < K. (2.24)
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Hence Θci,cj
(λ) = 0 for all λ. By applying Lemma 1 and Lemma 2, we conclude that,

for i �= j, θ(ci, cj)(n) = 0 for all n. Hence they do have perfect CC properties.

The new set of sequences can be used as the training sequences for MIMO-OFDM

systems. The parameters K and Nc of the sequences are to be determined by the number

of transmit antennas and the length of the maximum delay spread.

2.2.5 Summary of the new set of sequences

The major attributes of the proposed family of sequences are :

1. Sequence are composed of complex numbers with unity magnitude.

2. The basis sequence determines the AC function in one period, and the CC properties

between sequences are determined by their DFTs.

3. Given a sequence of length Nc with the perfect periodic AC property, we generate

K different sequences of length KNc; all of them have periodic impulse-like AC function.

2.3 PS Sequences

In [3], a new class of polyphase sequences (called PS sequences) for CDMA systems

and its generation method are suggested. The PS sequence is of length Ns, where

Ns = KN2
b . The value K determines how many different sequences having excellent CC

function we can used. The value N2
b determines the period of the AC function of the

sequences. The PS sequences have perfect CC function so we can completely reject the

interference from other users in a multiuser system with these sequences. However, the

PS sequence still has some unwanted peaks in its AC function. It degrades the system

performance when the system is operated in a multi-path environment. Hence there

is a restriction in using the PS sequence in CDMA systems. The delay spread of the

reverse-link channels must be small. In this section, we will introduce the PS sequence

and its generation methods.

12



2.3.1 Generation of the PS sequence

Define the basic symbols as Nb (not necessarily distinct) symbols bi, i = 0, . . . , Nb−1,

all with equal magnitude. Without loss of generality, we assume bi’s are all located on

the unit circle in the complex plane. We first generate an orthogonal sequence from

bi’s. Simply take {W 0
Nb

, . . . ,WNb−1
Nb

}(uniformly distributed on the unit circle) as a set of

basic symbols. For a set of basic symbols {bi} and 1 ≤ m ≤ Nb − 1, we define the basic

orthogonal sequence matrix G of size Nb × Nb as

G = F (Nb,−m)D({bi}). (2.25)

The basic orthogonal sequence {gp} of length N2
b is defined by [8]

gp = GQ(p,Nb),R(p,Nb) (2.26)

or equivalently, if �g = [g0, g1, . . . , gN2
b −1]

T ,

�g = vec(GT ), (2.27)

where vec(·) denotes the stacking operator.

Using the basic orthogonal sequence {gp}, we form the Ns × K matrix H as

H = [hi,k], (2.28)

where

hi,k =

N2
b −1∑

p=0

gpδ(i − k − pK), (2.29)

Ns = KN2
b , δ(n) =

{
1, n = 0
0, n �= 0

, and K is a natural number.

The PS sequence matrix C of size Ns × K (or KN2
b × K) is defined as

C = [cl,k] =
1

Nb

F (Ns,−1)H. (2.30)

Each column vector of C forms a sequence {cl,k, l = 0, 1, . . . , Ns − 1} which is called a

PS sequence.

13



2.3.2 Properties of the PS sequences

1. Autocorrelation function:

The AC function of the PS sequence is given by

θ(c)(τ) =
Ns−τ−1∑

l=0

cl+τ,kc
∗
l,k +

Ns−1∑
l=Ns−τ

cl+τ−Ns,kc
∗
l,k

= NsW
τk
Ns

δ(R(τ,N2
b )). (2.31)

The AC function has a nonzero value only when R(τ,N2
b ) = 0; i.e., τ = IN2

b , where I is

an integer. We can control the interval or period by properly choosing the value of N2
b .

On the contrary, the PN sequence has nonzero values of the AC function at all intervals.

The PS sequence has better CC properties than the PN sequence. Fig. 2.4 is a typical

plot for the AC function of the PS sequences.

2. Crosscorrelation function:

Let us denote two PS sequences as {cl,kI} and {cl,kII}. The CC function of the two

sequences is 0 if kI �= kII .

2.4 Comparison

If we compare the proposed sequences with PS sequences, we can find that the main

difference between them is the choice of the basic orthogonal sequence. From (2.25)

to (2.27), a sequence of length N2
b with perfect AC function is generated. This step is

similar to generating a FZC sequence of length N2
b in our procedure. (This sequence may

be not the same with the sequence generated by (2.25), (2.26), and (2.27).) In fact, the

only constraint on the basis sequence is its AC property only. We can generate a family

of PS-like sequences as soon as we find a sequence with perfect AC function. Comparing

to the PS sequences, our new sequences have less constraint on sequence length. Fig.

2.3 represents a typical plot for the AC function of the new sequences whose length is

N = KNc = 2 × 32. Notice that we cannot generate PS sequences having the same AC

14



function as Fig. 2.3, since 32 �= N2
b , for any natural number Nb. We can also apply the

new concept discussed in section 2.2.4 to show why the sequence generated from (2.25),

(2.26), and (2.27) must be an orthogonal sequence. In chapter 3, we will explain it in

another point of view, which is different from what had been discussed in [8]. And from

(2.28) to (2.30), these steps are equivalent to the realization described in Fig. 2.2, such

that perfect CC properties can be obtained. However we give a much easier proof for

CC properties instead of the proof in the [3].
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Figure 2.1: Construct the Ci(λ)’s from the DFT points of the basis sequence.
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Figure 2.2: Θci,ci
(λ)’s for 0 < i < K are simply frequency-shifting functions of Θc0,c0(λ).
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Figure 2.3: The autocorrelation function of the new sequence.(K = 2, Nc = 32, and
N = KNc = 64)
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Figure 2.4: The autocorrelation function of the PS sequence.(K = 4, N2
b = 16, and

Ns = KN2
b = 64)
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Chapter 3

The Basis Sequence of the PS
Sequences

3.1 Preliminary

In the last chapter, we have shown that the PS sequences are generated by a basis

sequence with perfect AC property. One of the candidate basis sequences was that

presented in [8]. We will demonstrate that one can use the technique similar to that

discussed in Chapter 2 to explain why the sequences of [8] have perfect AC function.

For a set of basic symbols {bi} located on the unit circle (|bi| = 1), 0 ≤ m ≤ Nb − 1,

we define the basic orthogonal sequence matrix G of size Nb × Nb as

G = F (Nb,−m)D({bi}), (3.1)

where F (N,m)(k, l) = [W−klm
N ] = (Wm

N )−kl, 0 ≤ k, l < N , and WN = ej2π/N . Hence

F (N,1)�x is equivalent to the DFT of the time-domain vector �x, and F (N,−1)�y is equivalent

to the IDFT of the frequency-domain vector �y if the constant factor 1/N is omitted.

In the following discussion, we will omit the 1/N factor since it does not affect the AC

property. The basis sequence used in PS sequences is given by:

�g = vec(GT ), (3.2)

where vec(·) denotes the stacking operator. Here we give a more meaningful interpreta-

tion about that why the sequence generated in this way will have perfect periodic AC

function under some conditions.
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3.2 Generating basis sequences

We take the case for Nb = 3 as an example without loss of generality. Assume m = 1,

then:

G = F (Nb,−1)D({bi}) = F (Nb,−1)
[

�b0
�b1

�b2

]
, (3.3)

where �b0 = [b0 0 0]T , �b1 = [0 b1 0]T , and �b2 = [0 0 b2]
T . The ith column vector of the

matrix G, �gi , is equal to the Nb-IDFT of �bi. Since there is only one non-zero element in

the vector �bi and the elements in F are all of unit magnitude, the elements of �gi must

have identical magnitude. In order to make the explanation clear, we denote

G = [�g0 �g1 �g2] =

⎡
⎣ g0 g3 g6

g1 g4 g7

g2 g5 g8

⎤
⎦ . (3.4)

The relation between bi’s and gi’s is showed in Fig. 3.1. We proceed by invoking a

Figure 3.1: 3-IDFT of �bi. The elements of the matrix G, g0 ∼ g8, are complex number
with unit magnitude.

technique similar to (2.15). Performing the rate expanding on the time-domain vectors

�g0, �g1, and �g2 by inserting some zeros with an expanding rate of Nb = 3, we obtain the

expanded vectors (N2
b × 1)

�ge0 = [ g0 0 0 g1 0 0 g2 0 0 ]T (3.5)

�ge1 = [ g3 0 0 g4 0 0 g5 0 0 ]T (3.6)

�ge2 = [ g6 0 0 g7 0 0 g8 0 0 ]T . (3.7)
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After taking N2
b -DFT on the expanded vectors(sequences), the corresponding frequency-

domain sequences will repeat periodically. Then we do some time-shifting on �ge1 and

�ge2 such that there is no overlapping if we sum �ge0, �ge1, and �ge2 together. Denote the

time-shifted vectors as �ges0, �ges1, and �ges2, and then

�ges0 = [ g0 0 0 g1 0 0 g2 0 0 ]T (3.8)

�ges1 = [ 0 g3 0 0 g4 0 0 g5 0 ]T (3.9)

�ges2 = [ 0 0 g6 0 0 g7 0 0 g8 ]T . (3.10)

This shifting operation will cause some phase rotation in frequency-domain. In fact the

phase rotation is not important, and we will show the reason later. We depict these

steps in Fig. 3.2 in which the phase rotation effects are also shown.

Summing the vectors �ges0, �ges1, and �ges2 together, we obtain

�g = �ges0 + �ges1 + �ges2 = vec(GT ). (3.11)

We plot the corresponding result in Fig. 3.3. The corresponding N2
b -DFT points of �g

are all with the same magnitude.

In order to explain the effects of the phase rotation, we need to recall some properties

introduced in chapter 2. Denote the AC function of a sequence x(n) as θ(x, x)(n) and

its Nc-DFT as Θ(x, x)(k), we hope that

θ(x, x)(n) = Ncδ(n), (3.12)

and

Θ(x, x)(k) = X(k)X∗(k) = Nc. (3.13)

These two equations had been mentioned in (2.16) and (2.17). Hence if we set X(k) =
√

Nce
jφk , i.e., all frequency components have the same magnitude, then (3.13) can be

achieved. The constant
√

Nc can be ignored since it does not affect the AC and CC

properties. Notice that there is no constraint on the choice of {φk}. We can conclude
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that a sequence has perfect periodic AC property if all of its frequency components

have the same magnitude. Hence the new sequence �g has perfect AC property. This

statement also explains why the phase rotation induced from the time-shifting operation

is not important. From Figs. 3.2 and 3.3, we also can get the idea why the transpose

and the stacking operations in (3.2) are needed. Up to now, we have concentrate our

0 0 0 0
T

b b

1 10 0
T

b b

2 20 0
T

b b

Figure 3.2: Rate-expanding and time-shifting. The time-domain sequences and their
corresponding frequency-domain sequences are showed.
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Figure 3.3: Generate the new sequence with perfect periodic AC property. All frequency
components are of equal magnitude.

discussion on the case m = 1 only. The case m �= 1 is the subject of our next discourse.

We need to re-define some notations.

Let Xi(k) = biδ(k− i), then [Xi(0), Xi(1), . . . , Xi(Nb − 1)]T = �bi. Taking Nb-point

IDFT on X(k)’s, we get a sequence xi(n), for 0 ≤ n ≤ Nb−1, and [xi(0), xi(1), . . . , xi(Nb−
1)]T = �g

(m=1)
i � �g

(1)
i . This is equivalent to the case discussed before for m = 1. The ith

column vector of the matrix G(m) with m �= 1 can be written as:

�g
(m)
i = [x

(m)
i (0), x

(m)
i (1), . . . , x

(m)
i (Nb − 1)]T , (3.14)

where

x
(m)
i (n) =

Nb−1∑
k=0

Xi(k)W kmn
Nb

= biW
imn
Nb

. (3.15)

For the case that m = 1, x
(1)
i (n) = xi(n) = biW

in
Nb

. We can observe that x
(m)
i (n) is a

phase-rotated version of xi(n). Hence we have following relations:

xi(n)
DFT−→ Xi(k) = biδ(k − i) =⇒ x

(m)
i (n)

DFT−→ Xi[(k − i(m − 1))Nb
], (3.16)

and Xi[(k − i(m − 1))Nb
] = biδ[(k − im)Nb

]. For convenience, we will use the notation

(n)Nb
to denote (n modulo Nb). The term biδ[(k − im)Nb

] means that the effect of
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different values of m is simply the step size of index shifting in frequency-domain. If we

can keep the shifted tones still non-overlapping, the sequence vec{G(m)T} can preserve

perfect periodic AC property. To change another words, if there are some values of

m such that the sequence vec{G(m)T} has perfect AC function, then we can find a

column-reordered matrix P from the diagonal matrix D({bi}) = [�b0, . . . ,�bNb−1], such

that F (Nb,−m)D({bi}) = F (Nb,−1)P. The RHS is the case that m = 1, which has been

discussed. Now we check what the values of m should be such that the shifted tones are

still non-overlapping. We consider two cases separately, depending on if m is prime to

Nb or not.

Case I g.c.d.(m, Nb) = 1

If there is one tone lapped over another after being shifted, then

im mod Nb = jm mod Nb, for i �= j, 0 ≤ i, j < Nb.

⇒ (i − j)m mod Nb = 0

⇒ (i − j)m = pNb, p ∈ Z (3.17)

The assumption that g.c.d.(m, Nb) = 1 implies that Nb|(i − j), ∴ i = j. We thus

conclude that if there are two tones with i �= j, they will not overlap after shifting.

Example 1 Consider the case, Nb = 4,m = 3,W4 = ej2π/4, and�b = {W 1
4 ,W 2

4 ,W 3
4 ,W 4

4 }.
In this case we have g.c.d.(m, Nb) = 1. The basic orthogonal sequence matrix G is de-

fined by F (Nb,−m)D({bi}). Taking DFT on each column vector of G(m), we get the column

vectors of P . The result is shown in Fig. 3.4, and the AC function of the sequence

vec(G(m)T
) is plotted in Fig. 3.5.

Case II g.c.d.(m, Nb) = d:
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Let m = hd, Nb = kd, and g.c.d.(h, k) = 1.

im mod Nb = jm mod Nb

⇒ (i − j)hd mod kd = 0

⇒ (i − j)h mod k = 0

⇒ (i − j)h = qk, q ∈ Z (3.18)

g.c.d.(h, k) = 1 ⇒ k|(i − j) ∴ i = j mod k.

Hence there will be d tones lapped together. We can denote {j, j + k, j + 2k, . . .} as a

coset. There will be d elements in this coset and one can find N/d different cosets.

From the above discussion we conclude that the sequence vec{G(m)T} has perfect

periodic AC property if g.c.d.(m, Nb) = 1.

Example 2 Consider the case–Nb = 4,m = 2,W4 = ej2π/4, and�b = {W 1
4 ,W 2

4 ,W 3
4 ,W 4

4 }.
In this case we have g.c.d.(m, Nb) = 2. The basic orthogonal sequence matrix G(m) is

defined by F (Nb,−m)D({bi}). Taking DFT on each column vector of vec(G(m)T
), we obtain

the desired result as shown in Fig. 3.6. We notice that if we sum up all column vectors,

there must be some tones overlapping each other. Hence the AC function will not be

perfect; see Fig. 3.7.

The above discussion indicates that the sequence vec(G(m)T
) has perfect AC function if

g.c.d.(m, Nb) = 1. Furthermore, if the bi’s are of the same magnitude, the generated

sequence will be composed of complex numbers with the same magnitude. Observing

Fig. 3.3, we can notice that the elements of the sequence have the same magnitude both

in time-domain and frequency-domain. As mentioned before, a sequence has perfect

AC function if all of its frequency components have the same magnitude. Hence if we

exchange the roles of the “time-domain” sequence and the “frequency-domain” sequence,

the AC property still can be maintained. Both the sequence generated in this chapter

and the FZC sequence have this property. With this property, the step of (2.10) can be
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modified as

Ci(λ) =

{
Kxk ; λ = Kk + i,

0 ; otherwise.
(3.19)

Then the reduced sequence generation procedure is identical to that of the PS sequence.
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Figure 3.4: g.c.d.(m, Nb) = 1. Magnitude plot for the DFT of each column vector of
G(m).
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Figure 3.5: g.c.d.(m, Nb) = 1. AC function of the sequence of m = 3.
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Figure 3.6: g.c.d.(m, Nb) �= 1. Magnitude plot for the DFT of each column vector of
G(m).
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Figure 3.7: g.c.d.(m, Nb) �= 1. AC function of the sequence of m = 2.
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Chapter 4

Multi-dimensional Arrays

Like the one dimensional (1D) case, two dimensional (2D) arrays that possess some

desired AC or CC properties are useful in sonar/radar and multimedia applications.

Similarly, higher dimensional array signal are needed in some cognitive radio and com-

puter graphics. In this chapter, we extend the concepts developed for one-dimensional

sequences to two or higher dimensions cases. The notations and definitions used here

follow those of [9].

4.1 Array correlation functions

Let an array sequence A = ai,j be denoted by

A =

⎡
⎢⎢⎣

a0,0 a0,1 · · · a0,N2−1

a1,0 a1,1 · · · a1,N2−1

· · · · · · · · · · · ·
aN1−1,0 aN1−1,1 · · · aN1−1,N2−1

⎤
⎥⎥⎦ . (4.1)

The two-dimensional periodic AC function between two array sequences A and B having

the same dimensions is defined as

RA,B(φ, ω) =

N1−1∑
p=0

N2−1∑
q=0

ap,qb
∗
p+φ,q+ω. (4.2)

An array is called perfect array if its periodic AC function satisfies

RA,A(φ, ω) = RA(φ, ω) =

{
E, (φ, ω) = (0, 0)
0, (φ, ω) �= (0, 0)

, (4.3)
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where E =
N1−1∑
p=0

N2−1∑
q=0

|ap,q|2.
There are many earlier works on the syntheses of perfect arrays. We will apply one

of the synthesis methods introduced in [9] to obtain a perfect array. This method is

based on

Theorem 3 (Folding method) Let bl be a perfect sequence of length N = N1N2. Then

the array {am,n} defined by

am,n = bl, m = l mod N1, n = l mod N2 (4.4)

is perfect if gcd(N1, N2) = 1.

4.2 New 2D arrays

To begin with, we need a perfect array sequence. This sequence will be referred

to as the basis array. We apply the folding method to the FZC sequence of length

N1N2, where gcd(N1, N2) = 1, and then we get an N1 × N2 perfect array. Taking the

two-dimensional DFT on this basis array, we obtain

F (u, v) =

N1−1∑
p=0

N2−1∑
q=0

ap,qW
−pu
N1

W−qv
N2

. (4.5)

Suppose that the new arrays C(i)’s are represented by K1N1 ×K2N2 matrices, and their

corresponding two-dimensional DFT’s are F (i)(U, V ) defined by

F (i)(U, V ) =

K1N1−1∑
p=0

K2N2−1∑
q=0

c(i)
p,qW

−pU
K1N1

W−qV
K2N2

, i = 0, . . . , (K1K2 − 1). (4.6)

We assign F (i)(U, V ) according to

F (i)(U, V ) =

{
K1K2F (u, v) ; U = K1u + α, V = K2v + β
0 ; otherwise

, (4.7)

where i = K2α + β, 0 ≤ α < K1, and 0 ≤ β < K2.

This assignment is illustrated in Fig. 4.1. Taking the two-dimensional IDFT on

F (i)(U, V ), we obtain an array sequence C(i) of dimension K1N1 × K2N2, where the
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two-dimensional IDFT is defined by

C(i)(m,n) =
1

K1N1K2N2

K1N1−1∑
U=0

K2N2−1∑
V =0

F (i)(U, V )WmU
K1N1

W nV
K2N2

. (4.8)

Figure 4.1: (a) Construct the F (0)(U, V ) from the two-dimensional DFT points of the
basis array. (b) Different symbols represent the non-zero positions of F (i)(U, V ) for
different i’s; (K1 = 2, K2 = 2, N1 = 4, and N2 = 5.)

4.3 Properties of the new proposed 2D arrays

The new array sequences possess some desired properties similar to those in one-

dimensional case. The new array sequences C(i)’s are of dimension K1N1 × K2N2. The

AC function |RC(i)(φ, ω)| is periodic in both arguments–the period in φ is N1 while the

period in ω is N2. The CC function between any two arrays of C(i)’s is exactly zero and

we can have a family of K1 × K2 such array sequences.

Example 3 Suppose we have a perfect array of dimension N1 × N2 already. We can

generate K1K2 PS-like arrays of dimension K1N1 ×K2N2. Here we set N1 = 4, N2 = 5,

and K1 = K2 = 2. Applying the folding method to the FZC sequence of length 20,
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we have a 4 × 5 perfect array. Denote the FZC sequence as {bl}, l = 0, . . . , 19. The

corresponding perfect array {am,n} will be⎡
⎢⎢⎣

b0 b16 b12 b8 b4

b5 b1 b17 b13 b9

b10 b6 b2 b18 b14

b15 b11 b7 b3 b19

⎤
⎥⎥⎦ . (4.9)

By performing the procedure in the previous section, we can have K1K2 = 4 different PS-

like arrays. The magnitude plot of the AC function of these arrays, |RC(i)|, i = 0, . . . , 3,

is shown in Fig. 4.2. The magnitude of the AC function |RC(i)(φ, ω)| is periodic in both

two axes. The period along φ-axis is 4, and the period along ω-axis is 5.
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Figure 4.2: Magnitude plot for the two-dimensional periodic AC function of proposed
array sequences, |RC(i)|. (K1 = 2, K2 = 2, N1 = 4, and N2 = 5.)

4.4 Extension to multi-dimensional arrays

One of the key step in generalizing the technique of section 4.2 to synthesizing

multi-dimensional arrays is to find a multi-dimensional perfect array.
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Suppose we have an perfect array {ap1,p2,...,pn} of dimension N1 × N2 × · · · × Nn.

Taking n-dimensional DFT on this basis array, we have

F (p1, p2, . . . , pn) = F (�p) =

N1−1∑
p1=0

N2−1∑
p2=0

· · ·
Nn−1∑
pn=0

ap1,p2,...,pnW−p1u1

N1
W−p2u2

N2
· · ·W−pnun

Nn
.(4.10)

Suppose that the new arrays C(i)’s are K1N1 × K2N2 × · · · ×KnNn matrices, and their

corresponding n-dimensional DFT’s are F (i)(P1, P2, . . . , Pn):

F (i)(P1, P2, . . . , Pn) = F (i)(�P )

=

K1N1−1∑
p0=0

K2N2−1∑
p1=0

· · ·
KnNn−1∑

pn=0

c(i)
p1,p2,...,pn

W−p1P1

K1N1
W−p2P2

K2N2
· · ·W−pnPn

KnNn
, (4.11)

where i = 0, . . . , (K1K2 · · ·Kn − 1). Then we assign F (i)(�P ) by the following rule

F (i)(�P ) =

{
K1K2 · · ·KnF (p1, p2, . . . , pn) ; �P = f(�p, i)
0 ; otherwise

, (4.12)

where f(�p, i) defines the non-zero positions in transform domain for the ith new gener-

ated array. (similar to Fig. 4.1(b) in 2D case.) For a certain i, the non-zero positions in

transform domain are equally spaced along all axes.

The n-dimensional IDFT is defined by C(i)(p1, . . . , pn)

=
1

K1N1K2N2 · · ·KnNn

K1N1−1∑
P1=0

K2N2−1∑
P2=0

· · ·
KnNn−1∑

Pn=0

F (i)(�P )W p1P1

K1N1
W p2P2

K2N2
· · ·W pnPn

KnNn
.(4.13)

By applying n-dimensional IDFT on F (i)(�P ), we obtain an array sequence C(i) of

dimension K1N1 × K2N2 × . . . × KnNn. The CC function between any two generated

array sequences is exactly zero.
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Chapter 5

Preamble Structure for
MIMO-OFDM WLAN Systems

5.1 Backgrounds

5.1.1 MIMO-OFDM WLAN systems

In [10], a TDMA-like preamble structure was suggested for MIMO-OFDM system.

In this structure, conventional algorithms for synchronization, channel estimation, etc.

in SISO-OFDM system can be extended directly since the receiver can distinguish the

signals from different transmit antennas separately. However, the total length of the

proposed preamble grows linearly with the number of the transmit antennas. It is not

highly efficient because of the increased overhead. Moreover, when one transmit antenna

is idling, the receiver cannot get any information about the idling transmitter(ex.: chan-

nel information) during this period. Hence we hope to find a more efficient preamble

structure.

5.2 Proposed preamble structure

The preamble structure proposed here is based on the training symbol structure

in IEEE 802.11a standard[13], which is showed in Fig. 5.1. We will focus on the long

training symbol design. Channel estimation and fine frequency offset estimation are the

main tasks during the long training symbols. In conventional OFDM systems, several

34



algorithms based on long preamble symbols are presented to work jointly to attain syn-

chronization tasks and channel estimation. We are going to apply the new sequences

that we had been discussed to be the training sequences in the MIMO-OFDM WLAN

systems.

t1 t2 t3 t4 t5 t6 t7 t8 t9 GI2 GI GI GISIGNAL Data 1 Data 2T1 T2

8 + 8 = 16 µs

10 × 0.8 = 8 µs 2 × 0.8 + 2 × 3.2 = 8.0 µs 0.8 +3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs

Signal Detect,

AGC, Diversity

Coarse Freq.

Offset Estimation
Channel and Fine Frequency RATE SERVICE + DATA DATA

t10

Selection Timing Synchronize
Offset Estimation LENGTH

Figure 5.1: OFDM training structure in IEEE 802.11a standard. (We will redesign the
long training sequences.)

In the IEEE 802.11a standard, the guard interval is of length L, and it needs to be

larger than the maximum delay spread. Hence we should generate the PS sequences or

our new sequences according to the length of the guard interval. Since the maximum

delay spread is bounded, we can choose a suitable sequence length such that the un-

wanted peak values of the AC function can be avoided. By Choosing the new proposed

sequences of length N = KNc = 16K, where K is related to the number of transmit

antennas we use, the unwanted peak values of the AC function can be avoided. Consid-

ering the system with 2 transmit antennas, we need at least two new proposed sequences

with perfect CC properties. In this case, K = 2 and hence the period of the sequences

need to be N = 32. To suit the long training symbol length in 802.11a standard, we

simply set K = 4. This means this set of sequences can at most support 4 transmit

antennas. Fig. 5.2 shows the structure adopted in [10]. Fig. 5.3 shows the structure we

adopt. The overhead is highly reduced.
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Figure 5.2: A time orthogonal preamble for a MIMO configuration with 2 transmit
antennas. (The guard intervals are not shown in this figure.)

S1 S1

S
2

S
2

Tx1

Tx2

0 Ns 2Ns time (samples)

0 Ns 2Ns time (samples)

Figure 5.3: A coded orthogonal preamble for a MIMO configuration with 2 transmit
antennas.

5.2.1 Cyclic prefix

The cyclic prefix parts in conventional OFDM system are still necessary for some

consideration. For time-domain channel estimation algorithms, which will be introduced

in chapter 6, the added cyclic prefix can help us to preserve the periodic AC and CC

properties of the adopted sequences, even though we remove the cyclic prefix at the

channel estimation stage. Fig. 5.4 is the suggested preamble structure for a MIMO

configuration with 2 transmit antennas.

5.2.2 Length of the training sequence

We had introduced the PS sequences and a new set of orthogonal sequences in

chapter 2. Both of them have periodic AC and excellent CC properties. However, our

new sequences are more flexible to the sequences length. In different systems, the defined

training symbol length may be not the same. For example, the length of the training
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Figure 5.4: Suggested long training symbol structure for a MIMO configuration with 2
transmit antennas.

FEC
Coder

Interleaving+ IFFT GI

Addition

Symbol
Wave
Shaping

IQ
Mod.

HPA

Mapping

Figure 5.5: Transmitter block diagram for the OFDM PHY.

symbol defined in 802.11a and 802.16 are different. Hence a set of sequences with less

constraint on the sequences length is important for preamble signal design.

5.2.3 Constraints on the constellation of training symbols

In OFDM systems [13], the OFDM subcarriers shall be modulated by using BPSK,

QPSK, 16-QAM, or 64-QAM modulation depending on the transmission rate requested.

The encoded and interleaved are divided into groups to form symbols and then converted

into complex numbers representing BPSK, QPSK, 16-QAM, or 64-QAM constellation

points. The modulation symbols are mapped to the inputs of the IDFT block. These

operations are showed in Fig. 5.5. In previous discussion, we generate the training

symbols in time domain. If we want to generate them from frequency domain, which is

the case in IEEE 802.11a, we need to put the DFT values of these training sequences as
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the input of IDFT block. The DFT values of the sequences we adopted usually do not

fall on the constellations selected. Hence we propose another way to generate desired

training sequence from frequency domain.

Similar to the steps introduced in section 2.2.3, we need a basis sequence of length

Nc, x(n), with perfect AC function first. We hope that this sequence can be generated

from its IDFT, X[k], and X[k]’s are BPSK or QPSK constellation points. By using the

concepts discussed in chapter 3, we know that if all frequency components of a sequence

have the same magnitude, then perfect AC property can be achieved. Hence we simply

set X(k) =
√

Nce
jφk . There is no constraint on the phase of each frequency component.

Therefore, we can limit the choice of {φk} to finite M -ary constellation points, i.e.,

φk = exp

(
j
2πnk

M

)
, nk ∈ integer. (5.1)

Moreover, if the peak-to-average power ratio(PAPR) problem is further considered, the

complementary sequences can be applied[14].

5.3 Simulation environment

Subsequent discussion addresses the issues of synchronization, channel estimation

based on the proposed preamble structure. Our proposed algorithms are to be tested

through computer simulation of transmission over real-world wireless channels. Table

6.1 lists some parameters adopted in the IEEE 802.11a standard. Exponentially decayed

Rayleigh fading channels are used in our simulation with the impulse response given by

ht = αt + jβt, (5.2)

where

αt = N

(
0,

1

2
σ2

t

)
, (5.3)

βt = N

(
0,

1

2
σ2

t

)
, t = 0, 1, 2, · · · (5.4)
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σ2
t = σ2

0e
− tTs

Tmax , σ2
0 = 1 − e−

Ts
Tmax . (5.5)

Tsis the sampling period, TRMS is the root mean squared delay, and Tmax is the maximum

delay spread.

There are lots of works in literatures that discuss the channel capacity of the MIMO

systems, and we know that the channel capacity can be maximized if the sub-channels

from different transmit antennas to every receive antenna are independent. Hence we

generate the channel responses independently in our simulation.
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Chapter 6

Fine Frequency Offset Estimation
and Channel Estimation

6.1 Timing and frequency synchronization for SISO

OFDM systems

Commonly, a repetition preamble is proposed to allow timing and frequency synchro-

nization in digital communication systems. For SISO(Single Input and Single Output)

OFDM systems, most frequency and timing estimation methods utilize the periodic na-

ture of the time-domain signal by using a cyclic prefix, or by designing the training

symbol having repeated parts. The idea of them are based on maximizing the similarity

probability of the received sample sequences. In IEEE 802.11a standard, the preamble

consists of ten short OFDM training symbols used for timing and carrier recovery and

two identical long OFDM training symbols used for channel estimation. Schmidl and

Cox [11] use a training symbol containing two identical halves to estimate the frame

timing and frequency offset. We briefly describe the estimation method of [11] in sec-

tion 6.1.1. Some other algorithms are also suggested with different metrics [12], but the

principles are basically the same.
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6.1.1 Schmidl and Cox’s algorithms

Consider a OFDM system using N sub-carriers, and the sub-carrier spacing is 1/T ,

where T is the OFDM symbol duration. Then the baseband signal is given by

u(t) =
N−1∑
n=0

cne
(j2πfnt), 0 ≤ t ≤ T, (6.1)

where fn = n/T . The baseband signal is then up-converted to the radio frequency (RF)

and transmitted through the channel. At the receiver end, the signal is down-converted

to an intermediate frequency (IF), and demodulated. A carrier frequency offset of ∆f

causes a phase rotation of 2πt∆f . We need to compensate this with some methods,

otherwise it causes both a rotation of the constellation and a spread of the constellation

points similar to additive white Gaussian noise (AWGN). The samples of the transmitted

baseband OFDM signal u(t), assuming ideal Nyquist pulse shaping, can be expressed as

(excluding the cyclic prefix)

u(k) =
N−1∑
n=0

cne
(j2πkn/N), 0 ≤ k ≤ N − 1, (6.2)

with the sampling period is T/N . At the receiver, the samples are

r(k) = ej2πvk/Nu(k) + n(k), (6.3)

where is the carrier frequency offset normalized to subcarrier spacing; i.e., v ·1/T = ∆f .

Assume that our training symbol have two identical halves(excluding the cyclic

prefix), and each of them is of length L = N/2. Let the sum of the pairs of products be

P (d) =
L−1∑
m=0

(r∗d+mrd+m+L), (6.4)

where d a time index corresponding to the first sample in a window of 2L samples. This

window slides along in time as the receiver searches for the first training symbol. The

received energy for the second half-symbol is defined by

R(d) =
L−1∑
m=0

|rd+m+L|2. (6.5)
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The timing metric can be defined as

M(d) =
|P (d)|2
(R(d))2

. (6.6)

The estimated frame timing

d̂ = max
d

M(d) (6.7)

The main difference between the two halves of the training symbol will be a phase

difference of

φ = πT∆f (6.8)

which can be estimated by

φ̂ = angle(P (d̂)). (6.9)

Fig. 6.1 gives a typical metric plot when Schmidl and Cox’s synchronization algorithm

is adopted.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
Timing metric, the frame starting point is 400.

Sample Index d

M
(d

)

0 100 200 300 400 500 600
−0.5

0

0.5
Frequency offset estimation, the frame starting point is 400.

Sample Index d

φ

r.m.s delay spread = 50ns
frequency offset = 0.3 

Figure 6.1: A typical result of Schmidl and Cox’s synchronization algorithm. The esti-
mated frequency offset is in unit of the subcarrier spacing. (Parameters: r.m.s. delay
spread = 50ns, frequency offset = 0.3 subcarrier spacing, and SNR = 10dB.)

42



0 5 10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

M
ea

n 
sq

ua
re

 e
rr

or

SNR (dB)

Frequency offset estimation (2Tx−and−1Rx)

AWGN
r.m.s delay spread =50ns
r.m.s delay spread=100ns
r.m.s delay spread=150ns

Figure 6.2: MSE of the frequency offset estimator in different multi-path environments
(2Txs and 1 Rx). Frequency offset = 0.3 subcarrier spacing.

6.2 Frequency synchronization schemes for MIMO-

OFDM systems

We apply the synchronization algorithm for conventional OFDM systems to MIMO

systems directly. Here we make some assumptions that the first rays of the signals

emitted from all the transmit antennas arrive at the receive antennas at the same time,

and the frequency offsets corresponding to all different paths are the same. For the

case that multiple transmit antennas and single receive antenna are used, the metric

computation formula is still the same as (6.6), but the received signal model becomes

r(k) =
Nt∑
i=1

ej2πvk/Nui(k) + n(k). (6.10)

For the case that multiple receive antennas are also used, we can apply some diversity

combining schemes to provide better performance. Fig. 6.2 shows the simulation result

for channels with different delay spread. We can observe that the frequency offset
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Figure 6.3: MSE of the frequency offset estimator for systems of different number
of transmit antennas. (Frequency offset=0.3 subcarrier spacing and r.m.s. delay
spread=50ns.)

estimator has better performance when operated in a environment with larger delay

spread. Fig. 6.3 shows the performance for systems with different number of transmit

antennas under the same environment. The total transmit power is constant.

6.3 Channel Estimation

6.3.1 System model

With the proposed preamble structure, the receiver end can separate the signals

originated from different transmit antennas. Hence we can estimate the channel impulse

responses of all different sub-channels with the aid of the knowledge of the preamble

signals. Here we take the simplest system, a 2×1 systems (2 transmit antennas and one

receive antenna, see Fig. 6.4), as an example without loss of generality. Fig. 5.4 shows

the corresponding preamble structure. Notice that the cyclic prefix (or guard interval)

is necessary to maintain the good periodic AC and CC properties. The receive antenna
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Figure 6.4: A system with two transmit antennas and one receive antenna.

need two matched filters to estimate channel responses. We describe the algorithm as

follows.

System model:

The transmitted data vector from k ’th transmit antenna during the preamble is written

as

[sk0, sk1, . . . , sk(Ns−1), skNs , sk(Ns+1), . . . , sk(2Ns−1)]
T , k = 1, 2. (6.11)

Notice that the skt’s are the preamble signals and skt = sk(t+Ns) for t = 1, . . . , Ns.

With correct frame timing synchronization and perfect frequency offset compensation,

the processed received samples during the preamble can be expressed as: (cyclic prefix

is removed)

�r = [r0, r1, . . . , rNs−1, rNs , rNs+1, . . . , r2Ns−1]
T . (6.12)

The element ri in the received vector can be written as

ri =
L−1∑
t=0

[h1ts1(i−t) + h2ts2(i−t)] + ni, (6.13)

where {h1t} and {h2t} are the channel impulse responses corresponding to the two dif-

ferent sub-channels, and the ni’s are modelled as additive white Gaussian noise. The
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length of channel response is assumed to be less than or equal to L. Our goal is to

extract the information of {h1t} and {h2t} from the received data vector.

6.3.2 A least square error channel estimator

Define �r(t) = [rt, rt+1, . . . , rt+Ns−1]
T and �sk = [sk0, sk1, . . . , sk(Ns−1)]

T . For correct

frame timing, i.e., t = 0, and correct frequency offset compensation, ignoring the time

index, the receive signal can be expressed as:

�r = Sh + �n = [S1S2]

[
�h1

�h2

]
+ �n, (6.14)

where

Si =

⎡
⎢⎢⎢⎣

si0 si(−1) . . . si(−L+1)

si1 si0 . . . si(−L+2)
...

...
...

si(Ns−1) si(Ns−2) . . . si(−L+Ns)

⎤
⎥⎥⎥⎦

Ns×L

(6.15)

Notice that si(−t) = si(Ns−t) for 1 ≤ t < L since cyclic prefix is added. The least square

channel estimator becomes

ĥ =

[
�̂h1

�̂h2

]
= (SHS)−1SH�r, (6.16)

if the matrix SHS is full rank. For zero-mean white Gaussian noise, the channel estima-

tion mean squared error is

MSE = E[(h − ĥ)H(h − ĥ)]

= σ2
ntrace{(SHS)−1}

= σ2
n

∑
i

1

λi

, (6.17)

where λi’s are the eigenvalues of the matrix (SHS). Now we want to minimize the term∑
i

1
λi

. But we have some constraint on the eigenvalues λi’s. The total energy of the

training sequences need to be a constant, i.e., trace{SSH} should be a constant. Also,

we have the equality that trace{SSH} =
∑
i

λi. So the problem is reduced to:

⎧⎨
⎩

minimize
∑
i

1
λi

subject to
∑
i

λi = constant.
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This can be solved by the method of Lagrange’s multipliers[15]. The optimum solution

must satisfy SHS = EsI, where Es is a constant. We can verify that our training

sequences satisfy this criterion with Es = Ns since the training sequences we adopted

have good AC properties within the maximum lags L and perfect CC properties between

different sequences. Hence the estimator can be further reduced to

ĥ =

[
�̂h1

�̂h2

]
=

1

Ns

SH�r. (6.18)

The implementation of the estimator for one sub-channel is simply a matched filter.

Since the contents of the two training symbols are identical, and the noise samples

are statistically independent, averaging them can be used to improve the quality of the

channel estimate. This is a common way to lower the noise variance in OFDM systems

because of the repeated preamble structure. Hence the modified channel estimator

becomes:

ĥ =

[
�̂h1

�̂h2

]
=

1

2Ns

SH [�r(0) + �r(Ns)]. (6.19)

The results we have can be extended to the system with multiple transmit antennas.

6.3.3 Numerical results

Reported in this subsection is some numerical simulation results for our channel

estimation algorithm. Table 6.1 lists some simulation parameters. Fig. 6.5 shows the

estimation result for one sub-channel for the case that the r.m.s. delay spread is 50ns.

The lower bound of the performance is also depicted in this figure. We can provide

better performance by averaging because of the repeated preamble structure. For the

cases that the channel response length is within the guard interval length, the optimal

performance can be obtained, and it is independent of the channel response length. For

the case that the channel response length is slightly longer than guard interval, the per-

formance does not degrade seriously. Generally speaking, the channel gains with delay

larger than guard interval length are small enough such that we can just ignore them.
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Fig. 6.6 shows the simulation result for channels with different r.m.s. delay spread.

In this chapter, the channel estimation is done in time domain. Of course, we

still can estimate the channel responses in frequency domain since the training sym-

bols occupy different bands for different transmit antennas. However, the performance

will degrade. Generally speaking, the time-domain channel estimator outperforms the

frequency-domain channel estimator when the mean squared channel estimation error

is considered [16][17]. In our case, if we want to estimate the channel response in fre-

quency domain, the performance will degrade more than the cases in SISO systems.

This is because that we need some interpolation algorithms to estimate the frequency

channel responses which are with no training tones. The “interpolation” will induce

more estimation error.
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Sample period 50ns Sequence parameters 

Guard interval 16 (samples) K 4

Training symbol 

length

64 (samples) Nc(Nb
2
)

(AC period) 

16

Table 6.1: Some simulation parameters adopted.
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Figure 6.5: Mean squared channel estimation error. Noise variance can be reduced by
averaging.
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Chapter 7

Conclusion

A set of training sequences for a multiple antenna system should have perfect AC

and CC properties within the maximum delay spread. This thesis presents a systematic

transform domain approach for generating such sequences. Preambles based on these

new sequences can be used in MIMO-OFDM WLAN systems. The new preamble se-

quences can be regarded as a generalization of the PS sequences proposed in [3] for both

can be generated by the same approach with different constraints. We show that the AC

function and CC function are closely related to the DFTs of the desired sequences. Our

method renders a natural interpretation and rigorous proof of the perfect AC function

of the sequences proposed in [8].

The relationships between some parameters of the sequences and the system specifi-

cations are established. Once the length of the OFDM guard interval is given, the length

of training sequence is determined by the number of the transmit antennas. We provide

a good solution when the elements of training sequence are limited to a finite constella-

tion. We also propose synchronization and channel estimation algorithms based on the

suggested preamble structure. Numerical simulation indicates that, since our preamble

sequences possess the desired properties, our channel estimator yields optimal perfor-

mance.

Several theoretical and implementation issues remain to be settled. For example, the

effects of I-Q imbalance, nonlinear distortions, Doppler offset and Doppler spread are
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likely to destroy and distort the original AC or CC properties, the robustness against

these channel or signal jitters is of great concern to both practitioners and theorists. On

the other hand, there are reports about the application of multi-dimensional signature

sequences for MIMO-OFDMA or other MIMO MA systems. Multi-dimensional signa-

ture sequences for Radar and sonar applications, though require different AC and/or CC

properties, have been studied before as well. But the design of these sequences usually

does not adopt the transform domain approach but involves a variety of other combi-

natorial and ad hoc techniques. We believe that our approach can provide a avenue for

discovering new sequences with desired properties.
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