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STABILITY ANALYSIS OF A NONLINEAR COUPLED-CORE
REACTOR CONTROL SYSTEM
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ABSTRACT-In this paper, stability-equation
method is applied to the analysis of a large
coupled-core reactor control system having
multiple nonlinearities and adjustable para-
meters. The characteristics of the limit-
cycle and the asymptotically stable regions
can be easily defined in a parameter plane.
A numerical example is given and comparisons
with other methods in current literature are
made.

I. INTRODUCTION

In current literature, several methods
have been applied to the analysis of large
coupled-core reactor control systems[l-3].
Raju and Stone[l] have derived an analytical
model and investigated system stability
using the describing function approach; Raju
and Josselson[2] have obtained conditions of
stability using the Popov criterion; Tsouri
and Rootenberg[3] have applied the Tsypkin
locus method for limit cycle and stability
analysis.

In the above mentioned methods, all the
systems are considered symmetrical, and it
is assumed that each system can be reduced
into two single-input, single-output systems
[1,3], then the single-output systems are
analyzed. In this paper, a general method
based upon the stability-equation method[4,5]
is proposed. The considered systems need not
be symmetrical and reduced. In addition, the
systems may have both nonlinearities and
adjustable parameters. The main approach of
the proposed method is to analyze system
stability and the existence of limit cycles
by finding the simultaneous solutions of
both the stability-equations[4,5] and the
harmonic-balance equations[6-13].
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where:

nl,n2 -deviations of power in core#l and
core#2, respectively,and n is taken
as proportional to neutron flux.

cl,c2 -deviations in average concentration
of delayed neutrons in core#l and in
core#2, respectively.

T1,T2 -deviations in temperature for core#l
and core#2, respectively.

K -proportionality constant between power
and temperature.

D -power coupling coefficient between
cores.

x -effective delayed neutron decay-time
constant.

b -fraction of neutrons delayed.
A -prompt neutron generation time.
r -reactivity-temperature coefficient.
a -heat removal coefficient.
h -steady-state power level.
p -reactivity.

Taking the Laplace transformation of Eq.(l),
the block diagram of the model including the
controller[1-3] is shown in Fig.l(a), where

II. AN ANALYTICAL MODEL OF THE
COUPLED-CORE REACTOR

The linearized equations of the coupled-
core reactor control system considered in
this paper are as follows[1-3]:

D D b rh h
n1- A 1nl A,- 2- A 1A1 TAlA -l

G (5) =G2 (S) = h
AS(1+T S)
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*Manuscript is first received by IEEE namely
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(2-b)

12( ) 21(S D
A (2-c)

Tm is the time constant of the control-rod
drive motor; N1 and N2 represent the on-off
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let 61 to be zero,then the harmonic-balance
equations[6-13] of loop-i and loop-2 are

Fig.l(a). Block diagram of the control system
for a large coupled-core reactor.

relays. The equivalent system block diagram
of Fig.l(a) is shown in Fig.l(b), where

W11 (S) =G1 (S) G11 (S) / A(S) (3-a)

21(S) =G1 (S) G11 (S) G21(S) G22(S) / A(S) (3-b)

12(S) =G2 (S) G11 (S) G12 (S) G22(S) / A(S) (3-c)

(3-d)W22 (S) =G2 (S) G22 (S) / A(S)

and A(S)=l-G11(S)G21(S)G21(S)G22(S).

Fig.l(b). Equivalent block diagram of the
system shown in Fig.l(a).

III. THE BASIC APPROACH

Consider the system shown in Fig.l(b).
Assume that the input signals to the nonli-
nearities N1 and N2 are

(4-a)a C=A1exp[j(wt+01)]
and

a 2=A2exp[j(wt+ 2)]

respectively, where A1 and A2 are the ampli-
tudes; 01 and 02 are the phase angles. Con-
sider a1 as the reference signal; i.e., to

(4-b)

A N1(al)w (jw ) +A2ej %2(a2) w12(jc ) =-1
(5-a)

and

A1N1 (a1)W21 (j w) +A2eje92(a2)W22 (j w) =-A2ej62
(5-b)

respectively, where e is the phase angle of
the input signal to tie nonlinearity N2 with
a1 as the reference signal; Nj(aj) and
N2(a2) are the describing functions(or equi-
valent gains [14,15]) of the nonlinearities
Ni and N2, respectively.

From Eq.(5-a), one has

e2- A1[ 1+N 1(a1)w11(iW) I
e

A2N2(a2) W12 ()

Similarly, Eq. (5-b) gives

j02 N1(a1)W21(i )
e

A2 [1+N2 (a2) W22 (X)I

(6)

(7)

Equating Eqs. (6) and (7) , one has

F (jw) =l+N1(a1)W 11 (jw) +N2(a2) W22 (jw)

+N1(a1)N2(a2) [wll(jc)w22(ij)
-W12 (jW)W21(jw) I =0 (8)

which is the characteristic equation of the
considered system. Note that Nj(aj) and
N2(a2) are considered as varying parameters.

Since N1 and N2 are two single-valued
nonlinearities[l,2], Eq.(8) can be decom-
posed into two stability-equations[4,5] as

F (w)=B1(W)+N1(a1)C1(w)+N2(a2) 1(

+N1(a1)N2 (a2) E2 (to) =0
and

F (w)=B2(w) +N1(a1) C2 (w) +N2(a2) 2(w)
+N1 (a1) N2 (a2) E2 (t) =0

From Eqs.(9), one has

B1 (t) +N1 (a1) c1 ()
N2(a 2)=-

D1 (wi) +N1 (al)E 1 (

Similarly, Eq. (10) gives

B2 (wi) +N1 (al)c 2 (w

N2(a 2)=- D(o ) +N1 (a1) E2 (

(9)

(10)

(11)

(12)
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Equating Eqs.(11) and (12), one has

[C1 (w)E2 (w)-C2 (w)E1 ()]N1 (a) 2+[C ()D ()

+B2 ()E l(w)-CI (w)D2(w)-B (w)E2(w)] x

N1 (a1) +[B2 (w) 01(w)-B1 ()D (w) ] =0
(13)

For specified values of frquency(w), the
values of Nj(a1) can be found by solving
Eq.(13), then the corresponding values of
N2(a2) can be found from Eq.(ll) or Eq.(12).

Fig.2. Root-loci of the stability-equations
for Case 1 with M=22.

For a number of suitable values of (A , the
real solutions(roots) of N1(a1) and N2(a2)
can be plotted in a N1(al) vs. N2(a2) plane.
The typical root loci for a latter case are
shown in Fig.2.

By use of Fig.2, the conditions of having
a limit cycle are explained as follows:

(i) Every point on the curves as shown in
Fig.2 represents a set of N1 (al), N2 (a2) and
w which can satisfy the condition that a
limit cycle may exist if the roots wei and
wo0 of the even and odd stability-equations
Fej Iw) and Fo w), respectively, are all real
and alternaX ing in sequence. There is an
exception, however, when one root pair is
equal to the other(i.e. , Wei = Woj=0 [4,5].But
unfortunately for nonlinear multivariable
systems, there are infinite number of solu-
tions which can satisfy this condition[13].
This is quite different from that of the
single-input, single-output systems.

(ii) If the root-loci shown in Fig.2 sepa-
rate the stable and unstable regions, then a
limit cycle may exist. The reason is that,
if the system becomes stable(unstable) when
the amplitudes A1 and A2 increase(decrease),
a stable limit cycle may exist at the stabi-
lity boundary[4,5,16].

(iii) A limit cycle may exist only if the
corresponding values of N1(a1) and N2(a2) of
the root-loci are less than the maximal gains

(Nlmax and N2max) of the nonlinearities. For
example, in Fig.2 only the section between
points Q2 and Q3 can give a limit cycle.

(iv) A limit cycle may exist only if the
roots N1(a,) and N2(a2) satisfy both Eqs.(5-
a) and (5-b). From Eqs.(5-a) and (5-b), the
possible simultaneous solution can be found
by equating the real and imaginary parts of
Eqs.(6) and (7), respectively; i.e.,

==0 (14)

where 026 and 027 represent the phase angles
found from Eqs.(6) and (7), respectively.

If the considered nonlinear system can
satisfy all the above four conditions, a
limit cycle may exist. The three parameters
A1, A2 and w of the limit cycle are defined
by Eqs.(9), (10) and (14). Additional expla-
nations are given in the following section.

IV. ANALYSIS OF THE CONTROL SYSTEM

CASE 1: Assume that the numerical values
of the parameters of the system considered
are at b=.0064,A=0.l,X=.00lsec,K=l0 F/MW.sec,
a=10/sec, r=.001/ F,h-=30MW,D=.0l5,B=.25MW,
T =0.07sec,and V=MxlO 6k/k.sec[3]. For M=22
and for a number of frequencies(w),the simul-
taneous solutions of Eqs.(9) and (10) are
shown in Fig.2 where the stability of each
region has been checked. At every point on
the root loci, it has been checked that the
roots wei and woj of the stability-equations
Fei(w) and Fo (w), respectively, are all real
and alternacing in sequence except that one
root pair is equal to the other(i.e., wei=
woj=W).

By inspecting the root-loci shown in
Fig.2, the section between points Q2 and Q3
can satisfy Conditions (i) to (iii). Solving
Eq.(14) along the section between points Q2
and Q3, the point Q (0.0163,0.0163) with
oscillating frequency w=22.77 rad/sec and
amplitudes A1=A2=1.703 can satisfy condition
(iv). Therefore, a limit cycle may exist at
point Q1. This fact is supported by checking
the roots woei and w0o of the stability-
equations in the neighborhood of point
Q1[16]. Fig.3 shows the wei and woj loci for
N1 (a1) is fixed at 0.0163(i.e., Ai=1.703)
while N2 (a2) is varying. From Fig.3(a), one
can see that if the value of N (a2 ) is less
than 0.0163 (i.e., A2 = 1.703), the roots wei
and woj are alternative in sequence, then
the corresponding system is stable[4,5,16].
If the value of N2 (a2) is larger than
0.0163,the corresponding system is unstable.
A similar result can be obtained when N2 (a2)
is fixed at 0.0163(i.e.,A2=1.703) and N1 (a1)
is varying. Therefore, a stable limit-cycle
will exist at the stability boundary where
N2 (a2)=0.0163; i.e., A2 =1.703.

In Fig.2, for another branch of the root-
loci, the corresponding values of N, (al) and
N (a ) are larger than the maximal gains of
N, (al) and N2 (a2), respectively; therefore,
no limit cycle can exist.



simulated result is quite
obtained by calculation.
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Fig.3. Root-loci of wei and wo. of the
stability-equations with fixed Nl(a1)
and varying N2(a2).

Note that the root-loci can also be
plotted in the A1 vs. A plane by solving
Eqs.(11), (12) and (13 which Nl(a1) and
N2(a2) directly relate to the describing
functions of the nonlinearities N1 and N2;
i.e.,

N (a 4V= B2-- /i i TrA 1 - A.2 )1/2
i 1

i=1,2 (15)

close to that

ai

W 22.63rad/Scc; Cr=02

t-sec

Fig.5. The simulated limit-cycle of Case 1
for M=22.

CASE 2: For the system considered in Case
1, assume that the nonlinearities N1 and N2
are replaced by two double-valued nonlinea-
rities[3] as shown in Fig.6. Then the descri-

I
V -

(a) (b)

The result is given in Fig.4 where point Q4
represents a stable limit cycle. In this
case condition (iii) is not necessary for
analysis.

3-

stable
2-

Fig.6. Nonlinearities of Case 2.

bing functions N1(a1) and N2(a2) of Eqs.(5)-
(8) are replaced by

Nk(ak)=Nkr(ak)+jNki (ak)

where Nkr= A I[(1- A 2 )/ (1-
k= k

N -- 2V (P-B)
ki TrA 2

k=1,2 (16)

p2 1/2

Ak2 ) I

Ak >

By using the same approach as in Case
Eq.(8) is decomposed into

B.

1,

F
e (()=B(w)+Nlr(a1)c1(u)-N i(a ) 2(w)

+N2r (a2)D1 (w) -N2i (a2)D2 (w)

+[Nlr(a)N2r (a2)-Ni(a )N2i( 2)]

E1 (w) - [Nlr (a1) N2i (a2) +N1i (a 1)
I--j i i - -

i 2

Fig.4. Root-loci of the stability-equations
for Case 1 with M=22.

By computer simulation, Fig.5 shows the
limit cycle of the system for M=22. The

N2r (a2) ] E2 (wX) =0 (17)

and

F0 (w)=B2(w)+Nlr(al)C2(w)+N1i(a 1)C1()

+N2 (a2) D2(w) +N2i (a2) D1 (w) + [Nlr (a1)x
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N2r (a2)-Ni(al) N22i (a2) ] E2 (W)

+ [Nlr (al) N2i (a2) +N i (al) X

N2r (a2)] E1 (() =0 (18)

where Bi(w), Ci(w), Di(w) and Ei(w) are the
same as those of Eqs.(9) and (10). For M=22,
B=0.15MW and P=0.25MW, and for a number of
frequencies(w), the root locus of the stabi-
lity-equations is plotted as shown in Fig.7.
It has been checked that every point on this
root-locus can satisfy conditions (i) and
(ii). Solving Eq.(14) along this root-locus,
the point Q (1.752,1.752) with an oscilla-
ting frequency w=22.526 rad/sec represents a

stable limit cycle.

A2

V. CONSIDERATION OF PARAMETER ADJUSTMENT

In this section, control systems with
adjustable parameters are considered. Assume
that two adjustable parameters K1 and K2 are

cascaded by the nonlinearities N1 and N2,
respectively,then Eqs.(5-a) and (5-b) become

k 1A1N(aI)W11(jwO)+k1A2e02(a2)W12(jw) =--A1

(19-a)
and

k2A1N1(a1)W21(jw)+k2A2e 02(a2)W22(jw)=-A2ejG2
(19-b)

respectively. Eq.(19-a) gives

WI34+ eie2 =

i22.7

stable
2+

1*

0

eje2 =

A1 [l+k1N1 (a1) W11 (iw)

k1A2N2(a2)w2(i
(20)

Similarly, Eq.(19-b) gives

k 2N 1 (a1 ) W21 (iW)

A2 [l+k2N2 (a2) W22 (iw)
(21)

Equating Eqs. (20) and (21), one has
unstable

A,41
1

F (jw) =l+k1N1 (a1) W11 (jw) +k2N2 (a2) W22 (iw)

k1k2N1 (a1) N2 (a2) [W11 (iW)W22 (i )

-W12 (j W) W21 (iw) ] =0 (22)

Fig.7. Root-loci of stability-equations for
Case 2 with M=22,B=.15MW and P=.25MW.

By computer simulation, the limit cycle
is shown in Fig.8, which is quite close to
that obtained by calculation.

2

0

ka
1.765

r\-A ft6 /A\

which is the characteristic equation of the
system under consideration. The stability-
equations are

Fe (w)=B1(w)+k1[Nlr(a1)C1(w) li(a1) 2(

+k2[N2r (a2)D1(w)-N2i (a2) 2( )]

+k1k2{[Nlr(a1)N2r (a2)-Nli (a1)x

N2 (a2)]E (w)-[Nr (a)N2 (a2)

+N i (a )N2r (a2) ] }E2 (w)=0
C

LU= 22.43 RdseC.)GI=a2

Fig.8. The simulated limit-cycle of Case 2
for M=22,B=0.15MW and P=0.25MW.

Note that, although Eqs. (17) and (18) are
more complex than Eqs.(9) and (10), the
approach is straightforward and the compu-
tations can be easily made on a computer.

(23)

and

F (w)=B2(w)+k [Nlr(a1)c2(w)+N i(al) 1( I

+k2 [N2r (a2) D2 (w) +N2i (a2) D1 (w)

+k1k2{ [Nlr (a1) N2r (a2) -N1i (a 1)

N2i (a2)]E2(w) + [Nlr(a1)N2i (a 2)

+N i(a )N2r (a2)]E ()=0 (24)

i 2 i i

I

I
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where Bi (w) , Ci () , D (X) and E (w) are the
same as those in Eqs.(6) and (103. The con-
dition defined in Eq.(14), now, becomes

ej6220 _ej6221 = 0 (25)

where 0220 and 0221 represent the phase
angles found by Eqs.(20) and (21), respec-
tively. The desirable solutions are A1, A2,
K1, K2, and w. Thus for specified values of

A1 and w, one can find the solutions A2, k1
and k2 by use of Eqs.(23)-(25). Now, for a
specfied value of A1 and a number of values
of w, a limit-cycle locus can be plotted in
a K1 vs. K2 plane. For a number of constant-
A1 limit-cycle loci, the limit-cycle region
and the asymptotically stable region can be
found in the K1 vs. K2 plane[16]. Similarly,
one can plot the constant-A2 limit-cycle
loci in the K1 vs. K2 plane for specified
values of A2 and a number of values of w.

Case 3: Consider the system in Case 2.
Assume that two adjustable parameters K1 and
K2 are cascaded by nonlinearities N1 and N2
as shown in Fig.6, respectively. For M=22,
B=0.15MW and P=0.25MW, following the above
presented procedure the limit-cycle loci are
plotted as shown in Fig.9, where

Fig.9. Limit-cycle loci of Case 3 for M=22,
B=0.15MW and P=0.25MW.

the solid lines and dash lines are the con-

stant-Al and the constant-A limit-cycle
loci, respectively; the shaded region shows

the asymptoically stable region[16]. For

illustration, the limit cycle represented by
point Q (0.5718,2.1683),with amplitudes A1=1,
A2=3.78E, and with oscillating frequency
w=22.5rad/sec, has been simulated; the result
is shown in Fig.10.

CASE 4: Consider the system in Case 2.

Assume that the nonlinearities N1 and N2 as

shown in Fig.6 are followed by two adjustable
parameters K1 and K2, respectively. This is

3.82 0a2

,,J AX ! /; ,; ~~~t-sec

U1=22.44 ucdIeC

Fig.10. The simulated limit-cycle of Case 3
with K1=0.5718 and K2=2.6183.

equivalent to the case that the amplitudes of
the nonlinearities N1 and N2 are adjustable.
The harmonic-balance equations of the system
are found as

k1AN1 (a1)W1 (jw) +k2A2ejeN2 (a2)W12 (jw))=-A1

(26-a)

and

k1 11 (a)W21 (jw) +k2A2ejN2 (a2)W22 (jw) =-A ej2

(26-b)

Following the same procedure as indicated by
Eqs.(22) to (25), the constant-Al limit-
cycle loci are plotted as shown in Fig.ll,
where the shaded region is the asymptotically
stable region.

L asymptotIcally stable
3 k

W A,
Fig.l1. Limit-cycle loci of Case 4 for M=22,

B=0.15MW and P=0.25MW.

Table 1 shows the calculated and simulated

results of some points in Fig.ll. It can be
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Table 1. Calculated and simulated results of Case 4.

seen that the simulated results are quite
close to those of calculated.

From Figs.9 and 11, one can see that the
minimal values of K1 and K2 which give rise
to a limit cycle are at K1=K2=0.188 for the
symmetrical case[3]. Then the critical value
of M for having a limit cycle is MC=KlXM=
0.188x22=4.1, which is quite close to the
result found by Tsouri and Rootenberg using
the Tsypkin Locus Method[3].

Note that if the nonlinearities and the
linear transfer fuctions are not symmetrical
(such as K1=K2) the proposed method can be
applied in the same way as for the symmetrical
case. It is also worthwhile to point out
that, by use of the asymptotically stable
region, the limit cycle can be eliminated by
adjusting the parameters in the system.

VI.CONCLUSIONS

In this paper, the stability-equation
method has been applied for limit cycle
analysis of a nonlinear coupled-core reactor
control system.The proposed method is simpler
than the other methods in current literature,
and it has the potential to be applied to
very complicated, nonlinear, symmetrical and
asymmetrical systems.
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