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中文摘要  

 

 增加畫面更新率是視訊處理中眾多議題的其中之一。本篇論文提出

了一種適應性的自動回歸模型，使其產生的畫面有更好的視覺品質及

更少的計算負擔。在傳統的自動回歸模型中，每個像素被建模為時間

上像素點或空間上像素點的線性組合。而在本論文中，我們提出了一

個利用視訊資料的特性來選擇回歸模型的機制。選擇適當的回歸模型，

可以在回歸運算當中減少不必要的變數，在計算複雜度上得到了相當

程度的改善。實驗結果顯示出在運算時間上得到了顯著的進步，並且

在內插出的畫面中，視覺效果也得到了改善。 

 

關鍵字： 適應性的自動回歸模型、增加畫面更新率 
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ABSTRACT 

 

 An adaptive auto-regressive model is proposed in this thesis for frame rate 

up-conversion. In conventional AR model, each pixel in the to-be-interpolated frame is 

modeled as a linear combination of temporal neighborhood, spatial neighborhood, or 

joint temporal-spatial neighborhood pixels. This thesis proposed a temporal AR model 

(called TAR) utilizing temporal neighborhood; and a spatial AR model (called SAR) 

utilizing spatial neighborhood. Besides that this thesis also proposed a scheme which 

selects TAR or SAR adaptively according to motion information in the video sequence. 

By selecting appropriate AR model, unnecessary variables can be eliminated from 

regression process. Compared to STAR model [2] which utilizes joint temporal-spatial 

neighborhood for each pixel, computational cost can be greatly reduced with the 

proposed method. In addition, the experiment results show that visual quality can also 

be improved by adaptively adopting appropriate AR models for frame interpolation. The 

results demonstrate the superiority of the proposed method in regarding to improved 

visual quality and reduced computational cost.  

 

 

Index Terms----Frame rate up-conversion, adaptive auto-regressive model 
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Chapter 1 Introduction 

 

 Frame rate up-conversion (FRUC) one of the main issues in video data 

transmission. To transmit huge amount of video data, the spatiotemporal resolution of 

video signals is often reduced to achieve the limited bitrate. In temporal domain, video 

frames may be skipped for lower bitrate, which also degrades the visual quality at the 

decoder side. To restore the skipped frames, FRUC algorithm must be performed at the 

decoder side as a post-processing stage. 

The FRUC can be used in low bitrate video coding by transmitting the half amount 

of original video frames, and performing FRUC algorithm at the decoder side. FRUC 

can also be applied in other applications. The most practical one is format conversion 

(For example, from PAL of format 25 frames/s to NTSC format of 30 frames/s). FRUC 

also provides a great help in slow-motion playback with higher visual quality. 

Meanwhile, many FRUC algorithms have been developed. The common solutions 

without extra efforts is to produce the frame by using co-located pixel value in previous 

temporal neighborhood (frame repetition, FR), or by combining two temporal 

neighborhood co-located pixels value (frame average, FA). Though these algorithms 

provide an efficiency performance, they ignore the motion information in video data, 

and therefore, results in the visual quality degraded (for example, blurring) in motion 
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part of video. Another kind of FRUC algorithms is developed to overcome such effects. 

These algorithms are referred as motion compensated FRUC (MC-FRUC). The frame 

interpolation in MC-FRUC is along with the motion trajectory to achieve better visual 

quality. Given the correct motion vectors, MC-FRUC outperforms the FR/FA algorithms. 

Many motion estimation (ME) algorithms have been developed to increase the accuracy 

of motion vectors. Conventional methods such as block matching algorithm (BMA) 

have been broadly applied in FRUC. Choi et al. [1] proposed bi-directional motion 

estimation, which produces more faithful motion vectors for FRUC. 

Different from ME process in video coding, the ME in FRUC is performed without 

available pixels of target frame. Hence, the derived motion vectors may not be 

consistent sometimes, resulting in the block artifacts or the jerky motion. Although 

block artifacts can be reduced by performing overlapped block motion compensation 

(OBMC)[1] after motion compensated interpolation(MCI), the interpolated frame may 

still look unpleasant sometimes. 

Auto regressive (AR) model has been applied in many image processing 

applications, such as detecting and interpolating “dirt” areas in image sequences [3], 

ME [4], super-resolution [5], forecasting video data [6], may give us inspiration using 

AR model in FRUC issue. Yongbing Zhang et al. [2] proposed a spatial-temporal auto 

regressive model (STAR) for FRUC. Each pixel in STAR is modeled as spatial 
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neighborhood and temporal neighborhood’s linear combination. Using an iterative 

self-feedback weight training algorithm can derive accurate weighting coefficients for 

STAR model. The STAR model is able to consider the non-stationary statistics of video 

signal, and thus can resolve the challenging issue such as zooming, panning, and 

non-rigid objects. 

Although the STAR model can achieve quite well visual quality, the computation 

complexity is inevitably high. The STAR model with self-feedback weight training’s 

computation complexity is proportional to four to the power of its regression model’s 

variable number. The model assumes that every pixel is related to temporal and spatial 

neighborhood, and the weighting coefficients analysis in [2] states that the pixel with 

high motion may have more connection with spatial neighborhood. We proposed a new 

regression-based schema for FRUC with two different AR models and a model selection 

criterion. Using adaptive temporal auto-regressive model and adaptive spatial 

auto-regressive model with adaptive selection can reach better performance both in 

computation efficiency and visual quality. 

The following of this thesis is organized as follows. First, a brief introduction of 

the related works, including the traditional MCI with bi-directional motion estimation 

and STAR model with self-feedback weight training is given. Then, proposed method is 

presented, which describes the proposed spatial AR model, temporal AR model, and 
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how to adaptively select AR models properly. Experimental results are provided in 

section 4, and last, the conclusion is summarized at final section. 
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Chapter 2 Related Works 

 

2.1 MC-FRUC 

MC-FRUC can achieve better visual quality than frame average by exploiting the 

motion redundancy between frames. The figure 2-1 shows the overall architecture of 

bi-direction motion compensated interpolation. 

 

Figure 2-1 : Bi-directional motion estimation diagram. Each block is assumed to be 

experienced a translational motion. 

 First the to-be-interpolated frame is divided into non-overlapping blocks. For each 

block, the bi-direction motion search is performed. The bi-direction motion search will 

find a motion vector v for block B(i, j) by minimizing the bi-directional sum of square 

error (SBSE) in the search window.  

The bi-directional motion search can be interpreted by 

SBSE,B(i, j), 𝑣- = ∑ (𝐹𝑡−1,𝑠 − 𝑣- − 𝐹𝑡+1,𝑠 + 𝑣-)2

𝑠∈𝐵(𝑖,𝑗)

 

( 1 ) 
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𝑣𝑖,𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑣

*SBSE,B(i, j), 𝑣-+ 

( 2 ) 

, where S is a 2-D vector representing a pixel location, the 𝐹𝑡−1, 𝐹𝑡, and 𝐹𝑡+1denote the 

previous, to-be-interpolated, the following frames, respectively. The 𝑣𝑖,𝑗 represents the 

bi-direction motion search’s result for block B(i,j) in to-be-interpolated frame 𝐹𝑡. After 

the motion search, we then use the motion information to interpolate the block. Also, 

to-be-interpolated block B̂(i, j) in 𝐹𝑡 is given by (3). 

B̂(i, j) =
1

2
{𝐹𝑡−1[𝑆 − 𝑣𝑖,𝑗] + 𝐹𝑡+1,𝑆 + 𝑣𝑖,𝑗-} 

( 3 ) 

S represents the pixels’ locations of B̂(i, j). Each pixel in B̂(i, j) is an average of 

pixels at motion compensated location in previous frame and following frame. The (3) 

shows the main assumption of MCI with bi-directional motion estimation (Bi-MCI). 

Each block is assumed to experience a translational motion. The blocking artifacts will 

arise if the adjacent blocks experience significantly different motion vectors, or the 

object is non-rigid aligned the block. 

 

2.2 STAR model 

Spatial-Temporal auto-regressive model (STAR) is proposed in [2] to enhance the 

visual quality of the interpolated frames. It models each pixel as a linear combination of 

its temporal and spatial neighborhood. First, frames are divided into non-overlapping 
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area with size WxxWy, said training window R. Assuming each pixel in a training 

window is interpolated by corresponding spatial-temporal neighborhoods using the 

same weighting vector �⃗⃗� . Using least square method, the best fitting weighting vector 

can be solved. The STAR model is illustrated in figure 2-2. 

 

Figure 2-2 : STAR model diagram. Each pixel is modeled as a linear combination of its 

temporal and spatial neighborhood (As called support region). 

Each pixel in to-be-interpolated training window can be formulated as ( 4 ) 

R̂t−1( k, l ) =  ∑ ∑ Rt−2(k + u, l + v)

v) ≤L
 

× Wp(u, v)

−L≤(u,

+ ∑ ∑ Rt(k + u, l + v)

v) ≤L
 

× Wf(u, v)

−L≤(u,

+ ∑ ∑ R̂t−1(k + u, l + v)

*v=0,−L≤u<0+
 

× Ws(u, v)

*v<0,−𝐿≤𝑢≤𝐿+∪

 

( 4 ) 

where R̂t−1 is the to-be-interpolated training window; and Wp , Wf, Ws  represent the 

weights of temporal neighborhood in the previous frame, the weights of temporal 

neighborhood in the following frame, and the weights of spatial neighborhood, 

respectively. The L is defined as spatial-temporal support order (support order, for short). 

When L is set to 1, the pixel is modeled as the weighted sum of 9 pixels in previous 
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frame, 9 pixels in following frame, and 4 pixels in current frame. The (k, l) represents 

the pixel location within the training window. The (u, v) represents looping index for 

each element in spatial-temporal neighborhood, called support region. The optimal 

solution for weighting vector is, the one that minimizes the distortion ε between training 

windows  R̂t−1 and Rt−1 to have best fitting weighting vector. 

ε = 𝐸( Rt−1 − R̂t−1) = ∑ ∑ 𝐸 [.Rt−1(𝑘, 𝑙) − R̂t−1(𝑘, 𝑙)/
2

]
𝑊𝑦

𝑙=0

𝑊𝑥

𝑘=0
 

( 5 ) 
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Since the actual pixel values in the to-be-interpolated frame are not available in 

FRUC (In (5), for example, Rt−1), equation (5) can’t be used for deriving correct 

weighting coefficients. An iterative method, called self-feedback weight training loop 

algorithm was proposed with STAR model to deal with such issue. The self-feedback 

weight training loop consists of two parts. The pixels in training windows R̂t−1 and 

R̂t+1  are first interpolated by using their spatial-temporal neighborhood with the 

weighting vector �⃗⃗� , which consists of each element of Wp, Wf, and Ws, rewritten in 1-D 

manner. Then, the pixels in R̂t−1  and R̂t+1  are used to approximate the training 

window R̂t using the same weighting vector �⃗⃗� , as illustrated in figure 2 – 3 and the 

equation (6) below.  

 

Figure 2-3 : Self-feedback algorithm diagram 

 

R̂t( k, l ) =  ∑ ∑ R̂t−1(k + u, l + v)

v) ≤L
 

× Wp(u, v)

−L≤(u,

+ ∑ ∑ R̂t+1(k + u, l + v)

v) ≤L
 

× Wf(u, v)

−L≤(u,

+ ∑ ∑ R̂t(k + u, l + v)

*v=0,−L≤u<0+
 

× Ws(u, v)

*v<0,−𝐿≤𝑢≤𝐿+∪

 

( 6 ) 

After R̂t−1, R̂t, R̂t+1 have been interpolated, the jointly distortion is defined as 
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follows: 

D(i) =  ∑∑E[.R̂t−1
i+1 (k, l) −  R̂t−1

i (k, l)/
2

]

Wy

l=0

Wx

k=0

+ ∑∑E[.R̂t+1
i+1 (k, l) − R̂t+1

i (k, l)/
2

] + ∑∑E[.R̂t
i+1(k, l) − Rt(k, l)/

2

]

Wy

l=0

Wx

k=0

Wy

l=0

Wx

k=0

 

( 7 ) 

Where iteration index is denoted as i. R̂t−1
i

 and R̂t−1
i+1  are the interpolated training 

windows prior to and after the i
th

 iteration, respectively. Linear least square method 

(LSM) is adopted in [2], which minimizes the jointly distortion D(i) to derive accurate 

weighting vector. By rewriting the weighting vector as 1-D manner, the weighting 

vector after i
th

 iteration can be defined as ( 8 ) 

�⃗⃗⃗� 𝑖 = ,�⃗⃗⃗� 
𝑝
𝑖 , �⃗⃗⃗� 

𝑓
𝑖 , �⃗⃗⃗� 

𝑠
𝑖-𝑇 

( 8 ) 

Assuming the training windows R̂t−1
i  and R̂t+1

i  prior to the i
th 

iteration have been 

obtained, the weighting vector �⃗⃗⃗� 𝑖 can be computed by the closed form of the least 

square method as ( 9 ) 

�⃗⃗⃗� 𝑖 = .𝐴𝑖𝑇𝐴𝑖/
−1

𝐴𝑖𝑇�⃗� 𝑖 

( 9 ) 

Where 𝐴𝑖 is a matrix, �⃗� 𝑖 is a column vector, and T represents the transpose operation 

for matrix (See details in appendix for constructing each element in matrix 𝐴𝑖 and 

column vector �⃗� 𝑖). 
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2.3 Flow chart of STAR model 

The STAR model and the self-feedback weight training algorithm are summarized 

with following flow chart. 

 

Figure 2-4 : The flow chart of STAR model with self-feedback weight training. 

Step 1: Setting up model parameters, such as training window size Wx, Wy , jointly 

distortion threshold, maximum iteration times (iMAX) …etc. 

Step 2: Use Bi-MCI’s result as initial value for training windows R̂𝑡−1
0  and R̂𝑡+1

0  

Step 3: Initialize iteration index 

Step 4&5: Use formulas mentioned before to construct corresponding matrices and 

vector for least square method. After least square method performed, the new weighting 
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vector is obtained. Then the D(i) from (7) is calculated. 

Step 6: Test if D(i) is less than predefined threshold or not. If it does, then the 

procedure is done. Else, increase the iteration index, write back the new training 

window’s result as next iteration’s initial value and loop again. 
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Chapter 3 Proposed Method 

 

3.1 Motivation 

The STAR model provides a very good visual quality for interpolated frames; 

however, it also costs a heavy computation due to applying least square method. 

Suppose that the support order L is set to 1 and the training window size is 32x32, each 

pixel in the STAR model can be regarded as linear combination of 22 pixels. So, a 

matrix A with dimension is (3*32*32, 22), needs to be constructed for LSM calculation. 

The computation complexity is heavily related to the matrix’s dimension in LSM. 

Besides, since time complexity of matrix inverse operation is Ο(𝑛4) , better 

computation efficiency can be achieved if the matrix dimension in LSM can be reduced. 

Therefore, this thesis aims at reducing the computational complexity by using a reduced 

matrix dimension in LSM. Namely, fewer neighborhood pixels will be used to 

interpolate the pixels. The weight analysis in STAR model [2]states that for the high 

motion part in the video, pixels are strongly related to spatial neighborhood, rather than 

temporal neighborhood pixels. 
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Figure 3-1 : The 2

nd
 to-be-interpolated frame of the test sequence Mobile_CIF. Left-top 

corner marked window A with color blue, and middle-down marked window B with color 

red. 

 

Figure 3-2 : Weight distribution in window A and B of 2
nd

 to-be-interpolated frame of the 

test sequence Mobile_CIF. 

The figure 3-2 shows weight distribution for two different training windows in the 
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to-be-interpolated frame 2 of Mobile CIF sequence ( as Figure 3-1 ). The window B has 

more motion intensity than window A since there is a rolling red ball across it. The 

weight distribution of spatial support region in window B obviously holds large part 

than those in window A. Based on the observation of weight distribution; we split the 

original STAR model into two parts: temporal auto-regressive model (TAR) and spatial 

auto-regressive model (SAR), and adaptively choose from one of them to perform 

regression-based FRUC (ATAR and ASAR, for short). We expect that will help us 

decreasing the computation complexity via reduced model and achieving better visual 

quality via removing the unnecessary temporal or spatial neighborhood. 

 

3.2 TAR Model 

 

Figure 3-3 : ATAR diagram. 

In the proposed TAR model, each pixel in to-be-interpolated frame t-1 is modeled 

as linear combination of temporal neighborhood, and all pixels in the same training 
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window will share the same weighting coefficients. 

R̂t−1( k, l ) =  ∑ ∑ Rt−2(k + u, l + v)

v) ≤L
 

× Wp(u, v)

−L≤(u,

+ ∑ ∑ Rt(k + u, l + v)

v) ≤L
 

× Wf(u, v)

−L≤(u,

 

( 10 ) 

The R̂t−1  means the training window in frame t-1, and Wp,Wf  represents 

weighting coefficients in previous temporal neighborhood and following temporal 

neighborhood, respectively. The ( k, l ) represents pixel location in training window, and 

(u, v) is looping index for each temporal neighborhood support region. Assuming that 

support order is 1, the length of weighting vector will be 18 as illustrated in figure 3-3. 

Self-feedback weight training algorithm similar to that used in STAR model is also 

applied in the proposed TAR model. Since only temporal neighborhood is used, the 

formula (6) is modified as follows for the approximated pixel in training window R̂t in 

the proposed TAR. 

R̂t( k, l ) =  ∑ ∑ R̂t−1(k + u, l + v)

v) ≤L
 

× Wp(u, v)

−L≤(u,

+ ∑ ∑ R̂t+1(k + u, l + v)

v) ≤L
 

× Wf(u, v)

−L≤(u,

 

( 11 ) 
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3.3 SAR Model 

 

Figure 3-4 : ASAR diagram. 

 In the proposed SAR model, each pixel in to-be-interpolated frame t-1 is modeled 

as the weighted sum of the spatial neighborhood, and all pixels in the same training 

window will adopt the same weighting coefficients. 

R̂t−1(k, l ) =  ∑ ∑ R̂t−1(k + u, l + v)

*u=0,   v=0+

× Ws(u, v)

−L≤(u,v)≤L −

 

( 12 ) 

 The R̂t−1 means the training window in frame t-1, and Ws represents weighting 

coefficients in spatial neighborhood. The ( k, l ) represents pixel location in training 

window, and (u, v) is looping index for each spatial neighborhood. Supposed that the 

support order is set to 1, the length of weighting vector will be 8 as illustrated in figure 

3-4. Due to applying to self-feedback weight training algorithm, we can’t add the 

co-located pixel in to-be-interpolated frame as our spatial neighborhood. Supposed that 

our model contains it, then all other weighting coefficients will be zero after LSM, and 

the co-located weighting coefficient will be 1. 
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3.4 Model Selection Criterion 

This section describes the selection criterion which is used to adaptively select 

appropriate AR model (SAR or TAR) to be applied to current training window. 

The motion vectors obtained by Bi-MCI are utilized to measure the motion degrees 

in training window. We use Bi-MCI because it is adopted in it as regression-based 

FRUC algorithm for initial value construction. To evaluate the motion in a training 

window, formula (13) is adopted 

Absolute MV̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ |𝑚𝑣|𝑚𝑣∈𝐴𝑅 𝑤𝑖𝑛𝑑𝑜𝑤

# 𝑜𝑓 𝑚𝑣
 

( 13 ) 

The formula (13) is the mean of the absolute values of motion vectors in training 

window. Since the motion vector is in 2-D dimension, the magnitude of Absolute MV̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

can be formulated by ( 14 ) 

MA𝑚𝑣 = (Absolute MV̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑥)

2 + (Absolute MV̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑦)

2 

( 14 ) 

where MA𝑚𝑣 represents the mean of motion vector’s magnitude in training window. 

When MA𝑚𝑣  is larger than a predefined threshold δ, we adopt the adaptive SAR 

(ASAR) as our regression-based FRUC. Otherwise, adopt adaptive TAR (ATAR). 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙: {
𝐴𝑇𝐴𝑅,               𝑖𝑓 𝛥 < 𝛿
𝐴𝑆𝐴𝑅,            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 

( 15 ) 

 After defining the selection criterion, we have to verify the validity of it. 
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Figure 3-5 : The validity of selection criterion of the test sequence Foreman_QCIF. 

The figure 3-5 shows  𝑆𝑆𝐸𝑡−𝑠 and  MA𝑚𝑣 for all the training windows in 

Foreman_QCIF sequence, where the training windows are sorted in an ascending order 

of MA𝑚𝑣, defined in formula (14). In figure 3-5, the left coordinate is SSEt-s’s value, 

and the right coordinate is the value of MA𝑚𝑣 . Let 𝑆𝑆𝐸𝑡−𝑠  denote the difference 

between TAR’s SSE and SAR’s SSE, where SSE means the sum of square error. Then, 

𝑆𝑆𝐸𝑡−𝑠 can be formulated as (16) 

𝑆𝑆𝐸𝑡−𝑠 = { ∑ ∑ [.Rt−1(𝑘, 𝑙) − R̂t−1
𝑇𝐴𝑅(𝑘, 𝑙)/

2

+ .Rt+1(𝑘, 𝑙) − R̂t+1
𝑇𝐴𝑅(𝑘, 𝑙)/

2𝑊𝑦

𝑙=0

𝑊𝑥

𝑘=0

+ .Rt(𝑘, 𝑙) − R̂t
𝑇𝐴𝑅(𝑘, 𝑙)/

2

 ] }

− { ∑ ∑ [.Rt−1(𝑘, 𝑙) − R̂t−1
𝑆𝐴𝑅(𝑘, 𝑙)/

2𝑊𝑦

𝑙=0

𝑊𝑥

𝑘=0

+ .Rt+1(𝑘, 𝑙) − R̂t+1
𝑆𝐴𝑅(𝑘, 𝑙)/

2

+ .Rt(𝑘, 𝑙) − R̂t
𝑆𝐴𝑅(𝑘, 𝑙)/

2

] } 

( 16 ) 

Note that the calculation of 𝑆𝑆𝐸𝑡−𝑠  in figure 3-5 is based on available 

to-be-interpolated frames, that is, the ground truth if the to-be-interpolated frame is 
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known. Rt−1, Rt, Rt+1 in formula (16) denote  the ground truth of the  training 

windows in to-be-interpolated frames t-1, t, and t+1 respectively, while 

R̂t−1
𝑇𝐴𝑅 , R̂t

𝑇𝐴𝑅 , R̂t+1
𝑇𝐴𝑅 represents the training window after interpolation with TAR model, 

and R̂t−1
𝑆𝐴𝑅 , R̂t

𝑆𝐴𝑅 , R̂t+1
𝑆𝐴𝑅  represents the training window after interpolation with SAR 

model. Wx , Wy are the width and height of the regression window size, and (𝑘, 𝑙) is 

used to loop every pixel in the training window. Since (16) is based on known 

to-be-interpolated frames, we can use 𝑆𝑆𝐸𝑡−𝑠 as an indication for AR model selection. 

When 𝑆𝑆𝐸𝑡−𝑠 is smaller than zero, it means this window should perform TAR for 

better visual quality. In contrast, when this value is larger than zero, it means that it is 

better to apply SAR for this training window. 

 

Figure 3-6 : The validity of selection criterion of the test sequence Mobile_CIF 

The figure 3-6 is 𝑆𝑆𝐸𝑡−𝑠 vs. MA𝑚𝑣 of all the training windows in test sequence 

Mobile_CIF. Since the trend of 𝑆𝑆𝐸𝑡−𝑠 is dramatically arisen around MA𝑚𝑣 = 4, we 

use  MA𝑚𝑣 = 4 as our selection criteria threshold. 
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3.5 Flow chart of proposed method 

The summary of proposed method is illustrated in following flow chart. We merge 

SAR and TAR with proposed model selection criterion together. δ is a predefined 

model selection criteria threshold. 

 

Figure 3-7 : Flow chart of proposed method Proposed_AST. 

Step 1: Setting model parameters and use Bi-MCI’s result as initial value for 

training windows. 

Step 2: Calculate MA𝑚𝑣 according to formula (14) 

Step 3: Judge if MA𝑚𝑣 is less than a predefined threshold δ. 

 If does, TAR is selected for this training window. 

 Otherwise, choose SAR. 

Step 3: Entering AR model procedure, such as setting up LSM’s matrices and 

iteration multiple times and so on. 
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Chapter 4 Experimental Results 

To examine the performance of proposed method, we split various test sequences 

into odd and even subsequences, perform the proposed FRUC algorithm on even ones 

to generate odd ones, and evaluate the Peak signal-to-noise ratio (PSNR) of interpolated 

odd frames to original odd frames. The proposed method is compared with the FA, MCI, 

and STAR methods for visual quality. Also, we compared the computation efficiency 

between STAR model and proposed method. 

4.1 Environment 

The experiment is performed on INTEL Xeon E5520 with 4GB ram. OS is 

FreeBSD 8.1-RELEASE. The whole algorithm is implemented in C, with compiler gcc 

4.2.1. 

4.2 Model Parameters 

We perform MCI with block size 8x8 and search window size 4, and implement 

with quarter pixel accuracy. Full search was adopted by bi-direction motion estimation 

here. The parameters for regression based FRUC, such as regression window size, 

maximum iteration times, maximum support order, and jointly distortion threshold will 

be listed below: 

 Regression window size Wx, Wy: 

QCIF: 16x16 

Higher resolution: 32x32 
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 Maximum iteration times: 

 5 for STAR model 

 2 for proposed method 

 The jointly distortion threshold 

  50 

 Model selection criteria threshold (for proposed method only) 

  4.0 

 Support order 

  1 to 6 

4.3 Objective Quality 

We will examine the subjective and objective visual quality in this section. The 

figure 4-1 shows frame by frame PSNR of test sequence Foreman_QCIF for different 

methods. Horizontal coordinate is to-be-interpolated frame index, and the vertical 

coordinate is PSNR (dB). FA represents Frame Average method; MCI represents motion 

compensated interpolation with bi-directional motion estimation [1] (Bi-MCI, here we 

use MCI for short); and STAR represents the spatial-temporal AR model [2]. The 

Proposed_S represents the proposed SAR, Proposed_T represents the proposed TAR, 

and the Proposed_AST represents the method with adaptive selection between SAR and 

TAR. Proposed_UB is the performance upper bound of the proposed adaptive schema 

because it selects the best AR model (SAR or TAR) according to ground truth of the 

to-be-interpolated frames. 
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Figure 4-1 : Frame by frame PSNR of Foreman_QCIF 

In FA, each pixel is interpolated by the co-located pixels in temporal neighborhood 

with the same weight (That is, 0.5). Since the FA didn’t use the motion information 

from video sequence, it has the best computation efficiency. But the visual quality of the 

frames interpolated by using FA is not acceptable, especially in large motion part of the 

video. 

The MCI produces better visual quality than FA since it exploits the motion 

information in video sequence. However, the performance of MCI-like methods for 

strongly depends on the accuracy of motion information, which is hard to obtain in 

FRUC, since there is no pixel information in to-be-interpolated frame. The bi-direction 

motion estimation gives an acceptable motion vectors for MCI interpolation.  

The parameters of regression-based methods (STAR, Proposed_S, Proposed_T, 

Proposed_AST, Proposed_UB) in figure 4-1 are set as following: maximum iteration 

time = 1, and maximum support order = 1. The STAR model outperforms the MCI since 
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it reduces artifacts. But regression-based FRUC such as STAR  costs more 

computation time than MCI does. Proposed_S (SAR), Proposed_T (TAR) and 

Proposed_AST (adaptive selection between SAR and TAR) uses same model selection 

criteria threshold 4. The MA𝑚𝑣  obtained from his test sequence is not significant 

enough to change AR model adaptively, so Proposed_S performed almost equal to MCI, 

and Proposed_T performed almost equal to Proposed_AST. The proposed_AST 

outperforms the STAR model both in visual quality and computation efficiency. The 

Proposed_UB represents the maximum visual quality that can be achieved under 

adaptive selection. It serves as the upper bound of our proposed schema. In figure 4-1, it 

is observed that the space between the Proposed_AST and Proposed_UB is quiet close, 

indicating that the proposed selection criteria MA𝑚𝑣 is able to choose appropriate AR 

model without ground truth of the to-be-interpolated frames. The figure 4-2 shows the 

frame by frame PSNR of test sequence Mobile_CIF with model parameters the same to 

those used in figure 4-1. 
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Figure 4-2 : Frame by frame PSNR of Mobile_CIF 

In figure 4-2, the performance gap between Proposed_AST and STAR becomes 

large. The PSNR gain of the proposed method in comparison to STAR can be up to 

1.3dB. Besides, since the proposed model uses fewer variables than in the STAR model, 

the computation loading is also reduced significantly. We will explain it in detail later. 

The following diagram shows the frame by frame PSNR of test sequence 

Football_CIF.  
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Figure 4-3 : Frame by frame PSNR of Football_CIF 

The Football_CIF sequence is used to test if the model is able to handle the 

sequence with large motion or not. In figure 4-3, it is observed that all the 

regression-based FRUC algorithms performed closely with no significant difference 

between them (less than 0.1dB). Even though the proposed methods no significantly 

gain in large-motion sequences, we still have the advantage in reduced computation 

loading. The table 1 shows the performance results of various methods, where 

maximum support 1 and iteration 1 time’s result in QCIF and CIF. 

Table 4-1 : PSNR table of FRUC algorithms. 

Sequence Name FA MCI 4x4 MCI 8x8 STAR Proposed_S Proposed_T Proposed_AST Proposed_UB

Akiyo_QCIF 50.143 49.796 50.641 51.393 50.641 51.742 51.742 52.002

Coastguarad_QCIF 33.873 34.805 37.328 39.105 37.356 39.053 39.064 40.098

Foreman_QCIF 34.426 37.364 37.704 38.514 37.736 39.462 39.492 40.256

Mobile_QCIF 32.528 31.568 33.723 35.566 33.707 36.336 36.320 36.680

Akiyo_CIF 46.162 46.613 47.054 47.641 47.055 48.113 48.113 48.350

Football_CIF 19.896 20.399 21.164 21.191 21.263 21.151 21.248 21.646

Foreman_CIF 31.011 34.224 34.694 34.686 34.717 34.763 34.796 35.553

Mobile_CIF 24.830 27.218 27.512 29.092 27.477 29.932 29.873 30.234

Mother_and daughter_CIF 43.317 43.646 44.292 44.498 44.308 44.543 44.561 44.974

News_CIF 38.138 38.146 37.937 38.306 37.939 38.712 38.712 39.102  

The table 4-1 gives the average PSNR of different sequences using FRUC 
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algorithms. Compared to STAR model, the Proposed_AST have better visual quality 

among all test sequences except Coastguard_QCIF. In this experiment result, the 

average gain of Proposed_AST to STAR model is 0.39dB, and the maximum average 

gain is 0.97dB for Foreman_QCIF. The following table shows the performance results 

of AR-based methods. The maximum support order is 6 for all methods and maximum 

iteration time is 5 for STAR, and 2 for proposed methods. 

Table 4-2 : PSNR table of regression-based FRUC algorithms 

Sequence Name STAR-IT5 Proposed_S-IT2 Proposed_T-IT2 Proposed_AST-IT2 Proposed_UB-IT2

Akiyo_QCIF 51.56663 50.6407 52.0215 52.0215 52.328

Coastguarad_QCIF 39.39581 37.3521 39.1786 39.2058 40.0316

Foreman_QCIF 39.13184 37.7581 39.6994 39.7691 40.5754

Mobile_QCIF 37.17584 33.7139 37.598 37.583 37.7705

Akiyo_CIF 47.83981 47.0545 48.1554 48.1554 48.5775

Football_CIF 21.52013 21.2864 21.2034 21.3236 22.1736

Foreman_CIF 35.11687 34.753 35.1595 35.2267 36.2934

Mobile_CIF 29.42022 27.509 29.838 29.8319 30.321

Mother_and_daughter_CIF 44.5958 44.376 44.6652 44.6787 45.0693

News_CIF 38.51697 37.9375 38.8607 38.8615 39.1862  

The table 4-2 shows that even iteration times used by the proposed methods are 

half of STAR model or less, the proposed methods still achieve the same or better visual 

quality compared to STAR model. The average gain is 0.23dB, compared to STAR 

model, and the maximum average gain is 0.63dB for Foreman_QCIF. 

4.4 Subjective Quality 

This section examines the subjective quality of the interpolated frame using FA, 

MCI8x8, STAR and Proposed_AST. 
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Figure 4-4 : Foreman_CIF 4
th

 interpolated frame. (a) FA (b) MCI8x8 (c) STAR (d) 

Proposed_AST 

Figure 4-4 (a) is the result of FA for 4
th

 interpolation frame of Foreman_CIF. 

Blurring happened around the ear, mouth, and helmet. Figure 4-4 (b) is MCI8x8 in the 

same frame. Blurring effect is eliminated for motion compensation. Still, the artifact 

around the mouth occurred because its discontinuity of adjacent block’s motion vectors. 

The figure 4-4 (c) is STAR model’s interpolation result, for maximum iteration 1 

and support order is 1. It alleviated the artifact around the mouth a little, and improved 

overall visual quality. But it also required much computation cost than proposed method. 

And a little blurring effect occurred at the edge of the helmet, since it may contain too 
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many unreliable spatial-temporal neighborhoods in moving filed. The figure 4-4 (d) is 

proposed method Proposed_AST’s interpolation result. Though the artifacts around the 

mouth are not totally alleviated, we improved the blurring effect at the edge of the 

helmet. 

4.5 Time complexity 

Since we use less number of variables in the proposed AR model, the LSM’s 

computation loading can be significantly reduced, comparing to STAR model. The time 

complexity to compute the matrix inverse is Ο(𝑛4), where n is equal to the number of 

variables in AR model. Assuming that support order is set to 1, the STAR model will 

have 22 variables for LSM; while our proposed method will use only 17 variables in 

average. This is because that TAR uses 18 variables, SAR uses 8 variables, and the ratio 

between TAR and SAR selected in our method is about 9:1. Following table shows the 

ratio between TAR and SAR selected in the proposed method, where the selection 

criteria threshold is set to 4.  
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Table 4-3 : Model selection ratio 

Sequence name 

Input 

Fr. 

SAR TAR 

LAST 

(non-invertible) 

Ntw Ptw Ntw Ptw Ntw Ptw 

Akiyo_QCIF 15 0 0.00 622 0.48 665 0.52 

Coastguard_QCIF 15 20 0.02 1265 0.98 2 0.00 

Foreman_QCIF 25 199 0.09 2078 0.91 0 0.00 

Mobile_QCIF 25 4 0.00 2273 1.00 0 0.00 

   

 

 

 

 

 

Akiyo_CIF 15 0 0.00 630 0.49 657 0.51 

Football_CIF 15 924 0.72 363 0.28 0 0.00 

Foreman_CIF 15 348 0.27 939 0.73 0 0.00 

Mobile_CIF 15 52 0.04 1235 0.96 0 0.00 

Mother_and_daughter_CIF 15 254 0.20 1033 0.80 0 0.00 

News_CIF 25 1 0.00 1787 0.78 489 0.21 

The Ntw and Ptw represent the number of selected training windows and the 

percentage of it with respect to the total number of training windows in the frame. The 

SAR column shows the number and the ratio of the training windows that are selected 

for applying SAR model according to the proposed selection criteria; and TAR column 

shows those for TAR model. The LAST column shows the number and the ratio of the 
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training windows whose constructed matrix is non-invertible AR. From Table 4-4, it is 

observed that test sequences with large motion will choose SAR as their AR model, 

while the sequences with low motion will choose TAR as expected.  

Table 4-4 : Execution time comparison between STAR and Proposed_AST (support order 

= 1) 

Sequence name 

STAR-IT1 

(clks) 

Proposed_AST-IT1 STAR-IT5 

(clks) 

Proposed_AST-IT2 

clks  ratio clks ratio 

Akiyo_QCIF 369 247 0.67 1175 422 0.36 

Coastguard_QCIF 473 354 0.75 2470 657 0.27 

Foreman_QCIF 855 547 0.64 4416 1073 0.24 

Mobile_QCIF 888 601 0.68 4339 1235 0.28 

Akiyo_CIF 1677 1140 0.68 5931 1930 0.33 

Football_CIF 2247 811 0.36 11896 1650 0.14 

Foreman_CIF 2184 1279 0.59 11574 2560 0.22 

Mobile_CIF 2240 1528 0.68 11217 2988 0.27 

Mother_and_daughter_CIF 2353 1411 0.60 11300 2705 0.24 

News_CIF 3556 2452 0.69 15202 4521 0.30 

The above table shows the number of clocks consumed by the AR process. We 

only consider the execution time for regression part of the STAR method and our 

proposed method because both methods performed the same operations (MCI) before 
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starting AR model process. The support order is set to 1 in this table. The STAR-IT1, 

STAR-IT5 means the STAR model is performed iteratively once and five times, 

respectively. The percentages in the table show that the proposed model consume only 

36% to 75% clocks compared to STAR model for iteration once. Since STAR-IT5 

(iteration 5 times) and Proposed_AST-IT2 (iteration two times) have similar visual 

performance, we also compare their execution times in this table and the results show 

that the proposed model consume only 14% to 36% clocks, compared to STAR model. 

The proposed model can save up to 86% clocks in Football_CIF, because it adaptively 

chooses SAR about 72% in whole process, the average number 10.8 variables for LSM. 
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Chapter 5 Conclusion 

In this thesis, an adaptive auto-regressive model for frame rate up-conversion was 

proposed. In this schema for frame rate up-conversion, we save a lot of computation 

loading from removing the unnecessary variables from the STAR model. In the 

experimental results, we perform our proposed method compare with the other 

algorithms. Also, we compare the computation efficiency with the STAR model, which 

states out our proposed schema can work more efficiently and stay the same visual 

quality level or even better. By seeing the upper bound in our experimental results, the 

proposed model selection criteria may still have some space to be improved.  
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