

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

操作利用非典型之擬真執行

Exploiting Atypical Symbolic Executions

研 究 生：邱世欣

指導教授：黃世昆 教授

中 華 民 國 100 年 7 月

操作利用非典型之擬真執行

Exploiting Atypical Symbolic Executions

研 究 生：邱世欣 Student：Shih-Hsin Chiu

指導教授：黃世昆 Advisor：Shih-Kun Huang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2011

Hsinchu, Taiwan, Republic of China

中華民國 100 年 7 月

i

操作利用非典型之擬真執行

學生：邱世欣 指導教授：黃世昆 教授

國立交通大學資訊科學與工程學系﹙研究所﹚碩士班

摘要

軟體安全日漸成為重要的研究主題，起因於越來越多的軟體攻擊行為發生，

這些狀況有一部份是源自於程式語言本身的缺陷，而另一方面也是程式設計師本

身的粗心所導致。因此，我們將藉由軟體偵測技術以減少這些問題。在論文中探

討目前被廣泛運用的的程式漏洞-緩衝區溢位(Buffer overflow)，例如西元 2003

年八月造成重大損失的疾風(Blaster)病毒即利用此種漏洞進行破壞。為了防止

此類型的漏洞，本論文使用 KLEE 的符號執行模組(symbolic execution model)

並引入新的記憶體對映機制(memory map)來探測緩衝區溢位。相較於傳統的檢測

工具，本論文所提出的工具可確實產生、可利用的測資來觸發漏洞的行為，進而

證實漏洞的存在。這些測資事實上就是一組攻擊字串，有別於駭客手動方式產

生，我們將提出自動產生的方法。

ii

Exploiting Atypical Symbolic Executions

Student：Shih-Hsin Chiu Advisors：Dr. Shin-Kun Huang

Department of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

Software security is getting more important recently. There are more and more

attacks than before. It is partially due to some design flaws of the programming

language and the lack of secure programming practices by programmers. The most

serious vulnerability this thesis concerns with is buffer overflow, present in many

C/C++ programs, such as the Blaster worm. For preventing from such vulnerabilities,

we use symbolic execution with a new memory model supported by KLEE to detect

buffer overflow vulnerabilities. This thesis actually generates an exploitable input to

trigger buffer overflow and verify the presence of the vulnerability. The input suites

we generate are realistic attacks. Unlike the usual hacking methods with manual

techniques to reason on the tainting paths, we propose methods to generate

exploitable input automatically.

iii

誌謝
 首先感謝黃世昆教授願意收留當年懵懂無知的我，讓我可以一窺軟體測試的

奧妙，讓我對寫程式產生莫大的熱情。當然也要謝謝我的父母，在我求學的生涯

中，給予我鼓勵與支持，在我決定要多讀一年的時候，尊重我的決定，讓我無後

顧之憂的去完成我的學業。

 謝謝 LAB中所有學長以及所有學弟妹們，讓我碩士生涯中除了苦悶的研究之

外，帶來許多歡笑，幫助我緩和研究上的壓力，感謝琨翰學長在我碩一時不厭其

煩的教導我課業上的問題，感謝佑鈞在我研究上給予我極大的幫助，感謝那一群

在我碩三壓力最大的時候陪我渡過難關的博彥、孟緯、翰霖、韋翔、偉明、奕任、

基傑、俊維。

 當然也感謝兩位口試委員，陳澤雄教授和鍾玉芳教授，願意撥空幫我的論文

口試，也叮嚀了一些論文寫作上的問題。總之，要感謝的人很多，無法一一列出，

不如感謝天吧！

 最後，我畢業了！！！！！！！！！！！！！！！！！！！！！！！！！！

iv

Table of Contents

摘要... i

ABSTRACT ... ii

誌謝.. iii

Table of Contents .. iv

List of Tables ... v

List of Figures ... vi

1. Introduction .. 1

1.1 Background .. 2

1.1.1 Common Vulnerabilities .. 2

1.1.2 Existing Detection Tactics .. 6

1.1.3 Random testing (Fuzzing) ... 7

1.1.4 Symbolic Execution .. 7

1.1.5 Concolic Testing ... 7

1.2 Motivation .. 9

1.3 Problem Description .. 11

1.4 Objective .. 15

2. Related Work ... 16

3. Method and Steps ... 18

3.1 New symbolic memory offset map .. 19

3.2 New symbolic memory function .. 20

3.3 Symbolic array index dereference approach .. 21

4 Implementation .. 22

4.1 Memory offset map .. 22

4.2 New Making Symbolic Strategy .. 26

4.3 Symbolic array index dereference handling .. 28

4.3.1 Memory dereference in LLVM IR form .. 29

4.3.2 Branch condition evaluation .. 31

4.4 Symbolic solution management ... 36

5 Result and Experiment ... 37

5.1 Trivial example of SAGE .. 37

5.2 Evaluations on real programs... 38

5.3 Atypical symbolic analysis .. 39

6 Conclusion ... 43

7 Future works ... 43

Reference ... 44

v

 List of Tables

Table 1 Summary of recent CERT advisories (Last updated 2004) 9

Table 2 Cyber Security Bulletins Summary in 2011 10

Table 3 Comparison of analysis tools in symbolic index 17

Table 4 The getelementptr instruction in LLVM ... 29

Table 5 Results on experiments of symbolic array index 38

Table 6 Results of tainting analysis ... 39

vi

List of Figures

Figure 1 Program development .. 1

Figure 2 The call stack of Function F .. 2

Figure 3 Metadata of Phkmalloc in BSD ... 3

Figure 4 Notion of Heap overflow ... 4

Figure 5 Example of uninitialized variable .. 5

Figure 6 Example of concolic execution ... 8

Figure 7 Normal stack overflow with a symbolic character array X1 11

Figure 8 Example of symbolic index ... 12

Figure 9 Concrete array Y with symbolic index X 12

Figure 10 Cross-function overflow in stack with symbolic variable Y1 13

Figure 11 Buffer overflow with a symbolic pointer X2 14

Figure 12 Example of memory offset map .. 15

Figure 13 KLEE testing procedure .. 18

Figure 14 Example of memory offset map .. 19

Figure 15 An example of abnormal buffer input ... 20

Figure 16 Situation of array index ... 21

Figure 17 Memory offset map ... 23

Figure 18 Allocating function of KLEE .. 24

Figure 19 Function analysis pass ... 25

Figure 20 Example of stack allocation... 26

Figure 21 The hsin_make_symbolic function .. 27

Figure 22 Flowchart of the implementation... 28

Figure 23 Example of symbolic index with its index constraints 29

Figure 24 Original Instruction GetElementPtr .. 30

Figure 25 Index constraints generation .. 30

Figure 26 Example of icmp instruction .. 31

Figure 27 Comparison in Original KLEE .. 31

Figure 28 Symbolic array index handling at inside scope 32

Figure 29 Example of the result of setTmpMappinp 32

Figure 30 Function setTmpMappinp .. 33

Figure 31 Symbolic array index handling at outside scope 34

Figure 32 More than one symbolic array index handling at inside scope ... 35

Figure 33 Symbolic solution fixing in solver.cpp .. 36

Figure 34 Example of SAGE tool .. 37

Figure 35 Wargame1.. 40

vii

Figure 36 Symbolic index in Snort .. 41

Figure 37 Symbolic index in Asterisk ... 42

1

1. Introduction

Software testing is the process of validating program behaviors to conform to the

specified requirements. Traditionally, programmers manually generate test suites and

actually execute program to verify program behavior. It takes human efforts and is not

efficient.

As the development of larger software applications, programs become more

complicated. As figure1 shows, there are two additional situations in program

development.

1. Requirement is not fully accomplished. It exist some bugs in the program.

2. Implementing additional functions. It causes the security problems.

Manual program validation is not appropriate for program testing. The demand of

automated testing becomes essential. There are many related methods proposed to

resolve the issues [3,12,13,16,17,21], but few of them can deal with large software

systems. In our work, we propose an important issue for automatic test suites

generation. In contrast with traditional buffer overflow detecting tools [4,10,14], we

aim to actually generate an exploitable input to trigger buffer overflow attacks, and

verify the presence of the vulnerability. The input suites we generate are realistic

attacks.

Figure 1 Program development

2

1.1 Background

Software testing on buffer overflow vulnerability is getting mature gradually,

due to the threats originated from buffer overflow flaws. For the security perspective,

the buffer overflow defect is an anomaly of program behaviors where a process stores

data in a buffer beyond the buffer size declared before. Any data overwritten

situations may cause unexpected behaviors.

Due to the above-mentioned facts, there are many approaches and researches

which have been proposed. We describe the major researches about our works below.

1.1.1 Common Vulnerabilities

 From the classifications of security threats, there exist types of serious

vulnerabilities, including buffer overflow, uninitialized variables, format string, etc. In

this section, we will discuss on several critical vulnerabilities in the following.

1.1.1.1 Stack-based Overflow

During executing program, the information of call functions, including return

address, base pointer parameters and local variables is pushed into stack as shown in

figure 2, which are accessed via the offset of base pointer.

Figure 2 The call stack of Function F

Function F(parameter A,parameter B)

{

 Local variable A;

 Local variable B;

 …

…

 if (A = = something)

 do something;

 return;

}

3

In general, there are several ways to exploit stack-based overflow.

1. Overflowing variables nearby a buffer to change the program behavior, that is, to

control the program executing flow if the nearby variables are in the predicates

involving some branch conditions, etc.

2. Overflowing function pointers or return address to execute arbitrary codes such

as shell-code.

1.1.1.2 Heap-based Overflow

The heap-based overflow [23] is different from stack-based overflow in manner.

Memory on heap are dynamically allocated at program run-time, and maintained by

metadata.

The exploit is to overflow the memory management information associated with

heap memory, such as the metadata of malloc. Figure 3 shows the metadata sketch of

Phkmalloc in BSD. The Pginfo is used to describe a small or medium page, and is

stored in the beginning of the page for small chunks.

 Figure 3 Metadata of Phkmalloc in BSD

4

As shown in figure 4[23], we can overflow the page-field in Pginfo of chunks to

point to target memory location, such as GOT entries and return address, or modify

the bits[] array to make all chunks seem free.

 Figure 4 Notion of Heap overflow

5

1.1.1.3 Uninitialized Variables

In programming language C/C++, the variables of subroutines are allocated at

stack region. In fact, it just modulates the stack pointer to indicate a stack frame for

allocation without any status check.

 The value of an uninitialized variable cannot be expected and it is a common

bug in the program. An attacker can find an exploitable path to control the

uninitialized variables. As shown in figure 5, the call stack of function A and

function B will be allocated in the same address range, that is, the address of local

variables in function A and function B may overlap. According to the executing

flow of program, we can control the local variable b in function B by adjusting the

argument of function A from standard input. For instance, we input value 100 as the

argument of function A to pass the if-condition in function B, and finally reach the

goal.

Figure 5 Example of uninitialized variable

#include<stdio.h>

void a(int n){

 int a=n;

 printf("%p %d\n",%a,a);

}

void b(int n){

 int b;

 printf("%p %d\n",&b,b);

 if(b==n)

 printf("GOAL!!\n");

}

int main(void){

 int val,tmp=100;

 scanf("%d",&val);

 a(val);

 b(tmp);

 return 0;

}

[chiush@Laputa:~/test]$./cross

100

0xbfb5765c 100

0xbfb5765c 100

GOAL!!

6

1.1.2 Existing Detection Tactics

An easy approach for detecting errors is to insert “printf” statement manually.

However, it is inefficient and is time-wasted. To promote the efficiency, we analyze

programs by programs.

The existing detection tactics can be divided into two approaches: one is static

analysis and the other one is dynamic analysis.

1.1.2.1 Static Analysis

To perform static analysis, we need variables information, dataflow information

and the parse tree of the program. Moreover, some heuristics are needed for detection.

There are lots of static analysis tools, such as Uno[24], developed at Bell Labs, which

is designed to detect the most common types of vulnerabilities. Static analysis tools

just scan the source code without actually executing. For instance in buffer overflow

detecting, they check some of dangerous standard library functions by tracking the

arguments, such as strcpy, where they track the possible size of strings to avoid buffer

overflow.

However, these methods are imprecise and with high false positive rate. In fact,

it just determines if a buffer overflow might occur.

1.1.2.2 Dynamic Analysis

Dynamic analysis actually executes the target program to detect the

vulnerabilities at run-time. To perform it, we need a large number of test cases to

explore the target program. Such as valgrind[9], a tool for memory debugging and

memory leaking analysis tool.

Dynamic analysis costs more time than original for program exploration.

However, it performs precise detection than static analysis. The vulnerabilities found

by dynamic analysis are authentic.

7

1.1.3 Random testing (Fuzzing)

Unlike dynamic analysis that uses selected test inputs, the random testing selects

test inputs randomly and leads program to explore more deep. Such as zzuf [25], a

tool that performs fuzz testing on target program.

Random testing executes much faster. However, it costs lots of time to select

duplicate test inputs. In a 32-bit computer, there are 2
32

 inputs for a variable.

1.1.4 Symbolic Execution

 Symbolic execution [20] is a popular testing approach in software validation and

program proving [12]. The execution process is by collecting a list of assignment

statements and branch predicates with symbolic values in a particular path of

execution, and solve these constraints by solvers to get a solution as next program

inputs. The drawback of symbolic execution is the lack of scalability because of the

much more execution paths for exploration in a large program.

1.1.5 Concolic Testing

 Concolic testing [7,8,15] combines the concrete and symbolic (concolic)

executions. Based on symbolic execution, it collects symbolic constraints for further

executions. The differences between them are the concept of concrete executions,

which replace some of the symbolic values with concrete ones, when the constraint

solver cannot resolve feasible solutions that satisfy the constraints.

 For instance in figure 6, we begin with a simple random testing for variable a and

variable b, for example a=b=0. Concolic execution treats a and b as symbolic

variables and the test in line 3 fails since a=0!=1. Because we would like to explore

different paths on next run, we negate the last path condition and get a=1. And then

we encounter the next path condition and it fails again since b=0!=‟a‟, thus we negate

the path condition and get b=‟a‟ and finally we reach the goal.

8

Figure 6 Example of concolic execution

#include<stdio.h>

void testme(int a,char b){

 if(a==1)

 if(b=='a')

 puts("GOAL");

}

int main(void){

 int a;

 char b;

 testme(a,b);

 return 0;

}

9

1.2 Motivation

Buffer overflow is one of critical security problem, as the statistics of CERT

advisories [30] in table 1, buffer overflow is in possession of the percentage near 50%

before 2004. These table only list critical advisories.

Table 1 Summary of recent CERT advisories (Last updated 2004)

Year Advisories Buffer overflow related

advisories

Percentage of Buffer overflows

1996 27 5 19%

1997 28 15 54%

1998 13 7 54%

1999 17 8 47%

2000 22 3 14%

2001 37 19 51%

2002 37 21 57%

2003 28 18 64%

2004 9 7 78%

Total 218 103 47%

The US-CERT Cyber Security Bulletin [31] provides a summary of new

vulnerabilities that have been recorded by the National Institute of Standards and

Technology (NIST) National Vulnerability Database (NVD) in the past week. We

count the high severity Vulnerabilities, determined by the Common Vulnerability

Scoring System (CVSS) standard. Because buffer overflow related vulnerability

appear in high severity more than medium and low severity.

As shown in table 2, the percentages of buffer overflow vulnerability from

January to May in 2011 have 15% in total. The prevention of buffer overflow is

essential.

http://nvd.nist.gov/cvss.cfm
http://nvd.nist.gov/cvss.cfm

10

Table 2 Cyber Security Bulletins Summary in 2011

Release Date Bulletins Buffer

overflow

related

Percentage of

Buffer overflow

January 3, 2011 18 1 5%

January 10, 2011 18 1 5%

January 17, 2011 64 23 35%

January 24, 2011 58 10 17%

January 31, 2011 15 5 33%

February 7, 2011 55 19 34%

February 14, 2011 103 11 10%

February 21, 2011 22 3 13%

February 28, 2011 53 8 15%

March 7, 2011 48 5 10%

March 14, 2011 26 0 0%

March 21, 2011 16 1 6%

March 28, 2011 13 2 15%

April 4, 2011 15 1 6%

April 11, 2011 18 4 22%

April 20, 2011 59 3 5%

April 27, 2011 59 3 5%

May 2, 2011 10 2 20%

May 9, 2011 55 2 3%

May 16, 2011 34 9 26%

May 23, 2011 22 7 31%

Total 781 120 15%

All of existing software analysis tools only detects vulnerabilities, that is, it does

not generate an exploitable input to trigger vulnerabilities. In order to perform precise

testing and manifest the vulnerabilities which exist indeed, it is a trivial notion by

intuitions, that is, exploiting the vulnerabilities by running the program with abnormal

inputs to trigger it. Furthermore, showing the abnormal inputs as the exploitable

evidence is very persuasive. Not only crash the checked program, we finally get a test

suite to perform the exploit, such as getting the root privilege.

http://www.us-cert.gov/cas/bulletins/SB11-003.html

11

1.3 Problem Description

Buffer overflow [4] indicates that we should write some data beyond the buffer

size we declared before. Human are intelligent to know the principle. But for

computers, it cannot make sense with it. We describe several case of buffer overflow

situations below：

Case 1：Normal overflow in stack region

Given a set of symbolic variables x1, x2, x3,…xn, and a set of non-symbolic

variables y1,y2,y3, …, yn. We try to verify if we can convert any non-symbolic

variables into symbolic variables. If it is feasible for the conversion, we define this is

an exploitable state. In figure 7, X1 is a symbolic character array with size 4, and we

can overflow non-symbolic variable Y1 by assigning some value to X1[5] no doubt.

Specially, we can overflow the return address.

Figure 7 Normal stack overflow with a symbolic character array X1

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=doubt
http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=doubt

12

Case 2：Symbolic array index dereference

In this thesis, we make efforts in this case. Given a concrete array Y handled by a

symbolic array index X in branch condition, such as in Figure 8. The program prints

“GOAL” when X is assigned to 1, it is the regular example of symbolic index.

However, how if we rewrite the branch condition as (Y[X] ==‟3‟). In this situation,

we can not find solution in array Y, but we can try the indices beyond in stack region.

 Normally, we don‟t need worry about the problem, that is, the symbolic index is

rare in program. Nevertheless, it is the key to explore more program path for exploit

input generator.

Figure 9 Concrete array Y with symbolic index X

1 int testme(void){

2 char tmp;

 3 char Y*3+=,‘0’,’1’,’2’-;

 4 int X;

 5 scanf(“%c %d”,&tmp,&X);

 6 if (Y*X+ == ‘1’)

 7 puts("GOAL!!");

 6 return 0;

 7 }

Figure 8 Example of symbolic index

13

Case 3：Cross-function overflow in stack

According to the stack allocation, a callee function with symbolic variables can

taint non-symbolic variables in caller function. Such as in figure 10, the function Y is

a callee function called by function X, specially, the symbolic variable Y1 can

overflow the non-symbolic variables in X function,

Figure 10 Cross-function overflow in stack with symbolic variable Y1

14

Case 4：The general case (*tainted-pointer = tainted-value)

Normally, lower-addressed variables are not taintable by a symbolic variable,

unless there has a symbolic pointer. In figure 11, the symbolic pointer X2 is mighty.

In generally, it can taint not only stack region, but also the whole of memory region,

such as the metadata in heap region and GOT, etc.

Figure 11 Buffer overflow with a symbolic pointer X2

15

For the simulation of buffer overflow, that is, we make the exploit process

automatic by symbolic execution. To achieve the goal, we should record the

relationship between symbolic variables, that is, we must maintain a memory offset

map which records buffer index according to the symbolic variable. This allows us to

write beyond the buffer size as abnormal inputs to trigger buffer overflow or other

vulnerabilities.

 In dynamic input generation, we collect the list of constraints during execution,

and solve them by solvers. Furthermore, in order to perform precise buffer overflow,

we should generate many constraints to handle symbolic index and symbolic pointer

by using memory offset map which records the relations between symbolic variables.

1.4 Objective
We want to improve the precision of dynamic input generation, that is, we

generate a precise testing input to explore more feasible execution paths, and to

trigger more vulnerability like buffer overflow. To achieve these goals, we will try to

implement a new component of dynamic test input generator on KLEE [2] including:

1. Memory offset map: A table records the variable‟s information and relation

between symbolic variables in target code.

2. Symbolic array index: To generate abnormal symbolic solutions in array

object dereference.

We depict the memory offset map example below：

Figure 12 Example of memory offset map

16

2. Related Work

Memory map is an essential part for every symbolic execution analysis tools,

such as EXE [11], SAGE [18], CUTE [6] and KLEE [2], etc. All of them implement

the model in their tools to specify and track symbolic variables and constraints. We

base on the KLEE memory model, with improvement to make a precise dynamic

input generator:

 CRED [22,27] (C Range Error Detector) directly checks the bounds of

memory accesses, and the address of a special OOB (out-of-bounds) object

is substituted for every out-of-bounds pointer address. In short, it is just a

bound checking tool.

 DART [5] integrates random testing and dynamic test input generation

using symbolic reasoning, but it only handles integer constraints and

invokes random testing when symbolic pointer constraints are used.

 CUTE uses concolic execution to generate test inputs to explore all feasible

execution paths. It extends DART by tracking symbolic pointer constraints

of the equalities and inequalities. It cannot handle symbolic array index.

 Crest [19] is an open source concolic testing tool for C. by supporting

heuristic search strategies to perform high branch coverage in target code. It

does not handle symbolic array index.

 EXE is more precise and handles both pointer arithmetic and symbolic

pointer with single dereference, but it does not handle symbolic pointer with

multi-dimension dereferences and write. Moreover, it has implemented

symbolic index, but it cannot handle out-of-bounds array index dereference.

 SAGE performs symbolic array index in dynamic input generation by

presenting a new memory model. Furthermore, it claims the symbolic

constraints are solvable using SMT solvers. However, it cannot handle

out-of-bounds array index dereference

 KLEE is redesigned from EXE. In KLEE, it takes advantage of many

constraint solving optimizations, and uses search heuristics to reach high

17

coverage in program. It directly interprets the LLVM [1] assembly language,

a RISC-like instruction set, and converts instructions to constraints.

However, KLEE records all of memory objects including unnecessary

objects and cannot handle symbolic array index dereference.

 ALERT is developed by our laboratory, it has implemented a memory offset

map and byte-level precision for symbolic expression. Moreover, it handles

symbolic pointer and symbolic array index to explore more feasible

execution path. But it cannot handle out-of-bounds array index.

 Above tools target to fully explore program paths and find bugs. In our works,

we focus on exploiting program bugs to explore more program paths. The comparison

of above tools is shown as table 3. There are tools capable of handling symbolic array

index. However, our work can handle not only in-bounds array index but also

out-of-bounds array index.

 Table 3 Comparison of analysis tools in symbolic index

Tool Symbolic array index Out-of-bounds index

DART X X

Crest X X

Cute X X

Exe O X

Sage O X

KLEE X X

Alert O X

Hsin O O

18

3. Method and Steps

 We target to improve KLEE symbolic execution model. Aiming to handling

symbolic array index dereference for path coverage enhancement. Therefore, we trace

KLEE to understand the requirement of symbolic array index handling in KLEE and

study LLVM intermediate representation.

 KLEE is a Symbolic executor built on LLVM. LLVM provides many useful

tools and APIs for code analysis, for example, we can use LLVM pass to insert some

instructions for statistics. For this reason, we can do some modifications on target

code for precise checking.

KLEE interprets LLVM bit-codes and by inserting a special function named

klee_symbolic_make in target code for symbolic execution. It collects path constraints

related to symbolic variables indicated by the special function call, and forks entire

states when it encounters a branch, then resolves the path constraints for possible

solution according to the branch condition.

Figure 13 KLEE testing procedure

19

 Based on KLEE symbolic execution model, we construct a new memory offset

map and add a new symbolic memory function call named hsin_make_symbolic to

simulate buffer overflow. Furthermore, we modify the interpretation in memory

dereference instruction to handle symbolic array index dereference. We explain the

conceptions following.

3.1 New symbolic memory offset map

 KLEE use abstract memory model to process memory operation. It takes the

target program as the part of KLEE by allocating independent memory space to store

variables in target program even if they are in the stack. Therefore, the stack variables

of target program are irrelevant in each other. Furthermore, original memory map

records too much destructive information like the variables in uclibc.

For buffer overflow manipulation, we need the information of tainted variables,

including size、type and value, etc. For this reason, we construct a memory offset map

to record the relationship of variables with offset information in stack region. The

memory offset map supports us for buffer overflow simulation and exploiting input

generation.

Figure 14 Example of memory offset map

Memory Offset Map:
Address name type offset index

0xbf9f7158 eip int buf[18]

0xbf9f7234 ebp int buf[14]

0xbf9f7656 tmp int buf[10]

0xbf9f7344 buf char* buf[0]

…

…

Interpreted by KLEE

“tmp” and eip are taintable by “buf”.

20

3.2 New symbolic memory function

 Original KLEE provides a function named klee_make_symbolic to mark

symbolic memory by setting the appointed memory contents as changeable for

constraints generation. KLEE collects constraints related to symbolic variables and

solves them when meets branches.

 The symbolic variables can influence program path exploration. KLEE

intuitively marks the variables from standard input as symbolic only. As shown in

figure 15 at line 6, original KLEE marks the variable buf as symbolic with its size, but

in fact, the variable i should be symbolic for constraint generation.

 We need a new function to mark nearby memory as symbolic by automatically

determining whether a variable is overflow-able through the standard input buffer.

Finally, we can integrate the solutions of overflow-able variables with the buffer to

generate an abnormal test input by the memory offset map supports.

Figure 15 An example of abnormal buffer input

1 #include<stdio.h>

 2 int main(void){

 3 int i;

 4 char buf[5];

 5 scanf("%s",buf);

 6 //klee_make_symbolic(buf,5,"buf");

 7 hsin_make_symbolic(buf,9,"buf");

 8 if(i==1)

 9 puts("GOAL!!");

 10 return 0;

 11 }

21

3.3 Symbolic array index dereference approach

 This is the main idea in our thesis. For an exploitable input generator, we use

symbolic index to explore each memory contents, aiming to rewrite the values and

generate more possible program path.

In a C/C++ program, we use array for large related data deposition, manipulating

by an index value. The situations of branch condition with array index dereference are

listed below:

Figure 16 Situation of array index

We interests on symbolic index, it is common in string checking. The concept of

symbolic index means that a concrete array handled by a variable index. The index

may be tainted by standard input.

KLEE didn‟t support symbolic index dereference because the lack of constraints

for index expression. Therefore, KLEE keeps forking states on inaccurate constraints

generation if symbolic index exists.

We must provide index constraints for symbolic index solving. To handling

symbolic array index dereference, we look into the memory dereference operations

and comparison instruction interpreted by KLEE. It is trivial to handle symbolic index

at inside scope by adding related index constraints at each index. However, for indices

which are at outside scope, we should compare the required value with concrete

values at each possible index by memory offset map supporting.

Const_buf[symbolic index] = tainted_value

i. A constant value → if (buf[2] == „a‟)

ii. A calculated value → i=2; if(buf[i] == „a‟)

iii. A symbolic value → cin>>i; if(buf[i] == ‟a‟)

22

4 Implementation

Based on KLEE symbolic executor, we add a memory offset map for stack

object gathering, and store the relations between each stack objects. Rely on the

memory offset map, we develop a simple buffer overflow input generator and

supports symbolic array index dereference.

In this thesis, we make efforts in handling symbolic array index dereference.

To simulate buffer overflow, we supports the array index dereference at outside scope

for precise checking.

We use C/C++ and LLVM IR to develop memory offset map and symbolic array

index dereference algorithm based on KLEE, and perform the executing script by

bash shell script supports.

4.1 Memory offset map

 We construct a framework with some rules to collect stack objects, As the figure

17 shows, an stack object includes its name、size and type information, etc. The

simuStack class constructs a virtual stack region and provides some controlling

methods to process stack operation.

In KLEE, the allocating function ExecuteAlloc collects all of variables in a

simple memory map without classifying. It collects not only stack variables but also

variables in uclibc, etc. So we should filter out the unnecessary variables. The key is

to acquire all of function name in target code by writing an analysis LLVM pass. We

describe the LLVM pass at ending of this section. Afterwards, we can collect stack

variables in target code only by setting a comparison condition as shown in figure 18.

23

Figure 17 Memory offset map

 Following stack as a model, we provide some controlling function to simulate

the action on stack. There are about four methods in the SimuStack class and one

method in StackObj class:

In SimuStack class:

1. void pushObj(StackObj* so)

 Pushing a stack object into the SimuStack.

2. void popObj(StackObj* so);

 Popping a stack object from SimuStack.

3. void setIndex();

 Setting offset information without alignment.

4. void print();

 Printing the memory offset map information.

In StackObj class:

1. void setContents(std::vector<unsigned char> cont);

 Setting symbolic solutions of symbolic variables in hexadecimal.

Class StackObj {

Private:

 string name;

 size_t size;

 int address;

 int index;

 vector<unsigned char*> contents;

public:

 void setContents(std::vector<unsigned char> cont);

}

Class SimuStack{

Private:

 vector<StackObj *> so;

 StackObj *ebp;

 StackObj *eip;

Public:

 void pushObj(StackObj* so);

 void popObj(StackObj* so);

 void setIndex();

 void print();

}

24

Figure 18 Allocating function of KLEE

To get all of function name in target code, we write a function analysis pass.

As shown in figure 19, we inherit FunctionPass and overload runOnFunction

function to iterate on each function in target program, and then print the function

name to standard error.

 Depend on the function pass, we can get variables in each function without

including unnecessary variables in uclibc, etc. The function analysis pass is important

in subsequent section.

M : a memory object allocated by KLEE

F : the current function name

O : an stack object used to store variable information

S : the simuStack

1 ExecuteAlloc(…){

2 If F exists in target program {

3 O ← new StackObj(M ->name, M ->address, M ->size, …)

4 S ->pushObj(O)

5 }

6 …

7 }

25

Figure 19 Function analysis pass

#include "llvm/Pass.h"

#include "llvm/Function.h"

#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {

 struct funcAns : public FunctionPass {

 static char ID;

 funcAns() : FunctionPass(ID) {}

 virtual bool runOnFunction(Function &F) {

 errs() << F.getName() << "\n";

 return false;

 }

 };

 char funcAns::ID = 5566;

 static RegisterPass<funcAns> X("funcAns", "Get func name pass", false, false);

}

26

4.2 New Making Symbolic Strategy

 KLEE provides a framework to insert some function calls or handle some

specific function in target program in file SpecialFunctionHandler.cpp. By defining

the handler, we can instrument a function to collect some information in target code.

 Depend on the stack layout, the stack variables are allocated in light of declaring

sequence as shown in figure 20. According to the relations in stack, we define a new

symbolic memory function named hsin_make_symbolic as shown in figure 21,

iteratively determining nearby stack objects of the standard input buffer as symbolic.

Afterwards, KLEE gathers constraints related to symbolic variables and solves the

constraints by STP solver for path exploration.

Figure 20 Example of stack allocation

27

In this function, the first parameter is address of the standard input buffer,

continuing with the buffer size and name. The size is immaterial, just to record the

overflow-able size we guess. At first, we mark the standard input as symbolic by

calling executeMakeSymbolic function of KLEE, and iterate on each stack variables

by memory offset map supports. For each stack variable, we determine if it can be

overflowed by the standard input and mark as symbolic if yes.

Figure 21 The hsin_make_symbolic function

 As the example shown in Figure 15, the variable i is overflow-able by variable

buf. In normal execution, KLEE iteratively generates the symbolic solutions for

variable buf without including variable i. Because variable i is not symbolic, KLEE

do not collect the constraints about variable i.

 Handling by our new symbolic memory function, we automatically mark the

overflow-able variables as symbolic for constraints generation. Therefore, the second

parameter is immaterial, because we automatically determine the total size the buf can

overflow.

S : the simuStack

O : the stack object in target program

B : address of object

SIZE : size of object

NAME:name of object

1 Hsin_make_symbolic(B , SIZE , NAME){

2 executeMakeSymbolic(B , NAME)

3 for each O ∈ S {

4 …

5 if O is overflow-able by B

6 executeMakeSymbolic(O)

7 …

8 }

9 }

28

 4.3 Symbolic array index dereference handling

To handle symbolic array index, we modify the executeInstruction function, an

instruction interpreter on KLEE. In GetElementPtr instruction, we generate index

constraints to determine the index value and modify the Icmp instructions to compare

each array offset for the index solutions.

Figure 22 Flowchart of the implementation

29

4.3.1 Memory dereference in LLVM IR form

LLVM uses getelementptr instruction to get the address of a subelement of an

aggregate data structure. The arguments are a pointer value <ptrval> with its type

<pty>*, and the index value <idx> with its type <ty>.

 Table 4 The getelementptr instruction in LLVM

 In general, the index value <idx> is a constant value or a calculated value, that is,

a concrete value. However, we would get a symbolic value while symbolic index

occurs. For instant as shown in figure 23 at line5, the array index is loaded from a

symbolic variable X. KLEE represents symbolic index by an expression in Kleaver

form and we need a constraint related to the expression to determine its value.

Figure 23 Example of symbolic index with its index constraints

We modify the instruction GetElementPtr interpreted by KLEE. Originally,

KLEE would get a concrete index value at line2 in figure 24, and calculate the offset

at line3. To handle symbolic array index, we construct constraints at each array index

including overflow-able indices by memory offset map supports between line2 and

line3.

(Eq 0 (ReadLSB w32 0 arr1))

(Eq 1 (ReadLSB w32 0 arr1))

(Eq 2 (ReadLSB w32 0 arr1))

(Eq 3 (ReadLSB w32 0 arr1))

…

…

 1 void testme(int X){

 2 char W=’1’;

3 char Y*3+=,‘0’,’1’,’2’-;

 4 int X;

 5 if (Y*X+ == ‘1’)

 6 puts("GOAL!!");

 7 }

Syntax:

 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*

 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*

http://llvm.org/docs/LangRef.html#t_aggregate

30

Figure 24 Original Instruction GetElementPtr

 As shown in figure 25, we confirm the target buffer and identify if the index is

symbolic. For each variable which allocated behind the target buffer, we generate

index constraints for each offset. For instance, we generate four index constraints for

an integer variable.

Figure 25 Index constraints generation

IndexExpr : a container used to store index constraints

S : the simuStack

O : the stack object in target program

IC : the index constraint

I : the index expression

1 for each O ∈ S && O is current buffer && I exists {

2 for each O’ is overflow-able by the buffer {

3 for each offset in O’ {

4 IC ← EqExpr::create(offset , I) // To create an index constraint for current offset

5 Store IC in IndexExpr

6 }

7 }

8 }

K : the current instruction

S : the current execution state

B : the start address of the array

E : the element size of the array

I : the index expression

1 case Instruction::GetElementPtr {

2 I ← eval(K , S).value // Getting index from previous instruction

3 B’ ← AddExpr::create(B , MulExpr::create(I , E)) // Calculating the offset

4 bindLocal(K , S, B ’) // Pushing the result into stack for next instruction

5 }

31

4.3.2 Branch condition evaluation

LLVM use icmp instructions to process comparison in branch as shown in figure

26, including EQ、NE、LTE ,etc. In section 4.3.1, we generate index constraints in

GetElementPtr instruction. In this section, we use the index constraints to determine

the symbolic index value.

Original KLEE interprets comparison instructions as figure 27 shows. It simply

compares the values, and pushes the result into the stack for value propagation.

Figure 26 Example of icmp instruction

Figure 27 Comparison in Original KLEE

K : the current instruction

S : the current execution state

L : left value in condition

R : right value in condition

RES : the comparison constraint

1 case ICmpInst::ICMP_EQ {

2 L ← eval(K , 0 , S).value

3 R ← eval(K , 1 , S).value

4 RES ← EqExpr::create(L ,R)

5 bindLocal(K , S , R)

6 break

7 }

1 %9 = getelementptr inbounds [3 x i8]* %buf, i32 0, i32 %8 ; <i8*> 2 [#uses=1]

2 %10 = load i8* %9, align 1 ; <i8> [#uses=1]

3 %11 = icmp eq i8 %10, 48 ; <i1> [#uses=1]

4 br i1 %11, label %bb, label %bb1

32

 We write a function named getSymIndexSolution and insert between line4 and

line5 in figure 27 to handle symbolic array index solution generation. For indices at

inside scope, we iteratively add the each index constraint and query solver to

determine the symbolic index solution as shown in figure 28 at line2 to line3.

Figure 28 Symbolic array index handling at inside scope

To handle symbolic index at outside scope, due to KLEE did not support array

index dereference at outside scope, we write a function named setTmpMapping to get

the real values of overflow-able variables , and construct comparison constraints to

compare the real value with the required value. As shown in figure 29, we can get the

value of variable W with array index value 3.

 Figure 29 Example of the result of setTmpMappinp

IndexExpr : a container used to store index constraints

S : the current execution state

IC : the index constraint

RES : the comparison constraint

SIC : a containter used to store solutions

Sol : the solutions of symbolic index

1 for each IC ∈ IndexExpr at inside scopes {

2 addConstraint(S , IC)

3 Sol ← solver->query(S,RES)

4 if Sol exists // For solver

5 SIC.insert(Sol);

6 }

 1 void testme(int X){

 2 char W=’1’;

3 char Y*3+=,‘0’,’1’,’2’-;

 4 int X;

 5 if (Y*X+ == ‘1’)

 6 puts("GOAL!!");

 7 }

0 48

1 49

2 50

3 49

33

KLEE records the value of each variable in class ObjectState. We use the object

iterator to process each stack object behind the tainted buffer. As shown in figure 30

at line4, we process some complicated mapping works to get the corresponding array

object, and then use the method findObject in class addressSpace to obtain the object

state. Rely on the corresponding objectstate, we can use the method read8 to get real

values per byte.

Figure 30 Function setTmpMappinp

Because KLEE didn‟t accept the array index dereference at outside scopes, we

generate comparison constraint by ourselves.

S : the current execution state

OS : the current object state

SS: the simuStack

O : stack object

IT : the stack object iterator points to beginning of the tainted buffer

Array : the object represented in Kleaver constraint

Value : the real value in byte

MAP : a containter used to store the real values

1 setTmpMapping(S, MAP ,IT){

2 for each O ∈SS behind the tainted buffer {

3 O ← *IT

4 Array ← findArrayObject(O)

5 OS ← S.addressSpace.findObject(Array)

6 IT ← IT - 1

7 for each byte in O {

8 Value ← OS ->read8()

9 MAP.insert(O ,Value);

10 }

11 }

12 }

34

P is an enumeration defined in LLVM used to identify the type of comparison.

Depend on the result of setTmpMapping, we can construct the comparison constraints

and query solver to get symbolic array index solutions at outside scope as shown in

figure 31.

Figure 31 Symbolic array index handling at outside scope

S : the current execution state

IT : the stack object iterator points to beginning of the tainted buffer

MAP : a containter used to store the real values

P : the comparison type in LLVM

COND : the constraint

Index : the index from the beginning of the tainted buffer

R : the required value in original comparison constraint

SOL : the solutions of symbolic index

SIC : a containter used to store solutions

1 setTmpMapping(S, MAP ,IT)

2 for each Index at outside scope {

3 switch (P){

4 case ICMP_EQ:

5 COND ← EqExpr::create(MAP , Index , R)

6 break;

7 case ICMP_NE:

8 COND ← NeExpr::create(MAP , Index , R)

9 break;

10 case ICMP_UGT:

11 COND ← UgtExpr::create(MAP , Index , R)

12 break;

13 …

14 …

15 }

16 SOL ← solver->query (S , COND);

17 if Sol exists // For solver

18 SIC.insert(Sol);

18 }

35

 In our implementation, we can also handle two or more symbolic array index in a

branch condition by simply doubling the symbolic array index checking strategy as

shown in figure 32.

Figure 32 More than one symbolic array index handling at inside scope

IndexExpr : a container used to store index constraints

S : the current execution state

IC1 : the index constraint

IC2 : the index constraint

RES : the comparison constraint

SIC : a containter used to store solutions

Sol : the solutions of symbolic index

1 for each IC1 ∈ IndexExpr at inside scopes {

2 for each IC2 ∈ IndexExpr at inside scopes {

3 … more for loop …

4 addConstraint(S , IC1)

5 addConstraint(S , IC2)

6 … more constraints adding …

7 Sol ← solver->query(S,RES)

8 if Sol exists // For solver

9 SIC.insert(Sol);

8 }

9 }

36

4.4 Symbolic solution management

 To preserve the correct symbolic execution, we generate the symbolic index

solution and insert in corresponding position between each variable per iteration.

KLEE handles solver querying in function runAndGetCexForked in file solver.cpp,

the variable POS is a share memory used to record symbolic solutions. Original

KLEE cannot generate symbolic solution when symbolic index appears. Therefore,

we insert symbolic index solution when the symbolic index appears as shown in

figure 33 at line2 to line5. We use array object to identify symbolic index and insert

the solutions into the POS shared memory, the symbolic index solutions is

propagated by SIC.

Figure 33 Symbolic solution fixing in solver.cpp

Array : the object represented in Kleaver constraint

SIC : a containter used to store solutions

Sol : the solutions of symbolic index

POS : the shared memory used to store symbolic solutions after solver querying

1 for each Array in KLEE{

2 if Array is symbolic index { // our implementation

3 for each Sol ∈ SIC

4 if Sol is the solution of the Array

5 POS ← Sol

6 } else // original works

7 POS ← solver->getsolution(Array)

8 }

37

5 Result and Experiment

In this section, we present results of preliminary experiments with our symbolic

array index algorithm. At first, we use the example of SAGE to simply illustrate the

purpose of symbolic array index. Next, we evaluate on some real programs to verify

our algorithm and analyze some well-known exploitable program on symbolic

tainting. We evaluate our algorithm on a machine with a Intel(R) Pentium(R) 4

3.40GHz cpu and 1.5GB of RAM and perform the experiments under Ubuntu

2.6.32-24-generic-pae. We use llvm-gcc 4.2-2.7 to compile our test programs. The

experiment results were supplied by the statistics in KLEE functions.

5.1 Trivial example of SAGE

 At first, we test the example of SAGE. As shown in figure 34, the program has

two inputs X and Y. Our goal is to pass the branch at line10. In our implementation,

we will collect index constraints for X and Y, and add these constraints in each kinds

of constraint pair for X and Y. Finally we can get not only one solution, there are two

kinds of solution pair in this program (X,Y)=(0,3) and (X,Y)=(1,3).

Figure 34 Example of SAGE tool

1 #include<stdio.h>

2 int main(void){

3 int X,Y;

4 char A[4];

5 scanf(“%d %d”,&X,&Y);

6 A[0]=X;

7 A[1]='0';

8 A[2]='1';

9 A[3]='2';

10 if(A[X] == A[Y]+2)

11 puts("GOAL!!");

12 return 0;

13 }

KLEE: done: total instructions = 9753

KLEE: done: completed paths = 2

KLEE: done: generated tests = 2

38

5.2 Evaluations on real programs

 Depend on our symbolic array index algorithm, we can explore more program

paths by feeding some atypical input to programs. To verify our methods, we do some

immaterial modification on our benchmarks.

1. Extract the target function as a main function with standard inputs

2. Change the target buffer from integer buffer or others to a character buffer

3. Insert klee_make_symbolic or hsin_make_symbolic into target code

Our purpose is to illustrate the enhancement on path coverage, the modifications

are not affect out results. Experiments are performed with a wargame in our program

security course, Snort[32] : a network intrusion detection system and Asterisk[33] : a

transformer of a computer to a communication server.

 In wargame1, the index value i is probably overflowed by variable buf.

Therefore, variable i will be a symbolic variable, and we can collect related

constraints for solver as shown in figure 35 at line 22. In figure 36, the function

prmAddRule of Snort construct the rule mapping with specific ports, hence it is a

situation of symbolic array index dereference.

In function __ast_string_field_index_build_va of Asterisk as shown in figure 37,

the variable index is different to the variable dport in Sonrt. The variable dport is

restricted at line3 in figure 36. However, the variable index do not have any restriction,

hence it can be assigned to some bigger enough value to look over the out-of-bounds

scope for solutions.

Results are summarized in table 5. We solve the symbolic array index to explore

the two sides of branch with no doubt. Especially in Asterisk, we may feed an

out-of-bounds value to variable index to pass the branch predicate.

Table 5 Results on experiments of symbolic array index

Program WallTime Num. of test case Num. of symbolic index Path coverage

example of SAGE 0.136289 2 2 2

wargame1 0.368502 27 1 32

snort 2.9.0.4 0.098151 4 1 4

asterisk-1.4.38-rc1 0.110749 4 1 4

39

5.3 Atypical symbolic analysis

 In this section we analyze the symbolic tainting on some vulnerable programs.

According to symbolic execution, a variable becomes symbolic if its value is assigned

from a symbolic variable. More the variables we can taint, more the program paths we

can explore. Therefore, we analyze how many non-symbolic variables we can taint.

 Experiments are performed with four programs about buffer overflow

vulnerability announced in CVE [34], including CoreHTTP 0.5.3.1, Htget 0.93,

Nocompress 4.2.4 and iwconfig. We count the number of tainted variables in

vulnerable function, and divide into four types.

1. Tainted arguments: If a callee function argument is type of

call-by-reference(address), it may taint other variables in caller function,

hence we focus on this kind of argument only.

2. Symbolic pointer: If a function exist symbolic pointer, we may taint variables

at any address.

3. Symbolic index: Similar to symbolic pointer, we may taint variables at any

address by giving an appropriate index value.

4. Tainted variables: Except the mentions above.

5. Tainted eip: Theoretically, eip is taintable if the vulnerable function includes

strcpy() calls.

Results are summarized in table 6. Normally, a symbolic buffer may taint the

variables at higher memory address, even the eip, ebp and arguments. Therefore, if a

function exist lots of local variables, the number of tainted variables is comparatively

many, and the possibility of exploit also increases. Especially in CoreHTTP 0.5.3.1,

we may execute malicious codes by assigning the start address of malicious code to

the symbolic pointer without the assistance of tainted eip.

Table 6 Results of tainting analysis

Program Num. of

symbolic

variables

Num. of

symbolic

arguments

Num. of

symbolic

index

Num. of

symbolic

pointer

Tainted eip Tatal

CoreHTTP 0.5.3.1 8 0 0 2 Y 10

Htget 0.93 2 4 0 0 Y 6

Nocompress 4.2.4 3 0 0 0 Y 3

iwconfig 1 1 0 0 Y 2

40

Figure 35 Wargame1

 1 #include <stdio.h>

 2 #include <string.h>

 3 #include <unistd.h>

 4 #include <sys/types.h>

 5 #include <fcntl.h>

 6 char pass[8];

 7 int main(void){

 8 FILE *fp;

 9 int i = 0, auth = 0;

 10 char buf[8];

 11

 12 printf("Input passwd: ");

 13 fgets(buf, 20, stdin);

 14

 15 if ((fp = fopen("/home/chiush/wargame/passwd", "r")) == NULL) {

 16 return 1;

 17 }

 18 fgets(pass, sizeof(pass), fp);

 19 pass[strlen(pass)-1] = '\0';

 20

 21 for (; i < strlen(buf); ++i)

 22 if (buf[i]<'a'|| buf[i]>'z')

 23 return 1;

 24 if (!strcmp(buf, pass))

 25 auth = 1;

 26 if (auth == 1 && buf[0] == '0'){

 27 char fname[32];

 28 uid_t uid = getuid();

 29 sprintf(fname, "/home/chiush/wargame/checkin/%u", uid);

 30 open(fname, O_CREAT | O_WRONLY, 0000);

 31 }

 32 return 0;

 33 }

41

Figure 36 Symbolic index in Snort

1 int prmAddRule(PORT_RULE_MAP * p, int dport, int sport, RULE_PTR rd)

2 {

3 if(dport != ANYPORT && dport < MAX_PORTS){

4 p->prmNumDstRules++;

5 if(p->prmDstPort[dport] == NULL){

6 p->prmDstPort[dport] = (PORT_GROUP *)calloc(1,

sizeof(PORT_GROUP));

7 if(p->prmDstPort[dport] == NULL)

8 return 1;

9 }

10 if(p->prmDstPort[dport]->pgCount==0) p->prmNumDstGroups++;

11 prmxAddPortRule(p->prmDstPort[dport], rd);

12 }

13 …

14 …

42

Figure 37 Symbolic index in Asterisk

void __ast_string_field_index_build_va(struct ast_string_field_mgr *mgr,

 ast_string_field *fields, int num_fields,

 int index, const char *format, va_list ap1, va_list ap2){

 size_t needed;

 size_t available;

 char *target;

 if (fields[index][0] != '\0') {

 target = (char *) fields[index];

 available = strlen(fields[index]) + 1;

 } else {

 target = mgr->pool->base + mgr->used;

 available = mgr->space;

 }

 needed = vsnprintf(target, available, format, ap1) + 1;

 va_end(ap1);

 if (needed > available) {

 if (needed <= mgr->space) {

 target = mgr->pool->base + mgr->used;

 } else {

 size_t new_size = mgr->size * 2;

 while (new_size < needed)

 new_size *= 2;

 if (add_string_pool(mgr, new_size))

 return;

 target = mgr->pool->base + mgr->used;

 }

 vsprintf(target, format, ap2);

 }

 if (fields[index] != target) {

 fields[index] = target;

 mgr->used += needed;

 mgr->space -= needed;

 }

}

43

6 Conclusion

The issue on buffer overflow is getting more and more important recently. In this

thesis, we propose a new viewpoint on buffer overflow. Unlike other analysis tools,

we focus on exploiting program bugs to explore more program paths. By exploiting

symbolic array index, we can perform abnormal control flow and execution flow

finding to explore more program path we cannot reach before. To reach the goal, we

construct a new memory offset map on KLEE and modify KLEE symbolic execution

model.

The ultimate objective is to generate an exploitable program input. A general

notion for exploiting is (*tainted-pointer = tainted-value), that is, if we has a pointer

which can be tainted by standard input and a large enough serial memory space to

insert shell code, then we can fully control the target program to follow our

inclinations.

7 Future works

 We just propose a concept and simply write an algorithm to meditate our idea

based on KLEE. However, KLEE is a testing platform at most because of the lack of

reality. We suggest to research on a real environment to obtain the real memory

address information, and we can exploit buffer overflow in true.

 In this thesis we handle buffer overflow problem only on stack region, but the

program is common on heap region too. To handle buffer overflow on heap region,

we need the real address of all of objects. Therefore, a real memory model is needed.

 By constructing a symbolic memory model to record all address of symbolic

variables and writing an algorithm to determine the value (address) of a symbolic

pointer, we can control program path to follow our inclinations.

44

Reference

[1] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In CGO , 2004.

[2] C. Cadar, D. Dunbar, D. Engler. KLEE: Unassisted and Automatic Generation

of High-Coverage Tests for Complex Systems Programs,In Stanford University

2008

[3] S. Nagarakatte, J. Zhao, M. Martin, S. A. Zdancewic. SoftBound: Highly

Compatible and Complete Spatial Memory Safety for C, In University of

Pennsylvania 2009

[4] E. Haugh and M. Bishop. Testing C programs for buffer overflow vulnerabilities.

In Proceedings of the Network and Distributed System Security Symposium,

February 2003.

[5] P. Godefroid, N. Klarlund, K. Sen. DART: directed automated random testing,

Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation, June 12-15, 2005, Chicago, IL, USA

[6] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.

Technical Report UIUCDCS-R-2005-2597, UIUC, 2005.

[7] R. Majumdar and K. Sen. Hybrid concolic testing. In 29
th

 International

Conference on Software Engineering (ICSE'07), pages 416{426. IEEE, 2007.

[8] Koushik Sen. Concolic testing. ASE 2007

[9] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic

binary instrumentation, in Proceedings of the 2007 ACM SIGPLAN Conference

on Programming Language Design and Implementation, 2007, pp. 89-100.

[10] W. Le and M. L. Soffa. Refining buffer overflow detection via demand-driven

path-sensitive analysis, in Proceedings of the 7th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering, 2007, pp.

63-68.

[11] Cristian Cadar, Paul Twohey, Vijay Ganesh, Dawson Engler. EXE: A System

for Automatically Generating Inputs of Death Using Symbolic Execution, 2006

[12] J.Yang, C. Sar, P. Twohey, C. Cadar and D. Engler. Automatically Generating

Malicious Disks using Symbolic Execution , Stanford University Computer

Systems Laboratory

[13] Z. Lin X. Zhang D. Xu. Convicting Exploitable Software Vulnerabilities: An

Efficient Input Provenance Based Approach, Department of Computer Sciences

and CERIAS Purdue University

[14] H. Shahriar and M. Zulkernine. Mutation-based Testing of Buffer Overflow

http://portal.acm.org/citation.cfm?id=1065036&dl=GUIDE&coll=GUIDE&CFID=73171774&CFTOKEN=96799361
http://portal.acm.org/citation.cfm?id=1065036&dl=GUIDE&coll=GUIDE&CFID=73171774&CFTOKEN=96799361
http://portal.acm.org/citation.cfm?id=1065036&dl=GUIDE&coll=GUIDE&CFID=73171774&CFTOKEN=96799361

45

Vulnerabilities , School of Computing Queen‟s University, Kingston, Ontario,

Canada

[15] O. Crameri, R. Bachwani, T. Brecht, R. Bianchini, D. Kostic, W.Zwaenepoel.

Oasis: Concolic Execution Driven by Test Suites and Code Modifications ,

EPFL Technical report

[16] D.Vanoverberghe , N. Tillmann , F. Piessens. Test Input Generation for

Programs with Pointers, Proceedings of the 15th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems: Held as

Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009, York UK, March 22-29 2009

[17] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, G. Candea. Cloud9: A Software

Testing Service , School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

[18] B. Elkarablieh P. Godefroid M.Y. Levin. Precise Pointer Reasoning for

Dynamic Test Generation, 2009

[19] J. Burnim K. Sen. CREST : Heuristics for Scalable Dynamic Test Generation.

Presented at 23
rd

 IEEE/ACM International Conference on Aitomated Software

Engineering, ASE 2008

[20] J. C. King. Symbolic Execution and Program Testing, Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[21] R. Majumdar and K. Sen. Latest: Lazy dynamic test input generation.

Technical Report UCB/EECS-2007-36, EECS Department, University of

California, Berkeley, 2007.

[22] O. Ruwase and M. S. Lam. CRED : A practical dynamic buffer overflow

detector. In Proceedings of the 11th Annual Network and Distributed System

Security Symposium,pages 159–169, 2004

[23] Y. Younan , W.Joosen and F. Piessens. Security of memory allocators for C

and C++. Department of Computer Science, K.U.Leuven, 2005

[24] Uno : http://spinroot.com/uno/

[25] ZZUF : http://caca.zoy.org/wiki/zzuf

[26] You-Siang Lin. CAST: Automatic and Dynamic Software Verification Tool,

NCTU , Master thesis, 2009

[27] Richard W M Jones and Paul H J Kelly. Backwards-compatible bounds

checking for arrays and pointers in C programs. Department of Computing

Imperial College if Science, Technology and Medicine 180 Queen‟s Gate,

London.

[28] KLEE : http://klee.llvm.org/

[29] LLVM : http://llvm.org/

http://portal.acm.org/citation.cfm?id=1532924&dl=GUIDE&coll=GUIDE&CFID=73324009&CFTOKEN=95400167
http://portal.acm.org/citation.cfm?id=1532924&dl=GUIDE&coll=GUIDE&CFID=73324009&CFTOKEN=95400167
http://portal.acm.org/citation.cfm?id=1532924&dl=GUIDE&coll=GUIDE&CFID=73324009&CFTOKEN=95400167
http://portal.acm.org/citation.cfm?id=1532924&dl=GUIDE&coll=GUIDE&CFID=73324009&CFTOKEN=95400167
http://portal.acm.org/citation.cfm?id=1532924&dl=GUIDE&coll=GUIDE&CFID=73324009&CFTOKEN=95400167
http://spinroot.com/uno/
http://caca.zoy.org/wiki/zzuf
http://klee.llvm.org/
http://llvm.org/

46

[30] CERT advisorie : http://www.cert.org/advisories/

[31] Cyber Security Bulletins : http://www.us-cert.gov/cas/bulletins/

[32] Snort 2.9.4.0 : http://www.snort.org/

[33] Asterisk : http://www.asterisk.org/downloads

[34] CVE : http://nvd.nist.gov/home.cfm

http://www.cert.org/advisories/
http://www.us-cert.gov/cas/bulletins/
http://www.snort.org/
http://www.asterisk.org/downloads
http://nvd.nist.gov/home.cfm

