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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 304, Number 2, December 1987 

ON THE FX,SPTIC EQUATIONS lvu = K(x)ua AND lvu = K(x)e 

KUO-SHUNG CHENG AND JENN-TSANN LIN 

ABSTRACT. We give some nonexistence results for the equations Au = K(x)ua and 
Au = K(x)e2" for K(x) > 0. 

1. Introduction. In this paper we study the elliptic equations 

(l.l) 1\U = K(x)ua inRn 
and 

(1.2) lvu = K(x)e2" inRn, 

where a > 1 is a constant, 1 = En=la2/ax2 and K(-) is a bounded Holder 
continuous function in Rn. We are concerned with the existence problems of locally 
bounded and positive solutions for (1.1) and locally bounded solutions for (1.2). 

These problems come from geometry. We give a brief description and refer the 
details to Kazdan and Warner [5] and Ni [13, 14]. Let (M, g) be a Riemannian 
manifold of dimension n, n > 2, and K(-) be a given function on M. We ask the 
following question: can one find a new metric gl on M such that K is the scalar 
curvature of gl and gl is conformal to g (i.e., gl = {g for some function + > O on 
M)? In the case n > 3, we write + = u4/(n-2). Then this problem is equivalent to the 
problem of finding positive solutions of the equation 

(1.3) 4(n-1) vu-ku + Ku(n+2)/(n-2) = °, 

where 1v, k are the Laplacian and scalar curvature in the g metric, respectively. In 
the case M = Rn and g = (8ij), then k = O and equation (1.3) reduces to (1.1) with 
a = (n + 2)/(n-2), after an appropriate scaling and sign changing of K(*). In the 
case n = 2, we write + = e2". Then this problem is equivalent.to the problem of 
finding locally bounded solutions of the equation 

(1.4) /\u-k + Ke2"= O 

where 1v, k are the Laplacian and Gaussian curvature on M in the g metric. In the 
caseM= R2 and g= (8ij),wehavek= Oandequation(1.4)reducesto(1.2),after 
a sign changing of K. 
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640 KUO-SHUNG CHENG AND JENN-TSANN LIN 

In [13 and 14], Ni makes major contributions to the existence of solutions for (1.1) 

and (1.2). After these two papers, there are many improved results published, such as 

McOwen [10, 11], Naito [12], Kawano, Kusano and Naito [3], Kawano and Kusano 

[4], Kusano and Oharu [7], Ding and Ni [1], Kusano, Swanson and Usami [8] and 

Lin [9]. 
In this paper, we consider the case K(x) > 0 in (1.1) and (1.2). We obtain some 

nonexistence results which make the understanding of the case K(x) > 0 almost 

complete. We divide this paper into two parts. In Part I, we consider (1.1). Thus we 

consider the case (1.1) with n > 3 in §2, (1.1) with n = 2 in §3 and (1.1) with n = 1 

in §4. We consider (1.2) in Part II. Thus we consider the case (1.2) with n > 3 in §5, 

(1.2) with n = 2 in §6 and (1.2) with n = 1 in §7. 
We remark that the technique of the proof of the main nonexistence theorem is 

essentially equivalent to the proof of Keller [6]. We thank the referee for bringing the 

reference [6] to our attention. 

PART I. 1\U = K(x)ua 

2. The case n > 3. In this case, Ni [13] proves the main existence result: Let K be 

bounded. If l K(x) | < C/lXl 2+ £ at x for some constants C > 0 and E > 0, then 

equation (1.1) has infinitely many bounded solutions in Rn with positive lower 

bounds. Later on, Naito [12] improves the result: If lK(x)l < f(lxl) for all x E Rn 

and lo°°t+(t)dt<x, then equation (1.1) has infinite many bounded positive 

solutions which tend to a positive constant at x. On the other hand, when 

K(x) > O, Ni [13] proves a nonexistence result: If K(x) > C/lX12-£ at x for some 

constants C > 0 and E > 0, then (1.1) does not possess any positive solution in Rn. 

Lin [9] proves that it is still true even E = 0. In view of Naito's existence result, we 

expect that the following conjecture be true. 
CONJECTURE. Let K(x) > K(lxl) > 0 for all x E RX and lo°° sK(s) ds = x. Then 

(1.1) does not possess any positive solution in Rn. 
We give three theorems which almost answer this conjecture completely. Follow- 

ing Ni [13], we define the averages of u(x) > 0 and K(x) > 0 by u(r) and K(r), 

(2.1) u(r) RJ rn-l Jlxl r U(X) dSS 

(2.2) ( Xnrn I lixl=r g(x)Z/ ) 

where dS denotes the volume element in the surface integral, ¢£n denotes the surface 

area of the unit sphere in Rn and 1/y + 1/o = 1. 
For the sake of completeness, we give another proof of Lin's result of non- 

existence [9] in the following. 

THEOREM 2.1. Let K(x) be a locally Holder continuous function. If K(x) > O and 

K(r) > C/r 2 for r large for some constant C > O, then equation (1.1) does not possess 

any positive solution in Rn. 
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ELLIPTIC EQUATIONS a U = K( X ) ua AND A U = K( X ) e2 U 641 

PROOF. Let u be a positive solution of (1.1) in RN. Then from Ni [12, Lemma 3.21], 
we have 

(2.3) (u"(r) + n - 1 u'(r) > K(r)ug(r) in (O, x), 

u(O) = ot > O, u'(O) = O. 

Hence we have 

(2 .4) u ( r ) > a + _ 2 | sK(s ) 1-( - ) ug(s ) ds . 

Now assume that K(r) > C/r2 for r > Ro. Let r > Ro Then from (2.4), we have 

(2.5) u(r) > (2+ _2 j °sK(s) l-(-) ug(s)ds 

n-2 IRO ( ) ( r ) ( ) 

> °e + -2 | sK ( s ) 1-( - ) u a f s ) ds 

> oe + °l * C * 1 -( 1 ) * | / 1 ds 

> C1 log r 

for some C1 > O and r > R1 > 2Ro. For R > R1 and R < s < r < 2R, we have 

(2.6) 1/2 < s/r < 1. 

Hence 

(2.7) s 1 -(-) = 2[rn-2-Sn-2] > (n - 2)(2) (r-s). 

From (2.4), (2.5) and (2.7), we obtain 

(2.8) u(r) > C1 logR + 22 | (r-S)ua(s) ds 

for R > R1 and R < r < 2R, where C2 > O is a constant. Let 

(2.9) g(r) = CllogR + 22l (r-s)u°(s)ds. 

Then 

g( R ) = C1 log R, g'( R ) = 0, 

(2.10) g'(r) = C2 | u°(s)ds > 0, 

and 

(2.11) g (r) = R22u°(r) > C2(g(r))o 
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642 KUO-SHUNG CHENG AND JENN-TSANN LIN 

From (2.10) and (2.11), we have 

2 "( ) t( ) 2C2 ( ( )) < , 

or 

dr {[g (r)] } > R22 d [ 1 g+1(r)] 

Hence 

(2 .12) [ g ( r )] > ( ( + l) R 2 ) [ g ( r ) g ( R ) ] Let ,8 = C1 log R g(R) and 8 = C2/R2. Then we have 

[g (r)] > + 1 [ga+l(r) _ /3ff+1] 

Thus 

(2.13) jA g+l _ jB+1 > ( a + 1 ) JR 

Let g(r) = ,Bz, we have 

(2.14) J1 +/(z )<X+l 1 > ( a + 1 ) : ( ) 

Now if we choose R so large that 

(2 15) ( + 1 ) :( 1)/2 R = ( ( 12) 2 ) (C1 10gR)(5 1)/2 * R 

= ( +21) (C110gR)( 1)/2 

roo dz 
' J1 Vza+l - 1 

Then there is a Rc < 2R, such that 

(2.16) lim g(r)= x. 
r Rc 

But u(Rc) > g(Rc) = so. This is a contradiction. This completes the proof of this 
theorem. 

Now we can state our main nonexistence results. 

THEOREM 2.2. Let K(x) > O be a locally Holder continuous function. If K(r) 
satisfies 

(1) there exist al > O, Ro > O and C > O, such that 

K(r) > C/ra forr > RoS 
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(2) there exist E > O and P > 2, such that 

J(P-1)R rK(r) dr > E forR > RoS 
R 

then equation (1.1) does not possess any positive solution in Rn. 

PROOF. Assume that (1.1) has a positive solution u(x) in Rn. Then as in the proof 
of Theorem 2.1, we have 

(2.17) n-2 to ( r ) 

From assumption (2), we have 
00 

(2.18) I sK(s)ds = x. 
o 

Hence 
- ( r ) > a + C Jr/2 'XsK( s ) ds 

o 

and 
(2.19) lim u(r)= x. 

roo 
Thus we can choose Ro sO large that 

(2.20) U(Ro) > 1. 
Now let R > Ro From assumption (2), we have 

(2 21) u(PR) > u(R) + n-2 JR sK(s) 1 ( PR ) ( 

( ) n-2 u (R) 1 _ ( P 1 ) t(P-1)R K( ) 

> u(R) + C1u(R), 
where 1 > C1 > 0 and C1 is a constant. 

From (2.20), (2.21) and the fact that a > 1, we have 

(2.22) u( PmR) > (1 + C1) m for all R > Ro and m > 1. 

Choose °e1 > O so small that 

(2.23) log(l + C1) > oel[logP + log(PR0)]. 

Then 

(2.24) m log(l + C1) > °e1 [ m log P + log( PRo)] . 

Hence (1 + Cl)m > (PmR)al for all m > 1 and PRo > R > R. This means that 
u(PmR) > (PmR)al for all m > 1 and PRo > R > Ro Hence 

(2.25) u(r) > ral forr > Ro 

Now we return to (2.21). We have for R > Ro 

(2.26) U(PmR) > Clu( pm-lR) > C(1+ff+ ... +<m-l) _ 

= c(m-l)/(ff-l).-uam(R) m > 1. 
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644 KUO-SHUNG CHENG AND JENN-TSANN LIN 

Hence 

(2.27) log(u(PmR)) > am[logu(R) + _/1 logC14 

> am[otllogR- 1 11ogCll] 

Choose C2 > 0 and R1 sufficiently large, such that 

(2.28) °e1 log R1 > ff _ 1 1 log C1 1 + C2. 

Then 

(2.29) log( u(PmR)) > Cm 
for R > R1 and m > 1. 

Now we can choose oe2 sufficiently small, such that 
logo > oe2(10gP + logPR1). 

Then 
mlogo > oe2(mlogP + logPRl), m > 1. 

Hence am > (PmR)a2 for tn > 1 and PR1 > R > R1. Hence from (2.29), we have 
u(PmR) > exp[C2(PmR) 2] 

for m > 1 and PR1 > R > R1. That is, 
(2.30) u(r) > exp[C2ra2] 
for r > R1. Hence from (2.17), for r > R1, we have 

u(r) > u(R1) + n-2 j sK(s) 1-(r) ]u(s)ds 

1 ) n-2 JR S 1-( r ) ] [ K( s ) U (a - l)/2( 5 )] U (a+ l)/2 ( ) 

Now from (2.30) and the assumption (1), we can choose R2 > R1 so large that 
K(S)U(a-l)/2(5) > C3/52 

for s > R2 for some constant C3 > O. Hence we have 
(2.31) 

I) n-2 JR S[K(S) U( l)/2(5)] 1-(S) ]U(a+1)/2(5)d 

> u(.R2) + n-2 t 5 2 1-(-) U(a+1)/2(5) dS. 

But from the proof of Theorem 2.1, this is impossible. Hence we complete the proof 
of this theorem. 

THEOREM 2.3. Let K(x) > O be a locally Holder continuous function. If K(r) 
satisfies 

(1) lorsK(s) ds is strictly increasing in [O, oo) and lo°° sK(s) ds = oo, 
(2) (s/r)m < los tK(t)dt/lortK(t)dt for some finite m > O andfor all r > s > Ro 

> O, 

then equation (1.1) does not possess any positive solution in Rn. 
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In particular, if K(r) satisfies (1) and O < K(r) < C/r2 for r > R1 for some 
constants C > O and R1 > O, then K(r) also satisfies (2) and hence (1.1) does not 
possess any positive solution in Rn. 

PROOF. Assume that (1.1) has a positive solution u(x) in Rn. Then as in the proof 
of Theorem 2.2, we have (2.17). Let 

t (r) = I sK(s) ds = rl. 
o 

Then f: [O, oo) [O, oo) is one-one and onto. Hence f l exists and let it be denoted 

by g. Let 

t = f(s), r7 = f(r), u(g(r7)) = v(r7). 

Then from (2.17), we have 

(2.32) n - 2 Jo ( g( r7) ) 

From the assumption (2), we have 

(2.33) g(t)/g(n) < (t/71)1/m for all 71 > t > f(Ro). 

Hence from (2.32) and (2.33), we have 

(2 .34) v ( rl ) > u ( R o ) + n-2 t 1-( n ) va ( t ) dt . 

But from Theorem 2.1, this is impossible. Hence (1.1) does not possess any positive 
solution. 

If in addition to condition (1), K(r) also satisfies O < K(r) < C/r2 for r > R1. 
Then we have 

d { |or tK(t) dt j r2K(r )-jOr tK(t) dt C-lor tK(t) dt 
dr \ r 8 r2 r2# 

for r > R1. Thus we can choose R2 > R1 so large that 

C-t tK(t) dt < O for r > R2 
o 

Hence jortK(t)dt/r is monotonically decreasing for r > R2. Thus K(r) satisfies 
condition (2) for r > s > R2 

This completes the proof of this theorem. 

THEOREM 2.4. Let K(x) > O be a locally Holder continuous function in Rn and K(t) 
be a locally Holder continuous function in [O, oo). 

Let the clverage K(r) of K(x) in the sense of (2.2) satisfy: 

K(r) > K(r-,Bi) if oei + Ai < r < oei+1 + AiS 

K(r) > O if °ei+1 + Ai < r < °ei+1 + Ai+1 
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646 KUO-SHUNG CHENG AND JENN-TSANN LIN 

for i-0,1,2,..., where {°ei}i°°=o is a strictly increasing sequence satisfying otO = O 

and limn 00 °en = X and { /9i }°°=O is a nondecreasing sequence satisfying /20 = O and 

3i/oei < M for some constant M > O and i = 1, 2, .... If 

(2.35) '| u"(r) + n-1 u'( r) = K( r) u(r) in (O, x), 

u(O) = ot > O, u'(O) = O 

does not possess any solution in [O, so) for all oe > O, then (1.1) does not possess any 

positive solution in Rn. 

PROOF. Assume that (1.1) has a positive solution u(x) in Rn. Then as in the proof 

of Theorem 2.2, we have 

(2 .36) u ( r ) > a + _ 2 1 sK( s ) 1-( - ) u 5( s ) ds . 

Now we define the function v by 

(2.37) v(r) = u(r + /9i) if oti < r < °ti+ 

for i-0,1, 2, .... We shall prove that 

(2 .38) v ( r ) > °t + -2 | sK(s ) 1-( - ) u5(s ) ds, 

where A is a positive constant depending only on the constant M. To prove (2.38), 

let oei < r < °ei+1 Then from (2.36), we have 

u(r + 13i) ) (2 + n-2 Jo sK(s) 1-(r + S ) u (s)ds 

> °e + -2 | sK(s) 1-( + ,B ) ua(s) ds 

n 2 tel+BI ( r + X2i ) 

+ * * - 

+ n-2 1 ' sK(s) 1-( + e ) ua(s) ds 

= ° + n-2 lo sK(s) 1-( r + t ) ua(s) ds 

+ 1 | 2 (5 + ,81)K-(5 + /91) 1-(5 + 1 ) Ue(S + /91) ds 
+ * * - 

+ -2 J (5 + 8i)K(s + ,Sj) 1-( + /3t ) ue(s + Aj) ds 
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Butforl < j < i, 

1 -{ i 0 > 1 _ { 5 + jBi j = (1 + z/r) (s/r + ,Bi/r) 

\ r + ,Bi } \ r + ,Bi } (1 + ,Bi/r) 

> (1 + ff3/a )n 2 > A[1 (s/r) ]* 

Hence we have 

u(r + i) > °t + n - 2 to sK(s) 1-( r) u (s) ds 

n-2 tal ( ) ( r ) ( /31) 

+ * * . 

+ A Jr K( ) 1 _ ( 5 )n-2 -af + ( ) d 

Hence (2.38) is true for all r E [0, so). Let v = Al/(a-l)v and a = Al/(a-l)a. Then 
(2.38) becomes 

v(r) > a + _ 2 I sK(s) 1-(-) va(s) ds. 
Now let X denote the locally convex space of all continuous functions on [0, so) 

with the usual topology and consider the set 

Y = { y E X: a < y(r) < v (r) for r > 0} , 
where v is defined above. Clearly, Y is a closed convex subset of X. Define the 
mapping T by 

(2.39) Ty(r)=ot+ - 2I sK(s) l-(r) Y (s)ds. 

If y E Y, then a < y(r) < v(r). Hence we have 

Y( ) n-2 to ( ) ( r ) ( ) 

and 

Ty(r) < a + _ 2 I sK(s) 1-(-) va(s) ds < v(r). 

Thus T maps Y into itself. Let { Ym }°m°= 1 C Y be a sequence which converges to y in 
X. Then { Ym } converges uniformly to y on any compact interval of [0, so). Since 

(2 40) |Tym(r)-Ty(r) | < n-2 to sK(s) 1 ( r) IYm( 

we have { Tym } converges uniformly to Ty on any compact interval of [0, so). Hence 
T is a continuous mapping from Y into Y. On the other hand, we have 

(2.41) ( Y) ( ) Jo ( r ) ( )Y ( ) 
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Hence for any fixed R > O, TY is a uniformly bounded and equicontinuous family 

of functions defined on [0, R]. Hence TY is relatively compact. Thus we can use the 

Schauder-Tychonoff fixed point theorem (see Edwards [2, p. 161]) to conclude that 

T has a fixed point y E Y. This fixed point y satisfies the integral equation 

y(r) = °t + n-2 1 sK(s) 1-(r) ]y°(s)ds. 

Hence (2.35) has a solution for this a. This is a contradiction. The theorem is 

proved. Q.E.D. 

3. The case n = 2. In this case, we consider only the situation K(x) > O in (1.1). 

Kawano, Kusano and Naito [3] obtain the following existence result: Let K(x) > O 

be a locally Holderflcontinuous function which is positive in some neighborhood of 

the origin. If 
K(x ) < K( | x |) for all x E R2 

and 

| s(logs)°K(s) ds < oo. 

Then equation (1.1) has infinitely many positive solutions in R2 with logarithmic 

growth at infinity. 
To our knowledge, there seems no known nonexistence result. Our nonexistence 

results are 

THEOREM 3.1. Let K(x) > O be a locally Holder continuous function in R2. Let the 

average K( r ) of K(x ) in the sense of (2.2) satisfy 

(3.1) K(r) > C/r (logr) forr > Ro 

Then equation (1.1) does not possess any positive solution in R2. 

PROOF. Assume that (1.1) has a positive solution u(x) in R2. Then we have 

(3.2) l u"(r) + u'(r)/r > K(r)u°(r), 
t u(O) = a > O, u'(O) = O, 

where u and K are defined in (2.1) and (2.2). From (3.2), u(r) satisfies the integral 

equation 

(3.3) u(r) > a + | slog(s)K(s)u (s)ds 

Without loss of generality, we assume that K(O) > 0 and hence K(O) > O. Thus we 

have from (3.3) 

(3.4) u(r) > a + | slog(s)K(s)ua(s)ds + ); slog(-)K(s)ua(s)ds 

1 1 -( )- ( ) 

o 

> + a° logr | sK(s) ds 
o 

> a + C1 logr 

for r > 1 and a constant C1 > 0. 
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Now consider r > e. We have 

(3.5) u(r) > a + | s log( s )K(s)u (s) ds 

+1 slog(-)K(s)u (s)ds 

> C1 log r + l s log( s ) K(s ) u°(s ) ds. 

Let v(r) = u(r)/log r for r > e. Then from (3.5), we have 

(3.6) v(r) > C1 + 1 s(1- logr)K(s)(logs) u (s) ds- 

Let t = logs, X = logr and v(e71) = v(r) = v(X). Then (3.6) becomes 

(3 7) v ( r1) > C1 + | t (1--) e2tK(et)t(°-l)v°(t) dt. 

Let K( t ) = e 2tK( e t)t (° - 1). Then from (3.1), we have 

K(t) > C/t2 for t > exp(R0) 

and 

(3.8) v(81) > C1 + A t(1-r)K(t)v (t)dt- 

Using a similar argument as in the proof of Theorem 2.1, we obtain a contradiction. 
This completes the proof of this theorem. Q.E.D. 

THEOREM 3.2. Let K(x) > O be a locally Holder continuous function in R2. Let the 
average K( r ) of K(x ) in the sense of (2.2) satisfy 

(3.9) Thereexiste > O, P > 2 andRO O, suchthat 

le sK(s)(logs)°ds > E forallR > Ro 

(3.10) There exist oe > O, R1 > 0 and C > O, such that 

K(s))C/s (logs) foralls>R1. 

Then equation (1.1) does not possess any positive solution in R2. 

PROOF. Assume that (1.1) has a positive solution u(x) in R2. As in the proof of 
Theorem 3.1, we have (3.3)-(3.7). Hence 

(3.11) v(a1) > C1 + 9: tt1-71 ) K(t)v°(t) dt. 

But from (3.9) and (3.10), K(t) satisfies 
(3.12) J(P-1)R tK(t) dt > E for all R > Ro 

R 

(3 .13) K( s ) > C/t (1 + a) for all t > log R1 . 

Using a similar argument as in the proof of Theorem 2.2, we obtain a contradiction. 
This completes the proof. Q.E.D. 
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THEOREM 3.3. Let K(x) > O be a locally Holder continuous function in R2. Let the 

average K( r ) of K ( x ) in the sense of (2 . 2) satisfy 

(3 .14) J sK(s )(logs ) a ds is strictly increasing on [O, oo) and 
o 

| sK(s)(logs)ads- oo, 

o 

(3.15) (1 g ) <| fK(t)(logt)dt/| tK(t)(logt)adt 

for some m > O and for all r > s > Ro > O. Then equation (1.1) does not possess any 

positive solution in R2. In particular, if K(r) satisfies (3.14) and O < K(r) < 

C/r2(10gr)ff+l for r > R1 for some constants C > O and R1 > O, then K(r) also 

satisfies (3.15) and hence (1.1) does not possess any positive solution in R2. 

PROOF. Assume that (1.1) has a positive solution u(x) in R2. As in the proof of 

Theorem 3.1, we have (3.3)-(3.7). Hence we obtain (3.8) or (3.11). But now K(t) 

satisfies 

(3.15) A tK(t) dt is strictly increasing in [1, oo) and 
1 

| tK(t)dt= , 
1 

(3.16)- ( 7 ) < | tK(t)dt/l tK(t)dt 

for some m > O and for all n > s > log Ro 

Using a similar argument as in the proof of Theorem 2.3, we obtain a contradiction. 

This completes the proof. Q.E.D. 

THEOREM 3.4. Let K(x) > O be a IOCQIIY Holder continuous function in R2 and K(t) 

be a locally Holder continuous function in [O, oo). Let the average K(r) of K(x) in the 

sense of (2.2) satisfy 
K(r) > O if °ei+1 + i < r < °ei+1 + Ai+1 

K(r) > K(r-ZBi) if ai + i < r < °ti+1 + /9s 

for i = O, 1, 2, . . ., where { °ei }°°=o is a strictly increasing sequence satisfying of O = O 

and limn > 00 LEn=OO and {Ai}r=0 isanondecreasingsequencesatisfying/30=Oand 
,Bi/ai < M for some M > O for all i > 1. If 

3.17) Ju (r) + u'(r)/r = K(r)u(r) in (Oo) 

( X u(O) = a > O, u'(O) = O 

does not possess any solution in [O, oo) for all oe > O, then (1.1) does not possess any 

positive solution in R2. 

PROOF. The proof is very similar to that of Theorem 2.4. Hence we only sketch the 

proof. Assume that (1.1) has a positive solution in R2. Then we have 

(3.18) u(r)>ot+|O s10g(s)K(s)u (s)ds 
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Let 

v(r) = u(r + ,Bi) if ai < r < as+ 

fori=0,1,2,....Then 

(3.19) v(r)>a+A I slog( s)K(s)va(s) ds. 

Let X denote the locally convex space of all continuous function on [0, so) with 
the usual topology and consider the set 

Y= {y E X: a y(r) < v(r)forr) 0}. 
Define the mapping T by 

(3.20) (Ty)(r)=a+| slog(s)K(s)y(s)ds. 

We can prove that TY c Y and T is continuous. Furthermore TY is relatively 
compact. Hence T has a fixed point in Y. Thus (3.17) has a solution for this given 
a > 0. This is a contradiction. The proof is complete. Q.E.D. 

4. The case n = 1. In this case, we also consider only the situation K(x) > O in 
(1.1). We give a main existence result which have an extension to the higher-dimen- 
sional case. We also give some nonexistence results which may have applications. 

THEOREM 4.1. Let K(x)>O be a Holder continuous (actually only continuous is 
sufficient) fiunction in R. If K(O) > O 

(4.1) | |x| K(x) dx < so, 
-00 

then (1.1) has infinitely many positive solutions in R with linear growth at Ixl = so. 

PROOF. We shall seek solutions u such that u(0) = a > 0 and u'(0) = 0. Consider 
now x > 0. Then equation (1.1) with u(0) = a > 0 and u'(0) = 0 is equivalent to the 
integral equation 

(4.2) u(x) = ot + I (x-t)K(t)ua(t) dt, x > O. 
o 

Now choose a so small that 

( ) to ( ) < 2 ' 

( ) ( -1)tX ( ) 1 

Let 

A(x) = (2a if 0 < x < 1, 

As in the proofs of Theorems 2.4 and 3.4, we let X denote the locally convex space 
of all continuous functions on [0, so) with the usual topology and consider the set 

Y= {y E X: a y(x) A(x)forx > 0}. 
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Clearly, Y is a closed convex subset of X. Let the mapping T be defined by 

(4 5) (Ty)(x) = 0t + |x (x-t)K(t)ya(t) dt x > O 
o 

If y E Y, then oe < y(x) < A(x). Hence we have 

(4.6) (Ty)(x) = 0t + |x (x-t)K(t)y°(t) dt 
o 

+ tX (X-t)K(t)adt > 0f 
o 

On the other hand, for 0 < x < 1, we have 

( .7) (Ty)(x) = ot + I (x-t)K(t)ya(t) dt 
o 

< (x + | K(t)(2°t) dt 
o 

= a [1 + 2°g(a-1)1 K( t ) dt ] 

<a[1 + 2] 42a=A(X). 

ForlAx,wehave 

(4.8) ( Ty )(x) = a + | (x-t ) K(t)ya(t) dt + ,t, (x-t) K( t)y( t) dt 

< oe + xl K(t)(2a)adt + xl K(t)(2Ott) dt 
o 1 

< Otx + Ofx 2a0tfa-1)| K(t) dt] + oex 2axx(a-1)| K(t)tadt 

< ax[l + 2 + 2] < 2ax = A(x). 

Thus T maps Y into itself. Now let { Ym }°°= 1 c Y be a sequence which converges to 
y in X. Then { Ym } converges uniformly to y on any compact interval of [0, so). But 

(4*9) ITYm(x)-Ty(x) | < | (x-t)K(t)|ym(t)-ya(t) | dt, 

we conclude that {Tym} converges uniformly to Ty on any compact interval of 
[O, so). Hence T is a continuous mapping from Y into Y. As in the proof of Theorem 
2.4, the precompactness of T can be verified by 

(4.10) |(TY) (X) | < | K(t)ya(t) dt 

< t K(t)(2ol) atadt < oo. 
o 

Thus T has a fixed point y E Y. This fixed point y is a solution of equation (1.1) 
for x > O with y(0) = cx and y'(0) = 0. 

Similarly, we can find a solution of equation (1.1) for x < 0 with y(0)-a and 
y'(0) = 0 if a is sufficiently small. Now let y(x) be the solution of (1.1) in R with 
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y(0) = a, y'(0) = 0. Then 

(4.11) 2ax > y(x) = a + | (x-t)K(y)y°(t) dt 
o 

> ot + | (x - 1)K( t) a dt 
o 

> a + kl(x - 1) > k2X 

for x large. Hence y grows linearly at Ixl = so. Now we can choose a smaller y(0), 
such as y(0)= a/2 to obtain another solution. This completes the proof of tlhis 
theorem. Q.E.D. 

We can apply this theorem to the higher-dimensional case as used in Ni [13, 14] 
and Kawano, Kusano and Naito [3]. 

THEOREM 4.2. Let K(x) > O be a locally Holder continuous function in Rn = R X 
Rn-l. Let f*(x1) and f*(x1) be two locally Holder continuousfunction in R. If 

(4.12) 0 < f*(xl) < K(x) < f*(x1) forallx = (xl, x') E R x Rn-l, 

(4.13) f*(°) > ° and | |xl| f*(xl)dx1 < oo, 
-00 

then equation (1.1) has infinitely many positive solutions in Rn which are unbounded. 

PROOF. Consider the equations 

(4 .14) d 2v/dxl2 = f * ( x1 ) v°, 

(4.15) d2w/dxl2= f*(x1)w°. 

From the proof of Theorem 4.1 we see that (4.14) and (4.15) have unbounded 
solutions (linear growth at so) v and w. We can choose v and w such that 
v(xl) < w(xl) for all xl E R. Now let 

(4.16) v(xl,x') = v(xl) and w(xl,x') = w(xl). 

Then from (4.12), we have 

/\v-K(x) v° = (X1)-K(x) v°(x ) 

= [<)*(x1) - K(x)]v (xl) > O, 

/\w-K(x)w°= W(X1)-K(x)w°(x ) 

= [+*(x1)-K(x)] w°(xl) < 0 

in R". Hence v(xl, x') and w(xl, x') are, respectively, a subsolution and a supersolu- 
tion of (1.1) in R". Since v(xl, x') < w(xl, x') in R", from Theorem 2.10 of Ni [13], 
it follows that (1.1) has a positive solution u(x) in Rn such that v(xl) < u(xl, x') < 

w(xl). It is easy to see that kllxll < u(xl,x') < k2lxll for lxll large for some 
positive constants kl and k2. This completes the proof of the theorem. Q.E.D. 
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Now let u be a positive function in R and K(x) > 0 in R. Define for r > 0 

(4.17) u(r) = (u(r) + u(-r))/2 

(4.18) K(r) = [2(K(r) a/a + K(-r)-a'/a)]-a/a' 

where 1/o + 1/a' = 1. It is easy to see that 

(4.19) -u(0) = u(0) and u'(0) = 0 

if u is also continuously differentiable. 

THEOREM 4.3. Let K(x) > O be a continuous function in R. If the average K(r) of 
K(x) in the sense (4.18) satisfies 

(4.20) K(r) > C/r(a+l) 

for r > Ro for some constant C > O, then equation (1.1) does not possess any positive 
solution in R. 

PROOF. Assume that u(x) is a positive solution of (1.1) in R. Then we have 

_ ,( ) u"(r) + u (-r) = 2 [K(r)ua(r) + K( r)u ( )] 

But 

(4.22) u(r) = 2 [u(r) + u(-r)] 

< [2( K(r)ua(r) + K(-r)ua(-r))] 

* [ 2 (K a /a(r) + K-a'/a(-r))l l/ao 

Hence 

(4.23) 2(K(r)ua(r) + K(-r)ua(-r)) > K(r)ua(r). 

Tnus we have 

(4.24) /-u"(r) > K(r)ua(r) forr > 0, 

t-u(O) = a > O, -u'(O) = O. 

Hence u satisfies 

(4.25) u(r) > a + I (r-t)K(t)u (t) dt. 
o 

Without loss of generality, we may assume that K(0) > 0 and hence K(0) > 0. Thus 
forr>2,wehave 

(4.26) u ( r ) > a + | ( r-t ) K( t ) ua( t ) dt + ); ( r-t ) K( t ) ua( t ) dt 

> a + (a * I (1--)K(t) dt) r + t (r-t)K(t)u (t) dt 

> C1 r + ); (r-t)K(t)ua(t) dt, 
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where 

C1 = a j (1- 2 )K(t) dt = °t° 2 | K(t) dt > O. 

Now let u(r) = v(r) r for r > 2. We obtain 

(4.27) v(r) > Ct + y; t(1--) K(t )t(a-l)Va( t) dt. 

Letting K(t) = K(t)t(a-l). Then from (4.20), we have 

(4.28) K(t) > C/t2 fort > Ro 

and 

(4.29) v(r) > C1 + A tK(t)(l- r)va(t)dt 

From the proof of Theorem 2.1, we see that it is impossible to have a function v 
defined in [2, so) satisfying (4.29). This completes the proof. Q.E.D. 

THEOREM 4.4. Let K(x) > 0 be a continuous function in R. If the average K(r) of 
K(r) in the sense (4.18) satisfies 

(4.30) there exist oe > O, Ro > O and C > O such that 

K(r) > C/r(°+a) for r > Ro, 

(4.31) there exist E > O and P > 2 such that 

t(P-1)R r°K(r) dr > E for R > Ro. 
R 

Then equation (1.1) does not possess any positive solution in R. 

PROOF. Assume on the contrary that (1.1) has a positive solution u(x) in R. Then 
as in the proof of Theorem 4.3, we have (4.24)-(4.27). But now K(r) = r(°-l)K(r) 
satisfies 

(4.32) K(r) > C/r(l+a) for r > Ro 
t(P- 1)R rK(r) dr > E for R > Ro. 

R 

But from the proof of Theorem 2.2, there is no positive function v satisfying (4.27). 
This contradiction proves the theorem. Q.E.D. 

THEOREM 4.5. Let K(x) > 0 be a continuous function in R. Let the average K(r) of 
K(x) in the sense (4.18) satisfy 

| s°K(s) ds is strictly increasing in [O, so) and 

| s °K(s ) ds = so, 
o 

(-) <| t5K(t)dt/| tnK(t)dtforsomem>Oand 

for all r > s > RO > 0. 
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Then equation (1.1) does not possess any positivesolution in R. In particular, if K(r) 

satisfies (4.34) and O < K(r) < C/r(°+1) for r > R1 for some constants C > O and 
_ 

R1 > O, then K(r) also satisfies (4.35) and hence (1.1) does not possess any positive 

solution in R. 

PROOF. Assume on the contrary that (1.1) has a positive solution u(x) in R. Then 

as in the proof of Theorem 4.3, we have (4.24)-(4.27). Now the function K(r) = 

r(ff-1)K(r) satisfies the assumptions of Theorem 2.3. Hence there is no positive 

function v satisfying (4.27). This contradiction proves the theorem. Q.E.D. 

THEOREM 4.6. Let K(x) > O be a continuous function in R and K(r) be a 

continuous function in [O, oo). Let the average K(r) of K(x) in the sense (4.18) satisfy 

K(r) > O if °li+1 + Ai < r < °li+1 + :1+1, 

K(r) > K(r-,Bi) if oli + Al < r < °li+1 + Ai 

for i = 0,1,2,..., where {°ei}°°=o is a strictly increasing sequence satisfying otO = O 

and limn > 00 °n = zo, and { ,Bl }°°=O is a nondecreasing sequence satisfying ZBo = O and 

,Sl/°el < M for some M > O and for i > 1. If 

(4.36) ( u"(r ) = K(r ) ua(r ) in (O, m), 
t u(O) = ot > O, u'(O) = O 

does not possess any positive solution in [O, oo) for all oe > O, then (1.1) does not 

possess any positive solution in R. 

PROOF. Assume that (1.1) has a positive solution u(x) in R. Then we have as in 

the proof of Theorem 4.3, 

(4 37) u(r) > ot + | (r-t)K(t)ua(t) dt 
o 

Let 

(4.38) v(r) = u(r + Ai) if oti < r < °li+ 

for i = 0,1, 2, .... As in the proof of Theorem 2.4, we have 

(4 39) v(r) > ot + | (r-t)K(t)va(t) dt 
o 

Now we can let X denote the locally convex space of all continuous functions on 

[O, so) with the usual topology and consider the set 

(440) Y= {YEX: ol Sy(r)< v(r)forr>O}, 

where v is defined in (4.38). Clearly, Y is a closed convex subset of X. We define the 

mapping T by 

(4.41) (Ty)(r)= ot +| (r-t)K(t)ya(t)dt. 
o 

Then it is easy to verify that (i) TY c Y, (ii) T is continuous and (iii) TY is 

precompact. Hence T has a fixed point in Y. Thus (4.36) has a solution for this oe. 

This contradiction completes the proof. Q.E.D. 
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PART II. I\u = K(x)e2U 

5. The case n > 3. In this case, the existence results are very similar to that of §2. 
Ni [14] proves that, if lK(x)l < C/lxllZ for lx1l large and uniformly in x2 for some 
I > 2, then equation (1.2) possesses infinitely many bounded solutions in Rn = Rm x 
Rtl-m, where x = (xl, x2) and m > 3. Later on, Kusano and Oharu [7] extend the 
result to the case where lK(x)l < K(lxll) for all x = (x1, x2) E Rm x Rn-m and 

- . 

10°° tK(t) dt < x. On the other hand, when K(x) > O in (1.2), Oleinik [15] shows 
that if K(x) > C/lx0P at infinity for some P < 2, then (1.2) has no solution in Rn. 
The case when K(x) behaves like C/lxl2 at infinity is left unsettled for n > 3. In 
this section, we give several theorems to settle the nonexistence question of (1.2), in 
particular we settle the case when K(x) behaves like C/lxl2 at infinity. 

We need some notations first. Let u be a smooth function in Rn and K(x) > 0 be 
a continuous function in Rn. Following Ni [13] and Sattinger [16], we define the 
averages of u and K by -u(r) and K(r), 

(5.1) u(r) = rn-l | u(x)dS, 

(5.2) K(r) ( (,) rn-l |lXl r K(x) ) 

We have 

LEMMA 5.1. Let u(x) be a solution of (1.2) in Rn and K(x) > O. Then u(r) satisfies 

(5 3) ju"(r) + l ut(r) > K-(r)e2g(r) r (E (O x) 

u (O) = u (O), u'(O) = O . 

PROOF. From the definition of u, we have 

u (r) = ,,) |1tl 1 Vu(rt) * (dS = @ rn-l |l I EUxjtidS 

Thus, 

Xn(r u (r)-R u (R)) 

(5.4) =| I\udx =| (| /\udS) dt 

where D = {x E Rn: R < lXl < r}. Hencewehave 

(5-5) (n(rn-lUt(r)) = | I\udS = | g(X)e2u(x)dS 
Ixl = r Ixl = r 

Now Jensen's and Cauchy-Schwarz's inequalities give 

(5.6) ( Xnr llXl=r ) 

< ( 1 S K(x)e2N(x)ds)( 1 I dS ) 
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Hence 

tz r n - 1 |1 I K ( X ) e 2 U(X) dS > K ( r ) e 2 u(r) 

Combining (5.5) and (5.7), we obtain the first equation of (5.3). U(O)= U(O) and 

-u'(O) = O can also be easily obtained. This completes the proof. Q.E.D. 

Now we can state our main nonexistence theorems. 

THEOREM 5.1 . Let K(x ) > O be a locally Holder continuous function in Rn. If K(r), 

as defined in (5.2), satisfies 

(5.8) K(r) > C/r2 

for r > Ro for some constant C > O, then equation (1.2) does not possess any locally 

bounded solution in Rn. 

PROOF. Assume that u is a locally bounded solution of (1.2) in Rn. Then the 

average u satisfies (5.3) from Lemma 5.1. Let -u(O) = u(O) = o. Then -u also satisfies 

(5 .9) -U'( r ) > | ( S ) K(s ) e 2u(s) ds 

(5-10) U(r) > °X + -2 | sK(s ) 1-(-) 
e2fi(5) ds. 

Hence 

(5 .1 1) U ( r ) > (Y + _ 2 1 / sK( s ) 1-( 2 ) e 2a ds 

= °t + n-2 * e2a * 1 _ (_) * tr/2 sK(s) ds 

Thus there exists a constant Ro such that u(Ro) > 1. For r > Ro we have 

(5-12) 1 - - 2- 

> 1 + n-2 IR sK ( s ) 1-( r ) U 2 ( 5 ) ds . 

In view of (5.8) and the proof of Theorem 2.1, we conclude that no function u can 

satisfy (5.12) in [Ro so). This completes the proof. Q.E.D. 

THEOREM 5.2. Let K(x) > O be a locally Holder continuous function in Rn. If K(r), 

as defined in (5.2), satisfies 

(5.13) there exist o,l > O, Ro > O and C > O, such that 

K(r)>C/ra forr>RO, 

(5 .14) there exist E > O and P > 2, such that 
|(P-1)R rK(r) dr > E forR > Ro 

R 

then equation (1.2) does not possess any locally bounded solution in Rn. 
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PROOF. Assume that u is a locally bounded solution of (1.2) in Rn. Then as in the 
proof of Theorem 5.1, we have (5.9)-(5.12). But from (5.13), (5.14) and Theorem 2.2,- 
there is no function u(r) defined on [Ro so) satisfying (5.12). This contradiction 
proves the theorem. Q.E.D. 

THEOREM 5.3. Let K(x) > O be a locally Holder continuous function. If K(r), as 
defined in (5.2), satisfies 

r 
| sK(s) ds is strictly increasing in [O, oo) and 

(5.15) ° 
| sK(s)ds= oo, 

o 

(5 .16) ( - ) < I tK( t ) dt/| tK( t ) dt for some m > O and 

forallr > s > RO > 0. 

Then equation (1.2) does not possess any locally bounded solution in Rn. In particular, 
if K(r) satisfies (5.15) and O < K(r) < C/r2 for r > R1 for some constants C > O 
and R1 > O, then K(r) also satisfies (5.16) and hence (1.2) does not possess any 
locally bounded solution in Rn. 

PROOF. Using the proofs of Theorems 5.1 and 2.3, we can easily obtain a proof. 
We omit the details. Q.E.D. 

THEORER 5.4. Let K(x) > O be a locally Holder continuous function in Rn and K(t) 
be a locally Holder continuous function on [O, oo). Let the average K(r) of K(x) in the 
sense of (5.2) satisfy 

K(r) > O if °li+1 + Ai < r < °li+1 + Ai+1, 

K(r) > K(r-,Bi) if oli + Ai < r < °li+1 + As 

for i = O, 1, 2, . . ., where { o/li }°°=o and { ,Bi }°°=O are two sequences satisfying the same 
conditions as in Theorem 2.4. If 

(5.17) tt "( ) + n-1 u'(r) = K(r)e2a(r) in (O, oo), 

u(O) = ot, u'(O) = O 

does not possess any locally bounded solution in [O, oo) for any real number oe, then 
(1.2) does not possess any locally bounded solution in Rn. 

PROOF. The proof is similar to that of Theorem 2.4. Hence we omit the details. 
Q.E.D. 

6. The case n = 2. In the case n = 2 and K(x) > O, Ni [14] shows that: If 
K(x) W O and K(x) < C/lxll at infinity for some I > 2, then for every oe E (O, ,B) 
where ,B = min{8, (I - 2)/3}, there exists a solution u of (1.2) such that 

logl x | C < u(x) < logl x | + C" 

for lxl large, where C' and C" are two constants. 
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Later, McOwen [10, 11] improves this result by giving a sharp bound on ,B and 

sharp behavior of u at infinity. For the nonexistence results, Sattinger [16] proves 

Let K be a smooth function on R2. If K > 0 on R2 and K(x) > C/lXl2 at 

infinity, then (1.2) has no solution on R2. Ni [14] improves Sattinger's result to 

include the K such as K = (1 + sin r)/r 2. 

In this section, we give an existence result which overlaps parts of the results of Ni 

[14] and McOwen [10, 11] but with different method. We also give some nonex- 

istence results improving Ni's result. 

THEOREM 6.1. Let K(x) > O be a locally Holder continuous function on R2. Let 

K1(r) and K2(r) be two locally Holder continuous functions on [O, oo). If 

(6.1) K1(0) > 0, 

(6.2) ° < K1(|X|) < K(x) < K2(|x|) forallx E R2, 

(6.3) there exists oe > O such that j s (1 +2a)K2 (5 ) ds < so, 
o 

then (1.2) has infinitely many solutions on R2 with logarithmic growth at infinity. 

PROOF. Consider the equations 

(6.4) I\V = K1(|X|)e2V, X E R2, 

(6.5) I\W = K2(1XI)e2W, X E R2. 

From (6.2), it is easy to see that a solution v of (6.4) is a supersolution of (1.2) and a 

solution w of (6.5) is a subsolution of (1.2) in R2. It is natural to seek solutions of v 

and w depending only on lxl. Considser now (6.5). We try to find a solution w(lxl) 

of (6.5) with w(0)= ,B and w'(0)= 0. Then (6.5) is equivalent to the following 

integral equation 

(6 .6) w( r ) =: + | s log( - ) K2 (s ) e 2W(s) ds . 

Now we choose 0 < oe' < oe and jB such that 

(6.7) |0 sl°g(S)ff2(s)e (A )ds < 2' 

(6 .8) | sK2 (5 ) e 2(A+ 1) ds < °2t ' 

(6-9) 1 s(l+2a)K2(s)e2(A+l)ds < 2 A 

(6.10) 1 5(1 +2a ) logt -) K2(s ) e2(A+1) ds <-. 

Define the function A,B(r) by 

(6.11) Afi3(r) = (,B + 1) if 0 < r < e, 

A,(r) = (: + 1) + ot'log(r/e) if e < r. 
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Now let X denote the locally convex space of all continuous functions on [O, zo) with 
the usual topology and consider the set 

(6.12) Y = {w E X: ,B < w(r) < A(r), r E [O, zo)}. 

It is easy to see that Y is a closed convex subset of X. Let T be the mapping 

(6.13) (lw)(r) = ,B + | s log(-)K2(s)e2W(s) ds. 

We shall prove that T is a continuous mapping from Y into itself such that TY is 
relatively compact. 

First, we verify that TY c Y. Assume w E Y. Hence we have 

(6.14) ,B < w(r) < A(r) for r E [O, to). 

It is easy to see that Tw is also continuous and ,B < Tw(r) for r E [O, zo). Now for 
O < r < e, we have 

(6.15) (Tw)(r) = ,B + | slog(-)K2(s)e2W(s)ds 

< A + | s logt - ) K2 (s ) e 2(A+ l) ds 

< (: + 1) = A(r). 

For e < r, wehave 

(6.16) (Tw)(r) = ,B + | s logt -) K2(s ) e2W(S) ds 

+ l s logt - ) K2 ( s ) e 2w(s) ds 

< ,B + | s logt -) K2(s)e2X(S) ds 

+l slogt -)K2(s)e 2AA(s) ds 

A jB+log(e)| sK2(s)e2(A+l)ds 

+ | s log(-)K2(s)e2(A+1) ds 

+log(-)l S(l+2a )K2(s)e2(A+l) ds 

+ 1 S(l+2a ) log(-)K2(s)e2(A+l) ds 

< ,B + t2 log( e ) + 2 + 2 log( e ) 2 

= (: + 1) + ot'logt r ) 

= A,(r) 

This verifies that TY c Y. 
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Now let {wm}°°=l c Y be a sequence converges to w E Y in the space X. Then 

{ wm } converges to w uniformly on any compact interval on [0, zo). Now 

(6.17) |Twm(r)-Tw(r) | < t s log(-)K2(s)|e2W"l(s)-e2W(s) | ds 

But 

(6.18) s log(-)K2(s)|e2W"Z(s)-e2W(s) | < s log(-)K2(s)(e2X(s)-e2A) 

< slog(s)K2(s)e ( ) 

and s log(r/s)K2(s)e2X(s) is integrable. Hence from (6.17) and the uniform conver- 

gence of wm to w on any compact interval, we conclude that Twm converges to Tw in 

X. This verifies that T is continuous in Y. We can easily compute that 

(6.19) (Tw) (r) =| (-)K2(s)e2W(s)ds 

< j ( r ) K2(s)e2X(s) ds. 

Hence, on any compact interval of [0, oo), TY is uniformly bounded and equicon- 

tinuous. This proves that TY is relatively compact in Y. Thus we can apply the 

Schauder-Tychonoff fixed point theorem to conclude that T has a fixed point w in 
- 

Y. This fixed point w is a solution of (6.6) and hence a solution of (6.5). Note that, 

when we have a solution w of (6.6) with a given ,B, then we also have a solution w of 

(6.6) with ,B replaced by smaller ,B 's. 
Similarly, we can construct solution v(lxl) of (6.4) such that v(0) =8t and 

v'(O) = O. For a given ,B', since Kl(0) > 0, we can choose ,B < ,B', such that (6.6) has 

a solution w and w(r) < v(r) for all r E [0, oo). Using Theorem 2.10 of Ni [13], we 

conclude that (1.2) has a solution u(x) between w(lxl) and v(lxl). Now we can 

choose another ,B' smaller than this ,B to repeat the arguments. This completes the 

proof of this theorem. Q.E.D. 

THEOREM 6.2. Let K(x) > O be a locally Holder continuous function in R2. If K(r), 

as defined in (5.2), satisfies 

(6.20) K(r) > C/r2(10g r) a 

for r > Ro for some constants C > O and a > O, then equation (1.2) does not possess 

any locally bounded solution in R2. 

PROOF. Assume that u is a locally bounded solution of (1.2) in R2. Then the 

average u satisfies (5.3) for n = 2. Letting -u(0) = ,B = u(0), we have 

(6.21) u'(r) > t ( -)K(s ) e2a(s) ds, 

(6.22) u(r) >: + t slog(-)K(s)e2"(s)ds. 
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Without loss of generality, we may assume that K(0) > 0 and hence K(O) > O. For 
r > e, we have 

(6 .23) u ( r ) > jB + I s log( - ) K( s ) e 2a(s) ds 

+ Ji slog(-)K(s)e2a(s)ds 

> jB + | s log rK(s ) e 2 ds + }: s logt - ) K(s ) e 2a(s) ds 

> ,B + C1 log r + l s log( - ) K( s ) e 2u(s) ds . 

Thus there exists a constant Ro such that, for r > Ro 

(6.24) u(r) > C2 log r + 1 s log( - ) K(s) e2a(s) ds 

> C2 log r + | s log( 5 ) K(s ) e2a(S) ds 

for some C2 > 0. Let 

(6.25) u(r ) = 2 C2 log r + v (r ) for r > Ro 

From (6.24), we have 

(6.26) ( ) 2 C210gr + | slog(-)K(s)sC2e2U(s)ds 

> 2 C210gr + | slog(5 )K(s)sC2v2(s) ds. 

But from assumption (6.20), we have 

(6.23) K(s)sC2 > C/S2-C2(logS)a > C/s2 
for s > R1 > R 0. Hence from Theorem 3.1, there is no v in [R 0, oo) satisfying 
(6.26). This completes the proof of this theorem. 

THEOREM 6.3. Let K(x) > O be a locally Holder continuous function in R2. If K(r), 
as defined in (5.2), satisfies 

(6 .24) j 51 +aK(s ) ds is monotonically strictly increasing in 

[O,oo)foralloz>O. 

(6.25) For given any al > O, there exists an Ra > O such that 

( log S ) < | tl + aK-( t ) dt/| tl + aK ( t ) dt 

for some m > O and for all r > s > Ra then (1.2) does not possess any locally 
bounded solution in R2. 
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PROOF. Assume that u is a locally bounded solution of (1.2) in R2. Then as in the 

proof of Theorem 6.2, we have (6.21)-(6.26). Now we can let w(r)logr = v(r) for 

r > R 0. Then from (6.26), we have 

(6.27) w(r) > 2C2 + j s(l-logr)K(s)s 2U (s)ds- 

Now using a similar argument as in the proof of Theorem 3.3, we conclude that 

there is no function w satisfying (6.27). This contradiction proves the theorem. 

Q.E.D. 

THEOREM 6.4. Let K(x) > O be a locally Holder continuous function in R2 and K(t) 

be a locally Holder continuous function on [O, so). Let the average K(r) of K(x) in the 

sense of (5.2) satisfy the same assumptions as in Theorem 5.4. If 

(6.28) t u"(r) + u (r) = K(r)e2a(r) in (O, oo), 

tu(O) = ot, u'(O) = O 

does not possess any locally bounded solution in [O, oo) for any real number of, then 

(1.2) does not possess any locally bounded solution in R2. 

PROOF. The proof is similar to that of Theorem 2.4. Hence we omit the details. 

Q.E.D. 

7. The case n = 1. In this case, we consider only the situation K(x) > O in (1.2). 

We give a main existence result which has an extension to the lligher-dimensional 

case. We also give some nonexistence results. 

THEOREM 7.1. Let K(x) > O be a Holder continuous function in R. If K(O) > O and 

there exists an of > O, such that 

(7.1) | e | IK(x) dx < Oo, 
-00 

then (1.2) has infinitely many locally bounded solutions in R with linear growth at 

xl= O° 

PROOF. We shall seek solution u such that u(O) = ,B and u'(O) = O. Consider now 

x > O. In this situation, (1.2) is equivalent to the integral equation 

(7.2) u(x) =: + | (x - t)K(t)e2a(t)dt x > O. 
o 

Now choose ,B E R so that 

(7 3) l K(t) e2(A+ 1) dt < min; 2 1;, 

(7 4) 1°° K(t)e2ate2(A+1) dt < t 

Let 
A(x) _ 1(: + 1) if O < x < 1, 

\ (B + 1) + oex if 1 < x. 
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As in the proofs of Theorems 2.4 and 3.4, we let X denote the locally convex space 
of all continuous functions on [0, x) with the usual topology and consider the set 

Y = {y E X: ,B < y(x) < A(x) for x > 0}. 
Clearly, Y is a closed convex subset of X. Now define the mapping T by 

( .5) (Ty)(x)= 13 +| (x-t)K(t)e2yft)dt 
o 

If y E Y, then ,B < y(x) < A(x). Hence we have 

(7.6) (Ty)(x)=: + j (x-t)K(t)e2Y(t)dt > 3 
o 

On the other hand, for 0 < x < 1, we have 

(7*7) (Ty)(x) = ,B + I (x-t)K(t)e2Y(t)dt 
o 

<: + j K(t)e2(A+1) dt 
o 

< ,B + 1 = A(x). 

For 1 < x, we have 

(7.8) (Ty)(x) = ,8 + I (x-t)K(t)e2Y(t)dt + A (x-t)K(t)e2Y(t)dt 
o 1 

< A + x * J K(t)e2(A+l)dt + x . J K(t)e2ate2(A+l)dt 
o 1 

< ,B + 2 x + 2x < (,B + 1) + ax = A(x). 

Hence T maps Y into itself. As in the proofs of Theorems 2.4, 3.4 and 4.1, we can 
easily verify that T is continuous and TY is precompact. Hence T has a fixed point 
y E Y. This fixed point y is a solution of (1.2) for x > O with y(0)= ,8 and 

y'(O) = O. 
Similarly, we can find a solution of (1.2) for x < O with y(0) = ,B and y'(0) = O 

provided that ,B E R is properly selected. It is also easy to see that if y is a solution 
of (1.2) with y(0) = ,B and y'(0) = 0, then there is also solution y with y(0) = ,B' 
and y'(0)-O provided that ,B' < ,B. The linear growth of solutions at Ixl = x can 
be easily established as in the proof of Theorem 4.1. This completes the proof of this 
theorem. Q.E.D. 

We can apply this theorem to the higher-dimensional case as used in Ni [13, 14] 
and Kawano, Kusano and Naito [3]. 

THEOREM 7.2. Let K(x) > O be a locally Holder continuous function in Rn = R x 
Rtl - 1. Let +*(x1) and +*(x1) be two locally Holder continuous function in R. If 

(7*9) O < +*(X1) < K(x) < +*(x1) forallx = (xl,x') E R x Rn-l, 

(7.10) f*(0) > 0 and | e2aiXll+*(xl) dxl < oo for some oe > O, 
-00 

then equation (1.2) has infinitely many locally bounded solutions in Rn. 
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PROOF. The proof is actually similar to that of Theorem 4.2. We omit the details. 
Q.E.D. 

Now let u be smooth function on R and K(x) > 0 be a continuous function on R. 
We define the averages u and K by 

(7.11) u(r) = 2[u(r) + u(-r)], r > O, 

(7.12) K(r) = [2(K(r)-1 + K(-r)-1)l-l > 0 

Our nonexistence results are 

THEOREM 7.3. Let K(x) > O be a locally Holder continuous function on R. If the 
average K(r) of K(x) in the sense of (7.12) satisfies 

(7 .13) K(r) > C/ra 

for r > Ro andfor some constants C > O, a > O, then equation (1.2) does not possess 
any locally bounded solution on R. 

PROOF. Assume that u(x) be a solution of (1.2) in R. Then we have 

(7.14) u"(r) = 2[utt(r) + u (-r)] 

= 2 [K(r)e22(r) + K(-r)e22(-r)] 

But we have 

(7.15) 2u(r) ( -u(r))2 < [2(eU(r) + e )] 

< [ 2(ff(r)e2a(r) + K(-r)e2a(r))] 

[ 1 (K(r) -l + K(-r)-1)] 

Hence we have 

(7.16) u"(r) > K(r) e2-a(r) r > O. 

It is also easy to see that u(0) = u(0) and u'(0) = 0. From (7.16), we have 

(7 .17) u'( r ) > | K( t ) e 2-u(t) dt 
o 

(7.18) u(r) > ,B +| (r- t)K(t)e2-a(t)dt 
o 

Without loss of generality, we may assume that K(O) > 0 and hence K(O) > O. For 
r > 1, we have 

(7.19) u(r) > 8 + 1 (r-t)K(t)e2a(t)dt + | (r-t)K(t)e2-a(t)dt 

> ,8 + rl (1-t)K(t)e2 dt + |1 (r-t)K(t)e2-a(t) dt 

> 2C1 r +| (r-t)K(t)e2-a(t)dt 
R1 
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for r > R1 > 1 and for some C1 > 0. Now let v(r) = u(r) + C1 r. We have from 
(7.19) 

(7.20) v (r) > C1 r + @ (r-t ) K(t ) e2c1t . e20(t) dt 
D 
"1 

Let v(r) = w(r) r, wehave 

(7.21) w(r) > C1 + | (1--) K(t)e2Cl' e2W(t)dt. 

Now let K(t) = t-1K(t)e2clt. We have from (7.13) 
(7 .22) K( t ) > C/t 2 

for t > R2 > R1 for some C > 0. But (7.21) becomes 

(7.23) w(r) > C1 + @ t(1-r )K(t)w2(t) dt. 

From Theorem 2.1, there is no function w satisfying (7.23). This contradiction 
proves the theorem. Q.E.D. 

THEOREM 7.4. Let K(x) > O be a locally Holder continuous function on R. If the 
average K(r) of K(x) in the sense of (7.12) satisfies 

(7.24) | easK(s) dsisstrictlyincreasingand j easK(S) ds= oo 

for all ot > O. 

For any given ot > O, there exists R, > O, such that 

(7 25) (-) < j eatK(t)dt/J eatK(t)dt 
for some m > O and for r > s > R,2, then equation (1.2) does not possess any locally 
bounded solution in R. 

PROOF. Using the proofs of Theorems 7.3 and 2.3, we can easily prove this 
theorem. We omit the details. Q.E.D. 

THEOREM 7.5. Let K(x) > O be a locally Holder continuous function in R and K(t) 
be a locally Holder continuuos function in [O, x). Let the average K(r) of K(x) in the 
sense of (7.12) satisfy thesame assumptions as in Theorem 5.4. If 

(7.26) t u"(r ) = K(r ) e2a(r) in (O, x), 

t u(O) = ,B, u'(O) = O 
does not possess any locally bounded solution in [O, x) for any real number ,B, then 
equation (1.2) does not possess any locally bounded solution in R. 

PROOF. The proof is quite similar to that of Theorem 2.4. Hence we omit it. 
Q.E.D. 
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