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冗餘複播圖上之分散式網路編碼 

研究生 : 李欣勳 指導教授 : 蘇育德 博士 

國立交通大學電信工程研究所 

中文摘要 

對於多重傳播來說，其傳輸速率上限往往被 max-flow bound給限制住。為

了改善傳統單一訊源多重傳播的傳輸速率，在每個網路節點增加一個網路編碼的新功

能。藉由網路編碼的功能，這個傳輸速率的上限就可以達得到。更進一步地，使用線

性網路編碼就足以讓單一訊源多重傳播速率能夠達到其上限速率，並且，網路碼往往

可以在一個有限的場找到。 

在覆蓋式網路上，虛擬網路拓撲可以經由不同的使用目的建構出來，而且每個

虛擬網路節點可以具備更高階的處理能力。借重網路編碼和覆蓋式網路的優點，可以

建造出 2階冗餘複播圖以提供單一訊源多重傳輸。在 2階冗餘複播圖上，網路碼的建

構可以不需要網路拓撲的資訊。基於這個特別的多重傳播圖形，我們推導出在一個 2

的延伸場上最大能用量的編碼向量數目，並且提出產生編碼向量的演算法。相較於

Zhu她們所提的方法，此演算法更加的容易，並且，用於多重傳輸的網路碼會需一更

少的處理時間。由於在現實世界中，資訊的儲存與傳送都是二位元形式，如果網路碼

是從質數場上建構出的，則將會損失一些資訊。我們所提出的方法，是建構在 GF(2m)

的場上，所以不會有資訊流失。在 2 階冗餘複播圖上，從 GF(2m)建構出的網路碼終

將增加端點到端點間的流量，是個合理的推測。 

 



Distributed Network Coding over Redundant

Multicast Graphs

Student : Hsin-Hsun Li Advisor : Yu T. Su

Institute of Communication Engineering

National Chiao Tung University

Abstract

Multicast transmission over a network is upper bounded by the network capacity

(rate) called the max-flow bound. In order to improve the capacity of a conventional

single source multicast, a new function called network coding is introduced to network

nodes. It has been shown that, by means of network coding, the capacity is always

achievable. Moreover, linear network codes are sufficient to attain the capacity for all

single source multicast transmissions and they cam always can be found over finite fields.

In an overlay network, virtual network topology over an existing physical network is

constructed to meet some special networking requirements. For the purpose of imple-

menting network coding, all virtual network nodes must be capable of handling higher

level operations. Taking the advantages of network coding and overlay networks, a

two-redundant multicast graph is constructed so that network codes over the resulting

overlay network can be designed without the knowledge of the network topology. Based

on this special multicast graph, we derive the maximum available encoding vectors over

an extension filed of GF(2) and propose an encoding vector generation algorithm. The

algorithm is simpler and the resulting multicast network codec renders lower complexity.

It is believed that network codes over GF(2m) for redundant multicast graph can also

enhance the end-to-end throughput.
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Chapter 1

Introduction

Multicast technology is useful to a number of emerging network applications require

the delivery of packets from one or more senders to a group a of receivers. These ap-

plications include bulk data transfer (for example, the transfer of a software upgrade

from the software developer to users needing the upgrade), streaming continuous media

(for example, the transfer of audio, video, and text of live lecture to a set of distributed

lecture participants), shared data applications (for example, a whiteboard or telecon-

ferencing application that is shared among many distributed participants), data feeds

(for example, stock quotes), web cache updating, and interactive gaming (for example,

distributed interactive virtual environments or multiplayer games such as Quake). The

notion of a multicast is the sending of a packet from one sender to multiple receivers

with a single send operation. This will save a lot of bandwidth in comparison to sending

packet using unicast.

Due to the highly increase of data size, a complete transfer of data in the Inter-

net requires more time or more available bandwidth. From a point-to-point transfer

standpoint, the transmission rate of each pair has an theoretic upper bound. From

the multicast abstraction standpoint, the bandwidth of a channel can not be shared by

different input data when it just allow one to pass. This will decrease the maximum

achievable rate of multicast by using only routing and replication, and relatively requires

more time to complete the data retrieving. In [5], Ahlswede et al. derive that theoret-
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ically the max-flow bound of multicast rate is always achievable if the network routers

and switches have capable of not only routing and replication but also the other function

called network coding. Further, Li et al.[6] shown the sufficiency of linear network cod-

ing and the linear network codes can be found in finite fields. The linearity of network

coding simplify the network coding operation. Then, in [8] and [9], both show linear

network code construction algorithms, one from the flow perspective and the other using

an algebraic characterization. Both of them derive that the linear network codes can be

found in a finite field GF(2m), where the size of m is just correlated to the number of

receivers.

Taking the advantages of network coding and overlay network, Zhu et al. construct

a two-redundant multicast graph. Base on this special graph, the linear network code

can be constructed by using a distributed algorithm, which opposes to the centralized

algorithms proposed in [8] and [9]. Since their codes are constructed over prime fields,

this will make the coding operation in the computer requiring a mapping of table-looking

from prime filed to a extension field of order 2. It will needs more processing time and

effectively decrease the end-to-end throughput. Also, linear network code construction

over a prime filed decreases the effective end-to-end throughput by a factor 1
m+1

, where

m is the smallest number that the size of GF(2m) larger than the prime filed.

Base on the two-redundant mlulticast graph, we propose a simple algorithm that

generates linear network code over GF(2m), and conjecture that eventually the effective

ene-to-end throughput will larger than Zhu’s proposal [11].

The rest of this thesis is organized as follows. In Chapter 2, we introduce the notion

of max-flow bound for multicast and the achievability of the bound by using network

coding. Then, introduce the sufficiency of linear network code derived by Li et al. [6]. In

chapter 3, we introduce the construction algorithm for linear network code. In chapter 4,

we introduce network coding over overlay networks and our proposal in the last section.

In chapter 5, we make a conclusion.
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Chapter 2

Network Information Flow

2.1 Network Flows

A communication network is a collection of directed links connecting transmitters,

receivers, switches, and routers. It can be represented by a directed graph G = (V,E)

with a node set V and an edge set E ⊆ V × V . In most cases of practical concern, G is

finite, i.e., |V | <∞. Let node vi and node vj be two elements in V , then the edge (link

or channel) from node vi to node vj can be denoted by a round bracket (vi, vj) ∈ E. The

edge (vi, vj) is directed whose head and tail are denoted by vi = tail(e) and vj = head(e),

respectively. Define In(v) as the set of edges that end at the node v ∈ V and Out(v) as

the set of edges originating at v. Formally, we have

In(v) = {e ∈ E : head(e) = v}, (2.1a)

and

Out(v) = {e ∈ E : tail(e) = v} (2.1b)

For a network with one information source, the node at which information is gen-

erated is referred to as the source node or transmitter, denoted by s, and the informa-

tion destination nodes are referred to as the sink nodes or receiver nodes, denoted by

t1, t2, · · · , tN . Here, we denote T as the set of all the sink nodes.
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For a communication channel from node vi to node vj, let the nonnegative integer

Cij be the rate constraint, i.e., the maximum number of bits which can be sent per unit

time over the channel. The Cij is also referred to as the capacity of edge (vi, vj). Then

the set

C = [Cij : (vi, vj) ∈ E] (2.2)

represents the rate constraints of the network G.

2.1.1 Flow and cut

Consider a network G in which tn ∈ T is a sink node and s be the only one source

node. One can regard an edge in G as a water pipe and the network G as a network of

water pipes. We shall assume that there is no leakage in the network, so that information

flow is conserved at every node other than s and tn.

Definition 1 An s − tn flow Rn in a directed network G is an integer-valued function

Rn defined on each edge (vi, vj)−R
n
ij is the edge flow in (vi, vj)− together with a source

node s and a sink node tn satisfying the following three conditions:

(a) 0 ≤ Rn
ij ≤ Cij, ∀ (vi, vj) ∈ E, (2.3a)

(b) Rn
ij = 0, if (vi, vj) ∈ In(s) or (vi, vj) ∈ Out(tn), (2.3b)

(c) For v 6= s or tn,
∑

(vi,vj)∈In(v)

Rn
ij =

∑

(vi,vj)∈Out(v)

Rn
ij (2.3c)

Condition (a) ensures that the edge flow is nonnegative and would not exceed the edge

capacity. Condition (b) assures that the flow goes from node s to node tn, not in the

reverse direction. Condition (c) is called the conservation condition. Intuitively, for any

s− tn flow Rn in a network G, the total edge flows out of source node s should be equal

to the total edge flows entering the sink node tn so that

∑

(vi,vj)∈Out(s)

Rn
ij =

∑

(vi,vj)∈In(tn)

Rn
ij (2.4)

For a proof see [1] or [2].

4



Let |Rn| be the source generating rate associated with an s− tn flow Rn

|Rn| =
∑

(vi,vj)∈Out(s)

Rn
ij. (2.5)

It is sometimes referred to as the value of an s−tn flow Rn. We denote bymaxflow(s, tn)

the maximal value of all possible s− tn flow’s. If an |Rn| equals to maxflow(s, tn), then

we call the corresponding Rn a maximal s− tn flow.

s


b
 c


t
1
 t
2


(
2
,
1
)


(3,
 1
)


(2
,
2
)


(1,
 1
)

(1,
 1
)


(2,
 2
)


Figure 2.1: A maximal s− t1 flow R1

Fig. 2.1 illustrates a maximal s − t1 flow R1, the first term and second term in a

round bracket beside an edge represent edge capacity and edge flow, respectively, and

the value of the s− t1 flow is |Rn| = 3.

Definition 2 Let P ⊂ V and P be the complementary set of P with respect to V , i.e.,

V = P ∪P . A cut (P, P ) is the set of edges (vi, vj) with node vi ∈ P and vj ∈ P , i.e.,

(P, P ) = {(vi, vj) ∈ E : vi ∈ P and vj ∈ P} (2.6a)

The capacity of a cut is defined by

C(P, P ) =
∑

(vi,vj)∈(P,P )

Cij (2.6b)

Definition 3 For Pn ⊂ V and Pn is the complementary set of Pn, then (Pn, Pn) is called

an s− tn cut , if s ∈ Pn and tn ∈ Pn.

5



In most cases, there are more than one s− tn cut, each has its own capacity. We denote

by mincut(s, tn) the minimal capacity of s− tn cut. If C(Pn, Pn) equals to mincut(s, tn),

then we call such (Pn, Pn) a minimal s− tn cut.

s


b
 c


t
1
 t
2


2


3


2


1

1


2


Figure 2.2: A minimal s− t1 cut

Fig. 2.2 illustrates a minimal s− t1 cut ({s, c}, {t1, b, t2}) = {(s, b), (c, t2)}. The

number beside an edge represents the edge capacity, and the capacity of the s − t1 cut

is C({s, c}, {t1, b, t2}) = 3.

2.1.2 Upper bound of an s− tn flow

Let us consider the question of how large |Rn| can be. Obviously, we can obtain the

following two upper bound from (2.4) and (2.5)

|Rn| =
∑

(vi,vj)∈Out(s)

Rn
ij ≤

∑

(vi,vj)∈Out(s)

Cij (2.7a)

|Rn| =
∑

(vi,vj)∈In(tn)

Rn
ij ≤

∑

(vi,vj)∈In(tn)

Cij (2.7b)

Eqs (2.7a) and (2.7b) give us a sense that the value of an s− tn flow cannot exceed

the sum of the capacities of the edges originating at node s and the sum of the capacities

of the edges that end at node tn. Intuitively, |Rn| is also bounded by the capacity of

any s− tn cut. We state the third upper bound in the following proposition [1].
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Proposition 1 For any s− tn flow Rn and any s− tn cut (Pn, Pn) in network G,

|Rn| = (
∑

(vi,vj)∈(Pn,Pn)

Rn
ij −

∑

(vi,vj)∈(Pn,Pn)

Rn
ij) ≤ C(Pn, Pn) (2.8)

� Max-Flow Min-Cut

An s − tn flow Rn is a maximal s − tn flow or called a max-flow from node s to

node tn if |Rn| is greater than or equal to the value of any other s − tn flow, and an

s − tn cut (Pn, Pn) is a minimal s − tn cut or called a min-cut between s and tn if

C(Pn, Pn) is less than or equal to the capacity of any other s − tn cut. From (2.8), we

can derive the following corollary [1].

Corollary 1 For any s−tn flow Rn and any s−tn cut (Pn, Pn) in a network G, |Rn| =

C(Pn, Pn) if and only if:

(i) For each edge (vi, vj) ∈ (Pn, Pn), Rn
ij = Cij, (2.9a)

(ii) For each edge (vi, vj) ∈ (Pn, Pn), Rn
ij = 0 (2.9b)

Furthermore, when |Rn| = C(Pn, Pn), the Rn is a max-flow from node s to node tn and

(Pn, Pn) is a min-cut between s and tn.

A min-cut between node s and node tn can be thought of as a flow bottleneck between s

and tn. Therefore, it’s intuitively clear that the value of a max-flow from node s to node

tn cannot exceed the capacity of a min-cut between node s and node tn. The following

theorem, known as the max-flow min-cut theorem, states that this bottleneck always

can be achieved.

Theorem 1 (max-flow min-cut theorem [4]) Let G be a directed network with a source

node s and sink nodes t1, t2, · · · , tN , and C be the rate constraints. Then for all tn ∈

{t1, t2, · · · , tN}, the value of max-flow from s to tn is equal to the capacity of min-cut

between s and tn, i.e., maxflow(s, tn) = mincut(s, tn).

7



2.1.3 Ford-Fulkerson labelling algorithm

In order to achieve the capacity of the min-cut between node s and node tn for the

value of s − tn flow. Ford and Fulkerson propose an algorithm [1] that will eventually

result a max-flow from s to tn.

Before starting the algorithm, some notations must be established. A chain in

a directed graph is represented by (vc0 , ec′1
, vc1 , ec′2

, · · · , vcLc−1
, ec′

Lc
, vcLc

), which ec′
k

=

(vck−1
, vck

) or ec′
k

= (vck
, vck−1

) for 1 ≤ k ≤ Lc. If ec′
k

= (vck−1
, vck

), then the edge is

called a forward edge of the chain. Otherwise, ec′
k

= (vck
, vck−1

), the edge is called a re-

verse edge of the chain. When vc0 = s and vcLc
= tn, we call such a chain an s−tn chain.

For two nodes vi and vj connected by an edge (vi, vj) ∈ E, node vj is the successor of

node vi. On the contrary, node vi is the predecessor of node vj.

The algorithm has two parts called Routine A and Routine B. The first is a labelling

process that searches for a flow augmenting s − tn chain for which Rn
ij < Cij on all

forward edges of the chain and Rn
j′i′ > 0 on all reverse edges of the chain. If a flow

augmenting s − tn chain is found, then Routine B changes the edge flows accordingly.

Otherwise, no such chain exits, and the s− tn flow is a max-flow from node s to tn.

The algorithm begins with any feasible s − tn flow Rn, i.e., any s − tn flow that

satisfies the flow conditions (2.3a), (2.3b) and (2.3c). Initially, all nodes are in the

unlabelled state and during the labelling process each node is in one of the following

three states: (1) unlabelled, (2) labelled and unscanned and (3) labelled and scanned. We

now provide a complete description of the Ford-Fulkerson Algorithm.

Routine A (labelling process):

• Initially, assign the source node s the label (−,4(s) = ∞) and set s in labelled

and unscanned state.

• General step:

– Select any node vi that is in labelled and unscanned state and let (v±,4(vi))

8



be its label.

– To all vi’s unlabelled successor nodes, vj, such that Rn
ij < Cij, assign the label

(v+
i ,4(vj)), where

4(vj) = min{4(vi), Cij −R
n
ij} (2.10a)

To all vi’s unlabelled predecessor nodes, vj, such that Rn
ji > 0, assign the

label (v−i ,4(vj)), where

4(vj) = min{4(vi), R
n
ji} (2.10b)

– Set vi in labelled and scanned state and vj in labelled and unscanned state.

• Repeat the General step until one of the following two cases happened:

– Case 1: Sink node tn is in labelled and unscanned state, go to Routine B.

– Case 2: No more labels can be assigned, terminate!

Routine B (flow change):

• Let sink node tn has the label (v+
cLc−1

,4(tn)).

• According to the first term in the label of node tn, we can find the node vcLc−1
.

Similarly, we can find the node vcLc−2
by the label of node vcLc−1

. Repeat this

procedure until the source node s is found, and then we can find the corresponding

flow augmenting s− tn chain (s = vc0 , ec′1
, vc1 , ec′2

, · · · , vcLc−1
, ec′

Lc
, vcLc

= tn).

• Increase the flow on all the forward edges and decrease the flow on all the reverse

edges of the s− tn chain by the amount of 4(tn), respectively.

• Then, discard all labels and return to Routine A.

For any given s − tn flow Rn, a finite number of applications of the Ford-Fulkerson

labelling algorithm yields a max-flow from node s to node tn. Moreover, if Pn is the set

9



of nodes labelled during the final application of the algorithm, then (Pn, Pn) is a min-cut

between s and tn.

A modified and improved version of the Ford-Fulkerson algorithm is the Edmonds-

Karp algorithm [3], which is an O(|V ||E|2) polynomial time algorithm.

2.2 Single-Source Multicast with Network Coding

Consider a point-to-point communication network on which an information source

is to be multicast, which means by using network the sending of information from one

source node to a certain set of sink nodes with a single send operation. A multicast rate

is called achievable if all sink nodes can successfully receive the information generated

by source node at this rate. Contrary to one’s intuition, it is in general not optimal to

simply route or replicate information for the multicast. Rather, by employing coding at

the nodes, which is refer to as network coding, bandwidth can in general be saved. But,

this needs a higher level processing of addition function design in switching systems. We

focus on point-to-point communication networks satisfying the following:

1. the communication channels are free of error;

2. the information is received at the sink nodes with zero error;

4. the communication network contains no directed cycle, i.e., acyclic;

3. the network is delay-free.

2.2.1 Upper bound of multicast rate with only routing and
replication

Let r be the rate at which information multicast from source node s to all sink nodes

t1, t2, · · · , tN . From the max-flow min-cut theorem, it is easily to see that the multicast

rate r with only routing and replication cannot exceed the max-flow from source node

s to any sink node tn ∈ T ,

r ≤ maxflow(s, tn) (2.11)
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Intuitively, the multicast rate is bounded by the minimum value of maxflow(s, tn) for

all tn ∈ T ,

r ≤ min
n
maxflow(s, tn) (2.12)
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Figure 2.3: A multicast with only routing and replication

Given a network in Fig. 2.3(a), the number beside an edge represents the edge

capacity. By the max-flow min-cut theorem, we can use the relation

mincut(s, tn) = maxflow(s, tn) (2.13)

to derive the values of max-flow from source node s to sink nodes t1 and t2, respectively.

A min-cut between node s and node t1 is ({s, c, d, e, f, t2}, {t1}) and

mincut(s, t1) = 2 (2.14)

Similarly, the capacity of min-cut between node s and node t2 is

mincut(s, t2) = 2 (2.15)

Then the max-flow bound is 2. Assume that the multicast rate is two bits per unit time,

and let b1 and b2 be the two information bits. In Fig. 2.3(b), all nodes in network

are only capable of routing and replication, the source node s tries to multicast two
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bits of data, b1 and b2, to both sink nodes. Node e allows only one of received bits

on to its outgoing edge, suppose b1 be chosen. From the figure, we can see that sink

node t2 can receive both b1 and b2, and unfortunately t1 receives two duplicated b1 but

b2 cannot recovered. Thus for this network, the max-flow bound can not be achieved

by only routing and replicating bits. Rather, the achievable multicast rate with only

routing and replication is 3/2.

2.2.2 Network coding

Before talking about network coding, we first say something about why using net-

work coding. In a network, routers or switches (i.e., nodes) traditionally have capable

of routing and replication to their incoming data. As we can see in the above example,

for multicast cases only these two functions sometimes the rate of max-flow bound is

not achievable. Therefore, add the routers or switches a new function, called network

coding, to improve the multicast rate and hopefully achieve the max-flow bound.
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Figure 2.4: A multicast with network coding

In Fig. 2.4, coding is allowed at nodes. The node e encodes two received data

streams, b1 and b2, for example, by using modulo 2 addition and transmits the resulting

stream (b1 + b2) over its outgoing edge (e, f). At node t1, b1 and (b1 + b2) are received,

12



and b2 can be recovered by adding b1 and (b1 + b2), because

b2 = b1 + (b1 + b2). (2.16)

Similarly, b2 and (b1 + b2) are received at node t2, and b1 can be recovered by adding

b2 and (b1 + b2). Therefore, the multicast rate achieves the max-flow bound by adding

coding function at network nodes. The coding operation at nodes in a network is refer

to as network coding.

We describe a coding scheme for the network which is referred to as a network coding.

Assume that there is no input edge at node s, i.e., (vi, s) /∈ E for all vi ∈ V \{s}. We

consider a block code of length m. Let X denote the information source with rate τ

and assume that x, the outcome of X, is obtained by selecting an index from a set χ

according to the uniform distribution. The elements in χ = {1, 2, · · · , d2mτe} are called

messages. For (vi, vj) ∈ E, node vi sends information to node vj which depends only on

the information previously received by node vi.

2.2.3 Upper bound of multicast rate with network coding

Naturally, we are interested in the maximum possible value of the multicast rate r in

a given network and hopefully achieve the max-flow bound or higher by using network

coding. Assume that each edge (vi, vj) in G with capacity Cij is decomposed into Cij

unit capacity edges. Given a network G, the upper bound of the multicast rate with

network coding is derived by using an (m, (ηij : (vi, vj) ∈ E), τ) α− code on G, which is

defined by the components listed as below.

(1) A positive integer K (i.e., K transactions)

(2)

u1 : {1, 2, · · · , K} → V (2.17a)

and

u2 : {1, 2, · · · , K} → V (2.17b)
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such that (u1(k), u2(k)) ∈ E and it is a unit capacity edge between node u1(k) and

node u2(k). (K transactions take place in chronological order)

(3) Ak = {1, 2, · · · , |Ak|}, 1 ≤ k ≤ K, such that

∏

k∈Tij

|Ak| = ηij, (2.18a)

where

Tij = {1 ≤ k ≤ K : (u1(k), u2(k)) = (vi, vj)}. (2.18b)

The set Ak represents all possible index that can be send onto (u1(k), u2(k)), the

set Tij represents the indices of all the transactions for which information is sent

form vi to vj, and ηij is the number of possible index tuples that can be sent from

node vi to node vj.

(4) If u1(k) = s, then

Yk : χ→ Ak, (2.19a)

where

χ = {1, 2, · · · , d2mτe}. (2.19b)

If u1(k) 6= s, if

Qk = {1 ≤ k′ ≤ k : u2(k
′) = u1(k)} (2.19c)

is nonempty, then

Yk :
∏

k′

Ak′ → Ak (2.19d)

Otherwise, let Yk be an arbitrary constant taken from Ak.

Here, Yk is the encoding function at node u1(k) and in kth transaction, node

u1(k) encodes according to encoding function Yk and sends an index in Ak to node

u2(k).

(5)

gn :
∏

k′∈Wn

Ak′ → χ, (2.20a)
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n = 1, 2, · · · , N, where

Wn = {1 ≤ k ≤ K : u2(k) = tn} (2.20b)

Such that for all n = 1, 2, · · · , N ,

g̃n(x) = x (2.20c)

for all x ∈ χ.

Here, gn is the decoding function at node tn, the set Wn represents the indices

of all transactions for which information is sent to tn, and x is the multicast

information transmitted from source s. The x in (2.20c) has different meaning,

x in the left-hand side is the source input, and x in the right-hand side of is the

decoder output.

Definition 4 [4], [5] For a network G with rate constraints C, an multicast rate r ≥ 0

is asymptotically achievable if for any ε > 0, there exists for sufficiently large m an

(m, (ηij : (vi, vj) ∈ E), τ) α− code on G, such that

m−1log2ηij ≤ Cij + ε (2.21a)

for all (vi, vj) ∈ E, where m−1log2ηij is the average bit rate of the code on channel

(vi, vj), and

r − ε ≤ τ (2.21b)

The following theorem [4],[5] states that the multicast rate with network coding is

also bounded by the max-flow bound.

Theorem 2 [4] For a network G with rate constraints C if the multicast rate r is achiev-

able, then

r ≤ min
n
maxflow(s, tn) (2.22)

For a proof of the theorem please see Appendix A.
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2.2.4 Achievability of the max-flow bound for network coding

After reviewing the above fundamental theorems one might ask whether the multicast

rate at the max-flow bound with network coding is always achievable. The answer is

affirmative. This follows from proving the existence of an (m, (ηij : (vi, vj) ∈ E), r − ε)

β − code on G. We need the following proposition.

Proposition 2 [4] If G = (V,E) is a finite acyclic graph, then it is possible to order

the nodes of the network G in a sequence such that if there is an edge from node vi to

node vj, then node vi is before node vj.

An (m, (ηij : (vi, vj) ∈ E), r) β − code on network G is defined by the following compo-

nents listed as below:

(1) for all (s, vj) ∈ E, an encoding function

Ysj : χ→ {1, 2, · · · , ηij}, (2.23a)

where

χ = {1, 2, · · · , d2mre}; (2.23b)

(2) for all (vi, vj) ∈ E such that vi 6= s, an encoding function

Yij :
∏

vi′ :(vi′ ,vi)∈E

{1, 2, · · · , ηi′i} → {1, 2, · · · , ηij} (2.24)

(if {vi′ : (vi′ , vi) ∈ E} is empty, conventionally Yij is an arbitrary constant taken

from {1, 2, · · · , ηi′i});

The encoding function Yij is applied before Yi′j′ if the order of node vi is small

than the order of node vj and before Yij′ if the order of node vj is small than the

order of node v′j.
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(3) For all n = 1, 2, · · · , N , a decoding function

gn :
∏

vi:(vi,tn)∈E

{1, 2, . . . , ηitn} → χ (2.25a)

such that

g̃n(x) = x (2.25b)

for all x ∈ χ.

The x in Eqs (2.25b) has different meaning, x in the left-hand side is the source input,

and x in the right-hand side of is the decoder output. The following theorem states that

for multicast rate less than or equal to the max-flow bound is always achievable.

Theorem 3 [4], [5] For a network G with rate constraints C, if the multicast rate

r ≤ min
n
maxflow(s, tn), (2.26)

then r is achievable.

A detailed proof is given in Appendix B.

2.2.5 Sufficiency of linear network codes

The proof of the above theorem (Appendix B) indicates that a multicast rate r is

always achievable if it does not exceed the max-flow bound. In other words, there exits

an (m, (ηij : (vi, vj) ∈ E), r) β− code on the network G and some encoding functions for

a sufficiently large m.

For a given acyclic network G with rate constraints C, each edge of capacity Cij can,

without loss of generality, be decomposed into Cij unit capacity edges between node vi

and node vj. Consider the multicast rate

r = min
n
maxflow(s, tn) (2.27)
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In order to explain the following description using generic linear-code multicast (generic

LCM)–a coding scheme proposed by Li et al. [6]–one can remove some unit capacity

edges such that

maxflow(s, tn) = min
n
maxflow(s, tn) (2.28)

for all tn ∈ T .

A generic LCM is an assignment of an r-dimensional vector space D(v) to every node

v ∈ V and an r-dimensional column vector d(e), called encoding vector, to every unit

capacity edge e ∈ E over a base filed, which is in an infinite field or a large enough finite

field, such that

1. dim(D(s)) = r;

2. d(e) ∈ D(v) for all e ∈ Out(v), where v ∈ V ;

3. for all v 6= s, the corresponding vector space D(v) =< {d(e) : e ∈ In(v)} >, which

the notation < · > is for linear span;

4. for each e′ ∈ Out(v), the corresponding encoding vector d(e′) is a linear combina-

tion of incoming encoding vectors {d(e) : e ∈ In(v)}.

Suppose that the muticast information can be encoded into r information symbols

and formed into an r-dimensional row vector, called a source vector, over the base field

X(s) = (X1(s), X2(s), · · · , Xr(s)). (2.29)

The encoding function on each edge e ∈ E is defined as

Y (e) = X(s) · d(e)T

=
r∑

i=1

di(e)Xi (2.30)

where

d(e) = (d1(e), d2(e), · · · , dr(e))
T (2.31)
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Condition 4 of the generic LCM and the fact that encoding functions are all linear imply

that for any given node v ∈ V \ {s}, the encoding function of each e′ ∈ Out(v) can be

expressed as the linear combination of the received data

Y (e′) =
∑

e∈In(v)

βe, e′Y (e) (2.32)

where the coefficients {βe, e′}, which are referred to as the network codes, are elements

over the base field. Since the encoding operation is linear, the network codes are called

linear network codes.

Moreover, it is proved [6] that a generic LCM always exits for an acyclic network,

provided that the base field is an infinite field or a large enough finite field, such that

dim(D(tn)) = r (2.33)

for all tn ∈ T . This implies that the source vector X(s) can be recovered by all the sink

nodes and a multicast rate r equals to the max-flow bound is achievable.

In conclusion, linear network coding is sufficient for a multicast to achieve a rate at

the max-flow bound and network coding does reduce the operation complexity signifi-

cantly.
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Chapter 3

Construction of Linear Network
Codes over Finite Fields

As mentioned in Chapter 2, it has been proved that given a directed, delay-free,

acyclic and finite communication network G with rate constraints C, there exists a

linear network code over an infinite field or large enough field if the multicast rate

r ≤ min
n
maxflow(s, tn) (3.1)

Without loss of generality, we assume that the field over which the network code is con-

structed is GF(2m), for some large m. Both [7] and [8] propose algorithms for construct-

ing linear network code from a graph theory point of view. Representing a multicast

with rate r by sending r GF(2m) symbols per unit time to each sink node, they show

that it is sufficient to perform coding over edges in r edge-disjoint paths from s to tn

(if exists), for all tn ∈ T . Two linear coding schemes are suggested in [8]. The first

algorithm requires a running time of order O(|E| · |T | · r · (r + |T |)) and, to guarantee

the existence of a linear network code, it requires a field size that satisfies

2m > |T | (3.2)

The second algorithm has a faster running time O(|E|·|T |·r+|T |·O(r2.367)) but requires

a larger lower bound for m

2m > 2 · |E| · |T | (3.3)
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Another approach is recently proposed by Koetter and Médard [9]. Their algebraic

approach can easily be applied to solve problems related to coding over general multicast

networks. For the convenience of ensuing discussion for multiple source multicasting, we

need to generalize some old and introduce new notations.

To begin with, let’s assume that a source node v generates a set of discrete random

processes

X (v) = {X1(v), X2(v), · · · , Xµ(v)(v)}, (3.4)

where random processes Xl(v), ∀ l ∈ {1, 2, · · · , µ(v)} and ∀ v ∈ V , are independent of

each other and have a constant and integral entropy rate, e.g., one bit per unit time,

H(Xl1(v)) = H(Xl2(v)) = 1 (3.5)

for l1, l2 ∈ {1, 2, · · · , µ(v)}. The H(X) is the entropy rate of a random process X. If v

is not a source node, then X (v) is a empty set.

A connection c is defined as a triple

(v, v′,X (v, v′)) ∈ V × V × PX (v), (3.6)

where PX (v) denotes the power set of X (v) and X (v, v′) ⊆ X (v). It indicates to replicate,

by means of the network G, a subset of the random processes in X (v) at some different

node v′. For a given connection c = (v, v′,X (v, v′)), call v a source node and v′ a sink

node of the connection c and write v = source(c) and v′ = sink(c). The rate r(c) of a

connection c = (v, v′,X (v, v′)) is defined as

r(c) =
∑

l: Xl(v)∈X (v,v′)

H(Xl(v))

= |X (v, v′)| (3.7)

If v′ is the sink node of connections, the collection of ν(v′) random processes

Z(v′) = {Z1(v
′), Z2(v

′), · · · , Zν(v′)(v
′)} (3.8)
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denotes the decoding output at v′. A connection c = (v, v′,X (v, v′)) is established

successfully if a copy of X (v, v′) is a subset of Z(v′). This is because node v′ can be

a sink node of different connections. Similarly, Z(v′) is a empty set if v′ is not a sink

node of any connection. Assume that communication in the network is performed by

transmission of vectors of bits and the length of the vectors are equal in all transmissions.

Any binary vector of length m can be interpreted as an element in GF(2m), the finite

field with 2m elements. It is frequently considered the algebraic closure F of GF(2m),

which is defined as the union of all possible algebraic extensions of GF(2m). Also, assume

that all links are synchronized with respect to the symbol timing.

Let G = (V,E) be a delay-free acyclic communication network. Then G is a GF(2m)-

linear network, if for all links, the random process Y (e) on a link e = (v, vj) satisfies

Y (e) =

µ(v)∑

l=1

αe, lXl(v) +
∑

e′:head(e′)=tail(e)

βe′, eY (e′), (3.9)

where αe, l and βe′, e are elements of GF(2m) and µ(v) = 0 if v is not a source node. It is

also sufficient for the output process Zl′(v
′) at a sink node v′ to be a linear combination

of the random processes Y (e′) for all e′ ∈ In(v′)

Zl′(v
′) =

∑

e′∈In(v′)

εe′, l′Y (e′) (3.10)

where the coefficients εe′, l′ are elements of GF(2m).

For a directed, acyclic and finite network G, the nodes can be ordered to a sequence

such that if there is an edge from node vi to vj, then node vi is before node vj and i < j.

Since the nodes are ordered, the edges also can be ordered in a way that ei′ is before

ej′ if head(ei′) before head(ej′). Suppose that a network contains µ information sources

generated from source nodes, then form the sources into a row vector

X = (X1, X2, ..., Xµ)

= (X1(v1), X2(v1), · · · , X1(v2), · · · , X1(v|V |), ..., Xµ(v|V |)(v|V |)) (3.11)
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which X is the vector of input random processes on all nodes in V . If a node vi ∈ V is

not a source node, set µ(vi) to be zero and the length of X is

µ =
∑

vi∈V

µ(vi). (3.12)

Define the entries of a µ× |E| matrix A as

Ai,j =

{
αej , l, Xi = Xl(tail(ej)) for some l;
0, otherwise.

(3.13)

Similarly, suppose that a network contains ν information sinks which retrieved at sink

nodes, then form the sinks into a row vector

Z = (Z1, Z2, ..., Zν)

= (Z1(v1), Z2(v1), · · · , Z1(v2), · · · , Z1(v|V |), · · · , Zν(v|V |)(v|V |)) (3.14)

which Z is the vector of output random processes on all nodes in V . If a node vj ∈ V

is not a sink node of any connection, set ν(vj) to be zero and the length of Z is

ν =
∑

vj∈V

ν(vj). (3.15)

Define the entries of a ν × |E| matrix B as

Bi,j =

{
εej , l′ , Zi = Zl′(head(ej)) for some l′;
0, otherwise.

(3.16)

The “directed labelled line graph” of G = (V,E) is defined as ß(V̈,Ë) with node set V̈

= E and edge set Ë = {(ei, ej) ∈ E
2 : head(ei) = tail(ej)}, which edge ë∈ Ë is labelled

with a corresponding symbol βei,ej
. Define the |E|×|E| adjacency matrix F of the graph

ß with elements Fi,j given as

Fi,j =

{
βei,ej

, head(ei) = tail(ej);
0, otherwise.

(3.17)

Since the network coding is linear, the relation between X and Z can be describe by a

transfer matrix M based on the matrices A, B, and F . That means

Z = XM, (3.18)
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where

M = A(I − F )−1BT (3.19)

and I is the |E|× |E| identity matrix. Since the network G is acyclic, the graph ß is also

acyclic, then F is a strict upper-triangular matrix and elements in the diagonal are all

zero. Hence, F is a nilpotent matrix, and (I − F )−1 exists in the ring of polynomials,

i.e., the elements in (I − F )−1 are belong to GF(2m)[· · · , βei,ej
, · · ·]. Further, it can be

derived that elements in M are belong to the ring of polynomials

GF(2m)[· · · , αei,l, · · · , βei,ej
, · · · , εej ,l′ , · · ·] (3.20)

and for simplicity, give the linear network codes αei,l, βei,ej
, and εej ,l′ another notations

ξ = (ξ1, ξ2, · · ·)

= (· · · , αei,l, · · · , βei,ej
, · · · , εej ,l′ , · · ·) (3.21)

The following Lemma is the foundation used to prove the existence of linear network

codes of given connections.

Lemma 1 [9] Let F[ξ1, ξ2, · · · , ξn] be the ring of polynomial over an infinite field F in

variables ξ1, ξ2, · · · , ξn. For any non-zero element f ∈ F[ξ1, ξ2, · · · , ξn] there exists an

infinite set of n-tuples (a1, a2, ..., an) ∈ F
n such that

f(a1, a2, ..., an) 6= 0. (3.22)

TABLE I
LINEAR NETWORK CODE SEARCH ALGORITHM

Input:
Given a polynomial f in indeterminants ξ1, ξ2, ..., ξn
Set integers: i = 1, t = 1

Iteration:
(1) Find the maximal degree δ of f in any variable ξj

and let m be the smallest number such that 2m > δ
(2) Find an element at in GF(2m) such that f(ξ)|ξt=at

6= 0
and let f ← f(ξ)|ξt=at

(3) If t = n then halt, else t← t+ 1 go to (2)
Output: (a1, a2, ..., an)
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Base on the existence of linear network codes, a simple algorithm, see Table I, is used

to find a vector a over a suitable field GF(2m) such that f(a) 6= 0.

For a given network G and a given set of connections `, it is formally to define a

network coding problem as a pair (G, `). The problem is to give algebraic conditions

under which a set of desired connections ` is feasible or equivalently find elements αei,l,

βei,ej
and εej ,l′ in a suitably chosen field GF(2m), such that all desired connections can

be established successfully in G. For such a set of elements αei,l, βei,ej
and εej ,l′ that

makes the desired connections feasible will be called a solution to the network coding

problem (G, `). If a solution exists, the network coding problem will be called solvable.

3.1 Point-to-Point Connection

First, consider a point-to-point connection cn = (s, tn,X (s)), which s is the source

node and tn be the sink node on network G and

X (s) = {X1(s), X2(s), · · · , Xr(cn)(s)} (3.23)

Let

X(s) = (X1(s), X2(s), · · · , Xr(cn)(s)) (3.24)

denote the vector of input processes generated at source node s and

Z(tn) = (Z1(tn), Z2(tn), · · · , Zr(cn)(tn)) (3.25)

denote the vector of output processes at sink node tn. Given an r(cn)× |E| matrix A, a

|E| × |E| matrix (I − F )−1 and a |E| × r(cn) matrix BT
n . A corresponding r(cn)× r(cn)

transfer matrix Mn can describe the relationship between X(s) and Z(tn).

Z(tn) = X(s)A(I − F )−1BT
n

= X(s)Mn (3.26)

where elements in Mn are polynomials over a ring GF(2m)[ξ]. The connection can be

establish successfully if the inverse of matrix Mn exists. Let f(ξ) be the determinant of

25



Mn. If f(ξ) is a nonzero element in a ring of polynomials GF(2m)[ξ] over an infinite field

GF(2m), by Lemma 1, there exists infinite number of a over an infinite filed GF(2m),

such that f(a) 6= 0. Further, by algorithm in Table I, a set of network code in a suitable

filed GF(2m) can be found. The following theorem ties the relationship between the net-

work transfer function Mn (an algebraic quantity) and the Max-flow Min-cut theorem

(an graph-theoretic tool):

Theorem 4 [9] Give a linear network. The following three statements are equivalent:

1. A point-to-point connection cn = (s, tn,X (s, tn)) is established successfully;

2. The max-flow bound is satisfied for a rate r(cn).

3. The determinant of the r(cn)× r(cn) transfer matrix Mn is nonzero over the ring

GF(2m)[ξ]

It is further derived by Ho et al.[10] that the determinant of a transfer matrix between

a connection cn can be expressed as

f(ξ) = det(A(I − F )−1BT
n )

= (−1)(|E|+1)r(cn)det(

(
A 0

I − F BT
n

)
) (3.27)

It is intuitive that the maximal degree of f(ξ) in any variable is 1. So a suitable filed

can be chosen to be GF(2).

3.2 Single Source Multicast Connections

For the multicast case, it consists of the distribution of the information, X (s), gen-

erated at a single source node s to a set of sink nodes t1, t2, · · · , tN , such that all sink

nodes receive all source bits. In other words, the set of desired connections is given by

` = {(s, t1,X (s)), (s, t2,X (s)), · · · , (s, tN ,X (s))}. (3.28)
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Then the rate of each connection cn = (s, tn,X (s)) is given by r(cn) = |X (s)|, for all

tn ∈ T . For simplicity, let r denotes the multicast rate, hence r = r(cn) ∀ tn ∈ T .

Similarly, let

X(s) = (X1(s), X2(s), ..., Xr(s)) (3.29)

denote the vector of input processes generated at source node s and

Z = (Z(t1), Z(t2), · · · , Z(tN)) (3.30)

where the 1 × r vector Z(tn) denotes the output processes at sink node tn. Given an

r × |E| matrix A, an |E| × |E| matrix (I − F )−1 and an |E| × rN matrix BT . A

corresponding r× rN transfer matrix M = A(I −F )−1BT can describe the relationship

between X(s) and Z.

Z = (Z(t1), Z(t2), · · · , Z(tN))

= X(s)A(I − F )−1BT

= X(s)A(I − F )−1[BT
1 , B

T
2 , · · · , B

T
N ]

= X(s)[M1,M2, · · · ,MN ] (3.31)

where r × r submatrix A(I − F )−1BT
n describes the relationship for a connection cn.

By the theorem[5] derived by Ahlswede et al., they guarantee the existence of a

coding strategy that ensures the feasibility of the desired connections if the rate of each

connection cn, ∀ n ∈ 1, 2, · · · , N , satisfies the max-flow bound.

Let a delay-free acyclic network G and a set of desired connections ` be given. The

following theorem states the necessary and sufficient condition of multicast connections

to be established successfully by using an algebraic characterization.

Theorem 5 [9] The network coding problem (G, `) is solvable if and only if the max-flow

bound is satisfied for all connections in `.

It means that for the multicast at rate r satisfying the max-flow bound, there exists

a feasible set of network code over a infinite filed GF(2m). Such that the determinant of
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transfer matrix Mn are nonzero in the ring of GF(2m)[ξ] for all tn ∈ T . Let

f(ξ) =
N∏

n=1

det(A(I − F )−1BT
n )

= (−1)rN(|E|+1)

N∏

n=1

det(

(
A 0

I − F BT
n

)
) (3.32)

It is intuitive that the maximal degree of f(ξ) in any variable is at most N . By using

algorithm in Table I, there always exists a set of network codes over GF(2m), which

m > log2N (3.33)

Further, a feasible set of network codes in a certain finite field GF(2m), where

m ≤ dloge2(N + 1)e, (3.34)

can also be found. The determination of the coefficients ai in the algorithm renders a

network code that all the transfer matrices between the single source node and any sink

node are invertible. Also, the algorithm provides a upper bound on the degree of the

extension of GF(2) that needs to consider.

� Linear Network Codes For Robust Networks

After accomplishing the construction of network codes, it is annoying to re-construct

the network codes if link fail happens. In order to avoid this situation, the network codes

is better chosen to prevent the re-construction if some links fail. In the other words, this

network codes still works even link is disconnected. In the following, we introduce such

code design in detail.

Edges in a network may fail. You may ask that under which failure pattern a suc-

cessful network usage is still guaranteed. Here, assume that link failure is a link either

working perfectly or is effectively deleted from the network. A link failure pattern can

be identified with binary vectors h of length |E| such that each position in h

h = (h1, h2, · · · , h|E|)
T (3.35)
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is associated with one edge in G. If a link fails, the corresponding position in h equals

one. Otherwise, the entry in h corresponding to the link equals zero. A network is

solvable under link failure pattern h, if it’s solvable once the links corresponding to h

have been deleted. Such network codes is important because

1. no new network codes has to be found and distributed in the network if a failure

pattern h ∈ H occurs,

2. the individual nodes in the network can be oblivious to the failure pattern.

Suppose that ei is the failing link, the effect of a failing link can be achieved by setting

parameters βe′,ei
, βei,e′′ and αei, l to zero for all e′, e′′ and l. Define Bei

be the set of

parameters ξi that are identified with βe′,ei
, βei,e′′ and αei, l to zero for all e′, e′′ and l

Bei
= {ξi : ξi is identifed with βe′,ei

, βei,e′′ and αei, l to zero for all e′, e′′ and l}.

(3.36)

For any particular link failure pattern h, define B(h) as

B(h) =
⋃

ei: hi=1

Bei
(3.37)

For a network G and M(ξ) be the corresponding system matrix.

M(ξ) = [M1(ξ),M2(ξ), · · · ,MN (ξ)] (3.38)

The network Gh is obtained by deleting the failing links h and the corresponding Mh(ξ)

Mh(ξ) = M(ξ)|ξj=0: ξj∈Bh

= (Mh,1(ξ),Mh,2(ξ), · · · ,Mh,N(ξ)) (3.39)

Let H be the set of failure patterns, such that (Gh, `) is solvable for any h ∈ H.

Given any h ∈ H

fh(ξ) =
N∏

n=1

det(Mh,n(ξ)) (3.40)
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Since (Gh, `) is solvable, fh(ξ) is nonzero element over the polynomial ring F[ξ]. It can

be further derive that

fR(ξ) =
∏

h∈H

fh(ξ)

=
∏

h∈H

N∏

n=1

det(Mh,n(ξ)) (3.41)

fR(ξ) is still a nonzero element over F[ξ]. By lemma 1, there exist a set of linear network

codes, such that fR(ξ) 6= 0 over the infinite field GF(2m). Intuitively, the codes can be

found by the above the algorithm over a certain finite field GF(2m), where

m ≤ dlog2(|H| ·N + 1)e (3.42)

The factor |H| in (3.42) will make the upper bound of the filed GF(2m) bigger than the

one without robustness concerning and complicate the the searching algorithm. And

this is the price to organize the robust multicast.

3.3 General Network Coding Problem

Given a network G and an arbitrary set of connections, `. The following theorem

states a succinct condition under which a network problem (G, `) is solvable.

Theorem 6 [9](GeneralizedMin−cutMax−flowcondition) Let an acyclic, delay-free

linear network problem (G, `) be given. Since the relationship between X and Z can be

expressed as

Z = XM (3.43)

Then each connection can also be expressed a linear relation. Let M = {Mi,j} be the

corresponding transfer matrix relating the set of input nodes to the set of output nodes.

The network problem is solvable if and only if there exists an assignment of numbers to

ξ such that

1. Mi,j = 0 for all pairs (vi, vj) of nodes such that (vi, vj,X (vi, vj)) /∈ `
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2. If {(vi1 , vj,X (vi1 , vj)), (vi2 , vj,X (vi2 , vj)), · · · , (viL , vj,X (viL , vj))} ⊆ ` the subma-

trix [MT
i1,j,M

T
i2,j, ...,M

T
iL,j] is a non singular ν(vj)× ν(vj) matrix.

It means that for each sink vj, the corresponding vector Z(vj) can be expressed as

Z(vj) = Xdj
Mdj

+XIj
MIj

(3.44)

whereXdj
contains the desired information of vj, submatrixMdj

= [MT
i1,j,M

T
i2,j, ...,M

T
iL,j]

is ν(vj) × ν(vj), XIj
is the interference with respect to vj and MIj

is a interference

transform matrix that induce noise term into Z(vj).

Xdj
= M−1

dj
(Z(vj)−XIj

MIj
) (3.45)

For each sink vj to recover desired information, it needs Mdj
nonsingular and interference

transform matrix MIj
to be zero matrix.

However, checking the two conditions is a tedious task as to find a solution ξ and

the theory of Gröbner bases provides a structured approach to this problem. For more

detail, see [9].
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Chapter 4

Linear Network Coding in Overlay
Networks

Traditionally network architectures distinguish between two types of entities: end

systems (hosts) and the network (switches and routers). In the internet architecture,

the IP layer implements a minimal functionality − a best-effort unicast datagram ser-

vice, and the end system implements all other important functionality such as error,

congestion, and flow control. For a network standpoint, the multicast abstraction can

be implemented in several ways:

1. One-to-all unicast (or called naive unicast): This approach implements a single

source multicast abstraction using an underlying unicast network layer, required

no explicit multicast support from the IP layer. The source uses a separate unicast

transport connection to each of the receivers. The approach here is simple and

needs no support from the routers. But the drawback is that the links near the

source node are likely to experience high link stress, which is referred to as the

number of identical copies of a packet carried by a physical link and eventually

decreases the multicast rate.

2. IP multicast : The approach is based on the explicit multicast support at the IP

layer. That is a new multicast protocols at IP layer such as IGMP, DVMRP,

PIM and MOSPF, and new routers that can handle multicast abstraction. The
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approach is efficient and higher multicast rate than any other methods, but requires

a significant amount of infrastructures to set up and maintain. There are several

drawbacks that have so far prevented the service from being widely deployed.

First, IP layer multicast requires routers to maintain per group state, which not

only violates the “stateless” architecture but also introduces high complexity and

serious scaling constraints. Second, the network vulnerable to flooding attacks by

malicious sources. Third, the requirement of dynamically obtain a globally unique

address. Finally, the IP multicast calls for the changes at the infrastructural level,

a new multicast routers need to be used, this slows down the pace of deployment.

A brief introduction of IP multicast see [14].

3. Application-level multicast (or called end-system multicast): A model in which mul-

ticast related features, such as group membership management, multicast routing

and packet duplication are implemented at end systems and base on only unicast

IP service. The end systems (source and receivers) form an overlay network, which

is a virtual network. The nodes on the virtual network are all end systems and

the link on the virtual network is actually a path in the physical network. For

a multicast abstraction the end systems construct an multicast tree on overlay

network and the transmission between node and node is accomplished by using

IP unicast. In addition, the reliable dilivery, flow control congestion control, and

security can be significantly handle by end systems. However, end system multi-

cast introduces duplicate packets on physical links (increase link stress) and incur

larger end-to-end delay (increase link stretch, which is defined as the ratio of path

length from the source to the multicast receiver along the overlay to the length

of the direct unicast path ), hence decrease the multicast rate and increase delay.

In [12], they propose an Narada protocol, which end system self-organize in to an

overlay structure using a fully distributed protocol.
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Due to the lack of widely available Internet protocol multicast service, lots of research

suggest using application-layer multicast by taking all of the advantages of application-

layer overlay networks. Application-layer overlay networks have two properties: (1) the

network nodes in a overlay network are end systems and have capabilities far beyond

basic operations of storing and routing, and (2) the overlay topology, residing above a

densely connected Internet wide-area network, can be constructed to suit one’s purposes.

Base on the advantages of end-system (application-layer), Zhu et al. implements the

multicast abstraction with network coding[11] and attempts to increase the end-to-end

throughput. Taking the two benifits of application-layer multicast over IP multicast:

(1) multicast support in IP layer is not required, and (2) data is transmitted between

virtual nodes via unicast, efficiently exploiting all existing security, flow control, and

reliable delivery mechanism that are already available and mature. They use two novel

view as oppose to traditional multicast abstraction. First, they depart from conventional

view that data can only be routing by overlay nodes. Rather, these overlay nodes also

have the full capability of encoding and decoding data at the message level using linear

codes. Second, they also depart from traditional wisdom that the multicast topology

from source s to sink nodes to be tree, and propose an distributed algorithm to construct

a two-redundant multicast graph as mlulticast topology that embedded in the virtual

overlay network. In the two-redundant multicast graph, the network codes could be

designed without the knowledge of network topology using a distributed algorithm.

Base on this framework, we propose a new code design algorithm that is easier than

the algorithm proposed by Zhu et al. and the code will accomplish higher end-to-end

throughput than theirs. In the following, we give a detailed description of [11].

4.1 Two-Redundant Multicast Graphs

A k-redundant multicast graph is a directed acyclic graph (DAG) which has the

following two properties:
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1. The set of all nodes V is the union of three disjoint subsets {s} ∪ VI ∪ T and the

total number of nodes are

Ntotal = |V | = |{s}|+ |VI |+ |T | = 1 +NI +N, (4.1)

where s is source node, VI is the set of intermediate nodes, and T is the set of

receiver nodes.

(a) The in-degree and out-degree of s are In(s) = 0 and Out(s) > 0, respectively.

(b) Let vi denote the intermediate node,

which 1 ≤ In(vi) ≤ k and Out(vi) ≥ 0, ∀ vi ∈ VI .

(c) Let tn denote the receiver node,

which In(tn) = k and Out(tn) ≥ 0, ∀ tn ∈ T .

2. Assume that each link has unit bandwidth. For any receiver node whose indegree

is k, then

maxflow(s, tn) = k, ∀ tn ∈ T (4.2)

The intermediate nodes are dedicated high-degree relay nodes, which are end hosts or

proxy servers connected to high-bandwidth physical links in the overlay network, which

do not belong to the set of receiver nodes, and such a pool of dedicated nodes is the

price to exploit network coding to increase end-to-end throughput. Why they use two-

redundant multicast graph rather than k-redundant mlulticast graph? As k increase,

it’s difficult to find multiple good paths (i.e., large path bandwidth) from source s to

each receiver with limited intermediate nodes and increased link stress and as k increase,

network code assignment algorithm (introduce latter) become more complex and averse

to the dynamics of node joints and departures. The following three propositions establish

the achievablility of network coding, the sufficiency of a maximum in-degree of 2 and the

necessity of non-empty intermediate nodes in a two-redundant acyclic multicast graph.
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Proposition 3 For any receiver node tn with In(tn) = 2, it has two disjoint path from

source node s if and only if tn has maxflow(s, tn) = 2.

Proposition 4 It’s not necessary for any node in a two-redundant multicast graph to

have in-degree of greater than 2 to obtain two disjoint paths for each receiver from s.

Proposition 5 If a two-redundant multicast graph contains only source and receivers,

i.e., VI = ∅, then two-redundant multicast graph contains a directed cycle.

Each receiver has two disjoint paths from the source and both path should be carefully

chosen to maximize the throughput to the receiver. The degree of a node represents

the total number of neighbors in the virtual network. For optimizing the virtual link

bandwidth, both the rudimentary tree and the two-redundant multicast graph have the

degree constraint: every virtual node has degree ≤ 4; i.e., 4 is the maximum virtual

node degree and in the following set 4 = 4. Minimizing link stress is paramount since

it determine the available bandwidth in a virtual link and the minimization of the link

stress is cover by imposing a maximum virtual node degree constraint, 4. The graph is

constructed by the following three steps:

• Step 1: Rudimentary graph construction;

• Step 2: Rudimentary tree construction;

• Step 3: Two-redundant multicast graph construction.

and the construction algorithm is distributed.

4.1.1 Rudimentary graph construction

When a new node joints the group, it’s given a set of nodes already in the group by a

bootstrapping node. These are its initial neighbors in the rudimentary graph. The node

then contacts all its neighbor so they are made aware of it. Every node maintains two

set of lists, one for storing the addresses of neighbors (neighbor lists) and another for
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storing the addresses of all the nodes it knows about in the group (group lists). Node

exchanges group information with its neighbor’s group lists, and update accordingly.

By the exchanging processes, the information about a node will eventually propagate

through the rudimentary graph.

Bootstrapping node


 V


Group

List


Neighbor

List


1


2


s
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3
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: Node 
 v
 
contact the bootsrapping node for requesting

  IP address of the initial neighbors.


1


2


3
 : Node 
 v
 
contacts its initial neighbors.


: Bootstrapping node sends node v the addresses of its initial neighbors.


Figure 4.1: Join procedure for a new node.

Fig. 4.1 shows the procedures when a new node join the group .

Each virtual link ei in the rudimentary graph has associated with a 2-tuple weight

w(ei) = (βi, λi), which βi is the link bandwidth and λi is the link latency (delay). Each

path p = (e1, e2, · · · , el) in the rudimentary graph also has an associated weight w(p) =

(βp, λp), which βp = min(βi, i = 1, 2, · · · , l) and λp =
∑l

i=1 λi. Let w(p1) = (βp1 , λp1)

and w(p2) = (βp2 , λp2) be the weights of p1 and p2, respectively. Then p1 is better than
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p2 if βp1 > βp2 , or βp1 = βp2 and λp1 < λp2 . In order to optimize the performance,

the dynamics of adding high-quality links and dripping poor-quality links is vital to the

performance of the multicast scheme.

(a) Neighbor-adding process:

• Periodically, each node vi ∈ V chooses randomly another node vj in the group lists

that are not a neighbor and by sending a probing message, estimate the bandwidth

and latency of the virtual link, (vi, vj).

• If w((vi, vj)) is better than most of links of its current neighbors, and both vi and

vj have not yet excess degree constraint, then vj is added as a neighbor of node vi

and link (vi, vj) is added in the rudimentary graph.

• The degree of a node vi ∈ V in the rudimentary graph has the following properties:

1. For source node s, the number of its neighbors that are intermediate nodes

are no larger than 3.

2. For every intermediate node vi, the number of its neighbors that are interme-

diate nodes must no larger than 4.

3. For every node, the total number of its neighbors can have more than 4.

(b) Neighbor-dropping process:

• If a current neighbor vj′ of vi has worse link than the links vi has to its neighbors,

and both vi and vj′ use link (vi, vj′) very rarely, then vi drops vj′ as its neighbor

and (vi, vj′) is removed from the rudimentary graph .
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Figure 4.2: An example of rudimentary graph.

Fig. 4.2 shows an example of rudimentary graph.

4.1.2 Rudimentary tree construction

The core graph is the subgraph of the rudimentary graph with the set of intermediate

nodes VI and all the incident links. In order to avoid the connectionless of the two-

redundant multicast graph, the core graph must be constructed as a connected graph.

The rudimentary tree is built from the subgraph consisting of the source node s and the

core graph by exploiting the distributed algorithm proposed in [13] based on distance

vectors that finds the shortest widest paths.
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 (b) rudimentary tree


Figure 4.3: An example of core graph and rudimentary tree.

Fig. 4.3 shows a core graph and a rudimentary tree of Fig. 4.2, respectively.
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4.1.3 Two-redundant multicast graph construction

The two-redundant multicast graph G2r is constructed by taking the rudimentary

tree as a basis and add links from the rudimentary graph or randomly establish another

good virtual links, i.e., higher bandwidth link, that are not belong to the rudimentary

graph. The construction of the two-redundant multicast graph adhere the following rules

for source node s and every intermediate node v ∈ VI :

1. Source s has φ intermediate nodes as children, i.e., Out(s) = φ and

2 ≤ φ ≤ 3; (4.3)

2. Total degree of node v is

degree(v) = (In(v) +Out(v)) ≤ 4; (4.4)

3. The in-degree of node v is

1 ≤ In(v) ≤ 2; (4.5)

4. Number of children of v that are receivers is less than or equal to (3− In(v)).

Rule 4 ensures that the construction of G2r is always successful as long as the interme-

diate nodes are large enough.

An intermediate node v is called a leaf intermediate node if none of v’s children in

G2r is an intermediate node. An intermediate node v is saturated if either degree(v) = 4,

or v is a leaf intermediate node and degree(v) = 3. The breadth-first search is used for

searching unsaturated nodes.

� Breadth-First Search Primitive:

When a node firs becomes to saturated, it sends that information to its parent node

of the rudimentary tree. Recursively, a node which is the root of subtree Tr, knows

that Tr is saturated when all its children have sent saturation notification to it. The
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construction of two-redundant multicast graph G2r is initialized to the rudimentary tree,

so initially it has no leaf receivers. Adding each receiver tn ∈ T two links to the inter-

mediate nodes, so that construct two disjoint paths, pf and ps, from the source node s

to receiver tn.

(a) First Path Construction:

To construct pf , receiver tn first contacts all its neighbors in the rudimentary graph

that are intermediate nodes and unsaturated and let {vi} denote the unsaturated neigh-

bors of tn. Receiver tn compares the paths {pi}, which consist of the tree paths from

s to {vi} and the links {(vi, tn)} from vi to tn, then selects the best path. If all of tn’s

intermediate neighbors are saturated, then tn initiates a breadth-first search of the tree

to find the first ψ unsaturated intermediate nodes and let {vi′} denote the ψ unsatu-

rated neighbors that found by the breadth-first search. Similarly, receiver tn compares

the ψ paths and select the best path. Here, pf represents the best path and vf be the

corresponding unsaturated intermediate node.
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Figure 4.4: First path comparison and pf selection of receiver t4.

In Fig. 4.4(a), receiver t4 compares two paths p4 ∪ (v4, t4) and p8 ∪ (v8, t4). In Fig.

4.4(b), assume that p4 ∪ (v4, t4) is a better path, then t4 decides p4 ∪ (v4, t4) to be its pf
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and v4 to be its vf .
TABLE II

PROCEDURE FOR CONSTRUCTION pf FOR tn
<Main>
• Leaf receiver tn:
· If not all tn’s intermediate node neighbors, {vi}, are saturated
‡ v=Find-best-path(tn, {vi})
‡ vf = v and pf = p ∪ (v, tn)

· else if all neighbors of tn are saturated
‡ Breadth-first search of tree, halt when ψ

unsaturated nodes {vi′} found
‡ v=Find-best-path(tn, {vi′})
‡ vf = v and pf = p ∪ (v, tn)

<Subroutine>
• Find-best-path(tn, {vi}):
· request {vi} for weights {w(pi) = (βi, λi)} of their paths in the tree
· for each unsaturated node vi

‡ β=bandwidth of link (vi, tn)
‡ compute w(pi ∪ (vi, tn)) = (min(βi, β), λi + λ)
‡ choose the best (shortest widest) path, p
‡ return v that corresponds to p.

Table II shows the procedures to construct first path, pf , of tn.

(b) Second Path Construction:

To construct ps, receiver tn find ψ unsaturated intermediate node {vi}, which are not

in pf , from its neighbors. If there are fewer than ψ such neighbors, then tn randomly

probes intermediate nodes that are unsaturated and not in pf . For each vi, it checks if

its tree path pi intersect the first path pf . If it does not intersect, then vi replies pi and

w(pi) to tn, else, it finds an alternative path from source node s.

• If In(vi) = 2, an alternative path may already exit, then vi replace this new path

as pi and replies pi and w(pi) to tn.

• If In(vi) = 1, then vi sends a message to the a child node c of s that is different from

the child who is upstream from vi and request for c to do the breadth-first search

of its own subtree. Node c replies to vi the first unsaturated or leaf intermediate
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node v′i, then vi replies tn with w(p′i ∪ (v′i, tn)) and p′i ∪ (v′i, tn), which p′i is the tree

path from s to v′i.

After tn receives w(pi) and w(p′i ∪ (v′i, tn)) from all the vi, receiver tn selects the best

path among pi ∪ (vi, tn) and p′i∪ (v′i, tn). Here, ps represents the best path and vs be the

corresponding unsaturated intermediate node or leaf intermediate node.

TABLE III
PROCEDURE FOR CONSTRUCTION ps FOR tn

<Main>
• Leaf receiver tn:
· Find ψ unsaturated intermediate nodes {vi} not in pf ,

from its neighbors and/or random probing.
· Send pf to each vi and request best path pi from s to vi

that does not intersect with pf , and its weight w(pi).
· v=Find-best-path(tn, {vi}, {pi}, {w(pi)})

<Subroutine 1>
• Find-best-path(tn, {vi}, {pi}, {w(pi)}):
· For each intermediate node vi

‡ (pi, w(pi))=Check(vi)
‡ β=bandwidth of link (vi, tn)
‡ compute w(pi ∪ (vi, tn)) = (min(βi, β), λi + λ)

· choose the best (shortest widest) path, p
· return v that corresponds to p.

<Subroutine 2>
• Check(vi):

/ Upon receiving pf and request for path from s to vi disjoint from pf /
· If vi’s tree path pi doest not intersect with pf

then return pi and w(pi)
· else if vi’s tree path intersects pf then
‡ if vi has an alternative path p′i from s then

return p′i and w(p′i)
‡ else if vi has In(vi) = 1 then
� contact a different child c of s than the one whose subtree vi is in.
� c conducts breadth-first search of its subtree

and returns to vi the first unsaturated or leaf intermediate node v
� return pi = pv ∪ (v, vi) and w(pi)

Table III shows the procedures to construct second path, ps of tn.
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Figure 4.5: Second path comparison and ps selection of receiver t4.

In the left-hand side of Fig. 4.5, receiver t4 compares two paths p7 ∪ (v7, t4) and

p6 ∪ (v6, v8) ∪ (v8, t4). In the other side of Fig. 4.5, assume that p6 ∪ (v6, v8) ∪ (v8, t4) is

a better path, then t4 decides p6 ∪ (v6, v8) ∪ (v8, t4) to be its ps and v8 to be its vs.
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Figure 4.6: An example of two-redundant multicast graph.

Fig. 4.6 shows an two-redundant multicast graph after the construction of pf and ps

for each sink node, and each node satisfies the properties of G2r.

After finishing the construction of the two-redundant multicast graph, the multicast

rate is then determined by the minimum link bandwidth of the graph.
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With the restriction of maximum degree 4 = 4 on the nodes in the multicast graph,

the number of intermediate nodes needed increases with the number of receivers. For

a given number of intermediate nodes NI , Zhu et al. gives the maximum (Nmax) and

minimum (Nmin) number of receivers that the intermediate nodes can support.

Nmax = b((4− 2)NI + 1)/2c (4.6a)

Nmin = b((4− 4)NI + 1)/2c (4.6b)

4.2 Linear Code Design over Prime Fields

Once the graph G2r is constructed, a linear codes must be found to realize the linear

coding multicast, such that doubling end-to-end throughput. The algorithm proposed in

[9] and [8] are centralized and need to know the network topology, then generate network

codes to each node. Due to the special graph G2r, a distributed algorithm can be used

to design linear network codes without the knowledge of the network topology. Further,

the network coding is only needed at the source node s and the in-degree 2 intermediate

nodes.

Since each receiver has two disjoint paths from source node s. Then s multicast

the source vector X(s) = (X1(s), X2(s)) to each receiver nodes. Both symbols X1(s)

and X2(s) should be recovered by each receiver. Define d(ei) = (d1(ei), d2(ei))
T be the

encoding vector of link ei. Let eIi

j be the jth incoming link of node vi and denote the

transmitted symbol on the link as Y (eIi

j ), and eOi

j′ be the j ′th outgoing link of node vi

and denote the transmitted symbol on the link as Y (eOi

j′ ). For every intermediate node

vi ∈ VI if In(vi) = 1, then it just forwards the symbol received from its incoming link

with no encoding onto all the outgoing links, i.e., Y (eOi
j ) = Y (eIi

1 ), for all eOi
j ∈ Out(vi).

Otherwise In(vi) = 2, then it encodes the two received symbols using network code,

which is denoted by (βi1 , βi2)
T and forward the coded symbol onto all the outgoing
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links. That means

Y (eOi
j ) = (Y (eIi

1 ), Y (eIi
2 )) · (βi1 , βi2) (4.7)

for all eOi
j ∈ Out(vi).

The network code vectors for in-degree 2 intermediate nodes are obtained from a dis-

tributed algorithm. There are two phases − AssignCodes phase andDisseminateCodes

phase.

Before starting the algorithm, a function that generate a sequence of 2-dimensional

pairwise linear independent vectors must be introduced. There is a function gen(δ) that

generates a sequence of δ transformation vectors {(ρ1, q1)
T , (ρ2, q2)

T , · · · , (ρδ, qδ)
T} such

that:

• ρi, qi are elements in a prime field;

• (ρi, qi) and (ρj, qj) are linear independent, ∀ i 6= j;

• (ρi, qi)
T defines a linear transformation of source vector (X1(s), X2(s)) :

Yi = (X1(s), X2(s))(ρi, qi)
T = ρi ·X1(s) + qi ·X2(s) (4.8)

Let Y = {Y1, Y2, · · · , Ym} and gen(δ) = {(ρ1, q1)
T , (ρ2, q2)

T , · · · , (ρδ, qδ)
T}, which any

two vectors in gen(δ) are pairwise independent. For each receiver tn, it can recovers

(X1(s), X2(s)) if it receives any two distinct elements in Y and also knows the corre-

sponding transformation vectors.
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TABLE IV
VECTOR SEQUENCE GENERATION ALGORITHM
• Algorithm gen(δ)
· i←− 1, j ←− 1
· primes[i]←− 2, vectors[j]←− (2, 2)
· Iteration:
‡ Find the next prime p, smallest p > primes[i]
‡ For k = 1 to i
� j ←− j + 1
� vectors[j]←− (primes[k], p)
� If j = δ then halt

. j ←− j + 1

. vectors[j]←− (primes[k], p)
‡ i←− i+ 1
‡ primes[i]←− p

Table IV shows the algorithm that generates δ pairwise linear independent transfor-

mation vectors.

4.2.1 AssignCodes phase

Source node s first broadcasts a message through the rudimentary tree to initiate the

AssignCodes phase. If an intermediate node vi has two incoming links in G2r, then it

sends a message containing its address to s requesting a transformation vector. Suppose

L requests were received and s has φ children, then s generates (L+ φ) transformation

vectors using gen(L + φ). Source node sends to each requesting intermediate node one

of the first L vectors and then each intermediate node vi will receive a transformation

vector (ρ, q). This vector will be the encoding vector of its outgoing links.

4.2.2 DisseminateCodes phase

The last φ transformation vectors are sent by s to its children, one to each child

and these vectors are the symbol vectors of links between source node and its children.

For each intermediate node, it passes its transformation vector to all the downstream

nodes. For in-degree 1 intermediate node, its transformation vector is obtained from its

parent node. Eventually, each node v ∈ V has the knowledge about the transformation
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vectors of its incoming and outgoing links, and then derives the network code vectors

or decoding matrices. For each intermediate node vi ∈ VI and In(vi) = 2, it can derive

the network code vector by using the transformation vectors of its parent nodes and

its own transformation vector. Let (ρvi
, qvi

) be the transformation vector of vi, and

(ρi1 , qi1), (ρi2 , qi2) be the two transformation vectors of its parent nodes. The network

code vector will be

(βi1 , βi2)
T =

(
ρi1 ρi2

qi1 qi2

)−1 (
ρvi

qvi

)
(4.9)

The structure of G2r will guarantee the parent nodes of each in-degree 2 intermediate

node from different intermediate nodes, such that (ρi1 , qi1) and (ρi2 , qi2) are linear inde-

pendent and the inverse of the matrix

(
ρi1 ρi2

qi1 qi2

)
exits.

For each receiver node tn ∈ T , it can derive the decoding matrix by using the

transformation vectors of its parent nodes. Suppose that (ρn1 , ρn1) and (ρn2 , ρn2) be the

two transformation vectors of its parent nodes, and assume that Yn1 and Yn2 be the two

incoming symbols of tn. The decoding matrix will be

(
εn1 εn3

εn2 εn4

)
=

(
ρi1 ρi2

qi1 qi2

)−1

(4.10)

Then the source vector can be recovered by

(X1(s), X2(s)) = (Yn1 , Yn2)

(
εn1 εn3

εn2 εn4

)
(4.11)

The structure of G2r will guarantee the parent nodes of each receiver from different

intermediate nodes, such that (ρn1 , ρn1) and (ρn2 , ρn2) are linear independent and the

inverse of the matrix

(
ρi1 ρi2

qi1 qi2

)
exits.

Due to the special multicast graph, all the receivers can always recover the source

vector (X1(s), X2(s)). The elements in the transformation vectors belong to a prime

field, the transmitted symbol on each link and data symbols also in a prime field.
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Table V and Table VI give the pseudo codes of the two phases.

TABLE V
ASSIGNCODES PHASE

• The source s
· Multicast message <start-AssignCodes> in the rudimentary tree
· Set T ime=( largest RTT )·2
· Set timer t = 0, initialize L = 0
·While t < T ime do
‡ Upon receiving <request-code, address of vi>:
� L = L+ 1
� NodeAddr[L]= address of vi

· φ = number of children of s
· Obtain gen(L+ φ) = {(ρ1, q1)

T , (ρ2, q2)
T , · · · , (ρL+φ, qL+φ)T}

· For i = 1 to L
‡ send <code, (ρi, qi)

T> to node at address NodeAddr[i]

• Upon receiving <start-AssignCodes>, each node vi ∈ VI :
· If vi has 1 incoming links then do nothing
· Else if vi has 2 incoming links then

send message <request-code, address of vi> to s

• Upon receiving <new-code, (ρ, q)>, each node vi ∈ VI :
· vi sets its wi: ρvi

= ρ and qvi
= q

TABLE VI
DISSEMINATECODES PHASE

• The source s (has φ children and has gen(L+ φ) from last phase):
· For i = 1 to φ
‡ Send <code, gen(L+ φ)> to its ith child

• Each node vi ∈ VI with in-degree 1:
· Upon receiving <code, (ρ, q)T> from its parent:
‡ Set its wi: ρvi

= p and qvi
= q

‡ Send <code, (ρvi
, qvi

)T> out on all its outgoing links
‡ Set linear transformation for all outgoing links to the identity

• Each node vi ∈ VI with in-degree 2:
· Send <code, (ρvi

, qvi
)T> out on all its outgoing links

· Upon receiving <code, (ρIi

1 , q
Ii

1 )>, <code, (ρIi

2 , q
Ii

2 )>,
respectively, from its two upstream nodes:

(βvi

1 , β
vi

2 )T =

(
ρIi

1 ρIi

2

qIi

1 qIi

2

)−1 (
ρvi

qvi

)
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4.3 Linear Code Design over GF(2m)

We propose an algorithm that generates transformation vectors, which elements are

in the extension field of order 2, that is finite field GF(2m)). And the algorithm that

generates 2-dimensional pairwise linear independent vectors is quite simple.

In the real world, the data is represented in binary. For a signal processing stand-

point, the operations over a prime field need a table mapping the prime elements into

a corresponding elements over GF(2m) and execute the corresponding operation over

GF(2m). After finish the operation, it has to make a re-mapping from GF(2m) to the

prime field. This slowing down the whole operation and eventually decreases the end-

to-end throughput. Another drawback of network code construction over a prime field

is that the effective end-to-end throughput will decrease by a factor 1
m+1

, where m cor-

respond to GF(2m) and the filed size of GF(2m) larger than the prime filed.

The algorithm proposed by Zhu et al., though simple but it can not find all the

pairwise linear independent vectors in a prime field. Our proposal can find all the

vectors for any GF(2m). How many pairwise independent vectors are in a finite filed

GF(2m)? The following theorem answers that question.

Theorem 7 There are (2m + 1) pairwise linear independent 2-d vectors over GF(2m).

Proof : Assume α be the primitive element in GF(2m). Totally, there are 22m − 1

nonzero 2-dimension vectors over GF(2m) and can be divided into 2m + 1 disjoint sets

with each set has 2m − 1 elements. We divide them into

Sj = {αi(1, αj) : i = 1 ∼ (2m − 1)}, for all j = 1 ∼ (2m − 1); (4.12a)

S2m = {αi(1, 0) : i = 1 ∼ (2m − 1)}; (4.12b)

S2m+1 = {αi(0, 1) : i = 1 ∼ (2m − 1)}. (4.12c)

For each Sk, k ∈ {1, 2, · · · , 2m + 1}, the elements are all distinct and the size of the

set is |Sk| = (2m − 1). It is easy to see that the sets indeed disjoint.
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Vectors in the same set are linear dependent. Vectors come from different sets are

pairwise linear independent and maximally there are 2m + 1 such vectors. This prove

the maximal number of (2m + 1) 2-dimensional pairwise linear independent vectors. �

We can randomly choose (2m+1) vectors, each of them comes from different sets, and

these vectors are pairwise linear independent. If there are L intermediate nodes request-

ing for transformation vector and Out(s) = φ, then source node s first finds a suitable

field, such that (L + φ) wouldn’t exceed the maximum offering number (2m + 1) over

GF(2m). Then find a corresponding primitive element α. We use a function Gen2(L+φ)

to generate such vectors.

TABLE VII

VECTOR SEQUENCE GENERATION ALGORITHM OVER GF(2m)

• Algorithm Gen2(δ)

· Let m = dlog2δe

· Find a primitive element α in GF(2m)

· vectors[1] = (0, 1)T and vectors[2] = (1, 0)T

· If δ > 2 then

� for j = 1 to (δ − 2)

vectors[j + 2] = (1, αj)T

Table VII shows a simple algorithm for generating δ transformation vectors.
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Chapter 5

Conclusion

Based on the max-flow min-cut theorem, Ahlswede et al. prove that the maximum

achievable rate a network using coding is upper bounded by the max-flow bound. They

also establish the existence of encoding function to achieve that bound. Li et al. then

show that linear network coding is sufficient over a infinite field or a large enough fi-

nite field. From two different perspectives, linear network code construction algorithms

for multicast applications are proposed and the sufficient conditions of the linear code

over a finite field GF(2m) whose dimension m depends only on the total number of re-

ceivers. We give detailed description of the algorithm proposed by Koetter et al. because

their algorithm can be further extended to a more general multicast problem and their

approach characterizes the coding problem from an algebraic viewpoint.

Although, theory has promised the existence of capacity-achieving codes for single

source multicast and some linear coding algorithms had been proposed, it requires an

infrastructure that contains widely deployed codec and supports new protocols to handle

related issues like reliability, flow control, congestion control...etc. In order to avoid

dealing with these difficulties, Zhu et al. use the network coding technique in overlay

networks to accomplish the multicast abstraction. Their simulation results show a two-

fold throughput improvement over the conventional approach using an application-layer

multicast Narada protocol [12]. The overhead paid is the dedicated high-degree relay

nodes, which are end hosts or proxy servers connected to high-bandwidth physical links.
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This thesis propose a simple algorithm to construct linear network codes over two-

redundant multicast graphs. We believe that the effective end-to-end throughput of our

proposal is larger than that of Zhu’s algorithm.

Network coding as a relative new area of both academic and industrial research inter-

est naturally has many an unsolved and unexplored problems awaiting for the untamed

minds. We mention just a few in the following paragraphs as the concluding remarks of

our preliminary investigation effort.

It remains to be shown if one can extend our proposal to three- or higher (K-)

redundant multicast graphs and find the corresponding higher dimensional independent

vectors accordingly. Extension to the multi-source multicast also deserve much effort.

For more realistic concern, one should consider nonuniform and non-delay-free cases

and investigate related design issues like scheduling, minimum delay/memory-saving

algorithm. Since at an integer multicast rate r, it is sufficient to choose r disjoint paths

from source s to each sink tn. The problem thus becomes one of choosing such paths so

that minimum delays at each intermediate nodes and the sink nodes are obtained.

As mentioned before, implementation of network coding necessitates a widely de-

ployment of powerful and specific routers that are capable of high-speed routing and

(encoding) processing. One would like to know the minimum number of such routers

required in a given network such that the full advantage of network coding can still be

attained.

Another interesting issue is the application of network coding to wireless ad hoc

networks with opportunistic multiple access. Considering such a scenario, one is tempted

to ask if what is the capacity of such networks and what is the optimal combination of

channel and network codes.
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Appendix A

Upper Bound of Multicast Rate
with Network Coding

Given a network G with rate constraint C. Assume that for any ε > 0, there exists

for sufficiently large m an (m, (ηij : (vi, vj) ∈ E), τ) α− code on G such that

m−1log2ηij ≤ Cij + ε (A.1)

for all (vi, vj) ∈ E.

The following derive the upper bound of an information source rate τ at a fixed ε

and a sufficiently large m. Consider any tn ∈ T and any cut (Pn, Pn) between node s

and node tn, let

Zj(x) = (Ỹk(x) : k ∈
⋃

vi∈V

Tij) (A.2)

where x ∈ χ is a message and Ỹk is the function induced inductively by Y ′
k , 1 ≤ k′ ≤ k,

such that Ỹk(x) denotes the value of Yk as a function of x. Zj(x) is all the information

received by node vj during the whole coding session when message is x. Since Ỹk(x) is a

function of the information previously received by u1(k), we see inductively that Ztn(x) is

a function of Ỹk(x),∀k ∈ ∪(vi,vj)∈(Pn,Pn)Tij. Since every message in χ = {1, 2, · · · , d2mτe}

can be determined at sink node tn, we have

H(X) ≤ H(X,Ztn(X))

= H(Ztn(X))
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≤ H(Ỹk(x) : k ∈ ∪(vi,vj)∈(Pn,Pn)Tij)

≤
∑

(vi,vj)∈(Pn,Pn)

∑

k∈Tij

H(Ỹk(X))

≤
∑

(vi,vj)∈(Pn,Pn)

∑

k∈Tij

log2|Ak|

=
∑

(vi,vj)∈(Pn,Pn)

log2(
∏

k∈Tij

|Ak|)

=
∑

(vi,vj)∈(Pn,Pn)

log2ηij (A.3)

Since sink node tn can recover all x ∈ χ, it is intuitive that Ztn(X) contains the complete

information about X, then (A.3) follows from (A.3). By the independence bound for en-

tropy theorem[4], (A.3) can be derived from (A.3). Since 1
m

∑
k∈Tij

H(Ỹk(X)) represents

the information rate transmitted on edge (vi, vj) and 1
m

∑
k∈Tij

log2|Ak| represents the

edge capacity (Cij + ε), then (A.3) can be derived from (A.3). From (2.18a),

∑

k∈Tij

log2|Ak| = log2ηij, (A.4)

(A.3) can be derived. It is easy to derive that

m−1H(X) ≤
∑

(vi,vj)∈(Pn,Pn)

m−1log2ηij (A.5)

and this will be used in the derivation of the upper bound of τ . Thus

τ ≤ m−1log2d2
mτe

= m−1log2|χ|

= m−1H(X)

≤
∑

(vi,vj)∈(Pn,Pn)

m−1log2ηij

≤
∑

(vi,vj)∈(Pn,Pn)

(Cij + ε)

≤ (
∑

(vi,vj)∈(Pn,Pn)

Cij) + |E|ε

= C(Pn, Pn) + |E|ε

≤ mincut(s, tn) + |E|ε (A.6)
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The the message x is selecting from χ according to the uniformly distribution, then the

entropy H(X) is equal to log2|χ|. Since for any tn ∈ T

τ ≤ mincut(s, tn) + |E|ε, (A.7)

the upper bound of the information source rate is

τ ≤ min
n
maxflow(s, tn) + |E|ε, (A.8)

For multicast at rate r− ε ≤ τ , we can select the multicast message x from χM ⊆ χ

according to uniform distribution with m−1log2|χM | = (r−ε), and each message x ∈ χM

can be recovered by every sink nodes. In the same way, the mulicast rate (r− ε) is also

bounded by

r − ε ≤ min
n
maxflow(s, tn) + |E|ε. (A.9)

Let ε→ 0, we obtain

r ≤ min
n
maxflow(s, tn). (A.10)

We conclude that the achievable multicast rate is always bounded by the max-flow bound.
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Appendix B

Achievability of the Max-flow

Bound with Network Coding

Given a network G with rate constraint C and the mulitcast at rate (r − ε), which

(r − ε) ≤ min
n
maxflow(s, tn). (B.1)

The following try to prove that for any ε > 0, there exists for sufficiently large m an

(m, (ηij : (vi, vj) ∈ E), r − ε) β − code on G such that

m−1log2ηij ≤ Cij + ε (B.2)

for all (vi, vj) ∈ E.

This will be done by constructing a Random code. In constructing this code, temporarily

replace χ by

χ′ = {1, 2, · · · , dc2m(r−ε)e}, (B.3)

where c is a positive integer greater than 1. Thus the domain of Ysj is expanded from χ

to χ′ for all (s, vj) ∈ E.

The encoding functions are constructed on as follows. For all vj, such that (s, vj) ∈ E,

for all x ∈ χ′,let Ysj(x) be a value selected independently from the set {1, 2, · · · , ηsj}

according to the uniform distribution. For all (vi, vj) ∈ E, (vi 6= s), and for all

Zi(x) ∈
∏

vi′ :(vi′ ,vi)∈E

{1, 2, . . . , ηi′i} (B.4)
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where Zi(x) be the information received by node vi and Yij(Zi) be a value selected

independently from the set {1, 2, . . . , ηij} according to the uniform distribution. Let

Zs(x) = x (B.5)

and for all vj ∈ V and vj 6= s, let

Zj(x) = (Ỹij(x), (vi, vj) ∈ E) (B.6)

where Zj(x) be the information received by node vj when the message is x ∈ χ′ and

Ỹij(x) denotes the value of Yij as a function of x. For distinct x and x′, both belong

to χ′, x and x′ are indistinguishable at sink tn if and only if Ztn(x) = Ztn(x′). For all

x ∈ χ, define

N(x) =





1, if for some n = {1, 2, · · · , N}, there exists x′ ∈ χ′,
x 6= x′, such that Ztn(x) = Ztn(x′);

0, otherwise.
(B.7)

N(x) is equal to 1 if and only if at least one of the sink nodes cannot uniquely decode x

and x′. Now fix x ∈ χ′ and 1 ≤ n ≤ N . Consider any x′ ∈ χ′ not equal to x and define

two sets

Pd = {vi ∈ V : Zi(x) 6= Zi(x
′)} (B.8a)

and

Pind = {vi ∈ V : Zi(x) = Zi(x
′)} (B.8b)

Pd is the set of nodes at which the two messages x and x′ are distinguishable, and

obviously s ∈ Pd.

Suppose Ztn(x) = Ztn(x′). Then Pd = Pn for some Pn ⊂ V (V has 2|V | kind of

subsets), which (Pn, Pn) is a cut between s and tn. For any (vi, vj) ∈ E,

Pr{Ỹij(x) = Ỹij(x
′)|Zi(x) 6= Zi(x

′)} = η−1
ij . (B.9)

It is the probability of the encoding function Yij of node vi sending the same message

onto edge (vi, vj) given the source messages are distinct and the received information of

58



node vi is also distinct. Therefore,

Pr{Pd = Pn} = Pr{Pd = Pn, Pd ⊃ Pn}

= Pr{Pd = Pn|Pd ⊃ Pn}Pr{Pd ⊃ Pn}

≤ Pr{Pd = Pn|Pd ⊃ Pn}

=
∏

(vi,vj)∈(Pn,Pn)

Pr{Ỹij(x) = Ỹij(x
′)|Zi(x) 6= Zi(x

′)}

=
∏

(vi,vj)∈EPn

η−1
ij (B.10)

Pr{Pd = Pn} is the probability of Pd ⊂ Pn and Pd ⊃ Pn for a fixed Pn.

Let ε be any fixed positive real value. For all (vi, vj) ∈ E, take ηij such that

Cij + ζ ≤ (m−1log2ηij) ≤ Cij + ε, (B.11)

for some 0 < ζ < ε. Then

Pr{Pd = Pn} ≤
∏

(vi,vj)∈(Pn,Pn)

η−1
ij

≤
∏

(vi,vj)∈(Pn,Pn)

2−m(Cij+ζ)

= 2
−m(|(Pn,Pn)|ζ+

∑
(vi,vj)∈(Pn,Pn) Cij)

≤ 2
−m(ζ+

∑
(vi,vj)∈(Pn,Pn) Cij)

≤ 2−m(ζ+maxflow(s,tn))

≤ 2−m((r−ε)+ζ) (B.12)

Eqn (B.12) follows because |(Pn, Pn)| ≥ 1; Eqn (B.12) follows because for the capacity

of any cut between node s and node tn is bounded by mincut(s, tn) and

mincut(s, tn) = maxflow(s, tn). (B.13)

Equation (B.12) follows because

r − ε ≤ min
n
maxflow(s, tn)

≤ maxflow(s, tn) (B.14)
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The upper bound of Pr{Pd = Pn} does not depend on Pn. Then

Pr{Ztn(x) = Ztn(x′)}

= Pr{Pd = Pn for some cut (Pn, Pn) between s and tn}

≤
∑

for some cuts

Pr{Pd = Pn}

≤ 2|V |2−m((r−ε)+ζ) (B.15)

Eqn (B.15) follows by the union bound. Eqn (B.15) follows because there are total 2|V |

subsets of V . Further, fix x

Pr{Ztn(x) = Ztn(x′) for some x′ ∈ χ′, x 6= x′}

≤
∑

for some x′∈χ′

Pr{Ztn(x) = Ztn(x′)}

≤ (|χ′| − 1)2|V |2−m((r−ε)+ζ)

≤ c2m(r−ε)2|V |2−m((r−ε)+ζ)

= c2|V |2−mζ (B.16)

Therefore

E{N(x)} = Pr{N(x) = 1}

= Pr{
N⋃

n=1

Ztn(x) = Ztn(x′) for some x′ ∈ χ′, x 6= x′}

< Nc2|V |2−mζ

= δ(m, ζ) (B.17)

where

δ(m, ζ) = Nc2|V |2−mζ . (B.18)

For a given message x, if it can be uniquely decoded at all sink nodes, then N(x) = 0.

Hence, the total number of messages which can be uniquely determined at all the sink

nodes is equal to
∑

x∈χ′

(1−N(x)). (B.19)
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Since all the encoding functions are random, the Eqn (B.19) is a random number. By

taking the expectation for the random code, then

E{
∑

x∈χ′

(1−N(x))} =
∑

x∈χ′

(1− E(N(x)))

>
∑

x∈χ′

(1− δ(m, ζ))

≥ (1− δ(m, ζ))c2m(r−ε) (B.20)

where (B.20) follows from (B.17).

Therefore, there exits a deterministic code, for which Yij is a deterministic function

for all (vi, vj) ∈ E, and the number of messages that can be uniquely decoded at all sink

nodes is at least

(1− δ(m, ζ))c2m(r−ε), (B.21)

which is greater than 2m(r−ε) for m sufficiently large. Since δ(m, ζ)→ 0 as m→∞. Let

χ be any set of d2m(r−ε)e messages from χ′ and for all x ∈ χ and for all tn ∈ T

gn(Ztn(x)) = x, (B.22)

where

Ztn(x) ∈
∏

vi′ :(vi′ ,tn)∈E

{1, 2, · · · , ηi′tn}. (B.23)

Eqn (B.22) means that for every x ∈ χ, all sink nodes can recover this message. Thus

the multicast rate

(r − ε) ≤ min
n
maxflow(s, tn), (B.24)

it is always achievable.

Let ε→ 0, there also exists an (m, (ηij : (vi, vj) ∈ E), r) β−code on G for sufficiently

large m. Such that for multicast rate

r ≤ min
n
maxflow(s, tn), (B.25)

it is always achievable.

We conclude that the multicast rate at the max-flow bound is always achievable.
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1992年畢業於嘉義縣立過溝國小。小一到小四的時候，曾經被家人誤認成智
障（當時的成績實在是不好意思拿出來），害我老爸老媽拼了老命也要賺錢把
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1998年畢業於省立嘉義高中。本高中可是出了名的『自由學府』，自由到什
麼程度呢？自由到本人我，進去不到一學期就被學長拖到司令台海扁（我有

這麼欠揍嗎？不解！），而此戰所留下的一攤鼻血，在隔天早上還被渲染成司

令台殺人事件呢！不過流鼻血倒是小 case，比較大的 case是---鼻梁被打
斷了（淚∼∼）；至此之後，隱姓埋名，好好做個不快樂的高中生，考大學為

己任！！ 
 

2002年畢業於私立輔仁大學電子工程學系，告別了我最愛的台北。初嚐大學
生活，大一可是可以用『糜爛』二字來形容，每天不是上 BBS，不然就是跟
同學四處鬼混，再不然就四處找人聯誼（ㄟ…你們沒有嗎？？ 可能是本大學
比較像『正常』的大學吧，別打我！）；而果然，聯誼就聯誼，好歹被我摸到

一個女朋友（正式的喔，不是那種兩小無猜型的喔！），從此進入了我人生的

第一個高峰期，愛情課業兩得意---而且持續了四年之久，不過從最上的兩個
時期，大家應該可以再次的推測---沒錯，畢業之後，失戀 again！而在大
四的時候，非常高興的甄試上了交大電信所，從此幻想著平步青雲的人生，

直到∼∼ 
 

2002年九月前往國立交通大學電信工程系就讀碩士班。有一句話說的好；『幻
滅是成長的開始』，這一句話送給全國大學研究所的研究生；不過又有一句話

說的更好：『壓力是成長的動力』（誰說的？我說的！），再一次與全國研究生

共勉之！！ 
                

2004年獲得碩士學位，暫別學生生涯當兵去。人生起起伏伏，在研究所兩年
裡，就好像坐雲霄飛車一樣，雖然心裡面害怕，但又無時無刻的充滿著驚奇，

總是在這裡得到些，而又在那裡失掉些。畢業，期望只是求知生涯的一個小

小休止符；在未來裡，但願還能夠繼續回來彈奏這美妙動聽的學術樂章！ 
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