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Abstract

Multicast transmission over a network is upper bounded by the network capacity
(rate) called the maz-flow bound. In_grderito improve the capacity of a conventional
single source multicast, a new funétion called network coding is introduced to network
nodes. It has been shown that; by means of network coding, the capacity is always
achievable. Moreover, linear network ‘codes-arersufficient to attain the capacity for all
single source multicast transmissions and they cam always can be found over finite fields.

In an overlay network, virtual network topology over an existing physical network is
constructed to meet some special networking requirements. For the purpose of imple-
menting network coding, all virtual network nodes must be capable of handling higher
level operations. Taking the advantages of network coding and overlay networks, a
two-redundant multicast graph is constructed so that network codes over the resulting
overlay network can be designed without the knowledge of the network topology. Based
on this special multicast graph, we derive the maximum available encoding vectors over
an extension filed of GF(2) and propose an encoding vector generation algorithm. The
algorithm is simpler and the resulting multicast network codec renders lower complexity.
It is believed that network codes over GF(2™) for redundant multicast graph can also

enhance the end-to-end throughput.
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Chapter 1

Introduction

Multicast technology is useful to a number of emerging network applications require
the delivery of packets from one or more senders to a group a of receivers. These ap-
plications include bulk data transfer (for example, the transfer of a software upgrade
from the software developer to users needing the upgrade), streaming continuous media
(for example, the transfer of audio,.yideo, and text.of live lecture to a set of distributed
lecture participants), shared data applications (for' example, a whiteboard or telecon-
ferencing application that is shared among many distributed participants), data feeds
(for example, stock quotes), web cache updating;and interactive gaming (for example,
distributed interactive virtual environments or multiplayer games such as Quake). The
notion of a multicast is the sending of a packet from one sender to multiple receivers
with a single send operation. This will save a lot of bandwidth in comparison to sending
packet using unicast.

Due to the highly increase of data size, a complete transfer of data in the Inter-
net requires more time or more available bandwidth. From a point-to-point transfer
standpoint, the transmission rate of each pair has an theoretic upper bound. From
the multicast abstraction standpoint, the bandwidth of a channel can not be shared by
different input data when it just allow one to pass. This will decrease the maximum
achievable rate of multicast by using only routing and replication, and relatively requires

more time to complete the data retrieving. In [5], Ahlswede et al. derive that theoret-



ically the max-flow bound of multicast rate is always achievable if the network routers
and switches have capable of not only routing and replication but also the other function
called network coding. Further, Li et al.[6] shown the sufficiency of linear network cod-
ing and the linear network codes can be found in finite fields. The linearity of network
coding simplify the network coding operation. Then, in [8] and [9], both show linear
network code construction algorithms, one from the flow perspective and the other using
an algebraic characterization. Both of them derive that the linear network codes can be
found in a finite field GF(2™), where the size of m is just correlated to the number of
receivers.

Taking the advantages of network coding and overlay network, Zhu et al. construct
a two-redundant multicast graph. Base on this special graph, the linear network code
can be constructed by using a distributed algorithm, which opposes to the centralized
algorithms proposed in [8] and [9]. Since their eédes are constructed over prime fields,
this will make the coding operation in the computer requiring a mapping of table-looking
from prime filed to a extension field of order 2. It will needs more processing time and
effectively decrease the end-to-end throughput. Also, linear network code construction

over a prime filed decreases the effective end-to-end throughput by a factor where

T
m is the smallest number that the size of GF(2™) larger than the prime filed.

Base on the two-redundant mlulticast graph, we propose a simple algorithm that
generates linear network code over GF(2™), and conjecture that eventually the effective
ene-to-end throughput will larger than Zhu'’s proposal [11].

The rest of this thesis is organized as follows. In Chapter 2, we introduce the notion
of mazx-flow bound for multicast and the achievability of the bound by using network
coding. Then, introduce the sufficiency of linear network code derived by Li et al. [6]. In
chapter 3, we introduce the construction algorithm for linear network code. In chapter 4,

we introduce network coding over overlay networks and our proposal in the last section.

In chapter 5, we make a conclusion.



Chapter 2

Network Information Flow

2.1 Network Flows

A communication network is a collection of directed links connecting transmitters,
receivers, switches, and routers. It can be represented by a directed graph G = (V| E)
with a node set V and an edge set £ C#1x:¥=.In most cases of practical concern, G is
finite, i.e., |V| < co. Let node v; and nodé&w;ibe two elements in V', then the edge (link
or channel) from node v; to nodev; 'can be dencted by a round bracket (v;,v;) € E. The
edge (v;, v;) is directed whose head and'tailraredenoted by v; = tail(e) and v; = head(e),
respectively. Define In(v) as the set of edges that'end at the node v € V and Out(v) as

the set of edges originating at v. Formally, we have
In(v) = {e € E : head(e) = v}, (2.1a)

and

Out(v) = {e € E : tail(e) = v} (2.1b)

For a network with one information source, the node at which information is gen-
erated is referred to as the source node or transmitter, denoted by s, and the informa-
tion destination nodes are referred to as the sink nodes or receiver nodes, denoted by

t1,t9, -+, tn. Here, we denote T" as the set of all the sink nodes.



For a communication channel from node v; to node vj, let the nonnegative integer
C;; be the rate constraint, i.e., the maximum number of bits which can be sent per unit
time over the channel. The C;; is also referred to as the capacity of edge (v;,v;). Then
the set

C=1[Cj: (vi,v;) € E] (2.2)

represents the rate constraints of the network G.

2.1.1 Flow and cut

Consider a network GG in which ¢, € T is a sink node and s be the only one source
node. One can regard an edge in G as a water pipe and the network G as a network of
water pipes. We shall assume that there is no leakage in the network, so that information

flow is conserved at every node other than s and ¢,.

Definition 1 An s — t,, flow Ry, gn o directednetwork G is an integer-valued function

R, defined on each edge (v;,v;) = R

i is the edge flow-in (v;,v;)— together with a source

node s and a sink node t, satisfying the fottownng three conditions:

(CL) 0< RZ < Cl'j, Y (Ui,?)j) €k, (23&)

(b) R =0, if (vi,v;) € In(s) or (vi,v;) € Out(t,), (2.3b)

(¢) For v # s ortp, Z R} = Z R, (2.3¢)
(vi,vj)eln(v) (vi,v5)€OuUL(v)

Condition (a) ensures that the edge flow is nonnegative and would not exceed the edge
capacity. Condition (b) assures that the flow goes from node s to node ¢,, not in the
reverse direction. Condition (c) is called the conservation condition. Intuitively, for any
s—t, flow Ry in a network G, the total edge flows out of source node s should be equal
to the total edge flows entering the sink node ¢,, so that
> RL= > R (2.4)
(vi,v;)€OUL(s) (vi,v5)€In(tn)

For a proof see [1] or [2].



Let |R,| be the source generating rate associated with an s —t,, flow R,
Ral= Y Rl (2.5)
(vivj)€OUL(s)
It is sometimes referred to as the value of an s—t,, flow R,,. We denote by maz flow(s, t,)
the maximal value of all possible s —t,, flow's. If an |R,| equals to maz flow(s, t,), then

we call the corresponding R,, a maximal s — t,, flow.

1, 1)

2, 2)

Figure 2.1:"A maximal s — ty flow R,

Fig. 2.1 illustrates a maximal s =ty flow' Ry, the first term and second term in a
round bracket beside an edge represent edge capacity and edge flow, respectively, and

the value of the s —¢; flowis |Ry| = 3.

Definition 2 Let P C V and P be the complementary set of P with respect to V, i.e.,

V =PUP. A cut (P, P) is the set of edges (v;,v;) with node v; € P and vj € P, i.e.,
(P, P) = {(vi,v;) € E:v; € P and v; € P} (2.6a)
The capacity of a cut is defined by

C(PP)= > Cy (2.6b)
(viyvj)E€(P,P)

Definition 3 For P, C V and P, is the complementary set of P,, then (P, E) 1s called

an s —t, cut , if s € P, and t, € P,.



In most cases, there are more than one s —t,, cut, each has its own capacity. We denote
by mincut(s,t,) the minimal capacity of s —t,, cut. If C(P,, P,) equals to mincut(s,t,),

then we call such (P,, P,) a minimal s — t,, cut.

Figure 2.2: A minimal s — t1 cut

Fig. 2.2 illustrates a minimal s — t; eut ({s,«c} {t1, b, t2}) = {(s, b),(c, t2)}. The
number beside an edge represents the edge-capacity, and the capacity of the s — t; cut

is C({s,c}, {t1,b,t2}) = 3.
2.1.2 Upper bound of an s —t, flow

Let us consider the question of how large |R,| can be. Obviously, we can obtain the

following two upper bound from (2.4) and (2.5)

Rn| = Y RE< D>y (2.7a)

(vi,vj)€OuL(s) (vi,v5)€OUL(s)
Rn| = Z R < Z Cij (2.7b)
(viwj)€In(tn) (vi,vj)€In(tn)

Eqgs (2.7a) and (2.7b) give us a sense that the value of an s — ¢,, flow cannot exceed
the sum of the capacities of the edges originating at node s and the sum of the capacities
of the edges that end at node t,. Intuitively, |R,| is also bounded by the capacity of

any s — t, cut. We state the third upper bound in the following proposition [1].

6



Proposition 1 For any s — t, flow Ry and any s — t,, cut (P,, P,) in network G,
Ral=( > Ry— > RL<C(P,P) (2.8)
(vi,05)€(Pn,Pn) (vi,0;)€(Pn,Pn)
B Max-Flow Min-Cut
An s —t, flow Ry is a maximal s — t,, flow or called a maz-flow from node s to
node t, if |R,| is greater than or equal to the value of any other s — ¢, flow, and an
s —t, cut (Pn,?n) is a minimal s — t,, cut or called a min-cut between s and ¢, if
C(P,, P,) is less than or equal to the capacity of any other s — ¢, cut. From (2.8), we

can derive the following corollary [1].

Corollary 1 For any s—t, flow Ry, and any s—t, cut (P,, P,) in a network G, |Ry| =
C(P,, P,) if and only if:

(i) For each.edge (u;,v3)€ (B, P,), R = Cjj, (2.9a)

(i1) For eachedge (v;,v5) € (P P,), R, =0 (2.9b)

Furthermore, when |Ry| = C(P,, By), the Ry s a.-maz-flow from node s to node t,, and

(P, P,) is a min-cut between s and t,

A min-cut between node s and node t,, can be thought of as a flow bottleneck between s
and t,,. Therefore, it’s intuitively clear that the value of a max-flow from node s to node
t,, cannot exceed the capacity of a min-cut between node s and node t¢,,. The following
theorem, known as the mazx-flow min-cut theorem, states that this bottleneck always

can be achieved.

Theorem 1 (max-flow min-cut theorem [4]) Let G be a directed network with a source
node s and sink nodes ty,ts,---,tn, and C be the rate constraints. Then for all t, €
{t1,ta, -+, tn}, the value of maz-flow from s to t, is equal to the capacity of min-cut

between s and t,, i.e., max flow(s,t,) = mincut(s,t,).



2.1.3 Ford-Fulkerson labelling algorithm

In order to achieve the capacity of the min-cut between node s and node t,, for the
value of s —t,, flow. Ford and Fulkerson propose an algorithm [1] that will eventually
result a max-flow from s to t,.

Before starting the algorithm, some notations must be established. A chain in
a directed graph is represented by (vco,ec/1 s Veyy €y 7chc_l,ecrLc,vCLc), which ey =
(Vep_qs Uy ) OT ey = (Ves Ve, ) for 1 < k < L. If ey, = (Vep_y» Ve, ), then the edge is
called a forward edge of the chain. Otherwise, e = (v¢,, ve,_, ), the edge is called a re-
verse edge of the chain. When v, = s and v, = t,, we call such a chain an s—t,, chain.
For two nodes v; and v; connected by an edge (v;,v;) € E, node v; is the successor of
node v;. On the contrary, node v; is the predecessor of node v;.

The algorithm has two parts called Routine A and Routine B. The first is a labelling
process that searches for a flow atigmenting, s.— s chain for which R}, < Cj; on all
forward edges of the chain and R > 0 on-all reverse edges of the chain. If a flow
augmenting s — t,, chain is found, then‘Routine B changes the edge flows accordingly.
Otherwise, no such chain exits, andthe s — t,, flow is a maz-flow from node s to t,,.

The algorithm begins with any feasible s — t,, flow Ry, i.e., any s — t, flow that
satisfies the flow conditions (2.3a), (2.3b) and (2.3c). Initially, all nodes are in the
unlabelled state and during the labelling process each node is in one of the following
three states: (1) unlabelled, (2) labelled and unscanned and (3) labelled and scanned. We
now provide a complete description of the Ford-Fulkerson Algorithm.

Routine A (labelling process):

e Initially, assign the source node s the label (—, A(s) = oo) and set s in labelled

and unscanned state.
e General step:

— Select any node v; that is in labelled and unscanned state and let (v, A(v;))

8



be its label.

— To all v;’s unlabelled successor nodes, v;, such that R}; < Cj;, assign the label

(v, A(v))), where
A(vj) = min{A(v;), Ci; — Rj5} (2.10a)

To all v;’s unlabelled predecessor nodes, v;, such that Rj; > 0, assign the

label (v, , A(v;)), where
A(v;) = min{A(v;), Rj;} (2.10Db)
— Set v; in labelled and scanned state and v; in labelled and unscanned state.

e Repeat the General step until one of the following two cases happened:

— Case 1: Sink node t, is in‘labelled and unscanned state, go to Routine B.

— Case 2: No more labels can be assigned, terminate!
Routine B (flow change):
e Let sink node ¢, has the label (v) " A(t,)).

e According to the first term in the label of node t,,, we can find the node v, __,.
Similarly, we can find the node v, _, by the label of node v.,__,. Repeat this
procedure until the source node s is found, and then we can find the corresponding

flow augmenting s —t,, chain (s = vy, €c, Vey, €cyy* - - N tn).

e Increase the flow on all the forward edges and decrease the flow on all the reverse

edges of the s — t,, chain by the amount of A(t,), respectively.
e Then, discard all labels and return to Routine A.

For any given s —t,, flow Ry, a finite number of applications of the Ford-Fulkerson

labelling algorithm yields a maz-flow from node s to node t,,. Moreover, if P, is the set

9



of nodes labelled during the final application of the algorithm, then (P,, P,) is a min-cut
between s and t,,.
A modified and improved version of the Ford-Fulkerson algorithm is the Edmonds-

Karp algorithm [3], which is an O(|V'||E|?) polynomial time algorithm.

2.2 Single-Source Multicast with Network Coding

Consider a point-to-point communication network on which an information source
is to be multicast, which means by using network the sending of information from one
source node to a certain set of sink nodes with a single send operation. A multicast rate
is called achievable if all sink nodes can successfully receive the information generated
by source node at this rate. Contrary to one’s intuition, it is in general not optimal to
simply route or replicate information for the multicast. Rather, by employing coding at
the nodes, which is refer to as netwerk coding, bandwidth can in general be saved. But,
this needs a higher level processing of addition function design in switching systems. We
focus on point-to-point communication nétworks satisfying the following:

1. the communication channels areree of error;
2. the information is received at the sink nodes with zero error;
4. the communication network contains no directed cycle, i.e., acyclic;

3. the network is delay-free.

2.2.1 Upper bound of multicast rate with only routing and
replication
Let r be the rate at which information multicast from source node s to all sink nodes
t1,to, -+, ty. From the maz-flow min-cut theorem, it is easily to see that the multicast
rate r with only routing and replication cannot exceed the max-flow from source node
s to any sink node t,, € T,

r < mazx flow(s,t,) (2.11)

10



Intuitively, the multicast rate is bounded by the minimum value of maz flow(s,t,) for
all t, € T,

r < minmazx flow(s, t,) (2.12)

(a) (b)

Figure 2.3: A multicastwith onlyrouting and replication

Given a network in Fig. 2.3(a), the mumber beside an edge represents the edge
capacity. By the max-flow min-cut theorem:; we canuse the relation

mincut(s,t,) = maz flow(s, t,) (2.13)

to derive the values of maz-flow from source node s to sink nodes t; and t,, respectively.

A min-cut between node s and node t; is ({s,c¢,d, e, f,t2},{t1}) and

mincut(s,ty) = 2 (2.14)
Similarly, the capacity of min-cut between node s and node t5 is

mincut(s,ts) = 2 (2.15)

Then the maz-flow bound is 2. Assume that the multicast rate is two bits per unit time,
and let by and by be the two information bits. In Fig. 2.3(b), all nodes in network

are only capable of routing and replication, the source node s tries to multicast two

11



bits of data, b; and b, to both sink nodes. Node e allows only one of received bits
on to its outgoing edge, suppose b; be chosen. From the figure, we can see that sink
node t5 can receive both b; and by, and unfortunately t; receives two duplicated b; but
by cannot recovered. Thus for this network, the maxz-flow bound can not be achieved
by only routing and replicating bits. Rather, the achievable multicast rate with only

routing and replication is 3/2.

2.2.2 Network coding

Before talking about network coding, we first say something about why using net-
work coding. In a network, routers or switches (i.e., nodes) traditionally have capable
of routing and replication to their incoming data. As we can see in the above example,
for multicast cases only these two functions sometimes the rate of maz-flow bound is
not achievable. Therefore, add the routers or S§witches a new function, called network

coding, to improve the multicast rate and hopefully achieve the mazx-flow bound.

Figure 2.4: A multicast with network coding

In Fig. 2.4, coding is allowed at nodes. The node e encodes two received data
streams, b; and by, for example, by using modulo 2 addition and transmits the resulting

stream (b + by) over its outgoing edge (e, f). At node t;, by and (b + by) are received,

12



and by can be recovered by adding b; and (b + by), because
by = by + (b1 + b9). (2.16)

Similarly, b, and (b; + bs) are received at node ¢y, and b; can be recovered by adding
by and (b + by). Therefore, the multicast rate achieves the max-flow bound by adding
coding function at network nodes. The coding operation at nodes in a network is refer
to as network coding.

We describe a coding scheme for the network which is referred to as a network coding.
Assume that there is no input edge at node s, i.e., (v;,s) ¢ E for all v; € V\{s}. We
consider a block code of length m. Let X denote the information source with rate 7
and assume that x, the outcome of X, is obtained by selecting an index from a set x
according to the uniform distribution. The elements in x = {1,2,---,[2™7]} are called
messages. For (v;,v;) € E, node v; sends informétion to node v; which depends only on

the information previously received by node v;.

2.2.3 Upper bound of multicast rate with network coding

Naturally, we are interested in theé maximum possible value of the multicast rate r in
a given network and hopefully achieve the max-flow bound or higher by using network
coding. Assume that each edge (v;,v;) in G with capacity C;; is decomposed into Cj;
unit capacity edges. Given a network G, the upper bound of the multicast rate with
network coding is derived by using an (m, (;; : (v;,v;) € E),T) a — code on G, which is

defined by the components listed as below.

(1) A positive integer K (i.e., K transactions)
(2)
u :{1,2,--- K} -V (2.17a)

and

ug :{1,2,---, K} -V (2.17b)

13



such that (u1(k),us2(k)) € E and it is a unit capacity edge between node wu; (k) and

node uy(k). (K transactions take place in chronological order)

(3) Ax={1,2,---,]Ak|}, 1 <k < K, such that

H [ Axl = mij, (2.18a)

keT;;
where

Ty ={1<k<K: (u(k),us(k)) = (vi,v;)}. (2.18h)

The set Ay represents all possible index that can be send onto (ui(k),us(k)), the
set T;; represents the indices of all the transactions for which information is sent
form v; to v;, and 7;; is the number of possible index tuples that can be sent from

node v; to node v;.

(4) If uy(k) = s, then

(5)

Y s AR (2.19a)
where
x=1{1,2,---5[2""]}. (2.19b)
If uy (k) # s, if
Qr ={1 <k <k:u(k') =ui(k)} (2.19¢)
is nonempty, then
Yi: [ 4w — Ax (2.19d)
"

Otherwise, let Y, be an arbitrary constant taken from Aj.
Here, Y} is the encoding function at node u;(k) and in kth transaction, node

u1 (k) encodes according to encoding function Y; and sends an index in Ay, to node

ug (k).

g I Av — x. (2.20a)

k' eWn

14



n=1,2,---,N, where
W,={1<k<K:uyk)=t,} (2.20b)
Such that for alln =1,2,--- N,
gn(z) =2 (2.20¢)

for all x € y.

Here, g, is the decoding function at node t,, the set W, represents the indices
of all transactions for which information is sent to t¢,, and z is the multicast
information transmitted from source s. The z in (2.20c) has different meaning,
x in the left-hand side is the source input, and x in the right-hand side of is the

decoder output.

Definition 4 [/], [5] For a network G with rate eonstraints C, an multicast rate v > 0
is asymptotically achievable if for any e > 0f there.exists for sufficiently large m an

(m, (nij = (vi,v;) € E),7) o — code onyGy such that
m’lloggmj g, + € (2.21a)

for all (v;,v;) € E, where m™tlogan;; is the average bit rate of the code on channel
(’Ui,Uj)f and

r—e<rT (2.21b)

The following theorem [4],[5] states that the multicast rate with network coding is

also bounded by the maz-flow bound.

Theorem 2 [4] For a network G with rate constraints C if the multicast rate r is achiev-
able, then

r < minmax flow(s,t,) (2.22)

For a proof of the theorem please see Appendix A.
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2.2.4 Achievability of the maz-flow bound for network coding

After reviewing the above fundamental theorems one might ask whether the multicast
rate at the maz-flow bound with network coding is always achievable. The answer is
affirmative. This follows from proving the existence of an (m, (n;; : (vi,v;) € E),r —¢€)

(8 — code on GG. We need the following proposition.

Proposition 2 [4] If G = (V, E) is a finite acyclic graph, then it is possible to order
the nodes of the network G in a sequence such that if there is an edge from node v; to

node vj, then node v; is before node v;.

An (m, (n;; : (vi,v;) € E),r) B — code on network G is defined by the following compo-

nents listed as below:

(1) for all (s,v;) € E, an encoding funetion
LT r2 T Ty (2.23a)

where

X =H1,2,-4% 2™} (2.23b)

(2) for all (v;,v;) € E such that v; # s, an encoding function
Voo T 2t — {12 ) (224)
vi1:(0y0 1) EE
(if {vy : (v#,v;) € E} is empty, conventionally Y;; is an arbitrary constant taken
from {1,2,--- ,ni});
The encoding function Y;; is applied before Yy ;s if the order of node v; is small
than the order of node v; and before Y;; if the order of node v; is small than the

order of node v;-.
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(3) Foralln=1,2,---, N, a decoding function
Gn H {12, M} — X (2.25a)
’U,L'Z(’U,L',tn)eE
such that

gn(z) =2 (2.25Db)

for all = € y.

The = in Eqgs (2.25b) has different meaning, = in the left-hand side is the source input,
and x in the right-hand side of is the decoder output. The following theorem states that

for multicast rate less than or equal to the maz-flow bound is always achievable.
Theorem 3 [4],[5] For a network G with rate constraints C, if the multicast rate

r < minmaz flotw(s, t,), (2.26)

n

then r is achievable.

A detailed proof is given in Appendix B:

2.2.5 Sufficiency of linear network codes

The proof of the above theorem (Appendix B) indicates that a multicast rate r is
always achievable if it does not exceed the maz-flow bound. In other words, there exits
an (m, (n;; : (vi,v;) € E),r) B —code on the network G and some encoding functions for
a sufficiently large m.

For a given acyclic network G with rate constraints C, each edge of capacity C;; can,
without loss of generality, be decomposed into C; unit capacity edges between node v;

and node v;. Consider the multicast rate

r = min max flow(s, t,) (2.27)

n
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In order to explain the following description using generic linear-code multicast (generic
LCM)-a coding scheme proposed by Li et al. [6]-one can remove some unit capacity
edges such that

mazx flow(s, t,) = minmazx flow(s, t,) (2.28)

forallt, € T.

A generic LCM is an assignment of an r-dimensional vector space D(v) to every node
v € V and an r-dimensional column vector d(e), called encoding vector, to every unit
capacity edge e € E over a base filed, which is in an infinite field or a large enough finite

field, such that
1. dim(D(s)) = r;
2. d(e) € D(v) for all e € Out(v), where v € V;

3. for all v # s, the corresponding vector space D(v) =< {d(e) : e € In(v)} >, which

the notation < - > is for linear span;

4. for each € € Out(v), the corresponding encoding vector d(e’) is a linear combina-

tion of incoming encoding vectors'{d(€)": e € In(v)}.

Suppose that the muticast information can be encoded into r information symbols

and formed into an r-dimensional row vector, called a source vector, over the base field
X(s) = (Xi(s), Xa(s), - -+, Xi(s)). (2.29)
The encoding function on each edge e € FE is defined as

Y(e) = X(s)-d(e)"

= Z di(e)X; (2.30)

where

d(e) = (di(e), da(e), -, dr(e))" (2.31)
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Condition 4 of the generic LCM and the fact that encoding functions are all linear imply
that for any given node v € V' \ {s}, the encoding function of each ¢’ € Out(v) can be
expressed as the linear combination of the received data
Y(e)= Y B oY(e) (2.32)
e€ln(v)
where the coefficients {., o}, which are referred to as the network codes, are elements
over the base field. Since the encoding operation is linear, the network codes are called
linear network codes.
Moreover, it is proved [6] that a generic LCM always exits for an acyclic network,

provided that the base field is an infinite field or a large enough finite field, such that
dim(D(t,)) =r (2.33)

for all t,, € T'. This implies that the'source vector X (s) can be recovered by all the sink
nodes and a multicast rate r equals_to the maz-flow bound is achievable.

In conclusion, linear network coding is-sufficient for a multicast to achieve a rate at
the max-flow bound and network coding does reduice the operation complexity signifi-

cantly.

19



Chapter 3

Construction of Linear Network
Codes over Finite Fields

As mentioned in Chapter 2, it has been proved that given a directed, delay-free,
acyclic and finite communication network G with rate constraints C, there exists a

linear network code over an infinite field or, large enough field if the multicast rate

r < minmax flow(s, t,) (3.1)

Without loss of generality, we assume that the field over which the network code is con-
structed is GF(2™), for some large m!Both-{7] and [8] propose algorithms for construct-
ing linear network code from a graph theory point of view. Representing a multicast
with rate r by sending r» GF(2") symbols per unit time to each sink node, they show
that it is sufficient to perform coding over edges in r edge-disjoint paths from s to t,
(if exists), for all ¢, € T. Two linear coding schemes are suggested in [8]. The first
algorithm requires a running time of order O(|E| - [T| -7 - (r 4+ |T])) and, to guarantee

the existence of a linear network code, it requires a field size that satisfies
2" > |T (3.2)

The second algorithm has a faster running time O(|E|-|T|-r+|T|-O(r*3¢7)) but requires
a larger lower bound for m

om > 2. |E|-|T) (3.3)
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Another approach is recently proposed by Koetter and Médard [9]. Their algebraic
approach can easily be applied to solve problems related to coding over general multicast
networks. For the convenience of ensuing discussion for multiple source multicasting, we
need to generalize some old and introduce new notations.

To begin with, let’s assume that a source node v generates a set of discrete random

processes
X(v) = {X1(v), Xa(v), -+, Xy (v) (3.4)

where random processes X;(v), V1 € {1,2,---,u(v)} and V v € V, are independent of

each other and have a constant and integral entropy rate, e.g., one bit per unit time,
H(X,(v)) = H(X),(v)) =1 (3.5)

for Iy, lo € {1,2,---,u(v)}. The H(X) is the entropy rate of a random process X. If v
is not a source node, then X (v) is & empty, set.

A connection c is defined as a triple
(v, V", 2w )y EVEX VX Prw), (3.6)

where Py ,) denotes the power set of X'(v) and X' (v,v’) C X'(v). It indicates to replicate,
by means of the network G, a subset of the random processes in X'(v) at some different
node v". For a given connection ¢ = (v,v’, X(v,v")), call v a source node and v" a sink
node of the connection ¢ and write v = source(c) and v' = sink(c). The rate r(c) of a
connection ¢ = (v,v', X(v,v")) is defined as

r(e) = Y. HXi(v)

I: Xj(v)eX(v,0')

= |X(v,v")] (3.7)
If v is the sink node of connections, the collection of v(v') random processes

Z(W') ={Z.(v"), Zo(v"), -, Zywy (V') } (3.8)
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denotes the decoding output at v’. A connection ¢ = (v,v', X (v,v")) is established
successfully if a copy of X (v,v') is a subset of Z(v'). This is because node v can be
a sink node of different connections. Similarly, Z(v') is a empty set if v’ is not a sink
node of any connection. Assume that communication in the network is performed by
transmission of vectors of bits and the length of the vectors are equal in all transmissions.
Any binary vector of length m can be interpreted as an element in GF(2™), the finite
field with 2™ elements. It is frequently considered the algebraic closure F of GF(2™),
which is defined as the union of all possible algebraic extensions of GF(2™). Also, assume
that all links are synchronized with respect to the symbol timing.

Let G = (V, E) be a delay-free acyclic communication network. Then G is a GF(2™)-
linear network, if for all links, the random process Y (e) on a link e = (v, v;) satisfies

w(v)

Yie) =) aq 1 X4 > Bo. Y (), (3.9)

eL:head(elf=tail(e)
where o, ; and [, . are elementsof GE(2™) and p(v)= 0 if v is not a source node. It is
also sufficient for the output process Zy(t).at.a-sinknode v’ to be a linear combination
of the random processes Y (¢’) for all e’ € In(v')
Zy(v)= Y v vY(€) (3.10)
e'en(v’)
where the coefficients €./ are elements of GF(2™).

For a directed, acyclic and finite network G, the nodes can be ordered to a sequence
such that if there is an edge from node v; to v;, then node v; is before node v; and 7 < j.
Since the nodes are ordered, the edges also can be ordered in a way that e; is before
e; if head(e; ) before head(e; ). Suppose that a network contains p information sources

generated from source nodes, then form the sources into a row vector

X = (X1, Xy,..,X,)

= (Xl(vl),Xg(Ul), e ,Xl(vg), s ,Xl(v‘v‘), ""X,U(UW\)(U\V\)) (3.11)
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which X is the vector of input random processes on all nodes in V. If a node v; € V' is
not a source node, set u(v;) to be zero and the length of X is
p=> nv). (3.12)
v; eV

Define the entries of a ;1 x |E| matrix A as

. { e, 1, Xi = Xy(tail(e;)) for some [;
1,) T

0, otherwise. (3.13)

Similarly, suppose that a network contains v information sinks which retrieved at sink

nodes, then form the sinks into a row vector

Z = (Zla ZQa 3] ZV)

= (Z1<U1), Zg(vl), Ty, Zl(vg), ey Zl(U|V|)7 tey ZV('U|v|)(U|V|)) (3.14)

which Z is the vector of output randeni procésses on all nodes in V. If a node v; € V
is not a sink node of any connection, seti{v;) to be'zero and the length of Z is
v = Z v(v;). (3.15)
v EV.

Define the entries of a v x |E| matrix'B as

=7, . r.
By, — { Ee;, 1, Zi = Zy(head(e;)) for some ['; (3.16)

0, otherwise.
The “directed labelled line graph” of G = (V, E) is defined as 8(V,E) with node set V
— F and edge set E = {(¢;,¢;) € E? : head(e;) = tail(e;)}, which edge é€ E is labelled
with a corresponding symbol (., .. Define the |E|x |E| adjacency matrix F' of the graph

8 with elements F; ; given as

| Beie,r head(e;) = tail(e;);
Fig = { 0, otherwise. (3.17)

Since the network coding is linear, the relation between X and Z can be describe by a

transfer matrix M based on the matrices A, B, and F'. That means

Z=XM, (3.18)
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where

M= A(I - F)'B" (3.19)

and [ is the |E| x | E| identity matrix. Since the network G is acyclic, the graph 8 is also
acyclic, then F' is a strict upper-triangular matrix and elements in the diagonal are all
zero. Hence, F is a nilpotent matrix, and (I — F)~! exists in the ring of polynomials,
i.e., the elements in (I — F)~! are belong to GF(2™)[-- -, fe, ;.- - -|. Further, it can be

derived that elements in M are belong to the ring of polynomials
GF(2™)[ -, Qerts+ Beresr*»Eesrr ) (3.20)
and for simplicity, give the linear network codes a., 1, (e, .;, and €.,y another notations
£ = (§i.&, )
= (o, Qo a3 ddiliBesc, >+ 5 Eejtrs ) (3.21)

The following Lemma is the foundatiorrused to prove the existence of linear network

codes of given connections.

Lemma 1 [J] Let F[{1, &, -+, &) bethe ring of polynomial over an infinite field F in
variables &,&, -+, &,. For any non-zero element f € F[&y,&, -+, &,] there exists an

infinite set of n-tuples (a1, as, ..., a,) € F" such that

f(a17a27"‘7an) 7é 0. (322)
TABLE I
LINEAR NETWORK CODE SEARCH ALGORITHM

Input:
Given a polynomial f in indeterminants &1, &s, ..., &,
Set integers: i =1,t =1
Iteration:
(1) Find the maximal degree ¢ of f in any variable &;
and let m be the smallest number such that 2™ > ¢
(2) Find an element a, in GF(2™) such that f(§)|¢,=a, # 0

and let f < f(§)]e,=a )

(3) If t = n then halt, else t < ¢t + 1 go to (2)
Output: (a1, as,...,a,)
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Base on the existence of linear network codes, a simple algorithm, see Table I, is used
to find a vector a over a suitable field GF(2™) such that f(a) # 0.

For a given network G and a given set of connections /¢, it is formally to define a
network coding problem as a pair (G, ¢). The problem is to give algebraic conditions
under which a set of desired connections ¢ is feasible or equivalently find elements a, ;,
Be,e; and e,y in a suitably chosen field GF(2™), such that all desired connections can
be established successfully in G. For such a set of elements ac,;, B, and e, that
makes the desired connections feasible will be called a solution to the network coding

problem (G, /). If a solution exists, the network coding problem will be called solvable.

3.1 Point-to-Point Connection

First, consider a point-to-point connection ¢, = (s,t,, X'(s)), which s is the source

node and t,, be the sink node on network G and
X (s) ={Xa(s), X205), = Xy (c. ()} (3.23)

Let
X(s) = (X1(8)/Xa(8)," -+, Xi(e)(5)) (3.24)

denote the vector of input processes generated at source node s and

Z(tn) = (Z1(tn), Zo(tn), - - Zr(cn)(tn)) (3.25)
denote the vector of output processes at sink node ¢,,. Given an r(c,) x |E| matrix A, a
|E| x |E| matrix (I — F)~! and a |E| x r(c,) matrix BL. A corresponding 7(c,) x r(c,)
transfer matrix M,, can describe the relationship between X (s) and Z(t,,).
Z(t) = X(s)A(I- F)'B]
= X(s)M, (3.26)

where elements in M, are polynomials over a ring GF(2™)[¢]. The connection can be

establish successfully if the inverse of matrix M, exists. Let f({) be the determinant of
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M,. If f(§) is a nonzero element in a ring of polynomials GF(2™)[¢] over an infinite field
GF(2™), by Lemma 1, there exists infinite number of a over an infinite filed GF(2™),
such that f(a) # 0. Further, by algorithm in Table I, a set of network code in a suitable
filed GF(2™) can be found. The following theorem ties the relationship between the net-
work transfer function M,, (an algebraic quantity) and the Max-flow Min-cut theorem

(an graph-theoretic tool):

Theorem 4 [J] Give a linear network. The following three statements are equivalent:
1. A point-to-point connection ¢, = (8,tn, X (8,tn)) is established successfully;
2. The max-flow bound is satisfied for a rate r(c,).

3. The determinant of the r(c,) X r{ey) tansfer matriz M, is nonzero over the ring

GF2m)[E]

It is further derived by Ho et al.f10] that the determinant of a transfer matrix between

a connection ¢, can be expressed as

f(§) = det(A(I - F)"'B,)

A0
—  (—1\UE+D)r(en)
(—1) det(( 1ZF BT )) (3.27)

It is intuitive that the maximal degree of f(§) in any variable is 1. So a suitable filed

can be chosen to be GF(2).

3.2 Single Source Multicast Connections

For the multicast case, it consists of the distribution of the information, X(s), gen-
erated at a single source node s to a set of sink nodes ty,%s, -+, ¢y, such that all sink

nodes receive all source bits. In other words, the set of desired connections is given by

0= {(s,t1,X(5)), (s,ta, X(5)), -+, (s,tn, X(5))}. (3.28)
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Then the rate of each connection ¢, = (s,t,,X(s)) is given by r(c,) = |X(s)|, for all
t, € T. For simplicity, let r denotes the multicast rate, hence r = r(c,) V t, € T.
Similarly, let

X(s) = (Xi(s), Xa(s), ..., X, (s)) (3.29)

denote the vector of input processes generated at source node s and
where the 1 x r vector Z(t,) denotes the output processes at sink node t,. Given an
r x |E| matrix A, an |E| x |E| matrix (I — F)™! and an |E| x rN matrix BT. A

corresponding r x N transfer matrix M = A(I — F)~' BT can describe the relationship

between X(s) and Z.

IN
I

(Z(t1), Z(t2),- - -, Z(tn))
= X(sJA(I —b) B
= K(S)A(I = F)Ml[Bip? Bg? e 7B]7\;]

= X(8)[Mi, M3 ] (3.31)

where r x r submatrix A(I — F)"*BI describes the relationship for a connection c,,.
By the theorem[5] derived by Ahlswede et al., they guarantee the existence of a
coding strategy that ensures the feasibility of the desired connections if the rate of each
connection ¢,, Vn € 1,2,---, N, satisfies the maz-flow bound.
Let a delay-free acyclic network G and a set of desired connections ¢ be given. The
following theorem states the necessary and sufficient condition of multicast connections

to be established successfully by using an algebraic characterization.

Theorem 5 [J] The network coding problem (G, {) is solvable if and only if the max-flow

bound is satisfied for all connections in £.

It means that for the multicast at rate r satisfying the maz-flow bound, there exists

a feasible set of network code over a infinite filed GF(2"). Such that the determinant of
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transfer matrix M,, are nonzero in the ring of GF(2™)[¢] for all t,, € T'. Let

f© = [ldet(At—F)"'B))

(—1)"NUEI+D) Hdet(( quF ]_% )) (3.32)

It is intuitive that the maximal degree of f(&) in any variable is at most N. By using

algorithm in Table I, there always exists a set of network codes over GF(2™), which
m > loga N (3.33)
Further, a feasible set of network codes in a certain finite field GF(2™), where
m < [logea(N + 1)], (3.34)

can also be found. The determination of the coefficients a; in the algorithm renders a
network code that all the transfer matrices between.the single source node and any sink
node are invertible. Also, the algorithm provides.a upper bound on the degree of the

extension of GF(2) that needs to;consider:

B Linear Network Codes For Robust Networks

After accomplishing the construction of network codes, it is annoying to re-construct
the network codes if link fail happens. In order to avoid this situation, the network codes
is better chosen to prevent the re-construction if some links fail. In the other words, this
network codes still works even link is disconnected. In the following, we introduce such
code design in detail.

Edges in a network may fail. You may ask that under which failure pattern a suc-
cessful network usage is still guaranteed. Here, assume that link failure is a link either
working perfectly or is effectively deleted from the network. A link failure pattern can

be identified with binary vectors h of length |E| such that each position in A

h=(hi,ha, -, hym)" (3.35)
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is associated with one edge in GG. If a link fails, the corresponding position in h equals
one. Otherwise, the entry in h corresponding to the link equals zero. A network is
solvable under link failure pattern h, if it’s solvable once the links corresponding to A

have been deleted. Such network codes is important because

1. no new network codes has to be found and distributed in the network if a failure

pattern h € ‘H occurs,
2. the individual nodes in the network can be oblivious to the failure pattern.

Suppose that e; is the failing link, the effect of a failing link can be achieved by setting
parameters [ ;, Beer and o, ; to zero for all €’,e” and [. Define B,, be the set of

parameters &; that are identified with Ge ,, B¢, v and a., ; to zero for all €', e” and [

B, =

7

{& : & is identifed with Se e Be, oralid «., | to zero for all €', ¢” and [}.
(3.36)

For any particular link failure pattern h, define B(h) as
Blh) = | B (3.37)
For a network G and M (§) be the corresponding system matrix.

M(&) = [Mi(§), Ma(&),- -+, Mn(§)] (3.38)

The network G}, is obtained by deleting the failing links & and the corresponding Mj ()

Mh(f) = M(é)‘ﬁj:& £ €By

= (Mb,l(g)v Mﬁ,2(§)7 ) Mﬁ,N(é)) (339)

Let H be the set of failure patterns, such that (G, ¢) is solvable for any h € H.

Given any h € H
1u(&) = 1] det(Mna(&)) (3.40)

n=1
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Since (G, ) is solvable, f5(§) is nonzero element over the polynomial ring F[¢]. It can

be further derive that

@ = [

heH

= I 1] det(35.(9) (3.41)

heH n=1

[r(&) is still a nonzero element over F[¢]. By lemma 1, there exist a set of linear network

codes, such that fr(£) # 0 over the infinite field GF(2™). Intuitively, the codes can be

found by the above the algorithm over a certain finite field GF(2™), where
m < [logs(|H| - N +1)] (3.42)

The factor |H| in (3.42) will make the upper bound of the filed GF(2™) bigger than the
one without robustness concerning and:complicate the the searching algorithm. And

this is the price to organize the robust multicast.

3.3 General Network Coding Problem

Given a network GG and an arbitrary;set of connections, ¢. The following theorem

states a succinct condition under which a network problem (G, ¢) is solvable.

Theorem 6 [J](GeneralizedMin— cut Max — flowcondition) Let an acyclic, delay-free
linear network problem (G, () be given. Since the relationship between X and Z can be

expressed as

Z=XM (3.43)

Then each connection can also be expressed a linear relation. Let M = {M;;} be the
corresponding transfer matrix relating the set of input nodes to the set of output nodes.
The network problem is solvable if and only if there exists an assignment of numbers to

§ such that
1. M;; =0 for all pairs (v;,v;) of nodes such that (v;,v;, X(v;,v;)) ¢ ¢
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2. 1If {(viy, vy, X (viy,05)), (Viy, v, X (Vig,05)), -+, (Vi 05, X(vi,,v5))} C £ the subma-
triz [ME . MT

LML ME ] s a non singular v(v;) x v(vy) matriz.

L]

It means that for each sink v;, the corresponding vector Z(v;) can be expressed as

Z(UJ) = deMdj -+ XIjMIj (344)
where X, contains the desired information of v;, submatrix My, = (M, ML ME ]

is v(v;) x v(vj), X, is the interference with respect to v; and Mj; is a interference

transform matrix that induce noise term into Z(v;).

Xy, = MJI(Z(UJ‘) - XIjMIJ-) (3.45)

J J

For each sink v; to recover desired information, it needs Mg, nonsingular and interference
transform matrix M I; to be zero matrixs

However, checking the two conditions i§ a‘tedious task as to find a solution § and
the theory of Grobner bases proyides a struetured approach to this problem. For more

detail, see [9].
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Chapter 4

Linear Network Coding in Overlay
Networks

Traditionally network architectures distinguish between two types of entities: end
systems (hosts) and the network (switches and routers). In the internet architecture,
the IP layer implements a minimal functionality — a best-effort unicast datagram ser-
vice, and the end system implements all-ether important functionality such as error,
congestion, and flow control. For asmetwork standpoint, the multicast abstraction can

be implemented in several ways:

1. One-to-all unicast (or called ndive wmicast): This approach implements a single
source multicast abstraction using an underlying unicast network layer, required
no explicit multicast support from the IP layer. The source uses a separate unicast
transport connection to each of the receivers. The approach here is simple and
needs no support from the routers. But the drawback is that the links near the
source node are likely to experience high link stress, which is referred to as the
number of identical copies of a packet carried by a physical link and eventually

decreases the multicast rate.

2. IP multicast: The approach is based on the explicit multicast support at the IP
layer. That is a new multicast protocols at IP layer such as IGMP, DVMRP,

PIM and MOSPF, and new routers that can handle multicast abstraction. The
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approach is efficient and higher multicast rate than any other methods, but requires
a significant amount of infrastructures to set up and maintain. There are several
drawbacks that have so far prevented the service from being widely deployed.
First, IP layer multicast requires routers to maintain per group state, which not
only violates the “stateless” architecture but also introduces high complexity and
serious scaling constraints. Second, the network vulnerable to flooding attacks by
malicious sources. Third, the requirement of dynamically obtain a globally unique
address. Finally, the IP multicast calls for the changes at the infrastructural level,
a new multicast routers need to be used, this slows down the pace of deployment.

A brief introduction of IP multicast see [14].

. Application-level multicast (or called end-system multicast): A model in which mul-
ticast related features, such as group membership management, multicast routing
and packet duplication are implemented-at end systems and base on only unicast
IP service. The end systems (§ource and receivers) form an overlay network, which
is a virtual network. The nodes on-thervirtual network are all end systems and
the link on the virtual network is actually+a path in the physical network. For
a multicast abstraction the end systems construct an multicast tree on overlay
network and the transmission between node and node is accomplished by using
IP unicast. In addition, the reliable dilivery, flow control congestion control, and
security can be significantly handle by end systems. However, end system multi-
cast introduces duplicate packets on physical links (increase link stress) and incur
larger end-to-end delay (increase link stretch, which is defined as the ratio of path
length from the source to the multicast receiver along the overlay to the length
of the direct unicast path ), hence decrease the multicast rate and increase delay.
In [12], they propose an Narada protocol, which end system self-organize in to an

overlay structure using a fully distributed protocol.
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Due to the lack of widely available Internet protocol multicast service, lots of research
suggest using application-layer multicast by taking all of the advantages of application-
layer overlay networks. Application-layer overlay networks have two properties: (1) the
network nodes in a overlay network are end systems and have capabilities far beyond
basic operations of storing and routing, and (2) the overlay topology, residing above a
densely connected Internet wide-area network, can be constructed to suit one’s purposes.

Base on the advantages of end-system (application-layer), Zhu et al. implements the
multicast abstraction with network coding[11] and attempts to increase the end-to-end
throughput. Taking the two benifits of application-layer multicast over IP multicast:
(1) multicast support in IP layer is not required, and (2) data is transmitted between
virtual nodes via unicast, efficiently exploiting all existing security, flow control, and
reliable delivery mechanism that are already available and mature. They use two novel
view as oppose to traditional multicast abstraction: First, they depart from conventional
view that data can only be routing by overlay nodes: Rather, these overlay nodes also
have the full capability of encoding and decoding data at the message level using linear
codes. Second, they also depart from traditional'wisdom that the multicast topology
from source s to sink nodes to be tree, and propose an distributed algorithm to construct
a two-redundant multicast graph as mlulticast topology that embedded in the virtual
overlay network. In the two-redundant multicast graph, the network codes could be
designed without the knowledge of network topology using a distributed algorithm.

Base on this framework, we propose a new code design algorithm that is easier than
the algorithm proposed by Zhu et al. and the code will accomplish higher end-to-end

throughput than theirs. In the following, we give a detailed description of [11].

4.1 Two-Redundant Multicast Graphs

A k-redundant multicast graph is a directed acyclic graph (DAG) which has the

following two properties:
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1. The set of all nodes V' is the union of three disjoint subsets {s} U V; UT and the

total number of nodes are
Niotar = |V = {s} + [Vi| +|T| =1+ N; + N, (4.1)

where s is source node, V; is the set of intermediate nodes, and T is the set of

receiver nodes.

(a) The in-degree and out-degree of s are In(s) = 0 and Out(s) > 0, respectively.

(b) Let v; denote the intermediate node,

which 1 < In(v;) < k and Out(v;) >0,V v; € V.

(c) Let t, denote the receiver node,

which In(t,) = k and Out(t,) >0,V t, € T.

2. Assume that each link has unit bandwidth. For any receiver node whose indegree
is k, then

max flow(s, t,) =k, ¥ t,eT (4.2)

The intermediate nodes are dedicated ‘high-degree relay nodes, which are end hosts or
proxy servers connected to high-bandwidth physical links in the overlay network, which
do not belong to the set of receiver nodes, and such a pool of dedicated nodes is the
price to exploit network coding to increase end-to-end throughput. Why they use two-
redundant multicast graph rather than k-redundant mlulticast graph? As k increase,
it’s difficult to find multiple good paths (i.e., large path bandwidth) from source s to
each receiver with limited intermediate nodes and increased link stress and as k increase,
network code assignment algorithm (introduce latter) become more complex and averse
to the dynamics of node joints and departures. The following three propositions establish
the achievablility of network coding, the sufficiency of a maximum in-degree of 2 and the

necessity of non-empty intermediate nodes in a two-redundant acyclic multicast graph.
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Proposition 3 For any receiver node t,, with In(t,) = 2, it has two disjoint path from

source node s if and only if t,, has mazx flow(s,t,) = 2.

Proposition 4 [t’s not necessary for any node in a two-redundant multicast graph to

have in-degree of greater than 2 to obtain two disjoint paths for each receiver from s.

Proposition 5 If a two-redundant multicast graph contains only source and receivers,

i.e., Vi =0, then two-redundant multicast graph contains a directed cycle.

Each receiver has two disjoint paths from the source and both path should be carefully
chosen to maximize the throughput to the receiver. The degree of a node represents
the total number of neighbors in the virtual network. For optimizing the virtual link
bandwidth, both the rudimentary tree and the two-redundant multicast graph have the
degree constraint: every virtual node has . degree < A; i.e., A is the maximum virtual
node degree and in the following set /A =4sMinimizing link stress is paramount since
it determine the available bandwidth in a virttial link and the minimization of the link
stress is cover by imposing a maximum-virtual-node degree constraint, /A. The graph is

constructed by the following three steps:

e Step 1: Rudimentary graph construction;

e Step 2: Rudimentary tree construction;

e Step 3: Two-redundant multicast graph construction.
and the construction algorithm is distributed.

4.1.1 Rudimentary graph construction

When a new node joints the group, it’s given a set of nodes already in the group by a
bootstrapping node. These are its initial neighbors in the rudimentary graph. The node
then contacts all its neighbor so they are made aware of it. Every node maintains two

set of lists, one for storing the addresses of neighbors (neighbor lists) and another for
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storing the addresses of all the nodes it knows about in the group (group lists). Node
exchanges group information with its neighbor’s group lists, and update accordingly.
By the exchanging processes, the information about a node will eventually propagate

through the rudimentary graph.

®

Group
List

Neighbor
List

:Node v contact the bootsrapping node for requestmg
IP address of the initial neighbors.

: Bootstrapping node sends node v the addresses of its initial neighbors.

@ :Node v contacts its initial neighbors.

Figure 4.1: Join procedure for a new node.

Fig. 4.1 shows the procedures when a new node join the group .

Each virtual link e; in the rudimentary graph has associated with a 2-tuple weight
w(e;) = (0i, Ai), which §; is the link bandwidth and J; is the link latency (delay). Each
path p = (e, ea, -+, ¢) in the rudimentary graph also has an associated weight w(p) =
(Bp, \p), which 8, = min(3;,i = 1,2,---,1) and A, = S0 Ao Let w(pr) = (B, Apy)

and w(ps) = (Bp,, Ap,) be the weights of p; and p,, respectively. Then p; is better than
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po if By, > By, or By, = Bp, and A\, < Ap,. In order to optimize the performance,
the dynamics of adding high-quality links and dripping poor-quality links is vital to the

performance of the multicast scheme.

(a) Neighbor-adding process:

e Periodically, each node v; € V' chooses randomly another node v; in the group lists
that are not a neighbor and by sending a probing message, estimate the bandwidth

and latency of the virtual link, (v;,v;).

o If w((v;,v;)) is better than most of links of its current neighbors, and both v; and
v; have not yet excess degree constraint, then v; is added as a neighbor of node v;

and link (v;, v;) is added in thestudimentaty, graph.
e The degree of a node v; € V=in.the rudimentary graph has the following properties:

1. For source node s, the:number of'its neighbors that are intermediate nodes

are no larger than 3.

2. For every intermediate node v;, the number of its neighbors that are interme-

diate nodes must no larger than 4.

3. For every node, the total number of its neighbors can have more than 4.

(b) Neighbor-dropping process:

e If a current neighbor v; of v; has worse link than the links v; has to its neighbors,
and both v; and vj use link (v;,v;) very rarely, then v; drops v, as its neighbor

and (v;, vy ) is removed from the rudimentary graph .
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Figure 4.2: An example of rudimentary graph.

Fig. 4.2 shows an example of rudimentary graph.

4.1.2 Rudimentary tree construction

The core graph is the subgraph of the rudimentary graph with the set of intermediate
nodes V; and all the incident links: ‘ In erder-to &void the connectionless of the two-
redundant multicast graph, the core grapil‘ mu‘sf be donstructed as a connected graph.
The rudimentary tree is built fron“l‘ the subgraph consi‘éting of the source node s and the
core graph by exploiting the distributed algorithm' proposed in [13] based on distance

vectors that finds the shortest widest paths.

439 (11

(a) core graph (b) rudimentary tree

Figure 4.3: An example of core graph and rudimentary tree.

Fig. 4.3 shows a core graph and a rudimentary tree of Fig. 4.2, respectively.
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4.1.3 Two-redundant multicast graph construction

The two-redundant multicast graph G, is constructed by taking the rudimentary
tree as a basis and add links from the rudimentary graph or randomly establish another
good virtual links, i.e., higher bandwidth link, that are not belong to the rudimentary
graph. The construction of the two-redundant multicast graph adhere the following rules

for source node s and every intermediate node v € V7:

1. Source s has ¢ intermediate nodes as children, i.e., Out(s) = ¢ and

2<¢<3; (4.3)
2. Total degree of node v is
degree(v)y=2 (Ii(v),+ Out(v)) < 4; (4.4)
3. The in-degree of node v is
1< TIn(v) <2 (4.5)

4. Number of children of v that aré'veceivers is less than or equal to (3 — In(v)).

Rule 4 ensures that the construction of Gy, is always successful as long as the interme-
diate nodes are large enough.

An intermediate node v is called a leaf intermediate node if none of v’s children in
G, is an intermediate node. An intermediate node v is saturated if either degree(v) = 4,
or v is a leaf intermediate node and degree(v) = 3. The breadth-first search is used for
searching unsaturated nodes.

B Breadth-First Search Primitive:

When a node firs becomes to saturated, it sends that information to its parent node

of the rudimentary tree. Recursively, a node which is the root of subtree T, knows

that 7, is saturated when all its children have sent saturation notification to it. The
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construction of two-redundant multicast graph Gy, is initialized to the rudimentary tree,
so initially it has no leaf receivers. Adding each receiver t,, € T" two links to the inter-
mediate nodes, so that construct two disjoint paths, ps and p,, from the source node s
to receiver t,,.

(a) First Path Construction:

To construct py, receiver ¢, first contacts all its neighbors in the rudimentary graph
that are intermediate nodes and unsaturated and let {v;} denote the unsaturated neigh-
bors of t,. Receiver t,, compares the paths {p;}, which consist of the tree paths from
s to {v;} and the links {(v;,t,)} from v; to t,, then selects the best path. If all of ¢,’s
intermediate neighbors are saturated, then t, initiates a breadth-first search of the tree
to find the first ¢ unsaturated intermediate nodes and let {vy} denote the ¢ unsatu-
rated neighbors that found by the breadth-first search. Similarly, receiver ¢,, compares
the v paths and select the best pathi Here, pyrepresents the best path and vy be the

corresponding unsaturated intermediate node.

(@ (b)

Figure 4.4: First path comparison and p; selection of receiver 4.

In Fig. 4.4(a), receiver t, compares two paths ps U (vy,t4) and ps U (vs,t4). In Fig.

4.4(b), assume that ps U (v4,t4) is a better path, then ¢, decides py U (v4,t4) to be its py
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and vy to be its vy.
TABLE I1I
PROCEDURE FOR CONSTRUCTION py FOR ¢,

<Main>
e Leaf receiver t,,:
- If not all ¢,,’s intermediate node neighbors, {v;}, are saturated
I v=Find-best-path(t,, {v;})
Tvy=wvandpr=pU(v,t,)
- else if all neighbors of ¢,, are saturated
T Breadth-first search of tree, halt when v
unsaturated nodes {v;} found
I v=Find-best-path(t,, {vy})
Tvy=wvandpr=pU(v,t,)

<Subroutine>
e Find-best-path(t,, {v;}):
- request {v;} for weights {w(p;) = (5;, A\;)} of their paths in the tree
- for each unsaturated node v;
I f=bandwidth of link (v;,t,)
I compute w(p; U (v;, t,)) = (mman(Biz £), i + A)
I choose the best (shortest-widest) pathy.p
I return v that corresponds|to p.

Table IT shows the procedures to_construct first path; p¢, of t,.

(b) Second Path Construction:

To construct py, receiver t,, find ¢ unsaturated intermediate node {v;}, which are not

in py, from its neighbors. If there are fewer than ¢ such neighbors, then ¢, randomly

probes intermediate nodes that are unsaturated and not in ps. For each v;, it checks if

its tree path p; intersect the first path p;. If it does not intersect, then v; replies p; and

w(p;) to t,, else, it finds an alternative path from source node s.

e If In(v;) = 2, an alternative path may already exit, then v; replace this new path

as p; and replies p; and w(p;) to t,.

e If In(v;) = 1, then v; sends a message to the a child node ¢ of s that is different from

the child who is upstream from v; and request for ¢ to do the breadth-first search

of its own subtree. Node ¢ replies to v; the first unsaturated or leaf intermediate
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node v}, then v; replies t,, with w(p} U (v, t,)) and p, U (v}, t,), which p; is the tree

path from s to v..

After t,, receives w(p;) and w(p; U (v}, t,)) from all the v;, receiver ¢, selects the best
path among p; U (v;, t,,) and p} U (v, t,). Here, ps represents the best path and v, be the
corresponding unsaturated intermediate node or leaf intermediate node.

TABLE III
PROCEDURE FOR CONSTRUCTION p, FOR ¢,

<Main>
o Leaf receiver t,,:
- Find ¢ unsaturated intermediate nodes {v;} not in py,
from its neighbors and/or random probing.
- Send py to each v; and request best path p; from s to v;
that does not intersect with py, and its weight w(p;).

- v=Find-best-path(t,, {v;}, {p:}, {w(p:)})

<Subroutine 1>
e Find-best-path(t,, {vi}, {pi}, {w(pi)});
- For each intermediate node v;
1 (pi, w(pi))=Check(v;)
I f=bandwidth of link {w;, t3)
I compute w(p; U (v;, t,)).= (man(F;, B)i X + A)
- choose the best (shortest widest) path; p
- return v that corresponds to p.

<Subroutine 2>
o Check(v;):
/ Upon receiving p; and request for path from s to v; disjoint from py /
- If v;’s tree path p; doest not intersect with py
then return p; and w(p;)
- else if v;’s tree path intersects py then
I if v; has an alternative path p} from s then
return p; and w(p})
I else if v; has In(v;) = 1 then
¢ contact a different child ¢ of s than the one whose subtree v; is in.
¢ ¢ conducts breadth-first search of its subtree
and returns to v; the first unsaturated or leaf intermediate node v
o return p; = p, U (v,v;) and w(p;)

Table III shows the procedures to construct second path, p, of t,,.
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Figure 4.5: Second path comparison and py selection of receiver #,.

In the left-hand side of Fig. 4.5, receiver t4 compares two paths p; U (vr,t4) and

pe U (v, v8) U (vs, t4). In the other side of Fig. 4.5, assume that pg U (vg, v3) U (vs, t4) is

a better path, then t4 decides ps U (vgs vg) U (65;‘154) to be its py and vg to be its v;.

Figure 4.6: An example of two-redundant multicast graph.

Fig. 4.6 shows an two-redundant multicast graph after the construction of py and p;
for each sink node, and each node satisfies the properties of Go,.
After finishing the construction of the two-redundant multicast graph, the multicast

rate is then determined by the minimum link bandwidth of the graph.
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With the restriction of maximum degree /A = 4 on the nodes in the multicast graph,
the number of intermediate nodes needed increases with the number of receivers. For
a given number of intermediate nodes Ny, Zhu et al. gives the maximum (N,,,,) and

minimum (N,,;,) number of receivers that the intermediate nodes can support.

Nowe = (&= 2)N; +1)/2] (4.6a)

N = (A= 4)N; +1)/2] (4.6b)

4.2 Linear Code Design over Prime Fields

Once the graph G, is constructed, a linear codes must be found to realize the linear
coding multicast, such that doubling end-to-end throughput. The algorithm proposed in
[9] and [8] are centralized and need o knowthenetwork topology, then generate network
codes to each node. Due to the special graph G, a distributed algorithm can be used
to design linear network codes without. the knowledge of the network topology. Further,
the network coding is only needed at the sourcenode s and the in-degree 2 intermediate
nodes.

Since each receiver has two disjoint paths from source node s. Then s multicast
the source vector X(s) = (Xi(s), Xa(s)) to each receiver nodes. Both symbols X;(s)
and Xs(s) should be recovered by each receiver. Define d(e;) = (di(e;), d2(e;))T be the
encoding vector of link e;. Let ejlf' be the jth incoming link of node v; and denote the
transmitted symbol on the link as Y(ef), and ejo,i be the j'th outgoing link of node v;
and denote the transmitted symbol on the link as Y(ejo,i). For every intermediate node
v; € Vi if In(v;) = 1, then it just forwards the symbol received from its incoming link
with no encoding onto all the outgoing links, i.e., Y (e§?) = Y (elt), for all e§" € Out(v;).
Otherwise In(v;) = 2, then it encodes the two received symbols using network code,

which is denoted by (8;,,3:,)7 and forward the coded symbol onto all the outgoing

45



links. That means
Y(ef") = (Y(er), Y (e3)) - (Bir, Bin) (4.7)
for all e9" € Out(v;).

The network code vectors for in-degree 2 intermediate nodes are obtained from a dis-
tributed algorithm. There are two phases — AssignCodes phase and DisseminateCodes
phase.

Before starting the algorithm, a function that generate a sequence of 2-dimensional
pairwise linear independent vectors must be introduced. There is a function gen(d) that

generates a sequence of § transformation vectors {(p1,¢1)%, (p2, ¢2)7, - -, (ps, qs)* } such

that:
® p;,q; are elements in a prime field;
e (p;,q;) and (p;, q;) are linear independent, ¥4 # j;

e (pi,q;)" defines a linear transformation of source vector (X;(s), X»(s)) :
Yi = (Xi(s), X)) (i, a:)" =i - Xi(s) + qi - Xa(s) (4.8)

Let y = {3/17 }/27 o 7Ym} and gen(é) = {</017 QI)Tv (p27 Q2)T7 T (p57 q(5>T}> which any
two vectors in gen(d) are pairwise independent. For each receiver t,, it can recovers
(X1(s), Xa(s)) if it receives any two distinct elements in ) and also knows the corre-

sponding transformation vectors.
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TABLE IV
VECTOR SEQUENCE GENERATION ALGORITHM
e Algorithm gen(J)

ie— 1, je—1

- primes[i] «— 2, vectors[j] «— (2, 2)
- Iteration:
I Find the next prime p, smallest p > primes]i]
ITFork=1to1
o j—7jg+1
o vectors|j] «— (primes[k], p)
o If j =6 then halt
>je—7g+1
> vectors|[j] «— (primes[k], p)
Ti—i+4+1
I primes[i] «— p

Table IV shows the algorithm that generates § pairwise linear independent transfor-

mation vectors.

4.2.1 AssignCodes phase

Source node s first broadcasts a message through the rudimentary tree to initiate the
AssignCodes phase. If an intermediate node-wzyhas two incoming links in G, then it
sends a message containing its addressto s requesting a transformation vector. Suppose
L requests were received and s has ¢ children, then s generates (L + ¢) transformation
vectors using gen(L + ¢). Source node sends to each requesting intermediate node one
of the first L vectors and then each intermediate node v; will receive a transformation

vector (p, q). This vector will be the encoding vector of its outgoing links.

4.2.2 DisseminateCodes phase

The last ¢ transformation vectors are sent by s to its children, one to each child
and these vectors are the symbol vectors of links between source node and its children.
For each intermediate node, it passes its transformation vector to all the downstream
nodes. For in-degree 1 intermediate node, its transformation vector is obtained from its

parent node. Eventually, each node v € V' has the knowledge about the transformation
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vectors of its incoming and outgoing links, and then derives the network code vectors
or decoding matrices. For each intermediate node v; € V; and In(v;) = 2, it can derive
the network code vector by using the transformation vectors of its parent nodes and
its own transformation vector. Let (py,;,q,) be the transformation vector of v;, and

(Pir Giy)s (Piy, @iy) be the two transformation vectors of its parent nodes. The network

-1
. N\ — Piy Py Pu;
(6117512) ( iy iy ) ( Qu; ) (49)

The structure of Go, will guarantee the parent nodes of each in-degree 2 intermediate

code vector will be

node from different intermediate nodes, such that (p;,, ¢, ) and (ps,, gi,) are linear inde-
pendent and the inverse of the matrix ( Pin Pia > exits.
iy iy
For each receiver node t, € T, it can_derive the decoding matrix by using the
transformation vectors of its parentimodes..Suppose that (p,,, pn,) and (pn,, pn,) be the
two transformation vectors of its‘parent nodess.and assume that Y,,, and Y,,, be the two

incoming symbols of ¢,,. The decoding matrix will be

-1
( €ny  Ehg > = ( Pi Piy > (410)
Enys  Eny Gy Qi
Then the source vector can be recovered by

(X1(5), Xa(s)) = (Y,, Ya,) ( Fm Eng ) (4.11)

ng 8?’L4

The structure of G, will guarantee the parent nodes of each receiver from different

intermediate nodes, such that (p,,, pn,) and (pn,, pn,) are linear independent and the

inverse of the matrix ( Pir - Pi ) exits.

9y iy

Due to the special multicast graph, all the receivers can always recover the source
vector (X1(s), Xa(s)). The elements in the transformation vectors belong to a prime

field, the transmitted symbol on each link and data symbols also in a prime field.
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Table V and Table VI give the pseudo codes of the two phases.

TABLE V
ASSIGNCODES PHASE

e The source s
- Multicast message <start-AssignCodes> in the rudimentary tree
- Set Time=( largest RTT )-2
- Set timer ¢t = 0, initialize L =0
- While t < Time do
T Upon receiving <request-code, address of v;>:
oL=L+1
o NodeAddr|L]= address of v;
- ¢ = number of children of s
- Obtain gen(L + ¢) = {(p1,a1)" (p2,¢2)" -+, (PL+gs ar+0)" }
-Fori=1to L
1 send <code, (p;, q;)T> to node at address NodeAddr|i]

e Upon receiving <start-AssignCodes>, each node v; € V;:
- If v; has 1 incoming links then do nothing
- Else if v; has 2 incoming links then
send message <request-code, address:of v;> to s

e Upon receiving <new-code, (p,¢)>, each-node v; € Vr:
- v; sets its w;: p,, = p and g, ¢

TABLE*VI
DISSEMINATECODES PHASE

e The source s (has ¢ children and has gen(L + ¢) from last phase):
-Fori=1to¢
I Send <code, gen(L + ¢)> to its ith child

e Each node v; € Vi with in-degree 1:
- Upon receiving <code, (p, q)*> from its parent:
I Set its w;: p,, = p and q,, = ¢
T Send <code, (py,, Gy, )T > out on all its outgoing links
T Set linear transformation for all outgoing links to the identity

e Each node v; € V; with in-degree 2:
- Send <code, (py,;,qy;)"> out on all its outgoing links
- Upon receiving <code, (pli, ¢i')>, <code, (p5, ¢v')>,
respectively, from its two upstream nodes:

I; I; -1
(8%, BT = ( P}' p% ) ( Pui )
’ TR Qui
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4.3 Linear Code Design over GF(2")

We propose an algorithm that generates transformation vectors, which elements are
in the extension field of order 2, that is finite field GF(2™)). And the algorithm that
generates 2-dimensional pairwise linear independent vectors is quite simple.

In the real world, the data is represented in binary. For a signal processing stand-
point, the operations over a prime field need a table mapping the prime elements into
a corresponding elements over GF(2™) and execute the corresponding operation over
GF(2™). After finish the operation, it has to make a re-mapping from GF(2™) to the
prime field. This slowing down the whole operation and eventually decreases the end-
to-end throughput. Another drawback of network code construction over a prime field
is that the effective end-to-end throughput will decrease by a factor m+r1, where m cor-
respond to GF(2™) and the filed size of (GE(27) larger than the prime filed.

The algorithm proposed by Zhu et-al.; though ssimple but it can not find all the
pairwise linear independent vectors in a prime field. Our proposal can find all the

vectors for any GF(2™). How many pairwiserinidependent vectors are in a finite filed

GF(2™)? The following theorem answers that-question.
Theorem 7 There are (2™ + 1) pairwise linear independent 2-d vectors over GF(2™).

Proof : Assume « be the primitive element in GF(2™). Totally, there are 2™ — 1
nonzero 2-dimension vectors over GF(2™) and can be divided into 2™ + 1 disjoint sets

with each set has 2 — 1 elements. We divide them into
S; = {a'(L,a):i=1~ 2" =1}, forallj =1~ (2" —1); (4.12a)
Som = {a'(1,0):i =1~ (2" —1)}; (4.12b)
Somiy = {a'(0,1):i=1~ (2" 1)} (4.12¢)
For each Sy, k € {1,2,---,2™ + 1}, the elements are all distinct and the size of the
set is |Sk| = (2™ — 1). It is easy to see that the sets indeed disjoint.
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Vectors in the same set are linear dependent. Vectors come from different sets are
pairwise linear independent and maximally there are 2™ 4 1 such vectors. This prove
the maximal number of (2™ + 1) 2-dimensional pairwise linear independent vectors. l

We can randomly choose (2™ 4 1) vectors, each of them comes from different sets, and
these vectors are pairwise linear independent. If there are L intermediate nodes request-
ing for transformation vector and Out(s) = ¢, then source node s first finds a suitable
field, such that (L 4+ ¢) wouldn’t exceed the maximum offering number (2™ + 1) over
GF(2™). Then find a corresponding primitive element ov. We use a function Gens(L+ ¢)

to generate such vectors.

TABLE VII

VECTOR SEQUENCE GENERATION'ALGORITHM OVER GF(2™)

e Algorithm Geny(9)
- Let m = [logsd]
- Find a primitive element « in GF(2™)
- vectors[1] = (0,1)T and vectors[2] = (1,0)7
- If 6 > 2 then
ofor j=1to (0 —2)

vectors[j + 2] = (1,a?)T

Table VII shows a simple algorithm for generating ¢ transformation vectors.
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Chapter 5

Conclusion

Based on the max-flow min-cut theorem, Ahlswede et al. prove that the maximum
achievable rate a network using coding is upper bounded by the maz-flow bound. They
also establish the existence of encoding function to achieve that bound. Li et al. then
show that linear network coding is sufficient over a infinite field or a large enough fi-
nite field. From two different perspeetives, linear network code construction algorithms
for multicast applications are proposed atid the sufficient conditions of the linear code
over a finite field GF(2™) whose-dimension'm depends only on the total number of re-
ceivers. We give detailed description of the algorithni proposed by Koetter et al. because
their algorithm can be further extended to a more general multicast problem and their
approach characterizes the coding problem from an algebraic viewpoint.

Although, theory has promised the existence of capacity-achieving codes for single
source multicast and some linear coding algorithms had been proposed, it requires an
infrastructure that contains widely deployed codec and supports new protocols to handle
related issues like reliability, flow control, congestion control...etc. In order to avoid
dealing with these difficulties, Zhu et al. use the network coding technique in overlay
networks to accomplish the multicast abstraction. Their simulation results show a two-
fold throughput improvement over the conventional approach using an application-layer
multicast Narada protocol [12]. The overhead paid is the dedicated high-degree relay

nodes, which are end hosts or proxy servers connected to high-bandwidth physical links.
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This thesis propose a simple algorithm to construct linear network codes over two-
redundant multicast graphs. We believe that the effective end-to-end throughput of our
proposal is larger than that of Zhu’s algorithm.

Network coding as a relative new area of both academic and industrial research inter-
est naturally has many an unsolved and unexplored problems awaiting for the untamed
minds. We mention just a few in the following paragraphs as the concluding remarks of
our preliminary investigation effort.

It remains to be shown if one can extend our proposal to three- or higher (K-)
redundant multicast graphs and find the corresponding higher dimensional independent
vectors accordingly. Extension to the multi-source multicast also deserve much effort.
For more realistic concern, one should consider nonuniform and non-delay-free cases
and investigate related design issues like scheduling, minimum delay/memory-saving
algorithm. Since at an integer multicast rate r,it.is sufficient to choose r disjoint paths
from source s to each sink ¢,,. The problem thus becomes one of choosing such paths so
that minimum delays at each intermediate nodes and the sink nodes are obtained.

As mentioned before, implementation of network coding necessitates a widely de-
ployment of powerful and specific routers that are capable of high-speed routing and
(encoding) processing. One would like to know the minimum number of such routers
required in a given network such that the full advantage of network coding can still be
attained.

Another interesting issue is the application of network coding to wireless ad hoc
networks with opportunistic multiple access. Considering such a scenario, one is tempted
to ask if what is the capacity of such networks and what is the optimal combination of

channel and network codes.
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Appendix A

Upper Bound of Multicast Rate
with Network Coding

Given a network GG with rate constraint C. Assume that for any € > 0, there exists

for sufficiently large m an (m, (n;; : (vi,v;) € E),7) a — code on G such that
m_llaggmj S Cij + € (Al)

for all (v;,v;) € E.
The following derive the upper bound-of-an.information source rate 7 at a fixed ¢
and a sufficiently large m. Considér any t, € I and any cut (P,, P,) between node s

and node t,, let

Zi(2) = (Vale) s ke |J ) (A.2)

v €V
where = € y is a message and §7k is the function induced inductively by Y/, 1 < k' <k,
such that Y;(z) denotes the value of Y as a function of z. Z;(x) is all the information
received by node v; during the whole coding session when message is x. Since fk(:r) is a
function of the information previously received by u;(k), we see inductively that Z;, (x) is
a function of Yy (x),Vk € Uwioy)e(Pa.Pmy Lij- Since every message in y = {1,2,---, [2"7]}

can be determined at sink node t,, we have

H(X) < H(X Z,(X))

= H(Z, (X))

o4



< HYi(z): ke U(vi,vj)e(PmPT)Tij)

< Z Z H(Yi(X))
(vi,07)E(Pn,Pp) k€T

< Z Z loga| Al

(vi,05)E (P, Py) k€T3

— Y ton(]T 14D

(vi,05)€(Pn,Pr) keTi;

= Z logan;; (A.3)

(’Ui,’Uj)E(P’,L,P_n)

Since sink node t,, can recover all x € x;, it is intuitive that Z; (X) contains the complete
information about X, then (A.3) follows from (A.3). By the independence bound for en-
tropy theorem[4], (A.3) can be derived from (A.3). Since - D ke, H(Y(X)) represents
the information rate transmitted on edge (v;,v;) and = > ke, l0g2| Ax| represents the

edge capacity (Cj; + ¢), then (A.3) can be derived from (A.3). From (2.18a),

Z loga | Awl=1l0Gam;;, (A4)

keT’;

(A.3) can be derived. It is easy to derive that

m T H(X) < Z m~ogamn;; (A.5)
(vi,vj)E(Pn,P—n)

and this will be used in the derivation of the upper bound of 7. Thus

7 < mtogy[2™7]

= mlogs|x|
= m1H(X)
< > m g
(v:,0;)E(Pn,Pn)
< > (Cite)
(v3,0;)€(Pn,Pn)
< (Y Cy+lEE
(vi,0;)€(Pn,Pn)
= C(Py,Po) + |Ele
< mincut(s,t,) + |Ele (A.6)
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The the message x is selecting from y according to the uniformly distribution, then the

entropy H(X) is equal to logs|x|. Since for any ¢, € T'
T < mincut(s,t,) + |E|e, (A.7)
the upper bound of the information source rate is
T < mr}n mazx flow(s, t,) + |E|e, (A.8)

For multicast at rate r — e < 7, we can select the multicast message = from y»; C x
according to uniform distribution with m~'logs| x| = (r —¢), and each message = € x
can be recovered by every sink nodes. In the same way, the mulicast rate (r — ¢) is also
bounded by

r —e < minmaz flow(s,t,) + |Ele. (A.9)

Let ¢ — 0, we obtain

r=<minmaz flow(s,t;,). (A.10)

We conclude that the achievable multicastTateisalways bounded by the maz-flow bound.
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Appendix B

Achievability of the Max-flow
Bound with Network Coding

Given a network G with rate constraint C and the mulitcast at rate (r — ¢), which
(r —¢) < minmaz flow(s, t,). (B.1)
n

The following try to prove that for'any &->-0s there exists for sufficiently large m an

(m, (nij = (vi,v;) € E),r —¢) B —code on G such that
m“lloggmj S Cij —+re (BQ)

for all (v;,v;) € E.
This will be done by constructing a Random code. In constructing this code, temporarily
replace x by

X ={1,2,--, [e2m=}, (B.3)

where c is a positive integer greater than 1. Thus the domain of Yj; is expanded from x
to x’ for all (s,v,) € E.

The encoding functions are constructed on as follows. For all v;, such that (s,v;) € E,
for all x € x/,let Y;(x) be a value selected independently from the set {1,2,---,7s;}
according to the uniform distribution. For all (v;,v;) € E, (v; # s), and for all

Zitxye [] {L2....m} (B.4)

vr:(vy,0;)EE
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where Z;(z) be the information received by node v; and Y;;(Z;) be a value selected

independently from the set {1,2,...,7;;} according to the uniform distribution. Let
Z(z) =2 (B.5)

and for all v; € V and v; # s, let

—~

Zj(x) = (Yij(x), (vi,v;) € E) (B.6)

where Z;(x) be the information received by node v; when the message is * € x’ and
Y;;(z) denotes the value of Y;; as a function of x. For distinct  and z’, both belong
to X/,  and 2’ are indistinguishable at sink ¢, if and only if Z, (z) = Z;, (2'). For all
x € Y, define

1, if for some n = {1,2,--- N}, there exists 2’ € y/,
N(z) = x # 2', such_thatiZ,(r) = Z;, (2'); (B.7)

0, otherwises
N(x) is equal to 1 if and only if at least one of.the sink nodes cannot uniquely decode x
and z’. Now fix z € ¥’ and 1 < m < N! €onsider any ' € x’ not equal to x and define
two sets

Py=A{v, eV : Zi(x) # Zi(2")} (B.8a)

and

P = {v: €V : Zy(x) = Zi(2')} (B.8h)

P, is the set of nodes at which the two messages = and z’ are distinguishable, and
obviously s € P,.
Suppose Z;,(v) = Z (z'). Then P; = P, for some P, C V (V has 2/Vl kind of

subsets), which (P,, P,) is a cut between s and t,,. For any (v;,v;) € E,
Pr{Yij(z) = Yy(2')|Zi(x) # Zi(a")} = ;. (B.9)

It is the probability of the encoding function Y;; of node v; sending the same message

onto edge (v;, v;) given the source messages are distinct and the received information of
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node v; is also distinct. Therefore,

PT{Pd:Pn} PT’{PdI
PT{Pd:

PT{Pd:

[I

(viv;)E(Pn,

11

(viyvj)EEP,

P,,P;D> P}
Pn|Pd D Pn}PT’{Pd D Pn}
P,|P; D P,}

Pr{Yy(z) = Yy(a')| Zi(z) # Zi(2')}

Pr)

M (B.10)

Pr{P; = P,} is the probability of P; C P, and P; D P, for a fixed P,.

Let ¢ be any fixed positive real value. For all (v;,v;) € E, take n;; such that

Cij +( < (m

for some 0 < ( < e. Then

Pr{P,= P,}

IN

IAN - IA

IN

“Hogani;) < Cij + €, (B.11)

1
U7

[

(v3,05)E(PrisPr)

8|

(Uiﬂ)j)E(Pn,P‘n)
2_m(X(P"’E)|C+Z(ui,uj)e(Pn,Fn) Cij)

2_m(cij +¢)

2—m(C+Z (Ui ,'Uj)G(Pn xPi’n) Cz])
2_m(§+maazflow(87tn))

9—m((r—e)+) (B.12)

Eqn (B.12) follows because |(P,, P,)| > 1; Eqn (B.12) follows because for the capacity

of any cut between node s and node t,, is bounded by mincut(s,t,) and

Equation (B.12) follows because

mincut(s,t,) = mazx flow(s,t,). (B.13)
min mazx flow(s, t,)
mazx flow(s, t,) (B.14)
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The upper bound of Pr{P; = P,} does not depend on P,. Then
Pr{Z (z) = Z,(x')}

= Pr{P; = P, for some cut (P,, P,) between s and t,}

< > Pr{P,=PR}

for some cuts
< 9lVIg=m((r—e)+¢) (B.15)

Eqn (B.15) follows by the union bound. Eqn (B.15) follows because there are total 2!"
subsets of V. Further, fix
Pr{Z, (x) = Z;, (2') for some 2’ € x',x # 2’}

< > Pr{Z,(z) = Z, (')}

for some z'ey’

< (]| = D2IVIg-m(E=2)+0
< comr-apViy-m(r=8fe)
= 2B (B.16)
Therefore
E{N(x)} = Pr{N(z)=1}
= PT{LNJ Zy, (x) = Z;, (2') for some 2’ € x',x # 2’}
n=1
< Ne2lVla=me
= d(m,() (B.17)
where
5(m,¢) = Ne2lVia=me, (B.18)

For a given message z, if it can be uniquely decoded at all sink nodes, then N(z) = 0.
Hence, the total number of messages which can be uniquely determined at all the sink

nodes is equal to

> (1= N(x)). (B.19)



Since all the encoding functions are random, the Eqn (B.19) is a random number. By

taking the expectation for the random code, then

E{) (1-N@)} = Y (1-EWN())

> Y (1=48(m,Q))
zeX’
> (1 —=6(m,¢))e2mtr—2) (B.20)

where (B.20) follows from (B.17).
Therefore, there exits a deterministic code, for which Y;; is a deterministic function
for all (v;,v;) € E, and the number of messages that can be uniquely decoded at all sink

nodes is at least

(1= 6(m, ()27, (B.21)

which is greater than 2™("=%) for m sufficientljslarge. Since §(m,¢) — 0 as m — oco. Let

x be any set of [2™("~9)] messages fromx"and forall x € y and for all ¢, € T

gn(G1f)) = ., (B.22)

where

Zy,(x) € H {1,2,-+ moe, ) (B.23)

v (v tn)EE

Eqn (B.22) means that for every x € y, all sink nodes can recover this message. Thus
the multicast rate

(r — &) < minmax flow(s,t,), (B.24)

it is always achievable.
Let € — 0, there also exists an (m, (n;; : (v;,v;) € E),r) f—code on G for sufficiently

large m. Such that for multicast rate
r < minmaz flow(s,t,), (B.25)

it is always achievable.

We conclude that the multicast rate at the maz-flow bound is always achievable.
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