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Abstract

Most modern processors are based on synchronous circuit design nowadays. The current
trend of processors is towards multiprocessor because the higher power consumption and heat
energy caused by clock distribution.. Moreover, embedded multimedia system and Digital
Signal Processor are more and more popular in recent years. DSPs are developed for handling
a large number of image data. They improve performance with VLIW and SIMD in some
instances. However, they are all based on synchronous circuit design. The clock distribution
may cause a serious problem in complex systems.

In this study, we try to design a light-weight core based on asynchronous circuit design.
It is an asynchronous two-way VLIW processor and includes some special instructions for
SIMD application. In the future, we can develop an asynchronous multi-core processor which
is made up of this asynchronous two-way VLIW processor via interconnection network.
Finally, the correct of function is verified by ModelSim 6.0 and synthesized by TSMC .13p

m process library.
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CHAPTER 1 INTRODUCTION
1.1 MOTIVATIONS

Most microprocessor designs are based on synchronous circuit design in past decades. In
order to improve the performance of processor, the technique of microprocessor design is
made progress from pipeline to superscalar and VLIW in recent years. But they were based,
for the most part, on higher frequency of clock such as Intel Pentium® 4 [14]. The higher
frequency of clock may cause more power consumption and heat energy. As frequency of
clock is getting higher, the problem is getting worse. So the policy of microprocessor design
is changed into multiprocessor such that attempting to reduce the influence of these problem
caused by higher frequency of clock. There are some instances for this police, for example,
IBM Cell Broadband Engine [13].

Furthermore, embedded multimedia system and Digital Signal Processor are more and
more popular in recent years. Comparing with general purpose processor mentioned in above,
DSPs are developed for handling a large number of image data. They used some techniques,
such as VLIW and SIMD, to improve performance. However, they are all based on
synchronous circuit design. When cores in processor become more and more large, the clock
distribution may be a serious problem in complex systems.

In our implementation, we aim at designing an asynchronous two-way VLIW processor

with asynchronous circuit design. It is implemented to avoid some problem such as clock



skew and worst-case timing delay in synchronous circuit design by the advantages of
asynchronous circuit [1]. Moreover, we also design the datapath to support the functions of
DSP, such as SIMD and MAC. The design policies of our two-way VLIW processor are
simple and modular in order to build a light-weight core which is used to construct
multiprocessor with asynchronous circuit design in the future.
1.2 THE ORGANIZATION OF THIS THESIS

This thesis proposes the datapath design of asynchronous two-way VLIW processor. In
Chapter 1, the motivation is presented. In Chapter 2, some basic asynchronous circuit design
concepts and related works which ‘include some microprocessors for general purpose in
asynchronous circuit design today will be introduced. In Chapter 3, we introduce datapath of
our two-way VLIW processor, instruction set- architecture, and pipeline architecture. In
Chapter 4, we show the simulation result and-area report. Finally, a conclusion and future

works are shown in Chapter 5.



CHAPTER 2 BACKGROUND AND RELATED
WORKS

This section will introduce what is asynchronous circuit design, ex: advantages,
handshaking protocols, Muller Pipeline, Muller C-element of asynchronous circuit design [1].
Two pipeline architectures of processor are also listed in this chapter.

2.1 ASYNCHRONOUS CIRCUIT DESIGN

Asynchronous circuits design is a kind of circuit design methodology. Asynchronous
circuit is practically different from synchronous,circuit because all components communicate
with each other by handshaking protocols in asynchronous circuit, whereas share and notice
the clock signal in synchronous circuit. The following will list subjects about asynchronous
circuits design.

2.1.1 Advantages

Comparing with the synchronous circuit design, the asynchronous circuit design has no
global clock. As a result of no global clock, the asynchronous circuit design has some
benefits :
® Low power consumption: Asynchronous circuits do not need to generate global clock to

fire component, and therefore could save power caused by clock tree. Moreover, each

module works only when and where needed, this means that module is idle at the other

time.



No clock distribution and clock skew problems : In synchronous circuit, components

communicate with each other by clock distribution. Clock skew is a serious problem.

Asynchronous circuit is in opposition to synchronous circuit on this question because

there is no clock in asynchronous circuit.

Average-case performance: The elasticity of asynchronous pipeline has led to the result

that the asynchronous pipeline can work in average case time rather than worst case time

for pipeline stage. When component in asynchronous circuit has been completed its job,

it could sent a request signal to receiver.and wait to perform next new job until receiver

send acknowledge signal back. However, the pipeline of synchronous circuits select the

longest time for the stage which need more time slice. On the contrary, asynchronous

pipeline allow every stage work in individual time due to handshaking protocol. Hence,

asynchronous pipeline could works‘in average-case performance.

Modularity: Different modules from different designers may have different clock

distribution in synchronous circuit design. To combine two or more components will

probably become a challenge. Due to handshaking interface and individual time for

every stage, it can be done easily in asynchronous circuit design. Designers do not need

to maintain synchronization between distinct modules. Each module has its complete

time and does not influence other modules.

But there are also some drawbacks. Because all components of asynchronous circuit



communicate with each other by handshaking protocols, area and power consumption due to
the control logic for handshaking are unavoidable.
2.1.2 Handshaking Protocol

Handshaking protocol is used to communicate between two components in asynchronous
circuit design. It can be separated some solution space as the cross product as following:
{ two-phase, four-phase} x { bundled-data, dual-rail, 1-of-n, ...}.

In this solution space of handshaking protocol, the bundled-data and dual-rail data are
the two most common data encodings. The four-phase bundled-data protocol is usually used
for asynchronous circuit designs (Figure 2.1)./1t has two control signals, REQ and ACK,
between SENDER and RECEIVER used to control all of transfer steps (Figure 2.1 (a)). The
four-phase handshaking protocol is also known as return-to-zero protocol because REQ and
ACK signals have to return to zero when a transaction is completed between SENDER and
RECEIVER (Figure 2.1 (b)). Initially, REQ and ACK signals are all “0”. When valid data
arrive or ready at SENDER, REQ is set to “1”” and sent to RECEIVER by SENDER (1). Then,
RECEIVER has accepted the data from SENDER, ACK is set to “1” and sent to SENDER by
RECEIVER (2). After SENDER receives the ACK signal from RECEIVE, REQ is set to “0”
(3), and then RECEIVER will pulls down ACK signal to “0” when receives REQ = 0 from
SENDER, too (4). After these four steps, SENDER and RECEIVER complete a handshaking.

At this time, SENDER and RECEIVER can start next transaction (5).



REQ

ACK
SENDER = RECIEVER

DATA

Figure 2.1 (a) Bundled-data channel.

REQ 2 4
ACK 3 \

DATA )? X

Figure 2.1 (b) Four-phase handshaking protocol.

The other way of four-phase handshaking protocol is four-phase dual-rail data protocol

(Figure 2.2 (a)). Compared with data channel of four-phase bundled-data protocol, it has no

REQ signal. Dual-rail channel encodes 1-bit data with 2-bits. The encoding method is shown

in Table 2.1. It use 00 to express there is no data in EMPTY state, 01 to encode the data of 0

and 10 to encode the data of 1 in VALID state, respectively. By the way, the 11 is not used in

dual-rail data encoding. If the system uses dual-rail data encoding to transfer n-bits data, it has

2*n data lines to indicate a valid data.



SENDER

ACK

DATA

There is no REQ signal because of dual-rail data encoding, the RECEIVER needs extra

circuits to detect whether DATA signals arrive or not. This detection design in dual-rail

n

RECIEVER

Figure 2.2 (a) Dual-rail channel.

d.t d.f
Empty “E” 0 0
Valid “0” 0 1
Valid “1” 1 0
Not used 1 1

Table 2.1 Encoding Method.

circuits is called complete detection.

Figure 2.2 (b) shows the process of data transfer using dual-rail protocol. Initially, DATA
is EMPTY, and ACK signal is 0. When DATA is Valid and RECEIVER detects that DATA is
ready, RECEIVER captures DATA and pulls up ACK. Then SENDER stops sending valid

DATA and changes state of DATA to EMPTY. Finally, RECEIVER pulls down ACK signal to

0 and this transaction is completed.



D AT A EMPTY X VALID X EMPTY X VALID
ACK L] | [

Figure 2.2 (b) Four-phase dual-rail protocol.

Valid DATA is separated by EMPTY token in four-phase dual-rail protocol. SENDER
must return to EMPTY state after RECEIVER captures the valid DATA. Then, it can start
next transaction. Thus, the sequence of state is EMPTY — VALID — EMPTY — VALID (Figure

2.3).

+~ IS .

Figure 2.3 Transfer diagram
The two-phase handshaking protocol is different from all of above due to the meaning of
the signal edges. As showing in Figure 2.4, a signal transition means that a transaction
between SENDER and RECEIVER is completed. The rising edges and falling edges in
two-phase handshaking protocol have no difference. For example, when the data of SENDER
is ready, SENDER sets the REQ to “1” (initial : “0”). Then RECEIEVER gets data and sends
ACK signal to SENDER with “1” (initial : “0”). This transaction is completed, and next

transaction starts with REQ changed into “0” at SENDER side. Two-phase handshaking
8



protocol is also known as non-return-to-zero protocol.

REQ _\
ACK ——

DATA_X__X_ X

Figure 2.4 Two-phase handshaking protocol.

L
X

2.1.3 Muller C-element

Muller C-element [1] is a basic component in asynchronous circuit design. It is used to

state-holding or construct the latch between pipeline stages. The function behaviors of Muller

C-element are shown in Table 2:2. When-both-inputs are 0, the output Z is set to 0. When both

inputs are 1, the output Z is set to 1. If the inputs are different.(ex : 01 - 10), the output Z will

keep previous output. In other words, the output Z is only changed when all inputs are the

same. Figure 2.5 (a) shows the symbol and gate-level design of C-element, and Figure 2.5 (b)

shows the C-element with reset signal.

Input A Input B Output Z
0 0 0
0 1 No change
1 0 No change
1 1 1

Table 2.2 function behaviors of Muller C-element.
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Figure 2.5 (a) Muller C-element.

A
B

reset

A
L«

D,
D S e
B

)
N

:

Figure 2.5 (b) Muller C-element with reset signal.

2.1.4 Asynchronous Pipelines

Muller pipeline is a pipeline architecture with four-phase bundled-data protocol [1].
Most of asynchronous pipeline is based on Muller pipeline (Figure 2.6). Muller pipeline has
several characteristics as following:

10



1. Itis delay-insensitive handshake machine.

2. When pipeline is full, only half of the latches of pipeline store data.

3. If the RIGHT side is slower than the LEFT side, this pipeline may fill and stall.

4. Timing depends on local delays, so Muller pipeline could work in average case

performance.

ACK

LEFT RIGHT

Figure 2.6 Muller pipeline,

Figure 2.7 (a) shows the four-phase bundled data pipeline [1] which based on Muller

pipeline. It is similar to synchronous pipelines and master-slave flip-flops. In order to

maintain correct behaviors, matching delay should be inserted in the request signal paths.

Figure 2.7 (b) shows a four-phase bundled data pipeline with data processing and delay

element on REQ signal.

11



ACK ACK
ACK - <] ACk
-
— —
REQ REQ REQ REQ
Y \ 4 \ 4
En En En
Latch Latch Latch
Figure 2.7 (a) Four-phase bundled-data pipeline
ACK ACK
- ACK r°<}7
ACK <] -
AT ‘.3 3 e c =

En
Latch

=N

Latch ~:> H Latch

En

Latch

A

H Latch fi>

En
Latch

Figure 2.7 (b) Four-phase bundled-data pipeline with data processing and delay element.

A four-phase dual-rail pipeline is also based on' Muller pipeline with the request

eliminated by the 1-of-2 data encoding. Figure 2.8 shows the four-phase dual-rail pipeline

model [1], and it must have complete-detection mechanism composed of or-gate because

there are not REQ lines.

ACK ACK
-] - ACK -]
ACK, O<}
C C C
2 Ho iuly - oS
a.f :@ \;J:@ L — >
ot 0o 40 - e
w o o .

Figure 2.8 Four-phase dual-rail pipeline architecture (2-bit wide).
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2.2 PROCESSORS OVERVIEW

In this section, we will introduce some solution about processor with asynchronous
circuit design; in addition, we’ll also describe some popular Digital Signal Processors (DSPs)
today. They are AMULETSs [2, 3, 4], Microchip’s PIC18, NCTUAC18 [5], and TITAC [7, 8],
which are based on asynchronous circuit design. SPXK5 [9], TMS320C55x [10], and
TMS320C64x [11] are based synchronous circuit design.

2.2.1 AMULET Microprocessors

AMULET microprocessors were proposed by AMULET group of the University of
Manchester in 1994. Serious .of AMULET microprocessors include AMULET1 [2],
AMULET?2e [3] and AMULET3 [4]. They are asynchronous processors, and AMULET1 uses
two-phase communication protocol. Figure 2.9 shows the architecture of AMULET1.

Address *
Interface Address out

Register

Bank Registers b
¥
¥

Excute J', Instruction

Unit Mulnpheu decode

Shifter
AL

T
i

]
\

T
Data -
Interface @
¥ ?
Data out ‘ ‘ Data in ‘ ‘ Ipipe +

Figure 2.9 Architecture of AMULET1.
13



AMULET?2e is a redesign of AMULET?1 for embedded systems with on-chip memory. It
Is implemented with four-phase handshaking protocol. AMULET3 was also redesigned
architecture and presented between 1996 and 1998. It has branch target prediction and goal of
higher performance than AMULET1 and AMULET2e.
2.2.2 Microchip’s PIC18 and NCTUAC18
The PIC18 is developed by Microchip. Figure 2.10 shows the system block diagram and
Table 2.3 lists the basic categories of instruction set of PIC18 and their operands needed.
There are some characteristics of PIC18 as following:
1. Itisan 8-bit RISC microcontroller based on the Harvard architecture.
2. There are two memories: instruction memory (up to 2MB) and data memory (up to 4MB)
follow 16-bit wide instruction and 8-bit wide data respectively. PIC18 has 16 banks of
256 bytes data memory.
3. It provides 77 available instructions.
4.  Two-stage instruction pipeline.

5. There are up to five I/O ports available.

14



Data
Memory

Instruction |1 | PICI18
Memory [
Reg | Stack
ALU Mult
Decoder
Peripherals

Figure 2.10 System block diagram of PIC18.

Instruction type Operands
Byte-oriented F D A
Bit-oriented F B A
Literal K F1
Control N S

Table 2.3 Basic categories of instruction-set of PIC18 and their operands needed.

The meaning of letter in Table 2.3 is list in the following:

F: The file register. It means which file register is to be used by the instruction.

D: The destination of the result. It specifies where the result of the operation is to be placed.

A: The accessed memory.

B: The bit in the file register. It selects the number of the bit affected by the operation.

K: A literal value to be loaded in a file register.

F’: The desired FSR register to load the literal value into.

15




N: A program memory address.

S: The mode of the CALL or RETURN instructions.

The NCTUAC18 was proposed by NCTU in 2009 [5]. It is also a RISC processor which

implemented with asynchronous circuit design based on QDI delay-model and four-phase

dual-rail handshake protocol. The execution and write back stage are combined to one stage to

avoid data hazard. Figure 2.11 shows the block diagram of APIC18 with 4-stage pipeline

architecture.

A

PC

Registers -

i TR D SFY oF - $§NXB/

| 2
¥
4 2

[
Memory controller

0

Date Memory

Figure 2.11 Block diagram of APIC18 with 4-stage pipeline architecture.

A new implementation, APIC18S, to solve this performance degradation was proposed

by NCTU in 2007 [6].

16



223 TITAC

TITAC and TITAC-2 [7, 8] developed in Tokyo Institute of Technology are

asynchronous processor. They are implemented with two-phase dual-rail handshaking

protocol. TITAC is a 8-bit asynchronous processor with a single-accumulator architecture

based on quasi-delay-insensitive (QDI) delay model [1]. TITAC-2 [8] developed in 1997 is a

32-bit asynchronous processor. It is based on scalable-delay-insensitive (SDI) delay model [8].

There is a 8-Kbyte instruction cache on TITAC-2. In addition, the instruction set of TITAC-2

is similar to MIPS-R2000. The instructions.are classified into ten categories as following:

logical, arithmetic, multiply, divide, compare, shift, load, store, branch, and privileged

instructions. Figure 2.12 shows the block diagram of TITAC-2 with 5-stage pipeline

architecture.

Registers -
PC |«
v
BN
IF - ID 0 D EX o\ MEF| WB
I-cache - > Memory controller | > Write buffer

|

address data

Figure 2.12 The pipeline architecture of TITAC-2
17



2.2.4 DSPs

Digital signal processor is particular microprocessor used for fast operation about digital

signal processing. In general, it requires large number of mathematical operations for image

or audio processing. Many digital signal processors exist today such as SPXK5 [9],

TMS320C55X, and TMS320C64x developed by TEXAS INSTRUMENTS [10, 11]. Follows

are some features of digital signal processors.

1.

Based on Harvard architecture.

There are some special instructions for. SIMD.

Memory architecture is designed for streaming data.

Multiply-accumulates unit (MACS) is used for highly arithmetic operations

Bit-reversed addressing for calculating FFTs.

In order to improve the whole performance, VLIW techniques could support digital

signal processor in instruction level parallelism.

18



CHAPTER 3 DESIGN AND IMPLEMENTATION

We introduce the background of asynchronous circuit design and list some processors
designed by asynchronous circuit in previous sections. In this chapter, we will describe
pipeline architecture in details and focus on datapath of our two-way VLIW microprocessor.
The result of simulation will present in Chapter 4.

3.1 ARCHITECTURE OVERVIEW

All of components of our two-way VLIW microprocessor are implemented based on
4-phase dual-rail handshaking protocol, QDI . delay model, and developed with Verilog
hardware description language. Figure 3.1 shows the architecture overview of our two-way
VLIW microprocessor.

There are two memories: Instruction Memory (64-bit wide), Data Memory (32-bit wide).
The datapath includes Register Bank, MAC function unit, LDST function unit, and a 40-bit
accumulator in MAC function unit. The instruction packets are constructed of two 32 bits
long instructions. If the two instructions cannot be executed in parallel, they are packed into
different instruction packet. This job can be done in Instruction Fetch stage and Instruction
Dispatch stage. After Instruction Dispatch stage, the two instructions of 64-bit instruction
packet are issued to appropriate datapath. The first instruction is executed in MAC function

unit, and the other is operated in LDST function unit.
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Program Counter Module handles the execution sequence of instructions. It includes an

increment unit to perform PC+1. The effective target address which is decided by branch

instruction to jump is selected in Program Counter Module.

Instruction Fetch Inl\:ter:‘:)t:;m
Instruction Dispatch
i Data Path
L MACFU Register . Lp/sT Fu

Memory Interface

A
/

Data
Memory

Figure 3.1 Architecture Overview
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Instruction type MAC | LDST
Arithmetic operations ° °
Multiplication/Divison ° °

MAC °
(multiply-accumulates)
Branch °
Load/Store °
SIMD ) °

Table 3.1 Issue of instruction.

There are 32 registers in register file (Figure 3.2). Fiveare system registers among them,
zero register ($0), stack pointer($sp), repeat count ($rp), return address ($ra), and basic block
($bb). Twelve could support SIMD operation to be divided into two 16-bit register ($sd0H,
$sdOL, ...). Fifteen are general-purpose 32-bit registers. Table 3.1 lists what kinds of
instructions are executed in MAC function unit or LDST function unit. Pipeline architecture,

instruction set architecture, MAC FU, and LDSD FU will be described in details in following

section.
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Five system Twelve SD Fifteen general

registers registers purpose registers
$0 $sdOH  $sdOIL $20
$sp $sd1H  $sd1L $gl
$rp
$ra $sd10H | $sd10L $g13
$bb $sd11H  $sd11L $g14

Figure 3.2 Register file

We use fixed-point number representation system in our design. The digit-vector is
denoted by X = (Xa1, Xao, ..., X1, Xp). The X can represent three kinds of numbers in our
number system. They are signed-integers, unsigned integers,and unsigned real numbers. The
signed integers can represent from -2°!-1 to 2**-1. The unsigned integers can represent from 0
to 2%2-1. The unsigned real numbers are.denoted by fixed<16, 16>. The first half of bit pattern
(Xa1, X30, ..., X17, X16) Means non-negative numbers, and the last half of bit pattern means
fraction. For example, if X = 00000000000101111000000000000000, it is 23.5
(0000000000010111.1000000000000000) in fixed-point number representation system.
3.2 INSTRUCTION SET

Our instruction set architecture is similar to MIPS. Each instruction is 32 bits long that
divided into several fields. The instructions can be classified into two categories as following:
® R-type operations

® |-type operations
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Table 3.2 shows the instruction format and Table 3.3 lists our available instructions.

5 bits 5 bits 5 bits 5 bits 5 bits 6 bits 1 bit
R-type/MAC | Opcode Rd Rs Rt Shamt Funt P bit
I-type Opcode Rd Rs Immediate P bit

Table 3.2 Instruction Format

The meaning of each fields of instruction format is described in the following:

® Opcode: Operation code. It indicates which operation is performed.

® Rd: The register destination operand. The result of instruction is stored to this register if

need.

® Rs: The first source operand-of instruction.

® Rt: The second source operand of instruction.

® Shamt: The amount of shift is specified in this field. It specifies the shift operations are

going to shift source operand with values.

® Funt: It is used to indicate which operation of R-type instructions is performed. If the

executing instruction is I-type instruction, this field is filled with 0.

® P bit: It implies whether current operation can be executed with other operation in

parallel. 1: means can be executed in parallel with other operation.

® Immediate: An immediate value for I-type instructions.
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Note:

® R-type instruction includes all of arithmetic operations. They have the same opcode. The

operation of R-type instruction is executed according to Funt field.

® The special instruction type, MAC, has the same instruction format with R-type

instruction.

® The three fields, Rd, Rs and Rt, are 5 bits because there are 32 registers in our

implementation.

® The shamt field has the similar reason because the registers are 32 bits.

Instruction Description 32-bit instruction word
NOP - 00000000000000000000000000000000
MAC operations
MAC $0, Rs, Rt Acc=Acc + Rs.L*Rt.L 1001100000sssssttttt00000010000p
ACCLDH Rd Rd = Acc[39:32] 10011ddddd000000000000000010001p
ACCLDL Rd Rd=Acc[31:0] 10011ddddd000000000000000010010p
ALU operations
ADD Rd, Rs, Rt Rd =Rs + Rt 00001dddddsssssttttt-----000000p
ADDU Rd, Rs, Rt Rd =Rs + Rt 00001dddddsssssttttt-----000001p
(Unsigned)
SUB Rd, Rs, Rt Rd =Rs - Rt 00001dddddsssssttttt-----001000p
SUBU Rd, Rs, Rt Rd = Rs — Rt 00001dddddsssssttttt-----001001p
(Unsigned)

AND Rd, Rs, Rt Rd=Rs & Rt 00001dddddsssssttttt-----010000p

OR Rd, Rs, Rt Rd =Rs | Rt 00001dddddsssssttttt-----010001p

XOR Rd, Rs, Rt Rd=Rs & Rt 00001dddddsssssttttt-----010010p

MIN Rd, Rs, Rt Rd = min(Rs, Rt) 00001dddddsssssttttt-----101000p

MAX Rd, Rs, Rt Rd = max(Rs, Rt) 00001dddddsssssttttt-----110000p

ABS Rd, Rs, $0 Rd = |Rs| 00001dddddsssssttttt-----111000p

SLT Rd, Rs, Rt If(Rs<Rt)Rd=1 00001dddddsssssttttt-----100000p

SRL Rd, Rs, shamt

Rd = Rs >> shamt

00001dddddsssssttttt-----011000p

SRA Rd, Rs, shamt

Rd = Rs >> shamt (sign

00001dddddsssssttttt-----011001p
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extend)
NOT Rd, Rs, $0 Rd = Rs + $0 00001dddddsssssttttt-----111010p
ADDI Rd, Rs, imm Rd = Rs +imm 00010dddddsssssiiiiiiiiiiiiiiiip
ADDIU Rd, Rs, imm Rd = Rs +imm 00011dddddsssssiiiiiiiiiiiiiiiip
(unsigned)
SUBI Rd, Rs, imm Rd = Rs —imm 00100dddddsssssiiiiiiiiiiiiiiiip
ANDI Rd, Rs, imm Rd =Rs & imm 10000dddddsssssiiiiiiiiiiiiiiiip
ORI Rd, Rs, imm Rd =Rs|imm 10001dddddsssssiiiiiiiiiiiiiiiip
XORI Rd, Rs, imm Rd =Rs & imm 10010dddddsssssiiiiiiiiiiiiiiiip
Data transfer operations

MOV Rd, Rs Rd = Rs + $0 00001dddddsssssttttt-----000100p
MOVI Rd, $0, imm Rd =imm + $0 01110dddddsssssiiiiiiiiiiiiiiiip
MOV.I Rd, Rs Rd.L=Rs.L + $0 00001dddddsssssttttt-----000101p
MOV.h Rd, Rs Rd.H =Rs.H + $0 00001dddddsssssttttt-----000110p
LW Rd, Rs, imm Rd = Mem[imm+Rs)] 11000dddddsssssiiiiiiiiiiiiiiiip
SW Rd, Rs, imm Mem[imm+Rs) = Rd] 11100dddddsssssiiiiiiiiiiiiiiiip
Branch operations
BEQ Rd, Rs, imm If(Rs== Rd)PC = 01100dddddsssssiiiiiiiiiiiiiiisp
PC+imm
BNEQ Rd, Rs, imm If(Rs'!= Rd) PC=PC + 01101dddddsssssiiiiiiiiiiiiiiisp
imm
RETURN $ra Jump to address in $ra | 0101000000000110000000000000000p
CALL imm Save PC to'$raand 010110011100000iiiiiiiiiiiiiiiip
jump to imm
SIMD operations
PACK Rd, Rs, Rt, I/r, I/r | Rd.H = (Rs.H or Rs.L); 10100dddddsssssttttt-----1llrrrp
Rd.L = (Rt.H or Rt.L);
UNPACK Rd, Rs, Rt, I/, IIr | (Rs.H or Rs.L) = Rd.H; 10101dddddsssssttttt-----1llrrrp
(Rt.Hor Rt.L) =Rd.L;
ADD.D Rd, Rs, Rt Rd.H =Rs.H + Rt.H; 00001dddddsssssttttt-----000010p
Rd.L=Rs.L + Rt.L;
ADDU.D Rd, Rs, Rt Rd.H =Rs.H + Rt.H; 00001dddddsssssttttt-----000011p
Rd.L=Rs.L + Rt.L;
SUB.D Rd, Rs, Rt Rd.H =Rs.H - Rt.H; 00001dddddsssssttttt-----001010p
Rd.L=Rs.L-Rt.L;
SUBU.D Rd, Rs, Rt Rd.H =Rs.H - Rt.H; 00001dddddsssssttttt-----001011p

Rd.L=Rs.L - Rt.L;
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MIN.D Rd, Rs, Rt

Rd.H = min(Rs.H,
Rt.H);
Rd.L = min(Rs.L, Rt.L);

00001dddddsssssttttt-----101001p

MAX.D Rd, Rs, Rt

Rd.H = max(Rs.H,
Rt.H);
Rd.L = max(Rs.L, Rt.L)

00001dddddsssssttttt-----110001p

ABS.D Rd, Rs, $0

Rd.H = |Rs.H|;
Rd.L = |Rs.L|

00001dddddsssssttttt-----111001p

There are also several special instructions used for single-instruction multiple-data

(SIMD) application. We can improve the throughput of pipeline with data level parallelism

via SIMD operations. We have nine instructions for SIMD application. They are described as

Table 3.3 Instruction Set

following.
5 bits 5 bits 5bits 5 bits 5 bits 6 bits 1 bit
Opcode Rd Rs Rt shamt funt End bit

The instructions used for SIMD: application have same instruction format with R-type

instructions. PACK instruction packs two 16-bit data into a 32-bit register. The funt field of

PACK instruction is separated into two portions, the first half of funt field indicates the first or

the last half of Rs will be packed into Rd, the last half of funt field is used for Rt. As Figure

3.3 shows, the 16-bit data from the first or the last half of Rs will be packed into the first

half of Rd, and the 16-bit data from Rt will be packed into the last half of Rd.

26




Rs .

Rt J
Rd | v | .

Figure 3.3 PACK instruction

UNPACK instruction unpacks two 16-bit data in Rd into Rs and Rt. Because there is one
write bus in our implementation, we have to use two UNPACK instructions to unpack the two
16-bit data. Fortunately, these two unpack .instruction can be executed in parallel due to
two-way VLIW design. ADD.D and SUB.D instructions perform two 16-bit add or subtraction
operations in parallel. ADDU.D and SUBU.D instructions perform the same operations with
ADD.D and SUB.D, but the source data of ADDU.D and SUBU.D is unsigned value. MIN.D
and MAX.D instruction select the minimum or the maximum respectively. ABS.D instruction
calculates the absolute value of two 16-bit values located in the first and last half of Rs. These
instructions are executed in the first and last half of sources. Then, the outcomes are placed in
destination register at same time.
3.3 CONSTRUCT THE BASIC ELEMENTS

In the following, we will introduce the basic elements of our two-way VLIW

microprocessor and DI circuits. They are modeled in gate level.
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3.3.1 Registers

The registers of our two-way VLIW microprocessor is similar to TITAC’s ones [7, 8]. It
is showed in Figure 3.4 (a). It is made of four AND gates, two OR gates, and two NOR gates.
The NOR gates are used to keep the value of data. The valid data is hold between NOR gates
and two AND gates which are connected with read signal. If the inputs of register are empty
token (din.t = 0 and din.f = 0), it will not be written. The registers are not flashed until next
valid information arrives. There is a complete detection of write operation. This detection is
composed of two AND gates and one OR gate. WWhen write operation is finished, the “ack”
signal is set to 1 (dotted line in Figure 3.4).

Moreover, in order to read information of register, the read signal is set to 1. The $g0 is a
special register (Figure 3.4 (b)) in our two-way VLIW microprocessor. Its outputs are always
zero and not allowed for writing. Moreover, all registers should be read and written at

different time in order to get the correct data.

din.t——

din.f

Figure 3.4 (a) 1-bit Register
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reset

Figure 3.4 (b) Zero Register

3.3.2 Dual-rail Gates

Figure 3.5 shows the 2-input dual-rail AND gate composed of four C-elements and one

or gate. The outputs are valid when.all inputs are valid data. We construct other logic gates,

OR, XOR, which are needed with same concept. Table 3.4 is the truth table of 2-input

dual-rail AND gate.

dinl.f

dinl.t — ¢
] c
out.f
din2.f ——14 | €
ginft 1 © outt
Figure 3.5 The 2-input dual-rail AND Gate
dinl.t | dinl.f | din2.t | din2.f | out.t | out.f
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 1 0 1
1 0 1 0 1 0

Table 3.4 The truth table of 2-input dual-rail AND gate
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3.3.3 C-Latch

Our pipeline latches (Figure 3.6) are made up of C-element with reset. C-latch are

designed the same as Muller pipeline design. It keeps the valid data until the acknowledge

signal changed from 1 to 0. When the valid data in C-latch is delivered to next pipeline stage,

it sends a acknowledge signal, 1, to previous stage. Then, current stage can start a new

process. On the other hand, if empty token is delivered, it sends an acknowledge signal, 0O, to

previous stage. These latches in pipeline have 50% utilization at most due to four-phase

protocol.
ACK _OUT =
—=_| ~— ACK_IN
Dint 2\ | C ) j > Outt
Dinf | c ) > Out.f

Figure 3.6 C-Latch

3.3.4 DeMUX and MERGE

Each datapath may have different works to do. In order to improve the utilization of

function unit, there are several datapath executed in parallel possibly. In synchronous circuit

design, it uses a multiplexer to select the result to output. In DI circuits of asynchronous

processor design, it could be designed that operations are executed in different length of time,

and maybe the function units are not used. DeMUX and MERGE are used for this situation. It
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can select one of datapaths between DeMUX and MERGE, and the other function units which

are not in selected datapath are idle. Therefore, the idle function units are not active. It can

save power in the way. Figure 3.7 shows the DeMUX and MERGE. The DeMUX consists of

two C-elements, and MERGE is made of OR gate because only one function block is active

and the other function block will be NULL.

Di S
" 1 } Function block [
Sel.t } Function block -
]

Sel.f ———-

Dout

Figure 3.7 DeMUX and MERGE
3.3.5 Memory Interface
In our two-way VLIW microprocessor implementation, we use the traditional
synchronous memory. Because the pipeline architecture is based on asynchronous circuit
design, it needs an interface to communicate between the function unit and synchronous
memory. The Memory Interface converts dual-rail form into single-rail form (Figure 3.8). It
sends a request signal to synchronous memory when the read signal and address of LDST

function unit arrive. The data will send back to LDST function unit in delay_1. On the other
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hand, the write operation uses the same conception. Note that read and write operation are not

worked at same time.

LDST EX2 Memory Sync MEM
Interface
Read_Req.f ,—Lh>
Read_Req.t > Read_REQ
Addr.t[0] > Addr[0]
Addr.f[0] 4;:E>_

Addr.t[31]

v

Addr[31]

Addr.t[31] .

-< Delay 1 X C i;

A G W

Read_dafa.t[O] (—C!: Read_data[0]
—C 1 '
—C_E

Read_data.f[0]

Read_data.f[31]

Read_data.t[31]

Read_data[31]

Write_data.f[0]

v

Write_data.t[0] Write_data[0]

Write_data.f[31]

v

Write_data.t[31] Write_data[31]

W_Done.f

N
v
o
)
<
N
N
A\ 4

Write_REQ

W_Done.t

|

Figure 3.8 Memory Interface
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3.3.6 MAC and LDST function units

Figure 3.9 and Figure 3.10 show the block diagram of MAC and LDST function. There

are two ALUs, barrel shifters, signed multipliers, pack unit, unpack unit, and unsigned

dividers. The ALU can perform common arithmetic, logic, and SIMD operations. Multiplier

can accept two 16 bits inputs, and then, generates a 32 bits long product. It is based on shift

and add algorithm and constructed of four ripple-carry-save adders. Each ripple-carry-save

adder is made up by n+1 full adders (n: wide of input). The last two full adders work for

signed bit, and pass to next stage. In this way, we. avoid extending the input to 32 bits long to

ensure correct product.

Memory Barrel Shift
Intertace Pack/Unpack
Multiplier/
Divider ALU
LDST function unit

Figure 3.9 Block diagram of LDST function unit
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Barrel Shift

MAC

Address generator

Multiplier/ Pack/Unpack

Divider
40-bit Accumulator
Register MAC function unit

Figure 3.10 Block diagram of MAC function unit

Pack and Unpack unit are used for PACK and UNPACK instructions as introduced in

section 3.2. In Figure 3.11, Pack unit consists of two multiplexers. According to the first half

of funt field of PACK instruction, Rs.H-or Rs.L will be packed into Rd.H. On the other hand,

the last half of funt field of PACK instruction decides Rt.H or Rt.L to be packed into Rd.L.

Unpack unit consists of four multiplexers (Figure 3.12). It unpacks the 16-bit data in Rd.H

into Rs.H or Rs.L (Rd.L into Rt.H or Rt.L). Because our design is based on dual-rail data

encoding, one half of Rs (Rt) will be valid, and the other have to get from Rs (Rt). We can

perform complete detection with this way. For example, if Rd.H is unpacked into Rs.H, the

data in Rs.L still stay in its field.
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1 Rs.H
Rd.H

0 Rs.L

1 Rt.H
RdL<———

0«—RtL

Figure 3.11 Pack unit

! RAH
O I —
Rs.H/RtH ’ RdL
0l Rs.H/RLH
s Rs.L/RtL
RsLRLL =S
o [ m@ @ iy
Nap \PRdL

Figure 3:12 Unpack unit

3.4 PIPELINE ARCHITECTURE

There are six stages in our pipeline architecture: PF (Prefetch), DP (Dispatch), ID/OF

(Instruction Decode and Operand Fetch), EX1 (Execute 1), EX2 (Execute 2), and WB (Write

Back). In this section, they are described in details, and the solution of data hazards and

control hazards are going to be introduced. Data hazards are solved in ID/OF stage and

control hazards in IF stage. Figure 3.13 shows our two-way VLIW pipeline architecture.

Because our microprocessor is a two-way VLIW design, we name the path which is

responsible for data transference with data memory “path A” and another “path B” in order to

describe the features and function of datapath conveniently.
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Figure 3.13 Pipeline Architecture

3.4.1 PF and DP Stage

The instruction packet packs extra NOP instruction if the instructions in same packet
could not execute in parallel. But it may waste too memory space to store these instruction
packets. In most VLIW processor, there are some instruction compression mechanisms to
solve this problem. In our PF stage, the 64-bit instruction packet is fetched from instruction
memory. Then, the next stage (DP stage) decompresses this instruction packet. If the two
instructions in same packet could be executed in parallel, they are separated into different
execution order.

Furthermore, we solve the control hazard in DP stage. Because the utilization of pipeline
is 50%, we could pass one instruction at most. If the BEQ/BNEQ is fetched and executed in
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EX1 stage, the stall mechanism works in DP stage. After BEQ/BNEQ finishes its own job in
EX1 stage, it sends the correct target address to PC register. Then, the PF stage could fetch the
correct instruction packet.

3.4.2 ID Stage

The source operand which is used by instruction is fetched in this stage. It is also
responsible to generate control signals for instruction. The control signals are decoded in
Instruction Decoder unit. The outputs of Instruction Decoder include the control signals of
ID/OF, EX1, EX2, and WB stage. The control_signals of EX1, EX2, and WB stage are
delivered stage by stage (Figure 3.14). There are two Instruction Decodes and two sets of
control path due to two-way VLIW design, and used for MAC function unit and LDST
function unit respectively.

The two datapaths share the Register Bank. Source operands in different datapath can be
fetched simultaneously. The ID stage consists of two parts (Figure 3.15), Instruction Decoder
and Register Bank which is described in the following. Moreover, there are two paths between
DeMUX and MERGE, one is bypass line for NOP instruction, and the other is used for

common instruction.
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Figure 3.14 Control-Path

4
ackout ackout
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sel DeMUX DeMUX el
I
Instruction ] Instruction
Decoder . Decoder
rwaeracel ) Register Bank
—dst— St—
>
o MERGE MERGE wk
ack ack

e

Figure 3.15 Block diagram of ID stage
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3.4.2.1 Register Bank

Figure 3.16 shows the block diagram of Register Bank. It is consists of Operand
Decoders, Lock Queue, and Register file.
Operand Decoder: It is responsible to convert operand register number into a 32-bit
representation (1-o0f-32), which is used for selecting which register can be read. For example,
the operand register number, 00010, is decoded to 00000000000000000000000000000100, it
means the $g2 is to read.
Register file: It has six read ports and two_write ports to serve two datapaths. The operands
include operand A, operand B (the second operand of R-type instruction), immediate value

(the second operand of I-type instruction from the imm field of instruction).

HOperand Decoder HOperand Decoder

Lock Module

LA
ummaa@ Register file Write data 2 ]

Op%%nds Op%%nds

Figure 3.16 Register Bank
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Lock Module: The pipeline may have data hazard caused by two successive instructions, if
the source operand of the second instruction is the result of the first instruction. In this
situation, it may occur RAW hazard (read after write) if the result does not be written before
the second instruction gets it. Figure 3.17 shows the block diagram of Lock Module. It is
similar to Lock FIFO of Asynchronous Microprocessor designed by N.C Paver [2]. We use a
queue to store the destination register number and the concept of implement is also similar to
Lock FIFO. We modify the design of Lock FIFO simply to suit our two-way VLIW

architecture.

!

Ack pre_stage

Converter Converter ¢ J
\

A A 4

Push done

[ Rd > Converter

o Lock Queue

Wﬂ_g R ﬂE RﬂE Ack from ‘IZXJaLcll

Figure 3.17 Block diagram of Lock Module

Operand read done

The three converter units in Figure 3.17 are dual-rail to single-rail converter. (There are
same set of elements and control path at another datapath.) When Rs (Rt, Rd) is valid, the
operand register number is converted from dual-rail to single-rail, and control unit send a
request to Lock Queue to check whether it is stalled by previous instruction or not. Lock
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Queue is used for solving RAW hazard. It stores information of destination register, and

deletes the information of destination register after the results from WB stage are written into

destination register. The instruction is stalled in 1D stage if the RAW hazard occurs. There are

two Lock Queues in each datapath. They store their destination register number individually.

When instruction is executed in Lock Queue, not only it have to check its own Lock Queue,

but the another Lock Queue in anther datapath. Therefore, one of datapath may be stalled by

another. For example, there are two successive instruction packets are executed in parallel,

and their operands are list as following:

ADD $g4, $g1; $90 ... (1); ADD $92, $g1, $20 ... (2)

ADD $g5, $g2, $90 ... (3), ADD $g6, $g4. $20 ... (4)

Instruction (3) and (4) are executed follow (1) and (2). After Instruction (1) and (2)

finished the work in ID/OF stage, the contents of Lock Queue for each datapath is

LQ1 LQ2

$g4 $g2

Instruction (1) is executed in parallel with (2), and (3) is executed in parallel with (4).

Instruction (3) is stalled by (2) because one source operand ($g2) comes from (2), and (2) has

not finished. Instruction (3) and (4) cannot store their destination register number to Lock

Queue because they are stalled by Instruction (2) and (1), respectively. Instruction (3) and (4)
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cannot store their destination register number until they complete the read operand operation.

After (1) and (2) finish, the Lock Queues are updated:

LQ1 LQ2

$g5 $96

At this time, instruction (3) and (4) are not stalled anymore. The information of destination
register cannot be pushed into Lock Queue until the operands are fetched from register file.
This policy can make sure deadlock never. occur. For example, the executing instruction is
“ADD $g3, $g3, $91”, one of source operand ($g3) and the destination register ($g3) are the
same. The deadlock may occur-in ID stage if the information of the destination register is
pushed into Lock Queue before the two operands are fetched. from register file.
3.4.3 EX Stage

The EX stage is responsible for computations and returning the result to register file, and
it is separated into three stages, EX1, EX2, and WB stage. Each datapath has individual
function unit as shown in Figure 3.18 (a) and Figure 3.18 (b) due to two-way VLIW design,
and works individually. They have to wait for each other. Then, an acknowledgement signal
will be sent to previous stage. The one of datapath is responsible for MAC and branch
instruction, and the another is responsible for Load and Store instruction. The basic arithmetic

operations can be executed in both datapaths. The three stages are described in following. The
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DeMUX and MERGE pairs described in section 3.3.4 are used for selecting data flow in each
stage. If there is not work in execution stage, they can be bypassed. Figure 3.18 (a) shows the

block diagram of Path A, and Figure 3.18 (b) shows the block diagram of Path B.

’—‘ Latch 3
g=y=iy=] ]
ac Mux Miix R 2 "
ke Si -8 =
> & Cotena S EX1
A =5 = d
Path A g X IME/i ZE/ =
T = X MIUIX
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¥
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%
o ALU o
2
Py
Latch |
N7 ] Gemd -
ack 1> g EX2
To EX2/WB e weon |
La'[Ch 1n Path B Address MEM Data
T Interface T/ Memory
@ Read Data
ack (—/ J
1 2 3
MIUIX
Latch \

Write To Register
WB

Ack_MAC |Ack_LDSD

Figure 3.18 (a) Path A
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3.4.3.1 EX1 Stage

The instruction reads the contents of two registers and immediate value from pipeline
latches. It is delivered to correct path by DeMUX. In path A, there are three portions. It can
perform multiplication, division, shift, and arithmetic operations. The ALU is used for general

arithmetic operations and calculating memory address of load and store instructions.
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In path B, there are four portions. It can also perform multiplication, division, and shift.
In addition, there are sign-extended unit and address generator. The branch operation can
calculate the target address in this stage, and then, the target address is passed to DP stage to
solve control hazard caused by branch instruction.
3.4.3.2 EX2 Stage

In path A, it is separated into two parts. The first is data transfer, and the other is data
pass. Load and store instructions can fetch and store data with memory via memory interface.
On the other hand, the general instructions which do not need to read or write memory will do
nothing in this stage.

In path B, there are two portions, MAC and ALU. The MAC operation reads the contents
of 40-bit accumulator register in this stage. Then, the outcome is written into accumulator at
next stage. So we can ensure correctness of accumulator. The valid token is bypassed in this
stage if the executing instruction is branch instruction which completes its job at previous
stage.
3.4.3.3 WB Stage

WB stage is the final stage of our pipeline. It is responsible for saving the result back to
register file according to the destination register number. If instructions have finished in
previous stage, for example, “SW Rd, Rs, imm”, it has nothing to do in this stage. For
multiply-accumulates instruction, the output of MAC unit is written into 40-bit accumulator
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in this stage. The value in 40-bit accumulator could be moved into register with ACCLDH and
ACCLDL in order to support other application. Because our pipeline architecture is based on
4-phase dual-rail handshaking protocol, the accumulator is read or written at different time
due to half of utilization of pipeline stage. Finally, the datapath which finish its own job early

has to wait for another only in this stage.

46



CHAPTER 4 SIMULATION
4.1 TESTING ENVIRONMENT
We use ModelSim 6.0 to verify the correctness of the functionally. In addition, we also
synthesized our design with Design Compiler. They are synthesized by TSMC .13y m
process library. The result of area and timing report are described in the following sections.

Figure 4.1 shows the waveform of the function simulation.
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Figure 4.1 The waveform of function simulation

47



4.2 AREA SIMULATION

With TSMC .13y m processes, the area report of each stage of our two-way VLIW

processor is shown in Table 4.1. Table 4.1 shows the area of each pipeline stage except PF and

DP stage. Table 4.2 shows the area of register bank.

(u i) ID/OF EX1 EX2 WB Total
66402.3 5560.6 531.3
LDST
174762.6 | (16.5%) (1.4%) (0.13%) | 401581.1
(43.5%) 41518.4 55644.2 2742.9 (100%)
MAC
(10.3%) (13.9) (0.68%)

Table 4.1 The area report of each stage

Lock Module Register File

11116.3(y ni) | 57450.2 (u mi)

Table 4.2 The area report of register bank

4.3 TIMING SIMULATION

With TSMC .13y m processes, the timing report of each stage of our two-way VLIW

processor is shown in Table 4.2. The EX1 stages have longer latency than other stages
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because the multiplier and divider are executed in this stage. In EX2 stage, we ignore the

memory latency because the memory is based on synchronous circuit design.

(ns) ID/OF EX1 EX2 WB

LDST 65.18 10.48 2.8
22.62

MAC 65.75 61.23 2.11

Table 4.3 The timing report of each stage

49




CHAPTER 5 CONCLUSION AND FUTURE
WOROKS

In this thesis, we have implemented a two-way VLIW processor based on asynchronous
circuit design with four-phase dual-rail handshaking protocol. It is a six-stage pipeline
architecture. Each stage can execute in variable length of time due to asynchronous circuit
nature. It can reduce the instruction memory space via instruction compression. In addition, it
also supports SIMD application and multiplier-accumulate operation. There are nine
instructions for SIMD application. Moreaover, .the DeMUX and MERGE can be used to
improve the performance. The datapath can be separated into several parts. If the function
units between DeMUX and MERGE are not used, the DeMUX will bypass these function
units.

In our datapath design, it has two read ports and one write ports for each datapath. We
could try to increase the read and write ports in register file in order to improve the
performance of SIMD application because the Unpack instruction has to perform twice to
unpack a 32-bit value to the destination register. More important, we wish this light-weight
asynchronous core could be used to construct a multi-core processor via interconnection

network in the future.
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