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非同步雙道超大指令字組處理器之資料路徑設計 

 

研究生：李國成                      指導教授：陳昌居 教授 

 

國立交通大學資訊科學與工程研究所 

 

摘  要 

過去數十年來，計算機架構發展快速，然而因為過去技術上的困難，在1940年代開

始計算機架構的設計方式為了避免很多在非同步電路系統中可能衍生的問題而選擇了

有clock的設計方式，因此現今大部分處理器都以同步系統為基礎而持續發展中。 

然而這幾年來，處理器的發展已經由高時脈進入平行處理發展階段。到目前為止處

理器的設計方向轉向多核心處理器發展，試圖以多核心處理器的技術來取代高時脈以達

到效能提升的目的，而時脈造成的耗電與熱能皆無法有效避免。而處理器在非同步系統

的發展也有持續研究與成果展現，如：由英國曼徹斯特大學(University of Manchester)

發表的AMULET系列微處理器。因此本篇論文嘗試以非同步系統為基礎實作出一個架構簡

單、適合建構成多核心處理器的超長指令字組非同步核心，期望未來把多個輕量化非同

步核心以interconnection network作連結變成一個多核心非同步處理器。最後我們將

這個超長指令字組非同步核心以Synopsys Design Compiler來做合成，使用的是TSMC 

0.13微米的元件資料庫並且以ModelSim 6.0模擬及驗證設計的正確性。 
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VLIW Processor 

 

Student：              Advisor：Dr. Chang-Jiu Chen 

 

Institute of Computer Science and Engineering 
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National Chiao Tung University 

 

Abstract 

Most modern processors are based on synchronous circuit design nowadays. The current 

trend of processors is towards multiprocessor because the higher power consumption and heat 

energy caused by clock distribution. Moreover, embedded multimedia system and Digital 

Signal Processor are more and more popular in recent years. DSPs are developed for handling 

a large number of image data. They improve performance with VLIW and SIMD in some 

instances. However, they are all based on synchronous circuit design. The clock distribution 

may cause a serious problem in complex systems. 

 In this study, we try to design a light-weight core based on asynchronous circuit design. 

It is an asynchronous two-way VLIW processor and includes some special instructions for 

SIMD application. In the future, we can develop an asynchronous multi-core processor which 

is made up of this asynchronous two-way VLIW processor via interconnection network. 

Finally, the correct of function is verified by ModelSim 6.0 and synthesized by TSMC .13μ

m process library. 
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CHAPTER 1 INTRODUCTION 

1.1 MOTIVATIONS 

Most microprocessor designs are based on synchronous circuit design in past decades. In 

order to improve the performance of processor, the technique of microprocessor design is 

made progress from pipeline to superscalar and VLIW in recent years. But they were based, 

for the most part, on higher frequency of clock such as Intel Pentium


 4 [14]. The higher 

frequency of clock may cause more power consumption and heat energy. As frequency of 

clock is getting higher, the problem is getting worse. So the policy of microprocessor design 

is changed into multiprocessor such that attempting to reduce the influence of these problem 

caused by higher frequency of clock. There are some instances for this police, for example, 

IBM Cell Broadband Engine [13]. 

Furthermore, embedded multimedia system and Digital Signal Processor are more and 

more popular in recent years. Comparing with general purpose processor mentioned in above, 

DSPs are developed for handling a large number of image data. They used some techniques, 

such as VLIW and SIMD, to improve performance. However, they are all based on 

synchronous circuit design. When cores in processor become more and more large, the clock 

distribution may be a serious problem in complex systems. 

In our implementation, we aim at designing an asynchronous two-way VLIW processor 

with asynchronous circuit design. It is implemented to avoid some problem such as clock 



 

2 
 

skew and worst-case timing delay in synchronous circuit design by the advantages of 

asynchronous circuit [1]. Moreover, we also design the datapath to support the functions of 

DSP, such as SIMD and MAC. The design policies of our two-way VLIW processor are 

simple and modular in order to build a light-weight core which is used to construct 

multiprocessor with asynchronous circuit design in the future. 

1.2 THE ORGANIZATION OF THIS THESIS 

This thesis proposes the datapath design of asynchronous two-way VLIW processor. In 

Chapter 1, the motivation is presented. In Chapter 2, some basic asynchronous circuit design 

concepts and related works which include some microprocessors for general purpose in 

asynchronous circuit design today will be introduced. In Chapter 3, we introduce datapath of 

our two-way VLIW processor, instruction set architecture, and pipeline architecture. In 

Chapter 4, we show the simulation result and area report. Finally, a conclusion and future 

works are shown in Chapter 5. 
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CHAPTER 2 BACKGROUND AND RELATED 

WORKS 

This section will introduce what is asynchronous circuit design, ex: advantages, 

handshaking protocols, Muller Pipeline, Muller C-element of asynchronous circuit design [1]. 

Two pipeline architectures of processor are also listed in this chapter. 

2.1 ASYNCHRONOUS CIRCUIT DESIGN 

Asynchronous circuits design is a kind of circuit design methodology. Asynchronous 

circuit is practically different from synchronous circuit because all components communicate 

with each other by handshaking protocols in asynchronous circuit, whereas share and notice 

the clock signal in synchronous circuit. The following will list subjects about asynchronous 

circuits design. 

2.1.1 Advantages 

Comparing with the synchronous circuit design, the asynchronous circuit design has no 

global clock. As a result of no global clock, the asynchronous circuit design has some 

benefits： 

 Low power consumption: Asynchronous circuits do not need to generate global clock to 

fire component, and therefore could save power caused by clock tree. Moreover, each 

module works only when and where needed, this means that module is idle at the other 

time. 



 

4 
 

 No clock distribution and clock skew problems：In synchronous circuit, components 

communicate with each other by clock distribution. Clock skew is a serious problem. 

Asynchronous circuit is in opposition to synchronous circuit on this question because 

there is no clock in asynchronous circuit. 

 Average-case performance: The elasticity of asynchronous pipeline has led to the result 

that the asynchronous pipeline can work in average case time rather than worst case time 

for pipeline stage. When component in asynchronous circuit has been completed its job, 

it could sent a request signal to receiver and wait to perform next new job until receiver 

send acknowledge signal back. However, the pipeline of synchronous circuits select the 

longest time for the stage which need more time slice. On the contrary, asynchronous 

pipeline allow every stage work in individual time due to handshaking protocol. Hence, 

asynchronous pipeline could works in average-case performance. 

 Modularity: Different modules from different designers may have different clock 

distribution in synchronous circuit design. To combine two or more components will 

probably become a challenge. Due to handshaking interface and individual time for 

every stage, it can be done easily in asynchronous circuit design. Designers do not need 

to maintain synchronization between distinct modules. Each module has its complete 

time and does not influence other modules. 

But there are also some drawbacks. Because all components of asynchronous circuit 
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communicate with each other by handshaking protocols, area and power consumption due to 

the control logic for handshaking are unavoidable. 

2.1.2 Handshaking Protocol 

Handshaking protocol is used to communicate between two components in asynchronous 

circuit design. It can be separated some solution space as the cross product as following: 

{ two-phase, four-phase} x { bundled-data, dual-rail, 1-of-n, …}. 

In this solution space of handshaking protocol, the bundled-data and dual-rail data are 

the two most common data encodings. The four-phase bundled-data protocol is usually used 

for asynchronous circuit designs (Figure 2.1). It has two control signals, REQ and ACK, 

between SENDER and RECEIVER used to control all of transfer steps (Figure 2.1 (a)). The 

four-phase handshaking protocol is also known as return-to-zero protocol because REQ and 

ACK signals have to return to zero when a transaction is completed between SENDER and 

RECEIVER (Figure 2.1 (b)). Initially, REQ and ACK signals are all “0”. When valid data 

arrive or ready at SENDER, REQ is set to “1” and sent to RECEIVER by SENDER (1). Then, 

RECEIVER has accepted the data from SENDER, ACK is set to “1” and sent to SENDER by 

RECEIVER (2). After SENDER receives the ACK signal from RECEIVE, REQ is set to “0” 

(3), and then RECEIVER will pulls down ACK signal to “0” when receives REQ = 0 from 

SENDER, too (4). After these four steps, SENDER and RECEIVER complete a handshaking. 

At this time, SENDER and RECEIVER can start next transaction (5). 
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SENDER RECIEVER

REQ

DATA

ACK

 

Figure 2.1 (a) Bundled-data channel. 

REQ

ACK

DATA
1

3

42

 

Figure 2.1 (b) Four-phase handshaking protocol. 

The other way of four-phase handshaking protocol is four-phase dual-rail data protocol 

(Figure 2.2 (a)). Compared with data channel of four-phase bundled-data protocol, it has no 

REQ signal. Dual-rail channel encodes 1-bit data with 2-bits. The encoding method is shown 

in Table 2.1. It use 00 to express there is no data in EMPTY state, 01 to encode the data of 0 

and 10 to encode the data of 1 in VALID state, respectively. By the way, the 11 is not used in 

dual-rail data encoding. If the system uses dual-rail data encoding to transfer n-bits data, it has 

2*n data lines to indicate a valid data. 
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SENDER RECIEVER
DATA

ACK

2n
 

Figure 2.2 (a) Dual-rail channel. 

 d.t d.f 

Empty “E” 0 0 

Valid “0” 0 1 

Valid “1” 1 0 

Not used 1 1 

Table 2.1 Encoding Method. 

There is no REQ signal because of dual-rail data encoding, the RECEIVER needs extra 

circuits to detect whether DATA signals arrive or not. This detection design in dual-rail 

circuits is called complete detection. 

Figure 2.2 (b) shows the process of data transfer using dual-rail protocol. Initially, DATA 

is EMPTY, and ACK signal is 0. When DATA is Valid and RECEIVER detects that DATA is 

ready, RECEIVER captures DATA and pulls up ACK. Then SENDER stops sending valid 

DATA and changes state of DATA to EMPTY. Finally, RECEIVER pulls down ACK signal to 

0 and this transaction is completed. 
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ACK

DATA EMPTY VALID EMPTY VALID

 

Figure 2.2 (b) Four-phase dual-rail protocol. 

Valid DATA is separated by EMPTY token in four-phase dual-rail protocol. SENDER 

must return to EMPTY state after RECEIVER captures the valid DATA. Then, it can start 

next transaction. Thus, the sequence of state is EMPTY – VALID – EMPTY – VALID (Figure 

2.3). 

E 10

 

Figure 2.3 Transfer diagram 

The two-phase handshaking protocol is different from all of above due to the meaning of 

the signal edges. As showing in Figure 2.4, a signal transition means that a transaction 

between SENDER and RECEIVER is completed. The rising edges and falling edges in 

two-phase handshaking protocol have no difference. For example, when the data of SENDER 

is ready, SENDER sets the REQ to “1” (initial：“0”). Then RECEIEVER gets data and sends 

ACK signal to SENDER with “1” (initial：“0”). This transaction is completed, and next 

transaction starts with REQ changed into “0” at SENDER side. Two-phase handshaking 
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protocol is also known as non-return-to-zero protocol. 

REQ

ACK

DATA
 

Figure 2.4 Two-phase handshaking protocol. 

2.1.3 Muller C-element 

Muller C-element [1] is a basic component in asynchronous circuit design. It is used to 

state-holding or construct the latch between pipeline stages. The function behaviors of Muller 

C-element are shown in Table 2.2. When both inputs are 0, the output Z is set to 0. When both 

inputs are 1, the output Z is set to 1. If the inputs are different (ex：01、10), the output Z will 

keep previous output. In other words, the output Z is only changed when all inputs are the 

same. Figure 2.5 (a) shows the symbol and gate-level design of C-element, and Figure 2.5 (b) 

shows the C-element with reset signal. 

Input A Input B Output Z 

0 0 0 

0 1 No change 

1 0 No change 

1 1 1 

Table 2.2 function behaviors of Muller C-element. 
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A
A

B

B

C Z Z

 

Figure 2.5 (a) Muller C-element. 

A

A

B

B

C Z

Z

reset

reset

 

Figure 2.5 (b) Muller C-element with reset signal. 

2.1.4 Asynchronous Pipelines 

Muller pipeline is a pipeline architecture with four-phase bundled-data protocol [1]. 

Most of asynchronous pipeline is based on Muller pipeline (Figure 2.6). Muller pipeline has 

several characteristics as following: 
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1. It is delay-insensitive handshake machine. 

2. When pipeline is full, only half of the latches of pipeline store data. 

3. If the RIGHT side is slower than the LEFT side, this pipeline may fill and stall. 

4. Timing depends on local delays, so Muller pipeline could work in average case 

performance. 

LEFT RIGHT

REQ

ACK

REQ REQ REQ

ACK

ACK

ACK

ACK

C[i-1] C[i] C[i+1] C[i+2]

C C C C
… …

 

Figure 2.6 Muller pipeline. 

Figure 2.7 (a) shows the four-phase bundled data pipeline [1] which based on Muller 

pipeline. It is similar to synchronous pipelines and master-slave flip-flops. In order to 

maintain correct behaviors, matching delay should be inserted in the request signal paths. 

Figure 2.7 (b) shows a four-phase bundled data pipeline with data processing and delay 

element on REQ signal. 
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C

Latch Latch Latch

En En En

REQ REQ REQ

ACK

ACK
ACK

ACK

REQ
C C

 

Figure 2.7 (a) Four-phase bundled-data pipeline 

C

Latch Latch Latch

En En En

REQ REQ REQ

ACK

ACK

ACK
ACK

REQ

Latch Latch Latch

Delay Delay Delay
C C

 

Figure 2.7 (b) Four-phase bundled-data pipeline with data processing and delay element. 

A four-phase dual-rail pipeline is also based on Muller pipeline with the request 

eliminated by the 1-of-2 data encoding. Figure 2.8 shows the four-phase dual-rail pipeline 

model [1], and it must have complete-detection mechanism composed of or-gate because 

there are not REQ lines. 

C

ACK

ACK
ACK

ACK

C C

C

C

C

C

C

C

C

C

C

C

C

C

a.t

a.f

b.t

b.t

 

Figure 2.8 Four-phase dual-rail pipeline architecture (2-bit wide). 
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2.2 PROCESSORS OVERVIEW 

 In this section, we will introduce some solution about processor with asynchronous 

circuit design; in addition, we’ll also describe some popular Digital Signal Processors (DSPs) 

today. They are AMULETs [2, 3, 4], Microchip’s PIC18, NCTUAC18 [5], and TITAC [7, 8], 

which are based on asynchronous circuit design. SPXK5 [9], TMS320C55x [10], and 

TMS320C64x [11] are based synchronous circuit design. 

2.2.1 AMULET Microprocessors 

AMULET microprocessors were proposed by AMULET group of the University of 

Manchester in 1994. Serious of AMULET microprocessors include AMULET1 [2], 

AMULET2e [3] and AMULET3 [4]. They are asynchronous processors, and AMULET1 uses 

two-phase communication protocol. Figure 2.9 shows the architecture of AMULET1. 

Address out

PC pipe

Registers

Multiplier

Shifter

imm. extr.

IpipeData inData out

Instruction 
decode

AL
U

Address
Interface

Register
Bank

Data
Interface

Excute
Unit

 

Figure 2.9 Architecture of AMULET1. 
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AMULET2e is a redesign of AMULET1 for embedded systems with on-chip memory. It 

is implemented with four-phase handshaking protocol. AMULET3 was also redesigned 

architecture and presented between 1996 and 1998. It has branch target prediction and goal of 

higher performance than AMULET1 and AMULET2e. 

2.2.2 Microchip’s PIC18 and NCTUAC18 

The PIC18 is developed by Microchip. Figure 2.10 shows the system block diagram and 

Table 2.3 lists the basic categories of instruction set of PIC18 and their operands needed. 

There are some characteristics of PIC18 as following: 

1. It is an 8-bit RISC microcontroller based on the Harvard architecture. 

2. There are two memories: instruction memory (up to 2MB) and data memory (up to 4MB) 

follow 16-bit wide instruction and 8-bit wide data respectively. PIC18 has 16 banks of 

256 bytes data memory. 

3. It provides 77 available instructions. 

4. Two-stage instruction pipeline. 

5. There are up to five I/O ports available. 
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Reg Stack

ALU Mult

Decoder

Instruction 
Memory

Data 
Memory

Peripherals

PIC18

 

Figure 2.10 System block diagram of PIC18. 

Instruction type Operands 

Byte-oriented F D A 

Bit-oriented F B A 

Literal K F’  

Control N S  

Table 2.3 Basic categories of instruction set of PIC18 and their operands needed. 

The meaning of letter in Table 2.3 is list in the following: 

F: The file register. It means which file register is to be used by the instruction. 

D: The destination of the result. It specifies where the result of the operation is to be placed. 

A: The accessed memory.  

B: The bit in the file register. It selects the number of the bit affected by the operation. 

K: A literal value to be loaded in a file register. 

F’: The desired FSR register to load the literal value into. 
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N: A program memory address. 

S: The mode of the CALL or RETURN instructions. 

The NCTUAC18 was proposed by NCTU in 2009 [5]. It is also a RISC processor which 

implemented with asynchronous circuit design based on QDI delay-model and four-phase 

dual-rail handshake protocol. The execution and write back stage are combined to one stage to 

avoid data hazard. Figure 2.11 shows the block diagram of APIC18 with 4-stage pipeline 

architecture. 

Instruction
Memory

Date Memory

IF ID OF
EX/
WB

Memory controller

PC Registers

 

Figure 2.11 Block diagram of APIC18 with 4-stage pipeline architecture. 

A new implementation, APIC18S, to solve this performance degradation was proposed 

by NCTU in 2007 [6].  
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2.2.3 TITAC 

 TITAC and TITAC-2 [7, 8] developed in Tokyo Institute of Technology are 

asynchronous processor. They are implemented with two-phase dual-rail handshaking 

protocol. TITAC is a 8-bit asynchronous processor with a single-accumulator architecture 

based on quasi-delay-insensitive (QDI) delay model [1]. TITAC-2 [8] developed in 1997 is a 

32-bit asynchronous processor. It is based on scalable-delay-insensitive (SDI) delay model [8]. 

There is a 8-Kbyte instruction cache on TITAC-2. In addition, the instruction set of TITAC-2 

is similar to MIPS-R2000. The instructions are classified into ten categories as following: 

logical, arithmetic, multiply, divide, compare, shift, load, store, branch, and privileged 

instructions. Figure 2.12 shows the block diagram of TITAC-2 with 5-stage pipeline 

architecture. 

IF ID EX ME

Memory controller

PC

Registers

WB

I-cache

address data

Write buffer

 

Figure 2.12 The pipeline architecture of TITAC-2 
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2.2.4 DSPs 

Digital signal processor is particular microprocessor used for fast operation about digital 

signal processing. In general, it requires large number of mathematical operations for image 

or audio processing. Many digital signal processors exist today such as SPXK5 [9], 

TMS320C55X, and TMS320C64x developed by TEXAS INSTRUMENTS [10, 11]. Follows 

are some features of digital signal processors. 

1. Based on Harvard architecture. 

2. There are some special instructions for SIMD. 

3. Memory architecture is designed for streaming data. 

4. Multiply-accumulates unit (MACs) is used for highly arithmetic operations 

5. Bit-reversed addressing for calculating FFTs. 

6. In order to improve the whole performance, VLIW techniques could support digital 

signal processor in instruction level parallelism.   
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CHAPTER 3 DESIGN AND IMPLEMENTATION 

We introduce the background of asynchronous circuit design and list some processors 

designed by asynchronous circuit in previous sections. In this chapter, we will describe 

pipeline architecture in details and focus on datapath of our two-way VLIW microprocessor. 

The result of simulation will present in Chapter 4. 

3.1 ARCHITECTURE OVERVIEW 

All of components of our two-way VLIW microprocessor are implemented based on 

4-phase dual-rail handshaking protocol, QDI delay model, and developed with Verilog 

hardware description language. Figure 3.1 shows the architecture overview of our two-way 

VLIW microprocessor.  

There are two memories: Instruction Memory (64-bit wide), Data Memory (32-bit wide). 

The datapath includes Register Bank, MAC function unit, LDST function unit, and a 40-bit 

accumulator in MAC function unit. The instruction packets are constructed of two 32 bits 

long instructions. If the two instructions cannot be executed in parallel, they are packed into 

different instruction packet. This job can be done in Instruction Fetch stage and Instruction 

Dispatch stage. After Instruction Dispatch stage, the two instructions of 64-bit instruction 

packet are issued to appropriate datapath. The first instruction is executed in MAC function 

unit, and the other is operated in LDST function unit.  
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Program Counter Module handles the execution sequence of instructions. It includes an 

increment unit to perform PC+1. The effective target address which is decided by branch 

instruction to jump is selected in Program Counter Module.  

Register 
Bank

Instruction Fetch 

Instruction Dispatch 

MAC FU LD/ST FU

Instruction 
Memory

Data
Memory

Writ
e PC

Memory Interface

Data Path

 

Figure 3.1 Architecture Overview 
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Instruction type MAC LDST 

Arithmetic operations ● ● 

Multiplication/Divison ● ● 

MAC 

(multiply-accumulates) 

●  

Branch ●  

Load/Store  ● 

SIMD ● ● 

Table 3.1 Issue of instruction. 

 

There are 32 registers in register file (Figure 3.2). Five are system registers among them, 

zero register ($0), stack pointer ($sp), repeat count ($rp), return address ($ra), and basic block 

($bb). Twelve could support SIMD operation to be divided into two 16-bit register ($sd0H, 

$sd0L, …). Fifteen are general-purpose 32-bit registers. Table 3.1 lists what kinds of 

instructions are executed in MAC function unit or LDST function unit. Pipeline architecture, 

instruction set architecture, MAC FU, and LDSD FU will be described in details in following 

section. 
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$0

$sp

$rp

$ra

$bb

$g0

$g1

$g13

$g14

…

$sd0H $sd0lL

$sd1H $sd1L

$sd10H $sd10L

$sd11H $sd11L

…

Five system 
registers

Twelve SD 
registers

Fifteen general 
purpose registers

 

Figure 3.2 Register file 

We use fixed-point number representation system in our design. The digit-vector is 

denoted by X = (X31, X30, …, X1, X0). The X can represent three kinds of numbers in our 

number system. They are signed integers, unsigned integers, and unsigned real numbers. The 

signed integers can represent from -2
31

-1 to 2
31

-1. The unsigned integers can represent from 0 

to 2
32

-1. The unsigned real numbers are denoted by fixed<16, 16>. The first half of bit pattern 

(X31, X30, …, X17, X16) means non-negative numbers, and the last half of bit pattern means 

fraction. For example, if X = 00000000000101111000000000000000, it is 23.5 

(0000000000010111.1000000000000000) in fixed-point number representation system. 

3.2 INSTRUCTION SET 

Our instruction set architecture is similar to MIPS. Each instruction is 32 bits long that 

divided into several fields. The instructions can be classified into two categories as following: 

 R-type operations 

 I-type operations 
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Table 3.2 shows the instruction format and Table 3.3 lists our available instructions. 

 5 bits 5 bits 5 bits 5 bits 5 bits 6 bits 1 bit 

R-type/MAC Opcode Rd Rs Rt Shamt Funt P bit 

I-type Opcode Rd Rs Immediate P bit 

Table 3.2 Instruction Format 

The meaning of each fields of instruction format is described in the following: 

 Opcode: Operation code. It indicates which operation is performed. 

 Rd: The register destination operand. The result of instruction is stored to this register if 

need. 

 Rs: The first source operand of instruction. 

 Rt: The second source operand of instruction. 

 Shamt: The amount of shift is specified in this field. It specifies the shift operations are 

going to shift source operand with values. 

 Funt: It is used to indicate which operation of R-type instructions is performed. If the 

executing instruction is I-type instruction, this field is filled with 0. 

 P bit: It implies whether current operation can be executed with other operation in 

parallel. 1: means can be executed in parallel with other operation. 

 Immediate: An immediate value for I-type instructions. 
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Note: 

 R-type instruction includes all of arithmetic operations. They have the same opcode. The 

operation of R-type instruction is executed according to Funt field. 

 The special instruction type, MAC, has the same instruction format with R-type 

instruction. 

 The three fields, Rd, Rs and Rt, are 5 bits because there are 32 registers in our 

implementation.  

 The shamt field has the similar reason because the registers are 32 bits. 

Instruction Description 32-bit instruction word 

NOP - 00000000000000000000000000000000 

MAC operations 

MAC $0, Rs, Rt Acc = Acc + Rs.L*Rt.L 1001100000sssssttttt00000010000p 

ACCLDH Rd Rd = Acc[39:32] 10011ddddd000000000000000010001p 

ACCLDL Rd Rd = Acc[31:0] 10011ddddd000000000000000010010p 

ALU operations 

ADD Rd, Rs, Rt Rd = Rs + Rt 00001dddddsssssttttt-----000000p 

ADDU Rd, Rs, Rt Rd = Rs + Rt 

(Unsigned) 

00001dddddsssssttttt-----000001p 

SUB Rd, Rs, Rt Rd = Rs – Rt 00001dddddsssssttttt-----001000p 

SUBU Rd, Rs, Rt Rd = Rs – Rt 

(Unsigned) 

00001dddddsssssttttt-----001001p 

AND Rd, Rs, Rt Rd = Rs & Rt 00001dddddsssssttttt-----010000p 

OR Rd, Rs, Rt Rd = Rs | Rt 00001dddddsssssttttt-----010001p 

XOR Rd, Rs, Rt Rd = Rs ♁ Rt 00001dddddsssssttttt-----010010p 

MIN Rd, Rs, Rt Rd = min(Rs, Rt) 00001dddddsssssttttt-----101000p 

MAX Rd, Rs, Rt Rd = max(Rs, Rt) 00001dddddsssssttttt-----110000p 

ABS Rd, Rs, $0 Rd = |Rs| 00001dddddsssssttttt-----111000p 

SLT Rd, Rs, Rt If (Rs < Rt) Rd = 1 00001dddddsssssttttt-----100000p 

SRL Rd, Rs, shamt Rd = Rs >> shamt 00001dddddsssssttttt-----011000p 

SRA Rd, Rs, shamt Rd = Rs >> shamt (sign 00001dddddsssssttttt-----011001p 



 

25 
 

extend) 

NOT Rd, Rs, $0 Rd = Rs + $0 00001dddddsssssttttt-----111010p 

ADDI Rd, Rs, imm Rd = Rs + imm 00010dddddsssssiiiiiiiiiiiiiiiip 

ADDIU Rd, Rs, imm Rd = Rs + imm 

(unsigned) 

00011dddddsssssiiiiiiiiiiiiiiiip 

SUBI Rd, Rs, imm Rd = Rs – imm 00100dddddsssssiiiiiiiiiiiiiiiip 

ANDI Rd, Rs, imm Rd = Rs & imm 10000dddddsssssiiiiiiiiiiiiiiiip 

ORI Rd, Rs, imm Rd = Rs | imm 10001dddddsssssiiiiiiiiiiiiiiiip 

XORI Rd, Rs, imm Rd = Rs ♁ imm 10010dddddsssssiiiiiiiiiiiiiiiip 

Data transfer operations 

MOV Rd, Rs Rd = Rs + $0 00001dddddsssssttttt-----000100p 

MOVI Rd, $0, imm Rd = imm + $0 01110dddddsssssiiiiiiiiiiiiiiiip 

MOV.l Rd, Rs Rd.L = Rs.L + $0 00001dddddsssssttttt-----000101p 

MOV.h Rd, Rs Rd.H = Rs.H + $0 00001dddddsssssttttt-----000110p 

LW Rd, Rs, imm Rd = Mem[imm+Rs)] 11000dddddsssssiiiiiiiiiiiiiiiip 

SW Rd, Rs, imm Mem[imm+Rs) = Rd] 11100dddddsssssiiiiiiiiiiiiiiiip 

Branch operations 

BEQ Rd, Rs, imm If(Rs == Rd) PC = 

PC+imm 

01100dddddsssssiiiiiiiiiiiiiiisp 

BNEQ Rd, Rs, imm If(Rs != Rd) PC = PC + 

imm 

01101dddddsssssiiiiiiiiiiiiiiisp 

RETURN $ra Jump to address in $ra 0101000000000110000000000000000p 

CALL imm Save PC to $ra and 

jump to imm 

010110011100000iiiiiiiiiiiiiiiip 

SIMD operations 

PACK Rd, Rs, Rt, l/r, l/r Rd.H = (Rs.H or Rs.L);  

Rd.L = (Rt.H or Rt.L); 

10100dddddsssssttttt-----lllrrrp 

UNPACK Rd, Rs, Rt, l/r, l/r (Rs.H or Rs.L) = Rd.H; 

(Rt.H or Rt.L) = Rd.L; 

10101dddddsssssttttt-----lllrrrp 

ADD.D Rd, Rs, Rt Rd.H = Rs.H + Rt.H; 

Rd.L = Rs.L + Rt.L; 

00001dddddsssssttttt-----000010p 

ADDU.D Rd, Rs, Rt Rd.H = Rs.H + Rt.H; 

Rd.L = Rs.L + Rt.L; 

00001dddddsssssttttt-----000011p 

SUB.D Rd, Rs, Rt Rd.H = Rs.H - Rt.H; 

Rd.L = Rs.L - Rt.L; 

00001dddddsssssttttt-----001010p 

SUBU.D Rd, Rs, Rt Rd.H = Rs.H - Rt.H; 

Rd.L = Rs.L - Rt.L; 

00001dddddsssssttttt-----001011p 
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MIN.D Rd, Rs, Rt Rd.H = min(Rs.H, 

Rt.H); 

Rd.L = min(Rs.L, Rt.L); 

00001dddddsssssttttt-----101001p 

MAX.D Rd, Rs, Rt Rd.H = max(Rs.H, 

Rt.H); 

Rd.L = max(Rs.L, Rt.L) 

00001dddddsssssttttt-----110001p 

ABS.D Rd, Rs, $0 Rd.H = |Rs.H|; 

Rd.L = |Rs.L| 

00001dddddsssssttttt-----111001p 

Table 3.3 Instruction Set 

There are also several special instructions used for single-instruction multiple-data 

(SIMD) application. We can improve the throughput of pipeline with data level parallelism 

via SIMD operations. We have nine instructions for SIMD application. They are described as 

following. 

5 bits 5 bits 5 bits 5 bits 5 bits 6 bits 1 bit 

Opcode Rd Rs Rt shamt funt End bit 

The instructions used for SIMD application have same instruction format with R-type 

instructions. PACK instruction packs two 16-bit data into a 32-bit register. The funt field of 

PACK instruction is separated into two portions, the first half of funt field indicates the first or 

the last half of Rs will be packed into Rd, the last half of funt field is used for Rt. As Figure 

3.3  shows, the 16-bit data from the first or the last half of Rs will be packed into the first 

half of Rd, and the 16-bit data from Rt will be packed into the last half of Rd. 
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Rs

Rt

Rd
 

Figure 3.3 PACK instruction 

UNPACK instruction unpacks two 16-bit data in Rd into Rs and Rt. Because there is one 

write bus in our implementation, we have to use two UNPACK instructions to unpack the two 

16-bit data. Fortunately, these two unpack instruction can be executed in parallel due to 

two-way VLIW design. ADD.D and SUB.D instructions perform two 16-bit add or subtraction 

operations in parallel. ADDU.D and SUBU.D instructions perform the same operations with 

ADD.D and SUB.D, but the source data of ADDU.D and SUBU.D is unsigned value. MIN.D 

and MAX.D instruction select the minimum or the maximum respectively. ABS.D instruction 

calculates the absolute value of two 16-bit values located in the first and last half of Rs. These 

instructions are executed in the first and last half of sources. Then, the outcomes are placed in 

destination register at same time. 

3.3 CONSTRUCT THE BASIC ELEMENTS 

In the following, we will introduce the basic elements of our two-way VLIW 

microprocessor and DI circuits. They are modeled in gate level. 
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3.3.1 Registers 

The registers of our two-way VLIW microprocessor is similar to TITAC’s ones [7, 8]. It 

is showed in Figure 3.4 (a). It is made of four AND gates, two OR gates, and two NOR gates. 

The NOR gates are used to keep the value of data. The valid data is hold between NOR gates 

and two AND gates which are connected with read signal. If the inputs of register are empty 

token (din.t = 0 and din.f = 0), it will not be written. The registers are not flashed until next 

valid information arrives. There is a complete detection of write operation. This detection is 

composed of two AND gates and one OR gate. When write operation is finished, the “ack” 

signal is set to 1 (dotted line in Figure 3.4).  

Moreover, in order to read information of register, the read signal is set to 1. The $g0 is a 

special register (Figure 3.4 (b)) in our two-way VLIW microprocessor. Its outputs are always 

zero and not allowed for writing. Moreover, all registers should be read and written at 

different time in order to get the correct data. 

din.t

din.f

dout.t

dout.f

read ~read

ack

 

Figure 3.4 (a) 1-bit Register 
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dout.t

dout.f

read
~read

reset

 

Figure 3.4 (b) Zero Register 

3.3.2 Dual-rail Gates 

Figure 3.5 shows the 2-input dual-rail AND gate composed of four C-elements and one 

or gate. The outputs are valid when all inputs are valid data. We construct other logic gates, 

OR, XOR, which are needed with same concept. Table 3.4 is the truth table of 2-input 

dual-rail AND gate. 

din1.f

C

din1.t

din2.f

dinf.t

out.f

out.t

C

C

C

 

Figure 3.5 The 2-input dual-rail AND Gate 

din1.t din1.f din2.t din2.f out.t out.f 

0 1 0 1 0 1 

0 1 1 0 0 1 

1 0 0 1 0 1 

1 0 1 0 1 0 

Table 3.4 The truth table of 2-input dual-rail AND gate 
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3.3.3 C-Latch 

Our pipeline latches (Figure 3.6) are made up of C-element with reset. C-latch are 

designed the same as Muller pipeline design. It keeps the valid data until the acknowledge 

signal changed from 1 to 0. When the valid data in C-latch is delivered to next pipeline stage, 

it sends a acknowledge signal, 1, to previous stage. Then, current stage can start a new 

process. On the other hand, if empty token is delivered, it sends an acknowledge signal, 0, to 

previous stage. These latches in pipeline have 50% utilization at most due to four-phase 

protocol. 

ACK_IN

ACK_OUT

Din.t

Din.f

Out.t

Out.f

C

C
 

Figure 3.6 C-Latch 

3.3.4 DeMUX and MERGE 

Each datapath may have different works to do. In order to improve the utilization of 

function unit, there are several datapath executed in parallel possibly. In synchronous circuit 

design, it uses a multiplexer to select the result to output. In DI circuits of asynchronous 

processor design, it could be designed that operations are executed in different length of time, 

and maybe the function units are not used. DeMUX and MERGE are used for this situation. It 
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can select one of datapaths between DeMUX and MERGE, and the other function units which 

are not in selected datapath are idle. Therefore, the idle function units are not active. It can 

save power in the way. Figure 3.7 shows the DeMUX and MERGE. The DeMUX consists of 

two C-elements, and MERGE is made of OR gate because only one function block is active 

and the other function block will be NULL. 

Function block

Function block

Din 

Sel.t

Sel.f

C

C

DeMUX MERGE

Dout

 

Figure 3.7 DeMUX and MERGE 

3.3.5 Memory Interface 

In our two-way VLIW microprocessor implementation, we use the traditional 

synchronous memory. Because the pipeline architecture is based on asynchronous circuit 

design, it needs an interface to communicate between the function unit and synchronous 

memory. The Memory Interface converts dual-rail form into single-rail form (Figure 3.8). It 

sends a request signal to synchronous memory when the read signal and address of LDST 

function unit arrive. The data will send back to LDST function unit in delay_1. On the other 
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hand, the write operation uses the same conception. Note that read and write operation are not 

worked at same time. 

Addr.t[0]

Addr.f[0]

Addr.t[31]

Addr.t[31]

Addr[0]

Addr[31]

Delay 1

C

Memory 
Interface

Sync MEM

Read_data[0]

Read_data[31]

Read_data.f[0]

Read_data.t[0]

Read_data.f[31]

Read_data.t[31]

LDST EX2

Write_data.f[0]

Write_data.t[0]

Write_data.f[31]

Write_data.t[31]

Write_data[0]

Write_data[31]

C

W_Done.f Delay 2 Write_REQ

Read_REQ

C

Read_Req.t

Read_Req.f

C

W_Done.t

 

Figure 3.8 Memory Interface 



 

33 
 

3.3.6 MAC and LDST function units 

Figure 3.9 and Figure 3.10 show the block diagram of MAC and LDST function. There 

are two ALUs, barrel shifters, signed multipliers, pack unit, unpack unit, and unsigned 

dividers. The ALU can perform common arithmetic, logic, and SIMD operations. Multiplier 

can accept two 16 bits inputs, and then, generates a 32 bits long product. It is based on shift 

and add algorithm and constructed of four ripple-carry-save adders. Each ripple-carry-save 

adder is made up by n+1 full adders (n: wide of input). The last two full adders work for 

signed bit, and pass to next stage. In this way, we avoid extending the input to 32 bits long to 

ensure correct product. 

Memory 
Interface

Barrel Shift

Multiplier/
Divider

ALU

LDST function unit

Pack/Unpack

 

Figure 3.9 Block diagram of LDST function unit 
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MAC
Barrel Shift

Address generator

Multiplier/
Divider

40-bit Accumulator 
Register

ALU

MAC function unit

Pack/Unpack

 

Figure 3.10 Block diagram of MAC function unit 

Pack and Unpack unit are used for PACK and UNPACK instructions as introduced in 

section 3.2. In Figure 3.11, Pack unit consists of two multiplexers. According to the first half 

of funt field of PACK instruction, Rs.H or Rs.L will be packed into Rd.H. On the other hand, 

the last half of funt field of PACK instruction decides Rt.H or Rt.L to be packed into Rd.L. 

Unpack unit consists of four multiplexers (Figure 3.12). It unpacks the 16-bit data in Rd.H 

into Rs.H or Rs.L (Rd.L into Rt.H or Rt.L). Because our design is based on dual-rail data 

encoding, one half of Rs (Rt) will be valid, and the other have to get from Rs (Rt). We can 

perform complete detection with this way. For example, if Rd.H is unpacked into Rs.H, the 

data in Rs.L still stay in its field. 

 



 

35 
 

1

1

0

0
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Figure 3.11 Pack unit 

Rd.H

Rd.L

Rd.H

Rd.L

Rs.H/Rt.H

Rs.L/Rt.L

1

1

1

10

0

0

0

Rs.H/Rt.H

Rs.L/Rt.L

 

Figure 3.12 Unpack unit 

3.4 PIPELINE ARCHITECTURE 

There are six stages in our pipeline architecture: PF (Prefetch), DP (Dispatch), ID/OF 

(Instruction Decode and Operand Fetch), EX1 (Execute 1), EX2 (Execute 2), and WB (Write 

Back). In this section, they are described in details, and the solution of data hazards and 

control hazards are going to be introduced. Data hazards are solved in ID/OF stage and 

control hazards in IF stage. Figure 3.13 shows our two-way VLIW pipeline architecture. 

Because our microprocessor is a two-way VLIW design, we name the path which is 

responsible for data transference with data memory “path A” and another “path B” in order to 

describe the features and function of datapath conveniently. 
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Figure 3.13 Pipeline Architecture 

3.4.1 PF and DP Stage 

The instruction packet packs extra NOP instruction if the instructions in same packet 

could not execute in parallel. But it may waste too memory space to store these instruction 

packets. In most VLIW processor, there are some instruction compression mechanisms to 

solve this problem. In our PF stage, the 64-bit instruction packet is fetched from instruction 

memory. Then, the next stage (DP stage) decompresses this instruction packet. If the two 

instructions in same packet could be executed in parallel, they are separated into different 

execution order.  

Furthermore, we solve the control hazard in DP stage. Because the utilization of pipeline 

is 50%, we could pass one instruction at most. If the BEQ/BNEQ is fetched and executed in 
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EX1 stage, the stall mechanism works in DP stage. After BEQ/BNEQ finishes its own job in 

EX1 stage, it sends the correct target address to PC register. Then, the PF stage could fetch the 

correct instruction packet. 

3.4.2 ID Stage 

The source operand which is used by instruction is fetched in this stage. It is also 

responsible to generate control signals for instruction. The control signals are decoded in 

Instruction Decoder unit. The outputs of Instruction Decoder include the control signals of 

ID/OF, EX1, EX2, and WB stage. The control signals of EX1, EX2, and WB stage are 

delivered stage by stage (Figure 3.14). There are two Instruction Decodes and two sets of 

control path due to two-way VLIW design, and used for MAC function unit and LDST 

function unit respectively.  

The two datapaths share the Register Bank. Source operands in different datapath can be 

fetched simultaneously. The ID stage consists of two parts (Figure 3.15), Instruction Decoder 

and Register Bank which is described in the following. Moreover, there are two paths between 

DeMUX and MERGE, one is bypass line for NOP instruction, and the other is used for 

common instruction. 
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Figure 3.14 Control Path 
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Figure 3.15 Block diagram of ID stage 
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3.4.2.1 Register Bank 

Figure 3.16 shows the block diagram of Register Bank. It is consists of Operand 

Decoders, Lock Queue, and Register file. 

Operand Decoder: It is responsible to convert operand register number into a 32-bit 

representation (1-of-32), which is used for selecting which register can be read. For example, 

the operand register number, 00010, is decoded to 00000000000000000000000000000100, it 

means the $g2 is to read. 

Register file: It has six read ports and two write ports to serve two datapaths. The operands 

include operand A, operand B (the second operand of R-type instruction), immediate value 

(the second operand of I-type instruction from the imm field of instruction).  

Register file

Operand Decoder

Operands

Write data _1

Lock Module

Write data _2

Operand Decoder

Operands

 

Figure 3.16 Register Bank 
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Lock Module: The pipeline may have data hazard caused by two successive instructions, if 

the source operand of the second instruction is the result of the first instruction. In this 

situation, it may occur RAW hazard (read after write) if the result does not be written before 

the second instruction gets it. Figure 3.17 shows the block diagram of Lock Module. It is 

similar to Lock FIFO of Asynchronous Microprocessor designed by N.C Paver [2]. We use a 

queue to store the destination register number and the concept of implement is also similar to 

Lock FIFO. We modify the design of Lock FIFO simply to suit our two-way VLIW 

architecture. 

Lock QueueRd push

Ack pre_stage

pop

Rs Rt

Rs1_E Rt1_EWrite_E
Operand read done Ack from EX_latch

c

Push done

Converter Converter

Converter
C

 

Figure 3.17 Block diagram of Lock Module 

The three converter units in Figure 3.17 are dual-rail to single-rail converter. (There are 

same set of elements and control path at another datapath.) When Rs (Rt, Rd) is valid, the 

operand register number is converted from dual-rail to single-rail, and control unit send a 

request  to Lock Queue to check whether it is stalled by previous instruction or not. Lock 
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Queue is used for solving RAW hazard. It stores information of destination register, and 

deletes the information of destination register after the results from WB stage are written into 

destination register. The instruction is stalled in ID stage if the RAW hazard occurs. There are 

two Lock Queues in each datapath. They store their destination register number individually. 

When instruction is executed in Lock Queue, not only it have to check its own Lock Queue, 

but the another Lock Queue in anther datapath. Therefore, one of datapath may be stalled by 

another. For example, there are two successive instruction packets are executed in parallel, 

and their operands are list as following: 

ADD $g4, $g1, $g0 … (1), ADD $g2, $g1, $g0 … (2) 

ADD $g5, $g2, $g0 … (3), ADD $g6, $g4, $g0 … (4) 

Instruction (3) and (4) are executed follow (1) and (2). After Instruction (1) and (2) 

finished the work in ID/OF stage, the contents of Lock Queue for each datapath is 

LQ1  LQ2 

  

  

$g4 $g2 

Instruction (1) is executed in parallel with (2), and (3) is executed in parallel with (4). 

Instruction (3) is stalled by (2) because one source operand ($g2) comes from (2), and (2) has 

not finished. Instruction (3) and (4) cannot store their destination register number to Lock 

Queue because they are stalled by Instruction (2) and (1), respectively. Instruction (3) and (4) 



 

42 
 

cannot store their destination register number until they complete the read operand operation. 

After (1) and (2) finish, the Lock Queues are updated: 

LQ1  LQ2 

  

$g5 $g6 

  

At this time, instruction (3) and (4) are not stalled anymore. The information of destination 

register cannot be pushed into Lock Queue until the operands are fetched from register file. 

This policy can make sure deadlock never occur. For example, the executing instruction is 

“ADD $g3, $g3, $g1”, one of source operand ($g3) and the destination register ($g3) are the 

same. The deadlock may occur in ID stage if the information of the destination register is 

pushed into Lock Queue before the two operands are fetched from register file. 

3.4.3 EX Stage 

The EX stage is responsible for computations and returning the result to register file, and 

it is separated into three stages, EX1, EX2, and WB stage. Each datapath has individual 

function unit as shown in Figure 3.18 (a) and Figure 3.18 (b) due to two-way VLIW design, 

and works individually. They have to wait for each other. Then, an acknowledgement signal 

will be sent to previous stage. The one of datapath is responsible for MAC and branch 

instruction, and the another is responsible for Load and Store instruction. The basic arithmetic 

operations can be executed in both datapaths. The three stages are described in following. The 
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DeMUX and MERGE pairs described in section 3.3.4 are used for selecting data flow in each 

stage. If there is not work in execution stage, they can be bypassed. Figure 3.18 (a) shows the 

block diagram of Path A, and Figure 3.18 (b) shows the block diagram of Path B. 

ALU

1
6
 X

 1
6
 D

u
a
l R

a
il 

M
u
ltip

lie
r/D

iv
id

e
r 

Barrel Shifter

MEM 
Interface

Write Data

Address

Read Data

Latch

1
MUX

2

Latch

Latch

S
h
ift R

e
su

lt

B
a
se

 R
e
g
ite

r

o
p
A

W
rite

 D
a
te

1
DeMUX

2

1
MUX

2

Write To Register

ack

ack

1
MUX

1
MUX

Fraction

1
MUX

2

o
p
BSign 

Extend

S
h
ift A

m
o
u
n
t

Data
Memory

W_Don
e

3

ack

ack

C

Ack_MAC Ack_LDSD

To EX2/WB 
Latch in Path B

Path A
EX1

EX2

WB

 

Figure 3.18 (a) Path A 
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Figure 3.18 (b) Path B 

3.4.3.1 EX1 Stage 

The instruction reads the contents of two registers and immediate value from pipeline 

latches. It is delivered to correct path by DeMUX. In path A, there are three portions. It can 

perform multiplication, division, shift, and arithmetic operations. The ALU is used for general 

arithmetic operations and calculating memory address of load and store instructions.  
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In path B, there are four portions. It can also perform multiplication, division, and shift. 

In addition, there are sign-extended unit and address generator. The branch operation can 

calculate the target address in this stage, and then, the target address is passed to DP stage to 

solve control hazard caused by branch instruction. 

3.4.3.2 EX2 Stage 

In path A, it is separated into two parts. The first is data transfer, and the other is data 

pass. Load and store instructions can fetch and store data with memory via memory interface. 

On the other hand, the general instructions which do not need to read or write memory will do 

nothing in this stage.  

In path B, there are two portions, MAC and ALU. The MAC operation reads the contents 

of 40-bit accumulator register in this stage. Then, the outcome is written into accumulator at 

next stage. So we can ensure correctness of accumulator. The valid token is bypassed in this 

stage if the executing instruction is branch instruction which completes its job at previous 

stage. 

3.4.3.3 WB Stage 

WB stage is the final stage of our pipeline. It is responsible for saving the result back to 

register file according to the destination register number. If instructions have finished in 

previous stage, for example, “SW Rd, Rs, imm”, it has nothing to do in this stage. For 

multiply-accumulates instruction, the output of MAC unit is written into 40-bit accumulator 
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in this stage. The value in 40-bit accumulator could be moved into register with ACCLDH and 

ACCLDL in order to support other application. Because our pipeline architecture is based on 

4-phase dual-rail handshaking protocol, the accumulator is read or written at different time 

due to half of utilization of pipeline stage. Finally, the datapath which finish its own job early 

has to wait for another only in this stage. 
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CHAPTER 4 SIMULATION 

4.1 TESTING ENVIRONMENT 

We use ModelSim 6.0 to verify the correctness of the functionally. In addition, we also 

synthesized our design with Design Compiler. They are synthesized by TSMC .13μ m 

process library. The result of area and timing report are described in the following sections. 

Figure 4.1 shows the waveform of the function simulation. 

 

Figure 4.1 The waveform of function simulation 
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4.2 AREA SIMULATION 

With TSMC .13μ m processes, the area report of each stage of our two-way VLIW 

processor is shown in Table 4.1. Table 4.1 shows the area of each pipeline stage except PF and 

DP stage. Table 4.2 shows the area of register bank. 

 

(μ ㎡) ID/OF EX1 EX2 WB Total 

LDST 

174762.6 

(43.5%) 

66402.3 

(16.5%) 

5560.6 

(1.4%) 

531.3 

(0.13%) 401581.1 

(100%) 

MAC 
41518.4 

(10.3%) 

55644.2 

(13.9) 

2742.9 

(0.68%) 

Table 4.1 The area report of each stage 

 

Lock Module Register File 

11116.3(μ ㎡) 57450.2 (μ ㎡) 

Table 4.2 The area report of register bank 

 

4.3 TIMING SIMULATION 

With TSMC .13μ m processes, the timing report of each stage of our two-way VLIW 

processor is shown in Table 4.2. The EX1 stages have longer latency than other stages 
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because the multiplier and divider are executed in this stage. In EX2 stage, we ignore the 

memory latency because the memory is based on synchronous circuit design. 

(ns) ID/OF EX1 EX2 WB 

LDST 

22.62 

65.18 10.48 2.8 

MAC 65.75 61.23 2.11 

Table 4.3 The timing report of each stage 
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CHAPTER 5 CONCLUSION AND FUTURE 

WOROKS 

In this thesis, we have implemented a two-way VLIW processor based on asynchronous 

circuit design with four-phase dual-rail handshaking protocol. It is a six-stage pipeline 

architecture. Each stage can execute in variable length of time due to asynchronous circuit 

nature. It can reduce the instruction memory space via instruction compression. In addition, it 

also supports SIMD application and multiplier-accumulate operation. There are nine 

instructions for SIMD application. Moreover, the DeMUX and MERGE can be used to 

improve the performance. The datapath can be separated into several parts. If the function 

units between DeMUX and MERGE are not used, the DeMUX will bypass these function 

units. 

In our datapath design, it has two read ports and one write ports for each datapath. We 

could try to increase the read and write ports in register file in order to improve the 

performance of SIMD application because the Unpack instruction has to perform twice to 

unpack a 32-bit value to the destination register. More important, we wish this light-weight 

asynchronous core could be used to construct a multi-core processor via interconnection 

network in the future.   
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