

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

非同步雙道超大指令字組處理器之資料路徑設計

Data Path Design for Asynchronous two-way VLIW Processor

研 究 生：李國成

指導教授：陳昌居 教授

中 華 民 國 九 十 九 年 九 月

非同步雙道超大指令字組處理器之資料路徑設計

Data Path Design for Asynchronous two-way VLIW Processor

研 究 生：李國成 Student：Guo-Cheng Li

指導教授：陳昌居 Advisor：Chang-Jiu Chen

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

September 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年九月

i

非同步雙道超大指令字組處理器之資料路徑設計

研究生：李國成 指導教授：陳昌居 教授

國立交通大學資訊科學與工程研究所

摘 要

過去數十年來，計算機架構發展快速，然而因為過去技術上的困難，在1940年代開

始計算機架構的設計方式為了避免很多在非同步電路系統中可能衍生的問題而選擇了

有clock的設計方式，因此現今大部分處理器都以同步系統為基礎而持續發展中。

然而這幾年來，處理器的發展已經由高時脈進入平行處理發展階段。到目前為止處

理器的設計方向轉向多核心處理器發展，試圖以多核心處理器的技術來取代高時脈以達

到效能提升的目的，而時脈造成的耗電與熱能皆無法有效避免。而處理器在非同步系統

的發展也有持續研究與成果展現，如：由英國曼徹斯特大學(University of Manchester)

發表的AMULET系列微處理器。因此本篇論文嘗試以非同步系統為基礎實作出一個架構簡

單、適合建構成多核心處理器的超長指令字組非同步核心，期望未來把多個輕量化非同

步核心以interconnection network作連結變成一個多核心非同步處理器。最後我們將

這個超長指令字組非同步核心以Synopsys Design Compiler來做合成，使用的是TSMC

0.13微米的元件資料庫並且以ModelSim 6.0模擬及驗證設計的正確性。

ii

Data Path Design for Asynchronous two-way

VLIW Processor

Student： Advisor：Dr. Chang-Jiu Chen

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

Abstract

Most modern processors are based on synchronous circuit design nowadays. The current

trend of processors is towards multiprocessor because the higher power consumption and heat

energy caused by clock distribution. Moreover, embedded multimedia system and Digital

Signal Processor are more and more popular in recent years. DSPs are developed for handling

a large number of image data. They improve performance with VLIW and SIMD in some

instances. However, they are all based on synchronous circuit design. The clock distribution

may cause a serious problem in complex systems.

 In this study, we try to design a light-weight core based on asynchronous circuit design.

It is an asynchronous two-way VLIW processor and includes some special instructions for

SIMD application. In the future, we can develop an asynchronous multi-core processor which

is made up of this asynchronous two-way VLIW processor via interconnection network.

Finally, the correct of function is verified by ModelSim 6.0 and synthesized by TSMC .13μ

m process library.

iii

Acknowledgement

這篇論文的完成，首先要感謝我的指導教授陳昌居老師的細心指導，在老師的教學

風格下讓我有自由的發揮空間。其次要感謝實驗室的幾位博士班學長緯民、宏岳以及元

騰在做研究期間給予熱心指導、建議與校稿，讓本篇論文得以順利完成。也感謝實驗室

的同學與學弟，在研究期間給予的鼓勵，以及家人的支持，讓我能夠專心完成研究學業。

iv

CONTENTS

摘 要 .. i

Abstract ... ii

Acknowledgement ... iii

CONTENTS .. iv

List of Figures .. vi

List of Tables .. vii

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATIONS ... 1

1.2 THE ORGANIZATION OF THIS THESIS.. 2

CHAPTER 2 BACKGROUND AND RELATED WORKS ... 3

2.1 ASYNCHRONOUS CIRCUIT DESIGN .. 3

2.1.1 Advantages ... 3

2.1.2 Handshaking Protocol ... 5

2.1.3 Muller C-element .. 9

2.1.4 Asynchronous Pipelines ... 10

2.2 PROCESSORS OVERVIEW .. 13

2.2.1 AMULET Microprocessors ... 13

2.2.2 Microchip’s PIC18 and NCTUAC18 .. 14

2.2.3 TITAC ... 17

2.2.4 DSPs .. 18

CHAPTER 3 DESIGN AND IMPLEMENTATION .. 19

3.1 ARCHITECTURE OVERVIEW.. 19

3.2 INSTRUCTION SET .. 22

3.3 CONSTRUCT THE BASIC ELEMENTS .. 27

3.3.1 Registers ... 28

3.3.2 Dual-rail Gates ... 29

3.3.3 C-Latch .. 30

3.3.4 DeMUX and MERGE ... 30

3.3.5 Memory Interface ... 31

v

3.3.6 MAC and LDST Function Units ... 33

3.4 INSTRUCTION SET .. 35

3.4.1 Pipeline Architecture ... 36

3.4.2 ID Stage ... 37

3.4.2.1 Register Bank .. 39

3.4.3 EX Stage ... 42

3.4.3.1 EX1 Stage .. 44

3.4.3.2 EX2 Stage .. 45

3.4.3.3 WB Stage ... 45

CHAPTER 4 SIMULATION ... 47

4.1 TESTING ENVIRONMENT ... 47

4.2 AREA SIMULATION ... 48

4.3 TIMIING SIMULATION .. 48

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS ... 50

REFERENCES ... 51

vi

List of Figures

Figure 2.1 (a) Bundled-data channel .. 6

Figure 2.1 (b) Four-phase handshaking protocol ... 6

Figure 2.2 (a) Dual-rail channel .. 7

Figure 2.2 (b) Four-phase dual-rail protocol ... 8

Figure 2.3 Transfer diagram ... 8

Figure 2.4 Two-phase handshaking protocol .. 9

Figure 2.5 (a) Muller C-element ... 10

Figure 2.5 (b) Muller C-element with reset signal .. 10

Figure 2.6 Muller pipeline ... 11

Figure 2.7 (a) Four-phase bundled-data pipeline ... 12

Figure 2.7 (b) Four-phase bundled-data pipeline with data processing and delay

element .. 12

Figure 2.8 Four-phase dual-rail piepline architecture (2-bit wide) 12

Figure 2.9 Architecture of AMULET1... 13

Figure 2.10 System block of diagram of PIC18 ... 15

Figure 2.11 Block diagram of APIC18 with 4-stage pipeline architecture 16

Figure 2.12 The pipeline architecture of TITAC-2 ... 17

Figure 3.1 Architecture Overview .. 20

Figure 3.2 Register file ... 22

Figure 3.3 Pack instruction ... 27

Figure 3.4 (a) 1-bit Register .. 28

Figure 3.4 (b) Zero Register .. 29

Figure 3.5 The 2-bit dual-rail AND gate .. 29

Figure 3.6 C-Latch ... 30

vii

Figure 3.7 DeMUX and MERGE ... 31

Figure 3.8 Memory Interface .. 32

Figure 3.9 Block diagram of LDST function unit ... 33

Figure 3.10 Block diagram of MAC function unit .. 34

Figure 3.11 Pack unit ... 35

Figure 3.12 Unpack unit .. 35

Figure 3.13 Pipeline Architecture ... 36

Figure 3.14 Control Path ... 38

Figure 3.15 Block diagram of ID stage .. 38

Figure 3.16 Register bank ... 39

Figure 3.17 Block diagram of Lock Module .. 40

Figure 3.18 (a) Path A .. 43

Figure 3.18 (b) Path B .. 44

Figure 4.1 The waveform of function simulation .. 47

viii

List of Tables

Table 2.1 Encoding Method .. 7

Table 2.2 Function behaviors of Muller C-element .. 9

Table 2.3 Basic categories of instruction set of PIC18 and their operand needed 15

Table 3.1 Issue of instruction .. 21

Table 3.2 Instruction Formant ... 23

Table 3.3 Instruction Set ... 26

Table 3.4 The truth table of 2-input dual-rail AND gate ... 29

Table 4.1 The area report of each stage ... 48

Table 4.2 The area report of register bank.. 48

Table 4.3 The timing report of each stage ... 49

1

CHAPTER 1 INTRODUCTION

1.1 MOTIVATIONS

Most microprocessor designs are based on synchronous circuit design in past decades. In

order to improve the performance of processor, the technique of microprocessor design is

made progress from pipeline to superscalar and VLIW in recent years. But they were based,

for the most part, on higher frequency of clock such as Intel Pentium


 4 [14]. The higher

frequency of clock may cause more power consumption and heat energy. As frequency of

clock is getting higher, the problem is getting worse. So the policy of microprocessor design

is changed into multiprocessor such that attempting to reduce the influence of these problem

caused by higher frequency of clock. There are some instances for this police, for example,

IBM Cell Broadband Engine [13].

Furthermore, embedded multimedia system and Digital Signal Processor are more and

more popular in recent years. Comparing with general purpose processor mentioned in above,

DSPs are developed for handling a large number of image data. They used some techniques,

such as VLIW and SIMD, to improve performance. However, they are all based on

synchronous circuit design. When cores in processor become more and more large, the clock

distribution may be a serious problem in complex systems.

In our implementation, we aim at designing an asynchronous two-way VLIW processor

with asynchronous circuit design. It is implemented to avoid some problem such as clock

2

skew and worst-case timing delay in synchronous circuit design by the advantages of

asynchronous circuit [1]. Moreover, we also design the datapath to support the functions of

DSP, such as SIMD and MAC. The design policies of our two-way VLIW processor are

simple and modular in order to build a light-weight core which is used to construct

multiprocessor with asynchronous circuit design in the future.

1.2 THE ORGANIZATION OF THIS THESIS

This thesis proposes the datapath design of asynchronous two-way VLIW processor. In

Chapter 1, the motivation is presented. In Chapter 2, some basic asynchronous circuit design

concepts and related works which include some microprocessors for general purpose in

asynchronous circuit design today will be introduced. In Chapter 3, we introduce datapath of

our two-way VLIW processor, instruction set architecture, and pipeline architecture. In

Chapter 4, we show the simulation result and area report. Finally, a conclusion and future

works are shown in Chapter 5.

3

CHAPTER 2 BACKGROUND AND RELATED

WORKS

This section will introduce what is asynchronous circuit design, ex: advantages,

handshaking protocols, Muller Pipeline, Muller C-element of asynchronous circuit design [1].

Two pipeline architectures of processor are also listed in this chapter.

2.1 ASYNCHRONOUS CIRCUIT DESIGN

Asynchronous circuits design is a kind of circuit design methodology. Asynchronous

circuit is practically different from synchronous circuit because all components communicate

with each other by handshaking protocols in asynchronous circuit, whereas share and notice

the clock signal in synchronous circuit. The following will list subjects about asynchronous

circuits design.

2.1.1 Advantages

Comparing with the synchronous circuit design, the asynchronous circuit design has no

global clock. As a result of no global clock, the asynchronous circuit design has some

benefits：

 Low power consumption: Asynchronous circuits do not need to generate global clock to

fire component, and therefore could save power caused by clock tree. Moreover, each

module works only when and where needed, this means that module is idle at the other

time.

4

 No clock distribution and clock skew problems：In synchronous circuit, components

communicate with each other by clock distribution. Clock skew is a serious problem.

Asynchronous circuit is in opposition to synchronous circuit on this question because

there is no clock in asynchronous circuit.

 Average-case performance: The elasticity of asynchronous pipeline has led to the result

that the asynchronous pipeline can work in average case time rather than worst case time

for pipeline stage. When component in asynchronous circuit has been completed its job,

it could sent a request signal to receiver and wait to perform next new job until receiver

send acknowledge signal back. However, the pipeline of synchronous circuits select the

longest time for the stage which need more time slice. On the contrary, asynchronous

pipeline allow every stage work in individual time due to handshaking protocol. Hence,

asynchronous pipeline could works in average-case performance.

 Modularity: Different modules from different designers may have different clock

distribution in synchronous circuit design. To combine two or more components will

probably become a challenge. Due to handshaking interface and individual time for

every stage, it can be done easily in asynchronous circuit design. Designers do not need

to maintain synchronization between distinct modules. Each module has its complete

time and does not influence other modules.

But there are also some drawbacks. Because all components of asynchronous circuit

5

communicate with each other by handshaking protocols, area and power consumption due to

the control logic for handshaking are unavoidable.

2.1.2 Handshaking Protocol

Handshaking protocol is used to communicate between two components in asynchronous

circuit design. It can be separated some solution space as the cross product as following:

{ two-phase, four-phase} x { bundled-data, dual-rail, 1-of-n, …}.

In this solution space of handshaking protocol, the bundled-data and dual-rail data are

the two most common data encodings. The four-phase bundled-data protocol is usually used

for asynchronous circuit designs (Figure 2.1). It has two control signals, REQ and ACK,

between SENDER and RECEIVER used to control all of transfer steps (Figure 2.1 (a)). The

four-phase handshaking protocol is also known as return-to-zero protocol because REQ and

ACK signals have to return to zero when a transaction is completed between SENDER and

RECEIVER (Figure 2.1 (b)). Initially, REQ and ACK signals are all “0”. When valid data

arrive or ready at SENDER, REQ is set to “1” and sent to RECEIVER by SENDER (1). Then,

RECEIVER has accepted the data from SENDER, ACK is set to “1” and sent to SENDER by

RECEIVER (2). After SENDER receives the ACK signal from RECEIVE, REQ is set to “0”

(3), and then RECEIVER will pulls down ACK signal to “0” when receives REQ = 0 from

SENDER, too (4). After these four steps, SENDER and RECEIVER complete a handshaking.

At this time, SENDER and RECEIVER can start next transaction (5).

6

SENDER RECIEVER

REQ

DATA

ACK

Figure 2.1 (a) Bundled-data channel.

REQ

ACK

DATA
1

3

42

Figure 2.1 (b) Four-phase handshaking protocol.

The other way of four-phase handshaking protocol is four-phase dual-rail data protocol

(Figure 2.2 (a)). Compared with data channel of four-phase bundled-data protocol, it has no

REQ signal. Dual-rail channel encodes 1-bit data with 2-bits. The encoding method is shown

in Table 2.1. It use 00 to express there is no data in EMPTY state, 01 to encode the data of 0

and 10 to encode the data of 1 in VALID state, respectively. By the way, the 11 is not used in

dual-rail data encoding. If the system uses dual-rail data encoding to transfer n-bits data, it has

2*n data lines to indicate a valid data.

7

SENDER RECIEVER
DATA

ACK

2n

Figure 2.2 (a) Dual-rail channel.

 d.t d.f

Empty “E” 0 0

Valid “0” 0 1

Valid “1” 1 0

Not used 1 1

Table 2.1 Encoding Method.

There is no REQ signal because of dual-rail data encoding, the RECEIVER needs extra

circuits to detect whether DATA signals arrive or not. This detection design in dual-rail

circuits is called complete detection.

Figure 2.2 (b) shows the process of data transfer using dual-rail protocol. Initially, DATA

is EMPTY, and ACK signal is 0. When DATA is Valid and RECEIVER detects that DATA is

ready, RECEIVER captures DATA and pulls up ACK. Then SENDER stops sending valid

DATA and changes state of DATA to EMPTY. Finally, RECEIVER pulls down ACK signal to

0 and this transaction is completed.

8

ACK

DATA EMPTY VALID EMPTY VALID

Figure 2.2 (b) Four-phase dual-rail protocol.

Valid DATA is separated by EMPTY token in four-phase dual-rail protocol. SENDER

must return to EMPTY state after RECEIVER captures the valid DATA. Then, it can start

next transaction. Thus, the sequence of state is EMPTY – VALID – EMPTY – VALID (Figure

2.3).

E 10

Figure 2.3 Transfer diagram

The two-phase handshaking protocol is different from all of above due to the meaning of

the signal edges. As showing in Figure 2.4, a signal transition means that a transaction

between SENDER and RECEIVER is completed. The rising edges and falling edges in

two-phase handshaking protocol have no difference. For example, when the data of SENDER

is ready, SENDER sets the REQ to “1” (initial：“0”). Then RECEIEVER gets data and sends

ACK signal to SENDER with “1” (initial：“0”). This transaction is completed, and next

transaction starts with REQ changed into “0” at SENDER side. Two-phase handshaking

9

protocol is also known as non-return-to-zero protocol.

REQ

ACK

DATA

Figure 2.4 Two-phase handshaking protocol.

2.1.3 Muller C-element

Muller C-element [1] is a basic component in asynchronous circuit design. It is used to

state-holding or construct the latch between pipeline stages. The function behaviors of Muller

C-element are shown in Table 2.2. When both inputs are 0, the output Z is set to 0. When both

inputs are 1, the output Z is set to 1. If the inputs are different (ex：01、10), the output Z will

keep previous output. In other words, the output Z is only changed when all inputs are the

same. Figure 2.5 (a) shows the symbol and gate-level design of C-element, and Figure 2.5 (b)

shows the C-element with reset signal.

Input A Input B Output Z

0 0 0

0 1 No change

1 0 No change

1 1 1

Table 2.2 function behaviors of Muller C-element.

10

A
A

B

B

C Z Z

Figure 2.5 (a) Muller C-element.

A

A

B

B

C Z

Z

reset

reset

Figure 2.5 (b) Muller C-element with reset signal.

2.1.4 Asynchronous Pipelines

Muller pipeline is a pipeline architecture with four-phase bundled-data protocol [1].

Most of asynchronous pipeline is based on Muller pipeline (Figure 2.6). Muller pipeline has

several characteristics as following:

11

1. It is delay-insensitive handshake machine.

2. When pipeline is full, only half of the latches of pipeline store data.

3. If the RIGHT side is slower than the LEFT side, this pipeline may fill and stall.

4. Timing depends on local delays, so Muller pipeline could work in average case

performance.

LEFT RIGHT

REQ

ACK

REQ REQ REQ

ACK

ACK

ACK

ACK

C[i-1] C[i] C[i+1] C[i+2]

C C C C
… …

Figure 2.6 Muller pipeline.

Figure 2.7 (a) shows the four-phase bundled data pipeline [1] which based on Muller

pipeline. It is similar to synchronous pipelines and master-slave flip-flops. In order to

maintain correct behaviors, matching delay should be inserted in the request signal paths.

Figure 2.7 (b) shows a four-phase bundled data pipeline with data processing and delay

element on REQ signal.

12

C

Latch Latch Latch

En En En

REQ REQ REQ

ACK

ACK
ACK

ACK

REQ
C C

Figure 2.7 (a) Four-phase bundled-data pipeline

C

Latch Latch Latch

En En En

REQ REQ REQ

ACK

ACK

ACK
ACK

REQ

Latch Latch Latch

Delay Delay Delay
C C

Figure 2.7 (b) Four-phase bundled-data pipeline with data processing and delay element.

A four-phase dual-rail pipeline is also based on Muller pipeline with the request

eliminated by the 1-of-2 data encoding. Figure 2.8 shows the four-phase dual-rail pipeline

model [1], and it must have complete-detection mechanism composed of or-gate because

there are not REQ lines.

C

ACK

ACK
ACK

ACK

C C

C

C

C

C

C

C

C

C

C

C

C

C

a.t

a.f

b.t

b.t

Figure 2.8 Four-phase dual-rail pipeline architecture (2-bit wide).

13

2.2 PROCESSORS OVERVIEW

 In this section, we will introduce some solution about processor with asynchronous

circuit design; in addition, we’ll also describe some popular Digital Signal Processors (DSPs)

today. They are AMULETs [2, 3, 4], Microchip’s PIC18, NCTUAC18 [5], and TITAC [7, 8],

which are based on asynchronous circuit design. SPXK5 [9], TMS320C55x [10], and

TMS320C64x [11] are based synchronous circuit design.

2.2.1 AMULET Microprocessors

AMULET microprocessors were proposed by AMULET group of the University of

Manchester in 1994. Serious of AMULET microprocessors include AMULET1 [2],

AMULET2e [3] and AMULET3 [4]. They are asynchronous processors, and AMULET1 uses

two-phase communication protocol. Figure 2.9 shows the architecture of AMULET1.

Address out

PC pipe

Registers

Multiplier

Shifter

imm. extr.

IpipeData inData out

Instruction
decode

AL
U

Address
Interface

Register
Bank

Data
Interface

Excute
Unit

Figure 2.9 Architecture of AMULET1.

14

AMULET2e is a redesign of AMULET1 for embedded systems with on-chip memory. It

is implemented with four-phase handshaking protocol. AMULET3 was also redesigned

architecture and presented between 1996 and 1998. It has branch target prediction and goal of

higher performance than AMULET1 and AMULET2e.

2.2.2 Microchip’s PIC18 and NCTUAC18

The PIC18 is developed by Microchip. Figure 2.10 shows the system block diagram and

Table 2.3 lists the basic categories of instruction set of PIC18 and their operands needed.

There are some characteristics of PIC18 as following:

1. It is an 8-bit RISC microcontroller based on the Harvard architecture.

2. There are two memories: instruction memory (up to 2MB) and data memory (up to 4MB)

follow 16-bit wide instruction and 8-bit wide data respectively. PIC18 has 16 banks of

256 bytes data memory.

3. It provides 77 available instructions.

4. Two-stage instruction pipeline.

5. There are up to five I/O ports available.

15

Reg Stack

ALU Mult

Decoder

Instruction
Memory

Data
Memory

Peripherals

PIC18

Figure 2.10 System block diagram of PIC18.

Instruction type Operands

Byte-oriented F D A

Bit-oriented F B A

Literal K F’

Control N S

Table 2.3 Basic categories of instruction set of PIC18 and their operands needed.

The meaning of letter in Table 2.3 is list in the following:

F: The file register. It means which file register is to be used by the instruction.

D: The destination of the result. It specifies where the result of the operation is to be placed.

A: The accessed memory.

B: The bit in the file register. It selects the number of the bit affected by the operation.

K: A literal value to be loaded in a file register.

F’: The desired FSR register to load the literal value into.

16

N: A program memory address.

S: The mode of the CALL or RETURN instructions.

The NCTUAC18 was proposed by NCTU in 2009 [5]. It is also a RISC processor which

implemented with asynchronous circuit design based on QDI delay-model and four-phase

dual-rail handshake protocol. The execution and write back stage are combined to one stage to

avoid data hazard. Figure 2.11 shows the block diagram of APIC18 with 4-stage pipeline

architecture.

Instruction
Memory

Date Memory

IF ID OF
EX/
WB

Memory controller

PC Registers

Figure 2.11 Block diagram of APIC18 with 4-stage pipeline architecture.

A new implementation, APIC18S, to solve this performance degradation was proposed

by NCTU in 2007 [6].

17

2.2.3 TITAC

 TITAC and TITAC-2 [7, 8] developed in Tokyo Institute of Technology are

asynchronous processor. They are implemented with two-phase dual-rail handshaking

protocol. TITAC is a 8-bit asynchronous processor with a single-accumulator architecture

based on quasi-delay-insensitive (QDI) delay model [1]. TITAC-2 [8] developed in 1997 is a

32-bit asynchronous processor. It is based on scalable-delay-insensitive (SDI) delay model [8].

There is a 8-Kbyte instruction cache on TITAC-2. In addition, the instruction set of TITAC-2

is similar to MIPS-R2000. The instructions are classified into ten categories as following:

logical, arithmetic, multiply, divide, compare, shift, load, store, branch, and privileged

instructions. Figure 2.12 shows the block diagram of TITAC-2 with 5-stage pipeline

architecture.

IF ID EX ME

Memory controller

PC

Registers

WB

I-cache

address data

Write buffer

Figure 2.12 The pipeline architecture of TITAC-2

18

2.2.4 DSPs

Digital signal processor is particular microprocessor used for fast operation about digital

signal processing. In general, it requires large number of mathematical operations for image

or audio processing. Many digital signal processors exist today such as SPXK5 [9],

TMS320C55X, and TMS320C64x developed by TEXAS INSTRUMENTS [10, 11]. Follows

are some features of digital signal processors.

1. Based on Harvard architecture.

2. There are some special instructions for SIMD.

3. Memory architecture is designed for streaming data.

4. Multiply-accumulates unit (MACs) is used for highly arithmetic operations

5. Bit-reversed addressing for calculating FFTs.

6. In order to improve the whole performance, VLIW techniques could support digital

signal processor in instruction level parallelism.

19

CHAPTER 3 DESIGN AND IMPLEMENTATION

We introduce the background of asynchronous circuit design and list some processors

designed by asynchronous circuit in previous sections. In this chapter, we will describe

pipeline architecture in details and focus on datapath of our two-way VLIW microprocessor.

The result of simulation will present in Chapter 4.

3.1 ARCHITECTURE OVERVIEW

All of components of our two-way VLIW microprocessor are implemented based on

4-phase dual-rail handshaking protocol, QDI delay model, and developed with Verilog

hardware description language. Figure 3.1 shows the architecture overview of our two-way

VLIW microprocessor.

There are two memories: Instruction Memory (64-bit wide), Data Memory (32-bit wide).

The datapath includes Register Bank, MAC function unit, LDST function unit, and a 40-bit

accumulator in MAC function unit. The instruction packets are constructed of two 32 bits

long instructions. If the two instructions cannot be executed in parallel, they are packed into

different instruction packet. This job can be done in Instruction Fetch stage and Instruction

Dispatch stage. After Instruction Dispatch stage, the two instructions of 64-bit instruction

packet are issued to appropriate datapath. The first instruction is executed in MAC function

unit, and the other is operated in LDST function unit.

20

Program Counter Module handles the execution sequence of instructions. It includes an

increment unit to perform PC+1. The effective target address which is decided by branch

instruction to jump is selected in Program Counter Module.

Register
Bank

Instruction Fetch

Instruction Dispatch

MAC FU LD/ST FU

Instruction
Memory

Data
Memory

Writ
e PC

Memory Interface

Data Path

Figure 3.1 Architecture Overview

21

Instruction type MAC LDST

Arithmetic operations ● ●

Multiplication/Divison ● ●

MAC

(multiply-accumulates)

●

Branch ●

Load/Store ●

SIMD ● ●

Table 3.1 Issue of instruction.

There are 32 registers in register file (Figure 3.2). Five are system registers among them,

zero register ($0), stack pointer ($sp), repeat count ($rp), return address ($ra), and basic block

($bb). Twelve could support SIMD operation to be divided into two 16-bit register ($sd0H,

$sd0L, …). Fifteen are general-purpose 32-bit registers. Table 3.1 lists what kinds of

instructions are executed in MAC function unit or LDST function unit. Pipeline architecture,

instruction set architecture, MAC FU, and LDSD FU will be described in details in following

section.

22

$0

$sp

$rp

$ra

$bb

$g0

$g1

$g13

$g14

…

$sd0H $sd0lL

$sd1H $sd1L

$sd10H $sd10L

$sd11H $sd11L

…

Five system
registers

Twelve SD
registers

Fifteen general
purpose registers

Figure 3.2 Register file

We use fixed-point number representation system in our design. The digit-vector is

denoted by X = (X31, X30, …, X1, X0). The X can represent three kinds of numbers in our

number system. They are signed integers, unsigned integers, and unsigned real numbers. The

signed integers can represent from -2
31

-1 to 2
31

-1. The unsigned integers can represent from 0

to 2
32

-1. The unsigned real numbers are denoted by fixed<16, 16>. The first half of bit pattern

(X31, X30, …, X17, X16) means non-negative numbers, and the last half of bit pattern means

fraction. For example, if X = 00000000000101111000000000000000, it is 23.5

(0000000000010111.1000000000000000) in fixed-point number representation system.

3.2 INSTRUCTION SET

Our instruction set architecture is similar to MIPS. Each instruction is 32 bits long that

divided into several fields. The instructions can be classified into two categories as following:

 R-type operations

 I-type operations

23

Table 3.2 shows the instruction format and Table 3.3 lists our available instructions.

 5 bits 5 bits 5 bits 5 bits 5 bits 6 bits 1 bit

R-type/MAC Opcode Rd Rs Rt Shamt Funt P bit

I-type Opcode Rd Rs Immediate P bit

Table 3.2 Instruction Format

The meaning of each fields of instruction format is described in the following:

 Opcode: Operation code. It indicates which operation is performed.

 Rd: The register destination operand. The result of instruction is stored to this register if

need.

 Rs: The first source operand of instruction.

 Rt: The second source operand of instruction.

 Shamt: The amount of shift is specified in this field. It specifies the shift operations are

going to shift source operand with values.

 Funt: It is used to indicate which operation of R-type instructions is performed. If the

executing instruction is I-type instruction, this field is filled with 0.

 P bit: It implies whether current operation can be executed with other operation in

parallel. 1: means can be executed in parallel with other operation.

 Immediate: An immediate value for I-type instructions.

24

Note:

 R-type instruction includes all of arithmetic operations. They have the same opcode. The

operation of R-type instruction is executed according to Funt field.

 The special instruction type, MAC, has the same instruction format with R-type

instruction.

 The three fields, Rd, Rs and Rt, are 5 bits because there are 32 registers in our

implementation.

 The shamt field has the similar reason because the registers are 32 bits.

Instruction Description 32-bit instruction word

NOP - 00000000000000000000000000000000

MAC operations

MAC $0, Rs, Rt Acc = Acc + Rs.L*Rt.L 1001100000sssssttttt00000010000p

ACCLDH Rd Rd = Acc[39:32] 10011ddddd000000000000000010001p

ACCLDL Rd Rd = Acc[31:0] 10011ddddd000000000000000010010p

ALU operations

ADD Rd, Rs, Rt Rd = Rs + Rt 00001dddddsssssttttt-----000000p

ADDU Rd, Rs, Rt Rd = Rs + Rt

(Unsigned)

00001dddddsssssttttt-----000001p

SUB Rd, Rs, Rt Rd = Rs – Rt 00001dddddsssssttttt-----001000p

SUBU Rd, Rs, Rt Rd = Rs – Rt

(Unsigned)

00001dddddsssssttttt-----001001p

AND Rd, Rs, Rt Rd = Rs & Rt 00001dddddsssssttttt-----010000p

OR Rd, Rs, Rt Rd = Rs | Rt 00001dddddsssssttttt-----010001p

XOR Rd, Rs, Rt Rd = Rs ♁ Rt 00001dddddsssssttttt-----010010p

MIN Rd, Rs, Rt Rd = min(Rs, Rt) 00001dddddsssssttttt-----101000p

MAX Rd, Rs, Rt Rd = max(Rs, Rt) 00001dddddsssssttttt-----110000p

ABS Rd, Rs, $0 Rd = |Rs| 00001dddddsssssttttt-----111000p

SLT Rd, Rs, Rt If (Rs < Rt) Rd = 1 00001dddddsssssttttt-----100000p

SRL Rd, Rs, shamt Rd = Rs >> shamt 00001dddddsssssttttt-----011000p

SRA Rd, Rs, shamt Rd = Rs >> shamt (sign 00001dddddsssssttttt-----011001p

25

extend)

NOT Rd, Rs, $0 Rd = Rs + $0 00001dddddsssssttttt-----111010p

ADDI Rd, Rs, imm Rd = Rs + imm 00010dddddsssssiiiiiiiiiiiiiiiip

ADDIU Rd, Rs, imm Rd = Rs + imm

(unsigned)

00011dddddsssssiiiiiiiiiiiiiiiip

SUBI Rd, Rs, imm Rd = Rs – imm 00100dddddsssssiiiiiiiiiiiiiiiip

ANDI Rd, Rs, imm Rd = Rs & imm 10000dddddsssssiiiiiiiiiiiiiiiip

ORI Rd, Rs, imm Rd = Rs | imm 10001dddddsssssiiiiiiiiiiiiiiiip

XORI Rd, Rs, imm Rd = Rs ♁ imm 10010dddddsssssiiiiiiiiiiiiiiiip

Data transfer operations

MOV Rd, Rs Rd = Rs + $0 00001dddddsssssttttt-----000100p

MOVI Rd, $0, imm Rd = imm + $0 01110dddddsssssiiiiiiiiiiiiiiiip

MOV.l Rd, Rs Rd.L = Rs.L + $0 00001dddddsssssttttt-----000101p

MOV.h Rd, Rs Rd.H = Rs.H + $0 00001dddddsssssttttt-----000110p

LW Rd, Rs, imm Rd = Mem[imm+Rs)] 11000dddddsssssiiiiiiiiiiiiiiiip

SW Rd, Rs, imm Mem[imm+Rs) = Rd] 11100dddddsssssiiiiiiiiiiiiiiiip

Branch operations

BEQ Rd, Rs, imm If(Rs == Rd) PC =

PC+imm

01100dddddsssssiiiiiiiiiiiiiiisp

BNEQ Rd, Rs, imm If(Rs != Rd) PC = PC +

imm

01101dddddsssssiiiiiiiiiiiiiiisp

RETURN $ra Jump to address in $ra 0101000000000110000000000000000p

CALL imm Save PC to $ra and

jump to imm

010110011100000iiiiiiiiiiiiiiiip

SIMD operations

PACK Rd, Rs, Rt, l/r, l/r Rd.H = (Rs.H or Rs.L);

Rd.L = (Rt.H or Rt.L);

10100dddddsssssttttt-----lllrrrp

UNPACK Rd, Rs, Rt, l/r, l/r (Rs.H or Rs.L) = Rd.H;

(Rt.H or Rt.L) = Rd.L;

10101dddddsssssttttt-----lllrrrp

ADD.D Rd, Rs, Rt Rd.H = Rs.H + Rt.H;

Rd.L = Rs.L + Rt.L;

00001dddddsssssttttt-----000010p

ADDU.D Rd, Rs, Rt Rd.H = Rs.H + Rt.H;

Rd.L = Rs.L + Rt.L;

00001dddddsssssttttt-----000011p

SUB.D Rd, Rs, Rt Rd.H = Rs.H - Rt.H;

Rd.L = Rs.L - Rt.L;

00001dddddsssssttttt-----001010p

SUBU.D Rd, Rs, Rt Rd.H = Rs.H - Rt.H;

Rd.L = Rs.L - Rt.L;

00001dddddsssssttttt-----001011p

26

MIN.D Rd, Rs, Rt Rd.H = min(Rs.H,

Rt.H);

Rd.L = min(Rs.L, Rt.L);

00001dddddsssssttttt-----101001p

MAX.D Rd, Rs, Rt Rd.H = max(Rs.H,

Rt.H);

Rd.L = max(Rs.L, Rt.L)

00001dddddsssssttttt-----110001p

ABS.D Rd, Rs, $0 Rd.H = |Rs.H|;

Rd.L = |Rs.L|

00001dddddsssssttttt-----111001p

Table 3.3 Instruction Set

There are also several special instructions used for single-instruction multiple-data

(SIMD) application. We can improve the throughput of pipeline with data level parallelism

via SIMD operations. We have nine instructions for SIMD application. They are described as

following.

5 bits 5 bits 5 bits 5 bits 5 bits 6 bits 1 bit

Opcode Rd Rs Rt shamt funt End bit

The instructions used for SIMD application have same instruction format with R-type

instructions. PACK instruction packs two 16-bit data into a 32-bit register. The funt field of

PACK instruction is separated into two portions, the first half of funt field indicates the first or

the last half of Rs will be packed into Rd, the last half of funt field is used for Rt. As Figure

3.3 shows, the 16-bit data from the first or the last half of Rs will be packed into the first

half of Rd, and the 16-bit data from Rt will be packed into the last half of Rd.

27

Rs

Rt

Rd

Figure 3.3 PACK instruction

UNPACK instruction unpacks two 16-bit data in Rd into Rs and Rt. Because there is one

write bus in our implementation, we have to use two UNPACK instructions to unpack the two

16-bit data. Fortunately, these two unpack instruction can be executed in parallel due to

two-way VLIW design. ADD.D and SUB.D instructions perform two 16-bit add or subtraction

operations in parallel. ADDU.D and SUBU.D instructions perform the same operations with

ADD.D and SUB.D, but the source data of ADDU.D and SUBU.D is unsigned value. MIN.D

and MAX.D instruction select the minimum or the maximum respectively. ABS.D instruction

calculates the absolute value of two 16-bit values located in the first and last half of Rs. These

instructions are executed in the first and last half of sources. Then, the outcomes are placed in

destination register at same time.

3.3 CONSTRUCT THE BASIC ELEMENTS

In the following, we will introduce the basic elements of our two-way VLIW

microprocessor and DI circuits. They are modeled in gate level.

28

3.3.1 Registers

The registers of our two-way VLIW microprocessor is similar to TITAC’s ones [7, 8]. It

is showed in Figure 3.4 (a). It is made of four AND gates, two OR gates, and two NOR gates.

The NOR gates are used to keep the value of data. The valid data is hold between NOR gates

and two AND gates which are connected with read signal. If the inputs of register are empty

token (din.t = 0 and din.f = 0), it will not be written. The registers are not flashed until next

valid information arrives. There is a complete detection of write operation. This detection is

composed of two AND gates and one OR gate. When write operation is finished, the “ack”

signal is set to 1 (dotted line in Figure 3.4).

Moreover, in order to read information of register, the read signal is set to 1. The $g0 is a

special register (Figure 3.4 (b)) in our two-way VLIW microprocessor. Its outputs are always

zero and not allowed for writing. Moreover, all registers should be read and written at

different time in order to get the correct data.

din.t

din.f

dout.t

dout.f

read ~read

ack

Figure 3.4 (a) 1-bit Register

29

dout.t

dout.f

read
~read

reset

Figure 3.4 (b) Zero Register

3.3.2 Dual-rail Gates

Figure 3.5 shows the 2-input dual-rail AND gate composed of four C-elements and one

or gate. The outputs are valid when all inputs are valid data. We construct other logic gates,

OR, XOR, which are needed with same concept. Table 3.4 is the truth table of 2-input

dual-rail AND gate.

din1.f

C

din1.t

din2.f

dinf.t

out.f

out.t

C

C

C

Figure 3.5 The 2-input dual-rail AND Gate

din1.t din1.f din2.t din2.f out.t out.f

0 1 0 1 0 1

0 1 1 0 0 1

1 0 0 1 0 1

1 0 1 0 1 0

Table 3.4 The truth table of 2-input dual-rail AND gate

30

3.3.3 C-Latch

Our pipeline latches (Figure 3.6) are made up of C-element with reset. C-latch are

designed the same as Muller pipeline design. It keeps the valid data until the acknowledge

signal changed from 1 to 0. When the valid data in C-latch is delivered to next pipeline stage,

it sends a acknowledge signal, 1, to previous stage. Then, current stage can start a new

process. On the other hand, if empty token is delivered, it sends an acknowledge signal, 0, to

previous stage. These latches in pipeline have 50% utilization at most due to four-phase

protocol.

ACK_IN

ACK_OUT

Din.t

Din.f

Out.t

Out.f

C

C

Figure 3.6 C-Latch

3.3.4 DeMUX and MERGE

Each datapath may have different works to do. In order to improve the utilization of

function unit, there are several datapath executed in parallel possibly. In synchronous circuit

design, it uses a multiplexer to select the result to output. In DI circuits of asynchronous

processor design, it could be designed that operations are executed in different length of time,

and maybe the function units are not used. DeMUX and MERGE are used for this situation. It

31

can select one of datapaths between DeMUX and MERGE, and the other function units which

are not in selected datapath are idle. Therefore, the idle function units are not active. It can

save power in the way. Figure 3.7 shows the DeMUX and MERGE. The DeMUX consists of

two C-elements, and MERGE is made of OR gate because only one function block is active

and the other function block will be NULL.

Function block

Function block

Din

Sel.t

Sel.f

C

C

DeMUX MERGE

Dout

Figure 3.7 DeMUX and MERGE

3.3.5 Memory Interface

In our two-way VLIW microprocessor implementation, we use the traditional

synchronous memory. Because the pipeline architecture is based on asynchronous circuit

design, it needs an interface to communicate between the function unit and synchronous

memory. The Memory Interface converts dual-rail form into single-rail form (Figure 3.8). It

sends a request signal to synchronous memory when the read signal and address of LDST

function unit arrive. The data will send back to LDST function unit in delay_1. On the other

32

hand, the write operation uses the same conception. Note that read and write operation are not

worked at same time.

Addr.t[0]

Addr.f[0]

Addr.t[31]

Addr.t[31]

Addr[0]

Addr[31]

Delay 1

C

Memory
Interface

Sync MEM

Read_data[0]

Read_data[31]

Read_data.f[0]

Read_data.t[0]

Read_data.f[31]

Read_data.t[31]

LDST EX2

Write_data.f[0]

Write_data.t[0]

Write_data.f[31]

Write_data.t[31]

Write_data[0]

Write_data[31]

C

W_Done.f Delay 2 Write_REQ

Read_REQ

C

Read_Req.t

Read_Req.f

C

W_Done.t

Figure 3.8 Memory Interface

33

3.3.6 MAC and LDST function units

Figure 3.9 and Figure 3.10 show the block diagram of MAC and LDST function. There

are two ALUs, barrel shifters, signed multipliers, pack unit, unpack unit, and unsigned

dividers. The ALU can perform common arithmetic, logic, and SIMD operations. Multiplier

can accept two 16 bits inputs, and then, generates a 32 bits long product. It is based on shift

and add algorithm and constructed of four ripple-carry-save adders. Each ripple-carry-save

adder is made up by n+1 full adders (n: wide of input). The last two full adders work for

signed bit, and pass to next stage. In this way, we avoid extending the input to 32 bits long to

ensure correct product.

Memory
Interface

Barrel Shift

Multiplier/
Divider

ALU

LDST function unit

Pack/Unpack

Figure 3.9 Block diagram of LDST function unit

34

MAC
Barrel Shift

Address generator

Multiplier/
Divider

40-bit Accumulator
Register

ALU

MAC function unit

Pack/Unpack

Figure 3.10 Block diagram of MAC function unit

Pack and Unpack unit are used for PACK and UNPACK instructions as introduced in

section 3.2. In Figure 3.11, Pack unit consists of two multiplexers. According to the first half

of funt field of PACK instruction, Rs.H or Rs.L will be packed into Rd.H. On the other hand,

the last half of funt field of PACK instruction decides Rt.H or Rt.L to be packed into Rd.L.

Unpack unit consists of four multiplexers (Figure 3.12). It unpacks the 16-bit data in Rd.H

into Rs.H or Rs.L (Rd.L into Rt.H or Rt.L). Because our design is based on dual-rail data

encoding, one half of Rs (Rt) will be valid, and the other have to get from Rs (Rt). We can

perform complete detection with this way. For example, if Rd.H is unpacked into Rs.H, the

data in Rs.L still stay in its field.

35

1

1

0

0

Rd.H

Rd.L

Rs.H

Rs.L

Rt.H

Rt.L

Figure 3.11 Pack unit

Rd.H

Rd.L

Rd.H

Rd.L

Rs.H/Rt.H

Rs.L/Rt.L

1

1

1

10

0

0

0

Rs.H/Rt.H

Rs.L/Rt.L

Figure 3.12 Unpack unit

3.4 PIPELINE ARCHITECTURE

There are six stages in our pipeline architecture: PF (Prefetch), DP (Dispatch), ID/OF

(Instruction Decode and Operand Fetch), EX1 (Execute 1), EX2 (Execute 2), and WB (Write

Back). In this section, they are described in details, and the solution of data hazards and

control hazards are going to be introduced. Data hazards are solved in ID/OF stage and

control hazards in IF stage. Figure 3.13 shows our two-way VLIW pipeline architecture.

Because our microprocessor is a two-way VLIW design, we name the path which is

responsible for data transference with data memory “path A” and another “path B” in order to

describe the features and function of datapath conveniently.

36

Instruction
Memory

Date Memory

IF IDP
ID/
OF

EX1

Memory interface

PC Registers

EX2

WB

Accumulator

EX1

EX2

WB

MAC FU

LDST FU

Figure 3.13 Pipeline Architecture

3.4.1 PF and DP Stage

The instruction packet packs extra NOP instruction if the instructions in same packet

could not execute in parallel. But it may waste too memory space to store these instruction

packets. In most VLIW processor, there are some instruction compression mechanisms to

solve this problem. In our PF stage, the 64-bit instruction packet is fetched from instruction

memory. Then, the next stage (DP stage) decompresses this instruction packet. If the two

instructions in same packet could be executed in parallel, they are separated into different

execution order.

Furthermore, we solve the control hazard in DP stage. Because the utilization of pipeline

is 50%, we could pass one instruction at most. If the BEQ/BNEQ is fetched and executed in

37

EX1 stage, the stall mechanism works in DP stage. After BEQ/BNEQ finishes its own job in

EX1 stage, it sends the correct target address to PC register. Then, the PF stage could fetch the

correct instruction packet.

3.4.2 ID Stage

The source operand which is used by instruction is fetched in this stage. It is also

responsible to generate control signals for instruction. The control signals are decoded in

Instruction Decoder unit. The outputs of Instruction Decoder include the control signals of

ID/OF, EX1, EX2, and WB stage. The control signals of EX1, EX2, and WB stage are

delivered stage by stage (Figure 3.14). There are two Instruction Decodes and two sets of

control path due to two-way VLIW design, and used for MAC function unit and LDST

function unit respectively.

The two datapaths share the Register Bank. Source operands in different datapath can be

fetched simultaneously. The ID stage consists of two parts (Figure 3.15), Instruction Decoder

and Register Bank which is described in the following. Moreover, there are two paths between

DeMUX and MERGE, one is bypass line for NOP instruction, and the other is used for

common instruction.

38

Register Bank

EX1

Instruction
Decoder

Instruction
DecodeReg_control Reg_control

EX2

WB

WB
control

EX2
control

EX1
control

EX1
control

WB
control

EX2
control

EX2
control

WB
control

WB
control

WB
control

EX2
control

EX1
control

WB
control

EX2
control

WB
control

EX1
control

EX2
control

WB
control

Figure 3.14 Control Path

Register BankWrite back 1 Write back 2

dst dst

DeMUX DeMUX

MERGE MERGE

sel sel

Instruction
Decoder

Instruction
Decoder

ack

ackout

ack

ack

ackout

ack

Figure 3.15 Block diagram of ID stage

39

3.4.2.1 Register Bank

Figure 3.16 shows the block diagram of Register Bank. It is consists of Operand

Decoders, Lock Queue, and Register file.

Operand Decoder: It is responsible to convert operand register number into a 32-bit

representation (1-of-32), which is used for selecting which register can be read. For example,

the operand register number, 00010, is decoded to 00000000000000000000000000000100, it

means the $g2 is to read.

Register file: It has six read ports and two write ports to serve two datapaths. The operands

include operand A, operand B (the second operand of R-type instruction), immediate value

(the second operand of I-type instruction from the imm field of instruction).

Register file

Operand Decoder

Operands

Write data _1

Lock Module

Write data _2

Operand Decoder

Operands

Figure 3.16 Register Bank

40

Lock Module: The pipeline may have data hazard caused by two successive instructions, if

the source operand of the second instruction is the result of the first instruction. In this

situation, it may occur RAW hazard (read after write) if the result does not be written before

the second instruction gets it. Figure 3.17 shows the block diagram of Lock Module. It is

similar to Lock FIFO of Asynchronous Microprocessor designed by N.C Paver [2]. We use a

queue to store the destination register number and the concept of implement is also similar to

Lock FIFO. We modify the design of Lock FIFO simply to suit our two-way VLIW

architecture.

Lock QueueRd push

Ack pre_stage

pop

Rs Rt

Rs1_E Rt1_EWrite_E
Operand read done Ack from EX_latch

c

Push done

Converter Converter

Converter
C

Figure 3.17 Block diagram of Lock Module

The three converter units in Figure 3.17 are dual-rail to single-rail converter. (There are

same set of elements and control path at another datapath.) When Rs (Rt, Rd) is valid, the

operand register number is converted from dual-rail to single-rail, and control unit send a

request to Lock Queue to check whether it is stalled by previous instruction or not. Lock

41

Queue is used for solving RAW hazard. It stores information of destination register, and

deletes the information of destination register after the results from WB stage are written into

destination register. The instruction is stalled in ID stage if the RAW hazard occurs. There are

two Lock Queues in each datapath. They store their destination register number individually.

When instruction is executed in Lock Queue, not only it have to check its own Lock Queue,

but the another Lock Queue in anther datapath. Therefore, one of datapath may be stalled by

another. For example, there are two successive instruction packets are executed in parallel,

and their operands are list as following:

ADD $g4, $g1, $g0 … (1), ADD $g2, $g1, $g0 … (2)

ADD $g5, $g2, $g0 … (3), ADD $g6, $g4, $g0 … (4)

Instruction (3) and (4) are executed follow (1) and (2). After Instruction (1) and (2)

finished the work in ID/OF stage, the contents of Lock Queue for each datapath is

LQ1 LQ2

$g4 $g2

Instruction (1) is executed in parallel with (2), and (3) is executed in parallel with (4).

Instruction (3) is stalled by (2) because one source operand ($g2) comes from (2), and (2) has

not finished. Instruction (3) and (4) cannot store their destination register number to Lock

Queue because they are stalled by Instruction (2) and (1), respectively. Instruction (3) and (4)

42

cannot store their destination register number until they complete the read operand operation.

After (1) and (2) finish, the Lock Queues are updated:

LQ1 LQ2

$g5 $g6

At this time, instruction (3) and (4) are not stalled anymore. The information of destination

register cannot be pushed into Lock Queue until the operands are fetched from register file.

This policy can make sure deadlock never occur. For example, the executing instruction is

“ADD $g3, $g3, $g1”, one of source operand ($g3) and the destination register ($g3) are the

same. The deadlock may occur in ID stage if the information of the destination register is

pushed into Lock Queue before the two operands are fetched from register file.

3.4.3 EX Stage

The EX stage is responsible for computations and returning the result to register file, and

it is separated into three stages, EX1, EX2, and WB stage. Each datapath has individual

function unit as shown in Figure 3.18 (a) and Figure 3.18 (b) due to two-way VLIW design,

and works individually. They have to wait for each other. Then, an acknowledgement signal

will be sent to previous stage. The one of datapath is responsible for MAC and branch

instruction, and the another is responsible for Load and Store instruction. The basic arithmetic

operations can be executed in both datapaths. The three stages are described in following. The

43

DeMUX and MERGE pairs described in section 3.3.4 are used for selecting data flow in each

stage. If there is not work in execution stage, they can be bypassed. Figure 3.18 (a) shows the

block diagram of Path A, and Figure 3.18 (b) shows the block diagram of Path B.

ALU

1
6
 X

 1
6
 D

u
a
l R

a
il

M
u
ltip

lie
r/D

iv
id

e
r

Barrel Shifter

MEM
Interface

Write Data

Address

Read Data

Latch

1
MUX

2

Latch

Latch

S
h
ift R

e
su

lt

B
a
se

 R
e
g
ite

r

o
p
A

W
rite

 D
a
te

1
DeMUX

2

1
MUX

2

Write To Register

ack

ack

1
MUX

1
MUX

Fraction

1
MUX

2

o
p
BSign

Extend

S
h
ift A

m
o
u
n
t

Data
Memory

W_Don
e

3

ack

ack

C

Ack_MAC Ack_LDSD

To EX2/WB
Latch in Path B

Path A
EX1

EX2

WB

Figure 3.18 (a) Path A

44

EX1

EX2

WB

40 bits AdderMAC

A
C
C

MERGE

EX1/EX2 Latch

Latch

W
rite

B
u
s

MUX

16 X 16 Dual Rail
Multiplier/Divider

DeMUX

EX2/WB Latch

A
L
U

O

u
t

ack

ack

ack

ack

Sign
Extend

Acc Register

C

Ack_MAC Ack_LDSD

Sign
Exten

d

1
MUX
2

Barrel Shifter

O
p
e
ra

n
d
 B

13 bits
Adder

P
C
 V

a
lu

e

Sign
Exte
nd

1 M
U

X

1MUX

$ra

PC_out

A
L
U

O

u
t

ALU

S
h
ifte

r O
u
t

1MUX

PC Value

E_0

To EX2/WB
Latch in Path A

Path B

Figure 3.18 (b) Path B

3.4.3.1 EX1 Stage

The instruction reads the contents of two registers and immediate value from pipeline

latches. It is delivered to correct path by DeMUX. In path A, there are three portions. It can

perform multiplication, division, shift, and arithmetic operations. The ALU is used for general

arithmetic operations and calculating memory address of load and store instructions.

45

In path B, there are four portions. It can also perform multiplication, division, and shift.

In addition, there are sign-extended unit and address generator. The branch operation can

calculate the target address in this stage, and then, the target address is passed to DP stage to

solve control hazard caused by branch instruction.

3.4.3.2 EX2 Stage

In path A, it is separated into two parts. The first is data transfer, and the other is data

pass. Load and store instructions can fetch and store data with memory via memory interface.

On the other hand, the general instructions which do not need to read or write memory will do

nothing in this stage.

In path B, there are two portions, MAC and ALU. The MAC operation reads the contents

of 40-bit accumulator register in this stage. Then, the outcome is written into accumulator at

next stage. So we can ensure correctness of accumulator. The valid token is bypassed in this

stage if the executing instruction is branch instruction which completes its job at previous

stage.

3.4.3.3 WB Stage

WB stage is the final stage of our pipeline. It is responsible for saving the result back to

register file according to the destination register number. If instructions have finished in

previous stage, for example, “SW Rd, Rs, imm”, it has nothing to do in this stage. For

multiply-accumulates instruction, the output of MAC unit is written into 40-bit accumulator

46

in this stage. The value in 40-bit accumulator could be moved into register with ACCLDH and

ACCLDL in order to support other application. Because our pipeline architecture is based on

4-phase dual-rail handshaking protocol, the accumulator is read or written at different time

due to half of utilization of pipeline stage. Finally, the datapath which finish its own job early

has to wait for another only in this stage.

47

CHAPTER 4 SIMULATION

4.1 TESTING ENVIRONMENT

We use ModelSim 6.0 to verify the correctness of the functionally. In addition, we also

synthesized our design with Design Compiler. They are synthesized by TSMC .13μ m

process library. The result of area and timing report are described in the following sections.

Figure 4.1 shows the waveform of the function simulation.

Figure 4.1 The waveform of function simulation

48

4.2 AREA SIMULATION

With TSMC .13μ m processes, the area report of each stage of our two-way VLIW

processor is shown in Table 4.1. Table 4.1 shows the area of each pipeline stage except PF and

DP stage. Table 4.2 shows the area of register bank.

(μ ㎡) ID/OF EX1 EX2 WB Total

LDST

174762.6

(43.5%)

66402.3

(16.5%)

5560.6

(1.4%)

531.3

(0.13%) 401581.1

(100%)

MAC
41518.4

(10.3%)

55644.2

(13.9)

2742.9

(0.68%)

Table 4.1 The area report of each stage

Lock Module Register File

11116.3(μ ㎡) 57450.2 (μ ㎡)

Table 4.2 The area report of register bank

4.3 TIMING SIMULATION

With TSMC .13μ m processes, the timing report of each stage of our two-way VLIW

processor is shown in Table 4.2. The EX1 stages have longer latency than other stages

49

because the multiplier and divider are executed in this stage. In EX2 stage, we ignore the

memory latency because the memory is based on synchronous circuit design.

(ns) ID/OF EX1 EX2 WB

LDST

22.62

65.18 10.48 2.8

MAC 65.75 61.23 2.11

Table 4.3 The timing report of each stage

50

CHAPTER 5 CONCLUSION AND FUTURE

WOROKS

In this thesis, we have implemented a two-way VLIW processor based on asynchronous

circuit design with four-phase dual-rail handshaking protocol. It is a six-stage pipeline

architecture. Each stage can execute in variable length of time due to asynchronous circuit

nature. It can reduce the instruction memory space via instruction compression. In addition, it

also supports SIMD application and multiplier-accumulate operation. There are nine

instructions for SIMD application. Moreover, the DeMUX and MERGE can be used to

improve the performance. The datapath can be separated into several parts. If the function

units between DeMUX and MERGE are not used, the DeMUX will bypass these function

units.

In our datapath design, it has two read ports and one write ports for each datapath. We

could try to increase the read and write ports in register file in order to improve the

performance of SIMD application because the Unpack instruction has to perform twice to

unpack a 32-bit value to the destination register. More important, we wish this light-weight

asynchronous core could be used to construct a multi-core processor via interconnection

network in the future.

51

Reference

[1] Jens Sparso and Steve Furber, Principles of Asynchronous Circuit Design, Kluwer

Academic Publisher, 2001.

[2] N.C. Paver, “The Design and Implementation of an Asynchronous Microprocessor,” Ph.D

thesis, Department of Computer Science, The University of Manchester, 1994

[3] S.B. Fuber, P. Day, J.D. Garside, S. Temple, J. Lin, and N.C. Paver, “AMULET2e: An

Asynchronous Embedded Controller,” in the third International Symposium on Advanced

Research in Asynchronous Circuits and Systems, ASYNC97, pp.243-256, 1997

[4] S.B. Furber, J.D. Garside, D.A. Gilbert, “AMULET3: A High-Performance Self-Timed

ARM Microprocessor,” in International Conference on Computer Design: VLSI in Computers

and processors, ICCD ’98, pp.247-252, 1998

[5] C.J Chen, W.M. Cheng, H.Y. Tsai, J.C. Wu, “A Quasi-Delay-Insensitive Mircoprocessor

Core Implementation for Microcontrollers,” Journal of Information Science and Engineering,

Vol. 25, No.2, Mar. 2009, pp543-557

[6] Hung-Yue Tsai, “A Self-timed Dual-rail Pipelined Microprocessor Implementation,”

National Chiao Tung University, 2007

[7] T. Nanya, et.al, “TITAC: Design of a Quasi-Delay-Insensitive Microprocessor,” IEEE

Design & Test of Computer, Summer 1994, pp. 50-63

[8] A. Takamura, et.al, “TITAC-2: A 32-bit Asynchronous Microprocessor based on

Scalable-Delay-Insensitive Model,” in Proceedings of the International Conference on

Computer Design, Oct. 1997, pp.288-294

[9] T. Kumura, M. Ikekawa, M. Yoshida, and Ichiro Kuroda, “VLIW DSP for Mobile

Applications,” Signal Processing Magazine, IEEE, Vol. 19, Issue 4, pp. 10-21, 2002

[10] TMS320C55x Technical Overview, Texas Instruments Inc., Literature Number:

SPRU393, 2000, http://www.ti.com

52

[11] TMS320C64x DSP Library Programmer’s Reference, Texas Instruments Inc., Literature

Number: SPRU565B, 2003, http://www.ti.com

[12] T. Kumura, D. Ishii, M. Ikekawa, I. Kuroda, and M. Yoshida, “A low-power

programmable DSP core architecture for 3G mobile terminals,” in Proc. IEEE int. Conf,

Acoustics, Speech, and Signal Processing, Vol. 2, pp.1017-1020, 2001

[13] T. Chen, R. Raghavan, J.N. Dale, E. Iwata, “Cell Broadband Engine Architecture and its

first implementation- A performance view, ” IBM Journal of Research and Development, Vol.

51, Issue: 5, pp.559-572, Sept. 2007

[14] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, P. Roussel, “The

Mircoarchitecture of the Pentium


 4 Processor”, Intel Technology Journal, Vol. 5, Issue: 1,

2001, http://www.intel.com

