ERUIRRAE: = 4 S) 5 B WL

Obfuscation‘Using-Exception Handling

(SEEIEN 18

W & R

doE A R4 L4 & 4 0

i3 O e (AR S ke 1

Obfuscation Using Exception Handling

B 3 4 ¢ f 3k4g Student: Chih-Chao Huang

ke & #L Advisor: Dr. Wuu Yang

SRS
o 5 ea fg Ly T
R A
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science and Information Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Institution of Computer Science and Engineering
September 2010
Hsinchu, Taiwan, Republic of China

dEAFL A

i O] h s R AR ke T

S ENE S £ ST 38 R

R R T E L

K &

B0 G AR B BRI L R Bl a HE-E Y £ R g 2 o
#2575 ok 1 (obfuscation) FAFE #TF = 2 ¢ B B frr i i T (4 s % eh 2 2
- o - BRSO A AR R SR F R g B iR A2
AL /E?E']“i’_ °

B F 8 % 5 iy 425N A5 Gl 3k (program transformation) ki £ #
Foit e g o BEAR QLA S E T OE IR N EL S 0 R A6 (T AR
(compiler optimization)p¥ & i & * #5g-enifiv /258 > 2@ & 7 & 4 g 3% say §2

Rk ehfest A28 5

ke > AP & R B (runtime exception) # #= 5t Y dFPF H)
(compile time)# s endF i ks B 0 enfg sV B rE A k> o4 » — B Banfg 5N 15
(bogus code) & 3§ 4 se # f H[UTNER & o AR GEA P 21 KR KRBT T
Feah e 2 f FE AN T Ao o R fodR st < o el e B A > 2 AT

WA F et e g R ARF B R4 e

Obfuscation Using Exception Handling

Student: Chih-Chao Huang Advisor: Dr. Wuu Yang
Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

There exist several reverse engineering tools that can easily recover source code
from a lower level immediate representation: To protect intellectual property,
obfuscation is one of the easiest and efficient way to achieve this goal. A good
obfuscation tool can not only makes the obfuscated code much harder to understand
but also ensures the correctness.

Previous obfuscating approaches mostly-use program transformation that base on
opaque predicate to obfuscate control flow transfer. However, although these methods
can provide a good resilient, they usually decrease performance a lot if applied on the
whole program.

In this paper, we use runtime exception to hide the real code. During obfuscation,
the original program is obfuscated by changing each loop into a specific runtime
exception and inserting bogus code after the runtime exception. The obfuscated code's
correctness is maintained but the code is now unable to be decompiled. Experiment
results show that our obfuscation technique increase less overhead and code size on

SPECJVM2008.

of

China,

under

The work reported in this paper is partially supported by National Science Council, Taiwan, Republic

98-2220-E-009-051, and 99-2219-E009-013 and a grant from Sun Microsystems OpenSparc Project.

PO
N s AR

Bl

TR A

o

AW FAREHY R RRAENFLES Y DT R
BRI B RASEAEDEE > BRI R &R
HUEL R PR R KRUE R R SR LL AR |

B

-

Rehf AT R FlEpm R gL

¥oobs BRBE &R v P morainz SODWUE £ 7 > d 2 in i s
K= L
Ab F
PLASLAB 335 & i# » % B 3 ciifc &

—

N L 2 Y

mT hAd e Re KR
FARNAFEY o EFE F S F
7 PLASLAB ® F % > A & % - Blo
Bl F RBRBANEEZ L G w DLIFERAR L R i
A A - TR R ARG o AR RS Y R R

grants

NSC 96-2628-E-009-014-MY3,

NSC 98-2220-E-009-050,

NSC

Table of Contents

7 O ii
Y 01 1 - o TP PP PPPPPPPPPPPPPPN v
O p R v
TaDIE OF CONTENTS ...t e e e e e e e e e Vi
IS o) 0T = R viii
(@4 gF=To 1 (= o R 014 oo [¥ Tox 1 o o ISP 1
Chapter 2 Reated WOIKoooieeeeeieie e e e e e e e e e e e e e e eeaaaannnes 4
21 Obfuscation Backgroundoouuuiiiiiiiiiiieee e 4
211 L ayout ODfUSCALIONuveeeeiiieeeieeeeeeeee e e e e e e e e e e e e e eeeeaaeees 5
212 Data ObfUSCatION .. et e ettt 5
213 Control FIOW OBFUSCALION ...ou..iiihevieee e 6
213 Preventative OBfUSCALIONot 7
2.2 Control FIOW Flatteningcoe i e b i it e e e e e e e e e e e 8
2.3 Binary Obfuscation UsSing. SIignalSccooiiiiiiiiiiiiieeei e 8
(O P11 = g T |V o (V7§ o o SRR 11
Chapter 4 Implementationeuuuuuiiiiiiiie e e e e e e e e eeeeeeeees 12
4.1 OVEIVIEW ...ttt ettt e e ekt e e e e e et e e e e e e e e e e e 13
4.2 HOW TO FING LOOPS?..ceiiitiiiiiiiieeee sttt e e e e e e e e e e e eeeeeenenees 15
4.2.1 2 F TS ol o o 15
4.2.2 SAME L OOP HEAAEN ... 16
4.2.3 10| o o 16
4.3 SEHUP, RESIOTE ...t e e e e e e e e s 17
4.4 RUNUME EXCEPLION....ciiiiiiiitiiiiiie e s e e e e e e e e e e ettt s s s e e e e e e e e aeeeeeeeeeeeennnnes 18
441 Runtime Exception Collision Problem...........ccccoeiiiiiiii, 18

Vi

442 S s L TR R AL AT 1L Z= PR 19

4.5 BOGUS COUE ... et e e e e e e e e e eaaaaeae 20
45.1 Intersection Loop ObfUSCAtioNcvvvvvveiiiiiiiiiiee e eeeeeeeeeeeeiiiiinns 21
4.6 Transfer TaDIE ... 22
4.7 Local Variable INCONSISIENT..........ccciiiiiiiiiiie e 26
Chapter 5 EXPEriMENT ..ottt e e e e e e e e e e e eeeeeeeeennnnas 28
5.1 Performance of the Obfuscated Program............ccccceeeiiiiieiiieeeiiieieeeeeeeiiiiinns 29
5.2 COUE SUZE ..o e e 31
5.3 [T ot 0] 1 0] o] L= O 32
5.4 Visualizing the Effects of Obfuscationuuuviiiiiiiiiieiii, 33
(@1 gF=To (= A ST Oo T 11 1= o] o S 34
1] o] oo | gF=To] | PO 36

Vii

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Obfuscation concept. 5
Data obfuscation categories. 6
An example of a data encoding obfuscation. 6
Control flow obfuscation categories. ..« 7
Internal concept.of an obfuscator. ~ 8
Source code and_its control flow graph before flattening. . . . 9
After control flow flattening.20 .o oo 9
Summary of Source Code Transformations [13]. 10
Framework of our obfuscation. 13
Example for basic loop pattern. 15
Example for same loop header pattern. 16
Example for multi loop pattern. 17
Relationship between loop and original exception. 18
Before and after handling exception collision case two. 19
Concept of adding bogus code. 20
Gap between Java source code and Java bytecode. 21

viii

4.9 Intersection loop obfuscation example. (1) is the original con-

trol flow and the rest is the transformation process for each

step. . .. 23
4.10 Loop after applying intersection loop obfuscation. 24
4.11 Concept of hashing source address. 25
4.12 Process of transfer target to PC. 25
4.13 Use switch to build transfer table. 26
4.14 How local variable inconsistent occur. 27
5.1 Performance on SpecJVM2008. 2~ 29
5.2 Relationship among Utils.javarand other programs. 30

5.3 Performance on"SpeeJVM2008 without-obfuscate Utils.java. . 30

5.4 Code size increased after obfuscation. . .=~ 31
5.5 Test result of decompilation obfuscated program. 32
5.6 Intuitive view on the effect of our obfuscation method. 33

1X

Chapter 1

Introduction

To obtain good portability, there are many programming languages transform
their source code into a platform independence. intermediate representation
(IR), such as Java and NET, then compile the IR into a specific target’s
machine code. Imagine, if we can transform all programming languages into
a common IR, compiler’s optimization techniques can be developed without
considering each language’s features and portability can easily be achieved
by using a VM translate the IR to a specific target’s binary. But before this
idea can be put into practice, security is the most important issue we need
to think about.

Reverse engineering tools such as decompiler is used to recover source code
and meaning from a IR. There are many free decompilers can be download
from internet, such as Jad, CavaJ, JD-GUI and Mocha. Software hackers

often use these tools to discover the valuable algorithms in software.

Obfuscation is one of the efficient tools that can be used to protect the
intellectual property. The goal of obfuscation is to make it difficult for an
attacker from understanding the meaning and structure of a program. It
works by transforming a program into a functionally-equivalent one but not
readable for human reader. In this way, an attacker may takes more time to
reverse engineering than rewrite a same program.

Previous researches on obfuscation mostly focus on program transforms
that rely on opaque predicates to obfuscate the control flow. Although it can
successfully blur the program, these methods usually come in with notable
decrease in performance when applied on the whole program.

In this thesis, our obfuscation technique is to obfuscate intermediate rep-
resentations that rely on runtime exception to'against decompilers, though
using runtime exception to implement ‘obfuscation is not a new idea [10].
Prior works usually use runtime exeeption to hide the real control flow, but
they did not notice that the exception table contains all the exception in-
formation. That is, an attacker can find out all the mapping of runtime
exception by analyzing the exception table of the program.

The basic idea of our approach contains three parts: (1)find loops then
move the loops away; (2)substitute the loops by runtime exceptions; and
(3)build a transfer table that map the runtime exception to the substituted
loop. To complicate the mapping of each runtime exception, we use a transfer
table and hash function to further hide the real control flow. In this way, the

problem of easy to break can be solved.

We have used BCEL [1] to implement our method and experimented on
Java bytecode. The experiment shows that our approach can be done effi-
ciently with moderate decrease in performance. We also test the obfuscated
program on many decompilers, and none of them can be decompile success-
fully.

The rest of this paper is organized as follows: Section 2 provides back-
ground and related work of obfuscation. Section 3 describes the motivation
of our work. Section 4 describe the techniques we used and explain how they
are implemented. Section 5 gives experimental results for programs in the

SPECJVM2008 benchmark suite and Section 6 contains concluding remarks.

Chapter 2

Related Work

This section reviews the backgournd of obfuscation and gives a brief intro-

duction to two related works that represent recently proposed mechanism.

2.1 Obfuscation Background

It’s easy to reverse engineer Java class files since Java bytecode contains a
lot of the same information as its original source code. To overcome this
problem, obfuscator can give us some help.

An obfuscator is a program used to transform original program. The out-
put of the obfuscated code is more difficult to understand but is functionally-
equivalent to the original. Figure 2.1 shows the process and concept of an
obfuscator.

Obfuscation can be classfied according to what kind of information they

target and how they affect their target [8] [11]:

Programmer Attacker

Compiler f:pecompiler‘,l‘
i i
— YN
Java IO b B il Java
class > b usca Or-:,/‘ > class
g~
A A

Figure 2.1: Obfuscation concept.
2.1.1 Layout Obfuscation

Layout obfuscation affect the information in the program code that is unnec-
essary to its execution. These obfuscations are typically trivial and reduce
the amount of information: available to a human reader. Examples include

source code formatting, variable names and commments [5].

2.1.2 Data Obfuscation

Data obfuscations operate on the data structures used in the program. Can
be classified according to what operation they perform on the data structures.
Figure 2.2 shows the classification.

Data encoding obfuscations affect how the stored data is interpreted,
for example replacing an integer variable i by the expression 8 * i 4+ 2. Source
code would be transformed in the manner of Figure 2.3

Data aggregation obfuscation change how data is grouped. For exam-
ple, transforming a two-dimensional array into a one-dimensional array and

vice-versa.

Data
Obfuscation

« |

Encoding Aggregation Ordering
Change Split, fold, Reorder
encoding merge arrays method
Reorder

arrays

Figure 2.2: Data obfuscation categories.

inti=1; inti=11;

while (i< 1000) { while (i< 8002) {
AL CA(i-2)/8] .
i++; i+=8;

} }

Figure 2.3: An.example of a data encoding obfuscation.

Data ordering obfuscations change how. data is ordered. The normal
way in which an array is used to store a list of integers has the ith element
in the list at position i in the array. Instead, we could use a function f(i) to

determine the position of the ith element in the list.

2.1.3 Control Flow Obfuscation

Control flow obfuscation affect the contorl flow of the program. Figure 2.4
shows the classification according to what operation they perform.
Control aggregation obfuscations change the way in which program

statements are grouped together. For example, it is possible to inline proce-

Control Flow
Obfuscation

« |

Computations Aggregation Ordering
Insertdead Unrollloop Reorder
code statement

Inline method

Outline method

Figure 2.4: Control flow obfuscation categories.

dure, that is, replacing a procedure call with the statements from the called
procedure itself.

Control ordering obfuscations change the order where statements are
executed. For example, loops can sometimes be made to iterate backwards
instead of forwards.

Control computation obfuscations hide the real control flow in a pro-
gram. For example, statements which have no effect can be inserted into a

program.

2.1.4 Preventive Obfuscation

The main goal is to stop decompilers and deobfuscators from functioning

correctly by using the ambiguities and irregularities left in the language [6] [5].

In general, an obfuscator usually contains lots of different obfuscation

methods and provide an interface to let user selects the required level of ob-
fuscation and the maximum execution time/space penalty that the obfuscator
is allowed to add to the application [9]. Figure 2.5 shows the internal con-
cept of an obfuscator. In our work, we only propose an obfuscation method
instead of implementating a complete obfuscator.

Obfuscation process

Source 3y | Pass 1 |—>| Pass 2 | | Pass n-1 |—>| Pass n | — Obfus;ated
code
ID scrambling Array Reorder Control flow
merge method obfuscation

Figure 2.5: Internal concept of an obfuscator.

2.2 Control Flow Flattening

Control flow flattening aims to obscure the control flow logic of a program
by ”flattening” the control flow graph so that all basic blocks appear to have
the same set of predecessors and successors. The actual control flow during
execution is guided by a dispatcher variable [14]. Figure 2.6 and Figure 2.7

shows the program that before and after control flow flattening obfuscation.

2.3 Binary Obfuscation Using Signals

Previous obfuscating approaches mostly use program transformation rely on

reconstruct original program’s structure. For example, they use opaque pred-

inta=1; A a=1

i<j?
If(i<j)
asj; B Y N C
else .
azi a*=i—
do{ : 1> 0?
a¥*=i—;

Jwhile(i > 0) /.ba/\—"’—

D return a

return a;

Figure 2.6: Source code and its control flow graph before flattening.

C D

a¥=j-- | returna |

Xx=i>0?72:3

a=1
X=i<j?1:2

goto

X o
n q %]
w— £
/ \Fr' x
o 1]
= o
<
-

Figure 2.7:" After-control flow flattening.

icates to hide the control flow transfer and then insert bogus code in untaken
path to obfuscate the data flow. Although it can successfully obfuscate the
origin program, it break the origin structure of program. So it may cause the
compiler can not apply all optimization techniques on it, and further get a
notable performance degradation if applied on the whole program [7]. Such
obfuscation approach like control flow flattening [14] [15]. To overcome this
drawback, researchers recently propose using signal handling as a mechanism

for obfuscation.

In Binary Obfuscation Using Signals [13], it describes two techniques
for obfuscating binaries. The primary technique is to replace control trans-
fer instructions—jumps, calls, and returns by instructions that raise traps at
runtime; these traps are then fielded by signal handling code that carries
out the appropriate control transfer. The secondary technique is to insert
(unreachable) code after traps that contains fake control transfers and that
make it hard to find the beginning of the true next instructions. Figure 2.8

shows the summary of how this method work.

Code-before Code-before
Setup code
Transfer S— TRAP code
Bogus code
Code-after Code-after
(a) Original code (b) Obfuscated code

Figure 2.8: Summary of ‘Source Code Transformations [13].

10

Chapter 3

Motivation

Although Binary Obfuscation Using Signals [13]'can solve prior obfuscation
approaches’ problems, it=still -has two main problems. The first and most
important one is this approach may incur high performance overhead due
to the high cost of signal handling. For example, it could incur more than
43X performance overhead when ‘obfuscating 90% of the branches [7]. The
next problem is that since it is a binary obfuscation, it can only be used on
specific environment, that is, it is not portable.

Based on these reasons, we propose a framework that not only can offer
high quality of obfuscation but also with moderate increase in execution time

and code size.

11

Chapter 4

Implementation

Our method is similar to Binary Obfuseation. Using Signals [13], the most
difference is we focus our-technique on intermediate code instead of binary,
so it is not limited by a single environment.

Our main obfuscation technique is to change loops into code sequences
that cause runtime exception, then it will jump to a table we called Transfer
Table. The role of this table is like an address controller, its responsibility is
to accept all the input from different runtime exceptions we made, and find
the unique output then jump to the corresponding address.

The other obfuscation technique is to add bogus code after the handmade
runtime exceptions. Since runtime exception is not easy to be detect at
compile time, bogus code may increase the strength of our obfuscation. To
further make the added bogus code hard to be decompiled, we propose a

technique called Intersection Loop Obfuscation and applied on it.

12

Exception table

(a) Original code (b) Obfuscated code
Code before Code before
Loop Setup ‘|
Runtime Transfer table |

Bogus
code

|
Restore

Loop

Figure 4.1: Framework of our obfuscation.

Below we give an overview of how these techniques are implemented.
Then we describe in detail how to solve the runtime exception collision, how
we deal with the implementation of transfer table, and some other issues we

faced.

4.1 Overview

Figure 4.1 summarizes the overview of our framework. Figure 4.1(a) contains
a fragment of machine code in the origin code. Loop is our obfuscation
target, and the instructions that is proceeded and followed Loop are indicated
by Code before and Code after.

The reason why we choose loop as our obfuscation target is that it will
not cause a notable degradation of performance while applied our framework

on the whole program. Imagine, if we consider jump or procedure call to

13

obfuscate, then an runtime exception will be occurred for each iteration in
a loop. Since an exception incurs high overhead, it will lower performance a
lot.

4.1(b) contains the corresponding code fragment in the obfuscated code.
Loop is replaced by three components, which will be described in the follow-
ing sections.

When executing the obfuscated code, it causes the runtime exception.
Then the runtime exception handler will transfer control to the Transfer
Table which contains mapping from the address of raising runtime exception
to the Loop. Since the source address that raised runtime exception has been
saved to a local variable.in Setup, so-we can use this source to find the
corresponding target in the Transfer Table and then execute the Loop.

Before discussing in detail for each component, there is one more issue we
need to consider about. Since‘our method will produce so many runtime ex-
ceptions, will these exceptions increase too many overhead to performance?
This problem can be solved by an optimization called Exception-Directed Op-
timization(EDO) [12] that is developed by IBM. EDO is a feedback-directed
dynamic optimization. It attempts to detect hot exception paths, when it
find the exception is hot enough, it will inline the hot exception path to the
program. So next time it won’t raise an exception and save a lot of overhead.

With help from EDO, our method can be done efficiently with moderate

creases in execution time.

14

4.2 How To Find Loops?

When obfuscating a program, our obfuscator will find loops first. We use a
simple heuristic that first appeared in Dynamo [4] to identify loop headers.

After loading a class file, our obfuscator traverses the bytecode program
instruction by instruction in each method. Each time a backwards branch
instruction is found, our obfuscator put it into a backwards branch array
since the destination of that jump is a loop header. When all backwards
branches are gathered, the way to find a loop can be classified according to

the position of each backwards. branch.

4.2.1 Basic Loop

A basic loop is a pattern that there contains-no other backwards branches in
the scope of a backwards branch and its corresponding loop header. Figure

4.2 shows the concept.

Bytecode:
Source code: iconst 0
istore_2
iload 2
bipush 10
if_icmpge 22
))) getstatic #2; [Field J:
for (1=0;1 <10 i++) 1: ldc #3: //String test!
System.out.printin{“testl"), 93 jnyokevitual #4: /Meths
} 16: iinc 2, 1
19: goto 2
22: return

public veid main(String[] args)
{

int i

= 00 WML

Figure 4.2: Example for basic loop pattern.

15

4.2.2 Same Loop Header

A same loop header pattern means in the scope of a backwards branch and its
corresponding loop header, there exist other backwards branches that share

the same loop header. Figure 4.3 shows this pattern.

Bytecode:
Source code: b E
public static void main(String[] args) 2 :;;J:rzt_“ﬂ
t 2: iload_1
int ; 3: bipush 10
]] 5 if_icmpge 41
for(i=0;1<10;) 8- iload 1
{ 9: iconst_5
if (i==5} 10: if_icmpne 27
13: iinc 1,1
System.out_printin{"i = 5"); 16: getstatic #2; I/Field ja
} 19: ldc #3; /String i =5
else{ 21: invokevirtual #4; //Methoc
System_out_printin("haha");
- gelstalic 72, I[Field ja
} 30: |dc #5; //String haha
1 32 @_rwoke'-'irtual #4; /Methoc
}

;

38: goto 2
=T

Figure 4.3: Example for sameloop header pattern.

4.2.3 Multi-Loop

A multi-loop pattern means for a loop constructed by one backwards branch
and its corresponding loop header, there exit another backwards branch and
loop header forms a bigger scope and includes the loop. Figure 4.4 shows the

concept.

16

Loop header

)

oop header

-y

L

L

Backwardsbranch

oop header

¢

Backwardsbranch

: Backwards branch

Figure 4.4: Example for-multi loop pattern.

4.3 Setup, Restore

After finding loops, we then doing some initialization actions before obfus-
cating the loop. Setup component is responsible to do the initialization.
The setup component does three things: (1) store the source address(run-
time exception’s location) which will be used when building transfer table;
(2) push the source address to operand stack and store it to a specified lo-
cal variable so it can later be used by transfer table; and (3) save operand
stack’s values to heap so the original program’s state can later be restored

by Restore component to exactly what it was before the Loop.

17

4.4 Runtime Exception

After initialization, before we can move loop away and insert a runtime ex-
ception, there is still one more thing we need to consider about. Will the
runtime exceptions we made collision with exceptions in original program?
Figure 4.5 shows all possible situations for relationship between loop and

original exception.

4.4.1 Runtime Exception Collision Problem

-=- LOOprange

= Origin exception range

Figure 4.5: Relationship between loop and original exception.

In figure 4.5, we can see that case one and case four are impossible, so we
don’t have to handle it. Case two means a loop is included by an exception
and case three is opposite. There are two steps to handle case two: (1) find
the original exception’s exception type and handler, then set to the moved
loop; and (2) divide the original exception into two parts and insert our
runtime exception between them. Figure 4.6 shows the concept. In this way,
the collision problem can be solved. For case three, since the exception will

be moved together with the loop, so there is no collision can happen. After

18

1:tryf Lty

5 2:

3 for{ Afterobfuscation | 3: 7113: for{
4: » 4 idiv 14:
5} 5 15: '}
6: o “

7:} 7}

8: catch() {} 8: catch() {}

[start | End _|Handier | type [l Start | End | Handier | type |
1 7 8 1 2 8

Any Any

6 7 8 Any
3 5 13 Div0
13 15 8 Any

Figure 4.6: Before and after handling exception collision case two.

dealing with collision problem, we can now insert our runtime exception.

4.4.2 Static Initializer

To further confuse attackers, we use some techniques to implement our run-
time exception. For example, when an-divide zero exception want to be
raised, before executing an”idiv. bytecode,~operand stack must contains a
zero value. So our concept is to store values that will be used in runtime
exception to heap in advance and then get these values by reference in our
runtime exception. Thus, attacker won’t easily figure out what values are
contained in operand stack.

There are two steps to achieve this goal: (1) write a static initialize
method that store the value will be used in runtime exception to heap in
advance; and (2) use static initializer to call the static initialize method.
Since the code in a static initializer block is executed automatically by the

virtual machine when the class is loaded, the values we want to initialize will

19

Code before
Setup
Code before .
exception

Runtime
exception

e | e

code

Coveater | S~

(a)Original code (b)Obfuscated code

Loop

Figure 4.7: Concept of adding bogus code.

be put in heap at the same time.
In this way, the attacker is hard to figure out weather a runtime exception
will happen or not because.it becomes an inter-procedure data-flow analysis

problem.

4.5 Bogus Code

After obfuscating the Loop, we then insert bogus code to further confuse
attackers. Figure 4.7 shows the concept of how we insert bogus code after
runtime exception.

The main reason why we insert bogus code after runtime exception is to
increase the strength of our obfuscation. Although bogus code is unreachable,
attacker is not easy to identify since runtime exception is hard to detect at
compile time. The other benefit of bogus code is that it can make an attacker
think there is another edge in the control flow graph.

Bogus code is composed by a loop that chosen from other place in the

20

¥
for(1=01010) «_
™| for{j=0t010)._
» |
goto || } —
1 It's impossible to express this

in source code

goto |- -

BHt

Bytecode level Source code level

Figure 4.8: Gap between Java source code and Java bytecode.

program. Since previous researches on obfuscation almost focus on control

flow, so using loop as bogus code may: misleading attackers.

4.5.1 Intersection Loop Obfuscation

It is trivially true that every valid Java source code program must compile
to a valid Java class file. ‘A wvalid class file must pass through the verifier
without causing any errors. However, not every Java class file has a direct
correspondence to a valid Java source code program. This is because the Java
bytecode instruction set supports a richer set of language features than the
language Java. These features include goto and subroutine instructions [11].

To further confuse attackers, we use this gap between Java bytecode and
Java source code to propose a new technique called intersection loop ob-
fuscation. Figure 4.8 shows the concept of our idea. As can be seen in
the graph, a intersected loop is not permitted in any high-level language.

Therefore, it can make decompilers fail.

21

Our method aims to transform bogus code into intersected loop. The
transformation process contains five steps: (1) tail duplication; (2) duplicate
conditional block and put onto the original conditional block; (3) move one
of the tail above duplicated conditional block; (4) add a GOTO above whole
loop and point to the duplicated conditional block; and (5) retarget the tail’s
destination to the duplicated conditional block. Figure 4.9 shows an example
of how our method work, and Figure 4.10 depict the transformed control flow,
as can be seen in Figure 4.10 black line and dotted line form intersection loop.

After intersection loop obfuscation, the bogus code is transformed from
a "loop” into a "intersected loop” that can resist decompilers. Although
this transformation breaks the origin control How of the loop and may cause
the compiler can not apply all optimization techniques on it then further
get a notable performance degradation, since /bogus code is unreachable,

performance will not be affected.

4.6 Transfer Table

After obfuscating each Loop and inserting Bogus code, all information that
needs to build transfer table are gathered. A transfer table act like a con-
troller, when handmade runtime exception occurs, the exception handler will
guide the next execution instruction to our transfer table and then the table
will be traversed to find the corresponding target address and set this address

to PC. After doing that, execution can be continued from the beginning of

22

Figure 4.9: Intersection loop obfuscation example. (1) is the original control

flow and the rest is the transformation process for each step.

23

Figure 4.10: Loop after applying intersection loop obfuscation.

the moved loop.

To make it hard to reverse.engineer the contents of transfer table, before
store the source address into it, we use a hash function and store the hashed
value into transfer table. This not only hides the value of the source address
but also complicate the transfer table because source addresses do not appear
in the obfuscated program directly. The concept is summarized in Figure
4.11.

After getting the corresponding target from transfer table, the next ques-
tion is how to put the target into PC. The process is depicted in Figure
4.12.

Ideally, it contains two steps: (1) store the target to the local variable;

24

Obfuscated code L\

Codebefore Transfer table 1 | Hash'S to get the index |
T

Runtime Hash(s)
exception

Jump to target
Real
code

Figure 4.11: Concept of hashing source address.

Local variable
Transfer table

m 0 a
--- --

Step 2
PC:

Figure 4.12: Process of transfer target to PC.

and (2) push the value in-the local variable into PC.-Unfortunately, neither of
these two steps can be achieved because JVM does.not supply such bytecodes
that can store a reference type value(-target’s type is present as reference
in JVM) into local variable and none of bytecodes can do indirect jump. So
we choose switch to build our transfer table. Figure 4.13 shows the concept
how a transfer table looks like. The drawback of using switch to implement
our transfer table is that for each case in switch, the target is fixed. This
means we can only play tricks on source address but not on target address

to make attackers confused.

25

Runtime
exception

| source i J
| Hash function |

Transfer table

Figure 4.13: Use switch to build transfer table.

4.7 Local Variable Inconsistent

Local variable inconsistent problem is a verify error, it is occurred when java
verifier verifies our obfuscated program.-Let’s explain this problem in Figure
4.14. Figure 4.14.(a) is the original program which contains three for loops.
After our obfuscation, these three loops will be replaced by three runtime
exceptions and a transfer-table will contains the target information for each
source. Figure 4.14.(b) depict-the concept.” When we run the obfuscated
code, the java verifier will be raised to verify the whole program, when it
encounters the first runtime exception, it jumps to the transfer table. Since
the transfer table is made by switch, java verifier won’t have any idea what
the correct case is, so it will traverse every cases one by one. Then when it
verifies Figure 4.14.(2), a local variable inconsistent problem will be occurred
because local variable j has not been declared.

To solve this problem, we can simply copy the declaration of each local
variable that will be used in current method and put it on top of the method.

In this way, when Java verifier verifies the obfuscated code, all the local vari-

26

public static void main{ String[] args)
{

inti=1;

for (i=0;i<5;i++)
{
ifi==3)
System.out_printIn{"i = 3I");
}

intj=0;
for (j=0;]<10; j#+)
System.out.printin{"i =" +i)

for (i=0;i<10; i++)
System.out_printin{"j="+j)

(a)
public static void main(String[] args)
{ for (i=0;1<5;i++)
inti=1; {
fli==3) (1)
System_out.printin{"i = 3");

— _ fo ' 10: j++)
i @Et.pfiﬂt|n(-.i . {2}

int j=0; z ~

Runtime exception

~_ Variablej hasn’t been declared

Runtime exception [/ Transfer table oy for (i=0:i<10:i++) (3)

System.out_printin{"j="+j);

m Java verifier will verify each possible path!

(b)

Figure 4.14: How local variable inconsistent occur.

ables are initialized in advance before executing the first runtime exception

we made, so local variable inconsistent problem can be avoided.

27

Chapter 5

Experiment

We evaluated our efficiency-of our approach using seven programs from the
SPCEJVM2008 benchmark suite. Our experiment were run under windows
7 on Intel Core 2 Duo CPU E7400, with 4GB RAM. We used the Sun Java
HotSpot Client VM, 16.3-b01 mixed mode with the default Just-In-Time
compiler turned on. Each evaluated on the program includes iteration and
warmup. An iteration goes on for a certain duration, by default 240 seconds.
During this time the program will be called several times, one by one as soon
as previous program completed. It will never abort a program, but wait
until a program is completed for stopping. The first iteration is a warmup
iteration, run for 120 seconds by default. The result of the warmup iteration
is not included in the benchmark result. The result for each profile is a score

on each workload.

28

5.1 Performance of the Obufscated Program

The following data was obtained by applying our obfuscation to SPECJVM2008
benchmark programs. Seven SPEC programs are used in this experiment.
Figure 5.1 shows the result. We tested each benchmark program by obfus-
cating 0%, 10%, 50% and 80% of the program. As can be seen in Figure 5.1,

derby decrease a lot.

Derby contains6 programs:

Obfuscate Utils.java CyclicReader.java
DataReader.java

DerbyHarness.java
InitThread.java
Main.java

35 1 Utils.java

50

45

40

30 +
m0%

25 +

10%
20 + W 50%
W E0%
15 +

10 +

Serial MpegAudio Crypto Scimark Startup Sunflow

Figure 5.1: Performance on SpecJVM2008.

Derby contains six programs. After tracing it, we found that there are
four programs will call Utils.java when they execute. Figure 5.2 depict the
relationship among the four programs and Utils.java. After obfuscating,
loops in Utils.java become runtime exceptions. Since exception increase lots
of overhead, it decrease performance a lot when the four programs keep

calling Utils.java at runtime. This is the main reason why derby got bad

29

performance after obfuscation.

DataReader.java
DerbyHarness.java
InitThread.java
Main.java

call Utils.java

9 loops

_/_7

Figure 5.2: Relationship among Utils.java and other programs.

Although Utils.java is hot, it is not necessarily to be importance code.
This means weather we obfuscate Utils.java or not, an attacker won’t be able
to get important algorithms from the obfuscated program, so we choose not

to obfuscate it. Figure 5.3 shows thexesult: As can be seen, all the decrease

on performance is less then 21%:

50

Score

0%

10%
W 50%

W E0%

Derby Serial MpegAudio Crypto Scimark Startup

Sunflow

Benchmark Decrease <= 20%

Figure 5.3: Performance on SpecJVM2008 without obfuscate Utils.java.

30

5.2 Code Size

Since dynamic class loading is one of the important features of JVM, so to
keep increased code size down is a major issue for obfuscation.

To decrease the impact on code size after obfuscation, we remove the
LineNumberTable and LocalVariableTable from class file after obfuscation.
These two attributes are optional and may be used by debuggers to get more
debugging information from class file. So removing these two attributes not
only can save much space but also make debuggers hard to work.

Figure 5.4 shows the impact of our obfuscation techniques on code size.
We can see that the code size factor ranges from 1.07 (Crypto) to 1.28 (Sci-
mark), with a mean inctease of a factor of 1.15. The increase of code size

mainly comes from added bogus code.

Obfuscate whole program.

Obfuscated | __Increase ___

Derby 37461 43087 15.0%
Serial 39547 44102 11.5%
MpegAudio 4642 5455 17.5%
Crypto 17080 18345 7.4%
Scimark 37660 48484 28.7%
Startup 6584 7137 8.4%
Sunflow 3114 3670 17.8%

Figure 5.4: Code size increased after obfuscation.

31

5.3 Decompiler

To proof our obfuscation technique can resist decompiler, we use 9 decom-
pilers and one deobfuscator to test the obfuscated code. The way how we
test decompilers contains four steps: (1) use javac to compile the java source
code to bytecode; (2) apply our obfuscation technique on the bytecode; (3)
use decompiler to decompile the obfuscated bytecode; and (4) use javac to
compile the produced source code again. If javac shows compile error, we say
that the tested decompiler is fail and mark a X on the blank of the corre-
sponding decompiler. Figure 5.5 shows-the result of our testing. Blanks with
”Version mismatch” means the decompiler is too old to support new version

of class file that we used.

Jad X

Caval X

DJ Java Decompiler X

JD-GUI X
Mocha Version mismatch
JreversePro Version mismatch

JODE X
Dacafe Version mismatch

JCavaj X

JDO X

Figure 5.5: Test result of decompilation obfuscated program.

32

5.4 Visualizing the Effects of Obfuscation

To give an intuitive view on the effect of our obfuscation techniques, we
use clVisualizer [2] to visualize the control flow graph of both the original
program and obfuscated one. For easy understanding, we use a small program
that contains three for loops.

Before visualize the obfuscated program, we apply Java Deobfuscator
(JDO) [3] on it. As can be seen in Figure 5.6, JDO could not eliminate most
of the faked control flow edges. Hence, we can see a dramatically change to

the obfuscated code.

Before obfuscation After obfuscation

Figure 5.6: Intuitive view on the effect of our obfuscation method.

33

Chapter 6

Conclusion

The problem of protecting software from-attackers is an important issue. To
protect intellectual property, obfuscation is one of the easiest and efficient
way to achieve this goal.

In this paper, we has described a new approach to obfuscating java byte-
code and evaluated its effectiveness and c¢ode size on programs in SPECJVM2008
benchmark suite. In our framework, we replace loops by some bytecode that
cause runtime exception, then use a transfer table to response the mapping
of runtime exception and loop, and insert bogus code to further confuses
decompilers.

The experiment results show that the average effect on performance is
less than 21%, and the mean increase of code size is 1.15X. We also use 9 de-
compilers and 1 deobfuscator to test the strength of our obfuscation method.

The experiment shows that these tools can not reverse the obfuscated code

34

to source code.
Since we propose a obfuscation method that can be done efficiently with
moderate increase in execution time and code size, our method can be com-

bine with more other obfuscation methods to obtain better obfuscation strength.

35

Bibliography

http://jakarta.apache.org/bcel/.
https://clvisualizer.dev.java.net/.

http://www.softpediacom/get /programming /debuggers-decompilers-

dissasemblers/java-deobfuscator:shtml:

Vasanth Bala, Evelyn Duesterwald;-.and.Sanjeev Banerjia. Dynamo: A
transparent dynamic optimization system..In ACM SIGPLAN Notices,

pages 1-12, 2000.

Jien-Tsai Chan and Wuu Yang. Advanced obfuscation techniques for

java bytecode. J. Syst. Softw., 71(1-2):1-10, 2004.

Jien-Tsai Chan, Wuu Yang, and Jing-Wei Huang. Traps in java. J. Syst.

Softw., 72(1):33-47, 2004.

Haibo Chen, Liwei Yuan, Xi Wu, Binyu Zang, Bo Huang, and Pen

chung Yew. Control flow obfuscation with information flow tracking.

36

[11]

[12]

[13]

In Proc. MICRO-42 Microarchitecture 42nd Annual IEEE/ACM Int.

Symp, pages 391-400, 2009.

C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing,

and obfuscation - tools for software protection. 28(8):735-746, 2002.

Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy

of obfuscating transformations. Technical Report 148, July 1997.

Daniel Dolz and Gerardo Parra. Using exception handling to build
opaque predicates in intermediate code obfuscation techiniques. JCSéT,

8(2), 2008.
Douglas Low. Java control flow obfuseation. Technical report, 1998.

Takeshi Ogasawara, Hideaki-Komatsu, and Toshio Nakatani. A study
of exception handling and.its dynamic optimization in java. In OOP-
SLA ’01: Proceedings of the 16th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 83—

95, New York, NY, USA, 2001. ACM.

Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. Binary
obfuscation using signals. In §5°07: Proceedings of 16th USENIX Secu-
rity Symposium on USENIX Security Symposium, pages 1-16, Berkeley,

CA, USA, 2007. USENIX Association.

Chenxi Wang, J. Davidson, J. Hill, and J. Knight. Protection of

software-based survivability mechanisms. In Proc. [Organically Assured

37

and Survivable Information Systems] Foundations of Intrusion Tolerant

Systems, pages 273-282, 2003.

[15] Chenxi Wang, Jonathan Hill, John C. Knight, and Jack W. David-
son. Protection of software-based survivability mechanisms. In DSN
‘01: Proceedings of the 2001 International Conference on Dependable
Systems and Networks (formerly: FTCS), pages 193-202, Washington,

DC, USA, 2001. IEEE Computer Society.

38

