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Analysis of Discrete Dynamic  Robot  Models 
TSU-TIAN LEE AND YUH-FENG TSAY 

Abstract-The  discrete shift-transformation matrix of general ortho- 
gonal polynomials is introduced. The discrete shift-transformation matrix 
is employed to transform  the difference equations, which  describe  the 
discrete  dynamic  robot model, into algebraic equations. Several  lemmas 
are introduced which, together with  the  discrete shift-transformation 
matrix, solve for the joint positions and velocities of discrete  dynamic 
robot models via  discrete orthogonal polynomials approximations. The 
initial  numerical  experiment  with  a  cylindrical coordinate robot shows the 
feasibility and  applicability of discrete orthogonal polynomials approxi- 
mations. 

I. INTRODUCTION 

R ECENTLY, discrete orthogonal polynomials have been 
applied to the analysis, parameter identification, model 

reduction, and optimal control of linear systems with some 
success. In particular, King  and Paraskevopoulos [9] applied 
the discrete Laguerre orthogonal polynomials to solve the 
parametric identification problem. Hwang and  Shih  [6], [7] 
used the discrete Laguerre orthogonal polynomials and the 
discrete Chebyshev orthogonal polynomials, respectively, to 
solve the model reduction problem. Similarly, Horng and Ho 

' [4], [5] applied the discrete Laguerre orthogonal polynomials 
and the discrete Chebyshev orthogonal polynomials, respec- 
tively, to solve the discrete optimal control problem. 

Note that both the discrete Laguerre orthogonal polynomials 
and  the discrete Chebyshev' orthogonal polynomials possess 
the same recurrence relation. This fact motivates our attempts 
to start from the basic relation, the recurrence relation, to 
derive an algorithm for solving discrete-time control prob- 
lems; hence the derived algorithm is so general that it is  not 
only good for the discrete Laguerre orthogonal polynomials 
approach or the discrete Chebyshev . orthogonal polynomials 
approach, but also, and most importantly, it is good for any 
other discrete orthogonal polynomials that possess the same 
recurrence relation. The basic idea of the paper is to use 
discrete orthogonal polynomials to approximate a discrete 
dynamic robot model, presented by Neuman  and Tourassis 
[ 131, and  then to use this approximation to solve for the joint 
positions  and velocities. 

This paper is organized as follows. In Section 11, general 
discrete orthogonal polynomials are introduced, and the 
general discrete shift transformation matrix is derived. By 
means of the shifted transformation matrix, we can transform 
the difference equations describing the system into algebraic 
equations, regardless of whether the system is linear or 
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nonlinear. The analysis of the resulting algebraic equations is 
then  easily performed. In addition to the shift transformation 
matrix, several lemmas are developed so that the resulting 
algebraic equations will satisfy the specified initial and/or final 
conditions. 

A discrete cylindrical robot model  with  highly coupled and 
nonlinear dynamics presented by Neuman and Tourassis [13] 
is outlined in Section 111. This discrete robot model  is analyzed 
via discrete general orthogonal polynomials in Section IV. It  is 
shown that, by applying the shift transformation matrix of 
discrete general orthogonal polynomials, implicit nonlinear 
difference equations describing the discrete robot model can 
be transformed into explicit nonlinear algebraic equations. 
Based on these nonlinear algebraic equations, the approximate 
solutions for the joint positions and velocities can  be obtained. 
These solutions are general enough that any  of the discrete 
Chebyshev, discrete Laguerre, and other discrete orthogonal 
polynomials approximations that possess the recurrence rela- 
tion can readily be obtained if required. Section V shows a few 
numerical results for the'example presented by  Neuman  and 
Tourassis [13].  As results indicate, our approach yields 
comparable or greater accuracy. Section VI contains some 
concluding remarks. 

II. GENERAL DISCRETE ORTHOGONAL POLYNOMIALS AND THE 

SHIFT TRANSFORMATION MATRIX 

The general discrete orthogonal polynomials zi(k) satisfy 
the orthogonal property of 

k=O 11 zi (k)z j (k)=6, ,  i , j=O,  1, . e . ,  N - 1  (1) 
N- I 

where the orthogonal polynomials zi(k) have been normalized. 
These polynomials also satisfy the following recurrence 
relation: 

i = O ,  1, * e + ,  N-2,  k=O, 1, * * . ,  N - 1  (2) 

when i < 0, zi(k) = 0. 
The ai, bi, and cj are the recurrence coefficients. Their 

values, along with zo(k), depend  on the particular discrete 
polynomials under consideration (Appendix I). 

Let x(k) ,  k = 0,  1, * * , N - 1 , be an arbitrary data 
sequence that can be expanded in terms of the general discrete 
orthogonal polynomials as 

i = O  
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where the superscript T denotes transpose, x is called the 
discrete coefficient vector, and z (k)  is called the discrete 
polynomial vector. These two vectors are defined as 

x A (xox1 * * * x,- 1)T (4) 

z ( k )  k (ZO(k)Zl(k) .;. ZN-l(k))T. ( 5 )  

The coefficient xi can  be determined by  using the property 
of (l) ,  that is, 

hence 

Equations (3) and (7) can  be  viewed as a transform pair. 

mial vector z(k)  is defined as 
The shift transformation of a discrete orthogonal polyno- 

where z(k)  is an N x 1 vector, and G(m), an N X Nmatrix, 
is called the shift transformation matrix. By means of the shift 
transformation matrix G(m), the discrete polynomial vector 
z(k + m) can be expressed in terms of the original polynomial 
vector z(k). 

Let gU = (G(m))ij. It can be shown that the general discrete 
shift transformation matrix is (Appendix 11) 

0 

=goo (9) 

gN-1,0 * * '  gN- l,N-2 

where go satisfies the following recurrence relation: 

gi+I,j=gij(mai+bi-bjai/aj)+gi-l,jci 

+gi,j-lai/aj-l-gi,j+lcj+lai/aj+1, 

i=O, 1, - * a ,  N - 2  

gU=0,  for j>i or j < O  (10) 

and goo = 1 for discrete Chebyshev polynomials, and goo = 
dmI2 for discrete Laguerre polynomials, where the real 
parameter d E (0, 1) is called the discount factor [5]. Let the 
difference equation describing the system be  of the form 

cmx(k+m)+cm-lx(k+m-l )+-* .+cox(k)  

= d ~ ( k S m ) + d , - l y ( k + m - l ) + . . . + d o y ( k ) ,  

k=O, 1, * a * ,  N-1. (1 1) 

By applying the shift transformation matrix, the previous 

equation  becomes 

xT(cmG(m)+cm-lG(m-l)+-~~+col)z(k) 

=y*(dmG(m)+dm~lG(m-l)+~~~+doI)z(k), 

k=O, 1, - * e ,  N - m + l ,  (12) 

or equivalently, 

aTz(k)=bT'(k) ,  k=O, 1, . * e ,  N - m - 1  (13) 

where aT and bT are 1 x N vectors. 
Thus the shift transformation matrix reduces mth-order 

difference equations with k E (0, 1, a ,  N - 1) to algebraic 
equations with k E (0, 1, a ,  N - m - 1). Since m 
equations are undetermined, no  unique  solution exists for aT 
(or b T ) .  For state-space representation m = 1, (13) becomes 

aTz(k)=bTz(k) ,  k=O, 1, * * - ,  N-2.  (14) 

Again, no unique solution exists for a* (or bT).  In  the case 
that, in addition to (14), there is a set of  initial constraints, then 
a * and b can be characterized by the following lemma. 

Lemma I :  Given 

U T Z ( k ) = b T ~ ( k ) ,  k=O, - l ,  * e * ,  N - 2  (15) 

and 

a *z(O) = a(0) (16) 

then 

a T = b T + e W T  (17) 

where 

WT=last row  of ( z (0)  * * z (N-  l))-' (18) 

and 

e=(a(0)-bTz(O))/WTz(O). (1 9) 

Proof: The proof is given in  Appendix 111. 

If both initial and final conditions are to be satisfied,  then a 

Lemma 2: Given 
and bT are characterized by  Lemma 2. 

aTz(k )=bTz(k ) ,  k=O, 1, * e * ,  N-2  (20) 

and 

a Tz (0) = a(0) (21) 

aTz (N-  1) = a ( N -  I), (22) 

then 

a T = b T + e W T  (23) 

where WT is given by (18) and 

e = (a@) - b Tz (O))/ W*z (0) 

= (a(N- 1) - bTz(N- l))/W*z(N- 1) (24) 
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and bT is constrainted by x7(k)=j(r(k))w(k)=(mr2(k)-mpRr(k))w(k) (34) 

Proof: The proof is  given  in the Appendix 111. 

111: THE DISCRETE ROBOT MODELS 
In 1985, Neuman  and Tourassis [13] introduced an inher- 

ently discrete dynamic robot model  which guarantees conser- 
vation of energy (and momentum, if appropriate). The model 
thus satisfies the fundamental principles of classical mechanics 
and advances nonlinear computational mechanics for robotic 
manipulators. The compact model, which incorporates a 
minimal  set  of coefficients, is particularly suitable for robot 
engineering applications. 

The cylindrical robot, depicted schematically in (l), (1 l),  
(12), and (15), consists of three degrees of freedom (DOF’s): 
a rotation 8, a vertical translation y ,  and a  radial translation r. 
Let (O(k)y(k)r(k))= be the position vector;  then 
( ~ ( k ) v ( k ) u ( k ) ) ~  is the velocity vector. 

The discrete-time cylindrical robot model  in state space is 
formulated in [13] using the following smoothing formula: 

T 
2 

y ( k +  1)-y(k)=-   [v(k+l)+v(k)]  (27) 

T 
r(k+ 1)-r(k)=- [u(k+ l)+u(k)] 

2 (28) 

where J is the constant inertia of the vertical column; j ( r )  is 
the variable inertia of the radial link and is a quadratic function 
of the radial displacement [ l ] ,  [12] (i.e., j ( r )  = mr2 - 
m,,Rr); m is the mass of the radical link (including the mass  of 
the payload mp); M is the vertically translated mass (i.e., the 
sum  of the masses of the vertical column and radical link); Fo, 
Fy, and F,. are the external forcedtorques that drive the 8, y,  
and r DOF, respectively, and T is the sampling period. For 
ease of presentation, we define the following state variables 
and  inputs: 

Thus (26)-(31) can be rewritten as follows: 

T 
xl(k+ I)-xl(k)=- [x4(k+  l)+x4(k)] 

2 (37) 

T 
2 

xz(k+ l ) -xz(k)=-  [x,(k+ l)+XS(k)] (38) 

To solve these equations, Neuman  and Tourassis [13] 
presented  a  nested algorithm to eliminate indeterminancies of 
the coupled nonlinear difference equations for each sampling 
point, which led to a  nested two-loop iterative algorithm 
consisting of an outer loop (which formats the system of 2 N  
equations)  and an inner loop (which solves the system of 2N 
equations) for each sampling point. In this paper, we will take 
advantage of the shift transformation matrix of general 
discrete orthogonal polynomials to transform the difference 
equations (37)-(44) into algebraic equations so that instead of 
using  nested iterations for each sampling point as presented by 
Neuman  and Tourassis [ 131, these equations can be solved for 
the whole range of sampling points simultaneously. Therefore, 
the number  of iterations can be significantly reduced. In the 
next section, general discrete orthogonal polynomials are 
introduced to analyze the discrete robot model. 

IV. ANALYSIS OF THE DISCRETE ROBOT MODEL VIA GENERAL 
DISCRETE ORTHOGONAL POLYNOMIALS 

To establish a discrete robot model  using an algebraic 
approach, we develop the state variable xi(k)  (i = 1 ,  - * * ,  8) 
in terms of an N-dimensional general discrete orthogonal 
polynomial vector z(k)  as follows: 

~ i ( k ) = ~ r ~ ( k ) ,  i =  1 ,  2, * * e ,  8, k=O, 1 ,  * e * ,  N- 1 
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vector of the state variables xl(k) .  Substituting (45) and (8) 1 
into (37), we  obtain x:=- J [TuT-x7(G-I)+e4WT+Jx4(0)zT(0)]H (59) 

xT(G-I)z(k)=x,T(G+I)z(k)T/2, 

k=O, 1, e * * ,  N - 2 .  (46) 

Here and  in  the sequel, the notation G = G(I) ,  an N x N 
matrix, shall be used. 

The initial condition of x l (k )  can be expressed as 

x1(O)=xTz(O). (47) 

From Lemma 1, (46) can be reduced to 

T 
2 

xT(G-I)=-xX,T(G+I)+e,WT. (48) 

Combining (47) and (48), we obtain 

T 
2 

xTIG-I+z(0)zT(O)] =- x,T(G+I)+el  WT+xl(0)zT(O) 

(49) 
or 

x T = [ x [ ( G + I )  -+e1WT+x1(O)zT(0)] 
T 
2 

[ G - 1 + ~ ( 0 ) ~ ~ ( 0 ) ] - ' .  (50) 

Simple manipulation yields 

X;= [ (z> ur+ejWT+x5(0)zT(O) H (60) 1 
T 

x;= - [Tu:+? X [ +  e6 W T +  mx6(0)zT(O) H (61) 
m 1 

where 

e 4 = ( J x 4 ( 0 ) - [ T u ~ - x ~ ( G - I ) + J x 4 ( O ) z T ( 0 ) ] h } / h ~  (64) 

and 

(66) 

Substituting x3(k) and x&) directly into (43) and (44), we 

Let 

then 

and 

-. 

T 
-+xl(0)zT(O) [G-I+z(O)zT(O)]- '~(O) 
2 1 

el = 
W T [ G - I + ~ ( O ) ~ ' ( 0 ) 1 - ' ~ ( 0 )  (51) 

T 
2 

xT=[x,T(G+I) -+el Wr+xl(0)zT(O)IH 

T 
2 

e l={x l (0) -[xT(G+I)  - + x ~ ( O ) Z ~ ( O ) ] ~ } / ~ ~ .  

obtain x7(k) and x ~ ( k ) .  Next, via (7), the discrete coefficient 
vectors x7 and x8 can be computed: 

(52) 

(53) x;= [mzT(k )x3 -mmpR1x~z (k )x~z (k ) zT(k )  (67) 
k=O 

(54) 
N -  1 

k=O 

X:= ( z ' ( ~ ) [ G ~ x ~ x ~ ~ - x X ~ X ~ T G ] Z ( ~ ) Z ~ ( ~ ) /  

(55) 
N -  1 

[x:(G - I ) z ( k ) l }  + e8 WT (68) 

where 

(56) @ g =  x8(0)-  z T ( k ) { G T x 7 ~ , T - x 7 ~ ~ G ) ~ ( k ) ~ T ( k ) z ( 0 )  
k=O 

N - I  

Similarly, (38) to (42) can also be transformed to the 
following algebraic equations: 

+ I )  - T + ez W ~ +  xz(~)z '(011 H (57) Thus (55)-(69) form a set of algebraic equations from which 
2 the discrete orthogonal polynomials approximate solution of 

I )  -+ e3 W T + ~ ~ ( O ) ~ T ( O )  N (58) Tourassis's method [13] in which  nested two-loop iteration is 
2 required for every sampling point, the discrete orthogonal 
T 1 

xi(k), (i = 1, - -, 8) can be obtained. Unlike  Neuman  and 
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polynomials approach presented here allows us to consider all 
the sampling points within the time interval of interest as a 
whole, and the discrete coefficient vectors of all the state xi@) 
for the whole time interval can be calculated directly via the 
presented algorithm. For a time interval consisting of N 
sampling points, the method  of [13] requires the iteration of 
their algorithm N times, while the present method  only 
requires the iteration of the proposed algorithm once. 

Since the exact response cannot be computed analytically, 
two error criteria introduced by [13] are considered to 
compare the proposed algorithm and several existing methods. 
The totally applied energy and angular momentum  of the 
system from t = 0 to t = (N - l ) T  are 

ElW- 1) = { W W d k )  + r(k)Fr(k) +Y(k)F,(k)l 
k = O  

N -  1 

(70) 
k = O  

PI(N- 1) = 2 TFO(k). (71) 
N -  1 

The energy and angular momentum increments of the system 
from t = 0 to t = (N - l ) T  are 

E2(N- 1) = { J+j(r(N-  1))}{ w2(N-  1) - w2(0)}/2 

+ { u2(N- 1) - u2(0))m/2 

+ { v 2 ( N -  1) - v2(0)}M/2 (72) 

P2(N- 1) = { J+j(r(N- 1))}{ w(N- 1) - ~ ( 0 ) ) .  (73) 

Consequently, the normalized energy and angular momentum 
residuals [13] are 

(75) 
These residuals have been  used  by  Neuman  and Tourassis 

[13] as a basis for the comparison of several numerical 
algorithms. Here we use the sample example of [13] to 
demonstrate the feasibility and applicability of analyzing the 
discrete robot model  by discrete orthogonal polynomials. In 
the following, an algorithm incorporating the linear iteration 
technique [2], [3] is presented to solve the state response for 
given control inputs. 

Step, I :  Input the data: M ,  m, m,,, J, R,  T, N, xj(0) (i = 1 ,  
. .- ,  6), and ui(k) (i = 1 ,  2, 3; k = 0, 1 ,  e - . ,  N - 1). 
Assume  a sequence of x3(k) and x4(k), (k  = 1, * - , N - 1) 
by linear interpolation between 0 and 1 .  

Step 2: Choose a specific set of discrete orthogonal 
polynomials (e.g., Chebyshev or Laguerre) and calculate zi(k) 

ho, etc., via (2), (9), (18), and (52)-(54). Consequently, the 
discrete coefficient vectors x3, x4, ui ( i  = 1,  2, 3) can be 
obtained via (7). 

( i = O , l , * * . , N -   l ; k = O , l , * . * , N -   l ) , G ,  W , H , h ,  

Step 3: Via (62), (65), (57), and (60), we can obtain e2,  e5, 
and the discrete coefficient vectors x2 and x5 in a straightfor- 
ward  and  unique way. 

Step 4: Via (67)-(69), find the est x7, and xs. 
Step 5: From (56), (63), (64), and (66), find el,   e3,   e4,  and 

Step 6: From (53 ,  (58), (59), and (61), we determine X ~ ,  

Step 7: Let Ax3 and Ax4 be the deviations of x3 and x4 as 

e6- 

x3, x4, and x6. 

follows: 
Ax3 = x3 (new) - x3 (old) (76) 

Ax4 = x4 (new) - x4 (old). (77) 

Then the error e can be defined as 

e = Ax,TAx3 + AxTAx4. (78) 

If  the value of e is small enough (e.g., e < 10-l2), then go to 
Step 8; otherwise, go back to Step 4 for further iterations. 

Step 8: Via (3), the states xi(k) (i = 1 ,  2, * - - 6; k = 0, 1, 
- -, N - 1) can be obtained. Furthermore, via (74) and (75), 
we then  obtain the normalized energy and angular momentum 
residuals, i . e. , 

Remarks: The sufficient condition of convergence of the 
algorithm can be expressed as [2], [3] 

I Axi (new) I < I Axi (old) I , i= 3,  4. (79) 

V. NUMERICAL EXAMPLE 
Given a'cylindrical robot with parameters as follow [13]: 

J=10 kg - m2 M = 2 0  kg m = 7  kg 

mp=2 kg R = l  m 
and the initial conditions 

(O(0)z(O)r(O))T= (0 (rad) 0 (m) 0 (m))= 

( w ( O ) v ( 0 ) ~ ( 0 ) ) ~ = ( 0  (rad/s) 0 (m/s) 0 (m/s))=, 

find the step response of (O(k)z(k)r(k)) and (w(k)v(k)u(k)) 
when the input vector is 

( F d k ) F y ( w r ( k ) ) T =  ( 5 W -  mWg(NY(N) )= .  

In Table I, we listed the computed states (O(k)r(k)w(k)u(k))T 
of  the baseline cylindrical robot and the magnitudes of the 
normalized residuals with T = 0.01 , 0.1 (s) and N = 6, 1 1  , 
respectively, for discrete orthogonal polynomials. 

For comparison, we also listed the results presented by [ 131 
in Table I. From Table I we observe that the discrete 
Chebyshev polynomials produce the smallest normalized error 
residuals no matter if the sampling time T = 10 ms or T = 
100 ms. 

Note that  in this example results obtained via discrete 
Laguerre polynomials are inferior to those of the discrete 
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TABLE I 
COMPARISON OF NUMERICAL RESULTS OF BASELINE CYLINDRICAL ROBOT AT t = 3 S 

AE(N- I) APe(N- 1) 
T e r W u 

Algorithm (ms) (rad) (m) (rad/s) (m/s) I E(N-1) I I pe(N-1) I 
1 Forward Euler [13] 10 2.1533 0.8075 1.1606 0.9127 5. E-3 2.  E-3 
2 Backward Euler [13] 10 2.1457 0.8165 1.1452 0.9164 5.E-3 5. E-3 
3 Trapezoidal [ 131 10 2.1439 0.8071 1.1551 0.9091 2. E4 3. E-3 
4 Discrete mechanics [13] 10  2.1573 0.8145 1.1563 0.9168 4. E-3 3.  E-3 
5 Runge-Kutta 10  2.1562 0.8156 1.1535 0.9184 2. E-3 2. E-3 

6 Runge-Kutta 10 2.1538 0.8144 1.1521 0.9187 6. E4 5 .  E 4  

7 Adam [13] adaptive 2.1548 0.8170 1.1504 0.9201 5. E-5 5 .  E-5 
8 Gear [13] adaptive 2.1550 0.8167 1.1507 0.9199 2. E-6 1. E-6 
9 Runge-Kutta- adaptive 2.1551 0.8167 1.1507 0.9200 5. E-8 5 .  E-8 

10 Neuman and 10 2.1551 0.8168 1.1506 0.9201 8.E-7 4.  E-6 

11 Laguerre 10  2.2408 0.8363 1.7746 1.0721 l.E 0 6.E-1 

12 Larmerre 100 2.1820 0.8252 1.2783 0.9235 2.E-1 1.e-1 

(second order) [13] 

(fourth order) 

Verner [13] 

Tourassis [13] 

(N = 6, d = 0.1) 

(N = 6, d = 0.1) 
13 Lasuerre 10 2.1952 0.8254  1.4732  0.9867 5.E-1  3.E-1 

Y 

(N = 11, d = 0.1) 

(N = 11, d = 0.1) 
14 Laguerre 100 2.1630  0.8195 1.2621 0.9082 1. E-1 1.e-1 

15 Chebyshev (N = 6) 10  2.1551, 0.8167 1.1507 0.9200 2.  E-8 7.8-9 
16 Chebyshev (N = 6) 100 2.1540 0.8179 1.1497 0.9204 2.E-8 2. E-8 
17 Chebyshev (N = 11) 10 2.1551 0.8167 1.1507 0.9200 2.  E-8 9. E-9 
18 Chebyshev (N = 11) 100  2.1540 0.8179 1.1497 0.9204 2.  E-8 2. E-8 

TABLE I1 Table I1 shows the energy and  momentum  residuals of 
-HE ENERGY AND MOMENTUM RESIDUALS OF DISCRETE CHEBYSHEV discrete Chebyshev polyno&& a~proximations for N = 3 -4, 
'OLYNOMIALS APPROXIMATIONS FOR N = 3, 4, * .., 20 (SAMPLING 

TIME T = 10 ms) - , 20. From these results we  may conclude that  in this 
particular example discrete Chebyshev  polynomials approxi- 

N 

A E  (N- 1) Ape(&'- 1) mations produce comparable or smaller energy and  momen- 1 E(N- 1) 1 I PeO'-l). 1 tum residues than those of [ 131. 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2.46 E-8 
2.57 E-14 
1.23 E-8 
2.46 E-8 
2.70 E-8 
2.66 E-13 
6.16  E-9 
1.23 E-8 
2.46 E-8 
2.46 E-8 
3.08  E-8 
3.70 E-8 
4.31 E-8 
2.29 E-14 
3.08 E-9 
6.16 E-9 
6.16  E-9 
1.23 E-9 

1.65 E-8 
9.54 E-9 
1.28 E-9 
6.97 E-9 
1.52 E-8 
1.91 E-8 
7.00 E-9 
1.89 E-9 
8:93 E-9 
1.33 E-8 
9.57 E-9 
3.11 E-8 
2.09  E-8 
3.18 E-8 
3.53 E-8 
2.93 E-? 
3.24 E-8 
4.32 E-8 

Chebyshev polynomials. The reason is  that discrete Che- 
byshev polynomials are defined over the interval k = 0, 1, 

* - , N - 1, while the discrete Laguerre polynomials are 
defined over the infinite interval k = 0, 1 , - - . Hence for a 
time sequence with N points, the discrete Chebyshev polyno- 
mials  usually  yield better approximate results than  those  of the 
discrete Laguerre polynomials. 

VI. CONCLUSION 

In  this paper, we have introduced discrete general ortho- 
gonal  polynomials to approximate the joint positions and 
velocities of a discrete robot model. A recursive algorithm for 
determining the entries of the shift transformation matrix has 
been developed. Based on the derived discrete shift transfor- 
mation matrix of discrete general orthogonal polynomials, we 
are able to transform nonlinear difference equations describing 
a discrete robot model into nonlinear algebraic equations, thus 
simplifying the problem solution. 

The proposed general discrete orthogonal polynomials 
include the discrete Laguerre polynomials, the discrete Che- 
byshev  polynomials,  and  any  other  polynomial  that  possesses 
the recurrence relation  of (2).  The solutions are presented in a 
very general ford. By specifying different values of a;, bi, and 
c; ( i  = 0, 1 , - * , N - 2) in the recurrence relation, we can 
obtain the desired orthogonal polynomials approximation of a 
specific discrete dynamic model  very easily. 

The numerical example that has been  used  by  Neuman  and 
Tourassis [13] to confirm the feasibility and applicability of 
the discrete dynamic robot model is adopted here to show  that 
the discrete Chebyshev orthogonal polynomials  indeed pro- 
vide smaller normalized energy and angular momentum 
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residuals than those of [13]. Therefore, we  may conclude that From (91) and (93) it is easy to show that 
th6 present method provides a simple and straightforward 
algebraic approach' for the analysis of discrete dynamic robot j = O  j = O  

models. gi+ l,jzj(k) = (aAk+ m) + bi) gijzj(k) 
i+  1 i 

APPENDIX I j = O  

THE RECURRENCE COEFFICIENTS AND zo(k) +ci gi-l,jzj(k)* (94) 

Some classical discrete orthogonal polynomials may be 
i- 1 

assigned specific ai, bi, ci (i = 0, 1 ,  - -, N - 2), and zo(k) as Rearranging (2),  one obtains 
follows. 

have 
Case I :  The Discrete  Laguerre  Polynomials 141, 16': We kzj(k)=(zj+l(k)-bjzj(k)-cjzj-l(k))/aj .  (95) 

Substituting (95) into (94) yields 
a i -  - d -  1/2 (1 - d ) / ( i +  1) 

where the real parameter d E (0, 1 )  is termed the discount 
factor, and 

z - l (k )=O (83) 

zo(k)= ( ( 1  - p ) d k } 1 / 2 .  (84) 

Case 2: The Discrete  Chebyshev  Polynomials 1-51, 171: 
We have 

ai=  -2B,+, / ( i+ 1 )  (85) 

bj = ( N -  1)Bi+ I / ( i  +, 1 )  (86) 

ci= - (i/(i+ l))(Bj+ JIBi) (87) 

where Bi = ((2i  - 1)(2i + l)/(N2 - i2)} (88) 

and z- l (k)=O (89) 

~ o ( k )  = N. (90) 

APPENDIX 11 

DERIVATION OF THE DISCRETE GENERAL SHIFT TRANSFORMATION 

MATRIX G(m) 
. .  

, .  

The basic relationship of the shift transformation of a 
discrete orthogonal polynomial vector z(4)  is defined as 

z ( k + m )  P G(m)z (k )  (91) 

where z(k) is an N X 1 vector, and G(m) is an N x N 
matrix. Equation (91) can be expressed as 

j = O  

z ; ( k +  m)= guZj(k)  (92) 
N- I 

wherei = 0, 1 ,  --*,N - 1 ,  k = 0, 1, e . . ,  N - 1 ,  andg@ 
denotes the ijth element of G(m). Note  that zi(k + m) should 
still satisfy the recurrence relation, namely, 

=Zi+l(k)gi+l,i+l  (96) 

'wherei  = 0, 1 ,  ..-, N - 2. 

obtains 
Comparing the coefficients of zj(k), j = 0, 1, - , i, one 

gi+l , j=gi j (qai+bj -b ja i /a j )+gi -I , jc i  

+gi,j-lai/aj-l-gi,j+lcj+Iai/aj+l, 

i = O ,  1, * * . ,  N - 2 .  (97) 

Similarly, comparing the coefficients of zi+ l (k)  yields 

gi+l,i+l=gi,i,  i = O ,  1 ,  . e * ,  N - 2 ;  (98) 

hence 

g,=g,,  = * : - - g N - I , N - I *  (99) 

Thus the discrete general shift transformation matrix is 

where goo = 1 for discrete Chebyshev polynomials and goo = 
dm" for 'discrete Laguerre polynomials. 

APPENDIX I11 

PROOF OF LEMMAS 1 AND 2 

Given  a  set  of algebraic equations describing the system 

aTz(k)=bTz(k) ,  k=O, 1, * * . ,  N - 2  (101) 

subject to initial conditions 
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let 

aT=bT+uT 

where 

Hence 

manipulators  with  a  weighted  minimum  time-fuel  criterion,” ZEEE 
Trans. Automatic Contr., vol.  AC-30,  no. 1, pp.  1-10,  1985. 

(103) [9]  R.  E.  King  and  P.  D.  Paraskevopoulos,  “Parametric  identification  of 
discrete-time SISO systems,” Znt. J. Contr., vol.  30, no. 6, pp. 1023- 
1029,  1979. 

1101  D. E.  Kirk, Optimal Control Theory, A n  Introduction. Engle- 
wood Cliffs, NJ: Prentice-Hall,  1970. 

V T ( z ( o ) z ( l )  * * * z(N- l ) ) = ( O  * *  * e>* (lo4) [ l l ]  C. S .  G. Lee,  “Robot  arm  kinematics,  dynamics and control,” 
Computer, vol.  15,  no.  12,  pp.  62-80,  1982. 

[12]  C. P. Neuman  and V. D.  Tourassis,  “Robot  control:  Issues and 
insight,”  in Proc. 3rd Yale Workshop Applications of Adaptive 

189. 
u T = ( O  0 - * e)(z(O) * - .  z (N-  l ) ) - ’=eWT (105) Systems Theory, Yale  Univ.,  New  Haven, CT, June  1983,  pp. 179- 

wj-=laSt row of (z(o) . . . z ( ~ -  1))- 1. (106) [13] -, “Discrete  dynamic  robot  models,” ZEEE  Trans. Syst., Man, 
Cybern., vol. SMC-15, no. 2,  pp.  193-204,  1985. 

Therefore, 

aT=bT+eWT. 

Multiplying  both sides of (107) by z(O), we obtain 

a(0) = bTz(0) + eWTz(0); 

therefore, 

e= (a(0) - bTz(0))/ WTz(0).  

Thus we have proved Lemma 1.  

For the proof  of the Lemma 2, (23) and (24) follow directly 
from the  Lemma 1 ,  while (25) can be derived by simple 
manipulation of (24). Hence the proof is omitted. 

t61 

[71 
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