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摘  要 

 

 最近幾年晶片上面的核心數量日益增加，而設計的複雜度也隨著核心數的增加而提

高。為了降低設計的複雜度以及提高矽智財(IP)的可重複使用性，設計者可以把數十個

先前所設計的矽智財整合在SOC上。NOC則是支援這種整合方式的連結方式。 

 我們提出了使用了全雙軌協定的非同步晶片網路協定去定義在IP之間的一個完全

非同步界面，提供了對使用者抽象的架構。我們同時也提出了資源網路介面 (RNI), 可

以提供IP的重複使用以及隨插即用，適用於NoC架構的多核心處理器，另外RNI也提供了

在所有的封包到達前，先將個別的封包暫存，避免單一封包的傳輸進而降低發出中斷的

次數。 
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Abstract 

 

In recent years, the number of computing resources in a single chip has been enormously 

increased. The complexity of design is proportional to the number of cores. In order to reduce 

the design complexity and increase the re-usability of the IP blocks, designers can create 

systems-on-a-chip (SoC) by incorporating several dozens of IP blocks which are previously 

designed. Network-on-Chip (NoC) has been proposed to support the integration of multiple IP 

blocks in a single chip. 

We propose an asynchronous network-on-chips protocol (ANIP) which uses the four 

phase dual rail mechanism to provide an abstraction of the communication architecture. We 

also present a Resource Network Interface for a NoC based multiprocessor, which achieves 

the reuse of IP blocks, and buffers the receiving packets until all of the packets arrive to 

reduce the number of interruptions. 
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Chapter 1 Introduction 

1.1 Overview 

In recent years, the number of computing resources in a single chip has been enormously 

increased. The complexity of design is proportional to the number of cores. The challenge that 

faces the chip designers is achieving the required functionality, performance and testability 

whilst minimizing design cost and time to market. To achieve the goal, designers can create 

systems-on-a-chip (SoC) by incorporating several dozens of IP blocks, which are previously 

designed. 

We can connect the IP blocks using the Network-on-chip (NoC) paradigm, because it has 

several advantages, for example, separation of the IP design and the functionality from chip 

communication and interfacing. It allows designer to use different IP blocks without worrying 

about the IP interfacing because the wrapper module can be used to interface the IP blocks to 

the network. 

Asynchronous circuit design is different from the traditional synchronous circuits design, 

it is an emerging design. The asynchronous circuits do not have clock, where timing is 

managed locally, as opposed to globally with a clock in the synchronous circuit design. It has 

many advantages, such as power consumption, average case delay time, without the clock 

skew and modularity, etc. So our designs are all based on the asynchronous circuit design. 

In this thesis, we present an asynchronous network-on-chips interconnect protocol (ANIP) 

and implement the Resource Network Interface (RNI). ANIP can be used to defines how the 

resources (could be processor, DSPs, memory, peripheral controller, gateway) are connected 

to each other in the fully asynchronous environment or the global synchronous locally 

asynchronous environment. The way of interconnect in the network-on-chip which adapts 

ANIP is arbitrarily. AMULET3i [14] adopted MARBLE [15], a fully asynchronous on-chip 

bus. We adopt the bi-direction Torus mechanism [9] to build the interconnection network.  
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The asynchronous network-on-chips (figure 1.1) formed with the resources and the 

switches. A resource communicates with other resource via a network interface (NI) which 

converts the form of the data into the form of the packet-based communication.  

 

1.2 Motivations 

 In a synchronous network-on-chip, a lot of bus protocols such as ARM AXI [10], Open 

Core Protocol (OPC) [11], can be adopted for the network-on-chips environment although 

the way of connecting each components is different from the convention. The OCP does not 

specify the embedded bus transfer; it is bus-independent protocol, making the IP cores 

independent of the architecture to achieve the goal of IP design reuse. All of these protocols 

are fully synchronous, and cannot be used in the asynchronous environment. Because of 

lack of NoC protocol in asynchronous circuit design, so we propose an AMBA AXI based 

asynchronous network-on-chips interface protocol (ANIP) in order to build asynchronous 

multicore processor in the future. 

 

1.3 Organization of This Thesis 

 This thesis is organized as follow: chapter 1 is the overview of entire asynchronous 

network-on-chip system and the motivation. In chapter 2, we will illustrate the background 

about asynchronous circuit design. Chapter 3 introduce two interconnect protocol AXI and 

OCP which are widely used in the synchronous system interconnection, and also introduce 

the network interface and bi-direction interconnection using Torus Topology. Chapter 4 and 

5 will discuss our design. In chapter 4, we propose the ANIP with the detailed description 

and the signal definition. In chapter 5, we show the implementation of the master interface, 

slave interface, and the resource network interface which includes a packet buffer structure 

to buffer the packets which received from the router to avoid transfer packet to the slave 
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interface that every packet arrive in the resource network interface. The simulation result 

and the conclusion are shown in chapter 6 and chapter 7.  
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Figure 1.1：3 x 3 Network-on-chips Architecture 
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Chapter 2 Background 

In this chapter, we will introduce the asynchronous circuit design methodology. 

Discuss the advantage and drawback of the asynchronous circuit and compare it to the 

synchronous circuit. Describe the function of the key component C-element in the 

asynchronous circuit. We also introduce the network-on-chips (NOC) in this chapter. 

2.1 Asynchronous Circuits 

Most of the circuits designed today are “synchronous”, which based on two 

fundamental assumptions to simplify the design: (1) All the signals are binary. (2) All the 

components on the system share the same time domain defined by a clock signal. 

The asynchronous circuits [1] [2] are different from the synchronous ones: (1) All the 

signals are binary too. (2) All the components on the system there is no discrete and 

common time, instead the circuits use the handshake between the components to perform 

the operation. With these differences, asynchronous circuits have several advantages which 

are compared with the synchronous circuits: 

(1) Average case performance: 

In the synchronous pipeline architecture, the cycle time of one pipeline stage 

must be set as the worst case of all stages. It causes the waste of the cycle time. 

There is no global clock in asynchronous pipeline; as a result, every stage can 

has its own time to finish the operation according to the type of the operation in 

the stage. For example, the delay of the multiplication is more than addition 

operation in ALU. When the operation is completed, the result is send to next 

stage regard less the cycle time.  

(2) Low power consumption: 

The sub-circuits in the synchronous circuits are clock-driven, but they are 

demand driven in the asynchronous circuit. Therefore the asynchronous circuits 
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do not need to consume the extra power to maintain a clock tree in the system, 

which at most consume 40% of power [12] in the synchronous circuits. The 

module actives only when it was needed in the asynchronous circuits.   

(3) Better composability and modularity: 

Asynchronous circuits have the better modularity resulting from the simple 

handshake interface and local timing. We do not care about the implementation 

of other part of entire system because every module of all is individual one; we 

just need to know the way of the handshake, input and output instead. 

Therefore the module which is designed using the asynchronous methodology 

can easily to be reused and apply to any new system. 

(4) No clock distribution and clock skew problems:  

There is no clock need to be distributed in the asynchronous circuits; therefore 

it has no clock skew problems. 

2.1.1 4-phase dual rail protocol 

In the asynchronous circuits the clock is replaced by the handshake to communicate 

between the different components. The handshake protocol in the asynchronous circuits 

design is classified into 2-phase and 4-phase. In the 2-phase protocol the information is 

encoded as signal transition on the wires and there is no difference between a 1→0 and the 

0→1 transition, they both represent a signal event. The 4-pahse protocol must return to zero 

for every signal transition that cost unnecessary time and energy. Due to the characteristic 

of easy to implement, the 4-phase protocol is adopted constantly, like the asynchronous 

processor AMULET [13] and its successor, AMULET2e, AMULET3, AMULET3i [14], 

which are developed by the University of Manchester.  

The 4-phase dual rail protocol encodes the request signal into data signals using 2 

wires per bit. Figure 2.1 (a) shows the n-bit data and request signal are encoded into 2n-bit 
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data. The sender pushes the data to the receiver without signaling the request, when the 

receiver detect that the valid data arrives, it will signal the ack to the sender. 

 

 
Figure 2.1 (a)：4-phase dual rail protocol 

 

The 1-bit data is represented by data.t and data.f shown in table 2.1. Data.t is used to 

signal the logic 1 (true) and data.f is used for signaling the logic 0 (false). (data.t, data.f) = 

(1, 0) or (0, 1) represent the valid data 1 and 0. (data.t, data.f) = (0, 0) represent the “no 

data” or “empty”. We can detect the valid data by observing one of two wires was asserted. 

In order to tell from the different phase of valid data, the empty token is needed to separate 

the two valid data, which is shown in figure 2.1 (c), the sequence of the data is always 

Valid(0/1), Empty, Valid(0/1), Empty, and so on. In figure 2.1 (b), illustrated how the 

4-phase dual rail protocol work. 

 

Value data.t data.f 

EMPTY 0 0 

VALID 0 0 1 

VALID 1 1 0 

Not used 1 1 

Table 2.1：1-bit dual rail encoding 

2n Data 

 

Receiver 

 

Sender 

 
Push channel 

Ack 
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Figure 2.1 (b)：4-phase dual rail protocol 

 

 

Figure 2.1 (c)：4-phase dual rail protocol 

 

2.1.2 The Muller C-element 

The Muller C-element shown in figure 2.2 is widely used in the asynchronous circuits, The 

truth table of the C-element list in the table 2.2. When the value of 2 inputs A and B are both 0 (1), 

the output value will change to 0 (1). The value of the output C will remain the same if the value of 

input A and input B are (1,0) or (0,1). Figure 2.3 (a) and the figure 2.3 (b) show the transistor level 

and the gate level implementation of the C-element respectively. 

 

A B C 

0 0 0 

0 1 No change 

1 0 No chande 

1 1 1 

Table 2.2：Truth table of 2-input C-element 

 

EMPTY VALID EMPTY VALID EMPTY 

Encoding 

Data 

Ack 

1 Empty 0 
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C
A

B
C

 

Figure 2.2：The symbol of C-element 

 

C

A

B

 

Figure 2.3 (a)：Transistor level implementation of C-element 

 

A

B

C

 

Figure 2.3 (b)：Gate level implementation of C-element 

 

2.1.3 The 4-phase dual rail pipeline 

The 4-phase dual rail pipeline is based on Muller pipeline [1]. Figure 2.4 shows the two stages 

dual rail pipeline with 2-bit data which is built from C-element and the inverters. After all the 

C-element initialized to 0, the first data is send to the latch 1 to begin the handshake. When data 

arrive, it will be detected by the complete detection unit which is composed by the OR gate and 
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C-element, and then acknowledge the previous stage to complete the handshake. Figure 2.5 shows 

the alternative of multiple inputs C-element which is used in the many bits complete detection units. 

Because two consecutive valid data are separated by an empty token (no data), therefore the 

utilization of the 4-phase dual rail pipeline is 50%.  
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C
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Figure 2.4：2 stage 4-phase dual rail pipeline 
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Figure 2.5：The multiple inputs C-element 
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 Chapter 3 Related Works 

 In this chapter we will discuss the bi-direction torus system in which we used and 

introduce two synchronous bus protocols, ARM AXI protocol and Open Core Protocol. We 

also talk about the Network Interface which acts as the bus wrapper to make the 

interconnection details transparent to the IP core designer.  

3.1 Bi-direction Interconnection using Torus Topology 

Tsai proposed asynchronous bi-direction interconnection using Torus Topology [9] 

(figure 3.1) in NCTU, 2009. The Torus system is good for the network-on-chips 

interconnection because it is easy to design due to each router is the same and the torus 

system has a small average data path [9]. The interconnection network uses dual rail 

encoding (figure 3.2) and packet-switching in the torus system. 

 

(0,2)

Switch

(0,1)

Switch

(0,0)

Switch

(1,2)

Switch

(2,2)

Switch

(1,1)

Switch

(2,1)

Switch

(1,0)

Switch

(2,0)

Switch

NI

NI

NI NI

NINI

NINI NI

 

Figure 3.1 : 3x3 Bi-direction Torus System 
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Router Router

Data_out.t

Data_out.t

Data_out.f

Data_out.f Data_in.f

Data_in.t

Data_in.f

Data_in.t

Ack_in

Ack_in Ack_out

Ack_out

 

Figure 3.2 : Physical Interface between routers 

 

Figure 3.3 shows the example of the routing protocol of the system. The router whose 

ID is (2,2) want to transfer one or more packets to router (0,0). The transfer will occur as 

follow: 

(1) In the beginning the resource (2,2) send the packet to the corresponding router.  

(2) The router determined that whether the receiving packet has reached the 

destination. If so, send the packet to the corresponding resource; otherwise put the 

packet to the output FIFO.  

(3) The router will use the XY algorithm [9] to determine which port to which send 

the packet. First the router check the X-coordinate of the destination of the packet, 

if the destination is on the right (left) side of current router, the packet will be sent 

to the right (left) output port. If the destination of the packet and current router has 

the same coordinate, then the router compare the Y-coordinate of the destination 

with the Y-coordinate of current position.  

Therefore packets to which router (2, 2) send will be transferred through router (3, 2), 

router (0, 2), router (0, 1) and router (0, 0). Each packet in this torus system has one and 

only one routing path.  
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Figure 3.3 : Packets transfer sequence 

 

3.2 AMBA AXI Protocol 

ARM introduced AMBA AXI protocol for high-frequency SoC design [10] in 2003, the 

key features of the AXI protocol that we focus on are: 

1. Separate address/control and data phases 

2. Burst-based transactions which only start address issue 

3. Out-of –order transaction completion 

4. Separate write and read data channel 

In the Figure 3.4, there are several resources on the system marked as Master1 to Master3, 

and Slave1 to Slave3. They are connected together through some form of interconnect. At 

first, the master asserted the request signal of read/write, and then the interface converts the 

request into the format which is suitable for the interconnection definition. When the request 

signal arrive at the interface between the Slave and the interconnect, it will be converted to the 

form of the AXI protocol, and be passed to the Slave. So the designer can design the system 

regard less of the detail of the interconnection. 
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Figure 3.4：AXI Interface and Interconnect 

 

3.2.1 Basic Transaction 

    The AXI protocol is burst-based. Each transaction has the information about the control 

and the address either on the read address channel or the write address channel which is 

shown in figure 3.5. It can be one or more data transfer in a burst, which is defined by the 

burst length of the control information. The burst length is coupled with the burst type 

information, details how the address for each transfer within the burst is calculated. We will 

discuss the burst type in detail in the chapter 4.   

 In the read burst, when the data arrive on the read data channel, the data accompanies the 

data ID which is used to identify a transaction to which the data belong. The transactions 

which are the same ID must be completed in the same order. For example, at first the master 

issue a read request with ID 0001 to read the data memory, then the master issue a write burst 

with ID 0001 to write to the same data memory. The first read request must complete before 

the second write request to ensure the accuracy of the data. The transaction with different ID 

can complete out-of-order whether read or write transaction is. 

 AXI protocol is a kind of synchronous bus protocol, must operate in synchronization 

environment. All actions are positive edge trigger. It means that in the asynchronous 

environment, the AXI protocol does not apply. We must overcome the situation which the 

difficulties encountered without the clock, i.e. the signal of the AXI protocol like AWVALID 

is useless, because there is no clock in the asynchronous environment, so we cannot sure the 
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AWVALID and the AWADDR are arrive at the same time, and we do not know how long 

between the slave interface acknowledge the master and slave receive the AWVALID. So we 

present the Asynchronous Network-on-chip interface protocol (ANIP) to solve this problem. 

We will introduce ANIP in the chapter 4.    

 In the write burst, first of all the master interface issue an address and control 

information of the write operation, then the slave interface acknowledge the master interface 

that had received the write address. When the master has received Ack signal from the slave, 

the master starts to transfer the data into the data channel. At last the response information 

will be sent from the slave to the master that details the state of the write operation. 
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Figure 3.5：Channel architecture 
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3.3 Open Core Protocol 

 The Open Core Protocol [11] defines a bus-independent interface between two 

communicating entities, such as IP cores and bus interface modules (bus wrapper) shown in 

figure 3.6, the characteristic of the IP core determined what interface do they need (Master/ 

Slave). The transfer occur with the system initiator issue a request (via a Master interface), 

and the bus wrapper interface module act as the complementary side of the OCP (Slave 

interface) to convert the request to the on-chip bus transfer. The receiving bus wrapper 

converts the on-chip bus operation into the OCP command; then the OCP master interface 

will transaction with the system target (via a Slave interface). The OCP does not specify the 

functionality of the on-chip bus, the bus initiator/target are designed by the interface 

designer. This increases the reusability and the modularity, we adopted the system model in 

our architecture design for these reasons. 

 

Figure 3.6：System showing Wrapped Bus and OCP instances 
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3.4 Network Interface 

In NoC [3][4][5], the reuse of the IP blocks can be achieved by using a network 

interface, reducing the design complexity and the design time. The network interface 

provides a abstraction of communication architecture. The details of the interconnection are 

transparent to the IP designers, and make the design of new system simple. 

There are many implementation of the network interface [6][7]. The main purpose of 

network interface is translating packet-based communication into a higher level protocol 

that is required by the IP, and decoupling of computation from communication. 

We can classify IP blocks into two categories [6]: master (active) and slave (passive) 

IP blocks. Only the master can initiate a data transfer and the slave IP blocks respond to 

requests from the master IP blocks. Therefore the design of the master network interface is 

more complex than the slave network interface. 
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Chapter 4 Asynchronous Network-on-Chip 

Interface Protocol 

 In chapter 3, two synchronous protocols are introduced. In this chapter we will propose 

a asynchronous network-on-chip interface protocol (ANIP) and describe the difference 

between ANIP and the synchronous protocols in detail. 

4.1 ANIP overview 

 

 

Figure 4.1: Signals overview 
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Asynchronous Network-on-Chip Interface Protocol (ANIP) defines an asynchronous 

bus protocol [8] used in the network-on-chip environment. The characteristics of the ANIP 

are: 

 Burst-based protocol, every transaction has the address of the first 4-bytes in the 

transfer and the control information that describes the nature of the data to be 

transferred. 

 Support the out-of-order transaction, the transaction with the same ID must be 

completed in the order of issue; and the transaction with the different ID tag can 

be completed out of order. 

 Separating the address channel and the data channel, enable the master issue the 

read/write address request paralleled the read/write data transfer.  

 Clock less protocol, unlike the synchronous protocol that all the transfer occurs in 

the positive edge trigger, the ANIP handshake using the four phase dual rail 

mechanism. 

Figure 4.1 shows the signal description of the ANIP. The definition of signals is in the 

chapter 4.3. The signals in ANIP can be divided into 2 groups: read burst and write burst, 

the transaction of read and write will describe in next section.  

4.2  Basic Transaction 

4.2.1 Read Burst 

Figure 4.2 shows the example of the read burst, which has 2 data transfer in each read 

request. In this example, the master issue the read address and the control information, and 

the slave receive the address and control information by complete detection unit which 

described earlier in chapter 2 (figure 2.5). 

After the master issues a read address MRADDR (Addr A) along with the control 

information MRCONTROL (Control A) in dual rail format on the address channel, the 
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slave accepts the address and control information, then acknowledges to the master by 

asserting the signal SRAREADY to 1. It means that it have received the address 

information. When the read data arrive, the slave will put the data on the data channel 

SRDATA (validA (1)) and SRTAG (IDTag A (1)) in dual rail, the complete detection unit 

of the master will detect the data which is arrival, then acknowledge the slave by asserting 

MRREADY. The SRTAG signal is the identity information of the read data. In this 

example what has two data transfer, so the empty token (no data) follows the valid data 

“ValidA (1)” after the slave accepted the acknowledgement signal MRREADY. When the 

master received the empty token the MRREADY signal will go empty, and then the slave 

detect the MRREADY which becomes empty and put the second data on the data bus 

(ValidA (2) and IDTag A (2)) In this case the “ValidA (2)” is the last data transfer of the 

read burst A, therefore the SRLAST signal is asserted to high by the slave. After the master 

accepts the data (ValidA (2)) and the SRLAST, the read burst A is complete. 

In this example (figure 4.2) shows that the master can drive another read burst 

transaction after the slave accepts the first address and control information. This property 

enables the slave to process the first read data in parallel with the second read burst address 

phase. 
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 Figure 4.2: Read Burst Example 
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4.2.2 Write Burst 

Figure 4.3 shows the example of the write burst. At the first the master put the write 

data address MWADDR (Addr A) and the control information MWCONTROL (Control 

A) on the write address channel. When the slave accepts the write address information by 

the complete detection unit, it acknowledge to the master by asserting the SWAREADY 

signal. After receiving the acknowledgement from the slave, the master put the write data 

MWDATA (Valid A (1)) coupled with the identity information MWDID (IDTag (1)) on 

the write data channel. The slave accepts the valid data then acknowledge to the master by 

asserting the SWREADY signal, follow by an empty token.  
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Figure 4.3: Write Burst Example 
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When the master sends the last write data to the slave, the MWLAST signal goes high 

to indicate that the data is the last one. After the slave accepts the last data, the slave drives 

the write response signal SWRESP (OK) goes high coupled with the SWID (ID Tag), 

which indicates that the transaction is complete. At the last the master acknowledge to the 

slave by asserting the MWRESP, all the write burst is complete. 

In ANIP, the address phase of the second write burst can be processed in parallel with 

the first write data processing. The master can issue the second write request after accepts 

the SWAREADY signal and put the second write request on the address channel until the 

previous SWAREADY goes empty. All signal transactions in ANIP must be abided by the 

rules that there must be an empty token (no data) (the gray in the signal transition diagram) 

between two valid data transition for the characteristic of the dual rail. Moreover, there is no 

low potential which representes no valid data in the synchronous bus protocol. Instead, we 

use the empty state (Table 2.1) (data.t and data.f are both low) to represent no data in ANIP. 

 

4.3 Signal Descriptions 

Signals are divided into two categories; read and write control signal list as follow. The 

MRCONTROL and MWCONTROL are composed of three sub control signals 

respectively list in table 4.2 and table 4.4 for clarity, and notice that the first letter of the 

name of the signals, the letter “M”/”S” means the signal is issued by the master/slave, the 

second letter of the name of the signal represented the type of transaction, and “R”/”W” 

means the signal is read/write burst. Moreover, the detail of the burst length 

(MRLEN/MWLEN) and the burst type MRBURST/MWBURST will be described in 

chapter 4.5 (Address option) 
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4.3.1 Read Control Signal 

 

Signal  Source  Description  

MRCONTROL[9:0]  Master  Read control signal information, which include the MRID, 

MRLEN, BRBURST information list in Table 4.2. 

MRADDR[31:0]  Master  Read address information, coupled with the 

MRCONTROL, every read burst the MRADDR must has 

corresponding MRCONTROL. 

MRREADY Master  Read acknowledgement for every data had been read by 

Master, Asserted when the completion of reading data  

SRAREADY Slave Acknowledge to Master for completion of reading 

address by Slave 

SRDATA[31:0]  Slave Read data in the read burst 

SRTAG[3:0] Slave Read data identification tag for the corresponding 

request of Master 

SRLAST  Slave  Indicate the data being transfer is the last one, coupled 

with the last data transfer.  

Table 4.1: Read Control Signal Table 

 

MRCONTROL  

Signal  Description  

MRID [9:6]  Read address ID. This signal is the identification tag for the read address  

MRLEN[5:2]  Read data length, from 1 to 16  

MRBURST[1:0]  Read Burst Type. Fixed, Increment, or Wraps, describe in detail in 4.5  

Table 4.2: MRCONTROL content 
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4.3.2 Write Control Signal 

 

Signal  Source  Description  

MWCONTROL[9:0]  Master  Write control signal information, which include the MWID, 

MWLEN, BWBURST information list in Table 4.4.  

MWADDR[31:0]  Master  Write address, coupled with the MWCONTROL, every 

write burst the MWADDR must has corresponding 

MRCONTROL. 

MWDATA[31:0]  Master  Write data which Master put on the write data channel 

MWDID[3:0]  Master  Write data identification tag for the corresponding write 

data, coupled with MWDATA.  

MWLAST  Master  Indicate the last data transaction, coupled with the last 

data transfer of write.  

MWRESP  Master  Acknowledge the SWRESP  

SWAREADY  Slave  Acknowledge the Master for the write address has been 

read by Slave 

SWREADY  Slave  Acknowledge to the Master for the write data has been 

receipt by Slave  

SWRESP[1:0]  Slave  Acknowledge to Master that the entire write operation 

with the same ID has been completed  

SWRID[3:0]  Slave  Write Response identification tag, coupled with SWRESP. 

Table 4.3: Write Burst Signal Table 

 

MWCONTROL  

Signal  Description  

MWID [9:6]  Write address ID. This signal is the identification tag for the read address  

MWLEN[5:2]  Write data length, from 1 to 16  

MWBURST[1:0]  Write Burst Type. Fixed, Increment, or Wraps, describe in detail in 4.5  

Table 4.4: MWCONTROL content 
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SWRESP[1:0] Description 

2’b00 Write operation complete 

2’b01 Write Error 

2’b10 Reserved 

2’b11 Reserved 

Table 4.5: SWRESP content 

 

4.4 Handshake 

 The handshake process can be divided into three parts, address phase, data phase and 

the response phase. All of these signals encoded to the dual rail form and the default value 

of each signal is empty (Not low). Every two consecutive valid data are separated by an empty 

token (no data). The slave uses the complete detection unit to detect the data arriving and 

acknowledge to the slave. 

4.4.1 Read address phase 

The master issue a read data request by asserting the MRADDR and MRCONTROL 

signal. The MRADDR and MRCONTROL must remain asserted until the slave drive the 

SRAREADY signal high.  

 

 

Figure 4.4: Read address transaction dependencies 

MRADDR + MRCONTROL + 

SRAREADY + 

MRADDR - MRCONTROL - 

SRAREADY - 
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Figure 4.5: Read address phase 

 

Figure 4.4 shows the read address transaction dependencies, noticed that the MRADDR + 

and MRCONTROL – means the signals become empty (both d.t and d.f goes low). When 

the master detect the SRAREADY signals are driven to high, it indicates that the slave has 

accepted the read address and the control information, then the master drives the MRADDR 

and MRCONTROL to the empty. When the empty token detected by the slave’s complete 

detection units, the slave will let the SRAREADY signal become empty to complete the 

address phase transaction. 

Figure 4.5 shows the address phase transaction of the read burst. When the 

SRAREADY signal goes high means the slave has accepted the address and control 

information, the transfer occurs when both the SRAREADY and MRADDR / 

MRCONTROL signals are high. The transaction complete when all of these three signals 

become empty from high. 

 

4.4.2 Read data phase 

During the read burst, the slave can assert the SRDATA signal when the read data 

associated with the SRTAG signal ready after the slave accepts the read address and control 

information from the master. The master asserts the MRREADY signal high to indicate that 

it accepts the data. Figure 4.5 shows the read data transaction dependencies. If the slave 

wants to transfer the last data of the same read burst transaction, the SRLAST signal will be 

driven to high to indicate that the data is the last one. When the master accepts the data 
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associated with the SRLAST signal, it will acknowledge to the slave by asserting the 

MRREADY signal to indicate that the read transaction is complete. The SRDATA must be 

coupled with the SRTAG to identify the read burst transaction. When both the SRDATA 

and SRTAG signals become empty, the slave can issue the next data transfer if the data is 

not the last or issue a new read burst data phase. Figure 4.7 shows the example of the read 

data transaction with two data. These two data with the same identification must be sent in 

order to make sure the correctness of the data sequence. 

 

 

Figure 4.6: Read data transaction dependencies 

 

 

Figure 4.7: Read data phase 

 

4.4.3 Write address phase 

In the write address phase, the master issue a write data request by asserting the 

MWADDR and MWCONTROL signal. The MWADDR and MWCONTROL must 

SRDATA + (SRLAST +) 

MRREADY + 

SRDATA - (SRLAST -) 

MRREADY - 

SRTAG + 

SRTAG - 
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remain asserted until the slave drive the SWAREADY signal high. Figure 4.4 shows the 

read address transaction dependencies. When the master detect the SWAREADY signals 

are driven to high, it indicates that the slave has accepted the write address and the control 

information, and then the master drives the MWADDR and MWCONTROL to the empty. 

When the empty token is detected by the slave’s complete detection units, the slave will let 

the SWAREADY signal become empty to complete the address phase transaction. After the 

address phase of the write burst is complete, the master can begin sending the write data to 

the slave on the write data channel. 

 

 

Figure 4.6: Write address transaction dependencies 

 

 

Figure 4.7: Write address phase 

 

Figure 4.7 shows the address phase transaction of the write burst, when the 

SWAREADY goes high, and it means the slave has accepted the address and control 

MWADDR + MWCONTROL + 

SWAREADY + 

MWADDR - MWCONTROL - 

SWAREADY - 
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information, the transfer occurs when both the SWAREADY and MWADDR / 

MWCONTROL signals are high. The transaction complete when all of these three signals 

become empty from high. 

4.4.4 Write data phase 

During the write data phase, the master can assert the MWDATA and MWDID 

signals when the read data ready after the slave accepts the read address and control 

information from the master and the master has accepted the acknowledgement 

SWAREADY from the slave. After the master asserts the MWDATA and MWDID, the 

slave drives the SWREADY signal high to indicate that it accepts the data.  

 

 

Figure 4.8: Write data transaction dependencies 

 

 

Figure 4.9: Write data phase 
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Figure 4.8 shows the read data transaction dependencies. If the data which the master 

wants to transfer is the last, the MWLAST signal will be driven to high to indicate that the 

data is the last one data transfer of the same write burst transaction. When the slave accepts 

the data associated with the MWLAST signal, it will acknowledge to the master by 

asserting the SWREADY signal to indicate that the read transaction is complete. The 

MWDATA must be coupled with the MWDID to identify which of the write burst 

transaction. When both the MWDATA and MWDID signals become empty, the master can 

put the next data on the write data channel if the data is not the last or issue a new write 

burst data phase. Figure 4.9 shows the example of the write data transaction with two data. 

After the write data phase, the master is waiting the write response information from the 

slave. 

4.4.5 Write response phase 

The slave can assert the SWRESP coupled with SWRID signals when it drives a valid 

write data response. SWRESP and SWRID signals are remain high until the master accepts 

the response information and drives the MWRESP signals to indicate that the response 

information has been accepted by the master.  

 

 

Figure 4.10: Write response transaction dependencies 
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Figure 4.10 shows the write response transaction dependencies. When the slave detects 

the MWRESP signal goes high, the slave will put the empty token on the write data channel, 

then the master detects the empty token on the write data channel and let the MWRESP 

signal become empty state. 

 

 

Figure 4.11: Write response phase 

 

4.5 Address Option 

Table 4.6 and Table 4.7 shows the address option of the ANIP. The burst length can be 

1 to 16. There has three different type of burst type of the burst list in table 476. The burst 

size in ANIP are fixed to 4-byte (32 bits) for the compatibility and conformity reason.  

 

MRLEN[3:0] 

MWLEN[3:0] 

The number of the 

data transfers 

2’b0000 1 

2’b0001 2 

2’b0010 3 

…… …… 

2’b1110 15 

2’b1111 16 

Table 4.6: Burst length encode 
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MRBURST[1:0] 

MWBURST[1:0] 

Burst type Description 

2’b00 Fixed Fixed address read/write burst, used in FIFO access 

2’b01 Increase Incrementing address read/write burst for normal memory 

access 

2’b10 Wrap Incrementing address read/write burst that wraps to a lower 

address at the wrap boundary, use in cache line access 

2’b11 Reserved Reserved 

Table 4.7: Burst type encode 

 

4.6 Comparison 

The main difference between ANIP and the synchronous bus protocol are listed below: 

1. The data transfer occurs in the positive edge trigger in the synchronous protocol. If the 

master issues a read request at clock cycle 1, then the slave accepts the address 

information and drives the acknowledgement signal high at cycle 2. The transfer will 

occur in the end of the second cycle. In ANIP, when the slave accepts the read address 

and the control information from the master, the slave drives the acknowledgement 

signal immediately without waiting. 

2. The way to detect the arrival of the valid data in synchronous protocol is using a data 

valid signal such as ARVALID in AXI protocol, which indicates that the address and 

control information are available. In ANIP, using the dual rail encoding mechanism to 

encode the valid data. So we can use the complete detection unit described in chapter 2 

to detect the available address and control information. 

3. When the handshake process is complete in synchronous protocol, the signal goes low 

potential. But in ANIP, the signal becomes empty after the handshake is complete, i.e. 

there must be an empty token between two consecutive valid data transfer.  
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Chapter 5 Implementation of Architecture 

This chapter is an overview of the design for the Resource Network Interface in the 

Switch side and the Master Interface in the resource (figure 5.1). In chapter 4 we have 

introduced the ANIP for the transaction; the ANIP is used for the transaction between the 

Resource Network Interface and the master interface shown in figure 5.2. There are two 

main function of the converter module in the RNI: first is converting the address/control and 

the data into packets, and then send these packets to the router; the second one is receiving 

the packet which is send from the router, and buffer it, when all of these packets arrive, the 

response path will convert these packets into the control/address information and data (in 

the read operation) and then send them to the slave interface. 

5.1 Architecture  
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Figure 5.1：The overview of the interconnect 

 

Figure 5.1 shows how the components connect in the system. The resource connects to 

the network via the associated slave/master interface, and the master/slave interface in the 

resource must be coupled with the slave/master interface in the switch side to act as a bus 

wrapper. The slave interface which act as the complementary side of the ANIP for the 
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Resource 1 is connected to a resource network interface. The resource network interface 

(RNI) converts the ANIP request into a network transfer, and the receiving Network 

Wrapper (as the master of the ANIP) will convert the network transfer into the ANIP 

command. The slave interface of the resource receive the data or request which from the 

master and take the corresponding action. 
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Figure 5.2：Network Wrapper Architecture 

 

Figure 5.2 shows the architecture of the Network Wrapper and the master interface of 

the resource. Our design is divided into three parts: the master interface, slave interface, and 

the resource network interface. In the following sections, we will introduce these modules 

in detail.  

5.2 Implementation of the Master Interface 

 The master interface can be divided into read and write channel. The master interface 

functions as a converter between the resource and the network wrapper (figure 5.2). The 

master converts the read/write data request into ANIP commands. In the write channel of 

the master interface, the data can be written to the FIFO. The FIFO in the write channel 

(figure 5.4) functions as a write buffer, and allows of writing the data to the FIFO right after 

the complete of write address phase. The read buffer in the slave interface (figure 5.3) will 
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send the read data to the resource until all of the data have arrived. 

5.2.1 Read Channel 

 Figure 5.3 and figure 5.4 show the implementation of the ANIP master interface. 

Figure 5.3 is the read channel of the master interface. At the beginning, the processor 

(Resource) issues the address and control information on address channel in the address 

phase. The “Read Request” signals determine what kind of operation the request is. In this  
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Figure 5.3：The read channel in the master interface 
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case, the path of read operation is selected. After the master interface accepts the read 

address and control information from the processor, the “Read Ack” signal is driven to high,  

to indicates that the signal had been receipted. When the master interface receives the read 

data from the slave interface, the data will be kept in the read buffer until all of data of the 

same ID tag have arrived. After all, the data and tag information will be sent to the 

processor. It is worth notice that if the read buffer is handshaking with the processor, write 

to the read buffer is not allowed. 

5.2.2 Write Channel 

Figure 5.4 shows the write channel of the master interface. The write channel is similar 

to the read channel. At the beginning, the processor issues the write address and control 

information on address channel in the address phase, and the data can be written to the 

FIFO immediately or right after the write request, i.e. the write request in the address phase 

and the operation in the data phase are able to occur in the same time. After the master 

interface accepts the address and control information, the master drive the “Write Addr 

Ack” signal high to indicate the handshake is complete. In the data phase, the master drives 

the “WriteData Ack” signals high after accepts the write data and control information from 

the processor. The FIFO here is simple five stage FIFO buffer. 

When the write operation is complete, the slave acknowledges the complete by 

asserting SWRESP and SWRID signals. If an error occurs in the write burst, the response 

controller will send the interrupt signal to the processor. Otherwise, the response controller 

does not do anything after accepting the response information.  
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Figure 5.4：The write channel in the master interface 
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5.3 Implementation of the Slave Interface 

The slave interface also can be divided into read and write channel. Figure 5.5 and 

figure 5.6 show the read channel and the write channel respectively. The read channel 

handshakes with the read channel of the master interface, and the write channel handshakes 

with the write channel which is in the master interface.  

5.3.1 Read Channel 
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Figure 5.5：The read channel in the slave interface 



 

- 38 - 
 

The read channel of the slave interface plays a role in handshaking with the read 

channel of the master interface and resource network interface (figure 5.5). When the read 

address and control information are sent to the slave interface, the information will be 

inputted into the address FIFO, and then the slave interface drives the SRAREADY signals 

high to indicate that the read address and control information have been accepted. 

When the read address and control information are accepted by the resource network 

interface, the tag information is also written to the tag table in the DATA FIFO (figure 5.5). 

It allows the slave interface to indicate that what burst the data belongs to and drive the 

SRLAST signal high when the last data is sent. 

5.3.2 Write Channel 

 Figure 5.6 shows the write channel of the slave interface, which act as the 

complementary side of the ANIP for the associated master interface. In the write burst, the 

write channel accepts the write data from the master interface, and put it in the Write Buffer. 

Then the slave interface asserts the SWREADY signals to indicate that the write data has 

been accepted. After the master interface accepts the SWREADY signals, the empty token 

will be sent to the slave interface on the data channel. When the write process is complete in 

the target resource, the write response information will be sent back. The slave interface 

does nothing but sending these responses to the master.  
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Figure 5.6：The write channel in the slave interface 
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5.4 Resource Network Interface 

 The network wrapper consists of the ANIP interface and resource network interface 

(RNI) (figure 5.7). The RNI can further divided into two part, request path and response 

path. The request path is used to translate the ANIP command into the packet-based 

communication. When the response packets arrive, the response path keeps these packets in 

the packet buffer until all of them are available, and converts these packets into ANIP 

commands. Notice that there must be only one operation in a pipeline stage in asynchronous 

design.  
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Figure 5.7：Resource Network Interface 
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5.4.1 Request Path 

The request path of the RNI builds the packet header, necker and wraps the data which 

the resource issues. The request path is shown in figure 5.8, which consists of a merge 

module, translation table, header builder, packet assembly module, and two FIFO. The 

translation table is for address decoding. The table receives the 32-bit target address from 

the ANIP slave interface and translates it into the network-on-chip address space. For 

example, if the target address is 0x010A, then the translation table will translate this address 

into address 0011 which represents the address (0, 1) of (X, Y) format in the NoC address 

space. Header Builder receives the address and control information and then converts them 

into the header and necker packets. After the necker packet which is built by the header 

builder is sent to the header FIFO, the acknowledge signal for the slave interface will be 

asserted. 
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Figure 5.8：Data flow of the Packet Assembly 

 

When the packet assembly module has accepted the header and necker from the deader 

FIFO, and then it will extract the packet length from the control information. The packet 

assembly module receives the data from data FIFO and converts them according to the 
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packet length information. The request packet structure is shown in figure 5.10 (a). When 

all of the packets of the same ID have been sent to the packets FIFO, the acknowledge 

signal to head FIFO is asserted. 

5.4.2 Response Path 

 The response path of the RNI receives the packets from the router and converts these 

packets into the ANIP commands. Figure 5.9 shows the details of the response path, which 

consists of a packet buffer, a C-latch, packet reassembly module, flow control unit and a 

data FIFO. 
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Figure 5.9：Data flow of the Packet Reassembly 

 

 The packet buffer keeps the arrival packets until all of them arrive. We will describe 

the detail of the packet buffer in next section. When the head packet arrives in the packet 

reassembly, the control information will be extracted from the header. The remaining data is 

transmitted to the data FIFO according to the packet length which is obtained from the head 

packet. The response information is accepted by the flow control unit, and then transfers the 

information to the slave interface of ANIP. After all the data and control information are 

sent to the data FIFO and flow control respectively, the packet reassembly module drive an 

acknowledge signal high to indicate that the operation is complete. 
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5.4.3 Packet Structure 

 Figure 5.10 shows the packet structure, and the table 5.1 lists the definition of the 

fields in the packet. The necker in the request packets are necessary, which indicates the 

start address of the read/write operation. The necker is omitted in the response packets. 

 

Field  Function  Field  Function  

Tag  {Initiator Address (X,Y) ,4 bits ID}  Slave Address  32-bit Read/Write start address 

Type  Packet type. OP code Data  Packet payload 

Burst  Burst Type  H  Header tag  

B-Length  Burst Length (1~16)  HEAD  Destination coordinates  

Info  User define Information  Rsep Write response information 

Length  Payload length (0~17)      

Table 5.1: The definition of packet field 
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Figure 5.10 (a)：Request Packet structure built by Packet Assembly 
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Figure 5.10 (b)：Response Packet structure built by Packet Assembly 
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Figure 5.10 (c)：Content of HEAD field 
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5.4.5 Packet Buffer 

Figure 5.9 shows that the packet buffer plays an important role in the response path of 

RNI. The packet buffer receives the packet from the router, and then sends the whole 

packets to the packet reassembly module until each packet of the same ID has arrived. 

Receive Packet 
from the router

Header?

Buffer the Packet in an empty 
entry and set the value of 

“Valid”to 1

YES

NO

Update the 
Packet Table

Modified the “Next”value 

pointed by“Last”in the 
packet table

Output all the packet and 
clear the entries

Complete = 1?

NO

YES

 

Figure 5.11：Packet buffer flow chart 

Figure 5.12 shows the operation of packet buffer as listed below: 

1. Receive the packet from the router. 

2. Find an empty slot in the packet buffer and write the data to the entry. Then set the 

field of valid to “1”, which indicates that this entry is occupied. 
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3. Check if the packet is header. If yes, go to the step 5. 

4. Modified the field of “Next” whose address is pointed to by the “Last” in the 

corresponding entry in the packet table. 

5. Update the entry in the packet table. If the packet is header, find an empty entry and 

write to it, otherwise update the field of “Last” in the corresponding entry. If the 

packet is the last one, set the “Complete” to 1. 

6. Check if the field of “Complete” in the packet table is set to 1. If so, output all of the 

packets and then clear the entry in the packet buffer and the packet table.  
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Figure 5.12：Packet Buffer and Packet Table 

 

 The example of the operation in the packet buffer is shown in figure 5.12. At the 

beginning the header of packets is inputted to the packet buffer, the header is written in the 

memory address 00000 as Data 0, and the “Valid” of the entry is set to 1. Because this 

packet is header, which will find an empty entry in the packet table and update the 

information: Set the “Valid” to 1, and write the (0, 0), 000000, 0, 000000 to the “Tag”, 
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“Begin”, “Complete”, “Last” respectively. When the second packet arrives, it will find an 

empty entry as Data1 in the packet buffer and updates the value of “Next” to which is 

pointed by the field of “Last” in the corresponding entry in the packet table. Then the value 

of “Last” is modified to 000010. When the last packet arrives, it is written to the packet 

buffer in the address 000101as Data 2. The value of “Next” of Data 2 is set to 000101, and 

the value of “Last” in the corresponding entry in the packet table is also modified to 000101. 

Most important step is that set the value of “Complete” to 1, which indicate that all of the 

packets have arrived. In the end, all of these three data will be outputted, and the value of 

“Valid” will be set to 0. 

 

Field  Function  

Valid  The entry is Empty (0) or Valid (1)  

Data [31:0]  The packet which include the HEAD  

Next [5:0]  The index of the next packet  

Tag [7:0]  The X-Y coordinates of the source plus the ID  

Begin [5:0]  The address of the first packet  

Last [5:0]  The location of the last data  

Complete  If the whole packets are received (1)  

Table 5.2: The definition of packet buffer and packet table 

 

5.4.6 FIFO Structure 

Figure 5.13 shows the implementation of the FIFO. Every FIFO in our design has five 

stages. According to Muller pipeline, the utilization of the 4-phase dual rail pipeline is 50%. So 

the FIFO packs three data/packets at most. The detail design for each C-latch is shown in figure 5.14. 

The transistor-level C-element is shown has been shown in chapter 2.1.2. An alternatively 

implementation of C-element in gate-level is shown in figure 5.15. 
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Figure 5.13：FIFO structure 
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Figure 5.14：C-latch in FIFO 
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Figure 5.15：The C-element with reset 
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Chapter 6 Simulation  

6.1 Testing Environment 

ModelSim 6.0 is used to verify the correctness of the functionality. Figure 5.16 shows 

the waveform of the functionality of the read request phase. Figure 5.17 shows the 

waveform of the read response phase. Figure 5.18 and figure 5.19 show the write request 

phase and write response phase respectively. 

 

 

Figure 6.1：The waveform of the read request phase  
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Figure 6.2：The waveform of the read response phase  

 

 

Figure 6.3：The waveform of the write request phase 
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Figure 6.4：The waveform of the write response phase  

 

6.2 Area Report 

To evaluate the design of the ANIP interfaces and Resource Network Interface, we use 

the synthesis tool from Synposys under TSMC 0.13um library. Table 6.1 shows the area 

information of each module in our design. The Network Wrapper consists of the slave 

interface and the resource network interface, and the RNI consists of the request path and the 

response path. Moreover, the response path of RNI is consists of the packet buffer and other 

modules. 

The area of slave interface is three times larger than the master interface. Because of the 

number of FIFO of the slave interface is four, which is more than the number of FIFO in of 

the master interface. Each FIFO consists of five 32-bit C-latches. The area of a FIFO is about 

6654μm
2
, which is a large proportion of the ANIP interface. 

The area of the packet buffer is 177157.6μm
2
, which is 66.3% of the network wrapper. 

The line size of the packet buffer is 39 bits, and there are 64 entries in the packet buffer, and 
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the packet table has four entries with 18bits line size. There are at most four groups of packets 

which are from different resources storing in the packet buffer, due to the limit of the entries 

in the packet table. The number of buffer lines of the packet buffer can be parameterized by 

the interface designer. Table 6.2 shows the area information of basic element.  

 

Module Cell Area(μm
2
) % 

Master Interface 15507.4 - 

Network Wrapper 266820.9 100 

1.Slave Interface 43497.5 16.3 

2.Resource Network Interface 223323.4 83.7 

a. Request Path 32204.7 12.0 

b. Response Path 191118.7 71.6 

         Packet Buffer 177157.6 66.3 

Table 6.1: The Area of each module 

 

Element Area(um
2
) 

C-element 20.3 

32-bit C-latch 1330.8 

DeMUX 889.4 

Dual Rail OR 217.2 

Table 6.2: The Area of basic element 
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Chapter 7 Conclusion 

We proposed asynchronous network-on-chip protocol and implementation of the 

resource network interface in this thesis. The ANIP makes the network interconnection 

details transparent to the IP blocks. The IP designers can easily design the MPSoC system 

regardless of the way to transmit the packets of NoC. The RNI decouples communication 

and computing, bridging the command between ANIP interface and router. We can utilize 

ANIP to integrate an asynchronous two way VLIW processor with the RNI in the future, 

building whole asynchronous MPSoC system. 

There still have some points that can be improved in our implementation. The cost of 

dual rail circuits is too high to be commercialized. It may mix with bundle data to deduce 

the cost. Additionally, the cost of our implementation is still very high. We may use other 

way to implement the ANIP interface. For example, the FIFO of the ANIP interface can be 

optimized by way of replacing the C-element with registers.  
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