SRR AT 3 DL SES - S
Asynchronous-Packet-switched Network-on-chip:

Protocol and Architecture

o4 R

PR s A R

FTERB LTt Hh £t A

Bl AE WS VBB RS R

Asynchronous Packet-switched Network-on-chip:
Protocol and Architecture

o2 Erp s Student : Po-Cheng Tsou
ERR MR Advisor : Chang-Jiu Chen
Bz 2~ F
EARCUE - S N A e

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2010

Hsinchu, Taiwan, Republic of China

PERRA L4 £

=X IR AT hERE I MEE KR

Rzl + BFAPFEI 7T 97

R

BISEL TG Pl E D g M Ao A KT IR R Y SEF P e d
B oo 1 EMEOFRENE R FIFFAMUP) ST AT R o R F T U B
Lm AR e AP R & BS0C K s NOCRT A A 2 fF & = sV %2 50 o

A A R 0 2R TR R P RS T TR BIPZF - B2
Pl e BT HRY R DB AP R RN FRRER A (RND,
M IPE AT F R R o g % NOCZE e S oo T E 0 ¥ PRNTY dR i

footg e PG 0 LU-B e 4% 0 WL E - H h@ B A IGE DY Eren

B

Asynchronous Packet-switched Network-on-chip:

Protocol and Architecture

Student : Po-Cheng Tsou Advisor : Dr. Chang-Jiu Chen

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

Abstract

In recent years, the number-of computing resources in asingle chip has been enormously
increased. The complexity of design is proportional to the number of cores. In order to reduce
the design complexity and increase the re-usability of the IP blocks, designers can create
systems-on-a-chip (SoC) by incorporating several dozens of IP blocks which are previously
designed. Network-on-Chip (NoC) has been proposed to support the integration of multiple IP
blocks in a single chip.

We propose an asynchronous network-on-chips protocol (ANIP) which uses the four
phase dual rail mechanism to provide an abstraction of the communication architecture. We
also present a Resource Network Interface for a NoC based multiprocessor, which achieves
the reuse of IP blocks, and buffers the receiving packets until all of the packets arrive to

reduce the number of interruptions.

Acknowledgement

Tl Y R A R P S ndg oot B BT - # D kindp R S

SEN T HEA AT B L I E L s rTE B S

EAF S hF R ERIE % BAREIE RS ARH o

—
¢

)

Fobo ARPEHAA A FAFADAFEY O RANS LR ER AL

IFRT R AEE S AUARBR BT LR R T RP RN AT

v

CONTENTS

b T |
F N =T T I X 1]
ACKNOWLEDGEMENT ..ottt ettt e et e e e et e e s bt e e e s eb b e e e s et ae e e sabbeeesssbbeesaabtesessabesessbreeean 1
(0L T\ I =1 N 15 TR v
LIST OF FIGURESottt ettt e e e et e e e et e e s bb e e e e e bt e e e s eabee e e sabaeesabbesessbteeesssbaeesabreeessnees Vi
I ISR IO T 72 = 1 I T VI
CHAPTER 1 INTRODUCTION. . ..ottt ettt ettt ettt st e s s sttt e s s s b be e s s bt aesssabasssssbbaessssbansesnns -1-
B @AY= oA AT Y OO -1-
R \Y. (o V7N [0] NS J OO RTTT -2-
1.3 ORGANIZATION OF THIS THESIS ..iiiiiiitttiiiie ettt seeibb et e s e st a it e e e e e s st b bbb e e e e e s s sbb bbb e e e e e s s ssbbbbeeeeeeas -2-
CHAPTER 2 BACKGROUNDoutiiiiiiiic e 0 sttt stssseessedes i vae e st etteessettesssssaaesssbbeessssbsessssssssssssbesssssessesnns -4 -
2.1 ASYNCHRONOUS CIRCUITS ..ottt vbinseeiseeiinnsnsse s Siih iaas sisaiese shasasdieesssssssssssesssssssssssssessessssmssssssseesssssissssnes -4 -
2.1.1 4-phase dual rail ProtOCOL .. i ... s it o e b e e et e et e st e te et e e e e neesseesreesneenneeneeenes -5-

A A N LAY/ LU F=T O =T =T o 4 T=T o e R ORR -7-

2.1.3 The 4-phase dual rail PIPEHNE ..o i it e -8-
CHAPTER 3 RELATED WORKS ...ttt ittt et s vt et e e etes s e seatae e s sabaeessbtsssssabanesssraeeeas -10-
3.1 BI-DIRECTION INTERCONNECTION USING TORUS TOPOLOGYocotvvviiiieeiiiiiiiieni e e siiirenese e e sisvenes -10-
I N\ [Sy A AN 4 B = = 10) e Tl s R -12-
R N S 7=) (o I = 1 Y=ot (o] o SRR -13-

3.3 OPEN CORE PROTOCOL 1uiiiiiiiiiiiiiiii et ettt e e et e ittt et e e e e e st ib bbbt e e e e e s s e ab bbb et e e e s s aasbb b b e e e e eessssabbbaaeeaeeessbbbenes -15-
B4 NETWORK INTERFACEeiiii ittt e e ettt e e e e e sttt e e e e e e e st eb bbbt e e e e e s s ee bbb b e e e e e e s aas bbb b e s e eeessesabbbaaesaeeessbbbenes -16 -
CHAPTER 4 ASYNCHRONOUS NETWORK-ON-CHIP INTERFACE PROTOCOL.........ccovveevnee. -17 -
4.1 ANTP OVERVIEW . ..ociiiiiiiititii ettt et ettt e e e e sttt e e e e e e s e b b e e e e e e s e e b bbb e e e e eessssabbbaaeeeeesssbbbateeesessines -17 -
4.2 BASIC TRANSACTIONuittiiiiieeiiiiitttteteeeesssibbreteeeesssebbaareeeeessaa bbb aeeseessaasbbbbeeseesssssabbbabeeeeessssbbatasesessianes -18-
N N = (=T 1o I = 1) TR -18-
LT 1 (I =10 1) AR -20 -

4.3 SIGNAL DESCRIPTIONS ...utttiiiiieiiiiittitieeeessiitbbtieessssseibbaasessesssasbbbtesseessaabbbbssseessssisbbbasseesesssasbbasasesesssases -21-
4.3.1 Read CONIOL SIGNQAL........coiiiiie bbbttt b e bt sb et e b b e -22-

4.3.2 Write CONLIOL STGNAL ..o bbb bttt e et e -23-

A4 HANDSHAKE ... uttviiiit et ettt e e e e ettt e e e e e s s bbb et eeeeesse bbb et e e eeessaa s bbb beeseesseasbbbbeeseessssbbbbaseesesssaabbbeseeesessines -24-
4.4.1 REAd AAAIESS PRIESEveiuiiieeieie sttt ettt sttt b bbb e bt ekt et e b e b sbesbe e ne e st e e e nbenbe e -24 -

4.4.2 REAM JALA PRIESEviviieitieieeie ettt bttt ettt bbbt e bbb bt ne e e e et nae s -25-

e g Vo 0| =T o] - PSSR
g (o = W 0] T - OSSR

S g N =] Lo ST o] = T SRS

4.5 ADDRESS OPTIONttiuttiueiiteesteesreessees s st s sre e me e as e e ame e ame e s b e e be e ne e s eesse e s R e e a R e e R e e neennean s e nreenreenreenreenne s

4.6 COMPARISON

CHAPTER 5 IMPLEMENTATION OF ARCHITECTURE........cccooiiiiiii

5. L ARCHITECTURE ...cutttttesteesteestee et ase s se e sse e s st e s es e s e s h e e s b e e s Rt e R e e e e e ae e aR e e e R e e b e e R e e Re e s ee e se e s Reenreenneenneennenne e e

5.2 IMPLEMENTATION OF THE MASTER INTERFACEoiitittie ittt ettt stts et e ste s bt tesassresstessteesbesntesatesnee e
LA A = (== (o IO o =TT T I

5.2.2 Write Ch

o] 1= [T

5.3 IMPLEMENTATION OF THE SLAVE INTERFACEcctttiiiiiiiiiiiiiiee et eiittte e e s s ssistbaes s s e s s s saabbasesesssssanssnns
LR IR = == (o I O o T= 1Y R

5.3.2 Write Ch

o] 1= TR

5.4 RESOURCE NETWORK INTERFACEciiiiiiiitiitise st
LR T U ot A = L1 e OSSP
5.4.2 RESPONSE PAN ... i it T e e s b ettt et e e e e s e s e e sre e sreente et e enbeanaenraen
5.4.3 PACKEE STIUCKUIEo.oiveee s it cirerreresseseeses tessesasnessie s es e sn s seesennessesesnessesesnessesessessesesnessesensensns
5.4.5 PACKEE BUTTEE ..o 5o s sttt et ek et ettt
5.4.6 FIFO SITUCLUIEoiiii i ittt sne st s e abas e s s e HB ettt sn et sn e

CHAPTER 6 SIMULATION ..ot it sosvssvmsmmssmssmssssssss oo sbubet et ae s s snesisssesses s sneas

6.1 TESTING ENVIRONMENT ..eiiiiiiiitt it ieiiecnreeeeeeesssissrssesssssssdands stiessssesisssssssssssssisssssssesssssisssssessssssisssseses

6.2 AREA REPORT 11tiiiiiiiiiiitiiit e eeiitteeeeee s e s 5555 saenasnnn s 6858eea s adattateeseeesessbaseeeeeesaasbbbaesseesssabbbbeaeeesessnsrbenes

CHAPTER 7 CONCLUSION ..ottt s

REFERENCES......

List of Figures

FIGURE 1.1 : 3 X3 NETWORK-ON-CHIPSARCHITECTURE..........ccccviviiiinns
FIGURE 2.1 (A) : 4-PHASE DUAL RAIL PROTOCOL.......ccoceiiiiiiiiiieneeeee,
FIGURE 2.1 (B) : 4-PHASE DUAL RAILPROTOCOL.......cccoiiiiiiieiiiinenesesieeee
FIGURE 2.1 (C) : 4-PHASE DUAL RAIL PROTOCOL.......cccooeiiiiiiiiinenesesieeee
FIGURE 2.2 : THE SYMBOL OF C-ELEMENTocoiiiiiiie e
FIGURE 2.3 (A) : TRANSISTOR LEVEL IMPLEMENTATION OF C-ELEMENT
FIGURE 2.3 (B) : GATE LEVEL IMPLEMENTATION OF C-ELEMENT...............
FIGURE 2.4 : 2 STAGE 4-PHASE DUAL RAIL PIPELINE.........ccocoiiiiiiiiiecees
FIGURE 2.5 : THE MULTIPLE INPUTS C-ELEMENTcccoiiiiiieeeees
FIGURE 3.1 : 3X3 BI-DIRECTION TORUS SYSTEMcccooiviiiiieees
FIGURE 3.2 : PHYSICAL INTERFACE BETWEEN'-ROUTERS..........ccoiiiiiies
FIGURE 3.3 : PACKETS TRANSFER SEQUENCEi.... it
FIGURE 3.4 : AXI INTERFACEAND INTERCONNECT it
FIGURE 3.5 : CHANNEL ARCHITECTURE i1 it se i
FIGURE 3.6 : SYSTEM SHOWING WRAPPED BUSAND OCP INSTANCES.......
FIGURE 4.1 : SIGNALS OVERVIEW .4 i ittt i e
FIGURE 4.2 : READ BURST EXAMPLEoooiiiiiie e
FIGURE 4.3 : WRITE BURST EXAMPLE ..ot
FIGURE 4.4 : READ ADDRESS TRANSACTION DEPENDENCIES.............ccccenee.
FIGURE 4.5 : READ ADDRESS PHASEooooiii e
FIGURE 4.6 : READ DATATRANSACTION DEPENDENCIES...........ccccovviiiiins
FIGURE 4.7 : READ DATAPHASE ...t
FIGURE 4.6 : WRITE ADDRESS TRANSACTION DEPENDENCIES...........c..c.......
FIGURE 4.7 : WRITE ADDRESS PHASE. ..ot
FIGURE 4.8 : WRITE DATATRANSACTION DEPENDENCIES.cccooviiiinnas
FIGURE 4.9 : WRITE DATAPHASEoo o

FIGURE 4.10 : WRITE RESPONSE TRANSACTION DEPENDENCIES.................

vi

FIGURE 4.11 : WRITE RESPONSE PHASE ..o -30-

FIGURE 5.1 : THE OVERVIEW OF THE INTERCONNECTcccoooiiiinereee e -32-
FIGURE 5.2 : NETWORK WRAPPER ARCHITECTURE..........coooeiiiieneene e -33-
FIGURE 5.3 : THE READ CHANNEL IN THE MASTER INTERFACE...........cooeiiiiiien. -34-
FIGURE 5.4 : THE WRITE CHANNEL IN THE MASTER INTERFACEccccooovvvien. - 36 -
FIGURE 5.5 : THE READ CHANNEL IN THE SLAVE INTERFACEccccooiviveiiiiee, -37-
FIGURE 5.6 : THE WRITE CHANNEL IN THE SLAVE INTERFACE........ccccoviiiiiienn, -39-
FIGURE 5.7 : RESOURCE NETWORK INTERFACE.........ccccooiiiiereeneee e -40 -
FIGURE 5.8 : DATA FLOW OF THE PACKET ASSEMBLYcccoiiiiiineie e -41 -
FIGURE 5.9 : DATA FLOW OF THE PACKET REASSEMBLYcooiiiiiiieeeeece -42 -

FIGURE 5.10 (A) : REQUEST PACKET STRUCTURE BUILT BY PACKET ASSEMBLY - 43 -

FIGURE 5.10 (B) : RESPONSE PACKET STRUCTURE BUILT BY PACKET ASSEMBLY- 43 -

FIGURE 5.10 (C) : CONTENT OF HEAD FIELD.......o0 i -43 -
FIGURE 5.11 : PACKET BUFFER FLOW CHART ...ttt -44 -
FIGURE 5.12 : PACKET BUFFER AND PACKET TABLEcccioeioviiiiiieeee e -45 -
FIGURE 5.13 : FIFO STRUCTURE ... i s e e i -47 -
FIGURE 5.14 : C-LATCH IN FIFO ittt -47 -
FIGURE 5.15 : THE C-ELEMENT WITH RESET ..o - 48 -
FIGURE 6.1 : THE WAVEFORM OF THE READ REQUEST PHASE.cccooiiiiiiiiien, -49 -
FIGURE 6.2 : THE WAVEFORM OF THE READ RESPONSE PHASEccooeiiiiiee. -50 -
FIGURE 6.3 : THE WAVEFORM OF THE WRITE REQUEST PHASE..........ccooiiiiiin. -50 -
FIGURE 6.4 : THE WAVEFORM OF THE WRITE RESPONSE PHASE............ccccooviiene. -51-

vii

List of Tables
TABLE 2.1 : 1-BIT DUAL RAIL ENCODING ... oo -6-
TABLE 2.2 : TRUTH TABLE OF 2-INPUT C-ELEMENT ... -7-
TABLE 4.1: READ CONTROL SIGNAL TABLE ... e -22-
TABLE 4.2: MRCONTROL CONTENT ..o -22-
TABLE 4.3: WRITE BURST SIGNAL TABLE ... s -23-
TABLE 4.4: MW CONTROL CONTENT ... -23-
TABLE 4.5: SWRESP CONTENT .ot s s s s s s e s s s s s s s -24 -
TABLE 4.6: BURST LENGTH ENCODE ... oottt -30-
TABLE 4.7: BURST TYPE ENCODE ...ttt ettt n s s -31-
TABLE 5.1: THE DEFINITION OF PACKET FIELD ..o -43 -
TABLE 5.2: THE DEFINITION OF PACKET BUFFERAND PACKET TABLE -46 -
TABLE 6.1: THE AREA OF EACH MODULE ... i it -52 -
TABLE 6.2: THE AREA OF BASIC ELEMEN T ... i it i -52 -

viii

Chapter 1 Introduction

1.10verview

In recent years, the number of computing resources in a single chip has been enormously
increased. The complexity of design is proportional to the number of cores. The challenge that
faces the chip designers is achieving the required functionality, performance and testability
whilst minimizing design cost and time to market. To achieve the goal, designers can create
systems-on-a-chip (SoC) by incorporating several dozens of IP blocks, which are previously
designed.

We can connect the IP blocks using the Network-on-chip (NoC) paradigm, because it has
several advantages, for example, separation of the .IP design and the functionality from chip
communication and interfacing. It.allows designer to use different IP blocks without worrying
about the IP interfacing because the wrapper module can be used to interface the IP blocks to
the network.

Asynchronous circuit design is different from the traditional synchronous circuits design,
it is an emerging design. The asynchronous-circuits do not have clock, where timing is
managed locally, as opposed to globally with a clock in the synchronous circuit design. It has
many advantages, such as power consumption, average case delay time, without the clock
skew and modularity, etc. So our designs are all based on the asynchronous circuit design.

In this thesis, we present an asynchronous network-on-chips interconnect protocol (ANIP)
and implement the Resource Network Interface (RNI). ANIP can be used to defines how the
resources (could be processor, DSPs, memory, peripheral controller, gateway) are connected
to each other in the fully asynchronous environment or the global synchronous locally
asynchronous environment. The way of interconnect in the network-on-chip which adapts
ANIP is arbitrarily. AMULETS3i [14] adopted MARBLE [15], a fully asynchronous on-chip

bus. We adopt the bi-direction Torus mechanism [9] to build the interconnection network.

The asynchronous network-on-chips (figure 1.1) formed with the resources and the
switches. A resource communicates with other resource via a network interface (NI) which

converts the form of the data into the form of the packet-based communication.

1.2 Motivations

In a synchronous network-on-chip, a lot of bus protocols such as ARM AXI [10], Open
Core Protocol (OPC) [11], can be adopted for the network-on-chips environment although
the way of connecting each components is different from the convention. The OCP does not
specify the embedded bus transfer; it is bus-independent protocol, making the IP cores
independent of the architecture to achieve the goal of IP design reuse. All of these protocols
are fully synchronous, and cannot bhe used in the asynechronous environment. Because of
lack of NoC protocol in asynchronous circuit-design, so we propose an AMBA AXI based
asynchronous network-on-chips- interface protocol (ANIP) in-order to build asynchronous

multicore processor in the future.

1.3 Organization of This Thesis

This thesis is organized as follow: chapter 1 is the overview of entire asynchronous
network-on-chip system and the motivation. In chapter 2, we will illustrate the background
about asynchronous circuit design. Chapter 3 introduce two interconnect protocol AXI and
OCP which are widely used in the synchronous system interconnection, and also introduce
the network interface and bi-direction interconnection using Torus Topology. Chapter 4 and
5 will discuss our design. In chapter 4, we propose the ANIP with the detailed description
and the signal definition. In chapter 5, we show the implementation of the master interface,
slave interface, and the resource network interface which includes a packet buffer structure

to buffer the packets which received from the router to avoid transfer packet to the slave

and the conclusion are shown in chapter 6 and chapter 7.

interface that every packet arrive in the resource network interface. The simulation result

Switch Switch Switch
NI NI NI
Resource Resource Resource
Switch Switch Switch
NI NI NI
Resource Resource Resource
Switch Switch Switch
NI NI NI
Resource Resource Resource
Figure 1.1 : 3 x 3 Network-on-chips Architecture

Chapter 2 Background

In this chapter, we will introduce the asynchronous circuit design methodology.
Discuss the advantage and drawback of the asynchronous circuit and compare it to the
synchronous circuit. Describe the function of the key component C-element in the

asynchronous circuit. We also introduce the network-on-chips (NOC) in this chapter.

2.1 Asynchronous Circuits

Most of the circuits designed today are ‘“synchronous”, which based on two
fundamental assumptions to simplify the design: (1) All the signals are binary. (2) All the
components on the system share the same time domain defined by a clock signal.

The asynchronous circuits [1] [2] are different from the synchronous ones: (1) All the
signals are binary too. (2) All the components on the system there is no discrete and
common time, instead the circuits use the handshake between the components to perform
the operation. With these differences, asynchronous circuits have several advantages which
are compared with the synchronous circuits:

(1) Awverage case performance:

In the synchronous pipeline architecture, the cycle time of one pipeline stage
must be set as the worst case of all stages. It causes the waste of the cycle time.
There is no global clock in asynchronous pipeline; as a result, every stage can
has its own time to finish the operation according to the type of the operation in
the stage. For example, the delay of the multiplication is more than addition
operation in ALU. When the operation is completed, the result is send to next
stage regard less the cycle time.

(2) Low power consumption:

The sub-circuits in the synchronous circuits are clock-driven, but they are

demand driven in the asynchronous circuit. Therefore the asynchronous circuits

do not need to consume the extra power to maintain a clock tree in the system,
which at most consume 40% of power [12] in the synchronous circuits. The
module actives only when it was needed in the asynchronous circuits.

(3) Better composability and modularity:
Asynchronous circuits have the better modularity resulting from the simple
handshake interface and local timing. We do not care about the implementation
of other part of entire system because every module of all is individual one; we
just need to know the way of the handshake, input and output instead.
Therefore the module which is designed using the asynchronous methodology
can easily to be reused and apply to any new system.

(4) No clock distribution and clock skew: problems:
There is no clock need to be-distributed in the asynchronous circuits; therefore

it has no clock skew problems.

2.1.1 4-phase dual rail protocol

In the asynchronous circuits the clock is replaced by the handshake to communicate
between the different components. The handshake protocol in the asynchronous circuits
design is classified into 2-phase and 4-phase. In the 2-phase protocol the information is
encoded as signal transition on the wires and there is no difference between a 1—0 and the
0—1 transition, they both represent a signal event. The 4-pahse protocol must return to zero
for every signal transition that cost unnecessary time and energy. Due to the characteristic
of easy to implement, the 4-phase protocol is adopted constantly, like the asynchronous
processor AMULET [13] and its successor, AMULET2e, AMULET3, AMULETS3i [14],
which are developed by the University of Manchester.

The 4-phase dual rail protocol encodes the request signal into data signals using 2

wires per bit. Figure 2.1 (a) shows the n-bit data and request signal are encoded into 2n-bit

data. The sender pushes the data to the receiver without signaling the request, when the

receiver detect that the valid data arrives, it will signal the ack to the sender.

Ack

>
<«

Push channel Sender / ,I: Receiver

2n Data

Figure 2.1 (a) : 4-phase dual rail protocol

The 1-bit data is represented by data.t and data.f shown in table 2.1. Data.t is used to
signal the logic 1 (true) and data.f is used for signaling. the logic O (false). (data.t, data.f) =
(1, 0) or (0, 1) represent the valid data-1-and 0. (data.t, data.f) = (0, 0) represent the “no
data” or “empty”. We can detect the valid data by observing one of two wires was asserted.
In order to tell from the different phase of valid data, the empty token is needed to separate
the two valid data, which is shown in figure 2.1 (c), the sequence of the data is always
Valid(0/1), Empty, Valid(0/1), Empty, and so on. In figure 2.1 (b), illustrated how the

4-phase dual rail protocol work.

Value data.t data.f

EMPTY 0 0
VALID 0 0 1
VALID 1 1 0
Not used 1 1

Table 2.1 : 1-bit dual rail encoding

Encoding
Data EMPTY VALID >< EMPTY >< VALID >< EMPTY

E N L RN ,"‘\ /"‘\
\

' \ 1 1 \ ' \

’ N ’ N ’ N ’ N

Ack - »- - »-c >

\

Figure 2.1 (b) : 4-phase dual rail protocol

Figure 2.1 (C) : 4-phase dual rail protocol

2.1.2 The Muller C-element

The Muller C-element shown in figure 2.2 is widely.used in the asynchronous circuits, The
truth table of the C-element list in the table 2.2. When the value of 2 inputs A and B are both 0 (1),
the output value will change to 0 (1). The value of the output C will remain the same if the value of
input A and input B are (1,0) or (0,1). Figure 2.3 (a) and the figure 2.3 (b) show the transistor level

and the gate level implementation of the C-element respectively.

0 0 0
0 1 No change
1 0 No chande
1 1 1

Table 2.2 : Truth table of 2-input C-element

A —»
B — P

Figure 2.2 : The symbol of C-element

Figure 2.3 (a) : “Transistor level-implementation of C-element

B,
T D
B,

Figure 2.3 (b) : Gate level implementation of C-element

2.1.3 The 4-phase dual rail pipeline

The 4-phase dual rail pipeline is based on Muller pipeline [1]. Figure 2.4 shows the two stages
dual rail pipeline with 2-bit data which is built from C-element and the inverters. After all the
C-element initialized to 0, the first data is send to the latch 1 to begin the handshake. When data

arrive, it will be detected by the complete detection unit which is composed by the OR gate and

C-element, and then acknowledge the previous stage to complete the handshake. Figure 2.5 shows
the alternative of multiple inputs C-element which is used in the many bits complete detection units.
Because two consecutive valid data are separated by an empty token (no data), therefore the

utilization of the 4-phase dual rail pipeline is 50%.

Ack_out 4——<] Ack_in

1

Nl

(<))

Datal.t \ N
—_C/ | | C) » Datal.t

Datal.f N\ —
—_Cf | | C) » Datal.f

Data2.t N\ —
—_C/ | | C) » Data2.t

Data2.f N —
—_C/ | | C) » Data2.f

Latch 1 Latch 2

Figure 2.4 & 2 stage 4-phasedual rail pipeline

L,
= >

Figure 2.5 : The multiple inputs C-element

i

visjy

Chapter 3 Related Works

In this chapter we will discuss the bi-direction torus system in which we used and
introduce two synchronous bus protocols, ARM AXI protocol and Open Core Protocol. We
also talk about the Network Interface which acts as the bus wrapper to make the

interconnection details transparent to the IP core designer.

3.1 Bi-direction Interconnection using Torus Topology

Tsai proposed asynchronous bi-direction interconnection using Torus Topology [9]
(figure 3.1) in NCTU, 2009. The Torus system is good for the network-on-chips
interconnection because it is easy to designrdue:to each router is the same and the torus
system has a small average data path [9]. The interconnection network uses dual rail

encoding (figure 3.2) and packet-switching in the torus system.

-t -
Switch Switch Switch

A Y
NI NI NI

0,2) 1,2) (2,2)

-t
Switch Switch Switch

Y

NI NI NI

0,1) (1,1) (2,1)

-t -
Switch Switch Switch

Y

NI NI NI

(0,0) (1,0 (2,0

Figure 3.1 : 3x3 Bi-direction Torus System

-10-

Router Router

Data_out.t ————> Data_in.t
Data_out.f —————> Data_in.f
Ack_in «—— Ack out

Ack_out ——— > Ack_in
Data_in.t é————— Data_out.t
Data_in.f é————— Data_out.f

Figure 3.2 : Physical Interface between routers

Figure 3.3 shows the example of the routing protocol of the system. The router whose
ID is (2,2) want to transfer one or more packets to router (0,0). The transfer will occur as
follow:

(1) Inthe beginning the resource (2,2) send:the packet to the corresponding router.

(2) The router determined. that whether the “receiving packet has reached the
destination. If so, send the packet to the corresponding resource; otherwise put the
packet to the output FIFO.

(3) The router will use the- XY algorithm [9] to determine which port to which send
the packet. First the router check the-X=coordinate of the destination of the packet,
if the destination is on the right (left) side of current router, the packet will be sent
to the right (left) output port. If the destination of the packet and current router has
the same coordinate, then the router compare the Y-coordinate of the destination
with the Y-coordinate of current position.

Therefore packets to which router (2, 2) send will be transferred through router (3, 2),

router (0, 2), router (0, 1) and router (0, 0). Each packet in this torus system has one and

only one routing path.

-11 -

Figure 3.3 : Packets transfer sequence

3.2 AMBA AXI Protocol

ARM introduced AMBA AXI protocol for high-frequency SoC design [10] in 2003, the
key features of the AXI protocol that we focus on are:

1. Separate address/control and data phases

2. Burst-based transactions which ‘only start address issue

3. Out-of —order transaction completion

4. Separate write and read data channel
In the Figure 3.4, there are several resources on the system marked as Masterl to Master3,
and Slavel to Slave3. They are connected together through some form of interconnect. At
first, the master asserted the request signal of read/write, and then the interface converts the
request into the format which is suitable for the interconnection definition. When the request
signal arrive at the interface between the Slave and the interconnect, it will be converted to the
form of the AXI protocol, and be passed to the Slave. So the designer can design the system

regard less of the detail of the interconnection.

-12 -

Master 1 Master 2 Master 3

Interface ——+-— e Interface

Interface - e e Interface

Slave 1 Slave 2 Slave 3

Figure 3.4 : AXI Interface and Interconnect

3.2.1 Basic Transaction

The AXI protocol is burst-based. Each transaction has the information about the control
and the address either on the read address channel or the write address channel which is
shown in figure 3.5. It can be one or more data transfer in a burst, which is defined by the
burst length of the control information.-The burst length is coupled with the burst type
information, details how the address for each transfer within the burst is calculated. We will
discuss the burst type in detail in the chapter 4.

In the read burst, when the data arrive on the read data channel, the data accompanies the
data ID which is used to identify a transaction to which the data belong. The transactions
which are the same ID must be completed in the same order. For example, at first the master
issue a read request with ID 0001 to read the data memory, then the master issue a write burst
with 1D 0001 to write to the same data memory. The first read request must complete before
the second write request to ensure the accuracy of the data. The transaction with different ID
can complete out-of-order whether read or write transaction is.

AXI protocol is a kind of synchronous bus protocol, must operate in synchronization
environment. All actions are positive edge trigger. It means that in the asynchronous
environment, the AXI protocol does not apply. We must overcome the situation which the
difficulties encountered without the clock, i.e. the signal of the AXI protocol like AWVALID

is useless, because there is no clock in the asynchronous environment, so we cannot sure the

-13-

AWVALID and the AWADDR are arrive at the same time, and we do not know how long
between the slave interface acknowledge the master and slave receive the AWVALID. So we
present the Asynchronous Network-on-chip interface protocol (ANIP) to solve this problem.
We will introduce ANIP in the chapter 4.

In the write burst, first of all the master interface issue an address and control
information of the write operation, then the slave interface acknowledge the master interface
that had received the write address. When the master has received Ack signal from the slave,
the master starts to transfer the data into the data channel. At last the response information

will be sent from the slave to the master that details the state of the write operation.

—=—=" Read Address and Control

Address
&
Control

Read Read Read
Data Data Data

< o ¢
Read Data

————— Write Address and Control

Master Slave
Interface Address Interface
&
Control
Write Write Write
Data Data Data
3 > >

Write Data

Write
Response

<::I

Figure 3.5 : Channel architecture

-14 -

3.3 Open Core Protocol

The Open Core Protocol [11] defines a bus-independent interface between two
communicating entities, such as IP cores and bus interface modules (bus wrapper) shown in
figure 3.6, the characteristic of the IP core determined what interface do they need (Master/
Slave). The transfer occur with the system initiator issue a request (via a Master interface),
and the bus wrapper interface module act as the complementary side of the OCP (Slave
interface) to convert the request to the on-chip bus transfer. The receiving bus wrapper
converts the on-chip bus operation into the OCP command; then the OCP master interface
will transaction with the system target (via a Slave interface). The OCP does not specify the
functionality of the on-chip bus, the bus initiator/target are designed by the interface
designer. This increases the reusability and the modularity, we adopted the system model in

our architecture design for these reasons.

System Initiator System Initiator / Target | System Target

Core Core Core

Master MasterI Slave [Slave]

e | B 3|

Interface
[Slave [Master] [Master] . module
Bus Initiator [Bus Initiator/Target] [BusTarget
On-chip Bus ;

Figure 3.6 : System showing Wrapped Bus and OCP instances

-15-

3.4 Network Interface

In NoC [3][4][5], the reuse of the IP blocks can be achieved by using a network
interface, reducing the design complexity and the design time. The network interface
provides a abstraction of communication architecture. The details of the interconnection are
transparent to the IP designers, and make the design of new system simple.

There are many implementation of the network interface [6][7]. The main purpose of
network interface is translating packet-based communication into a higher level protocol
that is required by the IP, and decoupling of computation from communication.

We can classify IP blocks into two categories [6]: master (active) and slave (passive)
IP blocks. Only the master can initiate a data transfer and the slave IP blocks respond to
requests from the master IP blocks. Therefore the design of the master network interface is

more complex than the slave network interface.

-16 -

Chapter 4 Asynchronous Network-on-Chip

Interface Protocol

In chapter 3, two synchronous protocols are introduced. In this chapter we will propose
a asynchronous network-on-chip interface protocol (ANIP) and describe the difference

between ANIP and the synchronous protocols in detail.

4.1 ANIP overview

Read Burst

MRCONTROL > < SRAREADY

MRADDR > < SRDATA

MRREADY > < SRTAG
<
o SRLAST =
(%]
~ <
() M
_‘ —
=] =
™ MWCONTROL SWAREADY ®
= o
Q o
0 ™
® MWADDR > < SWREADY

MWDATA > < SWRESP

MWDID > < SWRID

MWLAST >

Write Burst
MWRESP >

Figure 4.1: Signals overview

-17 -

Asynchronous Network-on-Chip Interface Protocol (ANIP) defines an asynchronous
bus protocol [8] used in the network-on-chip environment. The characteristics of the ANIP
are:

® Burst-based protocol, every transaction has the address of the first 4-bytes in the

transfer and the control information that describes the nature of the data to be
transferred.

® Support the out-of-order transaction, the transaction with the same ID must be

completed in the order of issue; and the transaction with the different ID tag can
be completed out of order.

® Separating the address channel and the data channel, enable the master issue the

read/write address request paralleled the read/write data transfer.

® Clock less protocol, unlike the-synchronous protocol that all the transfer occurs in

the positive edge trigger, the ANIP handshake using the four phase dual rail
mechanism.

Figure 4.1 shows the signal description of the ANIP. The definition of signals is in the
chapter 4.3. The signals in ANIP can be divided into 2 groups: read burst and write burst,

the transaction of read and write will describe in next section.

4.2 Basic Transaction

4.2.1 Read Burst

Figure 4.2 shows the example of the read burst, which has 2 data transfer in each read
request. In this example, the master issue the read address and the control information, and
the slave receive the address and control information by complete detection unit which
described earlier in chapter 2 (figure 2.5).

After the master issues a read address MRADDR (Addr A) along with the control

information MRCONTROL (Control A) in dual rail format on the address channel, the

-18 -

slave accepts the address and control information, then acknowledges to the master by
asserting the signal SRAREADY to 1. It means that it have received the address
information. When the read data arrive, the slave will put the data on the data channel
SRDATA (validA (1)) and SRTAG (IDTag A (1)) in dual rail, the complete detection unit
of the master will detect the data which is arrival, then acknowledge the slave by asserting
MRREADY. The SRTAG signal is the identity information of the read data. In this
example what has two data transfer, so the empty token (no data) follows the valid data
“ValidA (1)” after the slave accepted the acknowledgement signal MRREADY. When the
master received the empty token the MRREADY signal will go empty, and then the slave
detect the MRREADY which becomes empty and put the second data on the data bus
(ValidA (2) and IDTag A (2)) In this case the “ValidA (2)” is the last data transfer of the
read burst A, therefore the SRLAST signal-is asserted to high by the slave. After the master
accepts the data (ValidA (2)) and the SRLAST, the read burst A is complete.

In this example (figure 4.2) shows that the master can drive another read burst
transaction after the slave accepts the. first address and control information. This property
enables the slave to process the first read data in parallel with the second read burst address

phase.

MRCONTROL ><Contro| A>< ><Control B><
MRADDR >< Addr A >< >< Addr B ><
SRAREADY | /N /\
SRDATA ><Va|idA(1) .. VaIidB(1)><:><VaIidB (2)><:|
MRREADY ST/
SRLAST /N /L

SRTAG ><IDTag A(1) . IDTag A(2) . IDTag B(1) IDTag B(2)><:|

Figure 4.2: Read Burst Example

-19-

4.2.2 Write Burst

Figure 4.3 shows the example of the write burst. At the first the master put the write
data address MWADDR (Addr A) and the control information MWCONTROL (Control
A) on the write address channel. When the slave accepts the write address information by
the complete detection unit, it acknowledge to the master by asserting the SWAREADY
signal. After receiving the acknowledgement from the slave, the master put the write data
MWDATA (Valid A (1)) coupled with the identity information MWDID (IDTag (1)) on
the write data channel. The slave accepts the valid data then acknowledge to the master by

asserting the SWREADY signal, follow by an empty token.

MWCONTROL ><Contr0| A><

MWADDR >< Addr A ><
SWAREADY | /\

MWDATA ><Va|idA) { ValidA (2)><
MWDATA ><IDTag 1) <IDTag (2)><
SWREADY / _/ \
MWLAST /N

SWRESP >< OK ><

SWRID >< ID Tag ><

MWRESP

Figure 4.3: Write Burst Example

-20-

When the master sends the last write data to the slave, the MWLAST signal goes high
to indicate that the data is the last one. After the slave accepts the last data, the slave drives
the write response signal SWRESP (OK) goes high coupled with the SWID (ID Tag),
which indicates that the transaction is complete. At the last the master acknowledge to the
slave by asserting the MWRESP, all the write burst is complete.

In ANIP, the address phase of the second write burst can be processed in parallel with
the first write data processing. The master can issue the second write request after accepts
the SWAREADY signal and put the second write request on the address channel until the
previous SWAREADY goes empty. All signal transactions in ANIP must be abided by the
rules that there must be an empty token (no data) (the gray in the signal transition diagram)
between two valid data transition for the characteristic of the dual rail. Moreover, there is no
low potential which representes no valid-data in the synchronous bus protocol. Instead, we

use the empty state (Table 2.1) (data.t and data.f are both low).to represent no data in ANIP.

4.3 Signal Descriptions

Signals are divided into two categories; read and write control signal list as follow. The
MRCONTROL and MWCONTROL are composed of three sub control signals
respectively list in table 4.2 and table 4.4 for clarity, and notice that the first letter of the
name of the signals, the letter “M”/”S” means the signal is issued by the master/slave, the
second letter of the name of the signal represented the type of transaction, and “R”/”W”
means the signal is read/write burst. Moreover, the detail of the burst length
(MRLEN/MWLEN) and the burst type MRBURST/MWBURST will be described in

chapter 4.5 (Address option)

-21-

4.3.1 Read Control Signal

Signal Source Description

MRCONTROL[9:0] Master Read control signal information, which include the MRID,
MRLEN, BRBURST information list in Table 4.2.

MRADDR[31:0] Master Read address information, coupled with the
MRCONTROL, every read burst the MRADDR must has
corresponding MRCONTROL.

MRREADY Master Read acknowledgement for every data had been read by
Master, Asserted when the completion of reading data

SRAREADY Slave Acknowledge to Master for completion of reading
address by Slave

SRDATA[31:0] Slave Read data in the read burst

SRTAG[3:0] Slave Read data identification.tag for the corresponding

request of Master

SRLAST Slave Indicate the data being transfer is the last one, coupled

with the last data transfer.

Table 4.1: Read Control Signal Table

'MRCONTROL

Signal Description

MRID [9:6] Read address ID. This signal is the identification tag for the read address

MRLEN[5:2] Read data length, from 1 to 16

MRBURST[1:0] Read Burst Type. Fixed, Increment, or Wraps, describe in detail in 4.5

Table 4.2: MRCONTROL content

-22-

4.3.2 Write Control Signal

Signal Source Description

MWCONTROL[9:0] Master Write control signal information, which include the MWID,
MWLEN, BWBURST information list in Table 4.4.

MWADDR([31:0] Master Write address, coupled with the MWCONTROL, every
write burst the MWADDR must has corresponding
MRCONTROL.

MWDATA[31:0] Master Write data which Master put on the write data channel

MWDIDI[3:0] Master Write data identification tag for the corresponding write
data, coupled with MWDATA.

MWLAST Master Indicate the last data transaction, coupled with the last
data transfer of write.

MWRESP Master Acknowledge the SWRESP

SWAREADY Slave Acknowledge the Master for the write address has been

read by Slave
SWREADY Slave Acknowledge to the Master for the write data has been

receipt by Slave

SWRESP[1:0] Slave Acknowledge to Master that the entire write operation
with the same ID has been completed
SWRID[3:0] Slave Write Response identification tag, coupled with SWRESP.

Table 4.3: Write Burst Signal Table

MWCONTROL

Signal Description

MWID [9:6] Write address ID. This signal is the identification tag for the read address

MWLEN[5:2] Write data length, from 1 to 16

MWBURST[1:0] Write Burst Type. Fixed, Increment, or Wraps, describe in detail in 4.5

Table 4.4: MWCONTROL content

-23-

SWRESP[1:0] Description

2'b00 Write operation complete
2’'b01 Write Error

2'b10 Reserved

2'b11 Reserved

Table 4.5: SWRESP content

4.4 Handshake

The handshake process can be divided into three parts, address phase, data phase and
the response phase. All of these signals encoded to the dual rail form and the default value
of each signal is empty (Not low). Every two consecutive valid data are separated by an empty
token (no data). The slave uses the completedetection unit to detect the data arriving and

acknowledge to the slave.

4.4.1 Read address phase

The master issue a read data request by asserting the MRADDR and MRCONTROL
signal. The MRADDR and MRCONTROL must.remain asserted until the slave drive the

SRAREADY signal high.

MRADDR + MRCONTROL +

N

SRAREADY +

S

MRADDR - MRCONTROL -

N

SRAREADY -

Figure 4.4: Read address transaction dependencies

MRCONTROL ><C0ntro| A>< @
MRADDR >< Addr A >< ><E

SRAREADY / N /

Figure 4.5: Read address phase

Figure 4.4 shows the read address transaction dependencies, noticed that the MRADDR +
and MRCONTROL - means the signals become empty (both d.t and d.f goes low). When
the master detect the SRAREADY signals are driven to high, it indicates that the slave has
accepted the read address and the control information, then the master drives the MRADDR
and MRCONTROL to the empty. When the empty token detected by the slave’s complete
detection units, the slave will let the SRAREADY signal become empty to complete the
address phase transaction.

Figure 4.5 shows the address phase transaction of- the read burst. When the
SRAREADY signal goes high-means the slave has accepted the address and control
information, the transfer occurs.when both the "SRAREADY and MRADDR /
MRCONTROL signals are high. The transaction complete when all of these three signals

become empty from high.

4.4.2 Read data phase

During the read burst, the slave can assert the SRDATA signal when the read data
associated with the SRTAG signal ready after the slave accepts the read address and control
information from the master. The master asserts the MRREADY signal high to indicate that
it accepts the data. Figure 4.5 shows the read data transaction dependencies. If the slave
wants to transfer the last data of the same read burst transaction, the SRLAST signal will be

driven to high to indicate that the data is the last one. When the master accepts the data

-25-

associated with the SRLAST signal, it will acknowledge to the slave by asserting the
MRREADY signal to indicate that the read transaction is complete. The SRDATA must be
coupled with the SRTAG to identify the read burst transaction. When both the SRDATA
and SRTAG signals become empty, the slave can issue the next data transfer if the data is
not the last or issue a new read burst data phase. Figure 4.7 shows the example of the read
data transaction with two data. These two data with the same identification must be sent in

order to make sure the correctness of the data sequence.

SRDATA + SRTAG + (SRLAST +)

~

MRREADY +
M /N
SRDATA - SRTAG - (SRLAST -)
MRREADY -

Figure 4.6: Read data transaction dependencies

SRDATA ><Va|‘|dA a) .

MRREADY \ / \
SRLAST / \

Figure 4.7: Read data phase

4.4.3 Write address phase

In the write address phase, the master issue a write data request by asserting the

MWADDR and MWCONTROL signal. The MWADDR and MWCONTROL must

-26-

remain asserted until the slave drive the SWAREADY signal high. Figure 4.4 shows the
read address transaction dependencies. When the master detect the SWAREADY signals
are driven to high, it indicates that the slave has accepted the write address and the control
information, and then the master drives the MWADDR and MWCONTROL to the empty.
When the empty token is detected by the slave’s complete detection units, the slave will let
the SWAREADY signal become empty to complete the address phase transaction. After the
address phase of the write burst is complete, the master can begin sending the write data to

the slave on the write data channel.

MWADDR + MWCONTROL +

ML,

SWAREADY +

IEPFA:

MWADDR - MWCONTROL -

1896y 3

SWAREADY -

Figure 4.6: Write address transaction dependencies

MWCONTROL ><C0nh'0l A
MWADDR >< Addr A ><
SWAREADY

Figure 4.7: Write address phase

Figure 4.7 shows the address phase transaction of the write burst, when the

SWAREADY goes high, and it means the slave has accepted the address and control

-27 -

information, the transfer occurs when both the SWAREADY and MWADDR /
MWCONTROL signals are high. The transaction complete when all of these three signals

become empty from high.

4.4.4 Write data phase

During the write data phase, the master can assert the MWDATA and MWDID
signals when the read data ready after the slave accepts the read address and control
information from the master and the master has accepted the acknowledgement
SWAREADY from the slave. After the master asserts the MWDATA and MWDID, the

slave drives the SWREADY signal high to indicate that it accepts the data.

MWDATA + MWDID + ~ (MWLAST +)

TN

SWREADY +

o o] .

MWDATA -~ MWDID - (MWLAST -)

SWREADY -

Figure 4.8: Write data transaction dependencies

MWDATA X vaiida (1) ValidA (2) X
MWDID X10Tag (1) 1DTag (2) X

SWREADY

MWLAST / \

Figure 4.9: Write data phase

-28 -

Figure 4.8 shows the read data transaction dependencies. If the data which the master
wants to transfer is the last, the MWLAST signal will be driven to high to indicate that the
data is the last one data transfer of the same write burst transaction. When the slave accepts
the data associated with the MWLAST signal, it will acknowledge to the master by
asserting the SWREADY signal to indicate that the read transaction is complete. The
MWDATA must be coupled with the MWDID to identify which of the write burst
transaction. When both the MWDATA and MWDID signals become empty, the master can
put the next data on the write data channel if the data is not the last or issue a new write
burst data phase. Figure 4.9 shows the example of the write data transaction with two data.
After the write data phase, the master is waiting the write response information from the

slave.

4.4.5 Write response phase

The slave can assert the SWRESP coupled with SWRID: signals when it drives a valid
write data response. SWRESP and SWRID signals are remain high until the master accepts
the response information and drives the. MWRESP signals to indicate that the response

information has been accepted by the master.

SWRESP + SWRID +

S

MWRESP +

N

SWRESP - SWRID -

~_

MERESP -

Figure 4.10: Write response transaction dependencies

-29-

Figure 4.10 shows the write response transaction dependencies. When the slave detects
the MWRESP signal goes high, the slave will put the empty token on the write data channel,
then the master detects the empty token on the write data channel and let the MWRESP

signal become empty state.

SWRESP >< oK ><
SWRID >< ID Tag ><

MWRESP / —

Figure 4.11: Write response phase

4.5 Address Option

Table 4.6 and Table 4.7 shows the address option of the ANIP. The burst length can be
1 to 16. There has three different type of burst type of the burst list in table 476. The burst

size in ANIP are fixed to 4-byte (32 bits) for the compatibility and conformity reason.

MRLEN[3:0] The number of the

MWLEN[3:0] data transfers

2’'b0000 1
2'b0001 2
2'b0010 3
2’b1110 15
2’b1111 16

Table 4.6: Burst length encode

-30-

MRBURST[1:0] Burst type Description
MWBURST[1:0]

2'b00 Fixed Fixed address read/write burst, used in FIFO access

2'b01 Increase Incrementing address read/write burst for normal memory
access

2'b10 Wrap Incrementing address read/write burst that wraps to a lower

address at the wrap boundary, use in cache line access

2'bl1l Reserved Reserved

Table 4.7: Burst type encode

4.6 Comparison

The main difference between ANIP and the synchronous bus protocol are listed below:

1. The data transfer occurs in the positive edge trigger in the synchronous protocol. If the
master issues a read request at clock cycle 1, then.the slave accepts the address
information and drives the acknowledgement signal-high at cycle 2. The transfer will
occur in the end of the second cycle. In . ANIP, when theslave accepts the read address
and the control information from the master, the slave drives the acknowledgement
signal immediately without waiting.

2. The way to detect the arrival of the valid data in synchronous protocol is using a data
valid signal such as ARVALID in AXI protocol, which indicates that the address and
control information are available. In ANIP, using the dual rail encoding mechanism to
encode the valid data. So we can use the complete detection unit described in chapter 2
to detect the available address and control information.

3. When the handshake process is complete in synchronous protocol, the signal goes low
potential. But in ANIP, the signal becomes empty after the handshake is complete, i.e.

there must be an empty token between two consecutive valid data transfer.

-31-

Chapter 5 Implementation of Architecture

This chapter is an overview of the design for the Resource Network Interface in the
Switch side and the Master Interface in the resource (figure 5.1). In chapter 4 we have
introduced the ANIP for the transaction; the ANIP is used for the transaction between the
Resource Network Interface and the master interface shown in figure 5.2. There are two
main function of the converter module in the RNI: first is converting the address/control and
the data into packets, and then send these packets to the router; the second one is receiving
the packet which is send from the router, and buffer it, when all of these packets arrive, the
response path will convert these packets into the control/address information and data (in

the read operation) and then send them to the slave interface.

5.1 Architecture

N

Switch Switch Switch
RNI RNI
Network Wrapper < RN
Slave ANIP Master Slave/
Master
4 2 4 1
h Master
Master Slave /Slave
Resource 1 Resource 2 Resource 3

Figure 5.1 : The overview of the interconnect

Figure 5.1 shows how the components connect in the system. The resource connects to
the network via the associated slave/master interface, and the master/slave interface in the
resource must be coupled with the slave/master interface in the switch side to act as a bus

wrapper. The slave interface which act as the complementary side of the ANIP for the

-32-

Resource 1 is connected to a resource network interface. The resource network interface
(RNI) converts the ANIP request into a network transfer, and the receiving Network
Wrapper (as the master of the ANIP) will convert the network transfer into the ANIP
command. The slave interface of the resource receive the data or request which from the

master and take the corresponding action.

Resource Network Wrapper
Master Slave - Switch
Interface Interface

Figure 5.2 ¢ Network Wrapper Architecture

Figure 5.2 shows the architecture of the Network Wrapper and the master interface of
the resource. Our design is divided into three parts: the master interface, slave interface, and
the resource network interface. In the following sections, we will introduce these modules

in detail.

5.2 Implementation of the Master Interface

The master interface can be divided into read and write channel. The master interface
functions as a converter between the resource and the network wrapper (figure 5.2). The
master converts the read/write data request into ANIP commands. In the write channel of
the master interface, the data can be written to the FIFO. The FIFO in the write channel
(figure 5.4) functions as a write buffer, and allows of writing the data to the FIFO right after

the complete of write address phase. The read buffer in the slave interface (figure 5.3) will

-33-

send the read data to the resource until all of the data have arrived.

5.2.1 Read Channel

Figure 5.3 and figure 5.4 show the implementation of the ANIP master interface.
Figure 5.3 is the read channel of the master interface. At the beginning, the processor
(Resource) issues the address and control information on address channel in the address

phase. The “Read Request” signals determine what kind of operation the request is. In this

Processor Master Interface

Address.t l\—_D C MRADDR.t
C
Address.f A |
——Write T C > MRADDR.f

[Addr
ControlSignal.t ——

T ¢ HM—> MRCONTROL.f
ControlSignal.f —’ |

Read Ack ¢

MRCONTROL.t

> Write control
— information
EN
A SRAREADY
| (c
NG

Read Request

ReadData.t

ReadData.f ¢4

G Em_ SRDATA.f
C)}
L/

Read | R
FIFO > MRREADY
TAG.t A ELQT SRTAG.t
G c A SRTAG.f
TAG.f
T (c = s
ReadACK

Figure 5.3 : The read channel in the master interface

-34-

case, the path of read operation is selected. After the master interface accepts the read
address and control information from the processor, the “Read Ack” signal is driven to high,
to indicates that the signal had been receipted. When the master interface receives the read
data from the slave interface, the data will be kept in the read buffer until all of data of the
same ID tag have arrived. After all, the data and tag information will be sent to the
processor. It is worth notice that if the read buffer is handshaking with the processor, write

to the read buffer is not allowed.

5.2.2 Write Channel

Figure 5.4 shows the write channel of the master interface. The write channel is similar
to the read channel. At the beginning, the processor issues the write address and control
information on address channel in the address phase; and the data can be written to the
FIFO immediately or right after the write-request; i.e. the write request in the address phase
and the operation in the data phase are able to occur in the-same time. After the master
interface accepts the address and control information, the master drive the “Write Addr
Ack” signal high to indicate the handshake is complete. In the data phase, the master drives
the “WriteData Ack” signals high after accepts the write data and control information from
the processor. The FIFO here is simple five stage FIFO buffer.

When the write operation is complete, the slave acknowledges the complete by
asserting SWRESP and SWRID signals. If an error occurs in the write burst, the response
controller will send the interrupt signal to the processor. Otherwise, the response controller

does not do anything after accepting the response information.

-35-

Processor

Address.t

Master Interface

Address.f

——Read
— Addr

Write Addr Ack €

ControlSignal.t

ControlSignal.f

I Read control

MWADDR.t

\> MWADDR.f

-y MWCONTROL.t

> MWCONTROL.f

— information
SWAREADY
|| T
C
Read Request < NG
C)—> MWDID.t
T % MWDID.f
WriteData Ack % E SWREADY
C |
WriteDatat ———f" ¢ A C \> MWDATA.t
WriteData.f X \
C A
— -/ FIFO C MWDATA.f
WriteControl.t M
C
3 % MWLAST
PN E ™~
WriteControl.f ™~ o) | -
3L | a
Interrupt to RESP SWRESPL
Processor controller
A (¢ [|
\ ik SWRESP.f
D—‘—> MWRESP
A (¢ [|
\ M SWRID.t
:j : /—C -
_" —— SWRIDt

Figure 5.4 : The write channel in the master interface

-36-

5.3 Implementation of the Slave Interface

The slave interface also can be divided into read and write channel. Figure 5.5 and

figure 5.6 show the read channel and the write channel respectively. The read channel

handshakes with the read channel of the master interface, and the write channel handshakes

with the write channel which is in the master interface.

5.3.1 Read Channel

Slave Interface

RNI

(¢
Jb |
MRADDRt] ¢ o) . ReadADDR.t
}:D
MRADDR.f 1 ¢)) s ReadADDRf
SRAREADY e_E ADDR (ﬂ
FIFO
MRCONTROL.t) C)} > ReadCONTROL.t
MRCONTROL.f C —
u C ReadCONTROL.f
-/
/\ |
~J
SRLAST % -~ — AckADDR
L [Ll
Tag —
Table
SRDATA.t %—E ! c ReadData.t
:(DATA Ve ReadData.f
FIFO C eadbData.
SRDATA.f ¢ (c]
MRREADY ‘ ReadTAG.t
(i c
o—
[/ C ReadTAG.f
SRTAG.t &— C { i
C ——> DataACK
SRTAG.f c H

Figure 5.5 : The read channel in the slave interface

-37-

The read channel of the slave interface plays a role in handshaking with the read
channel of the master interface and resource network interface (figure 5.5). When the read
address and control information are sent to the slave interface, the information will be
inputted into the address FIFO, and then the slave interface drives the SRAREADY signals
high to indicate that the read address and control information have been accepted.

When the read address and control information are accepted by the resource network
interface, the tag information is also written to the tag table in the DATA FIFO (figure 5.5).
It allows the slave interface to indicate that what burst the data belongs to and drive the

SRLAST signal high when the last data is sent.

5.3.2 Write Channel

Figure 5.6 shows the write ‘channel of the slave interface, which act as the
complementary side of the ANIP for the associated master interface. In the write burst, the
write channel accepts the write data from the master interface, and put it in the Write Buffer.
Then the slave interface asserts the SWREADY signals to'indicate that the write data has
been accepted. After the master interface‘accepts the SWREADY signals, the empty token
will be sent to the slave interface on the data channel. When the write process is complete in
the target resource, the write response information will be sent back. The slave interface

does nothing but sending these responses to the master.

-38-

Slave Interface RNI

MWADDR.t __@ ; —_;l c) s WriteADDR.t
MWADDR.f C) ;|" c) > WriteADDR.f
ADDR ¢————(c fT—
— FIFO
MWCONTROL.t C) R N
J €) A ? WriteCONTROL.t
MWCONTROL.f C) T T ;|J c) > WriteCONTROL.f

SWAREADY <] AckADDR

MWDATA.t —m WriteData.t

MWDATA.f —'m A
——(c/——
SWREADY Write WDACK

MWLAST —’m j FIFO i C DatalD.t
MWDID.t —'m A
::[> C DatalID.f

WriteData.f

MWDID.f ——1 C
SWRID.t € { C |:] WriteRespID.t
SWRID.f € { C |:] WriteRespID.f
SWRESP.t ¢ { C |:] WriteResponse.t
SWRESP.f & { C |: 1 WriteResponse.f
MWRESP s i) 71 ¢) > RESPACK

r 1

Figure 5.6 : The write channel in the slave interface

-39.-

5.4 Resource Network Interface

The network wrapper consists of the ANIP interface and resource network interface
(RNI) (figure 5.7). The RNI can further divided into two part, request path and response
path. The request path is used to translate the ANIP command into the packet-based
communication. When the response packets arrive, the response path keeps these packets in
the packet buffer until all of them are available, and converts these packets into ANIP

commands. Notice that there must be only one operation in a pipeline stage in asynchronous

design.
Request
Data ID——~ >
Latch Data FIFO
Write Data— >
Packet e
Request Assembly 13 Send
Port
TRANSLATION BUILD o]

tatch (A4 TaBLE ™ HEADER 3

w |

Control
Response
B QG (U@L
g I Flow t«¢——Control
B Control
— Packet b e Packet Recei
Response Reassembly g~ Buffer icoer't"e
o

- o

% |e—Data— il 4—Data——

- 3 L

Figure 5.7 : Resource Network Interface

-40 -

5.4.1 Request Path

The request path of the RNI builds the packet header, necker and wraps the data which
the resource issues. The request path is shown in figure 5.8, which consists of a merge
module, translation table, header builder, packet assembly module, and two FIFO. The
translation table is for address decoding. The table receives the 32-bit target address from
the ANIP slave interface and translates it into the network-on-chip address space. For
example, if the target address is 0OxO10A, then the translation table will translate this address
into address 0011 which represents the address (0, 1) of (X, Y) format in the NoC address
space. Header Builder receives the address and control information and then converts them
into the header and necker packets. After the necker packet which is built by the header

builder is sent to the header FIFO, the-acknowledge signal for the slave interface will be

asserted.
WDACK g ‘ ‘ AckTOFifo ‘
ﬁ Ack
DatalD DataID———» o
WriteData > Data FIFO +———— Data—
Ack——| 5
ReadADDR —p»| %
Packet ol 2
ReadControl — TRANSLATION Assembly v
—Addr-p» —Addris X,Y)- !
AckRead --+— =< TABLE BUILD - ! m
5 (Y ©
8 HEADER
AckWrite -4—— m
) — —»
WriteControl ——p»| Control .
WriteADDR —p» | Ack I S

Figure 5.8 : Data flow of the Packet Assembly

When the packet assembly module has accepted the header and necker from the deader
FIFO, and then it will extract the packet length from the control information. The packet

assembly module receives the data from data FIFO and converts them according to the

-41 -

Packet to
Router

packet length information. The request packet structure is shown in figure 5.10 (a). When
all of the packets of the same ID have been sent to the packets FIFO, the acknowledge

signal to head FIFO is asserted.

5.4.2 Response Path

The response path of the RNI receives the packets from the router and converts these
packets into the ANIP commands. Figure 5.9 shows the details of the response path, which
consists of a packet buffer, a C-latch, packet reassembly module, flow control unit and a

data FIFO.

Ack
; Ack_out—m

WriteResponse <—— Czlr?tvrvOI Control
WriteRespID <4——
@]
RESPACK 4? LACK@_’ Packet 5 e Packet <« Packet
T Reassembly g Buffer
DataAck g
ReadData <—Data Data FIFO -¢-Data——|
ReadTag -«—Data ID—— -Data ID+
AckJ

Figure 5.9 : Data flow of the Packet Reassembly

The packet buffer keeps the arrival packets until all of them arrive. We will describe
the detail of the packet buffer in next section. When the head packet arrives in the packet
reassembly, the control information will be extracted from the header. The remaining data is
transmitted to the data FIFO according to the packet length which is obtained from the head
packet. The response information is accepted by the flow control unit, and then transfers the
information to the slave interface of ANIP. After all the data and control information are
sent to the data FIFO and flow control respectively, the packet reassembly module drive an

acknowledge signal high to indicate that the operation is complete.

-42 -

5.4.3 Packet Structure

Figure 5.10 shows the packet structure, and the table 5.1 lists the definition of the
fields in the packet. The necker in the request packets are necessary, which indicates the

start address of the read/write operation. The necker is omitted in the response packets.

Field Function Field Function

Tag {Initiator Address (X,Y) ,4 bits ID} Slave Address 32-bit Read/Write start address
Type Packet type. OP code Data Packet payload

Burst Burst Type H Header tag

B-Length Burst Length (1~16) HEAD Destination coordinates

Info User define Information Rsep Write response information
Length Payload length (0~17)

Table 5.1: The definition of packet field

44 41 40 39 32 31 2726 25 24 21 20 5 4 0
Header HEAD H Tag Type Burst | B-Length Info Length
Necker HEAD H Tag Slave Address
Data HEAD H Tag Data

Figure 5.10 (a) : Request Packet structure built by Packet Assembly

44 41 40 39 32 31 76 5 4 0
Header HEAD H Tag Info Resp Length
Data HEAD H Tag Data

Figure 5.10 (b) : Response Packet structure built by Packet Assembly

35 34 33 32

X-coordinates Y-coordinates

Figure 5.10 (c) : Content of HEAD field

-43-

5.4.5 Packet Buffer

Figure 5.9 shows that the packet buffer plays an important role in the response path of
RNI. The packet buffer receives the packet from the router, and then sends the whole

packets to the packet reassembly module until each packet of the same ID has arrived.

Receive Packet
from the router

l

Buffer the Packet in an empty
entry and set the value of
“Valid” to 1

Modified the “Next” value
Header? NO# pointed by “Last” in the
packet table

Z.
o

YES

v

Update the
Packet Table

Output all the packet and
— ? —
Complete = 17 YES—P» clear the entries

Figure 5.11 : Packet buffer flow chart
Figure 5.12 shows the operation of packet buffer as listed below:
1. Receive the packet from the router.
2. Find an empty slot in the packet buffer and write the data to the entry. Then set the

field of valid to “1”, which indicates that this entry is occupied.

-44 -

3. Check if the packet is header. If yes, go to the step 5.

4. Modified the field of “Next” whose address is pointed to by the “Last” in the
corresponding entry in the packet table.

5. Update the entry in the packet table. If the packet is header, find an empty entry and
write to it, otherwise update the field of “Last” in the corresponding entry. If the
packet is the last one, set the “Complete” to 1.

6. Check if the field of “Complete” in the packet table is set to 1. If so, output all of the

packets and then clear the entry in the packet buffer and the packet table.

Valid Data Next Valid Tag Begin Complete Last
000000 1 Data 0 000010 1 (0,0) 000000 1 000101
000001 3 1
000010 | 1 Data 1 000101 0
000011 1 | s 0
B e Packet Table
000101 1 Data 2 N/A
11111 | o

Packet Buffer

Figure 5.12 : Packet Buffer and Packet Table

The example of the operation in the packet buffer is shown in figure 5.12. At the
beginning the header of packets is inputted to the packet buffer, the header is written in the
memory address 00000 as Data 0, and the “Valid” of the entry is set to 1. Because this
packet is header, which will find an empty entry in the packet table and update the

information: Set the “Valid” to 1, and write the (0, 0), 000000, 0, 000000 to the “Tag”,

-45 -

“Begin”, “Complete”, “Last” respectively. When the second packet arrives, it will find an
empty entry as Datal in the packet buffer and updates the value of “Next” to which is
pointed by the field of “Last” in the corresponding entry in the packet table. Then the value
of “Last” is modified to 000010. When the last packet arrives, it is written to the packet
buffer in the address 000101as Data 2. The value of “Next” of Data 2 is set to 000101, and
the value of “Last” in the corresponding entry in the packet table is also modified to 000101.
Most important step is that set the value of “Complete” to 1, which indicate that all of the

packets have arrived. In the end, all of these three data will be outputted, and the value of

“Valid” will be set to 0.

Field Function

Valid The entry-is Empty (0) or Valid (1)
Data [31:0] ‘The packet which.include the HEAD
Next [5:0] - The index of the next packet

Tag [7:0] The X-Y coordinates of the source plus the ID

Begin [5:0] The address of the first packet

Last [5:0] The'location. of the last data

Complete If the whole packets are received (1)

Table 5.2: The definition of packet buffer and packet table

5.4.6 FIFO Structure

Figure 5.13 shows the implementation of the FIFO. Every FIFO in our design has five
stages. According to Muller pipeline, the utilization of the 4-phase dual rail pipeline is 50%. So
the FIFO packs three data/packets at most. The detail design for each C-latch is shown in figure 5.14.
The transistor-level C-element is shown has been shown in chapter 2.1.2. An alternatively

implementation of C-element in gate-level is shown in figure 5.15.

- 46 -

Q Q Q Q Q
—DATA_in—P» E ——DATA—P» E ——DATA—P» E —DATA—P» g —DATA—P» E —DATA_out—p»
(@] (@] (@] (@] (@]
0 0 =0 0 =0
4 A 4 A
-—Ack_out—] Ack Ack
Ack L Ack Ack_in
Figure 5.13 : FIFO structure
Ack_out €
o
Data_1.t —_ T
- e ,[fw > Data_1.t
Data_1.f A
- | C) N > Data_1.f
Data_2.t AT N\
- | | C } MV > Data_2.t
Data_2.f AT i
- | | C) 15 > Data_2.f
[}
[}
[]
]
[}
[}
Data_n.t M N
- | | C) ™ > Data_n.t
Data_n.f — \|‘
- | | C) > Data_n.f
¥ Ack_in

Figure 5.14 : C-latch in FIFO

-47 -

B R

-
<=1 v P
-

Reset >c

Figure 5.15 : The C-element with reset

-48 -

Chapter 6 Simulation

6.1 Testing Environment

ModelSim 6.0 is used to verify the correctness of the functionality. Figure 5.16 shows
the waveform of the functionality of the read request phase. Figure 5.17 shows the
waveform of the read response phase. Figure 5.18 and figure 5.19 show the write request

phase and write response phase respectively.

Curgor 1

Figure 6.1 : The waveform of the read request phase

-49-

ITOTO00T. 107070, 701010)| JToTorom0

Cursar 1

Figure 6.3 : The waveform of the write request phase

-50-

Curgor 1

Figure 6.4 : The waveform of the write response phase

6.2 Area Report

To evaluate the design of the ANIP interfaces and Resource Network Interface, we use
the synthesis tool from Synposys under' TSMC ' 0.13um library. Table 6.1 shows the area
information of each module in our design. The Network Wrapper consists of the slave
interface and the resource network interface, and the RNI consists of the request path and the
response path. Moreover, the response path of RNI is consists of the packet buffer and other
modules.

The area of slave interface is three times larger than the master interface. Because of the
number of FIFO of the slave interface is four, which is more than the number of FIFO in of
the master interface. Each FIFO consists of five 32-bit C-latches. The area of a FIFO is about
6654um?, which is a large proportion of the ANIP interface.

The area of the packet buffer is 177157.6um? which is 66.3% of the network wrapper.

The line size of the packet buffer is 39 bits, and there are 64 entries in the packet buffer, and

-51-

the packet table has four entries with 18bits line size. There are at most four groups of packets
which are from different resources storing in the packet buffer, due to the limit of the entries
in the packet table. The number of buffer lines of the packet buffer can be parameterized by

the interface designer. Table 6.2 shows the area information of basic element.

Module Cell Area(pm?) %

Master Interface 15507.4 -
Network Wrapper 266820.9 100
1.Slave Interface 434975 16.3
2.Resource Network Interface 223323.4 83.7
a. Request Path 32204.7 12.0

b. Response Path 191118.7 71.6
Packet Buffer 1771576 66.3

Table 6.1: The Area of each-module

Element Area(um?)

C-element 20.3
32-bit C-latch 1330.8

DeMUX 889.4
Dual Rail OR 217.2

Table 6.2: The Area of basic element

-52-

Chapter 7 Conclusion

We proposed asynchronous network-on-chip protocol and implementation of the
resource network interface in this thesis. The ANIP makes the network interconnection
details transparent to the IP blocks. The IP designers can easily design the MPSoC system
regardless of the way to transmit the packets of NoC. The RNI decouples communication
and computing, bridging the command between ANIP interface and router. We can utilize
ANIP to integrate an asynchronous two way VLIW processor with the RNI in the future,
building whole asynchronous MPSoC system.

There still have some points that can be improved in our implementation. The cost of
dual rail circuits is too high to be commercialized. It may mix with bundle data to deduce
the cost. Additionally, the cost of our implementation is still very high. We may use other
way to implement the ANIP interface. For example, the FIFO-of the ANIP interface can be

optimized by way of replacing the C-element with registers.

-53-

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]
[11]
[12]

[13]

[14]

[15]

References

J. Sparsg and S. Furber, Principles Of Asynchronous Circuit Design A Systems
Perspective, Kluwer Academic Publishers, London, 2001.

S. Hauck, “Asynchronous design methodologies: an overview,” Proceedings of
the IEEE, Vol. 83, Issue 1, Jan. 1995, pp.69-93

A. Jantsch, J. Soininen, M. Forsell, L. Zheng, S. Kumar, M. Millberg, and J.
Oberg, “Networks on Chip,” Workshop at the European Solid State Circuits
Conference, Sep. 2001.

S. Kumar, A. Jantsch, 2002. “A network-on-chip architecture and design
methodology”._Proceedings of the Computer Society Annual Symposium on
VLSI (ISVLSI). IEEE Computer Society, 117-124

F. Gebali, H. EI-Miligi, M. W. El-Kharashi, Networks-On-Chips: Theory and
practice, Taylor & Francis Group, LLC, 2009

Lee SE, Bahn JH, Yang YS, Bagherzadeh N, “A generic network interface
architecture for a networked processor array (NePA)”. In: ARCS; 2008. pp.
247-60.

S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, A. A. Jerraya, “A Generic
Wrapper Architecture-for Multi-Processor SoC Cosimulation and Design,” Int.
Symposium on HW/SW Codesign (CODES) 2001.

Bainbridge, W.J., “Asynchronous System-0on-Chip Interconnect,” PhD Thesis,
University of Manchester; 2000.

C. C. Tsai, “Asynchronous Bi-direction Interconnection Network Implementation
using Torus Topology”, Master Thesis, National Chiao Tung University, 2009.
ARM: AXI protocol, http://www.arm.com

Open Core Protocol international partnership, http://www.ocpip.org

David Duarte, Vijaykrishman Narayanan and Mary Jane Irwin, “Impact of
Technology Scaling in the Clock System Power”, IEEE International Computer
Society Annual Symposium on VLSI, 2002

N. C. Paver, “The Design and Implementation of an Asynchronous
Microprocessor”, PhD Thesis, University of Manchester, 1994.

J.D. Garside, W.J. Bainbridge, “AMULET3i-an Asynchronous System-on-Chip” In
Third International Symposium on Advanced Research in Asynchronous Circuits
and Systems, ASYNC’97. Department of Computer Science, The University of
Manchester, April 1999.

W.J. Bainbridge, S.B Furber, “Asynchronous Macrocell Interconnect using
MARBLE” Proc. Async 1998, San Diego, April 1998 pp. 122-132

-54-

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/xpl/tocresult.jsp?&isnumber=8310

	摘 要
	Abstract
	Acknowledgement
	CONTENTS
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Overview
	1.2 Motivations
	1.3 Organization of This Thesis

	Chapter 2 Background
	2.1 Asynchronous Circuits
	2.1.1 4-phase dual rail protocol
	2.1.2 The Muller C-element
	2.1.3 The 4-phase dual rail pipeline

	Chapter 3 Related Works
	3.1 Bi-direction Interconnection using Torus Topology
	3.2 AMBA AXI Protocol
	3.2.1 Basic Transaction

	3.3 Open Core Protocol
	3.4 Network Interface
	In NoC [3][4][5], the reuse of the IP blocks can be achieved by using a network interface, reducing the design complexity and the design time. The network interface provides a abstraction of communication architecture. The details of the interconnecti...
	There are many implementation of the network interface [6][7]. The main purpose of network interface is translating packet-based communication into a higher level protocol that is required by the IP, and decoupling of computation from communication.
	We can classify IP blocks into two categories [6]: master (active) and slave (passive) IP blocks. Only the master can initiate a data transfer and the slave IP blocks respond to requests from the master IP blocks. Therefore the design of the master ne...

	Chapter 4 Asynchronous Network-on-Chip Interface Protocol
	4.1 ANIP overview
	Basic Transaction
	Read Burst
	Write Burst

	4.3 Signal Descriptions
	4.3.1 Read Control Signal
	4.3.2 Write Control Signal

	4.4 Handshake
	4.4.1 Read address phase
	4.4.2 Read data phase
	4.4.3 Write address phase
	4.4.4 Write data phase
	4.4.5 Write response phase

	4.5 Address Option
	4.6 Comparison

	Chapter 5 Implementation of Architecture
	5.1 Architecture
	5.2 Implementation of the Master Interface
	The master interface can be divided into read and write channel. The master interface functions as a converter between the resource and the network wrapper (figure 5.2). The master converts the read/write data request into ANIP commands. In the write...
	5.2.1 Read Channel
	Figure 5.3 and figure 5.4 show the implementation of the ANIP master interface. Figure 5.3 is the read channel of the master interface. At the beginning, the processor (Resource) issues the address and control information on address channel in the ad...
	case, the path of read operation is selected. After the master interface accepts the read address and control information from the processor, the “Read Ack” signal is driven to high, to indicates that the signal had been receipted. When the master in...
	5.2.2 Write Channel

	5.3 Implementation of the Slave Interface
	The slave interface also can be divided into read and write channel. Figure 5.5 and figure 5.6 show the read channel and the write channel respectively. The read channel handshakes with the read channel of the master interface, and the write channel h...
	5.3.1 Read Channel
	5.3.2 Write Channel

	5.4 Resource Network Interface
	The network wrapper consists of the ANIP interface and resource network interface (RNI) (figure 5.7). The RNI can further divided into two part, request path and response path. The request path is used to translate the ANIP command into the packet-ba...
	5.4.1 Request Path
	5.4.2 Response Path
	5.4.3 Packet Structure
	5.4.5 Packet Buffer
	5.4.6 FIFO Structure

	Chapter 6 Simulation
	6.1 Testing Environment
	6.2 Area Report

	Chapter 7 Conclusion
	References

