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非同步雙道超大指令字組處理器之預解碼迴圈

緩衝器設計 

 

研究生：陳建志                      指導教授：陳昌居 教授 

 

國立交通大學資訊科學與工程研究所 

 

摘  要 

現今處理器採用的電路多為同步電路，也就是由時脈驅動的電路。時脈會造

成時脈偏差的問題，非同步電路是一種沒有時脈的電路，所以非同步電路設計可

以避免時脈產生的時脈偏差問題。迴圈緩衝器設計在現今的數位訊號處理器或者

嵌入式處理器中，是一個非常普遍且實用的元件。迴圈緩衝器不僅能減少指令記

憶體的存取次數，更能達到增進效能。 

然而，傳統的迴圈緩衝器中的迴圈偵測機制，卻往往造成一個經常執行的指

令被執行頻率不高的指令替換因此本篇論文設計了一個新穎的迴圈偵測機制，不

僅能避免執行頻率高的迴圈被替換，更能減少指令解碼單元部分運算。 

 我們將預解碼迴圈緩衝器實現在一款無時脈的非同步雙道超大指令字組處

理器。 我們使用 Design Compiler 合成，預解碼迴圈緩衝器合成所產生的結果

為面積 240000μm 2 、延遲 7.41 ns. 
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National Chiao Tung University 

 

Abstract 

Most modern processors are synchronous circuit that is triggered by clock. Clock 

would produce the problem that is clock skew. Asynchronous circuit is clockless and 

the problem of clock skew it can be avoided by handshake protocol. Loop buffer 

design is a common and useful unit for modern digital signal processors or embedded 

processors. It is not only could decrease the access times of instruction memory, but 

could improve performance.  

However, traditional loop buffers always let the frequently executed instruction 

be replaced by another infrequently executed instruction. Thus, this thesis designs a 

novel loop detection that could avoid a frequently executed instruction be replaced 

and reduce the operations of instruction fetch and decode.  

Predecode Loop Buffer will be implemented on asynchronous two-way VLIW 

processor. Predecode Loop Buffer is synthesized by Design Compiler. Its area is about 

240000μ m 2  and its delay is 7.41 ns. 
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Chapter 1 Introduction 

 In recent years, asynchronous circuit design becomes more and more popular. 

Synchronous circuit has a serious problem, so it will become more difficult to design circuit. 

The problem is clock skew that may become more and more serious, because the clock 

frequency will be too high in future. Asynchronous circuit design is clockless circuit. In other 

words, asynchronous circuit does not have clock and it can avoid the clock skew. Because 

asynchronous circuit does not have clock, the modules of asynchronous circuit can work only 

when the modules are needed to operate. Thus it has the potential for low power consumption. 

However, the accessed times of memory would affect the performance of system. If the 

accessed times of memory is too much, the performance will be obviously degraded. To 

reduce the accessed times of memory, many architecture approaches try to take program 

behavior into consideration. A lot of embedded applications are characterized by spending a 

large fraction of execution time on program loops [1] [9]. In order to execute the loops, the 

same operations will be repeated again and again, including instruction fetch and instruction 

decode. In fact, the accessed times of instruction memory are usually more than the accessed 

times of data memory. If we can reduce the accessed times of instruction memory, the 

performance will may be improved.  

Loop buffer is a common component to reduce the instruction memory accessed times, 

and it can be implemented by hardware-based [7] [8] or software-based [11]. Because the 
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executed times of loop is usually decided in the run-time, the software-based only deal with 

that the executed times of loop is already decided in compiler time. Thus, the hardware-based 

loop buffer is better than the software-based loop buffer. 

 .In this thesis, we propose a loop buffer to keep the more frequent loop and promise the 

frequent loop that would not be replaced by other infrequent loops. The control signals of the 

instructions are stored in the loop buffer and they can reduce same actions in fetch and decode 

stages. We applied it on an asynchronous two-way VLIW processor and implement it with 

Verilog HDL (hardware description language).  

 

1.1 Motivation 

The power consumption of instruction fetch from memory and decode instruction to 

control signal is a critical issue in VLIW processor. Most programs have many loops that 

composed of the non-branch instruction and the branch instruction. These loops have the 

characteristic of temporal and spatial locality, so we could try to use the characteristic to 

reduce unnecessary repeated operations of fetch and decode of loops. Finally, we designed our 

loop buffer and implemented it on asynchronous dual-rail two-way VLIW processor.  

 

1.2 The Organization of the Thesis 

In this thesis, we propose a novel loop buffer design for an asynchronous 2-way VLIW 
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processor. The design uses an approach to select basic blocks for placement in the loop buffer. 

The rest of the thesis is organized as follows. In chapter 2, the background of asynchronous 

circuits and related works of loop buffer will be discussed. In chapter 3, we present the design 

and implement of our asynchronous loop buffer. In chapter 4, the simulation result will be 

shown. Finally, we describe the future works and conclude this thesis. 
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Chapter 2 Related Works 

This chapter will give introduction of asynchronous circuits, and discuss basic concept of 

basic blocks about loop buffer. We will show the advantages, handshake protocol and data 

encoding methods in chapter 2.1. Then we will introduce the Muller pipeline, C-element and 

Complete Detection in chapter 2.2. In chapter 2.3, we will descript the two ways of loop 

detection to implement the loop buffer: Count-Based Loop Detection [1][2] and Basic Blocks 

Loop Detection [3]. We will explain why the problem will be produced by these loop 

detections. Finally, we will introduce a method to reduce decode operations by caching 

decoded instructions, Decoded Filter Cache [4]. 

 

2.1 Asynchronous circuits 

 Asynchronous circuits design is a circuit design methodology. It is practically different 

from synchronous circuit. The major difference in the two ways of circuit design is clock. 

Asynchronous circuit design is clockless circuit. In other words, the asynchronous circuit 

works only when necessary; thus it has the potential for low power consumption. However, it 

also has many advantages. It is quite difficult to design the asynchronous circuit by the two 

reasons. First, asynchronous handshake protocol is more complex than synchronous. Second, 

it has few CAD tool for asynchronous circuits design than synchronous, and it makes 

asynchronous circuit design to become difficult to implement. 
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2.1.1 Advantages and drawbacks 

Comparing with the synchronous circuit design, the asynchronous circuit design has 

no global clock and uses the handshake protocol between the individual module to 

perform synchronizations and communications. Based on these conceptions, 

asynchronous circuits design has many advantages over synchronous counterparts. The 

followings are advantages of the asynchronous circuit design: 

(1)No clock skew and clock distribution problem: Clock is an important role on 

communication between synchronous modules. However, clock would produce a 

serious trouble about clock skew. In addition, because systems will become larger and 

larger, transferring clock signals will become more and more difficult than now. 

Fortunately, because it is clockless, asynchronous circuits design does not need to 

consider clock skew and clock distribution problem. Asynchronous circuit design 

could deal with these problems by handshake protocols. 

(2)Better modularity: As different sub-circuit of synchronous circuits operate at own 

clock frequency, it is a difficult job to integrate these sub-circuits into a system. 

Because asynchronous circuit design uses handshake protocols to replace the global 

clock, designers only need to take care of the handshake protocols on how to 

communicate and synchronize between the different modules. Designers do not need 

any extra effect on clock frequency and speed of other modules  
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(3)Low power consumption: Because of no clock signals, the asynchronous circuit 

design does not provide extra power to generate clock tree. The individual modules 

are demand-driven in asynchronous circuits design, but the individual modules in 

synchronous circuit are clock driven. This means the modules in asynchronous 

systems are active only when they needed, and they do not consume any extra power 

for standby. It also means that asynchronous circuits design is no clock tree. 

(4)Average-case performance: In synchronous circuits system, the slowest component 

would decide the maximum speed of whole system. Even though it is infrequent to 

operate, it is worst-case performance. The elasticity of asynchronous circuits design 

has led to the outcome that an asynchronous circuit can perform average-case. 

Because each asynchronous module and completes its own itself computations and 

works, the data can be send immediately to the receiver. For this factor, asynchronous 

circuits design can obviously accomplish average-case performance. 

(5)Less electro-magnetic noises: Asynchronous circuit design has no clock distribution 

networks, so it has less electro-magnetic noises. 

Although asynchronous circuit design that compares with synchronous circuits 

design has many advantages, it also has some disadvantages. One is few CAD tools to 

support for designers so that designers are hard to implement the circuit. Another one is 

that handshake protocol would increase the design overheads such as area cost because 
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of additional control signals. Asynchronous circuit design has many advantages and few 

disadvantages. But comparing with advantages and disadvantages, asynchronous circuits 

design still is good for designers to implement circuits. 

 

2.1.2 4-Phase Handshake Protocol 

Each module of asynchronous circuit communicates with other modules via 

handshake protocols. In general, there are two parts in asynchronous circuits design. The 

two parts are data signaling and control signaling. We can define these parts below: 

 Control Signaling: 2-phase, 4-phase etc. 

 Data Signaling: 1-of-n encoding, dual-rail, bundled-data etc. 

    The data signaling has its own communicated method to transfer data between 

sender and receiver. The bundled channel which data use Boolean levels to encode 

information and separates request and acknowledge wires are bundled with the data 

signal. The bundled data is also called single-rail data. The bundled data channel is 

shown in Fig 2-1. 

Four-phase bundled data handshake protocol is shown in Fig 2-2. It uses the ACK 

and REQ signal to synchronize between receiver and sender. Four-phase protocol must 

return to zero after a transmission success, so it also is known as the return-to-zero 

handshake protocol. At first, REQ and ACK are all 0. After data is valid in Sender, REQ 
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is asserted to 1 by Sender. When Receiver accepts the REQ signal that is 1, Receiver 

knows the data is valid and receive the data. Then, Receiver will assert ACK to 1 when 

the data are already received. When Sender receives the ACK equal to 1 from Receiver, 

it knows the data have already transmitted to Receiver. Sender will pulls down REQ 

signal to 0 and stops transferring data. Finally, the Receiver also pulls down ACK to 0. 

The transfer is finished. 

 

Sender Receiver

REQ

DATA

ACK

 

Fig 2-1 Bundled Data Channel 

 

DATA

ACK

REQ

 

Fig 2-2 Four-Phase Handshake Protocol 

  

2.1.3 Dual-Rail Data Encoding Methods 

Another way is using dual-rail handshake protocol. Dual-rail protocol has a special 
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point that the system does not have REQ signal, and uses 2-bit to encode 1-bit data. The 

dual-rail encoding method is different from bundled data. The encoding method is shown 

in Table 2-1.  

 

d.t d.f  

0 0 Empty “E” 

0 1 Valid “0” 

1 0 Valid “1” 

1 1 Not used 

Table 2-1 Dual-Rail Encoding Method 

 

Dual-rail means that each data bit is encoded into two wires which called “d.t” and 

“d.f”. The pattern of {d.t, d.t} represents as following: {0, 0} means an empty token; {0, 

1} means a valid data “0”; {1, 0} means a valid data “1”; {1, 1} means an invalid data 

and are not used. If the system uses dual-rail protocol to transfer n-bits data, there will 

have 2xn data lines. In addition, the system does not have REQ signal, the receiver needs 

an extra circuit to detect the arrival of the data signal. This special circuit is called 

complete detection in dual-rail system. Fig 2-3 is a diagram of dual-rail data encoding 

system.  
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Sender Receiver
DATA

ACK

2xn
 

Fig 2-3 Diagram of Dual-Rail Data Encoding 

 

Ack

Data Empty Valid Empty Valid

 

Fig 2-4 4-Phase Dual-Rail Handshake Protocol 

 

Fig 2-4 shows the process of data transferring using 4-phase dual-rail protocol. 

Initially, data is Empty, and it means that the data are all 0 and Ack signal is 0.When data 

become valid and Receiver use complete detection to detect the data is ready, Receiver 

capture data and pulls up Ack signal to 1. Then sender stops sending data and data 

changes to Empty. Finally, Receiver pulls down Ack and the transfer is finished. 

Dual-rail protocol uses Empty to separate each Valid data. After the transfer is completed, 

the data wires will return to Empty. Thus, the sequence of data transfer is 

Empty-Valid-Empty-Valid. This sequence is shown in Fig 2-5. If the communication of 
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modules based on dual-rail data encoding that is delay-insensitive, it works correctly 

regardless of the delays in gates and wires. 

 

E 01

 

Fig 2-5 Transfer Diagram 

 

 

Input 1 Input 2 Output 

0 0 0 

0 1 Not change 

1 0 Not change 

1 1 1 

Table 2-2 Truth Table of Muller C-element 

 

2.2 Asynchronous pipeline 

There are several asynchronous pipeline implementation styles have been proposed. 

Muller pipeline is one of the most important models in asynchronous pipeline. Muller pipeline 

is four-phase handshake protocol and we can implement it by bundled data encoding or 

dual-rail data encoding. The most important and fundamental component of Muller pipeline is 
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Muller C-element. Usually, we use the Muller C-element to control asynchronous pipeline 

and implement complete detection. In this section, we introduce basic components of 

asynchronous dual-rail pipeline. 

 

 2.2.1 Muller C-element 

Muller C-element plays an important role on asynchronous circuit. It is a 

state-holding element just like an asynchronous set-reset latch. The behaviors of Muller 

C-element are shown in Table 2-2. When both inputs are 0, the output will be set to 0. 

When both inputs are 1, the output will be set to 1. When the inputs are different from 

each other, the output will be kept the previous output. In Fig 2-6, we show the gate level 

implementation of Muller C-element. Muller C-element with reset is shown in Fig 2-7. 

 

A
A

B

B

C Z Z

 

Fig 2-6 Muller C-element and its RTL Implementation 
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A

B

Zreset

A

B C Z

reset

Fig 2-7 Muller C-element and its RTL Implementation with Reset 

 

 2.2.2 Complete Detection 

The valid data in dual-rail data encoding implementation is detected by complete 

detection. If complete detection has too many inputs, a lots of C-elements are needed in 

complete detection implementation. It also means very big overhead in design. In order 

to reduce the overhead, we choose the alternative complete detection. The 3-bits 

alternative complete detection is shown in Fig 2-8.  

d.t[0]

d.f[0]

d.t[1]

d.f[1]

d.t[2]

d.f[2]

AckoutC

 

Fig 2-8 3-bits Alternative Complete Detection 
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2.2.3 4-Phase Dual-Rail Pipeline 

As mention above, Muller pipeline is a very popular implementation style in 

asynchronous circuits design. We can use bundled data or dual-rail data based on Muller 

pipeline to create design that we want. Bundled data Muller pipeline is shown in Fig 2-9. 

A Muller pipeline would generate local clock pulses that just like clock of synchronous 

circuits. Every stage will generate an ACK signal to previous stage and a REQ signal to 

next stage. A four-phase bundle data pipeline with function blocks is shown in Fig 2-10. 

If a pipeline with data processing, the combinational circuits can be added between the 

stages. In order to maintain correct behaviors of every stage, matching delay must be 

inserted in the request signal paths. 

Another encoding way to implement Muller pipeline is dual-rail encoding method. 

Because dual-rail circuit does not have the REQ signal, we must detect the data that is 

already valid or not. We use the detection to decide the ACK whether pulls down or up. 

The four-phase dual-rail data pipeline must alternatively send the empty token and valid 

token;thus four-phase dual-rail data pipeline only has 50% utilization.  
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LEFT RIGHT

REQ

ACK

REQ
REQ

REQ

ACK

ACK

C[i-1] C[i] C[i+1]

C C C… …

ACK

 

Fig 2-9 Four-Phase Bundled Data Pipeline 

 

C

Latch Latch Latch

En En En

REQ REQ REQ

ACK

ACK

ACK
ACK

REQ

Function
Block

Function 
Block

Function
Block

Delay
Delay

DelayC C

 

Fig 2-10 Four-Phase Bundled Data Pipeline with Function Block 

 

C

ACK

ACK
ACK

ACK

C C

C

C

C

C

C

C

C

C

C

C

C

C

a.t

a.f

b.t

b.t

 

Fig 2-11 Four-Phase Dual-Rail Data Pipeline 
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2.3 Loop Detection 

 As mention previously, we could use the characteristic of loops in embedded systems. 

These loops are small and frequently executed. It is widely known that loops have the 

temporal and spatial locality. In other words, the same instructions of a loop would be 

repeatedly accessed in the certain period of program execution. Often the certain period of 

program execution is finished, the loop may be accessed infrequent or never be accessed 

again. Thus, we must determine if the current loop should be placed into the loop buffer. As 

soon as the loop becomes hot, we should place it into the loop buffer. We can use the 

instructions of loop buffer to reduce the operations in instruction fetch and decoded stage, 

because the instructions of frequent loops are already put in the buffer. Thus, repeated 

instruction fetch and decode operations can be avoided. Otherwise, if the instructions of loop 

buffer are not accessed often when the loop is detected, the instructions of the loop in the loop 

buffer should be replaced. In this section, we will introduce two basic methods to decide 

whether the loop should be placed into the buffer, and we also explain why the two methods 

would bring some problems. 

 

 2.3.1 Counter-Based Loop Detection 

The first method is counter-based loop detection [1]. The method takes advantage of 

the loops that may have a backward branch instruction. This characteristic is based on a 

special class of branch instructions, called the short backward branch instruction (sbb). 
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Short backward branch instruction is shown in Fig 2-12. 

Because it is based on short backward branch instruction, the upper displacements 

are all ones (indicating a negative branch displacement). The lower portion of 

displacement is w-bits wide. By definition, a sbb has a maximum backward branch 

distance given by 
w2  instructions. The size of loop buffer is also given by 

w2  

instructions. When a sbb instruction is detected and found to be taken, the hardware 

assumes that a program is executing a loop and initiates all the suitable control actions to 

utilize the loop buffer. The sbb is called the triggering sbb.  

 

opcode 111…111 xx...xx

upper displacement lower displacement

w bits

Branch displacement
 

Fig 2-12 Short Backward Branch Instruction 

 

Count_Register +1
Comparator

0

Increment Counter

Triggering_sbb

count

w

w
w

w

/

/ /

/

Lower displacement field
 

Fig 2-13 Count Based Scheme to Monitor Sbb Executions 



 

 18 
 

 

Counter-based scheme to monitor sbb executions is shown in Fig 2-13. When a sbb 

is encountered and taken, its lower displacement is load into a w-bit increment counter 

called Count_Register. The sbb becomes the triggering sbb, and the loop buffer 

controller enters FILL state. In this state, the instructions that being fetched from 

instruction cache fill into the loop buffer by controller. The hardware increases this 

negative displacement by one, each time an instruction is executed sequentially. As the 

negative value in the Count_Register increases and becomes zero, the controller knows 

that the instruction currently being executed is the triggering sbb. If the triggering sbb is 

not taken, controller returns to the IDLE state. Otherwise, it enters the ACTIVE state. In 

the ACTIVE state, the instructions that originally request to the instruction cache would 

be directed to the loop buffer by the controller.  

Although the method only increases a little overheads and it is very simple, it also 

have some critical problems. First, the loop that has a triggering sbb cannot have any 

nested loop. Second, the loop just taken one time, and the instructions of the loop would 

be putted into loop buffer. Thus, a frequently executed loop might be replacement by a 

loop that just taken. Third, the loop buffer only stores the instructions of a loop, the other 

unused space of loop buffer is wasted.  

 

 2.3.2 Basic Block Loop Detection 

Another way for detecting loop is Basic Block Loop Detection [3] Comparing with 



 

 19 
 

 

counter-based loop detection, this way is more flexible and simple. Basic block loop 

detection regards a program is composed of many basic blocks. The basic block is a 

straight-line code sequence composed of non-branch instructions and one branch 

instruction, which determines the direction of the following instruction stream. The basic 

block in program is shown in Fig 2-14.  

 

Non-branch instrucitons

Branch instruction

Basic block 1:

Basic block 2:

Basic block 3:

Non-branch instrucitons

Branch instruction

Non-branch instrucitons

Branch instruction
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Fig 2-14 Basic Blocks in Instruction Stream 

 

In Fig 2-14, every line starts from a branch instruction of basic block to a 

non-branch instruction of basic block. These lines mean those branch instructions that 
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would jump to a non-branch instruction when those branch instructions taken. 

Basic block loop detection could be described as follows:  

(1) When a branch instruction is fetched, the hardware would compare the address 

of current branch instruction with the value of Previous Branch Address Register 

(PBAR). If the two values are equal to each other, it means that the loop was executed 

because the same branch instruction is fetched again. Thus, if two values match and the 

current branch instruction is predicted as a taken branch, same instruction within the loop 

will be fetched again. At the same time, these instructions are transfer to the loop buffer.  

Otherwise, if the two values mismatch, it means that a new basic block will be 

executed. In this status, the PBAR would store the address of current branch instruction 

and reset the value in Size Counter (SC). 

(2) When a non-branch instruction is fetched, the value in Size Counter would be 

increased by 1. Until a branch instruction is encountered, Size Counter always is added 

one because of fetching non-branch instruction. Thus, the number of instructions of the 

previously executed loop could be got from Size Counter.  

However, this way also has some troubles. Comparing with the counter-based loop 

detection, basic block loop detection does not check the displacement of branch 

instruction. It can reduce some overheads in hardware, but it is also the major problem in 

counter-based loop detection. That major problem is the frequent loop may be replaced 
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by an infrequent loop. In other word, the frequent loop must be fetched and transferred 

into loop buffer again, because it is replaced by an infrequent loop.   

 

2.4 Decoded Filter Cache 

 In synchronous embedded processors, instruction fetch and decode unit usually take a 

large percentage of total power dissipation of embedded processor [5] [6]. For example, 

StrongARM spends more than 40% in instruction fetch and decode [5] [6]. The power 

dissipation by different components of StrongARM is shown in Table 2-3. However, we could 

take advantages of loop buffer to reduce the power consumption of instruction fetch [4]. The 

decode unit still repeatedly executes the same instruction of the frequent loop. 

 

Instruction cache

Instruction decode

Data cache

Clock 

Execution 

other

27%

18%

16%

10%

8%

21%

 

Table 2-3 Power Dissipation in StrongARM 

 

 The technique uses decode filter cache to save power consumption in embedded 

processors. Decode filter cache (DFC) provides the decoded instructions to CPU core [6]. 
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When a hit in DFC, the DFC eliminates one fetch from the I-cache and the subsequent decode, 

which results in power saving. DFC results in 50% more power savings than an instruction 

filter cache [4] and the average reduction in processor power is 34% [5]. Processor pipeline 

with decode filter cache is shown in Fig 2-15. In Fig 2-15, there are five stages. When an 

instruction is decoded, it will be stored into DFC. Once the instruction is executed again, it 

can be accessed from DFC and will avoid I-cache to be accessed. DFC not only can decrease 

the times of accessing I-cache but some actions of decoded stage. But there are some 

problems with the DFC, such as unnecessary actions. DFC will store decoded instructions 

whether the instructions is in a loop or not. If the instructions are not in a loop, they will not 

be executed again. Thus, storing these instructions would waste the space of DFC.    

 

DFC

I-cache Fetch Decode

Execute Mem write back

 

Fig 2-15 Processor Pipeline with Decode Filter Cache. 
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Chapter 3 The Design of Predecode Loop Buffer 

 In this chapter, we will present the asynchronous 2-way VLIW processor in the 

beginning. Including pipeline architecture and basic components and branch instruction, we 

show details in the chapter 3.1. Then we introduce the design of predecode loop buffer for the 

target asynchronous two-way VLIW processor. Predecode loop buffer uses an easy and novel 

method to decide whether loop would be replaced or stored, and we will decrease overheads 

as far as possible. A miss of predecode loop buffer deals hardly with pipeline, but 

Asynchronous Muller Pipeline only has 50% utilization that could help to solve some 

problems. We will present our miss recovery mechanism in chapter 3.2.5.  

 

3.1 Asynchronous 2-Way VLIW Processor 

 We use the 4-phase dual-rail data encoding method to implement asynchronous two-way 

VLIW processor. It has its own instruction set architecture (ISA) and has six stages in pipeline. 

In addition to R-type, I-type instruction that like MIPS, it also supports SIMD and MAC 

instructions. We use the feature of Muller Pipeline to handle branch instruction. 

 

 3.1.1 Pipeline Architecture 

As mention previously, we use 4-phase handshake protocol and dual-rail data 

encoding method to control pipeline. The pipeline architecture of asynchronous two-way 

VLIW processor is shown in Fig 3-1. There are six stages in pipeline including 
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Instruction Prefetch (IPF), Instruction Dispatch (IDP), Instruction Decode (ID), 

Execution 1 (EX1), Execution 2 (EX2) and Write Back (WB).  
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Fig 3-1 The Pipeline Architecture of Asynchronous Two Way Processor 

 

The followings are actions of the six stages of the target asynchronous two-way 

VLIW processor: 

1. Instruction Prefetch: According to PC (Program Counter), instruction would be 

fetched from instruction memory via an sync/async interface. The interface can 

transfer the encoding method of synchronous circuit and asynchronous circuit to 

each other. 
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2. Instruction Dispatch: This stage would dispatch these instructions to appropriate 

decode unit. Because our instruction is compressed, the last bit of the instruction 

can be needed to decide if it can be executed in parallel with next instruction. 

3. Instruction Decode: The major work of this stage is to decide instruction and 

fetching operand. The instruction will be needed to generate the control signals 

controlling its execution in following stages.  

4. Execution 1 and Execution 2: We separate the execution stage into two stages, 

Execution 1 and Execution 2. The Mac instruction is only executed in the left part 

of EX2 stage. The Load and Store instruction are only executed in the right part of 

EX2 stage. In addition to Mac, Load and Store instruction, other instructions can be 

executed in both the left part and the right part.  

5. Write Back: In this stage, the result can be written back to the correct destination 

register. If the instruction does not need to write result back, this stage will be 

bypassed. 

There are pipeline latches between each two stages. Because of asynchronous 

pipeline latch is clockless, we use C-element to implement the pipeline latch that is 

composed of C_latch. C_latch is shown in Fig 3-2. Another special component is the 

asynchronous register. Each 1-bit register is made of four AND gates, two OR gates, and 

two NOR gates. These gates can let the data be kept or read like common synchronous 
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register. The 1-bit register is shown in Fig 3-3.  
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Fig 3-2 C_Latch 
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Fig 3-3 The 1-bit Register 

 

 3.1.2 Branch Instruction 

In this section, we present our efficient method to handle branch instruction. The 

method takes Muller pipeline’s characteristic of 50% utilization. Branch handling 
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architecture is show in Fig 3-4. In Fig 3-4, I&V register is a component to control where 

instruction are written into Buffer. Buffer stores the instructions that are already fetched. 

The value of Dir register lets Prefetch unit know which part of instructions should be 

fetched. The grey part of register is stand for timing of writing register. 

 

 

Fig 3-4 Branch Handling Architecture 

 

When branch instruction is taken, the MAC EX1 would send a stall control signal to 

Stall unit and send target address to PC register and Dir register. Stall control signal lets 

Stall unit send a bubble to next stage and clear the content of I&V register. Finally, PC 

register will be written an address that the corrected place of next instruction by a Merge 
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element. The Merge element is called pc_mux in Fig 3-5. However, there is a critical 

issue that must be guaranteed, the timing issue. Because of branch instruction, PC 

register is possibly written by different stages in our pipeline architecture. In our branch 

handling architecture, there are three combinations when a branch instruction taken. The 

combination of Valid token and Empty token are shown in Fig 3-5.  
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Instruction

Prefetch

Instruction

Dispatch
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Decode

Ex1

(a) (b) (c)  

Fig 3-5 The Combination of Valid Token and Empty Token 

 

In Fig 3-5 (a) and (c), branch instruction would not produce any problem in our 

branch handling architecture. In Fig 3-5 (b), because the next instruction of branch 

instruction is too slow, so that it is still in Instruction Prefetch stage. At the same time, 

branch instruction in EX1 stage is already completed and the result is generated. Thus, 

the next instruction of branch instruction would not be stalled and a wrong PC value 
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would be written into PC register when it enters the Instruction Dispatch stage. 

To solving this trouble, we assume some constraints for branch instruction. We 

assume a time stamp, Td. The time stamp is that the next instruction of branch instruction 

is completed in Dispatch stage and new pc address is sent from Dispatch stage. The time 

stamp of branch instruction sending new target address from exe1 stage is Tb. It must be 

guaranteed that Tb > Td. In other words, we must guarantee the case (b) and case (c) in 

Fig 3-5 would not be happened.  

 

3.2 Predecode Loop Buffer 

This section will present the architecture of predecode loop buffer. As above-mentioned 

in chapter 2, traditional loop detection would make some possible problem. In addition to 

loop that must not be nested loop, the major trouble is that the frequently executed 

instructions in loop buffer may be replaced by infrequently executed instructions. If the 

infrequently executed instructions only execute sometimes, this replacement will become an 

unnecessary action. For example, Loop 2 and Loop 3 are inside Loop 1. When the Loop 1 

executes one time, the Loop 2 only executes two or three time and the Loop 3 executes 

hundreds of times. In other words, Loop 2 only obtains few benefits from loop buffer. 

Comparing with Loop 2, Loop 3 would get many advantages of loop buffer, because Loop 3 

is a more frequent loop than Loop 2. However, when Loop 1 executes again, Loop 3 will be 

replacement by Loop 2. Thus, when Loop 3 is executed, it must be fetched into loop buffer 
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again. This replacement is an unnecessary operation. If Loop 1 also executes many times, the 

unnecessary operation will become numerous. The example of program is shown in Fig 3-6.  

 

Non-Branch Instruction

Non-Branch Instruction

Loop2

Loop3

Branch Instruction

Branch Instruction

Branch Instruction

Loop1

 

Fig 3-6 The Example of Program 

 

 Although we take advantage of loop buffer, but there still exist repeated actions in 

Instruction Decode stage. In Instruction Decode stage, it has to decode instruction and fetch 

operands from register file. Fetching operand operations cannot be ignored, because the 

operands of the same instruction would be different in every time of execution. Comparing 

with fetching operands action of decoding instruction is always the same as previous 

execution despite the instruction executing hundreds of times. Thus, Control signals are stored 

after instruction is decoded. In stead of storing instructions, Predecode Loop Buffer would 
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keep the control signals to reduce some operations of Instruction Decode stage. Because the 

control signals of instruction are more than the opcode of instruction, Predecode Loop Buffer 

is bigger than traditional loop buffer. That is a tradeoff between area and performance. The 

tradeoff is worth implementing, because the operations of Instruction Decode stage are one of 

the major factors of performance of system. The details of Predecode Loop Buffer will be 

presented at the following sections in this chapter. The Block Diagram of Instruction Decode 

stage is shown in Fig 3-7. 

 

MAC

Decode

LDST

Decode

Register Bank

opcode opcode

Instruction of MAC Decode Instruction of LDST Decode

Control signal of MAC Ex1 Control signal of MAC Ex1

Register 

control signal

Register 

control signal

operands of MAC 

Ex1

operands of LDST 

Ex1

rd,rs,rt rd,rs,rt

 

Fig 3-7 The Block Diagram of Instruction Decode Stage.  
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Fig 3-8 The Architecture of Predecode Loop Buffer 

 

 3.2.1 Overview 

The architecture of Predecode Loop Buffer includes a Branch Information Table, a 

Mode Controller, a Loop Buffer and three registers that include two mode registers and 

an index register. The architecture of Predecode Loop Buffer is shown in Fig 3-8. Branch 

Information Table would store some information of branch instruction, such as the taken 

times of a branch, and information about this branch whether it would become hot or not. 

The hot branch stands for that the branch is frequently executed. Mode Controller would 

decide the status of branch instruction after it completes execution in Mac EX1 stage and 
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write information to Branch Information Table and mode registers. Every instruction 

would be decided if it is accessed from Predecode Loop Buffer or stored the control 

signals into Predecode Loop Buffer. Two mode registers are Store register (S-reg) and 

Fast Access register (F-reg). When the value of S-reg is one, the control signals of 

instruction have to be stored into Predecode after the instruction is completely decoded. 

When the content of F-reg is one, the instruction can be accessed from Predecode Loop 

Buffer and Instruction Prefetch unit can be bypassed. Thus, we need some elements to 

bypass the Instruction Prefetch unit. These elements are DeMux and Merge. The DeMux 

and Merge are shown in Fig 3-9.  
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Fig 3-9 The DeMux and Merge 

 

When Sel.t equals to one and Sel.f equals to zero, the In signal will be passed to 

upper function block through C-element. Otherwise, when Sel.t equals to zero and Sel.f 

equals to one, the In signal will be passed to lower function block. The Merge element 
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only use a OR gate, because there are only one function block can receive the valid token 

from DeMux and only on function block can pass valid token to Merge. Thus, another 

function block would not work and it would be bypassed. 

 

 3.2.2 Branch Information Table 

Branch Information Table (BIT) has four fields that including Tag, Execute Counter, 

Frequent Flag and Pre-Frequent Flag. When a branch instruction is in the Instruction 

Decode stage, Instruction Decode unit will send control signals to BIT. The BIT will be 

searched by the PC value of the branch instruction and the control signals. If the 

information of the branch instruction exists in BIT, the information of the branch 

instruction would be accessed and be transferred to Mode Controller in EX1 stage. 

Otherwise, the valid zero would be sent to Mode Controller. The Branch Information 

Table is shown in Fig 3-10. 
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Fig 3-10 The Branch Information Table 
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The reading action of BIT is in Instruction Decode stage and the writing action of 

BIT is in EX1 stage. Although these actions are in different stages, they are possible to 

produce a problem. When the Instruction Decode stage is completed, the valid token 

should be in Ex 1 stage and Instruction Decode stage should be returned to zero. It stands 

for the empty token. However, if the delay time of Ex 1 stage from this stage starts to 

finish shorter than the delay time of returning Instruction Decode stage to zero, BIT will 

be accessed and written at the same time. To avoid this trouble, we must provide that 

writing BIT is after Instruction Decode stage returns to zero.  

 

d1.t
d1.f

d2.t
d2.f

out1.t

out1.f

out2.t

out2.f

 

Fig 3-11 The Mutual Exclusion 

 

To achieving this goal, both read and write signals are connected to a Mutual 

Exclusion (ME). Both two outputs are one that is impossible in ME. For instance, d1 is 
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the faster input that arrives in ME and d2 is the slower input that arrives in ME. The out1 

would become valid because d1 is faster. Although the d2 is also valid, out2 still is empty. 

Out1 will become empty after d1 is returned to zero. Then d2 just can let out2 become 

valid. This section finally presents the BIT block diagram and shows how BIT can be 

bypassed. BIT block diagram is shown in Fig 3-12. If PC is sent to BIT, the data of 

accessing BIT will become R_Information. Otherwise, the R_Information will be 

inserted with valid zero. For writing of BIT, it is like the reading of BIT. When BIT must 

be written new data, wack is inserted with one by BIT. On the other hand, wack will be 

inserted with one as fast as possible. 
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Fig 3-12 BIT Block Diagram 
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 3.2.3 Mode Controller 

The value of mode registers is decided by Mode Controller. Depending on the value 

in mode registers, the instructions are decided if they are written into Predecode Loop 

Buffer or are accessed from Predecode Loop Buffer. Thus, Mode Controller is an 

important component in the architecture of Predecode Loop Buffer. There are three 

modes in our Predecode Loop Buffer, including Direct Mode (DM), Fast Access Mode 

(FAM) and Storage Mode (SM). DM means that the instruction will be fetched from 

Instruction Memory. FAM means that the instruction will be fetched from Predecode 

Loop Buffer. SM means that the control signals of the instruction must be written into 

Predecode Loop Buffer after the instruction is completely decoded. In addition to the 

mode registers, Mode Controller needs an extra register to calculate the count of hot 

branch and the count of non-hot branch. The register is called “replace register”. 

Depending to the value in this register, Mode Controller can decide the instruction of 

Predecode Loop Buffer if it is frequently executed in recently period of execution. 
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Fig 3-13 The Possible Transitions of Mode 
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Fetch Mode Events 

 

 

Direct Mode 

(1) Predecode Loop Buffer misses 

(2) (BIT hit)&&(Frequent Flag and Pre-Frequent Flag are 0s)&&(Execute 

Counter < threshold) 

(3)(BIT hit)&&(Frequent Flag or Pre-Frequent Flag are 1s)&&(branch is not 

taken) 

Fast Access 

Mode 

(BIT hit)&&(Frequent Flag or Pre-Frequent Flag are 1s)&&(branch is taken) 

Storage 

Mode 

(BIT hit)&&(Frequent Flag and Pre-Frequent Flag are 0s) &&(branch is 

taken)&&(Execute Counter ≧ threshold) 

Table 3-1 The Transition Events of Mode 

The possible transitions of Mode are shown in Fig 3-13. The events that cause mode 

transitions are shown in Table 3-1. When the BIT is accessed by a branch instruction, the 

replace register is also accessed. If the hot branch is taken, Mode Controller would let the 

replace register be decreased by one. Otherwise, if the non-hot branch is taken, Mode 

Controller would let replace register be increased by one. If the value overflows after 

increasing by one, the data is Predecode Loop Buffer are not frequently executed in 

recent period of execution. Thus, Mode Controller would clean the Frequent Flag of 

Branch Information Table and Pre-Frequent Flag would not be cleaned. Although 

Frequent Flag is cleared, the data in Predecode Loop Buffer does not be flushed. 
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Depending upon the value of Pre-Frequent Flag, the fetch mode will be changed to FAM. 

A program usually is composed of many phases. When the program enters the program 

phase, it will execute instructions in the same block. That block usually contains some or 

many of loops. In other words, when the program enters another program phase, 

Frequent Flag should be flush because branch information in BIT may be useless. The 

Transition Phase and Program Phase are shown in Fig 3-14. 

Mode Controller lets BIT be always in two kinds of phase. One is writing phase and 

another is monitor phase. In writing phase, the Frequent Flag is cleaned. At this time, 

BIT enters another program phase. In monitor phase, it means that at least one Frequent 

Flag of BIT is one. At this time, BIT will stay at the same program phase.  
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Fig 3-14 The Transition Phase and Program Phase 

 

The Block Diagram of Mode Controller is shown in Fig 3-15. This block diagram is 

similar to the block diagram of BIT. The difference is only the function block between 
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the two figures. 
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Fig 3-15 The Block Diagram of Mode Controller 

 

 3.2.4 Procedure of Predecode Loop Buffer 

As above sections, every component of Predecode Loop Buffer is presented. In this 

section, we will introduce the procedure of Predecode Loop Buffer. The procedure 

includes four steps:  

Step 1: Because the Execution Count of branch instruction smaller than threshold, Mode 

Controller will not change the value in mode register. 

Step 2: When the Execution Count of branch instruction equals to the threshold, Mode 

Controller will set S-reg and Frequent Flag to one. The control signals of next 

executed instruction will be written into Predecode Loop Buffer. 
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Step 3: The Frequent Flag of branch instruction is one, so the next instruction is existed 

in Predecode Loop Buffer. Thus, Mode Controller sets the F-reg to one, and the 

next instruction can be accessed from Predecode Loop Buffer. 

Step 4: When a miss is produced, it stands for the next instruction that must be fetched 

from Instruction Memory. In next section, we will present details about miss 

recovery mechanism of Predecode Loop Buffer. 
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Fig 3-16 A Frequent Loop in a Program  

 

Fig 3-16 shows a frequent loop in a program. When the BEQ instruction is decoded 

first time, the information of BEQ cannot be accessed from BIT. Because this is the first 

time to execute, the information of the BEQ are all zero. As soon as the decode stage is 

completed, these information are passed to EX1 stage. Because no branch prediction 
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mechanism is implemented in our processor, much design overhead can be reduced, 

Mode Controller only needs to wait the result of BEQ whether it is taken or not. If the 

BEQ is taken, Mode Controller will add Execution Counter by one and decide which 

mode should be written into mode registers. Otherwise, Mode Controller will pass the 

action of increasing Execution Counter. We assume the BEQ is taken. Because the BEQ 

is executed first time, the mode will not be changed. At the same time, the SUB 

instruction will be flushed by branch handling mechanism. Every time the BEQ comes 

before Execution Counter equals to the threshold, these actions will be repeated. When 

the value of Execution Counter equals to the threshold, Mode Controller sets S-reg to 

one in EX1 stage. Thus, the control signals of next instruction should be written into 

Predecode Loop Buffer. In addition to the control signals of ADD instruction, some of 

the control signals in Instruction Prefetch and Instruction Dispatch also need to be stored. 

At this moment, storing these signals may have a problem. An instruction in our VLIW 

processor may be dispatched two times, because the instructions are stored in 

compressed form. The cases of the instruction that is dispatched are shown in Fig 3-17. 
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Fig 3-17 The Cases of the Instruction 
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Fig 3-18 The Hardware Solves the Instruction with Same Address 

 

If the instruction 1 and instruction 2 can be executed in parallel, the last bit of 

instruction 1 is one. If the last bit of instruction 1 is zero, the two instructions cannot be 

executed in parallel. The last bit is called p-bit. In Fig 3-17 (b), storing control signal 
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would not produce any trouble because the two instructions can be executed in parallel. 

In Fig 3-17 (a), storing control signal would produce a problem because the two 

instructions cannot be executed in parallel. That is because they have same PC values. 

The instruction must be dispatched two times. Thus, when this instruction is fetched 

from Predecode Loop Buffer, we cannot decide which one is need.  

To solve this problem, we add an XOR gate, an OR gate and an Index register. Fig 

3-18 shows that the hardware solve that the instruction with same address. At first, we 

can decide if the instruction is a complete VLIW instruction or half through Dispatch 

stage according to p-bit. The p-bit of two instructions are connected to an OR gate. The 

output of OR gate is called change bit. Index register stores the value of direction of the 

VLIW instruction in EX1 stage. Then change bit and the output of Index register are 

connected to a XOR gate. Finally, the index of next VLIW instructions through Dispatch 

stage is the output of XOR gate.  

The output would be computed in Decode stage and written into Index register in 

EX1 stage. If the value of Index register is 1, the direction of instruction is left. 

Otherwise, the direction of instruction is right. Table 3-2 shows the relationship between 

p-bit and change bit. Table 3-3 shows the relationship between change bit and Index.  
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p-bit of Instruction 1 p-bit of Instruction2 Change 

0 0 0 

0 1 1 

1 0 1 

1 1 Not Used 

Table 3-2 The Relationship between P-Bit and Change Bit 

 

Change Index of this instruction Index of next instruction 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Table 3-3 The Relationship between Change Bit and Index 

 

After we solve the trouble of writing data to Predecode Loop Buffer, every 

instruction can be written and accessed at correct place. The next times of the BEQ that 

is executed, Mode Controller receives the data from BIT. Because the Frequent Flag is 

one, Mode Controller will set the F-reg to one in EX1 stage. The F-reg has the timing 

constraint. The constraint is the same as PC register timing constraint, because it is 
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possibly written by different stages. When the ADD instruction is executed again after 

F-reg is set to one, the current instruction can be fetched from Predecode Loop Buffer in 

Instruction Dispatch stage. The Instruction Prefetch and Dispatch stages can also be 

bypassed. The bypass mechanism can also be implemented with DeMux and Merge pair.    

When S-reg is set to 1, Predecode Loop Buffer does not have information that we 

need. Otherwise, if F-reg is set to one, Predecode Loop Buffer already has data that we 

need. Finally, there are three cases that would change the value of F-reg to zero. First, a 

miss of Predecode Loop Buffer causes the information of instruction of loop that we 

need is lost. Second, the branch instruction is hot branch, and it is untaken at this time. 

Third, there are other branch instructions to change Mode.  

 

 3.2.5 Miss Recovery Mechanism 

The major work of miss recovery mechanism is recovering the action of every stage 

and fetching the miss instruction again from Instruction memory. To achieve this work, 

we must flush that the wrong information in every stage. Fortunately, 4-phase dual-rail 

pipeline only have 50% utilization and Predecode Loop Buffer is read in Instruction 

Dispatch. In other words, we just need to deal with the miss in Instruction Dispatch, 

because Instruction Prefetch and Instruction Decode stages are empty.  

When a miss caused by the Predecode Loop Buffer in Instruction Dispatch stage 
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occurs, some signals and the value in F-reg should be re-transferred. At first, the value in 

F-reg is changed to zero. The action can provide that the next instruction is with the 

correct mode. Then the PC address of the miss instruction will be written into the PC 

register. The action can provide that the miss instruction is fetched from instruction 

memory with correct address. 

 Finally, we must flush this miss instruction. We take an easy and quick method to 

solve this issue. In Fig 3-4, there is a stall unit. Thus, the miss signal will be sent to the 

stall unit. Then the stall unit will insert a NOP to the next stage. This action is almost like 

the branch instruction is taken and a bubble must be inserted to the next stage. Although 

Predecode Loop Buffer can correctly work, there are some places that can be improved. 

We will present these future works in chapter 5. 

 

 

 

 

 

 

Fig 3-19 Miss Recovery Mechanism 
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Chapter 4 SIMULATION RESULT 

In this chapter, we will show the area and timing simulation of Predecode Loop 

Buffer. The design was synthesized by Design Compiler under TSMC 0.13μ m 2 process. 

First, we present the area of every element including C-element, 1-bit register, Branch 

Information Table, Predecode Loop Buffer. We show the timing simulation of the design. 

Fig 4-1 shows the timing diagram of Predecode Loop Buffer. 

 

 

Fig 4-1 The Timing Diagram of Predecode Loop Buffer 

 

 4.1 Area Simulation 

Table 4-1 shows the area of basic element in our Predecode Loop Buffer, and Table 
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4-2 presents the area of Predecode Loop Buffer, Branch Information and Mode 

Controller comparing with asynchronous two way processor.  

 

 1-bit register C_Latch C-element 

Cell Area (μ m 2 ) ~54 ~41 ~21 

Table 4-1 the area of basic element in our Predecode Loop Buffer 

 

 BIT Predecode Loop Buffer Mode Controller Processor 

Cell Area (μ m 2 ) ~8600 ~240000 ~1200 ~900000 

Ratio  0.95% 26.67% 0.1% 100% 

Table 4-2 the area compares with asynchronous two way VLIW processor  

 

The cell area of Predecode Loop Buffer is big, because it stores the control signals. 

The control signals are bigger than instructions, so the Predecode Loop Buffer is bigger 

than traditional loop buffer. The BIT and Mode Controller are small components in our 

design.  

 

 4.2 Timing Simulation 

This section shows the timing of Predecode Loop Buffer, Branch Information and 

other elements.  
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 BIT Predecode Loop Buffer Mode Controller 

Delay (ns) 4.39 7.41 4.76 

Table 4-3 The Timing simulation of Predecode Loop Buffer 
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Chapter 5 CONCLUSIONS AND FUTURE WORKS 

In this thesis, we propose a novel loop detection. It is implemented on an asynchronous 

two way VLIW processor. Because the decoded instruction is a major operation of system, the 

control signals are stored after the instruction is decoded to reduce some actions of instruction 

decode. We use the bigger loop buffer to replace traditional loop buffer, this is a tradeoff. 

Predecode Loop Buffer not only can decrease the accessed times of Instruction memory but 

can decrease the operations of Instruction Dispatch and Instruction Decode stages. 

Because the instructions are stored in compressed form, the instructions may be divided 

to two parts and transferred to EX1 stage. When the control signals of the instructions are 

stored in Predecode Loop Buffer, it will produce a problem. To solve this problem, we add 

some components to differentiate the instruction that may be divided. The design was 

synthesized by Design Compiler under TSMC 0.13μ m 2 process. The area of Predecode Loop 

Buffer is 240000μ m 2  and its delay time is 7.41 ns. 

Although Predecode Loop Buffer can decrease the instruction memory access times, it is 

bigger than traditional loop buffer. In addition to the control signals is stored in Predecode, the 

instruction is compressed that also make less instruction to be stored in Predecode Loop 

Buffer. It is an issue that the control signals of the instruction how can be efficiently stored in 

Predecode Loop Buffer.  
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