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在在在在無串無串無串無串擾擾擾擾位元變化之位元變化之位元變化之位元變化之指令匯流排指令匯流排指令匯流排指令匯流排的的的的耗電耗電耗電耗電中中中中利用暫存器重新標記利用暫存器重新標記利用暫存器重新標記利用暫存器重新標記以以以以減少減少減少減少匯流匯流匯流匯流

排的耗電排的耗電排的耗電排的耗電    

 

學生：林均翰            指導教授：單智君  博士 

國立交通大學資訊科學與工程研究所碩士班 

摘要摘要摘要摘要 

 隨著製程進步至深亞微米級 (deep submicron level)，crosstalk 在深亞微米級製程之

匯流排中的影響越受重視。而當兩條鄰近匯流線上的訊號轉換方向相反時，稱之為

crosstalk-toggling transitions，所帶來的影響不只是更多的耗電，也帶來更長的傳送延遲。

現有相當多的研究是在同步電路設計 (synchronous circuit designs) 中，利用編碼方式使

匯流排上能夠完全排除串擾位元變化轉換來達到減少傳送延遲。對於其耗電則仍保有進

一步降低的機會。 

這篇論文主要是研究在無串擾位元變化的 Selective Shielding 匯流排編碼方法下，利

用暫存器重新標記 (register relabeling)進一步降低指令匯流排之耗電。在不需要增加額

外硬體需求及沒有效能損失的前提下，我們的設計是未編碼指令匯流排平均耗電的

95.3%。此外，與 Selective Shielding 方法相較，在指令匯流排上可進一步減少 12.1%的

耗電。整體而言，我們的設計可保持原 Selective Shielding 方法無串音位元變化之特性並

減少其耗電。 
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Abstract 

With process technology scale down to the deep submicron level, crosstalk effects are 

increasingly important considerations especially when adjacent bus lines switch in opposite 

directions (so called crosstalk-toggling transitions) on deep-submicron buses. 

Crosstalk-toggling transitions increase not only power consumption but also data transmission 

delays. While many bus encoding schemes have been proposed to totally avoid 

crosstalk-toggling transitions thus reducing data transmission delays in synchronous circuit 

designs, opportunities still exist to additionally reduce power consumption.  

Therefore, we propose a register relabeling algorithm to further reduce the instruction 

bus power consumption based on the existing Selective Shielding bus encoding scheme which 

guarantees the encoded bus being crosstalk-toggling free. With no extra hardware 

requirements and performance loss, the average energy consumption of our design is 95.3% 

compared with an un-encoded instruction bus using 90nm technology with a 14mm bus 

length, and is 12.1% less than that of an instruction bus with Selective Shielding coding. In 

summary, our scheme preserves the crosstalk-toggling free characteristic of the Selective 

Shielding method and saves more energy. 
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Chapter 1 Introduction 

In this chapter, we first introduce the importance low power design, and, then, discuss 

the sources of power consumption on bus and the effects of crosstalk-toggling transitions. The 

research motivation and objective are then introduced. The organization of this thesis is 

elaborated in the end. 

1.1 Importance of Low Power Design 

As the complexity of system-on-chip (SoC) design increases, power consumption is 

becoming one of the most important design issues especially for embedded systems due to 

heat reduction, cooling cost reduction, longer cell life, and etc. In addition to these problems, 

energy efficiency has become an important characteristic of product quality. In mobile devices 

such as cellular phone and other handheld devices, energy efficiency further determines the 

usability and acceptance of these products. Since these products are battery-powered and the 

required usage amounts are increasing rapidly, low power design for these systems becomes a 

very important research topic. 

1.2 Sources of Power Consumptions on Buses 

The power consumption of bit transitions on bus lines is one of the major sources to the 

total power consumption. The power consumption by bit transitions on bus lines comes from 
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charging and discharging the capacitance for data transmission. The bit transitions can be 

classified into self-transition and coupling-transition of capacitances [1]. As CMOS processes 

scale down to the deep submicron level, both self-capacitance and coupling-capacitance needs 

to be taken into account. Capacitance between a bus line and ground is called self-capacitance 

(Cs), and capacitance between adjacent bus lines is called coupling-capacitance (Cc). Both 

capacitances are shown in Figure 1-1.  

Cs

Cs

Cs

Cc

Cc

Cs=Self-capacitance

Cc=Coupling-capacitance

Bus lines

 

Figure 1-1：Self and coupling-capacitance for buses 

Self-transitions are bit transitions on each individual bus line which make 

self-capacitance charging and discharging. Coupling-transitions are bit transitions between 

adjacent bus lines that cause a voltage level difference and thus cause coupling-capacitance 

charging and discharging. Coupling-transitions can be subdivided into two types, crosstalk 

1-bit transitions and crosstalk-toggling transitions. Moreover, crosstalk 1-bit transitions occur 

in the cases when only one of the bus lines switches between adjacent bus lines, for examples 

{00 � 01}, {00 � 10}, {11 � 01}, {11 � 10}. Crosstalk-toggling transitions occur when 

both of the adjacent bus lines switch to the opposite directions, for examples {01 � 10}. And 
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the remaining cases, for examples {00 � 00}, {11 � 11}, {00 � 11}, do not trigger any 

activity on coupling-capacitance. Figure 1-2 shows the examples of a crosstalk 1-bit transition 

and a crosstalk-toggling transition. 

0→0

0→1
Crosstalk 1-bit-transitions

{00 → 01}

0→1

1→0

Crosstalk-toggling transitions

{01 → 10}
 

Figure 1-2：Examples of a crosstalk 1-bit transition and a crosstalk-toggling transition 

1.3 Effects of Crosstalk-Toggling transitions 

With process technology moving toward the deep submicron level, coupling-capacitance 

between adjacent bus lines is becoming ever more prominent. The ratio of 

coupling-capacitance to self-capacitance increases as process shrinks [2]. Crosstalk-toggling 

transitions cause not only more power consumption but also longer data transmission delays. 

The data transmission delay from crosstalk-toggling transition is at least twice of that of other 

transitions [3]. As regards power consumption, the power consumption due to 

crosstalk-toggling transitions is at least four times of that of other transitions [1]. Thus, the 

effects of crosstalk-toggling transitions are much more serious than that of other transitions.  

1.4 Research Motivation 

Since the effects of crosstalk-toggling transitions are much more serious than that of 
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others, many bus-encoding schemes have been proposed to totally avoid the 

crosstalk-toggling transitions. The purpose of crosstalk-toggling-free bus encoding schemes is 

to reduce data transmission delay in synchronous circuit designs. However, opportunities still 

exist in previous crosstalk-toggling-free bus encoding schemes to reduce total power 

consumption on buses at the same time with crosstalk-toggling free.  

The power consumption on instruction bus constitutes great portion of total power 

consumption on buses since a processor typically accesses instructions every instruction cycle 

and the bit patterns of instruction bus is less regular than that of its address bus. However, 

instructions are compiled at static time. There are opportunities to deal with instructions in a 

post-compilation phase. For example, a typical ISA exhibits regularity that the register fields 

are in fixed positions within the instruction encoding, and the register fields constitute a 

significant part of an instruction word. Choosing registers appropriately may reduce the power 

consumption of instruction bus [4]. Therefore, it is possible to reduce the power consumption 

by generating instructions which consume less power. 

1.5 Research Objective and Approaches 

In this thesis, instructions are handled at static time to further reduce power consumption 

for a crosstalk-toggling-free-coded instruction bus with no extra hardware and performance 

loss. This goal is achieved by exploiting the characteristics of code-words on 

crosstalk-toggling-free encoded bus. We figure out the power consumptions on 
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crosstalk-toggling-free encoded instruction bus that depend only on the number of 1s of 

code-words. Thus, the instructions which have less 1s after crosstalk-toggling-free bus 

encoding are generated. Moreover, register relabeling is used for relabel registers of 

instructions, and our modified register relabeling method can consider only the register 

number itself. Furthermore, the relabeling scope may be a smaller one that provides more 

opportunities to reuse register numbers with less 1s after crosstalk-toggling-free bus encoding 

resulting in fewer transitions. Consequently, our approaches will be suitable for 

crosstalk-toggling-free-coded instruction bus so as to reduce the bit transitions on instruction 

bus for power reduction. 

1.6 Organization of This Thesis 

The remaining chapters of this thesis are organized as follow. Chapter 2 introduces the 

source of power consumption and analytical model of delay and discusses previous related 

researches on crosstalk-toggling free and power reduction techniques for instruction bus. In 

Chapter 3, we illustrate our power reduction techniques for instruction bus. The experimental 

environment, simulation results and relative analysis are presented in Chapter 4. Finally, we 

summarize our conclusions and future works in Chapter 5. 
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Chapter 2 Background and Related Work 

The main purpose of this chapter is to provide the necessary background for the concepts 

and methods presented in the following chapters. First, we will introduce the analytical model 

of power consumption for deep submicron buses. Then, a survey of the related approaches for 

crosstalk-toggling free bus encoding scheme and bus power reduction will be presented. 

2.1 Analytical Model of Power Consumption 

There are three major sources of power consumption in digital CMOS circuits [5]. The 

first one is the switching power for charging and discharging the circuit node capacitances. 

The second one is short-circuit power due to the direct-path short circuit current arises when 

both the NMOS and PMOS transistors are active simultaneously, and then conduct current 

directly from supply to ground. Finally, leakage power, which can arise from substrate 

injection and sub-threshold effects, is primarily determined by fabrication technology 

considerations while we will not discuss it [6].  

In this thesis, we focus on reducing the switching power for charging and discharging the 

capacitances. The equation for the total power consumption of switch power listed as follows: 
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[1] 

csswitching PPP +=  

222 4 ddCddCddS VCXTTgVCXTTrVCST ⋅⋅+⋅⋅+⋅⋅=  

2)4( ddS VCXTTgXTTrST ⋅⋅⋅+⋅+= λλ ,             (1) 

,where the first term, sP , represents the switching power of self-transitions; the second term, 

cP , represents the switching power of coupling-transitions that included crosstalk 1-bit 

transitions and crosstalk-toggling transitions where CS is the self-capacitance, CC is the 

coupling-capacitance, Vdd is the supply voltage, λ  is equal to CC / CS, ST  is the total 

number of self-transitions, XTTr  is the total number of crosstalk 1-bit transitions, and 

XTTg  is the total number of crosstalk-toggling transitions. 

Low power design is to minimize transitions, capacitances, and Vdd. Once the technology 

process has been chosen, capacitances will be decided. From the power equation, decreasing 

the Vdd factor can be an effective way for power dissipation of switch power. However, the 

supply voltage is usually determined by the system and technology consideration, and 

decreasing Vdd will increase the propagation delay consequently. Finally, the remaining 

important factor is the transitions. Reducing the number of bit transitions per transaction may 

reduce the number of capacitances needed to be driven. Bus encoding is a well-known 

technique to encode the contents of a bus to reduce the total bit transitions. Consequently, the 
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equation of power dissipation cost (PDC) function can be defined as follows： 

XTTgXTTrSTPDC ⋅+⋅+= λλ 4                      (2) 

In this thesis, minimizing the PDC function is the goal of our proposed methods. For 

crosstalk-toggling-free bus encoding scheme, XTTg  is guaranteed to be “0”, and, thus, our 

objective is to reduce ST  and XTTr  as many as possible for power reduction. 

2.2 Previous Crosstalk-Toggling-Free Methods for Buses 

Many methods have been proposed to totally avoid crosstalk-toggling transitions to 

reduce transition delays in synchronous circuit design. We briefly describe some of these 

techniques and discuss the reason why we focus on one of them. 

2.2.1 Simple Shielding Technique 

The simplest method to avoid crosstalk-toggling transitions is the simple shielding 

technique, where a shield line is inserted between every pair of adjacent bus lines [7]. The 

shield lines have no signal transitions, and, thus, crosstalk-toggling transitions are avoided. 

No encoder and decoder are required, but n-1 extra bus lines are needed for n-bit bus, and, 

thus, double the area used by the bus. When the bus is routed using scare top-level metal 

resources, double area is an unacceptable consequence [8]. 
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2.2.2 Victor’s Method 

From the concept of simple shielding technique, Victor’s method provides a theoretical 

framework to generate crosstalk-toggling free code-words [8]. As compared to 2n-1 bus lines 

required by the simple shielding technique, Victor’s method proofs that the lower limit on the 

number of required bus lines is log2(fm) for a n-bit bus, where fm is the mth Fibonacci 

number, for example, it requires 46 bus lines for 32-bit bus. However, it is hard to generate 

the crosstalk-toggling-free code-words due to the lack of generalized procedure to generate 

the code-words.  

2.2.3 Fibonacci Coding 

Fibonacci coding scheme is based on the theoretical framework of Victor’s method and 

gives a recursive procedure to generate code-words [9]. The same number of bus lines, 

log2(fm), is required as Victor’s method for n-bit bus.  

Table 2-1 shows the encoding algorithm of Fibonacci coding, and Figure 2-1 shows the 

examples from f1 to f4. In Fibonacci coding, let amam-1 ··· a2a1 is an m-bit 

crosstalk-toggling-free Fibonacci code-word. The decimal value will be am × Fib(m) ＋ am-1 

× Fib(m-1) ＋ … ＋ a2 × Fib(2) ＋ a1 × Fib(1), where Fib(i), 1 ≤ i ≤ m, is the i
th 

Fibonacci number. 

Fibonacci coding scheme gives a recursive procedure to generate code-words. However, 



 

10 

 

the larger data width, the higher gate delay of the corresponding encoder and decoder will be.  

Table 2-1：Fibonacci encoding algorithm 

if m is odd

else

}1,0{1 =f

}1|11{}|0{1 mmm fyyFxxf ∈∀∪∈∀=
+

}|1{}0|00{1 mmm fyyfxxf ∈∀∪∈∀=
+

 

f1

1

f2

1   1

f3

2   1   1

f4

3   2   1   1

0

1

0   0

0   1

1   1

0   0   0

0 0 1

1 0 0

1 0 1
1 1 1

0 0 0 0

0 0 0 1

0 1 0 0

0 1 0 1
0 1 1 1

1 1 0 0

1 1 0 1

1 1 1 1
 

Figure 2-1：The examples of Fibonacci encoding from f1 to f4 

2.2.4 Selective Shielding Technique 

The concept of Selective Shielding comes also from the simple shielding technique. It is 

shown that if the code-words may avoid adjacent 1s data pattern, the crosstalk-toggling 

transitions may be avoided after Transition Signaling encoding scheme. Thus, Selective 

Shielding guarantees that there is no adjacent 1s in coed-words, and the required bus lines are 

3n/2 for n-bit bus. 

4-to-6 Selective Shielding is an extension from Selective Shielding. The concept of 
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4-to-6 Selective Shielding is also to avoid adjacent 1s in coed-words, and 3n/2 bus lines are 

required as well for n-bit bus. The difference between Selective Shielding and 4-to-6 

Selective Shielding is that 4-to-6 Selective Shielding partitions data into several fields and 

may encode all fields at the same time. Hence, the gate delay of encoder and decoder of 4-to-6 

Selective Shielding is much less than that of Selective Shielding. 

2.2.5 Comparison of Different Approaches 

Table 2-2 shows the comparison of these above approaches. Considering the required 

bus lines and the coding delay of encoder and decoder, we choose 4-to-6 Selective Shielding 

in our method. Therefore, the detail description of Selective Shielding and the extension, 

4-to-6 Selective Shielding, will be introduced in the next section. 

Table 2-2：Comparison of different approaches 

Approaches

(for n-bit bus)

# of bus lines 

required

Delay of 

Encoder

Delay of 

Decoder

Simple Shielding 2n-1 ─ ─

Victor’s Method ≒ (<) 3n/2 N/A N/A

Fibonacci Coding ≒ (<) 3n/2 High High

Selective Shielding 3n/2 Medium Medium

4-to-6 SS 3n/2 Low Low

 

2.3 Previous Researches 

Two previous researches of crosstalk-toggling-free bus encoding schemes, Selective 
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Shielding (SS) encoding scheme [10][11] and 4-to-6 Selective Shielding (4-to-6 SS) encoding 

scheme [10], and one previous research for reducing the switching activities on buses, register 

relabeling [4], are introduced in the following subsections. 

2.3.1 Selective Shielding Crosstalk-Toggling-Free Technique 

The goal of Selective Shielding (SS) encoding scheme is to avoid crosstalk-toggling 

transitions on bus by using n/2 extra bus lines for n-bit bus [10][11]. The basic idea of SS 

comes from Transition Signaling (TS) encoding scheme [12]. The encoding of TS encoding 

scheme is to perform an XOR operation on the n-bit previous bus value (Bust-1) with the n-bit 

current data (Datat) and transmit the result as the n-bit current bus value (Bust), that is, Bust = 

Bust-1 ⊕ Datat. In decoding, get the current data (Datat) by performing XOR operation on 

the previous bus value (Bust-1) with the current bus value (Bust), i.e., Datat = Bust-1 ⊕ Bust. 

It is observed that only when the current data has adjacent 1s data pattern, a crosstalk-toggling 

transition may be generated on a TS encoded bus. The results of TS coding for all 

combinations of Bust-1 and Datat are shown in Figure 2-2. Since crosstalk-toggling transitions 

occurred on adjacent bus lines, Figure 2-2 shoes only 2 bits for each of the previous bus value 

(Bust-1), the current bus value (Bust), and the current data (Datat). All the possible 

combination of the 2-bit Bust-1 are shown on the rows, all the possible combination of the 

2-bit Datat are shown on the columns, and the results of the 2-bit Bust (= Bust-1 ⊕ Datat.) are 

shown in the matrix. It is clear that only when the current data has “11” data pattern, the 
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previous bus value and the current bus value may cause a crosstalk-toggling transition. 

Bust-1 :  previous bus value

Datat :  current data

Bust : current bus value

00 01 10 11

01 00 11 10

10 11 00 01

11 10 01 00

00

01

10

11

00 01    10     11Bust-1

Datat

Bust  

Figure 2-2：Results of TS encoding scheme for Bust = Bust-1 ⊕ Datat 

Therefore, if the current data do not have adjacent 1s, crosstalk-toggling transitions may 

be avoided on TS encoded bus. According to this basic idea, the design of SS is to make sure 

that there are no adjacent 1s in the code-words to make the crosstalk-toggling free after TS 

coding. Figure 2-3 shows the system overview of SS. 

SS Encoding TS Encoding TS Decoding SS Decoding

n 3n/2

bus

3n/2 3n/2 n

 

Figure 2-3：System overview of SS 

The method of avoiding adjacent 1s in data is to encode each “1” to “10” rather than 

simple shielding technique [7] which inserts a shield bit (assume “0”) between adjacent data 

bits. While the data bits are all 1s, the SS encoding method will be the same as the simple 

shielding technique. Therefore, the number of 0s should be added depends on the number of 
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1s present in the data. In order to reduce the number of 1s in data to limit the number of added 

0s, SS technique calculates the number of 1s in data first. If the number of 1s in the n-bit data 

is less than n/2, encode each “1” to “10” directly. Otherwise, invert the data first to make the 

number of 1s in the n-bit data less than n/2, and then encode each “1” to “10” of the converted 

data. After that, append an invert bit “1” at the LSB of the code-word to denote that the data 

have been inverted.  

Note that it needs at most n/2 extra bus lines to encode an n-bit bus. In order to providing 

fixed length (3n/2-bit) of code-words, append “0s” at MSB positions if the length of a 

code-word is less than 3n/2. 

In decoding, check the LSB of the code-word first. If LSB is “0”, convert each “10” to 

“1” directly. Otherwise, it means that the data have been inverted in encoding process. Thus, 

cut the end-bit first and covert each “10” to “1”, and then invert the converted data. After 

above decoding process, remove the leading bits that exceed the original data length (n).  

The encoding and decoding algorithms of SS technique are shown in Figure 2-4, and 

examples of applying the algorithms are shown in Figure 2-5. 
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If # of 1s in the n-bit data ≤ n/2
Each “1” is encoded as “10”.

Else

Invert the data first.
Each “1” is encoded as “10”.
Append an invert bit, “1” ,  at LSB.

Append 0s at MSB to provide a 3n/2-bit code-word.
(a) Encoding algorithm

If the end-bit of a code-word == 1
Cut the end-bit, covert “10” to “1.”

Invert the converted code-word.
Else

Convert “10” to “1.”
Remove leading bits that exceed the original data length(n)

(b) Decoding algorithm
 

Figure 2-4：SS encoding/decoding algorithm 

Data

Invert?

“1”to “10”

If inverted,

append 1

Append 0s for fixed 

length (3n/2)

Code-word

If inverted, cut the 

end-bit

“10”to “1”

Inverted?

Remove the 
leading bit

0001 0001

X

00 0100 0010

X

00 00 0100 0010

1101 1000

X

1010 0101 0000

X

X

1100 1110

0011 0001

001 0100 0010

001 0100 0010 1

X

1011 1111

0100 0000

0 1000 0000

0 1000 0000 1

00 0 1000 0000 1

0000 0100 0010

X

00 0001 0001

X

0001 0001

1010 0101 0000

X

1101 1000

X

X

0010 1000 0101

0010 1000 010

0011 0001

1100 1110

X

0001 0000 0001

0001 0000 000

00 0100 0000

11 1011 1111

1011 1111

Encoding

Decoding

 

Figure 2-5：SS encoding/decoding examples 

2.3.2 4-to-6 Selective Shielding Crosstalk-Toggling-Free Technique 

Since SS encoding scheme encodes the whole n-bit data at a time, its corresponding 
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hardware is complex and time consuming. If data are partitioned into several fields and each 

field is encoded individually at the same time, its corresponding hardware may be simpler and 

may save more transition time than SS encoding scheme. 4-to-6 selective shielding (4-to-6 SS) 

was proposed for these proposes. It is an extension of SS encoding scheme with smaller 

encoding unit and needs also n/2 extra bus for n-bit bus [10]. Figure 2-6 shows the system 

overview of 4-to-6 SS. 

4-to-6 SS

Encoding
TS Encoding TS Decoding

4-to-6 SS

Decoding

n 3n/2

bus

3n/2 3n/2 n

 

Figure 2-6：System overview of 4-to-6 SS 

The 4-to-6 SS encoding scheme first apply the smallest possible encoding unit of SS to 

encode 2-bit data into 3-bit code-words to simplify the corresponding hardware. Figure 2-7 

shows the 2-bit data and the corresponding 3-bit code-words. In the other words, it applies SS 

technique to n/2 2-bit sub-data in parallel to generate n/2 3-bit code-words.  

00

01

10

11

000

010

100

001

data
Code-
words

 

Figure 2-7：The 2-bit data and the relative 3-bit SS code-words 

However, when data exist 11 patterns which are followed by 10 patterns, there have 

adjacent 1s between code-words of adjacent partitions, that is, 11 10 are encoded into 001 100. 

To overcome this problem, once it encounters adjacent 1s between two 3-bit code-words, it 
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swaps one of the adjacent 1s with other bit to avoid the two adjacent 1s. Assuming that the ith 

and the (i-1)th bits are the two adjacent 1s, swap the ith and the (i-3)th bits. After swapping 

the ith and the (i-3)th bit positions, if the (i-4)th bit is a “1”, repeat the swapping process until 

there is no adjacent 1s between code-words. In the worst case, it may require n/2 − 1 

bit-swaps and thus increases the coding delay. Figure 2-8 gives an example of the bit-swap 

process. From Figure 2-8, when data exist 11 patterns followed by m 10 patterns, m swaps 

will occur. 

11 10 10 10 ‧‧‧ 10 10 → 001 100 100 100 ‧‧‧ 100 100

→ 000 101 100 100 ‧‧‧ 100 100

→ 000 100 ‧ ‧‧100 101 100 100

n-bit data 3n/2-bit code-word

.

.

Worst-case :

n/2 −−−− 1 swaps
→ 000 100 101 100 ‧‧‧ 100 100

→ 000 100 ‧ ‧‧100 100 101 100

→ 000 100 ‧ ‧‧100 100 100 101
 

Figure 2-8：An example of the worst case of bit-swap process 

In order to reducing the number of swaps from n/2 − 1 to 1, 4-to-6 SS consider partition 

data into several fields with size 4, then partition each 4-bit field into two 2-bit sub-partitions, 

and then apply SS to two 2-bit sub-partitions to generate a 6-bit code-word. The bit-swap 

process is the same as that mentioned before, i.e., swap the ith and the (i-3)th bits if the ith 

and the (i-1)th bits are both 1s. Under the encoding method, it is apparent that 1110 is encoded 

into 001100 which has adjacent 1s in its code-word and thus bit swapping intra cod-word is 

applied to form 000101. Moreover, 1010 is encoded into 100100 which may have repetitious 
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swaps inter code-words if the right-hand-side code-word ends with 1 and the same bit-swap 

process is performed, and thus 1010 is encoded into 010101 to avoid repetitious swaps. Table 

2-3 shows the 4-bit data and the corresponding 6-bit code-words.  However, when the 

code-words of left-hand side end with 1 and the code-words of right-hand-side start with 1, 

the adjacent 1s inter code-words happen. Note that code-words of right-hand-side start with 1, 

and the following 2nd, 3rd and 4th bits are 0s. Therefore, once it encounters adjacent 1s inter 

6-bit code-words, it needs only one bit-swap process to avoid adjacent 1s. Figure 2-9 shows 

an example of the bit-swap process. 

Table 2-3：The 4-bit data and relative 6-bit code-words 

4-bit data
4-to-6 SS

code-word

0000

0001

0010

0011
0100

0101

0110

0111

1000
1001

1010

1011

1100

1101
1110

1111

000000

000010

000100

000001
010000

010010

010100

010001

100000
100010

010101

100001

001000

001010
000101

001001
 

 ‧‧‧1 1 0   0   0  * *

i i-1 i-3 ‧‧‧0 1 0   1 0  * *  

i-2 i i-1 i-3i-2

 

Figure 2-9：An example of the bit-swap process inter adjacent code-words 
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In 4-to-6 SS decoding, if the 6-bit code-words has “1010**” data pattern, it means that 

the bit-swap process has been applied to the code-words to avoid adjacent 1s between 6-bit 

code-words. Thus, it needs to swap back first, and then process 4-to-6 SS decoding. Figure 

2-10 shows examples of 4-to-6 SS encoding and decoding. 

Data 0010  1010

4-to-6 SS 

code-word
000100  010101

If adjacent 

1s, swap
X

4-to-6 SS 

code-word
000100  010101

If 1010**, 

swap back
X

Data 0010  1010

Encoding

Decoding

0011  1011

000001 100001

000000 101001

000000  101001

000001 100001

0011  1011
 

Figure 2-10：4-to-6 SS encoding/decoding examples 

2.3.3 Register Relabeling Power Saving Technique 

In a typical RISC ISA, register fields are fixed within the instructions and occupy large 

portion in the instruction encoding. If the number of bit transitions in two register numbers in 

the same bit positions of two consecutive instructions is higher and the combination of the 

two register numbers often appears in the any two consecutive instructions, the power 

consumption will be larger. However, the registers of a typical RISC ISA are general purpose, 

and general-purpose registers are interchangeable. The basic idea of register relabeling is to 
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minimize the bit transitions of register fields during instruction fetches by relabeling register 

numbers statically [4]. Figure 2-11 shows an example of code fragment. It could achieve 

reduction in bit transition with no performance penalties. 

add add add add r3r3r3r3, r2, r4, r2, r4, r2, r4, r2, r4

sub sub sub sub r6r6r6r6, , , , r3r3r3r3, r5, r5, r5, r5

sub sub sub sub r3r3r3r3, r2, , r2, , r2, , r2, r6r6r6r6

mul r4, r4, r5mul r4, r4, r5mul r4, r4, r5mul r4, r4, r5

4

5

7

add add add add r6r6r6r6, r2, r4, r2, r4, r2, r4, r2, r4

sub sub sub sub r7r7r7r7, , , , r6r6r6r6, r5, r5, r5, r5

sub sub sub sub r6r6r6r6, r2, , r2, , r2, , r2, r7r7r7r7

mul r4, r4, r5mul r4, r4, r5mul r4, r4, r5mul r4, r4, r5

3

3

4

r3r3r3r3→→→→r6r6r6r6
r6r6r6r6→→→→r7r7r7r7

+ +) (

16 10

Bit transitions on

Register fields

Bit transitions on

Register fields

 

Figure 2-11：An example of code fragment 

The first step of relabeling is that constructed a graph called the “Register Histogram 

Graph” (RHG). The RHG captures the occurrence frequency and relationship between 

register pairs which are two register numbers in the same bit positions of two consecutive 

instructions. Each RHG node represents a register. Each RHG edge represents that two 

register numbers compose a register pair, and the weight of each edge annotates with the 

frequency of register pairs. Figure 2-12 (a) shows an example of all pairs of registers appeared 

in a code fragment and the frequency of each pair. In Figure 2-12, assume that the architecture 

uses registers from register $1 to register $8. Figure 2-12 (b) is a RHG derived from Figure 

2-12 (a).  
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Reg Pair frequency

(r7 , r8)

(r4 , r7)

(r1 , r6)

(r1 , r7)
(r1 , r8)

(r3 , r4)

(r4 , r8)

(r6 , r7)

(r7 , r7)

3

2

1

1
1

1

1

1

1

1

r4 r3

r8r7

r6 r1

1

1
2

3

1
1

1

1

RHG

Node：register name 

Edge：register pair

Edge weight：frequency

Total bit transitions：29

(a) (b)  

Figure 2-12：(a) Example frequency distribution of register pairs (b) RHG from (a) 

The following algorithm utilizes the RHG to relabel the register numbers [13]. Figure 

2-13 shows the RHG after register relabeling. In this example, start from the most frequent 

edge of register pair, register $7 and register $8, relabel them into a register pair, register $1 

and register $3, whose hamming distance is minimized. Then, for the second most frequent 

edge of register pair, register $7 and register $4 , since the register $7 is assigned, relabel 

register $4 into register $5 so that the hamming distance to its assigned neighbor registers is 

minimized. The following relabeling steps are the same as above description. 

Algorithm
� Iterate through the edges starting from the most frequent ones
� Rename the registers yet unassigned so that hamming distance to 

all their assigned neighbors in the graph is minimized

(a)  
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1

r5 r7

r3r1

r4 r2

1

1
2

3

1
1

1

1

Reassigned results

Total bit transitions from 29 to 15

r7→ r1

r8→ r3

r4 → r5

r1 → r2

r6→ r4

r3→ r7

(b)
 

Figure 2-13：(a) Register relabeling algorithm (b) RHG after register relabeling 

2.3.4 Summary of Previous Researches 

The SS and 4-to-6 SS are all crosstalk-toggling free bus encoding schemes and both need 

n/2 extra bus for n-bit bus. Since SS encodes the whole n-bit data at a time, its corresponding 

hardware is more complex and time consuming than that of 4-to-6 SS which partitions data 

into several fields and encodes all fields at the same time. We focus on 4-to-6 SS since its 

corresponding hardware is less time consuming and the partitioning method can be further 

complemented by our modified relabeling method.  

Register relabeling may reduce bit transitions of register fields on a traditional 

instruction bus. It needs to consider the relationship between register fields of consecutive 

instructions. 4-to-6 SS encoding scheme brings a different situation for register relabeling 

such that the original register relabeling method may not be suitable on a 4-to-6 SS coded bus. 
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Due to the characteristics of TS encoding scheme, if data hold fewer 1s in code-words, 

the number of bit transitions on a TS encoded bus is lower [12]. Therefore, we may make use 

of the characteristics to modify register relabeling for 4-to-6 SS to produce code-words with 

fewer 1s to reduce the number of bit transitions on a TS encoded bus. The detail description 

of our design will be discussed in the next chapter. 
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Chapter 3 Proposed Design 

This chapter will introduce our design of modified register relabeling to reduce the 

number of bit transitions on instruction bus. The overview of proposed design will be shown 

in Section 3.1. The observations of our design foundation will be presented in Section 3.2. 

The remaining sections will show the details of our design. 

3.1 System Overview  

 

Modified

Register Relabeling

Instruction Reversion

4-to-6 SS Decoding

TS Decoding

Program 

Binary

Relabeled 

Program Binary

Instruction 

Memory

CPU

Instruction 

Bus

Static Time Dynamic Time

Instruction Partition

4-to-6 SS Encoding

TS Encoding

 

Figure 3-1：Overview of system 

The system contains static-time phase and dynamic-time phase. Figure 3-1 illustrates the 

system overview. 

Our method concentrates mainly on the register fields of instructions. Our modified 

register relabeling is applied to the program binary according to the partition of instructions 
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for 4-to-6 SS encoding scheme to produce relabeled program binary that resides in the 

instruction memory at static time. At dynamic time, instruction will be partitioned in 

Instruction Partition step after fetching from instruction memory in order to combine 4-to-6 

SS encoding scheme with our modified register relabeling. After that, the coding process 

including data coding (4-to-6 SS Encoding/Decoding) and data transmitting (Transition 

Signaling Encoding/Decoding) through the instruction bus is exactly the same as that of the 

original 4-to-6 SS encoding scheme. The Instruction Reversion is the reverse of the 

Instruction Partition step.  

3.2 Observations 

As described in subsection 2.3.2, 4-to-6 SS encoding scheme brings a different situation 

for register relabeling, so that it is necessary to consider the impact. In a 4-to-6 SS encoded 

instruction bus, the current data is converted to 4-to-6 code-word without adjacent 1s, and 

then an XOR operation is performed between the previous bus value and the 4-to-6 SS 

code-word to get the current bus value. Figure 3-2 shows the flowchart of data processing. 
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4-to-6 SS encoding

TS encoding

Current data

4-to-6 SS

code-word 

Current bus value

(Previous bus value)
 

Figure 3-2：Flowchart of 4-to-6 SS data processing 

Due to the characteristics of TS encoding scheme, if the inputs are a previous result and 

“0”, the current result will be equal to the previous result; if the inputs are a previous result 

and “1”, the current result will be equal to the inversion of the previous result. Therefore, the 

first observation is that the number of self-transitions between the previous bus vaule and the 

current bus value is equal to the number of 1s in the 4-to-6 SS code-word. Moreover, once “1” 

appears in a 4-to-6 SS code-word, its neighbor bits must be “0”. After TS encoding scheme, 

the neighbor positions of a self-transtion must be no signal trantiions. Thus, the number of 

crosstalk 1-bit transitions between the previous bus value and the current bus value is twice as 

many as the number of 1s in the 4-to-6 SS code-word except the “1s” appeared in the most 

significant bit (MSB) and the least significant bit (LSB) bit postitions. Since the crosstalk 

1-bit transitions may occur only on adjacent bus lines, each of the MSB and LSB bit positions 
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has only one adjacent bus line and thus may cause one crosstalk 1-bit transition at most. 

Figure 3-3 shows an example of 4-to-6 SS encoding scheme. From Figure 3-3, after XOR 

operation, the number of self-transitions between the previous bus value and the current bus 

value is 2 which is equal to the number of 1s, 2 “1s”, in the 4-to-6 SS code-word. Furthermore, 

after XOR operation, the number of crosstalk 1-bit transitions between the previous bus value 

and the current bus value is 3 which is equal to twice of the number of 1s in the 4-to-6 SS 

code-word and minus the “1” appeared at LSB, 2 × 2 − 1. 

⊕ (Previous bus value)

(Current bus value)

(4-to-6 SS code-word, 2 “1s”)0 0 ‧‧ 0 1 0 ‧‧ 0  1

an-1 an-2‧‧ax+1 ax ax-1‧‧a1 a0

an-1 an-2‧‧ax+1 ax ax-1‧‧a1 a0
 

Figure 3-3：An example of 4-to-6 SS coding 

Therefore, the power cost terms of the power dissipation cost (PDC) in Eq.(2) may be 

formulated as follows: 

codewordsSStotheinsofST 641#=                    (3) 

)1(#)1#2( codewordsofLSBandMSBinsofcodewordsinsofXTTr −×= (4) 

,where ST  is the total number of self-transitions and XTTr is the total number of crosstalk 

1-bit transitions. As for the number of crosstalk-toggling transitions, XTTg , it is guaranteed 

to be 0 after 4-to-6 SS encoding scheme. Consequently, the power consumption depends on 

the number of 1s in the 4-to-6 SS code-words, and our modified register relabeling method is 
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built up by our observations. 

3.3 Instruction Partition 

The purposes of designing Instruction Partition are to preserve the chance for register 

relabeling on register fields and to make use of the characteristics of 4-to-6 SS encoding 

scheme. Firstly, for register fields, each register field is better to be fit in one partition. 

However, 4-to-6 SS encoding scheme requires 4-bit partitions, and, thus, each register field 

would be partitioned into 4-bit fields and the remaining bits of register fields will be 

processed with other fields. Taking the MIPS instruction set for example, its instruction 

format are shown in Figure 3-4 (a) [14]. The proposed partitions for all register fields of 

R-type and I-type, and bits on the same positions of I-type and J-type are shown in Figure 3-4 

(b). 

 
Figure 3-4：(a) MIPS instruction formats (b) Partition of register fields and bits on the 

same positions 

Furthermore, characteristics of 4-to-6 SS encoding scheme should be considered for both 

the remaining bits of the register fields and other fields. From the code-words of 4-to-6 SS 
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encoding scheme, the bits with more 0s in the same partition will have a probability of having 

fewer 1s in their 4-to-6 SS code-words than that of original data, and fewer 1s in the 4-to-6 SS 

code-words lead to fewer transitions from our observations in Section 3.2. Table 3-1 shows 

the characteristics of 4-to-6 SS code-words. It is clear that if the 4-bit data have more 0s, the 

corresponding 6-bit code-words will have more 0s, too. 

Table 3-1：4-bit data sorted by the number of 0s and their corresponding 4-to-6 SS code-words 

4-bit 

data

4-to-6 SS 

code-word

# of 

1s

0000

0001
0010

0100

1000

0011

0101

0110

1001

1010
1100

0111

1011

1101
1110

1111

000000

000010
000100

010000

100000

000001

010010

010100

100010

010101
001000

010001

100001

001010
000101

001001

0

1
1

1

1

1

2

2

2

3
1

2

2

2
2

2

 

Therefore, our approach is to sort the probabilities of 0s of the remaining bits of register 

fields and all other fields after register relabeling at static time, and then partition them into 

4-bit fields by the sorted order. In order to avoid extra hardware overheads, we apply fixed 

partition only according to the statistics of a specific set of applications for the system.  
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3.4 Modified Register Relabeling 

According to our observations, no matter what the previous bus values is, the power 

consumption depends only on the number of 1s in the 4-to-6 SS code-words of the current 

data. Therefore, rather than depending on the relation between registers as the case for 

original register relabeling, the power consumption caused by the 4-to-6 encoded register 

fields depends on the register numbers themselves only. The basic idea of our modified 

register relabeling is to relabel more frequently occurred registers to registers that have fewer 

1s after 4-to-6 SS encoding.  

In addition, we may count the number of 1s in 4-to-6 SS code-word of each register in 

advance to decide which register should be selected early to relabel the freuqently occurred 

registers. The selection order is called the relabeling register selection sequence. This 

relabeling register selection sequence is constructed in terms of the instruction partition on 

register fields. For example, according to the instruction partition on register fields as shown 

in Figure 3-4 (b), the leading 4 bits of each register can be classified according to the number 

of 1s in its corresponding 4-to-6 SS code-word. Note that there are two registers that have the 

same leading 4 bits with a different least significant bit (LSB). Figure 3-5 shows an example 

of the classification of registers. In this example, register $6 and register $7 have the same 

leading 4 bits, i.e., they have the same 4-to-6 SS code-word and a different LSB. 
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000001 4-to-6 SS code-word 

of the leading 4 bits

r6：0011 0

r7：0011 1

 

Figure 3-5：An example of classification of register 

In Table 3-2, registers are classified according to the number of 1s in the 4-to-6 SS 

code-word of the leading 4 bits of its register number. The registers that have less number of 

1s in their corresponding 4-to-6 SS code-words of the leading 4 bits of their register numbers 

are selected for relabeling first. Then, for two registers with the same number of 1s in the 

4-to-6 SS code-words of their leading 4 bits, choose the one with LSB “0” to gain a higher 

probability of having less 1s in the code-word than that with LSB “1”. The last column of 

Table 3-2 shows the selection order for register relabeling in descending priorities. The 

registers with the same sequence number may be chosen randomly. 

Table 3-2：Relabeling register selection sequence 

Relabeling 

selection 

sequence

1

2

3

4

5

6

7

8

# of 1s in the 4-to-6

SS code-word of the 

leading 4-bit of 

register number

LSB Register number (in decimal)

0
0 r0

1 r1

1
0 r2  r4  r6  r8  r16  r24

1 r3  r5  r7  r9  r17  r25

2
0 r10  r12  r14  r18  r22  r26  r28  r30

1 r11  r13  r15  r19  r23  r27  r29  r31

3
0 r20

1 r21
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Due to the constraints of an instruction set architecture (ISA), the registers may be 

classified into non-relabelable and relabelable. For non-relabelable regsiters, these registers 

sholud not be relabeled and can not be used for relabeling for the whole program.  

Taking the register usage conventions of MIPS architecture for example, registers are 

classified in terms of their usage purposes as shown in Table 3-3 [15]. In MIPS registers, 

register $0 is non-relabelable since register $0 is hard wired to the value zero. Register $31 is 

the destination register used by instructions JAL, BLTZAL, BLTZALL, BGEZAL, and 

BGEZALL without being explicitly specified so that register $31 is non-relabelable, neither. 

The remaining registers are relabelable. Therefore, the relabeling registers selection sequence 

for MIPS ISA is shown in Table 3-4. 

Table 3-3：MIPS registers categorization 

Category Name Number Use

Non-

relabelable

$zero $0 Always 0

$ra $31 Return address

Category Name Number Use

Relabelable

$at $1 Assembler temporary

$k0 - $k1 $26 - $27 Kernel registers

$gp $28 Global pointer

$sp $29 Stack pointer

$v0 - $v1 $2 - $3 Return value

$a0 - $a3 $4 - $7 Argument registers

$t0 - $t9
$8 - $15, 

$24 - $25
Temporary registers

$s0 - $s8
$16 - $23,

$30
Saved registers
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Table 3-4：Relabeling register selection sequence for MIPS ISA 

Relabeling 

selection 

sequence

1

2

3

4

5

6

7

# of 1s in the 4-to-6

SS code-word of the 

leading 4-bit of 

register number

LSB Register number (in decimal)

0 1 r1

1
0 r2  r4  r6  r8  r16  r24

1 r3  r5  r7  r9  r17  r25

2
0 r10  r12  r14  r18  r22  r26  r28  r30

1 r11  r13  r15  r19  r23  r27  r29  r31

3
0 r20

1 r21
 

In this thesis, we propose two register relabeling methods. In register relabeling method 

1, we gather the occurrence frequency of each relabelable register from a program trace, and 

then relabel more frequently occurred registers to registers that have fewer 1s after 4-to-6 SS 

encoding. In this method, each relabelable register is relabeled to a specific registers 

consistently for the whole program to reduce the power consumption while preserving the 

correctness of the program.  

However, considering register usage convention and no performance degradation, there 

are regsiters that are used independently for each procedure. These registers in different 

procedures may be relabeled into the same reigster which has less 1s after 4-to-6 SS encoding 

to reduce the number of 1s in 4-to-6 SS code-words for more power reduction. Thus, in 

register relabeling method 2, there are regsiters which may be relabeled independently for 

each procedure, while there are other registers which are still relabeled to a specific registers 
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consistently for the whole program to keep the correct execution.  

The details of these two register relabeling methods are described in the following 

subsections 

3.4.1 Register Relabeling Method 1 

Figure 3-6 shows the flowchart of our modified regsiter relabeling method 1. The first 

step of this method records the occurrence frequency of each relabelable register from a 

program trace. In the next step of register relabeling method 1, sort the occurrence frequencies 

of the relabelable regsiters. The final step is to relabel the registers by the sorted order 

according to the relabeling register selection sequence shown in Table 3-2. In this method, a 

relabelable register is relabeled to another register consistently through the porgam, that is to 

say, it is a program-scoped relabelabel register. 

Table 3-4 shows a relabeling example according to the selection sequence in Table 3-2. 

In this example, the occurrence frequencies of relabelable registers are collected and sorted. 

Then, according to the selection sequence in Table 3-2, relabel registers into registers with 

less 1s after 4-to-6 SS coding. 

Gather the frequencies

of the relabelable registers

for the trace of a program

Sort the relabelable registers

by the descending order of 

their occurrence frequencies

Relabel registers

by the sorted order

 

Figure 3-6：Flowchart of our modified regsiter relabeling algorithm 
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Table 3-5：An example of register relabeling method 1 

Register before 

relabeling

Occurrence 

frequency

r8 12

r6 8

r1 6

r4 6

r3 3

r12 2‧‧‧ ‧‧‧

Register after 

relabeling

r1

r2

r4

r6

r8

r16‧‧‧
 

3.4.2 Register Relabeling Method 2 

Register relabeling method 1 is program-scoped relabeling, i.e., each relabelabel register 

is relabeled to a specific registers consistently for the whole program. However, the relabeling 

scope of some registers may be relaxed to be within a procedure, i.e., some registers in 

different procedures may be relabeled into a same register to raise the occurrence frequencies 

of registers which have less 1s after 4-to-6 SS encoding. Figure 3-7 gives examples to show 

the different between program-scope relabeling and procedure-scope relabeling. Figure 3-7 (a) 

shows the rank order of each register occurrence frequency. In Figure 3-7 (b), program-scoped 

relabeling, after the most occurred registers $8 is relabeled into register $1, register $7 only 

can be relabeled into another register $2. While, In Figure 3-7 (c), procedure-scoped 

relabeling, if the registers of both two procedures are used independently, registers $8 and 

register $7 can all be relabeled into register $1 to raise the occurrence frequencies of register 
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$1 to gain less 1s in code-words after 4-to-6 SS encoding for more power reduction.  

r8

r4

Proc A

r7

r9

Proc B

r8→ r1

r4→ r6

r7→ r2

r9→ r4

Program

r8

r7

r9

r4

.

.

.

Rank

order

r8

r4

r7

r9

r8→ r1

r4→ r2

r7→ r1

r9→ r2

Program

Proc A Proc B

(a)

Rank order of register 

occurrence frequencies

(b)

Program-scoped

relabeling

(c)

Procedure-scoped

relabeling

1

2

3

4

.

.

.

 

Figure 3-7：Program-scoped relabeling V.S. Procedure-scoped relabeling 

Considering register usage convention and no performance degradation, some 

relabelabel regsiter must be relabeled consistently for the whole program to keep the 

correctness of program execution, while some other relabelable regsiters may be relabeled 

independently for each procedure. Therefore, the relabeling scopes of relabelable registers of 

register relabeling method 2 are classified into program-scoped and procedure-scoped. 

For example, in Table 3-6, MIPS registers, temporary registers of caller-saved registers 

and saved registers of callee-saved registers may be further classified as procedure-scoped for 

register relabeling. Temporary registers are caller-saved registers in MIPS calling convention. 

That is, once a procedure needs to use a temporary register after procedure-call, the procedure 

will save the value of the temporary register before procedure-call and restore the value after 

procedure-call. Therefore, each procedure can use temporary registers at will. Saved registers 
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are callee-saved registers in MIPS calling convention. The value of saved registers must be 

preserved across procedures. The callee will save the values of saved registers at the 

procedure entry and restore at the procedure exit if it needs to use the saved registers. 

Therefore, each procedure can use saved registers at will after they are saved at procedure 

entry.  

The relabeling scope of the remaining relabelable registers of MIPS is program-scope. 

Register $1 is reserved for assembler and thus should be relabeled for the whole program. 

Registers $26, $27 are reserved for kernel while they may be relabeled in application 

stand-alone system. The value of pointer registers, registers $28, $29 can be relabeled for the 

whole program since procedures recognize the same register names of pointer registers. The 

argument registers, register $4 - $7, which are used for arguments passing for procedures, and 

the return value registers, register $2 - $3 , which are used for return value from procedures, 

must be keep consistently across procedures; thus, they can be relabeled for the whole 

program. 
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Table 3-6：MIPS relabelabel registers with different relabeling scope 

Category Name Number Use

Relabelable

$at $1 Assembler temporary

$k0 - $k1 $26 - $27 Kernel registers

$gp $28 Global pointer

$sp $29 Stack pointer

$v0 - $v1 $2 - $3 Return value

$a0 - $a3 $4 - $7 Argument registers

$t0 - $t9
$8 - $15, 

$24 - $25
Temporary registers

$s0 - $s8
$16 - $23,

$30
Saved registers

Program-

scope

Procedure-

scope

 

In register relabeling method 2, we consider the relabeling of procedure-scoped registers 

and program-scoped registers together for power reduction. For program-scoped registers, the 

occurrence frequency of each register is collected by the same way as that mentioned in 

register relabeling method 1. As for the procedure-scoped registers, their occurrence 

frequencies have to be totaled from all procedures. Instead of summing up the frequencies of 

the same register numbers in different procedures, sum up the frequencies of the same rank 

order of occurrence frequency of register. Consequently, the relabeling of procedure-scoped 

registers and program-scoped registers can be together, and there are more procedure-scoped 

registers which may be relabeled into registers with less 1s after 4-to-6 SS encoding for more 

power reduction.  

Therefore, the frequencies of procedure-scoped registers are gathered in each procedure 

separately. Then, sort the frequencies of registers in each procedure, and sum up the 
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frequencies of the registers with same rank in different procedures. However, in MIPS 

registers, saved registers should not mix with temporary registers to avoid other procedures to 

use the values of saved registers without saving at procedure entry and restoring at procedure 

exit. Hence, saved registers and temporary registers should be relabeled separately. 

The steps of register relabeling method 2 are described as follows:  

� Gather the occurrence frequency of each register 

For procedure-scoped registers, gather the frequencies in each procedure separately. For 

program-scoped registers, gather the frequencies from the whole program. 

� Sorting and intermediate relabel within a procedure 

For temporary registers, from high occurrence frequency to low occurrence frequency, 

relabel them to TRn, where n is the rank order according to its frequency. For saved 

registers, from high occurrence frequency to low occurrence frequency, relabel them to 

SRn, where n is the rank order according to its frequency. 

� Sum up the frequencies of the same TRn/SRn of all procedures. 

� Sort TR/SR and program-scoped registers by their occurrence frequencies, and relabel 

them by the sorted order according to the relabeling register selection sequence. 

Figure 3-8 is an example for the relabeling steps of register relabeling method 2. 

Suppose that the instruction partition and the corresponding relabeling selection sequence are 

shown in Figure 3-4 (b) and Table 3-2, respectively. In Figure 3-8(a), a program has two 
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procedures, Proc. A and Proc. B, and the occurrence frequencies and categories of registers 

are given. Sorting and intermediate relabeling for temporary registers and saved registers 

separately in each procedure are shown in Figure 3-8 (b). Then, Figure 3-8 (c) shows the 

totals of the occurrence frequencies of the same rank of temporary registers and saved 

registers. In Figure 3-8 (d), sort the frequencies of TR/SR and program-scoped registers, and 

relabel them by the sorted order according to the register selection sequence. Finally, Figure 

3-8 (e) illustrates the program after register relabeling method 2. 

TR：Temporary registers
SR：Saved registers

PR：Program-scoped registers
 

r8：12

r9：10 TR

r12：8

r16：5

r20：6 SR

r18：8

Proc. A

r9：10

r10：8 TR

r14：7

r16：11

r17：12 SR

r21：6

Proc. B

r28：8

r29：28 PR

r31：21

Program
 

(a) Program before register relabeling 

r8：12

r9：10 TR

r12：8

r16：5

r20：6 SR

r18：8

Proc. A

r9：10

r10：8 TR

r14：7

r16：11

r17：12 SR

r21：6

Proc. B

r28：8

r29：28 PR

r31：21

r8：12→TR1

r9：10→TR2

r12：8→TR3

r18：8→SR1

r20：6→SR2

r16：5→SR3

r9：10→TR1

r10：8→TR2

r14：7→TR3

r17：12→SR1

r16：11→SR2

r21：6 →SR3
Program

 

(b) Sorting and intermediate relabeling 
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TR1：22

TR2：18

TR3：15

SR1：20

SR2：17

SR3：11

r28：8

r29：28

r31：21
 

(c) Sum up the occurrence frequencies of procedure-scoped registers 

r29：28

TR1：22

r31：21

SR1：20

TR2：18

SR2：17

TR3：15

SR3：11

r28：8

→ r1

→ r2

→ r4

→ r6

→ r8

→ r16

→ r24

→ r3

→ r5
 

(d) Sort the occurrence frequencies of TR/SR and program-scoped registers, and relabel them  

TR1 (r8)→r2

TR2 (r9)→r8

TR3 (r12)→r24

SR1 (r18)→r6

SR2 (r20)→r16

SR3 (r16)→r3

Proc. A

TR1 (r9)→r2

TR2 (r10)→r8

TR3 (r14)→r24

SR1 (r17)→r6

SR2 (r16)→r16

SR3 (r21)→r3

Proc. B

r28→r5

PR r29 →r1

r31→r4

Program
 

(e) Program after register relabeling 

Figure 3-8：An example of register relabeling method 2 
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Chapter 4 Simulation and Analysis 

Experiments have been carried out to evaluate the efficiency of our modified register 

relabeling method. In this chapter, benchmark programs are first introduced. Then, 

experimental methods which include the simulation environment, simulation method, and the 

simulated methods are presented. The last part of this chapter is the simulation results and the 

analysis of the results. 

4.1 Experimental Benchmarks 

 We carry out experiments for six benchmark programs to evaluate the efficiency of our 

design in power reduction. These six DSP and numerical-computation kernels which have 

been heavily applied in many embedded system products with deep submicron buses that 

always encounter crosstalk effect are collected as benchmark programs. Table 4-1 gives a 

summary of these benchmark programs. 
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Table 4-1：Benchmark programs 

Benchmark Description

fft Fast Fourier transform

sor Successive over-relaxation

lu Lower/upper triangular matrix decomposition algorithm

ej Extrapolated Jacobi-iterative method

mmul A matrix multiplication

tri Tri-diagonal system solver

 

4.2 Experimental Methods 

4.2.1 Environment 

We use MIPS32 instruction set architecture  in our experiments, and the experimental 

toolset used is the MIPS® SDE-Lite which builds the MIPS environment and generates the 

trace of each benchmark programs for the simulation of our method [14][16], [17]. Assume 

that the process technology is 90nm with the parameters based on ITRS 2004 Edition as 

shown in Table 4-2 [18]. 
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Table 4-2：Device parameters for 90nm technology based on the ITRS 2004 Edition 

V alueP aram eter

205nmW idth

205nmSpace

430.5nmT hicknes s

3.3
Dielec tric 

constant

398.5nmHeight

V alueP aram eter

205nmW idth

205nmSpace

430.5nmT hicknes s

3.3
Dielec tric 

constant

398.5nmHeight

 

The corresponding values of self-capacitance and coupling-capacitance could be taken 

from Predictive Technology Model (PTM) [19]. The bus length is assumed to be 14mm with 

1V supply voltage. Moreover, we designed a trace driven simulator that includes 4-to-6 SS 

encoding scheme and our modified register relabeling to estimate the number of bit transitions 

on instruction bus. 

4.2.2 Experimental Method 

The experimental flow that includes three sub-phases of simulation method is shown in 

Figure 4-1. By horizontal dotted lines, Figure 4-1 can be divided into three sub-figures 

representing three phases where start from Code generation and statistics phase and end with 

Result calculation phase.  

Each phase of our simulation method is described below： 

� Code generation and statistics phase：This phase first generates the program 

execution trace for each benchmark program by adopted MIPS SDE Lite version 

6.06.01 to build the MIPS ELF (executable and linkable format) image format. 
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Then, it scans the program execution trace to gather statistics of register usage 

counts for our modified register relabeling method. 

� Relabeling and statistics phase：The purposes of this phase are to relabel the register 

names of instructions according to the register usage count statistics, and generate 

the relabeled program execution trace. Then, scan the relabeled program execution 

trace to gather statistics of the probabilities of 0s of the remaining bits of register 

fields and other fields for Instruction Partition step. 

� Result calculation phase：The final phase includes the 4-to-6 SS encoding scheme, 

Instruction partition, and bit transitions calculator to evaluate the efficiency of our 

modified register relabeling methods. 
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Figure 4-1：Experimental flow 

4.2.3 Simulated Methods 

In our simulation, we evaluate and compare the power dissipation costs and the energy 

consumption of the following methods: 
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1. Original Register Relabeling：The power reduction technique is introduced in 

Chapter 2 [4]. We simulate this method to compare the results between it and ours. 

2. 4-to-6 Selective Shielding：This crosstalk-toggling free technique is introduced in 

Chapter 2 [10]. We simulate this method to compare the results between it and ours. 

3. 4-to-6 Selective Shielding with original Register Relabeling：We apply original 

register relabeling with the 4-to-6 Selective Shielding crosstalk-toggling free 

technique to compare the results between this combined approach and ours. 

4. 4-to-6 Selective Shielding with our modified Register Relabeling (Method 1)：This is 

our modified register relabeling method 1 that is applied for 4-to-6 Selective 

Shielding crosstalk-toggling free technique. 

5. 4-to-6 Selective Shielding with our modified Register Relabeling (Method 2)：This is 

our modified register relabeling method 2 that is applied for 4-to-6 Selective 

Shielding crosstalk-toggling free technique. 

4.3 Simulation Results and Analysis 

 The experimental results obtained from evaluating the power dissipation cost and energy 

consumption of the benchmark programs mentioned above are presented in this section. The 

energy consumption of the 4-to-6 SS encoder and decoder, and that of the bit transitions are 

first presented. The power dissipation cost and energy consumption of different techniques for 

each benchmark program are then evaluated. Finally, the effects of register usage frequency of 
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each benchmark program for various techniques are analyzed.  

4.3.1 Hardware Overhead Analysis 

For 4-to-6 Selective Shielding encoding scheme, the overhead of its encoder and decoder 

should be considered. From [10], the average energy consumption of the encoder and decoder 

of 4-to-6 Selective Shielding with 90nm TSMC technology library is 3.47 pJ for each 4-to-6 

Selective Shielding and Transition Signaling encoding and decoding. The simulation 

environment has been described in Section 4.2.1. Thus, the corresponding values of 

self-capacitance and coupling-capacitance from Predictive Technology Model (PTM) [19] are 

0.486 pF and 1.501 pF, respectively. According to the switching power equation introduced in 

Section 2.1, a single self-transition consumes 0.243 pJ, a single crosstalk 1-bit transition 

consumes 0.752 pJ, and a crosstalk-toggling transition consumes 3.01 pJ. 

4.3.2 Energy Consumption of Different Techniques 

 The energy consumption by various techniques for each benchmark program is evaluated 

and presented in this section. There are five techniques simulated: original register relabeling 

(ORR), 4-to-6 Selective Shielding (4-to-6 SS), 4-to-6 SS with original register relabeling 

(4-to-6 SS + ORR), 4-to-6 SS with our modified register relabeling method 1 (4-to-6 

SS+MRR (Method 1)), and 4-to-6 SS with our modified register relabeling method 2 (4-to-6 

SS+MRR (Method 2)).  
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From Figure 4-2 to 4-7, the numbers of bit transitions of different types and techniques 

are shown for each benchmark program respectively, and Figure 4-8 shows the total number 

of bit transitions of different types. After 4-to-6 SS encoding scheme, the number of 

crosstalk-toggling transitions is guaranteed to be “0”, the number of self transitions is less 

than that of the un-encoded instruction bus, while the number of crosstalk 1-bit transitions is 

more than that of the un-encoded instruction bus.  
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Figure 4-2：The number of bit transitions of different types and techniques (fft) 
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Figure 4-3：The number of bit transitions of different types and techniques (sor) 
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Figure 4-4：The number of bit transitions of different types and techniques (lu) 
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Figure 4-5：The number of bit transitions of different types and techniques (ej) 
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Figure 4-6：The number of bit transitions of different types and techniques (mmul) 
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Figure 4-7：The number of bit transitions of different types and techniques (tri) 
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Figure 4-8：The total number of bit transitions of different types and techniques 
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Figure 4-9 shows the energy consumption of each benchmark program for different 

techniques, respectively. Note that the results are all normalized to that of the un-encoded 

instruction bus. Figure 4-9 shows the energy consumption of all techniques while considering 

the hardware overhead. Experimental results indicate that the average energy consumption of 

ORR is even less than that of 4-to-6 SS encoding scheme and 4-to-6 SS with original register 

relabeling. Recall that the 4-to-6 SS encoded bus is crosstalk-toggling free and is aimed at 

reducing data transmission delay. The average energy consumption of 4-to-6 SS encoding 

scheme is 107.4% which is even more energy consuming than un-encoded instruction bus. 

The average energy consumption of 4-to-6+ORR is 114.1%. It is clear that original register 

relabeling is not suitable for 4-to-6 SS encoding scheme. The average energy consumptions of 

4-to-6 SS+MRR (Method 1) and 4-to-6 SS+MRR (Method 2) are 95.6% and 95.3%, 

respectively. Compared with 4-to-6 SS encoding scheme, 4-to-6 SS+MRR could save energy 

without extra hardware overhead and performance loss.  
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Figure 4-9：Energy consumption of different techniques 

Figure 4-10 shows the average energy consumption of different bit transition types and 

encoder/decoder hardware of the benchmark programs for different techniques. In Figure 4-10, 

although the energy consumptions by bit transitions of all 4-to-6 SS are less than that of 

un-encoded instruction bus, the energy consumption of the encoder/decoder hardware 

constitutes 23.2% compared to the total energy consumed by the un-encoded instruction bus.  

Thus, the energy consumptions of encoder and decoder cannot be ignored. 
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Figure 4-10：Average energy consumption of different techniques with each portion of 

energy consumption of transition and/or hardware 

Moreover, the difference in energy consumption between 4-to-6 SS+MRR (Method 1) 

and 4-to-6 SS+MRR (Method 2) are quite small. The register occurrence frequencies of these 

two techniques deserve further discussions and will be described in the next subsection. 

4.3.3 Effects of Register Occurrence Frequencies 

The register occurrence frequencies of different benchmark programs are collected. In 

the following figures, the register occurrence frequency is normalized to the total register 

occurrences in the trace of each benchmark program.  

From Figure 4-11 to 4-16, the register occurrence frequencies and the rank order of 

register occurrence frequencies with both register relabeling methods of ej, lu, fft, sor, tri, and 
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mmul programs are shown respectively, and the average values is shown in Figure 4-17.  

For MIPS, in part (a) of these figures, it is clear that the register occurrences of 

temporary registers (register $8 - $15, $24 - $25) and saved registers (register $16 - $23, $30) 

are highly skewed. The reason is that MIPS compiler usually uses the smaller register 

numbers of a register category when they are available.  

In part (b) of these figures, the register occurrence frequencies are sorted. The register 

occurrence frequencies shown as the blue dotted line for our register relabeling method are 

gathered from the whole program. The red solid line is for our register relabeling method 2. 

The relabeling scopes of register relabeling method 2 are program-scope and procedure-scope. 

The frequencies of program-scoped registers are gathered by the same way as register 

relabeling method 1, while the frequencies of procedure-scoped registers are gathered from 

each procedure separately, then, sort the frequencies in each procedure, and sum up the 

frequencies of the same rank registers from all procedures. However, the blue dotted line and 

the red solid line are very similar since the frequently occurred registers of a register category 

in different procedures are usually the same as the frequently occurred registers of the same 

category in the program. Therefore, the register occurrence frequencies of both methods are 

quite close and result in the small difference in energy consumption between these two 

methods.  
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Figure 4-11：(a) Register occurrence frequency (b) Rank order of register occurrence 

frequency with both register relabeling methods (ej) 
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Figure 4-12：(a) Register occurrence frequency (b) Rank order of register occurrence 

frequency with both register relabeling methods (lu) 
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Figure 4-13：(a) Register occurrence frequency (b) Rank order of register occurrence 

frequency with both register relabeling methods (fft) 
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Figure 4-14： (a) Register occurrence frequency (b) Rank order of register occurrence 

frequency with both register relabeling methods (sor) 
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Figure 4-15： (a) Register occurrence frequency (b) Rank order of register occurrence 

frequency with both register relabeling methods (tri) 
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Figure 4-16：(a) Register occurrence frequency (b) Rank order of register occurrence 

frequency with both register relabeling methods (mmul) 
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Figure 4-17：(a) Register occurrence frequency (b) Rank order of register occurrence 

frequency with both register relabeling methods (Average) 
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Chapter 5 Conclusion and Future Work 

While 4-to-6 SS encoding scheme results in being crosstalk-toggling free with an increase 

in power consumption, 4-to-6 SS encoding scheme with our modified register relabeling 

method is a crosstalk-toggling free and achieves a power reduction at the same time. 

Furthermore, we also discover that combining with 4-to-6 Selective Shielding encoding 

scheme might reduce the complexity of register relabeling algorithms. While the original 

register relabeling algorithm considers the relationship between register fields of consecutive 

instructions, our modified register relabeling method considers only the register number itself, 

which is more straight-forward than the original one. 

Simulation results show that the overall average energy consumption of 4-to-6 SS 

encoding scheme with our modified register relabeling is 95.3%, 12.1% less than 4-to-6 SS 

encoding scheme and 18.8% less than 4-to-6 SS encoding scheme with original register 

relabeling.  

There are several related researches deserving further discussions. On the one hand, 

associating other compiler techniques such as register allocation with our design may be able 

to further reduce the overall power consumption with crosstalk-toggling free. On the other 

hand, adjusting the scope of register relabeling to a smaller one such as extended basic-block 

or basic-block level might provide more opportunities to use the register with less 1s after 

4-to-6 SS encoding scheme result in fewer transitions for power reduction.  
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Therefore, these techniques must be analyzed deeply and thus can be modified to suitable 

crosstalk-toggling free bus encoding schemes to further reduce power consumption. 
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