KE

W 2

il
=

%
A

-
2
4B

W+ X

& B U LR X I A R RPE T AR A7 5
FHAZ ARV’ /JIL«EF B #E

Power Reduction by Register Relabeling for
Crosstalk-Toggling-Free-Coded Instruction Bus

I T R SRt
BEHR T BEFE HK

FERBEBE ht+ h&+— A

1 B PR L

LBz 55 BRBEP AR YA S ETHAZ LUK
D ERHEIE

Power Reduction by Register Relabeling for

Crosstalk-Toggling-Free-Coded Instruction Bus

Student : Chun-Han Lin
BaHE Advisor : Jean Jyh-Jiun Shann
xR @ KR E
ER (N e S - S
o X

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science and Engineering

Novermember 2010

Hsinchu, Taiwan, Republic of China

TERE L+ A F +— A

LAREFUABCIELERGOREFTHAYES ENREUNRIER

e #E

N SoL wEHRERE HE

I REKE G AR R TAZIR T ATFR L

e

W E IR Bk 8 (deep submicron level) ¢ crosstalk f& 7% 3= #ok R A2 2

W

CER

EAMEPHZERTER - ME RGN LERGE LA ERIE I GHERF > B2 B

crosstalk-toggling transitions > FF R BER R ZE P L 94T LT R E RO FHEE o

RAEME S AR AR EH%T (synchronous circuit designs) F » F| F 445 & X A%

Bk LA X 2 PR B AL B IR RT IR DB E LR - N AT A &

—F R K E

i

BEWXEERAMRA R B IEMLTE I8 Selective Shielding [7 Bk 4545 7 7% TF > #

Y17 & EMART (register relabeling) i — ¥ K3 2 BRI X AT - £ R F L3 A

SRR E KRB AR AAEBRAOART > BRI AKRGE R LERIEFHLTY

95.3% - $b4h - #1 Selective Shielding F/E48%% > 45 L BAHE LT H—F RV 12.1%8

#HE BT KGRI T AR5 R Selective Shielding # ik & & & L8 b2 5 M i

Y HALE -

Power Reduction by Register Relabeling for

Crosstalk-Toggling-Free-Coded Instruction Bus

Student : Chun-Han Lin Advisor : Jean Jyh-Jiun Shann
Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

With process technology scale down to the deep submicron level, crosstalk effects are
increasingly important considerations especially when adjacent bus lines switch in opposite
directions (so called crosstalk-toggling transitions) on deep-submicron buses.
Crosstalk-toggling transitions increase not.only power consumption but also data transmission
delays. While many bus encoding schemes have been proposed to totally avoid
crosstalk-toggling transitions thus reducing data transmission delays in synchronous circuit
designs, opportunities still exist to additionally reduce power consumption.

Therefore, we propose a register relabeling algorithm to further reduce the instruction
bus power consumption based on the existing Selective Shielding bus encoding scheme which
guarantees the encoded bus being crosstalk-toggling free. With no extra hardware
requirements and performance loss, the average energy consumption of our design is 95.3%
compared with an un-encoded instruction bus using 90nm technology with a 14mm bus
length, and is 12.1% less than that of an instruction bus with Selective Shielding coding. In
summary, our scheme preserves the crosstalk-toggling free characteristic of the Selective

Shielding method and saves more energy.

Bt
BORRGH AN T ERBHIR ARG NIRRT T ERE Y 2

HWMEMERE TSR EFLRIE FRPA - BRI MR LA R4

FIRRHATREN A —MRER S SFRREFTAWERAT

s R %

E‘\

MRS BT REOB LRSS EE R PR AEM 7 @RI H FARIL &

W& TR BMEABRAL FOEM > 2 RRARB I DB REZ b - BEH RAHE
BREMERIE ~ R RS Dk RAIRI > RERATOTHME BR—ANFAR -

RAE RHBROEA R BROBRBARRES > LARRENA T BBROA B

o B Rt

wi#y 2010. 11

Table of Contents

B B et e et — e e ——————tee et e ——————————eeeeereaaa———————taeeeeraaaa————aaeeeseeaaarane i
AADSTIACT ..ttt et h e et e h e et h e e et e eeh e e bt e nh b et e bt e bt e naeeenbeenaee il
L3 & USROS SRUPRURRPt iii
TaAbIE Of CONMEENLS ..c...eeiuiieiieeiiteit ettt ettt ettt e bt e st e et e st e e bt e sabeebeesaneebee e iv
LIST OF FIGUIES......ceiniiieiitie ettt ettt et e et e st eeebbeesateesabneenane vi
Chapter 1 INrOAUCHIONiieiiieeciie ettt ettt et e et e e et eesaeeestaaeessbeeessaeeessseesnsneesnseeennseens 1
1.1 Importance of Low POWer DeSi@n........ccovuiiiiiiiiiiiiiiiiciiiccieccee e 1

1.2 Sources of Power Consumptions on BUSEScceeeviiiiriiiiiniieeniieciee e 1

1.3 Effects of Crosstalk-Toggling transitionsccueeeiieeriiieeniieeniee e 3

1.4 ReSearch MOtIVALIONc.ueiuieiitiiti e e setsbr et eat et eat et e st et e st e et e st e ebeesaeeeneees 3

1.5 Research Objective and Approachesc..ooioiveniiiiiiiiieieee e 4

1.6 Organization of This TheSiS......cciiriiiiiieciariiie e 5
Chapter 2 Background and Related WOrKccoeoiiiiiiiiiiiiiiiieceeeceeeeeeeeeee e 6
2.1 Analytical Model of Power ConSumption...........ccceceuveerieeenieeenieeenieeeereeenreesneeennnes 6

2.2 Previous Crosstalk-Toggling-Free Methods for Buses............ccooveeviiiiniieiniieeniienne. 8
2.2.1 Simple Shielding TEChNIQUE........ccccuteriiieeiiieeiie ettt 8

2.2.2 VICtor’s MEthOd.......cocviiiiiiiiiiiiiecccee et 9

2.2.3 FIbONACCT COINE....ceiuvieiiiaiiiiiieiieeite ettt ettt sttt 9

2.2.4 Selective Shielding Technique...........coccueeriiiiiiiiiniieieeeeeeeeeen 10

2.2.5 Comparison of Different Approaches...........cccccveevveeeniieenieeeiieeeieeeiee e 11

2.3 Previous ReSEarchesooueoiiiiiiiiiiiiiiceececece e 11
2.3.1 Selective Shielding Crosstalk-Toggling-Free Techniquec.cccceevveennnen. 12

2.3.2 4-to-6 Selective Shielding Crosstalk-Toggling-Free Technique..................... 15

2.3.3 Register Relabeling Power Saving Technique..........ccccceevieiiieeniiiiieniceneene. 19

2.3.4 Summary of Previous Researchesccoccceviiiniiiiniiiiiiiiiceiceeeeen 22

Chapter 3 PropoSed DESIZNcceeviiiiiieiiiie ettt sieeeeteeeste e e ebeeeeaeeesaeeeareeensseesnseeennnes 24
3.1 SYSEIM OVETVIEW...ceiuiiiiiiiiiieiiieeeiite ettt ettt ettt et e e st e et e e e it e s it e e sbteesabeeenans 24

3.2 ODSEIVALIONS ...ueeniieiiieite ettt ettt et ettt et e st e s bt e et esbeesabeesbbeeabeessbeeabeesaeeenbeenaee 25

3.3 InStruction Partitioncocueeriiiiiiiieriienieete ettt 28

3.4 Modified Register Relabeling...........cceeeviiiiiiiiiiiieiiecieece e 30
3.4.1 Register Relabeling Method 1.........coooiiiiiiiiiiiiiiiieicceeeeee e 34

3.4.2 Register Relabeling Method 2.........coooviviiiieiiiieeiieeeieeeeeeee e 35

Chapter 4 Simulation and ANALYSIScoorieiiiiiiiiiieiie ettt e e 42
4.1 Experimental Benchmarks...........ccccuiiiiiiiiiiiiiiiiciccece e 42

4.2 Experimental Methods.ooour i it ettt 43
4.2.1 ENVITONMENT ...eoitiiniiiiiie e atieait sttt et eseteeiteesieesite e bt e sabeebeesabeebeesaeeebeenane 43

4.2.2 Experimental Method .i.....coiiiiii e 44

4.2.3 Simulated Methodsc.cooiiiiiie e 46

4.3 Simulation Results and ANalySiscoceeeriieiniiiiniieeieeeeeecceeeee e 47
4.3.1 Hardware Overhead ANalYSiScccccvieriiiieriieeiiieeiieeeriee e eiveeeeeeeenee e 48

4.3.2 Energy Consumption of Different Techniquescccccceevviiiriiiiniieinieennne. 48

4.3.3 Effects of Register Occurrence Frequenciescceeevveeerieeereeenieeencneeennne 55

Chapter 5 Conclusion and Future WOrKcoooiiiiiiiiiiiiiniiiiceeeeeee e 64
RETEIEINCE ...ttt ettt ettt e st st esaaeens 66

List of Figures

Figure 1-1 @ Self and coupling-capacitance for BUSES...........cccuveeriieeriiieeiiieeieeeiiee e 2
Figure 1-2 : Examples of a crosstalk 1-bit transition and a crosstalk-toggling transition......... 3
Figure 2-1 : The examples of Fibonacci encoding from f7 t0 fr....ccceeevveeevieeeniieeniieeeieeeiieens 10
Figure 2-2 : Results of TS encoding scheme for Bus; = Bus.; © Datay......c.cccceeevveeruieenneenn. 13
Figure 2-3 @ System oVerview Of SS......ooo ittt 13
Figure 2-4 : SS encoding/decoding algorithmccooriiiiiiiiiiiiiiiiieiieeeeeeeeeeee e 15
Figure 2-5 : SS encoding/decoding eXamplescccveeriieeriieeniiieenieeeieeeeee e eieeesiee e 15
Figure 2-6 : System overview Of 4-10-0 SSooiiiiiiiiieeeee e 16
Figure 2-7 : The 2-bit data and the relative 3-bit SS code-words..........ccccveevvveerrieeniieenieeens 16
Figure 2-8 : An example of the worst case of bit-SWap Process.........ccceevuveerviieeriiieeniieeeniieeene 17
Figure 2-9 : An example of the bit-swap process inter adjacent code-words..........cc..cceueeneee. 18
Figure 2-10 © 4-to-6 SS encoding/decoding eXamples............ccceevueerriiernieeniieeniieenieeenieeene 19
Figure 2-11 : An example of code fragment............coccveieiiieeriieeniiie e 20
Figure 2-12 © (a) Example frequency distribution of register pairs (b) RHG from (a)............ 21
Figure 2-13 : (a) Register relabeling algorithm (b) RHG after register relabeling.................. 22
Figure 3-1 @ OVErview Of SYSIEIMccouiiiiiiiiiiieeiiie ettt ettt e sttt eesbee e 24
Figure 3-2 : Flowchart of 4-t0-6 SS data proCesSING........cceerveeeriieeerieeerieeeireeeireeereeesveeenns 26
Figure 3-3 : An example of 4-t0-6 SS COAING......c..eeiiiiiiiiiiiiiiiieeeeeeeeeee e 27

Figure 3-4 :

Figure 3-5 :
Figure 3-6 -

Figure 3-7 :

(a) MIPS instruction formats (b) Partition of register fields and bits on the same

POSTEIONS. .ttt eueiieetieeeiieeeiteeetteeeteeesteeeesbeeessseeesseeesseeensseeensseeensseeansseesnseeennseenns 28
An example of classification Of TEZIStErceeeviviieriiieeriie et 31
Flowchart of our modified regsiter relabeling algorithm............cccocveeniiinnien. 34
Program-scoped relabeling V.S. Procedure-scoped relabeling..............ccceeuneene. 36

vi

Figure 3-8 :

Figure 4-1

Figure 4-2 :
Figure 4-3 :
Figure 4-4 -
Figure 4-5 :
Figure 4-6 :
Figure 4-7 :
Figure 4-8 :

Figure 4-9 :

An example of register relabeling method 2...........cccceeviiiiiiiiiiiiiniiiinieiee 41
D EXPerimental flOW........oooiiiiiiiiciie e 46
The number of bit transitions of different types and techniques (fft)................... 49
The number of bit transitions of different types and techniques (sor)................. 50
The number of bit transitions of different types and techniques (lu)................... 50
The number of bit transitions of different types and techniques (€j)................... 51
The number of bit transitions of different types and techniques (mmul) 51
The number of bit transitions of different types and techniques (tri).................. 52
The total number of bit transitions of different types and techniques 52
Energy consumption of different techniquesccccceeviveeniiieeniieeiieecieeeeeee 54

Figure 4-10 : Average energy consumption of different techniques with each portion of energy

Figure

Figure

Figure

Figure

Figure

Figure

Figure

4-11

4-12

4-14 -

4-15 -

4-17

consumption of transition and/or hardwarecccceeeviieiiiiennieeniiieenieeenn 55
. (a) Register occurrence frequency (b) Rank order
frequency with both register relabeling methods (€7)......cccccevveerieriiencieineennens 57
. (a) Register occurrence frequency (b) Rank order
frequency with both register relabeling methods (1u).........coocveeriieiniiiiniennneen. 58
. (a) Register occurrence frequency (b) Rank order
frequency with both register relabeling methods (fft)ccccevveeiiiniiinenncn, 59
(a) Register occurrence frequency (b) Rank order
frequency with both register relabeling methods (SOT)........coceevvervieniiiineennens 60
(a) Register occurrence frequency (b) Rank order
frequency with both register relabeling methods (tr1)ccevveerieeiiencieeneennens 61
. (a) Register occurrence frequency (b) Rank order
frequency with both register relabeling methods (mmul)c..cccceeeiiiienice, 62
- (a) Register occurrence frequency (b) Rank order of register

frequency with both register relabeling methods (Average)ccccceceeveennnnne 63

vii

List of Tables

Table 2-1 : Fibonacci encoding algorithm............c.oooiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 10
Table 2-2 : Comparison of different approachescccccveeviieeriiieeriieerieeeieeeeeee e 11
Table 2-3 : The 4-bit data and relative 6-bit cOde-WOrds..........coovueerviieiiieeniiienieerieeeieeene 18

Table 3-1:4-bit data sorted by the number of Os and their corresponding 4-to-6 SS code-words

.. 29
Table 3-2 : Relabeling register Selection SEQUENCE.........cccuveerveeerieeerieeerieeeireeeireeeieeesaeeenes 31
Table 3-3 © MIPS regiSters CateZOTIZAtIONeeeruuiiiriieeriieeerieeeriieeeiteeeieeesiteesbteesbeeesabeeeas 32
Table 3-4 : Relabeling register selection sequence for MIPS ISAccccooviiieiiiieniiieniieens 33
Table 3-5 : An example of register relabeling method 1ccocccoeiiiiiiiiiniiiniee 35
Table 3-6 : MIPS relabelabel registers with different relabeling scope.........cccceeeveeveiieennnens 38
Table 4-1 © Benchmark programscoiiie e oottt st esbee e 43
Table 4-2 : Device parameters for 90nm technology based on the ITRS 2004 Edition........... 44

viii

Chapter 1 Introduction

In this chapter, we first introduce the importance low power design, and, then, discuss
the sources of power consumption on bus and the effects of crosstalk-toggling transitions. The
research motivation and objective are then introduced. The organization of this thesis is

elaborated in the end.

1.1 Importance of Low Power Design

As the complexity of system-on-chip (SoC) design increases, power consumption is
becoming one of the most important design issues especially for embedded systems due to
heat reduction, cooling cost reduction, longer cell life, and etc. In addition to these problems,
energy efficiency has become an important characteristic of product quality. In mobile devices
such as cellular phone and other handheld devices, energy efficiency further determines the
usability and acceptance of these products. Since these products are battery-powered and the
required usage amounts are increasing rapidly, low power design for these systems becomes a

very important research topic.

1.2 Sources of Power Consumptions on Buses

The power consumption of bit transitions on bus lines is one of the major sources to the

total power consumption. The power consumption by bit transitions on bus lines comes from

charging and discharging the capacitance for data transmission. The bit transitions can be
classified into self-transition and coupling-transition of capacitances [1]. As CMOS processes
scale down to the deep submicron level, both self-capacitance and coupling-capacitance needs
to be taken into account. Capacitance between a bus line and ground is called self-capacitance
(Cy), and capacitance between adjacent bus lines is called coupling-capacitance (C.). Both

capacitances are shown in Figure 1-1.

G

T c_|I

C

c q I
Bus lines %
C

C. S :S —
C=Self-capacitance
C.=Coupling-capacitance

Figure 1-1 : Self and coupling-capacitance for buses

Self-transitions are bit transitions on each individual bus line which make

self-capacitance charging and discharging. Coupling-transitions are bit transitions between

adjacent bus lines that cause a voltage level difference and thus cause coupling-capacitance

charging and discharging. Coupling-transitions can be subdivided into two types, crosstalk

1-bit transitions and crosstalk-toggling transitions. Moreover, crosstalk 1-bit transitions occur

in the cases when only one of the bus lines switches between adjacent bus lines, for examples

{00 < 01}, {00 < 10}, {11 < 01}, {11 <> 10}. Crosstalk-toggling transitions occur when

both of the adjacent bus lines switch to the opposite directions, for examples {01 <> 10}. And

the remaining cases, for examples {00 < 00}, {11 < 11}, {00 < 11}, do not trigger any
activity on coupling-capacitance. Figure 1-2 shows the examples of a crosstalk 1-bit transition

and a crosstalk-toggling transition.

0—0 1—0
—— — —

0—1 0—1
Crosstalk 1-bit-transitions ~ Crosstalk-toggling transitions
{00 — 01} {01 — 10}

Figure 1-2 : Examples of a crosstalk 1-bit transition and a crosstalk-toggling transition

1.3 Effects of Crosstalk-Toggling transitions

With process technology moving toward: the deep submicron level, coupling-capacitance
between adjacent bus lines is becoming ever more prominent. The ratio of
coupling-capacitance to self-capacitance increases as process shrinks [2]. Crosstalk-toggling
transitions cause not only more power consumption but also longer data transmission delays.
The data transmission delay from crosstalk-toggling transition is at least twice of that of other
transitions [3]. As regards power consumption, the power consumption due to
crosstalk-toggling transitions is at least four times of that of other transitions [1]. Thus, the

effects of crosstalk-toggling transitions are much more serious than that of other transitions.

1.4 Research Motivation

Since the effects of crosstalk-toggling transitions are much more serious than that of

others, many bus-encoding schemes have been proposed to totally avoid the
crosstalk-toggling transitions. The purpose of crosstalk-toggling-free bus encoding schemes is
to reduce data transmission delay in synchronous circuit designs. However, opportunities still
exist in previous crosstalk-toggling-free bus encoding schemes to reduce total power
consumption on buses at the same time with crosstalk-toggling free.

The power consumption on instruction bus constitutes great portion of total power
consumption on buses since a processor typically accesses instructions every instruction cycle
and the bit patterns of instruction bus is less regular than that of its address bus. However,
instructions are compiled at static time. There are opportunities to deal with instructions in a
post-compilation phase. For example, a typical ISA exhibits regularity that the register fields
are in fixed positions within the instruction encoding, and the register fields constitute a
significant part of an instruction word. Choosing registers appropriately may reduce the power
consumption of instruction bus [4]. Therefore, it is possible to reduce the power consumption

by generating instructions which consume less power.

1.5 Research Objective and Approaches

In this thesis, instructions are handled at static time to further reduce power consumption
for a crosstalk-toggling-free-coded instruction bus with no extra hardware and performance
loss. This goal is achieved by exploiting the characteristics of code-words on

crosstalk-toggling-free encoded bus. We figure out the power consumptions on

crosstalk-toggling-free encoded instruction bus that depend only on the number of Is of
code-words. Thus, the instructions which have less 1s after crosstalk-toggling-free bus
encoding are generated. Moreover, register relabeling is used for relabel registers of
instructions, and our modified register relabeling method can consider only the register
number itself. Furthermore, the relabeling scope may be a smaller one that provides more
opportunities to reuse register numbers with less 1s after crosstalk-toggling-free bus encoding
resulting in fewer transitions. Consequently, our approaches will be suitable for
crosstalk-toggling-free-coded instruction bus so as to reduce the bit transitions on instruction

bus for power reduction.

1.6 Organization of This Thesis

The remaining chapters of this thesis are organized as follow. Chapter 2 introduces the
source of power consumption and analytical model of delay and discusses previous related
researches on crosstalk-toggling free and power reduction techniques for instruction bus. In
Chapter 3, we illustrate our power reduction techniques for instruction bus. The experimental
environment, simulation results and relative analysis are presented in Chapter 4. Finally, we

summarize our conclusions and future works in Chapter 5.

Chapter 2 Background and Related Work

The main purpose of this chapter is to provide the necessary background for the concepts
and methods presented in the following chapters. First, we will introduce the analytical model
of power consumption for deep submicron buses. Then, a survey of the related approaches for

crosstalk-toggling free bus encoding scheme and bus power reduction will be presented.

2.1 Analytical Model of Power Consumption

There are three major sources of power consumption in digital CMOS circuits [5]. The
first one is the switching power for charging and discharging the circuit node capacitances.
The second one is short-circuit power due to the direct-path short circuit current arises when
both the NMOS and PMOS transistors are active simultaneously, and then conduct current
directly from supply to ground. Finally, leakage power, which can arise from substrate
injection and sub-threshold effects, is primarily determined by fabrication technology

considerations while we will not discuss it [6].

In this thesis, we focus on reducing the switching power for charging and discharging the

capacitances. The equation for the total power consumption of switch power listed as follows:

[1]

P

switching

=P +F,
=ST-C, -V, +XTTr-C. -V, +4XTTg -C.-V,,
=(ST+A-XTTr +41-XTTg)-C, -V, , (1)

,where the first term, P, represents the switching power of self-transitions; the second term,

P

c?

represents the switching power of coupling-transitions that included crosstalk 1-bit
transitions and crosstalk-toggling transitions where Cs is the self-capacitance, C¢ is the
coupling-capacitance, Vy, is the supply voltage, A is equal to Cc / Cs, ST is the total
number of self-transitions, X77r is:the total number of crosstalk 1-bit transitions, and

XTTyg is the total number of crosstalk-toggling transitions.

Low power design is to minimize transitions, capacitances, and V,,;. Once the technology
process has been chosen, capacitances will be decided. From the power equation, decreasing
the Vg4 factor can be an effective way for power dissipation of switch power. However, the
supply voltage is usually determined by the system and technology consideration, and
decreasing V;; will increase the propagation delay consequently. Finally, the remaining
important factor is the transitions. Reducing the number of bit transitions per transaction may
reduce the number of capacitances needed to be driven. Bus encoding is a well-known

technique to encode the contents of a bus to reduce the total bit transitions. Consequently, the

equation of power dissipation cost (PDC) function can be defined as follows :

PDC =ST+A-XTTr+4A4- XTTg (2)

In this thesis, minimizing the PDC function is the goal of our proposed methods. For

crosstalk-toggling-free bus encoding scheme, X7Tg is guaranteed to be “0”, and, thus, our

objective is to reduce ST and XTTr as many as possible for power reduction.

2.2 Previous Crosstalk-Toggling-Free Methods for Buses

Many methods have been proposed to totally avoid crosstalk-toggling transitions to
reduce transition delays in synchronous. circuit design. We briefly describe some of these

techniques and discuss the reason why we focus on one of them.

2.2.1 Simple Shielding Technique

The simplest method to avoid crosstalk-toggling transitions is the simple shielding
technique, where a shield line is inserted between every pair of adjacent bus lines [7]. The
shield lines have no signal transitions, and, thus, crosstalk-toggling transitions are avoided.
No encoder and decoder are required, but n-1 extra bus lines are needed for n-bit bus, and,
thus, double the area used by the bus. When the bus is routed using scare top-level metal

resources, double area is an unacceptable consequence [8].

2.2.2 Victor’s Method

From the concept of simple shielding technique, Victor’s method provides a theoretical
framework to generate crosstalk-toggling free code-words [8]. As compared to 2n-1 bus lines
required by the simple shielding technique, Victor’s method proofs that the lower limit on the
number of required bus lines is Llogg(fm)J for a n-bit bus, where f,, is the mth Fibonacci
number, for example, it requires 46 bus lines for 32-bit bus. However, it is hard to generate
the crosstalk-toggling-free code-words due to the lack of generalized procedure to generate

the code-words.

2.2.3 Fibonacci Coding

Fibonacci coding scheme is based on the theoretical framework of Victor’s method and
gives a recursive procedure to generate code-words [9]. The same number of bus lines,

Llogg(fm)J, is required as Victor’s method for n-bit bus.

Table 2-1 shows the encoding algorithm of Fibonacci coding, and Figure 2-1 shows the
examples from f; to f;. In Fibonacci coding, let a,a,.1 -+ axa; is an m-bit
crosstalk-toggling-free Fibonacci code-word. The decimal value will be a,, x Fib(m) + a,.
x Fib(m-1) + ... + ay x Fib(2) + a; x Fib(1), where Fib(i), 1 < i < m, is the i"

Fibonacci number.

Fibonacci coding scheme gives a recursive procedure to generate code-words. However,

the larger data width, the higher gate delay of the corresponding encoder and decoder will be.

Table 2-1 : Fibonacci encoding algorithm

fi=10,1}
if mis odd
fo.,={0xIVxe F,}Uu{ll ylVliye f,}

else
foor =100 xIVOxe f,}uf{lylVye f, 1}

Jfi | L2 J3 J4
1 11211 3211
0] 00| 0O0O0 00O00O0
1 01 001 0001
11 1 00 0100
1.0u1 0101
1.1 0111
1100
1101
1 111

Figure 2-1 : The examples of Fibonacci encoding from f; to f;

2.24 Selective Shielding Technique

The concept of Selective Shielding comes also from the simple shielding technique. It is
shown that if the code-words may avoid adjacent 1s data pattern, the crosstalk-toggling
transitions may be avoided after Transition Signaling encoding scheme. Thus, Selective
Shielding guarantees that there is no adjacent 1s in coed-words, and the required bus lines are

3n/2 for n-bit bus.

4-t0-6 Selective Shielding is an extension from Selective Shielding. The concept of

10

4-t0-6 Selective Shielding is also to avoid adjacent 1s in coed-words, and 3n/2 bus lines are
required as well for n-bit bus. The difference between Selective Shielding and 4-to-6
Selective Shielding is that 4-to-6 Selective Shielding partitions data into several fields and
may encode all fields at the same time. Hence, the gate delay of encoder and decoder of 4-to-6

Selective Shielding is much less than that of Selective Shielding.

2.2.5 Comparison of Different Approaches

Table 2-2 shows the comparison of these above approaches. Considering the required
bus lines and the coding delay of encoder and decoder, we choose 4-to-6 Selective Shielding
in our method. Therefore, the detail description of Selective Shielding and the extension,

4-t0-6 Selective Shielding, will be introduced in the next section.

Table 2-2 : Comparison of different approaches

Approaches # of bus lines Delay of Delay of
(for n-bit bus) required Encoder Decoder

Simple Shielding

Victor’s Method = (<) 3n/2 N/A N/A
Fibonacci Coding = (<) 3n/2 High High
Selective Shielding 3n/2 Medium Medium
4-t0-6 SS 3n/2 Low Low

2.3 Previous Researches

Two previous researches of crosstalk-toggling-free bus encoding schemes, Selective

11

Shielding (SS) encoding scheme [10][11] and 4-to-6 Selective Shielding (4-to-6 SS) encoding
scheme [10], and one previous research for reducing the switching activities on buses, register

relabeling [4], are introduced in the following subsections.

2.3.1 Selective Shielding Crosstalk-Toggling-Free Technique

The goal of Selective Shielding (SS) encoding scheme is to avoid crosstalk-toggling
transitions on bus by using n/2 extra bus lines for n-bit bus [10][11]. The basic idea of SS
comes from Transition Signaling (TS) encoding scheme [12]. The encoding of TS encoding
scheme is to perform an XOR operation on the n-bit previous bus value (Bus,.;) with the n-bit
current data (Data,) and transmit the result as the n-bit current bus value (Bus;), that is, Bus; =
Bus.; © Data;. In decoding, get the ‘current data (Data,) by performing XOR operation on
the previous bus value (Bus..;) with the current bus value (Busy), i.e., Data; = Bus,; © Bus..
It is observed that only when the current data has adjacent 1s data pattern, a crosstalk-toggling
transition may be generated on a TS encoded bus. The results of TS coding for all
combinations of Bus,.; and Data; are shown in Figure 2-2. Since crosstalk-toggling transitions
occurred on adjacent bus lines, Figure 2-2 shoes only 2 bits for each of the previous bus value
(Busi.;), the current bus value (Bus;), and the current data (Data;). All the possible
combination of the 2-bit Bus,.; are shown on the rows, all the possible combination of the
2-bit Data; are shown on the columns, and the results of the 2-bit Bus; (= Bus..; @ Data;.) are

shown in the matrix. It is clear that only when the current data has “11” data pattern, the

12

previous bus value and the current bus value may cause a crosstalk-toggling transition.

Bus,; : previous bus value i
Data, : current data i
1
1
1
1

Bus, : current bus value

Data,
Bus,;_ 00 01 10 11

00 {00 |01 |10 11
01 {0100 11 |10
10 | 10 | 11 | 00 | O1
11 |11 | 10 | 01 | 00

Bus;,

Figure 2-2 @ Results of TS encoding scheme for Bus; = Bus,; © Data,

Therefore, if the current data do not have adjacent 1s, crosstalk-toggling transitions may

be avoided on TS encoded bus. According to this basic idea, the design of SS is to make sure

that there are no adjacent 1s in the code-words to make the crosstalk-toggling free after TS

coding. Figure 2-3 shows the system overview of SS.

n 3n/2 3n/2 3n/2 n
// >1 SS Encoding // > TS Encoding TS Decoding // >SS Decoding ﬂg
bus

Figure 2-3 : System overview of SS

The method of avoiding adjacent 1s in data is to encode each “1” to “10” rather than

simple shielding technique [7] which inserts a shield bit (assume “0”) between adjacent data

bits. While the data bits are all 1s, the SS encoding method will be the same as the simple

shielding technique. Therefore, the number of Os should be added depends on the number of

13

Is present in the data. In order to reduce the number of 1s in data to limit the number of added

Os, SS technique calculates the number of 1s in data first. If the number of 1s in the n-bit data

is less than n/2, encode each “1” to “10” directly. Otherwise, invert the data first to make the

number of 1s in the n-bit data less than n/2, and then encode each “1” to “10” of the converted

data. After that, append an invert bit “1” at the LSB of the code-word to denote that the data

have been inverted.

Note that it needs at most n/2 extra bus lines to encode an n-bit bus. In order to providing

fixed length (3n/2-bit) of code-words, append “Os” at MSB positions if the length of a

code-word is less than 3n/2.

In decoding, check the LSB of the code-word first. If LSB is “0”, convert each “10” to

“1” directly. Otherwise, it means that the data have been inverted in encoding process. Thus,

cut the end-bit first and covert each “10” to “1”, and then invert the converted data. After

above decoding process, remove the leading bits that exceed the original data length (n).

The encoding and decoding algorithms of SS technique are shown in Figure 2-4, and

examples of applying the algorithms are shown in Figure 2-5.

14

If # of 1s in the n-bitdata<n/2
Each “1” is encoded as “10”.

Else

Invert the data first.
Each “1” is encoded as “10”.

Append an invert bit, “1”, at LSB.

Append Os at MSB to provide a 3n/2-bit code-word.
(a) Encoding algorithm

If the end-bit ofa code-word ==

Cut the end-bit, covert “10” to “1.”

Invert the converted code-word.

Else

Convert“10”to “1.”

Remove leading bits that exceed the original datalength(n)

(b) Decoding algorithm

Figure 2-4 : SS encoding/decoding algorithm

Encoding
Data 00010001 11011000 11001110 10111111
Invert? X X 00110001 01000000
“I”to “10” 0001000010 | 101001010000 | 00101000010 0 1000 0000
If inverted, X X 00101000010 1 | 010000000 I
append 1
Append Os for fixed
lngth G2y | 000001000010 X X 000 1000 0000 1
Decoding
Code-word | 000001000010 | 101001010000 | 001010000101 | 00010000 0001
{finvenec, cutthe X X 00101000010 | 00010000 000
“10"to “1” 000001 0001 1101 1000 00110001 00 0100 0000
Inverted? X X 11001110 111011 1111
Removethe
leading bit 00010001 X X 10111111
Figure 2-5 : SS encoding/decoding examples
2.3.2 4-t0-6 Selective Shielding Crosstalk-Toggling-Free Technique

Since SS encoding scheme encodes the whole n-bit data at a time, its corresponding

15

hardware is complex and time consuming. If data are partitioned into several fields and each
field is encoded individually at the same time, its corresponding hardware may be simpler and
may save more transition time than SS encoding scheme. 4-to-6 selective shielding (4-to-6 SS)
was proposed for these proposes. It is an extension of SS encoding scheme with smaller
encoding unit and needs also n/2 extra bus for n-bit bus [10]. Figure 2-6 shows the system

overview of 4-to-6 SS.

n 3n/2 3n/2 3n/2 n
7 Enco ding 7—{TS Encoding X TS Decoding —~7—> Decoding
us

Figure 2-6 : System overview of 4-to-6 SS

The 4-to-6 SS encoding scheme first apply the smallest possible encoding unit of SS to
encode 2-bit data into 3-bit code-words to simplify the corresponding hardware. Figure 2-7
shows the 2-bit data and the corresponding 3-bit code-words. In the other words, it applies SS

technique to n/2 2-bit sub-data in parallel to generate n/2 3-bit code-words.

Code-
data
words
00 000
01 010
10 100
11 001

Figure 2-7 * The 2-bit data and the relative 3-bit SS code-words

However, when data exist 11 patterns which are followed by 10 patterns, there have
adjacent 1s between code-words of adjacent partitions, that is, 11 10 are encoded into 001 100.

To overcome this problem, once it encounters adjacent 1s between two 3-bit code-words, it

16

swaps one of the adjacent 1s with other bit to avoid the two adjacent 1s. Assuming that the ith
and the (i-1)th bits are the two adjacent 1s, swap the ith and the (i-3)th bits. After swapping
the ith and the (i-3)th bit positions, if the (i-4)th bit is a “1”, repeat the swapping process until
there is no adjacent ls between code-words. In the worst case, it may require n/2 — 1
bit-swaps and thus increases the coding delay. Figure 2-8 gives an example of the bit-swap
process. From Figure 2-8, when data exist 11 patterns followed by m 10 patterns, m swaps

will occur.

n-bit data 3n/2-bit code-word
11101010 . - . 1010 —- 001100100 100 - - - 100 100

— 000 101 100100 - - - 100 100
0001001011007 - - 100100 | W2—1swaps

Worst-case :

— 000 100 .- 100101 100 100
— 000 100"+ ++100 100 101 100
— 000100 - - -100100 100101

Figure 2-8 : An example of the worst case of bit-swap process

In order to reducing the number of swaps from n/2 — 1 to 1, 4-to-6 SS consider partition
data into several fields with size 4, then partition each 4-bit field into two 2-bit sub-partitions,
and then apply SS to two 2-bit sub-partitions to generate a 6-bit code-word. The bit-swap
process is the same as that mentioned before, i.e., swap the ith and the (i-3)th bits if the ith
and the (i-1)th bits are both 1s. Under the encoding method, it is apparent that 1110 is encoded
into 001100 which has adjacent 1s in its code-word and thus bit swapping intra cod-word is

applied to form 000101. Moreover, 1010 is encoded into 100100 which may have repetitious

17

swaps inter code-words if the right-hand-side code-word ends with 1 and the same bit-swap
process is performed, and thus 1010 is encoded into 010101 to avoid repetitious swaps. Table
2-3 shows the 4-bit data and the corresponding 6-bit code-words. However, when the
code-words of left-hand side end with 1 and the code-words of right-hand-side start with 1,
the adjacent 1s inter code-words happen. Note that code-words of right-hand-side start with 1,
and the following 2" 3" and 4™ bits are 0s. Therefore, once it encounters adjacent 1s inter
6-bit code-words, it needs only one bit-swap process to avoid adjacent 1s. Figure 2-9 shows

an example of the bit-swap process.

Table 2-3 : The 4-bit data and relative 6-bit code-words

: 4-to-6 SS

0000 000000
0001 000010
0010 000100
0011 000001
0100 010000
0101 010010
0110 010100
0111 010001
1000 100000
1001 100010
1010 010101
1011 100001
1100 001000
1101 001010
1110 000101
1111 001001
i i-li2 i3 i -1i2 -3
«1{|1 00 0** |—> <+ 0|1 01 0**

Figure 2-9 : An example of the bit-swap process inter adjacent code-words

18

In 4-to-6 SS decoding, if the 6-bit code-words has “1010**” data pattern, it means that

the bit-swap process has been applied to the code-words to avoid adjacent 1s between 6-bit

code-words. Thus, it needs to swap back first, and then process 4-to-6 SS decoding. Figure

2-10 shows examples of 4-to-6 SS encoding and decoding.

Encoding
Data 0010 1010 0011 1011
10655 1 600100 010101 | 000001 100001
code-word
If adjacent X 000000 101001
Is, swap
Decoding
10655 1 00100:010101 | 000000 101001
code-word
kek
If 1010, X 000001 100001
swap back
Data 0010 1010 0011 1011

Figure 2-10 : 4-to-6 SS encoding/decoding examples

2.3.3 Register Relabeling Power Saving Technique

In a typical RISC ISA, register fields are fixed within the instructions and occupy large
portion in the instruction encoding. If the number of bit transitions in two register numbers in
the same bit positions of two consecutive instructions is higher and the combination of the
two register numbers often appears in the any two consecutive instructions, the power
consumption will be larger. However, the registers of a typical RISC ISA are general purpose,

and general-purpose registers are interchangeable. The basic idea of register relabeling is to

19

minimize the bit transitions of register fields during instruction fetches by relabeling register

numbers statically [4]. Figure 2-11 shows an example of code fragment. It could achieve

reduction in bit transition with no performance penalties.

Bit transitions on Bit transitions on
Register fields Register fields
4 add r3, r2, r4 r3—rb add r6, r2, r4 3
5 sub r6, r3, rb r6—r7 sub r7, r6, rb 3
sub r3, r2, r6 sub r6, r2, r7
)7 myl r4, r4, rb mul r4, r4, b 4+
16 10

Figure 2-11 : An example of code fragment

The first step of relabeling is that constructed a graph called the “Register Histogram

Graph” (RHG). The RHG captures the occurrence frequency and relationship between

register pairs which are two register numbers in the same bit positions of two consecutive

instructions. Each RHG node represents a register. Each RHG edge represents that two

register numbers compose a register pair, and the weight of each edge annotates with the

frequency of register pairs. Figure 2-12 (a) shows an example of all pairs of registers appeared

in a code fragment and the frequency of each pair. In Figure 2-12, assume that the architecture

uses registers from register $1 to register $8. Figure 2-12 (b) is a RHG derived from Figure

2-12 (a).

20

Reg Pair | frequency
(r7,18) 3
(rd , r7) 2 TSI
(rl . 16) 1 , Node : register name ,
(rl,17) 1 ' Edge : registerpair !
(rl,18) 1 ! _ :
(3, r4) 1 | _Edge weight - frequency
(r4 , r8) 1
(16, 17) 1
(r7,17) 1

Total bit transitions : 29

(a) (b)

Figure 2-12 © (a) Example frequency distribution of register pairs (b) RHG from (a)

The following algorithm utilizes the RHG to relabel the register numbers [13]. Figure

2-13 shows the RHG after register relabeling. In this example, start from the most frequent

edge of register pair, register $7 and register $8, relabel them into a register pair, register $1

and register $3, whose hamming distance is minimized. Then, for the second most frequent

edge of register pair, register $7 and register $4 , since the register $7 is assigned, relabel

register $4 into register $5 so that the hamming distance to its assigned neighbor registers is

minimized. The following relabeling steps are the same as above description.

Algorithm

= [terate through the edges starting from the most frequent ones
= Rename the registers yet unassigned so that hamming distance to
all their assigned neighbors in the graph is minimized

(a)

21

Reassigned results

r7 —rl
r§ —-r3
r4d —rs5
rl —r2
r6 — r4
r3—r7

Total bit transitions from 29 to 15
(b)

Figure 2-13 : (a) Register relabeling algorithm (b) RHG after register relabeling

2.3.4 Summary of Previous Researches

The SS and 4-to-6 SS are all crosstalk-toggling free bus encoding schemes and both need
n/2 extra bus for n-bit bus. Since SS encodes the whole n-bit data at a time, its corresponding
hardware is more complex and time consuming than that of 4-to-6 SS which partitions data
into several fields and encodes all fields at the same time. We focus on 4-to-6 SS since its
corresponding hardware is less time consuming and the partitioning method can be further
complemented by our modified relabeling method.

Register relabeling may reduce bit transitions of register fields on a traditional
instruction bus. It needs to consider the relationship between register fields of consecutive
instructions. 4-to-6 SS encoding scheme brings a different situation for register relabeling

such that the original register relabeling method may not be suitable on a 4-to-6 SS coded bus.

22

Due to the characteristics of TS encoding scheme, if data hold fewer 1s in code-words,

the number of bit transitions on a TS encoded bus is lower [12]. Therefore, we may make use

of the characteristics to modify register relabeling for 4-to-6 SS to produce code-words with

fewer 1s to reduce the number of bit transitions on a TS encoded bus. The detail description

of our design will be discussed in the next chapter.

23

Chapter 3 Proposed Design

This chapter will introduce our design of modified register relabeling to reduce the
number of bit transitions on instruction bus. The overview of proposed design will be shown
in Section 3.1. The observations of our design foundation will be presented in Section 3.2.

The remaining sections will show the details of our design.

3.1 System Overview

Static Time Instruction Dynamic Time
Memory
Program ¥
Binary Instruction Partition

4-t0-6 SS Encoding

TS Encoding TS Decoding

4-t0-6 SS Decoding

Instruction Reversion

Relabeled
Program Binary

Instruction
Bus

CpPU

Figure 3-1 @ Overview of system

The system contains static-time phase and dynamic-time phase. Figure 3-1 illustrates the

system overview.

Our method concentrates mainly on the register fields of instructions. Our modified

register relabeling is applied to the program binary according to the partition of instructions

24

for 4-to-6 SS encoding scheme to produce relabeled program binary that resides in the

instruction memory at static time. At dynamic time, instruction will be partitioned in

Instruction Partition step after fetching from instruction memory in order to combine 4-to-6

SS encoding scheme with our modified register relabeling. After that, the coding process

including data coding (4-to-6 SS Encoding/Decoding) and data transmitting (Transition

Signaling Encoding/Decoding) through the instruction bus is exactly the same as that of the

original 4-to-6 SS encoding scheme. The Instruction Reversion is the reverse of the

Instruction Partition step.

3.2 Observations

As described in subsection 2.3.2,4-t0-6 SS encoding scheme brings a different situation

for register relabeling, so that it is necessary to consider the impact. In a 4-to-6 SS encoded

instruction bus, the current data is converted to 4-to-6 code-word without adjacent 1s, and

then an XOR operation is performed between the previous bus value and the 4-to-6 SS

code-word to get the current bus value. Figure 3-2 shows the flowchart of data processing.

25

Current data

|

[4—t0—6 SS encoding]
v

4-t0-6 SS
code-word

\

[TS encoding

{

Current bus value
(Previous bus value)

—/

Figure 3-2 : Flowchart of 4-to-6 SS data processing

Due to the characteristics of TS encoding scheme, if the inputs are a previous result and

“0”, the current result will be equal to the previous result; if the inputs are a previous result

and “1”, the current result will be equal to the inversion of the previous result. Therefore, the

first observation is that the number of self-transitions between the previous bus vaule and the

current bus value is equal to the number of 1s in the 4-to-6 SS code-word. Moreover, once “1”

appears in a 4-to-6 SS code-word, its neighbor bits must be “0”. After TS encoding scheme,

the neighbor positions of a self-transtion must be no signal trantiions. Thus, the number of

crosstalk 1-bit transitions between the previous bus value and the current bus value is twice as

many as the number of 1Is in the 4-to-6 SS code-word except the “1s” appeared in the most

significant bit (MSB) and the least significant bit (LSB) bit postitions. Since the crosstalk

1-bit transitions may occur only on adjacent bus lines, each of the MSB and LSB bit positions

26

has only one adjacent bus line and thus may cause one crosstalk 1-bit transition at most.
Figure 3-3 shows an example of 4-to-6 SS encoding scheme. From Figure 3-3, after XOR
operation, the number of self-transitions between the previous bus value and the current bus
value is 2 which is equal to the number of 1s, 2 “1s”, in the 4-to-6 SS code-word. Furthermore,
after XOR operation, the number of crosstalk 1-bit transitions between the previous bus value
and the current bus value is 3 which is equal to twice of the number of 1s in the 4-to-6 SS

code-word and minus the “1” appeared at LSB, 2 x 2 — 1.

O 0 --0 10 .-01 (4-t0-6SS code-word, 2 “1s”)
D an;a,o- *a5 g8, 1+ - a1 Ay (Previousbus value)

a,1a,,° +a,, a,a,;-+>a 4y (Current bus value)

Figure 3-3 : An example of 4-to-6 SS coding

Therefore, the power cost terms of the power dissipation cost (PDC) in Eq.(2) may be

formulated as follows:

ST =# of ls in the 4t06 SS codewords (3)

XTTr = (2X# of 1s in codewords) — (# of 1s in MSB and LSB of codewords) (4)

,where ST is the total number of self-transitions and X77r is the total number of crosstalk

1-bit transitions. As for the number of crosstalk-toggling transitions, X77g, it is guaranteed
to be 0 after 4-to-6 SS encoding scheme. Consequently, the power consumption depends on

the number of 1s in the 4-to-6 SS code-words, and our modified register relabeling method is

27

built up by our observations.

3.3 Instruction Partition

The purposes of designing Instruction Partition are to preserve the chance for register

relabeling on register fields and to make use of the characteristics of 4-to-6 SS encoding

scheme. Firstly, for register fields, each register field is better to be fit in one partition.

However, 4-to-6 SS encoding scheme requires 4-bit partitions, and, thus, each register field

would be partitioned into 4-bit fields and the remaining bits of register fields will be

processed with other fields. Taking the MIPS instruction set for example, its instruction

format are shown in Figure 3-4 (a) [14]. The proposed partitions for all register fields of

R-type and I-type, and bits on the same positions-of I-type and J-type are shown in Figure 3-4

(b).
31 26 21 16 11 6 0
R-type op 18 rt rd shamt funct
I-type op 18 rt immediate
J-type op target address
(@)
op rs I rt I rd l shamt funct
R-type op 18 rt rd shamt funct
(b)

Figure 3-4 : (a) MIPS instruction formats (b) Partition of register fields and bits on the

same positions

Furthermore, characteristics of 4-to-6 SS encoding scheme should be considered for both

the remaining bits of the register fields and other fields. From the code-words of 4-to-6 SS

28

encoding scheme, the bits with more Os in the same partition will have a probability of having

fewer 1s in their 4-to-6 SS code-words than that of original data, and fewer 1s in the 4-to-6 SS

code-words lead to fewer transitions from our observations in Section 3.2. Table 3-1 shows

the characteristics of 4-to-6 SS code-words. It is clear that if the 4-bit data have more Os, the

corresponding 6-bit code-words will have more Os, too.

Table 3-1:4-bit data sorted by the number of Os and their corresponding 4-to-6 SS code-words

4-bit 4-t0-6 SS
data code-word

0000

0001
0010
0100
1000

0011
0101
0110
1001
1010
1100

0111
1011
1101
1110

1111

000000

000010
000100
010000
100000

000001
010010
010100
100010
010101
001000

010001
100001
001010
000101

001001

of
1s

N DI m WD = —m === O

Therefore, our approach is to sort the probabilities of Os of the remaining bits of register

fields and all other fields after register relabeling at static time, and then partition them into

4-bit fields by the sorted order. In order to avoid extra hardware overheads, we apply fixed

partition only according to the statistics of a specific set of applications for the system.

29

3.4 Modified Register Relabeling

According to our observations, no matter what the previous bus values is, the power
consumption depends only on the number of 1s in the 4-to-6 SS code-words of the current
data. Therefore, rather than depending on the relation between registers as the case for
original register relabeling, the power consumption caused by the 4-to-6 encoded register
fields depends on the register numbers themselves only. The basic idea of our modified
register relabeling is to relabel more frequently occurred registers to registers that have fewer
Is after 4-to-6 SS encoding.

In addition, we may count the number of ls in 4-to-6 SS code-word of each register in
advance to decide which register should be selected early to relabel the freugently occurred
registers. The selection order is called the relabeling register selection sequence. This
relabeling register selection sequence is constructed in terms of the instruction partition on
register fields. For example, according to the instruction partition on register fields as shown
in Figure 3-4 (b), the leading 4 bits of each register can be classified according to the number
of 1s in its corresponding 4-to-6 SS code-word. Note that there are two registers that have the
same leading 4 bits with a different least significant bit (LSB). Figure 3-5 shows an example
of the classification of registers. In this example, register $6 and register $7 have the same

leading 4 bits, i.e., they have the same 4-to-6 SS code-word and a different LSB.

30

r6 - 0011 O
r7 - 0011 1

000001 4-t0-6 SS code-word
of the leading 4 bits

Figure 3-5 © An example of classification of register

In Table 3-2, registers are classified according to the number of 1Is in the 4-to-6 SS

code-word of the leading 4 bits of its register number. The registers that have less number of

I's in their corresponding 4-to-6 SS code-words of the leading 4 bits of their register numbers

are selected for relabeling first. Then, for two registers with the same number of 1s in the

4-to-6 SS code-words of their leading 4 bits, choose the one with LSB “0” to gain a higher

probability of having less 1s in the code-word than that with LSB “1”. The last column of

Table 3-2 shows the selection order- for register. relabeling in descending priorities. The

registers with the same sequence number may be chosen randomly.

Table 3-2 : Relabeling register selection sequence

of 1sin the 4-to-6

S8 cod.e -word.of LG LSB Register number (in decimal) Rsilligtfi’:)llr:g
leading 4-bit of

register number sequence

0 r0 1

0 1 rl 2

0 2 t4 r6 r8 rl6 r24 3

: 1 315 17 19 r17 125 4

0 rl0 r12 r14 r18 r22 r26 128 30 5

: 1 rll r13 r15 r19 23 127 129 131 6

0 r20 7

. 1 r21 8

31

Due to the constraints of an instruction set architecture (ISA), the registers may be
classified into non-relabelable and relabelable. For non-relabelable regsiters, these registers
sholud not be relabeled and can not be used for relabeling for the whole program.

Taking the register usage conventions of MIPS architecture for example, registers are
classified in terms of their usage purposes as shown in Table 3-3 [15]. In MIPS registers,
register $0 is non-relabelable since register $0 is hard wired to the value zero. Register $31 is
the destination register used by instructions JAL, BLTZAL, BLTZALL, BGEZAL, and
BGEZALL without being explicitly specified so that register $31 is non-relabelable, neither.
The remaining registers are relabelable. Therefore, the relabeling registers selection sequence

for MIPS ISA is shown in Table 3-4.

Table 3-3 : MIPS registers categorization

| Category | Name | Number | Use |

Non- $zero $0 Always 0
relabelable $ra $31 Return address

_

Assembler temporary
$k0 - $k1 $26- $27 Kernel registers

$gp $28 Global pointer
$sp $29 Stack pointer
Relabelable $V0 = $V1 $2 - $3 Return value
$a0 - $a3 $4-%7 Argument registers
$8- $15, .
$t0 - $t9 $24- $25 Temporary registers
$16- $23, .
$s0 - $s8 $30 Saved registers

32

Table 3-4 . Relabeling register selection sequence for MIPS ISA

of 1sin the 4-to-6

Relabeling
Sslzggfngfﬁgﬁhe Register number (in decimal) selection
. sequence
register number

0 1 rl 1

. 0 2 4 16 18 rl6 124 2

1 3 15 7 19 rl7 25 3

3 0 rl0 r12 r14 r18 122 26 28 r30 4

1 rll r13 r15 r19 23 27 29 5

0 20 6

3
1 21 7

In this thesis, we propose two register relabeling methods. In register relabeling method

1, we gather the occurrence frequency of each relabelable register from a program trace, and

then relabel more frequently occurred registers to registers that have fewer 1s after 4-to-6 SS

encoding. In this method, each relabelable register is relabeled to a specific registers

consistently for the whole program to reduce the power consumption while preserving the

correctness of the program.

However, considering register usage convention and no performance degradation, there

are regsiters that are used independently for each procedure. These registers in different

procedures may be relabeled into the same reigster which has less 1s after 4-to-6 SS encoding

to reduce the number of 1s in 4-to-6 SS code-words for more power reduction. Thus, in

register relabeling method 2, there are regsiters which may be relabeled independently for

each procedure, while there are other registers which are still relabeled to a specific registers

33

consistently for the whole program to keep the correct execution.
The details of these two register relabeling methods are described in the following

subsections

3.4.1 Register Relabeling Method 1

Figure 3-6 shows the flowchart of our modified regsiter relabeling method 1. The first
step of this method records the occurrence frequency of each relabelable register from a
program trace. In the next step of register relabeling method 1, sort the occurrence frequencies
of the relabelable regsiters. The final step is to relabel the registers by the sorted order
according to the relabeling register selection sequence shown in Table 3-2. In this method, a
relabelable register is relabeled to another register consistently through the porgam, that is to
say, it is a program-scoped relabelabel register.

Table 3-4 shows a relabeling example according to the selection sequence in Table 3-2.
In this example, the occurrence frequencies of relabelable registers are collected and sorted.
Then, according to the selection sequence in Table 3-2, relabel registers into registers with

less 1s after 4-to-6 SS coding.

Gather the frequencies Sort the relabelable registers
of the relabelable registers by the descending order of
for the trace of a program their occurrence frequencies

J Relabel registers
by the sorted order

A4

Figure 3-6 - Flowchart of our modified regsiter relabeling algorithm

34

Table 3-5 © An example of register relabeling method 1

Register before Occurrence Register after
relabeling frequency relabeling
r8 12 rl

16 8 2
rl 6 r4
r4 6 r6
r3 3 8
rl2 2 rl6

3.4.2 Register Relabeling Method 2

Register relabeling method 1 is program-scoped relabeling, i.e., each relabelabel register
is relabeled to a specific registers consistently for the whole program. However, the relabeling
scope of some registers may be relaxed to be within a procedure, i.e., some registers in
different procedures may be relabeled into a same register to raise the occurrence frequencies
of registers which have less s after 4-to-6 SS encoding. Figure 3-7 gives examples to show
the different between program-scope relabeling and procedure-scope relabeling. Figure 3-7 (a)
shows the rank order of each register occurrence frequency. In Figure 3-7 (b), program-scoped
relabeling, after the most occurred registers $8 is relabeled into register $1, register $7 only
can be relabeled into another register $2. While, In Figure 3-7 (c), procedure-scoped
relabeling, if the registers of both two procedures are used independently, registers $8 and

register $7 can all be relabeled into register $1 to raise the occurrence frequencies of register

35

$1 to gain less 1s in code-words after 4-to-6 SS encoding for more power reduction.

Rank
order
1 |18
7 |17 8 —rl 7 — 12 8 —rl 7 —rl
3 |9 4 — 16 9 — r4 4 — 12 19 —r2
4 |r4
Proc A Proc B Proc A Proc B
Program Program
(a) (b) (c)
Rank order of register Program-scoped Procedure-scoped
occurrence frequencies relabeling relabeling

Figure 3-7 : Program-scoped relabeling V.S. Procedure-scoped relabeling

Considering register usage convention.,and no performance degradation, some

relabelabel regsiter must be relabeledconsistently for the whole program to keep the

correctness of program execution, while some other relabelable regsiters may be relabeled

independently for each procedure. Therefore, the relabeling scopes of relabelable registers of

register relabeling method 2 are classified into program-scoped and procedure-scoped.

For example, in Table 3-6, MIPS registers, temporary registers of caller-saved registers

and saved registers of callee-saved registers may be further classified as procedure-scoped for

register relabeling. Temporary registers are caller-saved registers in MIPS calling convention.

That is, once a procedure needs to use a temporary register after procedure-call, the procedure

will save the value of the temporary register before procedure-call and restore the value after

procedure-call. Therefore, each procedure can use temporary registers at will. Saved registers

36

are callee-saved registers in MIPS calling convention. The value of saved registers must be

preserved across procedures. The callee will save the values of saved registers at the

procedure entry and restore at the procedure exit if it needs to use the saved registers.

Therefore, each procedure can use saved registers at will after they are saved at procedure

entry.

The relabeling scope of the remaining relabelable registers of MIPS is program-scope.

Register $1 is reserved for assembler and thus should be relabeled for the whole program.

Registers $26, $27 are reserved for kernel while they may be relabeled in application

stand-alone system. The value of pointer registers, registers $28, $29 can be relabeled for the

whole program since procedures recognize the same register names of pointer registers. The

argument registers, register $4 - $7, which are used for arguments passing for procedures, and

the return value registers, register $2 - $3 , which are used for return value from procedures,

must be keep consistently across procedures; thus, they can be relabeled for the whole

program.

37

Table 3-6 - MIPS relabelabel registers with different relabeling scope

Category _

Assembler temporary
$k0- $k1 $26- $27 Kernel registers
$gp $28 Global pointer Program-
$sp $29 Stack pointer scope
Relabelable $VO = $V1 $2 = $3 Return value
$a0 - $a3 $4 - $7 Argument registers
$8- $15 :
$t0 - $t9 > Temporary registers
$24 - $25 POTIIY TR L Procedure-
. scope
$s0 - $s8 $1 6$3223’ Saved registers

In register relabeling method 2, we consider the relabeling of procedure-scoped registers

and program-scoped registers together for power reduction. For program-scoped registers, the

occurrence frequency of each register is collected by the same way as that mentioned in

register relabeling method 1. As for the procedure-scoped registers, their occurrence

frequencies have to be totaled from all procedures. Instead of summing up the frequencies of

the same register numbers in different procedures, sum up the frequencies of the same rank

order of occurrence frequency of register. Consequently, the relabeling of procedure-scoped

registers and program-scoped registers can be together, and there are more procedure-scoped

registers which may be relabeled into registers with less 1s after 4-to-6 SS encoding for more

power reduction.

Therefore, the frequencies of procedure-scoped registers are gathered in each procedure

separately. Then, sort the frequencies of registers in each procedure, and sum up the

38

frequencies of the registers with same rank in different procedures. However, in MIPS

registers, saved registers should not mix with temporary registers to avoid other procedures to

use the values of saved registers without saving at procedure entry and restoring at procedure

exit. Hence, saved registers and temporary registers should be relabeled separately.

The steps of register relabeling method 2 are described as follows:

U Gather the occurrence frequency of each register

For procedure-scoped registers, gather the frequencies in each procedure separately. For

program-scoped registers, gather the frequencies from the whole program.

U Sorting and intermediate relabel within a procedure

For temporary registers, from high occurrence frequency to low occurrence frequency,

relabel them to TRn, where n is the rank order according to its frequency. For saved

registers, from high occurrence frequency to low occurrence frequency, relabel them to

SRn, where n is the rank order according to its frequency.

U Sum up the frequencies of the same TRn/SRn of all procedures.

U Sort TR/SR and program-scoped registers by their occurrence frequencies, and relabel

them by the sorted order according to the relabeling register selection sequence.

Figure 3-8 is an example for the relabeling steps of register relabeling method 2.

Suppose that the instruction partition and the corresponding relabeling selection sequence are

shown in Figure 3-4 (b) and Table 3-2, respectively. In Figure 3-8(a), a program has two

39

procedures, Proc. A and Proc. B, and the occurrence frequencies and categories of registers
are given. Sorting and intermediate relabeling for temporary registers and saved registers
separately in each procedure are shown in Figure 3-8 (b). Then, Figure 3-8 (c) shows the
totals of the occurrence frequencies of the same rank of temporary registers and saved
registers. In Figure 3-8 (d), sort the frequencies of TR/SR and program-scoped registers, and
relabel them by the sorted order according to the register selection sequence. Finally, Figure

3-8 (e) illustrates the program after register relabeling method 2.

TR : Temporary registers
SR : Saved registers
PR : Program-scoped registers

Proc. A Proc.B

812 9 .10

9 : IO}TR rl0 : S}TR

rl2 : 38 rl4 =7 28 : 8

r29 : ZS}PR
rl6 : 5 rl6 : 11 31 :21
r20 : 6}SR rl7: 12]»SR

r18 - 8 21 : 6

Program

(a) Program before register relabeling

Proc. A Proc.B
r8 : 12—TR1 9 : 10—-TR1
9 : 10—-TR2 rl0 : 8—>TR2
r12 : 8—>TR3 rl4 : 7-TR3 | 28 : 8
29 : 28:|‘PR
r18 : 8—SR1 rl7 : 12—-SR1| 31 : 21
r20 : 6—>SR2 rl6 : 11-SR2
rl6 : 5—SR3 21 : 6 —»SR3
Program

(b) Sorting and intermediate relabeling

40

TR1 © 22
TR2 © 18
TR3 © 15
SR1 : 20
SR2 17
SR3 : 11
28 © 8

129 28
31 - 21

(c) Sum up the occurrence frequencies of procedure-scoped registers

29 : 28 —rl
TR1 : 22 — 12
31 : 21 —r4
SR1 :20 —r6
TR2 : 18 — 18
SR2 : 17 —rl6
TR3 : 15 — 124
SR3:11 —1r3
28 28 =15

(d) Sort the occurrence frequencies of TR/SR and program-scoped registers, and relabel them

Proc. A Proc.B

TR1 (18)—12 TR1 (19)—12

TR2 (19)—r18 TR2 (r10)—18

TR3 (r12)—r124 TR3 (r14)—r124 128 —15
PR{ 29 —rl

SR1 (r18)—16 SR1 (r17)—16 131 —r4

SR2 (r20)—rl6 SR2 (r16)—rl6

SR3 (r16)—r3 SR3 (r21)—r3 p

rogram

(e) Program after register relabeling

Figure 3-8 : An example of register relabeling method 2

41

Chapter 4 Simulation and Analysis

Experiments have been carried out to evaluate the efficiency of our modified register
relabeling method. In this chapter, benchmark programs are first introduced. Then,
experimental methods which include the simulation environment, simulation method, and the
simulated methods are presented. The last part of this chapter is the simulation results and the

analysis of the results.

4.1 Experimental Benchmarks

We carry out experiments for six benchmark programs to evaluate the efficiency of our
design in power reduction. These six DSP and numerical-computation kernels which have
been heavily applied in many embedded system products with deep submicron buses that
always encounter crosstalk effect are collected as benchmark programs. Table 4-1 gives a

summary of these benchmark programs.

42

Table 4-1 © Benchmark programs

Benchmark Description

fft Fast Fourier transform

sor Successive over-relaxation

lu Lower/upper triangular matrix decomposition algorithm
ej Extrapolated Jacobi-iterative method

mmul A matrix multiplication

tri Tri-diagonal system solver

4.2 Experimental Methods

4.2.1 Environment

We use MIPS32 instruction set architecture - in our experiments, and the experimental
toolset used is the MIPS® SDE-Lite which builds the MIPS environment and generates the
trace of each benchmark programs for the simulation of our method [14][16], [17]. Assume
that the process technology is 90nm with the parameters based on ITRS 2004 Edition as

shown in Table 4-2 [18].

43

Table 4-2 . Device parameters for 90nm technology based on the ITRS 2004 Edition

Parameter Value
Width 205nm
Space 205nm

Thickness 430.5nm
Height 398.5nm

Daeare | s

The corresponding values of self-capacitance and coupling-capacitance could be taken
from Predictive Technology Model (PTM) [19]. The bus length is assumed to be 14mm with
1V supply voltage. Moreover, we designed a trace driven simulator that includes 4-to-6 SS
encoding scheme and our modified register relabeling to estimate the number of bit transitions

on instruction bus.

4.2.2 Experimental Method

The experimental flow that includes three sub-phases of simulation method is shown in
Figure 4-1. By horizontal dotted lines, Figure 4-1 can be divided into three sub-figures
representing three phases where start from Code generation and statistics phase and end with
Result calculation phase.

Each phase of our simulation method is described below :

® (Code generation and statistics phase : This phase first generates the program

execution trace for each benchmark program by adopted MIPS SDE Lite version

6.06.01 to build the MIPS ELF (executable and linkable format) image format.

44

Then, it scans the program execution trace to gather statistics of register usage

counts for our modified register relabeling method.

Relabeling and statistics phase : The purposes of this phase are to relabel the register

names of instructions according to the register usage count statistics, and generate

the relabeled program execution trace. Then, scan the relabeled program execution

trace to gather statistics of the probabilities of Os of the remaining bits of register

fields and other fields for Instruction Partition step.

Result calculation phase : The final phase includes the 4-to-6 SS encoding scheme,

Instruction partition, and bit transitions calculator to evaluate the efficiency of our

modified register relabeling methods.

45

N

Benchmark

Code generation and MIPS Program
isti SDE Trace
statistics

Gather statistics
of eachreg.

Frequency
of each reg.

Program Register Relabeled
Trace Relabeling Program Trace
Relabe.lin.g and Gather statistics of
statistics the remaining bit Probabilities
ofreg. fields and of each bit
all other filed
Relabeled Bus Encoding
Program Trace Schemes
Result
calculation

Results

Figure 4-1 : Experimental flow

4.2.3 Simulated Methods

In our simulation, we evaluate and compare the power dissipation costs and the energy

consumption of the following methods:

46

. Original Register Relabeling : The power reduction technique is introduced in

Chapter 2 [4]. We simulate this method to compare the results between it and ours.

. 4-to-6 Selective Shielding : This crosstalk-toggling free technique is introduced in

Chapter 2 [10]. We simulate this method to compare the results between it and ours.

. 4-to-6 Selective Shielding with original Register Relabeling : We apply original

register relabeling with the 4-to-6 Selective Shielding crosstalk-toggling free

technique to compare the results between this combined approach and ours.

. 4-to-6 Selective Shielding with our modified Register Relabeling (Method 1) : This is

our modified register relabeling method 1 that is applied for 4-to-6 Selective

Shielding crosstalk-toggling free technique.

. 4-to-6 Selective Shielding with our modified Register Relabeling (Method 2) : This is

our modified register relabeling method 2 that is applied for 4-to-6 Selective

Shielding crosstalk-toggling free technique.

4.3 Simulation Results and Analysis

The experimental results obtained from evaluating the power dissipation cost and energy

consumption of the benchmark programs mentioned above are presented in this section. The

energy consumption of the 4-to-6 SS encoder and decoder, and that of the bit transitions are

first presented. The power dissipation cost and energy consumption of different techniques for

each benchmark program are then evaluated. Finally, the effects of register usage frequency of

47

each benchmark program for various techniques are analyzed.

4.3.1 Hardware Overhead Analysis

For 4-to-6 Selective Shielding encoding scheme, the overhead of its encoder and decoder
should be considered. From [10], the average energy consumption of the encoder and decoder
of 4-to-6 Selective Shielding with 90nm TSMC technology library is 3.47 pJ for each 4-to-6
Selective Shielding and Transition Signaling encoding and decoding. The simulation
environment has been described in Section 4.2.1. Thus, the corresponding values of
self-capacitance and coupling-capacitance from Predictive Technology Model (PTM) [19] are
0.486 pF and 1.501 pF, respectively. According to the switching power equation introduced in
Section 2.1, a single self-transition consumes-0.243 pJ, a single crosstalk 1-bit transition

consumes 0.752 pJ, and a crosstalk-toggling transition consumes 3.01 pJ.

4.3.2 Energy Consumption of Different Techniques

The energy consumption by various techniques for each benchmark program is evaluated
and presented in this section. There are five techniques simulated: original register relabeling
(ORR), 4-to-6 Selective Shielding (4-to-6 SS), 4-to-6 SS with original register relabeling
(4-to-6 SS + ORR), 4-to-6 SS with our modified register relabeling method 1 (4-to-6
SS+MRR (Method 1)), and 4-to-6 SS with our modified register relabeling method 2 (4-to-6

SS+MRR (Method 2)).

48

From Figure 4-2 to 4-7, the numbers of bit transitions of different types and techniques
are shown for each benchmark program respectively, and Figure 4-8 shows the total number
of bit transitions of different types. After 4-to-6 SS encoding scheme, the number of
crosstalk-toggling transitions is guaranteed to be “0”, the number of self transitions is less
than that of the un-encoded instruction bus, while the number of crosstalk 1-bit transitions is

more than that of the un-encoded instruction bus.

fft
B Uncoded ® ORR ¥ 4-t0-6 SS W 4-t0-6 SS+ORR M 4-t0-6 SS+MRR (Method 1) ¥ 4-to-6 SS+MRR (Method 2)
350000000 ~
300000000 -

250000000 -

200000000

150000000

100000000

the number of bit transitions

50000000

0 .

ST XTTr XTTg

Figure 4-2 : The number of bit transitions of different types and techniques (fft)

49

the number of bit transitions

sSor
B Uncoded ® ORR ¥ 4-t0-6 SS W 4-t0-6 SS+ORR M 4-t0-6 SS+MRR (Method 1) ¥ 4-to-6 SS+MRR (Method 2)
1600000000 -

1400000000
1200000000
1000000000
800000000
600000000
400000000
200000000

0
ST XTTr XTTg

Figure 4-3 : The number of bit transitions of different types and techniques (sor)

the number of bit transitions

lu
B Uncoded ® ORR ¥ 4-t0-6 SS W 4-t0-6 SS+ORR M 4-to-6 SS+MRR (Method 1) ¥ 4-to-6 SS+MRR (Method 2)
350000000 ~

300000000 -

250000000 -

200000000

150000000

100000000

50000000

0 .

ST XTTr XTTg

Figure 4-4 : The number of bit transitions of different types and techniques (lu)

ej
B Uncoded ® ORR ¥ 4-t0-6 SS W 4-t0-6 SS+ORR M 4-t0-6 SS+MRR (Method 1) ¥ 4-to-6 SS+MRR (Method 2)
350000000 ~

300000000 -

itions

250000000
*= 200000000

150000000

100000000

the number of bit trans

50000000

0

ST XTTr XTTg

Figure 4-5 : The number of bit transitions of different types and techniques (ej)

mmul

B Uncoded ® ORR ¥ 4-t0-6 SS W 4-t0-6 SS+ORR M 4-to-6 SS+MRR (Method 1) ¥ 4-to-6 SS+MRR (Method 2)

100000000 -
90000000 -
£ 80000000 -
% 70000000 -
£ 60000000 -
;.'g 50000000 -
£ 40000000 -
E 30000000 -
S 20000000 -
= 10000000 - L
0 - .

ST XTTr XTTg

Figure 4-6 : The number of bit transitions of different types and techniques (mmul)

51

the number of bit transitions

tri
B Uncoded ® ORR ¥ 4-t0-6 SS W 4-t0-6 SS+ORR ® 4-t0-6 SS+MRR (Method 1) ¥ 4-to-6 SS+MRR (Method 2)
16000000 -

14000000
12000000
10000000
8000000
6000000
4000000
2000000

0
ST XTTr XTTg

Figure 4-7 : The number of bit transitions of different types and techniques (tri)

the number of bit transitions

Total number of bit transitions
B Uncoded ® ORR ¥ 4-t0-6 SS W 4-t0-6 SS+ORR M 4-to-6 SS+MRR (Method 1) ¥ 4-to-6 SS+MRR (Method 2)
3000000000

2500000000 -
2000000000
1500000000
1000000000

500000000

ST XTTr XTTg

Figure 4-8 : The total number of bit transitions of different types and techniques

52

Figure 4-9 shows the energy consumption of each benchmark program for different

techniques, respectively. Note that the results are all normalized to that of the un-encoded

instruction bus. Figure 4-9 shows the energy consumption of all techniques while considering

the hardware overhead. Experimental results indicate that the average energy consumption of

ORR is even less than that of 4-to-6 SS encoding scheme and 4-to-6 SS with original register

relabeling. Recall that the 4-to-6 SS encoded bus is crosstalk-toggling free and is aimed at

reducing data transmission delay. The average energy consumption of 4-to-6 SS encoding

scheme is 107.4% which is even more energy consuming than un-encoded instruction bus.

The average energy consumption of 4-to-6+ORR is 114.1%. It is clear that original register

relabeling is not suitable for 4-to-6 SS encoding scheme. The average energy consumptions of

4-to-6 SS+MRR (Method 1) and 4-to-6.SS+MRR (Method 2) are 95.6% and 95.3%,

respectively. Compared with 4-to-6 SS encoding scheme, 4-to-6 SS+MRR could save energy

without extra hardware overhead and performance loss.

53

B ORR®E 4-t0-6 SS ® 4-t0-6 SS+ORR ® 4-t0-6 SS+MRR (Method 1) B 4-to-6 SS+MRR (Method 2)
140

120

100 -

80

60

40 -

Energy consumption(%)

fft sor lu ej mmul tri average

Benchmark programs

Figure 4-9 : Energy consumption of different techniques

Figure 4-10 shows the average energy consumption of different bit transition types and

encoder/decoder hardware of the benchmark programs for different techniques. In Figure 4-10,

although the energy consumptions by bit transitions of all 4-to-6 SS are less than that of

un-encoded instruction bus, the energy consumption of the encoder/decoder hardware

constitutes 23.2% compared to the total energy consumed by the un-encoded instruction bus.

Thus, the energy consumptions of encoder and decoder cannot be ignored.

54

Average
BST mXTTr ®WXTTg Mencoder/decoder

120

100
S
E 80
2
g
g 60
=
S
o
B
%n 40
=
=

20

0 ‘
Unencoded 4-t0-6 SS 4-to-6 4-to-6 4-to-6
SS+ORR SS+MRR SS+MRR
(Method 1) (Method 2)

Figure 4-10 : Average energy consumption of different techniques with each portion of

energy consumption of transition and/or hardware

Moreover, the difference in energy consumption between 4-to-6 SS+MRR (Method 1)
and 4-to-6 SS+MRR (Method 2) are quite small. The register occurrence frequencies of these

two techniques deserve further discussions and will be described in the next subsection.

4.3.3 Effects of Register Occurrence Frequencies

The register occurrence frequencies of different benchmark programs are collected. In
the following figures, the register occurrence frequency is normalized to the total register
occurrences in the trace of each benchmark program.

From Figure 4-11 to 4-16, the register occurrence frequencies and the rank order of

register occurrence frequencies with both register relabeling methods of ej, lu, fft, sor, tri, and

55

mmul programs are shown respectively, and the average values is shown in Figure 4-17.

For MIPS, in part (a) of these figures, it is clear that the register occurrences of

temporary registers (register $8 - $15, $24 - $25) and saved registers (register $16 - $23, $30)

are highly skewed. The reason is that MIPS compiler usually uses the smaller register

numbers of a register category when they are available.

In part (b) of these figures, the register occurrence frequencies are sorted. The register

occurrence frequencies shown as the blue dotted line for our register relabeling method are

gathered from the whole program. The red solid line is for our register relabeling method 2.

The relabeling scopes of register relabeling method 2 are program-scope and procedure-scope.

The frequencies of program-scoped registers are gathered by the same way as register

relabeling method 1, while the frequencies.of procedure-scoped registers are gathered from

each procedure separately, then, sort the frequencies in each procedure, and sum up the

frequencies of the same rank registers from all procedures. However, the blue dotted line and

the red solid line are very similar since the frequently occurred registers of a register category

in different procedures are usually the same as the frequently occurred registers of the same

category in the program. Therefore, the register occurrence frequencies of both methods are

quite close and result in the small difference in energy consumption between these two

methods.

56

ej

12 -

10 -

Register occurrence frequency(%)
o0

6 .
4 .
2 -
O v T T T T T T T T T T T \m‘#l T 1
12345678 9101112131415161718192021222324252627282930
Register number
(a)
ej
= = Method 1 ——Method 2
16 -

14

10 -

Register occurrence frequency (%)
o]

O T T T T T T T T T T T T T T 1
12345678 9101112131415161718192021222324252627282930

Rank order of register occurrence frequency

(b)

Figure 4-11 : (a) Register occurrence frequency (b) Rank order of register occurrence

frequency with both register relabeling methods (ej)

57

lu
16 1
~ 14 T 3
8
g2 -
]
e
1 .
é 0
8
5 8
2
g 6
3
5
3 4
i)
)
&y
O v T T T T T T T T IA‘\/\-I\I:\t\‘I
12345678 9101112131415161718192021222324252627282930
Register number
(a)
lu
= = Method 1 ——Method 2
16 -

12 A

10 -

Register occurrence frequency (%)
o]

O T T T T T T T T T T T T T T 1
12345678 9101112131415161718192021222324252627282930

Rank order of register occurrence frequency

(b)

Figure 4-12 © (a) Register occurrence frequency (b) Rank order of register occurrence

frequency with both register relabeling methods (lu)

58

fft
12 ~
S 10
B
£
S
g 8
=
o
8
5 6-
=
=
g
S 4
8
172
s
g 2
0 T T T T T T T T T T T ¥ 1 T T
12345678 9101112131415161718192021222324252627282930
Register number
(a)
fft
= = Method 1 ——Method 2
12

Register occurrence frequency (%)
(@)

12345678 9101112131415161718192021222324252627282930

Rank order of register occurrence frequency

(b)

Figure 4-13 © (a) Register occurrence frequency (b) Rank order of register occurrence

frequency with both register relabeling methods (fft)

59

sor
16 -
~_~ 14 7 *
S
g2 -
L
e
1 .
é 0
5
5 8
5
g 6
)
5
4
i)
%)
M5
O v T T T T T T T T T T T \Am\¢| T 1
12345678 9101112131415161718192021222324252627282930
Register number
(a)
sor
= = Method 1 ——Method 2
16 -

14

12 A

10 -

Register occurrence frequency (%)
o]

O T T T T T T T T T T T T T T T T 1
12345678 9101112131415161718192021222324252627282930

Rank order of register occurrence frequency

(b)

Figure 4-14 © (a) Register occurrence frequency (b) Rank order of register occurrence

frequency with both register relabeling methods (sor)

60

tri

12 -

10 -

Register occurrence frequency(%)
o0

O v T T T T T T T T T T T T IV\¢I T \L
12345678 9101112131415161718192021222324252627282930

Register number

(a)

tri

= = Method1 ——Method?2
16 1

14

10 -

Register occurrence frequency (%)
o]

O T T T T T T T T T T T T T T T T 1
12345678 9101112131415161718192021222324252627282930

Rank order of register occurrence frequency

(b)

Figure 4-15 © (a) Register occurrence frequency (b) Rank order of register occurrence

frequency with both register relabeling methods (tri)

61

mmul

— —_
\S] B
1 J

—_
(e

Register occurrence frequency(%)

12345678 9101112131415161718192021222324252627282930

Register number

()
mmul
= = Method 1 ——Method 2

14
SEP
g
g 10 -
=)
e
E 6
=)
g
e
Z
® 2
&

O T T T T T T T T T T T T T T 1

12345678 9101112131415161718192021222324252627282930
Rank order of register occurrence frequency

(b)

Figure 4-16 : (a) Register occurrence frequency (b) Rank order of register occurrence

frequency with both register relabeling methods (mmul)

62

Average

12.00

10.00 -

8.00 -

6.00 -

4.00 -

Register occurrence frequency(%)

2.00

0,00 T T T T T T T T T T T T T T v ’\ \‘LI
12345678 9101112131415161718192021222324252627282930

Register number

(a)

Average

= = Method1 ——Method?2

14 -

12 A

10 -

Register occurrence frequency (%)

O T T T T T T T T T T T T T T 1
12345678 9101112131415161718192021222324252627282930

Rank order of register occurrence frequency

(b)

Figure 4-17 © (a) Register occurrence frequency (b) Rank order of register occurrence

frequency with both register relabeling methods (Average)

63

Chapter 5 Conclusion and Future Work

While 4-to-6 SS encoding scheme results in being crosstalk-toggling free with an increase
in power consumption, 4-to-6 SS encoding scheme with our modified register relabeling
method is a crosstalk-toggling free and achieves a power reduction at the same time.
Furthermore, we also discover that combining with 4-to-6 Selective Shielding encoding
scheme might reduce the complexity of register relabeling algorithms. While the original
register relabeling algorithm considers the relationship between register fields of consecutive
instructions, our modified register relabeling method considers only the register number itself,
which is more straight-forward than the original one.

Simulation results show that the overall average energy consumption of 4-to-6 SS
encoding scheme with our modified register relabeling is 95.3%, 12.1% less than 4-to-6 SS
encoding scheme and 18.8% less than 4-to-6 SS encoding scheme with original register
relabeling.

There are several related researches deserving further discussions. On the one hand,
associating other compiler techniques such as register allocation with our design may be able
to further reduce the overall power consumption with crosstalk-toggling free. On the other
hand, adjusting the scope of register relabeling to a smaller one such as extended basic-block
or basic-block level might provide more opportunities to use the register with less 1s after

4-t0-6 SS encoding scheme result in fewer transitions for power reduction.

64

Therefore, these techniques must be analyzed deeply and thus can be modified to suitable

crosstalk-toggling free bus encoding schemes to further reduce power consumption.

65

Reference

[1]

[9]

Petrov, P.; Orailoglu, A.; , "Low-power instruction bus encoding for embedded
processors," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.12,
no.8, pp. 812- 826, Aug. 2004.

Lindkvist, T.; Lofvenberg, J.; Gustafsson, O.; , "Deep sub-micron bus invert coding,"
Signal Processing Symposium, 2004. NORSIG 2004. Proceedings of the 6th Nordic , vol.,
no., pp. 133- 136, 2004.

Sotiriadis, P.P.; Chandrakasan, A.; , "Reducing bus delay in submicron technology using
coding," Design Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia
and South Pacific , vol., no., pp.109-114, 2001.

Mehta, R.; Owens, R.M.; Irwin, M.J.; Chen, R.; Ghosh, D.; , "Techniques for low energy
software," Low Power Electronics and Design, 1997. Proceedings., 1997 International
Symposium on , vol., no., pp. 72- 75, 18-20 Aug 1997.

N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison Wesley,
1994.

Chandrakasan, A.P.; Brodersen, R.W.; , "Minimizing power consumption in digital
CMOS circuits," Proceedings of the IEEE , vol.83, no.4, pp.498-523, Apr 1995.
Arunachalam, R.; Acar, E.; Nassif, S.R.; , "Optimal shielding/spacing metrics for low
power design," VLSI, 2003. Proceedings. IEEE Computer Society Annual Symposium
on , vol, no., pp. 167- 172, 20-21 Feb. 2003.

Victor, B.; Keutzer, K.; , "Bus encoding to prevent crosstalk delay," Computer Aided
Design, 2001. ICCAD 2001. IEEE/ACM International Conference on , vol., no.,
pp-57-63, 2001.

Mutyam, M.; , "Preventing crosstalk delay using Fibonacci representation," VLSI Design,

66

2004. Proceedings. 17th International Conference on , vol., no., pp. 685- 688, 2004.

[10] Mutyam, M.; , “Selective shielding technique to eliminate crosstalk transitions,” ACM
Trans. Des. Autom. Electron. Syst., vol. 14, no. 3, pp. 1-20, 2009.

[11] Mutyam, M.; , "Selective shielding: a crosstalk-free bus encoding technique,"
Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference on ,
vol., no., pp.618-621, 4-8 Nov. 2007.

[12] M. R. Stan and W. P. Burleson, “Limited-Weight Codes for Low Power 1/0,” 1994.

[13] Chin-Tzung Cheng; Wei-Hau Chiao; Jean Jyh-Jiun Shann; Chung-Ping Chung;
Wen-Feng Chen; , "Low-power BIBITS encoding with register relabeling for instruction
bus," VLSI Design, Automation and Test, 2005. (VLSI-TSA-DAT). 2005 IEEE VLSI-TSA
International Symposium on , vol., no., pp. 41- 44, 27-29 April 2005.

[14] MIPS Technologies, MIPS Architecture For Programmers Volume I-A: Introduction to
the MIPS32 Architecture. 2010.

[15] R. Britton, MIPS Assembly Language Programming, Prentice Hall, 2003.

[16] MIPS Technologies, MIPS SDE 6.x Programmers' Guide. 2007.

[17] D. Sweetman, See MIPS Run, Morgan Kaufmann, 1999.

[18] “ITRS Home.” [Online]. Available: http://www.itrs.net/.

[19] “Predictive Technology Model (PTM).” [Online]. Available: http://ptm.asu.edu/.

67

