
 

  
i 

國 立 交 通 大 學 

資訊科學與工程研究所 

 

碩 士 論 文 
 

 

適用 3-D 互動人機圖形介面系統的雙核心 

Java 處理器設計 

 

Design of Dual-Core Java Processor for Interactive 3-D GUI 

Platform 

 

 

 

研 究 生：黃建峰 

指導教授：蔡淳仁  教授 

 

 

中 華 民 國 九 十 九 年 七 月



 

適用 3-D 互動人機圖形介面系統的雙核心 Java 處理器設計 

Design of Dual-Core Java Processor for Interactive 3-D GUI Platform 

 

研 究 生：黃建峰          Student：Chien-Fong Huang 

指導教授：蔡淳仁          Advisor：Chun-Jen Tsai 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

June 2010 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國九十九年七月 

 



 

Abstract 

Java is becoming a more popular language for embedded systems. Modem 

embedded systems do not only execute single task, but often execute many interactive 

multimedia applications simultaneously. For example, complex UIs based on touch 

screen are very popular today. The goal of this thesis is to design a heterogeneous 

dual-core Java platform that can support complex 3-D virtual man-machine 

interaction. The Java platform is derived from previously published work. In this 

thesis, hardware and software components are added into existing platform to enable 

dynamic class loading so that the proposed dual-core Java platform can support 

large-scale Java programs. In addition, a camera calibration process is also developed 

in this thesis so that a pair of stereo cameras can be used to capture the 3-D motion of 

the human operator. With 3-D motion input capability, the proposed platform will be 

capable of efficient execution of 3-D interactive GUI systems. 

The proposed dynamic class loading mechanism has been implemented on the 

Xilinx Virtex-5 ML507 FPGA development board, and verified the proposed design 

with a subset of Embedded Caffeine Mark. The performance of our design (without 

data cache) is about 3~ 9 times faster than CVM running on RISC processor with data 

cache at the same clock rate. We also verified the camera calibration algorithm using 

simulated image sequences and the errors of camera calibration process is about 5~10 

mm for a virtual object located about 700 mm away from the camera.  
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Introduction 

In this chapter, the motivation behind the work in this thesis is presented. With 

the application platforms for embedded systems converging towards Java Runtime 

Environment (JRE), we try to design a heterogeneous dual-core SoC that can support 

3-D interactive man-machine interface efficiently. The work done in this thesis is part 

of the ultimate goal. In the following sections, we will give an overview to the 

proposed JRE and the derivation of the camera calibration process. 

1.1. Motivation for Proposed Java Runtime Platform 

JRE (Java Runtime Environment) is well known for Java platform today 

especially for embedded systems such as mobile phones and set-top boxes. Sun 

Microsystems had defined Java 2 Micro Edition (J2ME) [5] framework and had 

different configurations and profiles depending on different embedded applications 

and devices such as Connected Limited Device Configuration (CLDC) [6] and Mobile 

Information Device Profile (MIDP), etc. 

Traditional JRE is composed of a software-based Java Virtual Machine (JVM) 

[10] running on a full-blown operating system. The JVM must execute the bytecodes 

and provide system interface or dynamic linked library interface for method execution. 

For object-oriented Java language, there are many performance issues for embedded 

systems with a RISC CPU, For example, operations such as simulation of a 

stack-machine, dynamic symbol resolutions, and heavy dynamic memory allocations, 

are expensive for embedded processors. There are many solutions for improving the 

performance of JRE for embedded systems. Just-in-Time (JIT) compilers or the 

hardware-based co-processors are common approaches for embedded Java platform.  
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However, JIT requires extra memory and imposes extra compilation overhead for 

class loading. Architechture exetension such as ARM Jazella [10] are tied to specific 

processor architecture and are not generally available for any host processors. 

The Java platform in this thesis is a heterogeneous dual-core system, which is 

composed of a generic RISC processor and a hardwired Java bytecode execution 

engine. The generic RISC processor works for tasks, such as I/O and control, which 

are inefficient for stack-based processors to execute. The Java core execution engine 

is responsible for general bytecode execution. 

The dual-core Java application processor adopted in this thesis is based on the 

work done in [2][4]. However, previous implementations of the architecture only 

support statically linked classes. That is, all Java classes must be loaded into the 

on-chip memory blocks and all dynamic linking information is parsed and resolved 

before execution. In this thesis, full dynamic class loading and symbol resolution 

mechanism is proposed to enhance the function of previous system. The design is 

based on a software-hardware co-design principle such that one-time complex symbol 

resolution tasks are partitioned and assigned to the RISC core while repeated bytecode 

execution tasks are completely handled within the Java core. With this partition rule, 

the impact of inter-processor communication (IPC) cost is highly reduced and the 

overall performance is improved significantly, compare to a software-based JVM. 

1.2. Camera Calibration Process 

Since the proposed JRE is targeted for interactive multimedia applications with 

virtual 3-D man-machine interface, we have to design a subsystem within the 

dual-core Java SoC to capture human operator 3-D (hand) actions. When combined 

with a 3-D display device, the proposed system will enable virtual 3-D touch screen 

GUI. The technologies of 3-D display devices have been developed for a long time. In 



 3 

order to produce of 3-D visual effects for viewer a general approach is to generate two 

views In front of the views, one for each eye. The viewer may need to ware either 

red-cyan, polarized, or LCD shutter glasses [22] in order to see different images in 

each eye. The viewer is then able to have a synthetic feel of the depth of objects from 

2-D frame images. The two views of a scene can be generated directly from two 

cameras or synthesized from only one view and a depth map. There are also new 

technologies based on lenticular or barrier screens that can display multi-views at 

simultaneously such that multiple viewers can all watch 3-D video together without 

wearing glasses.  

In order to capture the hand operations of the human operator in front of the 3-D 

display, one approach is to adopt the techniques in stereo computational vision 

research. In short, a pair of stereo cameras can be used to estimate the 3-D position 

and motion of the operating hand by triangulation. The first step towards this goal is 

to set up a pair of calibrated cameras connected to the dual-core Java platform. The 

second part of this thesis is to design a simple camera calibration process for the 

proposed platform so that camera parameters can be estimated for the purpose of 

triangulation of 3-D objects. 

The organization of the thesis is as follows. Previous work on Java processors 

and camera calibration process is presented in Chapter 2. Details of the dual-core Java 

application processor architecture is described in Chapter 3. The new 

hardware-software codesigned dynamic class loading mechanism is proposed in 

Chapter 4. Chapter 5 discusses the implementation of the camera calibration process. 

Chapter 6 shows experimental results of the dynamic class loading mechanism and 

the camera calibration process and finally, some conclusions and discussions are 

given in chapter 7. 
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Chapter 2. Previous Work 

The work done in this thesis is part of a project that designs a Java-based 

interactive 3-D man-machine interface (MMI) system. Two of the key components 

implemented in this thesis are the dynamic class loader for a Java processor and the 

camera calibration algorithm for stereo cameras used in MMI. 

 

2.1. Dynamic Class Loading in Java Runtime Environment 

We have presented the motivation of the proposed dual core Java application 

processor in chapter 1. In this thesis, we propose a design of dynamic class loading 

mechanism for Java processors. Class loader is an important feature of Java 

environment. Class loader loads the class files which produced by Java compilers 

from Java program sources. Class file format defines the organization of Java method 

bytecodes, constant pool data, and method argument flags, etc., in an executable file. 

Java virtual machines execute bytecode and use class loaders to load class files. 

Through dynamic class loaders, a Java system can download new Java applications 

from the Internet or storage spaces. A Java system with dynamic class loading is more 

powerful and flexible. 

The JVM provide several modes for class loading such as Lazy Loading or 

User-definable class loading policy[12][13]. JVM has an embedded default class 

loader in Lazy Loading mode. The class loader in Lazy mode loads class files on 

demand. There are usually two cases for JVM to do class loading. One creates the 

class object reference and the other one is for method invocation reference. The class 

loader is a very complex module in JVM. In the beginning of the class loading 
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process, a JVM resolves the class name in constant pool from bytecode and follows 

the class loading flow as shown in Fig. 1. 

Fig. 1 describes general class loading flow of JVM. The class loader searches the 

class method area, jar archives, and class paths for the target classes first. Then it 

computes new resolution information of the newly loaded class to the resolution 

structure and cache table. There are also verification steps for namespaces, method 

invocations, and security issues during class loading process. The class loading 

process is too complex for embedded systems. There are some approaches for 

optimization such as adjusting the search hash mapping function, collect runtime 

information of environment for static method acceleration, etc.  

 

Fig. 1. Flow chart for class loading of JVM. 

For the proposed embedded multimedia Java runtime execution environment, we 

adopt a heterogeneous dual-core SoC system with a Java bytecode execution engine 

and a RISC processor. In this thesis, we implement dynamic class loader for the 

proposed system. The implementation in this thesis is based on a previous Java 

system, which has a static class loader [2][4]. In the old system, the class loader 
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parses all class files and convert them into runtime information images and reserves 

all resolution information in the constant pool of the image. Fig. 2 shows the system 

life cycle of the previous platform. After system boot up, host RISC processor 

initializes system memory and parses all class files before execution. After all class 

files are parsed into information images, the system loads the boot class into Java 

method area and enables the Java execution engine.  

 

Fig. 2. System life cycle of previous Java platform. 

Fig. 3 describes the architecture of previous version of Java core [4]. The Java 

core execution engine is composed of four pipeline stages which fetch, translate, 

decode, and execute bytecode and micro-instructions. There are some issues with 

previous system which will be described later. 
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Fig. 3. Previous Java execution engine [4]. 

Some behaviors of Java bytecode are too complex for hard-wired 

implementation such as method invocation or field data access, etc. These behaviors 

require string resolution, which is too expensive for hardware execution. Previous 

design provides a dynamic resolution state machine to control the status of Java core 

execution engine. The main task of dynamic resolution controller is to handle symbol 

resolution of constant pool data. For example, the states of method invocation do 

resolution and get information which produced by class loader before execution as 

shown in Fig. 4. This state machine also controls and changes the program counter for 

referenced method bytecode. 
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Fig. 4. Original controller state machine for method invocation resolution. 

Finally, previous design does not reference to dynamic data information at run 

time and all essential information at runtime must be stored in runtime information 

image of a class. Previous design parses all class files before Java program execution. 
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We have presented the motivation of integration between the 3-D MMI and the 
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camera intrinsic parameters such as effective focal length and sensor size, etc., and 

extrinsic parameters such as orientation and translation parameters. These parameters 

can be obtained by calibrating the camera using known landmark points. In this thesis, 

we use the camera calibration algorithm proposed by Tsai [15]. The camera model 

used here is the pinhole camera model. There are other camera models such as the 

orthographic projection model or the affine projection model. 

 

Fig. 5. Pin-hole camera model. 

Fig. 5 illustrates the pin-hole camera model. There are two 3-D coordinate 

systems shown in Fig. 5, the camera coordinate system and the world coordinate 

system. Traditional pinhole camera model converts the world coordinate system 

(WCS) into camera coordinate system (CCS) first, then projects 3-D objects to image 

plane and computes its 2-D positions w.r.t. image coordinates system (ICS) of the 

computer. 

The first step in 3-D WCS to 2-D ICS projection is the rigid body transformation 

from (X, Y, Z) WCS to (X, Y, Z) CCS with 33 Rotation matrix R and 31 Translation 

vector T. That is, 

 𝑋 𝑌 𝑍 𝐶𝐶𝑆 = 𝑹 ∗  𝑋 𝑌 𝑍 𝑊𝐶𝑆 + 𝑻               (1)  
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𝑹 =   

𝑟1 𝑟2 𝑟3

𝑟4 𝑟5 𝑟6

𝑟7 𝑟8 𝑟9

  𝑻 =   

𝑇𝑥
𝑇𝑦
𝑇𝑧

       (2) 

The second step is to project the object, denoted in CCS, to ideal undistorted image 

coordinate (X, Y) Ideal using perspective projection of pinhole camera model as 

follows:  

𝑋𝑖 = 𝑓 ∗
𝑋𝑐

𝑍𝑐
                            (3) 

The variable f is the focal length of the camera. 

Thirdly, the effect of lens distortion is taken into account and compute the 

coordinate of image plane with lens distortion (X, Y) Distortion 

 𝑋𝑑 + 𝐷𝑥 = 𝑋𝑢 ,𝐷𝑥 = 𝑋𝑑 𝐾1𝑟
2 + 𝐾2𝑟

4 +⋯    (4) 

 Fourth, we scale the image plain into computer image (X, Y) frame which is pixel 

based frame image by some scale factor. 

𝑋𝑓 = 𝑆𝑥𝑑𝑥
′−1

𝑋𝑑 + 𝐶𝑥  𝑌𝑓 =  𝑑𝑥
′−1

𝑌𝑑 + 𝐶𝑦       

𝑑𝑥
′

= 𝑑𝑥
𝑁𝑐𝑥

𝑁𝑓𝑥
        (5) 

After below steps, the 3-D real objects are projected onto the 2-D image plane. 

We can adopt these images from different viewpoints to compute the 3-D coordinates 

through triangulation as shown in Fig. 6. Note that we need at least two views in order 

to perform triangulation. 

 

 

Camera1 Camera2
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Fig. 6. Compute original 3-D coordinate from two views. 

 The triangulation process requires camera parameters, which can be obtained 

through camera calibration. Next sub-section describes the basic concept of camera 

calibration. 

2.2.2. Overview of Camera Calibration 

Camera calibration can be divided into two categories. One is photogrammetric 

calibration and the other one is self-calibration. Basic photogrammetric calibration 

approaches use a camera to observe a set of known patterns called calibration 

landmark points and use the known 3-D to 2-D correspondence of these landmark 

points to calculate the camera parameters. Self-Calibration can calibrate the camera 

without any calibration landmark points [21]. Self-Calibration captures the static 

scene and generates image sequence by moving the camera. This technology 

estimates the calibration parameters from image sequence which captured by the same 

camera. The former is more accurate and more efficient then letter. But the former is 

also much more expensive. However the interaction interface between human and 

machine needs more reliable information especially for the motion of hand. There are 

also other approaches for specialized environment. We give an overview of another 

algorithm of photogrammetric calibration. 

The camera calibration technology developed by Z. Zhang is also well-known 

[20]. This algorithm provides a flexible calibration process without specialized 3-D 

geometry. The camera only captures the planar pattern from anywhere. However some 

parameters such as lens distortion should be modeled. This calibration technology 

adopts a nonlinear approach based on the maximum likelihood criterion to solve the 

matrix derived from homograph between pattern and image. Even though technology 

of Z. Zhang is flexible and accurate, the calculation is too complex for embedded 

systems to do nonlinear optimization. Therefore, we adopts the camera calibration 
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algorithm by Tsai [15], which only use linear equations and general least square 

optimization which can easily be implement for embedded systems. The details of this 

algorithm will be presented in chapter 5. 
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Chapter 3. Overview of Java Processor  

3.1. Overview 

The dual-core Java application processor in this thesis is based on the 

architecture described in [2][4], which is a double-issue four-stage pipeline stack 

processor. The stages are Translate, Fetch, Decode, and Execute as shown in Fig. 7. 

The Java core also contains a method area and a cache management unit. Furthermore, 

Java core also supports three communication interfaces. One is the internal processor 

communication (IPC: interrupt) interface between RISC core and Java core. Java core 

request RISC for services through IPC interface. Another interface is bus master 

interface of Processor Local Bus (PLB v4.6). Java core can access other devices such 

as DDR memory through master bus interface. The third interface is a set of data 

registers. These data registers are used for information exchange with RISC processor. 

There is a thin kernel running on RISC processor and this kernel provides several 

services such as I/O, dynamic class loading or native function invocations. The IPC 

transmit function parameters to the RISC core through data registers and an interrupt 

service ID register. The system bus protocol is based on the Processor Local Bus 

(PLB) bus of the IBM CoreConnect bus [24]. The remaining sections of this chapter 

describe some details of the previous architecture. Some controller design and 

implementation flaws that lead to stable issues of existing Java core will also be 

discussed. The design and integration of dynamic class loading mechanism into 

existing architecture will be described in next chapter. 
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Fig. 7. Overall architecture of Java core. 
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will directly be translated into one simple instruction for Java core. Then complex 

type bytecode will be translated into an ROM address mapping to an instruction 

sequence at Fetch stage.  

This stage also determinates whether the bytecode are operands or not. If the 

bytecode are operands, these bytecode should not be translated and will be pushed 

into operands buffer at next stage. In order to follows double-issue, system fetch two 

bytecode at a time. Then system need to exactly know which one of the two bytecode 

should be executed, especially after jump, branch, and a data resolution for JPC 

variation. More details are described in [2]. 

 

Fig. 8. Architecture of translate stage. 
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3.2.2. Fetch Stage 

 

Fig. 9. Architecture of fetch stage 
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Fig. 10. Some special conditions for instruction packages. 
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operands buffer for operations or stack access. The interrupt control module and bus 

data master access control module are also included in the stage. Some instructions 

like “new” or method invocation will invoke the interrupt signal at this stage. And the 

bus master access modules only control the target address and R/W request signal. 

The data transferred from the bus will handle at Execute stage. 

 

Fig. 11. Architecture of decode stage. 

3.2.4. Execute Stage 

Fig. 12 shows the execute stage of the Java core. This stage is for the execution 

of ALU operations, stack operations, and external data accesses. The control signals 

of data paths control data sources, operations, multiplexers, and interleaved stack 

operations. The control signals of decode stage handle stack operation and stack 

pointers, where the interleaving stack structure makes things very complex for 

operations. The stack structure will be described in next section. Execute stage 

executes operations indicated by the control signal. Moreover, this stage has the 

critical path here from many levels of multiplexers and the multiply operations.  

Special Flag / 

Control  signals /

Master /

Interrupt /

control

Operand Value

Instruction 

package

JPC

imm ROM
imm ROM

Bytecodes

Instr1 , Instr2 , instruction 

type

Instr1 , 

Instr2
ImmValue

VP

SP

Val 1

Val 2

val : address or immediate 

value or

Operation value

Data path CTRL

Read CTRL

Interrupt ID

Master Rd / Wr  request

Field access flag

Return  flag

Invoke method flag



 19 

 

Fig. 12. Architecture of execute stage. 
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stack and store data back to the locals or still store to top registers. 

The concepts of the push and store operations are illustrated in Fig. 13 as well. 

The ALU operation is shown as Two loads and an ALU operation. If the numbers of 

top stack register are reduced, system needs pop data for SP pointer. We can just take 

the gray part as operand stack and the stack space between SP pointers and VP pointer 

stand for local variables or arguments. 

 

Fig. 13. Basic operations of interleaving stack memory. 

 

Fig. 14. Two loads and an ALU operation. 
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3.3. Cache Management Unit 

In this section, I will introduce the cache mechanism for existing Java core. As 

Fig. 7 shows, Java core fetch bytecode directly from method area. Previous method 

area has 32 2KBytes cache blocks. And the average size of standard Java system 

library is about 8 Kbytes, the method area is enough for usage. Then Java core 

manages the cache mechanism with a cache management unit. The cache 

management table contains the information of class runtime image such as the image 

size, the start address of external memory, etc. An entry of the table is shown in Table 

1. This table is included in the cache management unit. 

 

Table 1. Management Table of Cache Management Unit 

When the Java core performs method invocation, it can query this table using the 

class global index. If the referenced class has been loaded into the method area, the 

Java core can adjust the JPC to the target method area from the start block index. This 

method area start index indicates the first cache block index of referenced class. On 

the other hand cache management mechanism loads referenced class from external 

memory by external memory start address field. Then the cache mechanism enters a 

loading loop for the referenced class image until data counter over the image size. 

This cache mechanism for class image loading is often invoked by method invocation 

which will be introduced in section 4.5. 
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Chapter 4. Design of Java Dynamic Class 

Loading Mechanism 

This chapter presents the proposed dynamic class loading mechanism. We 

implement the proposed dynamic class loading mechanism with hardware-software 

codesigned method. This proposed mechanism is composed of two steps. We use 

software (executed by the RISC core) to parse the class files and collect runtime 

information. This software will generate a bytecode image with reference pointers 

and a cross reference table. The pointers in this image point to this table directly. The 

table contains all runtime information which collected from the original class file. 

This first step only executed by a new class loading event. After the system collect 

essential information, we can just apply second step to load the same class. 

Moreover, the second step is executed completely by hardware. Java core can 

resolve all runtime information with the reference pointer in bytecode image. This 

mechanism only has one-time class loader software execution overhead for each 

class throughout the life cycle of the JRE. When the same class is referenced for the 

second time, the Java core will simply transfer the previously created class runtime 

image from the external DDR SDRAM to the on-chip method area without any 

runtime class loading software overhead. An overview of the proposed dynamic 

class loading mechanism and the software class loader analysis will be presented in 

later sections. Details of dynamic resolution for method invocation and field data 

accesses will also be described in details. The detail descriptions of these 

mechanisms are also presented in later sections.  

4.1. Overview of Proposed Dynamic Class Loading 
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Mechanism 

When a Java method invokes methods which belong to other class files, the 

referenced classes have to be loaded into the method area. Traditional JVM‟s have 

software dynamic class loaders to perform the class loading process triggered by 

method invocations. The dynamic class loaders perform complex dynamic data 

resolution identified by bytecode operands at first. The dynamic data resolution 

mechanism gets the class and method information by referencing the const pool data 

in class files. Then dynamic class loader must check the class method area to make 

sure whether the referenced class is in the method area or not. If the class is not in the 

method area, the dynamic class loader loads the class with a series of verification 

processes as Fig. 1 shows. 

It is obvious that the traditional JVM‟s have high overhead for dynamic class 

loading. Even though the class is in the class method area, the JVM still have high 

overhead to do dynamic data resolution for runtime class information. Hence we 

propose a hardware-software co-designed dynamic class loading mechanism to 

deduce the overhead at runtime.  

 

Fig. 15. Runtime dynamic class loading mechanism. 
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Our proposed hardware-software co-designed dynamic class loading mechanism 

has two steps. As Fig. 15 shows, when the Java program is executing at runtime and 

the program wants to do a method invocation from a different class. If the referenced 

class is invoked first time, Java core generates a “Load Class” event interrupt. Java 

core asks the RISC core to serve the “Load Class” request through IPC interface.  

RISC core will perform the first step of proposed dynamic class loading 

mechanism in the proposed class loader. The detail analysis of class loader is in next 

section. This class loader will resolved the class path and class name of target class by 

querying the cross reference table with information from interrupt service. Then this 

class loader loads the target class from a Jar file system as the Fig. 15 shown. 

This class loader continues to parse the referenced class file and generate the 

bytecode image and update our proposed cross reference table. Then cross reference 

table contains new information of referenced class. And the bytecode image also 

contains the reference pointers which point to these information fields of cross 

reference table. After the class loader collects essential runtime information of 

referenced class, RISC core responds to this “Class Load” interrupt service request 

with method invocation information. Java core enable our cache mechanism after the 

service returned. Then Java core follows cache mechanism and query cache 

management table by the returned method invocation. Finally, Java core can load 

referenced class from cache mechanism and the returned information. 

When Java program wants to do method invocation and the referenced class has 

been loaded before, the Java core can access the cross reference table directly by the 

reference pointer in the bytecode image. Java core can get the same method 

invocation information as the information returned in the first step by accessing the 

cross reference table. If the class has been loaded before, but not in the method area, 
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then Java core must enables cache mechanism to load the referenced class into the 

method area. The Java core can execute the method code directly if the referenced 

class is already in method area. The second step of the class loading mechanism only 

requires very simple hardware logic to implement. And it only requires one data bus 

transaction to retrieve the method invocation information. The overhead of repeated 

invocations of the same method is very small during runtime execution. 

 

4.2. RISC-software of the Proposed Dynamic Class Loader 

We introduce the software class loader which only executed in first step of 

proposed dynamic class loading mechanism. Proposed dynamic class loading 

mechanism construct the cross reference table by this class loader. This cross 

reference table provides all runtime information not only for method invocation but 

also other runtime data resolution. As the cross reference table has enough 

information for runtime execution, the Java core can reduce most overhead from the 

assistance of this table.  
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Fig. 16. Overview for the flow of class loader  
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another class. Then we also get reference pointer for this class to reference other 

classes. Then class loader continues to resolve method data and field data of this 

loading class. Finally the cross reference table gets the method information from 

loading class (referenced class by running class). Then the service returns this 

information to the Java core and completes the onetime cost class loader process.  

We can find pseudo-code and total operations count in Appendix section. The 

operations count depends on the total registered classes‟ number, method count of 

each registered class and field count of each registered class. If the complexity of 

method or field reference increases, the cost of software also increases. There are still 

a lot of acceleration issues for software class loader optimization.  

4.3. Cross Reference Table with Memory Management  

The cross reference table plays an important role of the dynamic class loading 

form section 4.1. Our proposed Java Runtime Environment registers information such 

as class or method or field data information to this cross reference table by profiling 

class file as shown in section 4.2. The cross reference table not only helps runtime 

resolution to the dynamic class loading mechanism, but also gives helps to method 

invocation and field data access and memory management. A typical cross reference 

table with all features is shown in Table 2. 

 

Table 2. Cross Reference Table with Data Field Features 

Table 2 shows all information registered on the table fields for one class. When 

class loader parses a new class, the loader allocates a new global index and creates a 

Cross reference table
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table space for new class. Basic table field includes class name, class path name, 

image start address of external memory, and image size. If the class is load yet, the 

cross reference table still has registered from other class would reference to it. When 

the class loader gets a loading class event with global index; the loader can query the 

table by global index to get the non-load class name. And class loader can find load 

correct class file from correct Jar file path [8]. 

The method invocation is the only behavior would invoke the “Load class event.” 

Java core will invoke the interrupt service when the method invocation references to a 

new class.  When the class has been loaded, Java core can directly accesses expected 

information for usage. And the field data access mechanism also can be a fast 

hardware mechanism. The sections 4.5 and 4.6 describe how Java core use the 

information of cross reference table to do method invocation and field data access. 

Section 4.4 shows current runtime image and how to do the dynamic resolution to 

their information.  
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4.4. Runtime Image Format and Resolution  

 

Fig. 17. Image format and memory allocation. 
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descriptor both are TOC index for their char arrays. The cross address fields are most 

important of all information. This field points to the cross reference table field address 

with method offset for method invocation or physical field data address. The method 

offset mean the byte length from image head to method bytecode section. The last part 

is method code data. The bytecode, arguments numbers, local variable numbers, and 

max stack numbers all have stored in this part for Java core execution.  

4.5. Method Invocation Mechanism  

This section introduces the method invocation mechanism of the Java core. 

There are two types of Java method invocations. One is static class method invocation 

and the other one is dynamic instance method invocation. Static method invocation 

such as invokestatic references to class method directly. Dynamic method invocation 

such as invokevirtual and invokespecial depend on their object references. 

Nevertheless, the proposed Java core executes them with the same procedure. The 

proposed class loader recognizes these method invocation types and inserts special 

parameters to indicate the object reference at parsing time. Moreover the 

invokespecial can be used under three conditions. First, the method is used for 

instance initialization. Second, the method is a private method. Third, the method is 

invoked from a “Super” keyword. Current version can support bytecode such as 

invokestatic, invokespecial, and invokevirtual. The complete method invocation 

procedure can be described by the state machine in Fig. 18. In a normal class file, a 

method invocation bytecode is followed by the class and method reference ID‟s of the 

class name string and method name string that are used for computing the target 

address of the method. With the proposed dynamic resolution mechanism, the 

invocation bytecode in the class runtime image (translated by the class loader) is 

followed by a index operand. The operand simplifies the dynamic resolution process. 
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Fig. 19 illustrates how the operand can be used to access the target method address 

through indirect references. There is no need to perform any string comparisons as in 

traditional JVM dynamic resolution process.. 

 

Fig. 18. State machine of method invocation mechanism. 

 

 

Fig. 19. Method invocation resolution steps. 
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machine is controlled by dynamic resolution controller of Java core. The method 

invocation mechanism can be divided into four stages roughly. Java core can find 

referenced class and referenced method bytecode information by following this state 

machine. 

 

Fig. 20. Reference pointer and method information access 
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referenced class which not loaded before, Java core enters the bad index and waits for 

the RISC core service as above sections. The Java core enters the third stage until the 

RISC service finish. If the referenced class has loaded before, the Java core enters 

third stage directly.  

 

Fig. 21. The cache mechanism of third stage 
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Fig. 22. Adjust Java core to access referenced method bytecode 

After the referenced class has loaded into method area, Java core adjust its stack 
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Fig. 23. Method invocation stack variation – no arguments, 2 local variables. 

 

Fig. 24. Method invocation stack variation – 1 argument, 2 locals. 
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Fig. 25. Method invocation stack variation – Method Return without value 

(void). 

 

Fig. 26. Method Invocation Stack Variation – Method Return with value 

“ireturn.” 
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4.6. Field Data Access Mechanism 

 

Fig. 27. Dynamic resolution state for field access mechanism. 

The field access mechanism is somewhat like the method invocation mechanism. 

The state machine is also controlled by dynamic resolution controller. The Fig. 27 is 

the dynamic resolution state transaction flow for field data access, and the first three 

states are also for the reference pointer mapping. After Java core get the reference 

pointer, this field of table should contain a pointer of physical memory address for 

static field data or a variable order index for non-static variable. In the case of 

non-static variable, the Java core will calculate correct memory address of heap 

memory by object reference address of heap memory and the order index. The Fig. 28 

describes a complete flow for non-static variable access. 
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Fig. 28. Step flow for field data access mechanism. 

 Static field access mechanism has only one thing different form non-static. The 

cross reference table field has different meaning between static and non-static. In the 

static case, this field describes a physical memory address for static value which 

follows the image space, but order index for non-static field access. 
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Chapter 5. Camera Calibration 

We presented basic concepts and some technologies of camera calibration process 

in Chapter 2. Then we chose calibration algorithm of Roger Tsai which is suitable for 

our proposed embedded Java platform. We continue to describe the details of our 

implementation of Roger Tsai‟s algorithm in this chapter. We verify our 

implementation with a virtual simulation environment. The virtual simulation 

environment is set by Blender Tool 2.49. This chapter describes the usage of Blender 

Tool at first. Then following section describes the image process for abstracting the 

orientation of landmark points from image. The final section describes the 

implementation of calibration process. 

5.1. Camera Calibration Algorithm 

In this section, we will describe the camera calibration algorithm by Tsai [15]. 

5.1.1. Calibration Algorithm 

 

Fig. 29. Perspective Projection Model with Lens Distortion 

This section introduces the motivation and basic concept of Roger Tsai‟s camera 

calibration algorithm. Main concept of this algorithm is to calibrate the camera by 

linear equation derived from the physical property of optics. And this algorithm can 
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be divided into two parts. All calculation of this algorithm do not involved non-linear 

optimization, there is only linear problem need be solved. The one is to compute 3-D 

orientation position parameters. Another is to compute effective focal length, 

distortion coefficients, z-position and scale factor which more camera intrinsic 

parameters. The following sections describe the detail of two parts individually. 

5.1.2. Computation of 3-D Orientation Position Parameters 

We introduce first step in this section. We observe the Fig. 29 at first. The line 

segments OiPd, PozP, OiPu is parallel each other because of the Radial Alignment 

Constraint (RAC).  Then we can find the vector (X d, Y d) of Pd and the vector (X, Y) 

of P are also parallel each other. And we also conclude the outer product of these two 

vectors is zero. Then we can derive an equation from (1). 

𝑋𝑑𝑌𝑐𝑐𝑠 − 𝑌𝑑𝑋𝑐𝑐𝑠 = 0      (5) 

𝑋𝑑 𝑟4𝑋𝑤 + 𝑟5𝑌𝑤 + 𝑟6𝑍𝑤 + 𝑇𝑦 − 𝑌𝑑 𝑟1𝑋𝑤 + 𝑟2𝑌𝑤 + 𝑟3𝑍𝑤 + 𝑇𝑥 = 0 (6) 

Finally we derive (5) from (1) and (2). Then we can rearrange the variables to 

five unknowns because of Zw to be zero for coplanar calibration system or 

non-coplanar calibration system. Moreover the Xd, Yd variables are available from (3). 

The model of coplanar or non-coplanar are introduced at next section. Then we can 

conclude two linear systems for different calibration landmark point models. We can 

get parameters of rotation and translation matrices from these linear systems with 

known position of landmark points. Equation (7) is for non-coplanar model and 

Equation (8) is for co-planar model. 
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 𝑌𝑑𝑖𝑥𝑤𝑖  𝑌𝑑𝑖𝑦𝑤𝑖  𝑌𝑑𝑖𝑧𝑤𝑖  𝑌𝑑𝑖 − 𝑋𝑑𝑖𝑥𝑤𝑖 − 𝑋𝑑𝑖𝑦𝑤𝑖 − 𝑌𝑑𝑖𝑧𝑤𝑖  
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= 𝑋𝑑𝑖   (7) 

 𝑌𝑑𝑖𝑥𝑤𝑖  𝑌𝑑𝑖𝑦𝑤𝑖   𝑌𝑑𝑖 − 𝑋𝑑𝑖𝑥𝑤𝑖 − 𝑋𝑑𝑖𝑦𝑤𝑖  
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= 𝑋𝑑𝑖    (8) 

5.1.3. Computation of Effective Focal Length, Len Distortion, 

Z-Position 

After first stage computation we can estimate three rotation angles parameters, 

translation of x-axle and y-axle and scale factor in this stage. The second stage 

computes remain parameters as the title 2.4.1. From relating (3), (4), and (5) we can 

estimate the z-axle of translation matrix and the effective focal length by (9).  

𝑑𝑦 ∗ (𝑌𝑓 − 𝐶𝑦) = 𝑓  
𝑟4𝑋𝑤 + 𝑟5𝑌𝑤 + 𝑇𝑦

𝑟7𝑋𝑤 + 𝑟8𝑌𝑤 + 𝑇𝑧
    (9) 

Then we get approximations of focal length and z-axle by ignoring lens distortion 

from (9). This over-determined system of linear equation can be solved easily from 

least square method. Finally we compute exact values of focal length, z-axle and lens 

distortion and use the result of last computation as initial guess for standard 

optimization of(9). The (10) is also derived from (3), (4), and (5). And we can select 

some standard schemes such as Steepest descent, Newton method or Powell method 

for standard optimization. After this calibration algorithm we can get all essential 

parameters for computing the coordinates of 3-D object. 
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𝑑𝑦𝑌 + 𝑑𝑦𝑌𝜅𝑟
2 = 𝑓  

𝑟4𝑋𝑤 + 𝑟5𝑌𝑤 + 𝑇𝑦
𝑟7𝑋𝑤 + 𝑟8𝑌𝑤 + 𝑇𝑧
    (10) 

5.1.4. Basic Concepts of Landmark Points Arrangement for 

Calibration 

 

Fig. 30. Calibration Cube for Different Models 

The Fig. 30 describes the difference between coplanar and non-coplanar 

calibration models. The coplanar model means that the landmark points for calibration 

are all on the same plane. On the other hand the non-coplanar model has landmark 

points on different plane non-parallel. The landmark points are attached on the face of 

Cube. The following section of implementation details describes the experiment 

environment with a simulation platform produced by Blender Tool-2.49. 

5.2. Simulation Environment Setup with Blender Tool  

I introduce the virtual simulation environment setup by Blender Tool 2.49 in this 

section. Before the implementation of camera calibration process we need to construct 

a stable environment for verification at first. The Blender Tool is convenient to 

construct a virtual 3-D space environment and we use this virtual environment to 

(A) Coplanar (A) Non-Coplanar 

Calibration Cube Calibration Cubes



 43 

verify our implementation flow. More learning information can be found at its official 

web site [25]. 

 

Fig. 31. Virtual Cube with Landmark Points for Calibration 

 We adopt a static feature points as calibration landmark points such as center of 

circle or corner of rectangle. Then we use this tool to add a virtual cube attached 

twenty-five landmark points each face as shown in Fig. 33 . Then we can add virtual 

camera into the 3-D virtual scene to generate the render image. We can download a 

template camera script which can be used to adjust camera options manually, and then 

we can adjust the camera intrinsic parameters for verification. Then we can configure 

the Field-of-View (FOV) of this camera through the options of script. The Fig. 32 

describes the camera field view model and the script options of camera. 

x

y

z
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Fig. 32. Cameral FOV Model and the Options of Camera 

Finally we configure the calibration objects and the camera parameters to a 

noiseless verification environment. After we arrange appropriate positions of 

calibration cube and the camera, we can verify the calibration implementation by 

render image captured from this virtual camera.  
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5.3. Landmark Points Image Process 

 

Fig. 33. Render Image of Captured Cube from Camera of Blender Tool 

Fig. 33 is the render image captured from the virtual camera. In this thesis, we 

implement the Roger Tsai‟s camera calibration algorithm. In order to fit the linear 

function, we obtain the solutions by substituting the landmark point position of world 

coordinate system and the ellipse center position of image plane into the linear 

function. In this section, we describe how to obtain there essential information. We 

can easily get accurate position of word coordinate system by the Blender tool. 

Moreover we need get the correct position of ellipse center of landmark points from 

render image. In this section, I will introduce the basic image processing flow to get 

the ellipse center position. 

The Fig. 34 describes the image processing flow to obtain the 2-D position of 

landmark points on image plane. The first step translates the color image into 

gray-level and grouping the histogram. Then we can choose an appropriate value for 

threshold to delete most other parts. However there are no efficient to reserve helpful 

parts from a complicated image. Hence I keep the view of calibration as clean as 

possible.  After adopt an appropriate threshold value we can get a binary graph as 

shown in Fig. 33. Then we apply an edge filter from Laplacian Filter to get the edge 

pixels and group edge pixels into connected components as shown in Fig. 35. 
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𝑎𝑋2 + 𝑏𝑋𝑌 + 𝑐𝑌2 + 𝑑𝑋 + 𝑒𝑌 + 𝑓 = 0    (11) 

The Fig. 35 shows edge pixels of one component. Then we approximate the 

ellipse equation (11) by substituting these edge points and normalize with f = 1. 

Finally, we can obtain the ellipse center from ellipse function approximated. All 

prepared data are ready for calibration process from this step. 

 

Fig. 34. Image Processing Flow for Landmark Points Center 
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Fig. 35. The Edge Pixels Component for Ellipse Detection  

5.4. Implementation Flow for Calibration Process from 

Roger Tsai’s Calibration Algorithm  

Proposed implementation of camera calibration process is based on the Roger 

Tsai‟s calibration algorithm of section 2.3. The calibration process can divide into two 

parts. As the section 2.3 shown, first part calculates the 3-D orientation and position. 

System uses (14) as the calculation function of this step. Then we rearrange the 

variables of (7) and (8) and obtain (14) from all landmark points. We substitute the 

known information of world coordinates of landmark points (center of landmark 

circle) and position of image plane (ellipse center) into this linear over-determined 

equation (13). The (14) is the partial differentiation of over-determined equation (13).  

𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 =  𝑉6 

𝑉1 =  𝑌𝑑𝑖𝑋𝑤𝑖  ,𝑉2 =  𝑌𝑑𝑖  ,𝑉3 =  𝑌𝑑𝑖  ,𝑉4 =  −𝑋𝑑𝑖𝑋𝑤𝑖  ,𝑉5 =  −𝑋𝑑𝑖𝑌𝑤𝑖  ,𝑉6 =  𝑋𝑑𝑖   (12) 

 

𝑆 =  (  𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6)2   (13) 

 

𝜕𝑆

𝜕𝑎
= 2 ∗  𝑉1 ( 𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0   

 
𝜕𝑆

𝜕𝑏
= 2 ∗  𝑉2 ( 𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0   

𝜕𝑆

𝜕𝑐
= 2 ∗  𝑉3 ( 𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0 (14) 

𝜕𝑆

𝜕𝑑
= 2 ∗  𝑉4 ( 𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0   

𝜕𝑆

𝜕𝑒
= 2 ∗  𝑉5 ( 𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0   

We can obtain most calibration parameters of 3-D orientation and position from 

the solution of above calculation. The rotation matrix, scale factor, x-axle translation 

and y-axle translation cab be obtained from this step. And the sign of parameters 

decided by set one of this parameter to be „1‟ positive, and the other parameters 
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decided by the mutually orthogonal of any two rows or columns. Certainly we should 

be sure to the consistency of coordinate direction.   

The second step computes focal length, distortion coefficients and z-axle position. 

We assume the distortion to be zero to get the initial value for next step at first. And 

we can derive a linear function by below functions with distortion is zero. Then the 

summery linear function is also an over-determined system and we estimate effective 

focal length by least square method.  

𝑆 =   𝑦𝑖𝑓 − 𝑌𝑑𝑖𝑇𝑧 − 𝑤𝑖𝑌𝑑𝑖 
2      

 
𝛥𝑆

𝛥𝑓
=  2𝑦𝑖 𝑦𝑖𝑓 − 𝑌𝑑𝑖𝑇𝑧 − 𝑤𝑖𝑌𝑑𝑖        

𝛥𝑆

𝛥𝑇𝑧
=  2𝑌𝑑𝑖 𝑦𝑖𝑓 − 𝑌𝑑𝑖𝑇𝑧 − 𝑤𝑖𝑌𝑑𝑖    (15) 

 Then we compute more accurate focal length, distortion coefficients and z-axle 

position parameters in this section. The equation (15) is the summery and partial 

differentiation of (10). We continue use (15) and assume f, Tz and K as unknowns. 

And estimate the solution by standard optimization process as Powell‟s Method with 

initial guess from last round solutions. Finally we can obtain the intrinsic parameters 

of camera and extrinsic parameters of 3-D orientation rotation matrix and translation 

matrix parameter.  
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Chapter 6. Experimental Results  

6.1. Performance Analysis of Java Core Platform 

6.1.1. Development Platform and Tools 

We have implemented the proposed Java platform on the Xilinx Virtex5 ML507 

development board. The FPGA XC5VFX70T contains hardcore PowerPC 440, 44800 

slices, 128 DSP8E functional units and 5328 Kbits BRAM with 256 MB DDR2 

memory. We use Xilinx Embedded Development Kit 10.1(EDK) as the development 

tool and Xilinx
®
 Synthesis Technology (XST) as the FPGA synthesis tool. The design 

suite also provides full system simulation verification for EDK development platform 

and ISE.  

We create an implementation platform from Base System Builder (BSP) wizard 

of Xilinx Platform Studio (EDK XPS) as shown in Fig. 36. We also add Java core IP 

into this implementation platform. 

 

Fig. 36. Architecture diagram of implementation platform. 

Fig. 37 describes the runtime emulation platform. The system bus (PLB) clock 

rate is running at 100 MHz. Table 1 shows the resource utilization of the FPGA device 
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and the estimated working clock frequency. Although the estimated working 

frequency is a little bit lower than the actual bus frequency, the system seems quite 

stable when running benchmark programs. It is possible to lower the system bus 

frequency on ML-507 if necessary. 

 

Fig. 37. Emulation platform of the proposed Java system. 

 

Table 3. Synthesis report of the design on an XC5VF70T device. 

6.1.2. Benchmark of Java Core 

This section compares the performance between the CVM running on the RISC 

core alone and our proposed Java core. We use the benchmark of Embedded Caffeine 

Mark (ECM) 3.0. The benchmark result is shown in Table 4. The CVM Java VM 

interpreter is running on the PowerPC 440 CPU under MontaVista Linux. The CVM 

platform has 32KB instruction cache and 32 KB data cache in the PowerPC core. 

Jar File System of 

CF Card

Hardware of FPGA

Java CoreRISC Core
Interrupt

Communication

Java program 

execution

Class Profiling Process 

( Class Loader)
DDR – Image Space

Runtime Image , 

Image Information
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Table

Load Target 

Image

Target Class

Selected Device : 5vfx70tff1136-1

Number of Slices: 9252(3528) out of 44800 20(7)% 

Number of Slice 6 input LUTs: 8755(4044) out of 44800 19(9)% 

Number used as logic: 8390(4404)

Number of IOs: 212(0)

Number of bonded IOBs: 120 (0)   out of 640 18%  

Number of Block RAM/FIFO 35 (19)    out of 148 23(12)% 

Number using Block RAM only 35(19)

Number of PPC440: 1          out of 1 100%

Minimum period: 10.681ns Maximum Frequency: 93.624MHz

The value of parentheses is only Java execution engine
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However, current Java core does not have any data cache, which affects the 

performance significantly for the proposed Java processor. However, the performance 

of the proposed Java core is still much faster than that of CVM as shown in Table 4. 

And the score of performance is defined by Caffeine Mark, which is calculated based 

on the execution iterations of certain code in 1 ms and the scale factor of each 

benchmark. In short, the higher the score, the better the performance.  

 

Table 4. Benchmark between CVM and the proposed platform  

 As the Table 4 shows, we can notice that the performances for different 

benchmarks are quite different. For example, the performance of executing Method on 

the proposed Java core is only 2.88 (about 3) times faster than that on the CVM. 

However the performance of Logic is 9.60 times faster. There is more details analysis 

for each benchmark later. 

 Fig. 388, Fig. 39, Fig. 40, and Fig. 41 show the distributions of bytecode 

instructions of these benchmark programs. Note that in the proposed design 

(described in chapter 4), both method invocation and field data access need at least 

Items 

Bus100MHZ

Test Programs

Proposed JRE
@100 MHz without data cache

CVM @PowerPC

100MHZ with data cache

Once [#K 

cycle] 

Once [ms] Score Score Improvement

SieveAtom 320 82 3.82 faster

Sieve(Load class from DDR) 868098 8.68

Sieve(non-load) 866073 8.66

LoopAtom 262 56 4.68faster

Loop(Load class from DDR) 1038833 10.38

Loop(non-load) 1037778 10.37

MethodAtom 228 79 2.88 faster

Method(Load class from 

DDR)
1343344 13.43

Method(non-load) 1340759 13.40

Logic 711 74 9.60 faster

Logic(Load class from DDR) 545558 5.45

Logic(non-load) 535828 5.35
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two external memory accesses. Access to an array in heap memory takes one external 

memory access. However current Java core does not have any data cache, external 

memory costs a lot of cycles for PLB bus transaction. 

 Sieve compute prime number below “512”. Logic changes the Boolean logic 

state 2400 times. Method calls recursive method invocation for a total of 10060 times. 

Loop counts the Fibonacci sequence below 64 for a total of 4036 iterations. As Fig. 39 

shows, Logic is composed mostly of simple instructions (90%). The proposed Java 

core can execute two simple instructions per clock cycle. Therefore, the performance 

on Logic is much faster than others.  

 On the other hand, although the percentage of simple instructions of Loop is 

much more than that of Sieve, the performance on Loop is less than that on Sieve. The 

main reason for this issue is the number of external memory accesses. External 

memory accesses on PLB bus take about 15~20 cycles for one data transaction on 

average. The Sieve benchmark has about 17000 (18%) instructions for external 

memory data accesses. Moreover, the field accesses and method reference instructions 

requires two external memory accesses for each instruction. The Loop benchmark has 

about 16500 (16%) array access and 8317(8%) field access. We compare the 

percentages of external memory accesses between Sieve and Loop, and Loop has 

much more portion of programs to do external memory accesses. Finally, Method 

benchmark has very high percentages to do method reference and external memory 

data accesses and complex bytecode “ireturn.” Hence Method need more amount of 

time to do bus transaction and the performance improvement is less than others 

benchmark cases. 
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Fig. 38. Sieve benchmark analysis  

 

Fig. 39. Logic benchmark analysis 

 

Fig. 40. Method benchmark analysis 
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Fig. 41. Loop benchmark analysis 

6.2. Experimental Results on Camera Calibration 

We use a simulated virtual 3-D world created by Blender Tool 2.49 to verify the 

implementation of camera calibration process. Blender is used to create calibration 

cube, landmark points, and virtual camera in the virtual 3-D space. We can control 

accurate 3-D position of calibration objects and camera through the tool. Blender also 

provides more detail options such as real light render, text control, camera intrinsic 

parameters, etc. We can compare the result calculated by our calibration process from 

render image with the parameter configured by Blender for verification.  

Fig. 42 describes the simulation model constructed by blender. There are two 

calibration cubes with landmark points on different faces in this virtual model. Fig. 42 

also describes 3-D position of objects and the position and focal length of camera. 

Then the calibration process do the image process from render image captured by 

virtual camera at first and obtain the orientation information of image plane as shown 

in Fig. 43.  

After system has the orientation information of image plane and the known 3-D 

position of landmark points, the camera calibration process calculates all parameters 

as described in chapter 5. Table 5 is the comparison between results of camera 
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calibration implementation and configuration setting from simulation environment.  

 

Fig. 42. Virtual configurations of experiment environment. 

 

Fig. 43. Render image and result of image process. 
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Table 5. Comparison between configuration and calibration parameters. 

Calibration Parameters Configure Value Calibration Value

Focal length 30 27.4

Scale factor -- 1.3

Distortion 0 0

Rotation x -35 -35.3

Rotation y -55 -54.9

Rotation z 70 70.3

Translation x 757.43 758.19

Translation y 120.75 127.54

Translation z 231.91 233.69
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Chapter 7. Conclusions and Discussions 

In this thesis, we have presented the design of a dynamic class loading 

mechanism for Java processors using hardware-software co-design approach. For 

each class loading operation, the proposed system divides it into two different steps. 

The first step includes operations like locating the Java class files, parsing the class 

files, generating a runtime class image and cross-reference tables. This step is a 

one-time only process for the entire life cycle of the Java system and it greatly 

reduces the complexity of dynamic resolution and loading of a class image into 

method area. The first step in dynamic class loading is implemented in software and is 

executed by the RISC core. 

The second step of dynamic class loading involves dynamic resolution of 

symbols in the class (symbols are turned into unique IDs during the first steps) and 

management of class images in the method area. The second step is implemented by 

hardwired logic for performance reason. The second step will be executed 

over-and-over every time a class is referenced in the Java application program. 

There are some operations that are not completely supported in current design of 

dynamic class loading mechanism such as complex inheritance and interface 

invocation. Although the class parser only parses each class once during the life cycle 

of a Java system, the performance of the class parser is also important to reduce the 

overhead of dynamic class loading for Java processors. 

Finally, for long-term goals, there are many issues such as sophisticated garbage 

collection, exception handling, and multi-threading for complete support of JVM for 

embedded systems, etc.  

Another topics investigated in this thesis is the camera calibration process for 3-D 
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MMI. We have implemented a camera calibration algorithm and verified the 

implementation using simulated environment. The simulation result shows that the 

camera parameters are estimated quite accurately. For future work, we will construct a 

real environment for testing the camera calibration process. Then we can apply the 

triangulation method to capture real 3-D position of any object. Eventually, these 

technologies can be integrated together to construct a smart embedded Java platform 

with 3-D human interaction interface. 
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Appendix: Pseudo-code of Class Loader on 

RISC-side 

total_file_of_FAT_entries            ; Total number of files of FAT file system 

totol_registered_class               ; Total number of registered class 

nConstPool                       ; Total number of const pool items 

attribute_count                    ; Total number of attribute in a class 

mehthod_numberofclass[x]          ; Number of methods of the x th class 

field_numberofclass[x]              ; Number of fields of the x th class 

nByteCode                        ; Number of bytecodes in current method 

string_operation                   ; String comparison  

directly_access_operation            ; String comparison 

 

Open Class File of Jar file system (Jar file name, Class path/class name) 

{ 

   Open Jar file with Xilinx Fat16 filesystem  

   

   while (1) 

 { 

     if (Correct file header) comment: Check the header of Jar file system ; 1 string_operation 

     { 

  Resolution of class files information of Jar format  

  if (Temp class name equal class path/class name)  ; 1 string_operation 

{ 

   

Initialization of target class name of table ; 20 directly_access_operations  

For (i = 0; i < totol_registerd_class; i++)  

  { 

     if (class name = cross_reference_table[i].class_name) ;1 string_operation 

     { 

         Start the class loader process for a registered class 

  ; 3 directly_access_operations 

} 

} 
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          jf (flag = 0) comment:  new class register at first 

          { 

    Start the class loader process for a non-registered class 

 ; 6 directly_access_operations 

} 

} 

     } 

} 

} 

total_file_of_FAT_entries*(1/2)*(26+ totol_registerd_class) directly_access_operations 

total_file_of_FAT_entries*(1/2)*(2+ totol_registerd_class) string_operations 

 

ClassLoader (image baseaddress, &classfile , i(Class global index ) ) 

{ 

    Resolution of class header 

    Resolution the number of referenced method and field 

 ;3* nConstPool directly_access_operations 

    Retreat information for cross reference table ; 2 directly_access_operations 

    for (i = 0; i < Method_ref_count ; i++) 

    { 

        Resolution of referenced method information ; 10 directly_access_operations 

         

for ( j=0 ; j < totol_registerd_class ; j++) 

{ 

if (referenced Class not registered ) 

        { 

   Table initialization process  

Register method field both in this class and referenced class 

; 26 directly_access_operations 

; 1 string_operations  

} 

else { 

    if ( referenced class is this class) 

{ 

     Register the method information and get reference pointer 

     ; 14 directly_access_operations 

} 

Else 
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{ 

1. The Referenced Class has registered the method information 

;Mehthod_numberofclass[x] + 2 directly_access_operations 

; Mehthod_numberofclass[x]/2 string_operations  

2. The Referenced Class also has not register this method information 

;Mehthod_numberofclass[x] + 7 directly_access_operations 

; Mehthod_numberofclass[x]/2 string_operations 

Update image reference pointer  

; 11directly_access_operations 

} 

} 

         } 

} 

Retreat field information for cross reference table 

   for (i = 0; i < field_ref_count ; i++) 

    { 

        Resolution of referenced field information 

     ; 10 directly_access_operations 

        for ( j=0 ; j < totol_registerd_class ; j++) 

{ 

if (referenced Class not registered ) 

        { 

    Table initialization process  

Register method field both in this class and referenced class 

; 26 directly_access_operations 

; 1 string_operations  

} 

else { 

    if ( referenced class is this class)   

{ 

     Register the field information and get reference pointer 

     ; 14 directly_access_operations 

} 

Else 

{ 

1. The Referenced Class has registered the field information 

Mehthod_numberofclass[x]*2 operations 

;Mehthod_numberofclass[x] + 2 directly_access_operations 
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; Mehthod_numberofclass[x]/2 string_operations 

2. The Referenced Class also has not register this field information 

;Mehthod_numberofclass[x] + 7 directly_access_operations 

; Mehthod_numberofclass[x]/2 string_operations 

Update image reference pointer 

; 11directly_access_operations 

} 

} 

         } 

} 

Resolution parent class index information  

;2 directly_access_operations 

Get the global index of parent index  

; totol_registerd_class/2 string_operations 

;1 directly_access_operations 

Resolution of field data of this class 

 ; 1 directly_access_operations 

for (i = 0 ;i < total field data; i++) 

{ 

    Parse field data information (Access flag) and resolve the field data name 

    Register the field information to the cross reference table of this class 

; 5 directly_access_operations 

Update field information of other class who will access this field data   

; totol_registerd_class*Field_numberofclass[x]/2 string_operations 

; 2 directly_access_operations  

} 

Resolution of method this class  

; 1 directly_access_operations 

for (i = 0 ; i < method count of this class ; i++ ) 

{ 

    Resolution of method access flag  

    Resolution of method information  

    ; 6 directly_access_operations 

    Check the method whether has been registered or not 4 operations 

; Mehthod_numberofclass[x]/2 string_operations 

; 2 directly_access_operations  

if ( Method has not been registered ) 

{ 
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        Register the method field – 5 operations 

       ; 4 directly_access_operations 

} 

Resolution of descriptor 

; 4 directly_access_operations 

Descriptor checking for argument numbers 

; 2 directly_access_operations 

; 5 string_operations 

“Main” function checking – 5 operations 

; 1 string_operations 

; 1 directly_access_operations 

for (j = 0 ; j <attribute_count ; j++) 

{ 

   Resolution of attribute name and size 

   ; 4 directly_access_operations 

if (attribute name is “Code”) 

   { 

; 1 string_operations 

       Resolution of Max_Local ,Max_Stack   

       ; 5 directly_access_operations 

Update current method field offset  2*method count operations 

       ; method count operations directly_access_operations 

       ; method count operations/2 string_operations 

Update method field offset of other class  

2*totol_registerd_class*Mehthod_numberofclass[x] operations 

; ( totol_registerd_class/2)*(1 +Mehthod_numberofclass[x]) directly_access_operations 

       ;( totol_registerd_class/2)*(Mehthod_numberofclass[x]/2) string_operations 

       Update the operand index of method code – nByteCode*4 operations 

; nByteCode*5 directly_access_operations 

}  

  else 

  { 

       Skip other attribute  

} 

} 

} 

Return Image Size; 

} 
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