

i

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

適用 3-D 互動人機圖形介面系統的雙核心

Java 處理器設計

Design of Dual-Core Java Processor for Interactive 3-D GUI

Platform

研 究 生：黃建峰

指導教授：蔡淳仁 教授

中 華 民 國 九 十 九 年 七 月

適用 3-D 互動人機圖形介面系統的雙核心 Java 處理器設計

Design of Dual-Core Java Processor for Interactive 3-D GUI Platform

研 究 生：黃建峰 Student：Chien-Fong Huang

指導教授：蔡淳仁 Advisor：Chun-Jen Tsai

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

Abstract

Java is becoming a more popular language for embedded systems. Modem

embedded systems do not only execute single task, but often execute many interactive

multimedia applications simultaneously. For example, complex UIs based on touch

screen are very popular today. The goal of this thesis is to design a heterogeneous

dual-core Java platform that can support complex 3-D virtual man-machine

interaction. The Java platform is derived from previously published work. In this

thesis, hardware and software components are added into existing platform to enable

dynamic class loading so that the proposed dual-core Java platform can support

large-scale Java programs. In addition, a camera calibration process is also developed

in this thesis so that a pair of stereo cameras can be used to capture the 3-D motion of

the human operator. With 3-D motion input capability, the proposed platform will be

capable of efficient execution of 3-D interactive GUI systems.

The proposed dynamic class loading mechanism has been implemented on the

Xilinx Virtex-5 ML507 FPGA development board, and verified the proposed design

with a subset of Embedded Caffeine Mark. The performance of our design (without

data cache) is about 3~ 9 times faster than CVM running on RISC processor with data

cache at the same clock rate. We also verified the camera calibration algorithm using

simulated image sequences and the errors of camera calibration process is about 5~10

mm for a virtual object located about 700 mm away from the camera.

Acknowledgement

在完成這篇論文的同時,首先必須要感謝我的指導教授蔡淳仁教授,老師在

我求學的時期給我很多學習的經驗跟機會,在平日的指導上也願意付出很多耐心

教導傳承許多研究經驗,以及增廣研究學習的角度,也讓我了解到自己的缺點跟

不夠細心,讓我在研究所的這兩年期間能夠保持耐心,也接觸到許多不同研究的

課題,讓我在實作上有較多的接觸跟許多不同的實作經驗,也感謝實驗室的學長

帶領我們一起執行國科會的計畫,透過計畫的合作互相研討,也認識了其他實驗

室的同學並且能夠多看看別人努力的成果,在整合計畫的過程中也學到與人溝通

合作的重要性,也感謝實驗室學弟願意配合一起努力學習,也讓我了解自己仍有

許多地方需要努力學習,很高興在實驗室的夥伴願意和我一起努力研究,讓我自

己在這兩年中間能夠有所成長。

Content

Introduction 1

1.1. Motivation for Proposed Java Runtime Platform .. 1

1.2. Camera Calibration Process ... 2

Chapter 2. Previous Work 4

2.1. Dynamic Class Loading in Java Runtime Environment 4

2.2. 3-D MMI based on Stereo Cameras... 8

2.2.1. 3-D and Image Coordinates Systems ... 8

2.2.2. Overview of Camera Calibration ... 11

Chapter 3. Overview of Java Processor . 13

3.1. Overview .. 13

3.2. Bytecode Execution Core .. 14

3.2.1. Translate Stage ... 14

3.2.2. Fetch Stage ... 16

3.2.3. Decode Stage ... 17

3.2.4. Execute Stage ... 18

3.2.5. Stack Structure. .. 19

3.3. Cache Management Unit.. 21

Chapter 4. Design of Java Dynamic Class

Loading Mechanism 22

4.1. Overview of Proposed Dynamic Class Loading .. 22

4.2. Class Loader of Proposed Dynamic Class Loading Mechanism on RISC

Core 25

4.3. Cross Reference Table with Memory Management 27

4.4. Runtime Image Format and Resolution ... 29

4.5. Method Invocation Mechanism ... 30

4.6. Field Data Access Mechanism ... 37

Chapter 5. Camera Calibration 39

5.1. Camera Calibration Algorithm ... 39

5.1.1. Calibration Algorithm .. 39

5.1.2. Computation of 3-D Orientation Position Parameters 40

5.1.3. Computation of Effective Focal Length, Len Distortion, Z-Position .. 41

5.1.4. Basic Concepts of Landmark Points Arrangement for Calibration 42

5.2. Simulation Environment Setup with Blender Tool 42

5.3. Landmark Points Image Process .. 45

5.4. Implementation Flow for Calibration Process from Roger Tsai‟s

Calibration Algorithm .. 47

Chapter 6. Experimental Results 49

6.1. Performance Analysis of Java Core Platform .. 49

6.1.1. Development Platform and Tools .. 49

6.1.2. Benchmark of Java Core .. 50

6.2. Experimental Results on Camera Calibration .. 54

Chapter 7. Conclusions and Discussions 57

Appendix Pseudo-code of Class Loader 59

Reference 64

List of Figures

FIG. 1.FLOW CHART FOR CLASS LOADING OF JVM. ... 5

FIG. 2.SYSTEM LIFE CYCLE OF PREVIOUS JAVA PLATFORM. .. 6

FIG. 3.PREVIOUS JAVA EXECUTION ENGINE [4]. ... 7

FIG. 4.ORIGINAL CONTROLLER STATE MACHINE FOR METHOD INVOCATION RESOLUTION. 8

FIG. 5.PIN-HOLE CAMERA MODEL. ... 9

FIG. 6.COMPUTE ORIGINAL 3-D COORDINATE FROM TWO VIEWS. .. 11

FIG. 7.OVERALL ARCHITECTURE OF JAVA CORE. .. 14

FIG. 8.ARCHITECTURE OF TRANSLATE STAGE. ... 15

FIG. 9.ARCHITECTURE OF FETCH STAGE .. 16

FIG. 10.SOME SPECIAL CONDITIONS FOR INSTRUCTION PACKAGES. ... 17

FIG. 11.ARCHITECTURE OF DECODE STAGE. ... 18

FIG. 12.ARCHITECTURE OF EXECUTE STAGE. ... 19

FIG. 13.BASIC OPERATIONS OF INTERLEAVING STACK MEMORY. .. 20

FIG. 14.TWO LOADS AND AN ALU OPERATION... 20

FIG. 15.RUNTIME DYNAMIC CLASS LOADING MECHANISM. ... 23

FIG. 16.OVERVIEW FOR THE FLOW OF CLASS LOADER.. 26

FIG. 17.IMAGE FORMAT AND MEMORY ALLOCATION. ... 29

FIG. 18.STATE MACHINE OF METHOD INVOCATION MECHANISM. ... 31

FIG. 19.METHOD INVOCATION RESOLUTION STEPS FLOW. .. 31

FIG. 20.REFERENCE POINTER AND METHOD INFORMATION ACCESS ... 32

FIG. 21.THE CACHE MECHANISM OF THIRD STAGE ... 33

FIG. 22.ADJUST JAVA CORE TO ACCESS REFERENCED METHOD BYTECODE ... 34

FIG. 23.METHOD INVOCATION STACK VARIATION – NO ARGUMENTS, 2 LOCAL VARIABLES. 35

FIG. 24.METHOD INVOCATION STACK VARIATION – 1 ARGUMENT, 2 LOCALS. .. 35

FIG. 25.METHOD INVOCATION STACK VARIATION – METHOD RETURN WITHOUT VALUE (VOID). 36

FIG. 26.METHOD INVOCATION STACK VARIATION – METHOD RETURN WITH VALUE “IRETURN.” 36

FIG. 27.DYNAMIC RESOLUTION STATE FOR FIELD ACCESS MECHANISM. .. 37

FIG. 28.STEP FLOW FOR FIELD DATA ACCESS MECHANISM. ... 38

FIG. 29.PERSPECTIVE PROJECTION MODEL WITH LENS DISTORTION ... 39

FIG. 30.CALIBRATION CUBE FOR DIFFERENT MODELS .. 42

FIG. 31.VIRTUAL CUBE WITH LANDMARK POINTS FOR CALIBRATION ... 43

FIG. 32.CAMERAL FOV MODEL AND THE OPTIONS OF CAMERA ... 44

FIG. 33.RENDER IMAGE OF CAPTURED CUBE FROM CAMERA OF BLENDER TOOL 45

FIG. 34.IMAGE PROCESSING FLOW FOR LANDMARK POINTS CENTER ... 46

FIG. 35.THE EDGE PIXELS COMPONENT FOR ELLIPSE DETECTION .. 47

FIG. 36.ARCHITECTURE DIAGRAM OF IMPLEMENTATION PLATFORM. ... 49

FIG. 37.EMULATION PLATFORM OF THE PROPOSED JAVA SYSTEM. .. 50

FIG. 38.SIEVE BENCHMARK ANALYSIS ... 53

FIG. 39.LOGIC BENCHMARK ANALYSIS .. 53

FIG. 40.METHOD BENCHMARK ANALYSIS .. 53

FIG. 41.LOOP BENCHMARK ANALYSIS .. 54

FIG. 42.VIRTUAL CONFIGURATIONS OF EXPERIMENT ENVIRONMENT. .. 55

FIG. 43.RENDER IMAGE AND RESULT OF IMAGE PROCESS... 55

 0

List of Table
TABLE 1. MANAGEMENT TABLE OF CACHE MANAGEMENT UNIT .. 21

TABLE 2. CROSS REFERENCE TABLE WITH DATA FIELD FEATURES .. 27

TABLE 3. SYNTHESIS REPORT OF THE DESIGN ON AN XC5VF70T DEVICE. ... 50

TABLE 4. BENCHMARK BETWEEN CVM AND THE PROPOSED PLATFORM ... 51

TABLE 5. COMPARISON BETWEEN CONFIGURATION AND CALIBRATION PARAMETERS. 56

 1

Introduction

In this chapter, the motivation behind the work in this thesis is presented. With

the application platforms for embedded systems converging towards Java Runtime

Environment (JRE), we try to design a heterogeneous dual-core SoC that can support

3-D interactive man-machine interface efficiently. The work done in this thesis is part

of the ultimate goal. In the following sections, we will give an overview to the

proposed JRE and the derivation of the camera calibration process.

1.1. Motivation for Proposed Java Runtime Platform

JRE (Java Runtime Environment) is well known for Java platform today

especially for embedded systems such as mobile phones and set-top boxes. Sun

Microsystems had defined Java 2 Micro Edition (J2ME) [5] framework and had

different configurations and profiles depending on different embedded applications

and devices such as Connected Limited Device Configuration (CLDC) [6] and Mobile

Information Device Profile (MIDP), etc.

Traditional JRE is composed of a software-based Java Virtual Machine (JVM)

[10] running on a full-blown operating system. The JVM must execute the bytecodes

and provide system interface or dynamic linked library interface for method execution.

For object-oriented Java language, there are many performance issues for embedded

systems with a RISC CPU, For example, operations such as simulation of a

stack-machine, dynamic symbol resolutions, and heavy dynamic memory allocations,

are expensive for embedded processors. There are many solutions for improving the

performance of JRE for embedded systems. Just-in-Time (JIT) compilers or the

hardware-based co-processors are common approaches for embedded Java platform.

 2

However, JIT requires extra memory and imposes extra compilation overhead for

class loading. Architechture exetension such as ARM Jazella [10] are tied to specific

processor architecture and are not generally available for any host processors.

The Java platform in this thesis is a heterogeneous dual-core system, which is

composed of a generic RISC processor and a hardwired Java bytecode execution

engine. The generic RISC processor works for tasks, such as I/O and control, which

are inefficient for stack-based processors to execute. The Java core execution engine

is responsible for general bytecode execution.

The dual-core Java application processor adopted in this thesis is based on the

work done in [2][4]. However, previous implementations of the architecture only

support statically linked classes. That is, all Java classes must be loaded into the

on-chip memory blocks and all dynamic linking information is parsed and resolved

before execution. In this thesis, full dynamic class loading and symbol resolution

mechanism is proposed to enhance the function of previous system. The design is

based on a software-hardware co-design principle such that one-time complex symbol

resolution tasks are partitioned and assigned to the RISC core while repeated bytecode

execution tasks are completely handled within the Java core. With this partition rule,

the impact of inter-processor communication (IPC) cost is highly reduced and the

overall performance is improved significantly, compare to a software-based JVM.

1.2. Camera Calibration Process

Since the proposed JRE is targeted for interactive multimedia applications with

virtual 3-D man-machine interface, we have to design a subsystem within the

dual-core Java SoC to capture human operator 3-D (hand) actions. When combined

with a 3-D display device, the proposed system will enable virtual 3-D touch screen

GUI. The technologies of 3-D display devices have been developed for a long time. In

 3

order to produce of 3-D visual effects for viewer a general approach is to generate two

views In front of the views, one for each eye. The viewer may need to ware either

red-cyan, polarized, or LCD shutter glasses [22] in order to see different images in

each eye. The viewer is then able to have a synthetic feel of the depth of objects from

2-D frame images. The two views of a scene can be generated directly from two

cameras or synthesized from only one view and a depth map. There are also new

technologies based on lenticular or barrier screens that can display multi-views at

simultaneously such that multiple viewers can all watch 3-D video together without

wearing glasses.

In order to capture the hand operations of the human operator in front of the 3-D

display, one approach is to adopt the techniques in stereo computational vision

research. In short, a pair of stereo cameras can be used to estimate the 3-D position

and motion of the operating hand by triangulation. The first step towards this goal is

to set up a pair of calibrated cameras connected to the dual-core Java platform. The

second part of this thesis is to design a simple camera calibration process for the

proposed platform so that camera parameters can be estimated for the purpose of

triangulation of 3-D objects.

The organization of the thesis is as follows. Previous work on Java processors

and camera calibration process is presented in Chapter 2. Details of the dual-core Java

application processor architecture is described in Chapter 3. The new

hardware-software codesigned dynamic class loading mechanism is proposed in

Chapter 4. Chapter 5 discusses the implementation of the camera calibration process.

Chapter 6 shows experimental results of the dynamic class loading mechanism and

the camera calibration process and finally, some conclusions and discussions are

given in chapter 7.

 4

Chapter 2. Previous Work

The work done in this thesis is part of a project that designs a Java-based

interactive 3-D man-machine interface (MMI) system. Two of the key components

implemented in this thesis are the dynamic class loader for a Java processor and the

camera calibration algorithm for stereo cameras used in MMI.

2.1. Dynamic Class Loading in Java Runtime Environment

We have presented the motivation of the proposed dual core Java application

processor in chapter 1. In this thesis, we propose a design of dynamic class loading

mechanism for Java processors. Class loader is an important feature of Java

environment. Class loader loads the class files which produced by Java compilers

from Java program sources. Class file format defines the organization of Java method

bytecodes, constant pool data, and method argument flags, etc., in an executable file.

Java virtual machines execute bytecode and use class loaders to load class files.

Through dynamic class loaders, a Java system can download new Java applications

from the Internet or storage spaces. A Java system with dynamic class loading is more

powerful and flexible.

The JVM provide several modes for class loading such as Lazy Loading or

User-definable class loading policy[12][13]. JVM has an embedded default class

loader in Lazy Loading mode. The class loader in Lazy mode loads class files on

demand. There are usually two cases for JVM to do class loading. One creates the

class object reference and the other one is for method invocation reference. The class

loader is a very complex module in JVM. In the beginning of the class loading

 5

process, a JVM resolves the class name in constant pool from bytecode and follows

the class loading flow as shown in Fig. 1.

Fig. 1 describes general class loading flow of JVM. The class loader searches the

class method area, jar archives, and class paths for the target classes first. Then it

computes new resolution information of the newly loaded class to the resolution

structure and cache table. There are also verification steps for namespaces, method

invocations, and security issues during class loading process. The class loading

process is too complex for embedded systems. There are some approaches for

optimization such as adjusting the search hash mapping function, collect runtime

information of environment for static method acceleration, etc.

Fig. 1. Flow chart for class loading of JVM.

For the proposed embedded multimedia Java runtime execution environment, we

adopt a heterogeneous dual-core SoC system with a Java bytecode execution engine

and a RISC processor. In this thesis, we implement dynamic class loader for the

proposed system. The implementation in this thesis is based on a previous Java

system, which has a static class loader [2][4]. In the old system, the class loader

Verify class information

Check Class cache

Loaded or not?

Resolved class

yes no

Return class

Find unloaded class

(class path, archive or

internet…Etc)

Resolve class

Return class

Define class

yes

Find System Class from

local file system

no

Resolve class

Return class

Define class

yes

Not Found

Exception

Dynamic data resolution

 6

parses all class files and convert them into runtime information images and reserves

all resolution information in the constant pool of the image. Fig. 2 shows the system

life cycle of the previous platform. After system boot up, host RISC processor

initializes system memory and parses all class files before execution. After all class

files are parsed into information images, the system loads the boot class into Java

method area and enables the Java execution engine.

Fig. 2. System life cycle of previous Java platform.

Fig. 3 describes the architecture of previous version of Java core [4]. The Java

core execution engine is composed of four pipeline stages which fetch, translate,

decode, and execute bytecode and micro-instructions. There are some issues with

previous system which will be described later.

RSIC system boot up

Initialize Java core memory

Parse total classes to images

Load boot class to L1

Activate Java core

Run application?

System
shutdown?

Java core shutdown

RSIC system shutdown

yes

yes

no

no

Serve Java core requests

Java application execution

Execute Java boot class

 7

Fig. 3. Previous Java execution engine [4].

Some behaviors of Java bytecode are too complex for hard-wired

implementation such as method invocation or field data access, etc. These behaviors

require string resolution, which is too expensive for hardware execution. Previous

design provides a dynamic resolution state machine to control the status of Java core

execution engine. The main task of dynamic resolution controller is to handle symbol

resolution of constant pool data. For example, the states of method invocation do

resolution and get information which produced by class loader before execution as

shown in Fig. 4. This state machine also controls and changes the program counter for

referenced method bytecode.

Method Area

Bytecode

cache

Management Unit In
itia

l P
C

Bytecode Execution Engine

Execute

Stage

S
ta

c
k

D
a
ta

s
ta

ll

a
d
d
re

s
s

w
r

d
a
ta

rd
 d

a
ta

p
c

B
y
te

-
c
o
d
e
s

In
te

rru
p

t

External

Memory

Access

Unit

Translate

Stage
Fetch

Stage
Decode

Stage

T
O

S
 D

a
ta

 R
e

g
s

.

P
a
ra

m
e
te

r R
e
g
s
.

 8

Fig. 4. Original controller state machine for method invocation resolution.

Finally, previous design does not reference to dynamic data information at run

time and all essential information at runtime must be stored in runtime information

image of a class. Previous design parses all class files before Java program execution.

To make the Java SoC more flexible and stable, we redesign some subsystems and

added the function of dynamic class loading. In chapter 4 I will present the design for

dynamic class loading and discuss some additions to improve the Java execution

engine.

2.2. 3-D MMI based on Stereo Cameras

2.2.1. 3-D and Image Coordinates Systems

We have presented the motivation of integration between the 3-D MMI and the

proposed Java platform in chapter 1. A 3-D GUI system interacts with human

operators‟ 3-D hand motions, captured by stereo cameras. The proposed MMI system

computes the 3-D coordinates of the target object using the projection of the target

object on the image plane and the camera parameters. These parameters contain

Normal

Rst

InvokeMD StaticFD

Invoke_flag
Getstatic_fd

||putstatic_fd

MD_tag

MD_NT_idxstall MD_entry MD_flag Arg_size Max_stack Max_local MD_reset

FD_tag

MD_cls_idx FD_cls_idx FD_NT_idx

stall

FD_entry

stall

FD_flag

stall

FD_name_

idx

stall

FD_size

stall

Heap_offset

stall

FD_reset

stall

 9

camera intrinsic parameters such as effective focal length and sensor size, etc., and

extrinsic parameters such as orientation and translation parameters. These parameters

can be obtained by calibrating the camera using known landmark points. In this thesis,

we use the camera calibration algorithm proposed by Tsai [15]. The camera model

used here is the pinhole camera model. There are other camera models such as the

orthographic projection model or the affine projection model.

Fig. 5. Pin-hole camera model.

Fig. 5 illustrates the pin-hole camera model. There are two 3-D coordinate

systems shown in Fig. 5, the camera coordinate system and the world coordinate

system. Traditional pinhole camera model converts the world coordinate system

(WCS) into camera coordinate system (CCS) first, then projects 3-D objects to image

plane and computes its 2-D positions w.r.t. image coordinates system (ICS) of the

computer.

The first step in 3-D WCS to 2-D ICS projection is the rigid body transformation

from (X, Y, Z) WCS to (X, Y, Z) CCS with 33 Rotation matrix R and 31 Translation

vector T. That is,

 𝑋 𝑌 𝑍 𝐶𝐶𝑆 = 𝑹 ∗ 𝑋 𝑌 𝑍 𝑊𝐶𝑆 + 𝑻 (1)

Cx

Cy

Cz

Wx

Wy

Wz

Pw(Xw , Yw , Zw)

/ Pc(Xc , Yc , Zc)

Zc F

Projection plane

Pi(Xi , Yi)

 10

𝑹 =

𝑟1 𝑟2 𝑟3

𝑟4 𝑟5 𝑟6

𝑟7 𝑟8 𝑟9

 𝑻 =

𝑇𝑥
𝑇𝑦
𝑇𝑧

 (2)

The second step is to project the object, denoted in CCS, to ideal undistorted image

coordinate (X, Y) Ideal using perspective projection of pinhole camera model as

follows:

𝑋𝑖 = 𝑓 ∗
𝑋𝑐

𝑍𝑐
 (3)

The variable f is the focal length of the camera.

Thirdly, the effect of lens distortion is taken into account and compute the

coordinate of image plane with lens distortion (X, Y) Distortion

 𝑋𝑑 + 𝐷𝑥 = 𝑋𝑢 ,𝐷𝑥 = 𝑋𝑑 𝐾1𝑟
2 + 𝐾2𝑟

4 +⋯ (4)

 Fourth, we scale the image plain into computer image (X, Y) frame which is pixel

based frame image by some scale factor.

𝑋𝑓 = 𝑆𝑥𝑑𝑥
′−1

𝑋𝑑 + 𝐶𝑥 𝑌𝑓 = 𝑑𝑥
′−1

𝑌𝑑 + 𝐶𝑦

𝑑𝑥
′

= 𝑑𝑥
𝑁𝑐𝑥

𝑁𝑓𝑥
 (5)

After below steps, the 3-D real objects are projected onto the 2-D image plane.

We can adopt these images from different viewpoints to compute the 3-D coordinates

through triangulation as shown in Fig. 6. Note that we need at least two views in order

to perform triangulation.

Camera1 Camera2

 11

Fig. 6. Compute original 3-D coordinate from two views.

 The triangulation process requires camera parameters, which can be obtained

through camera calibration. Next sub-section describes the basic concept of camera

calibration.

2.2.2. Overview of Camera Calibration

Camera calibration can be divided into two categories. One is photogrammetric

calibration and the other one is self-calibration. Basic photogrammetric calibration

approaches use a camera to observe a set of known patterns called calibration

landmark points and use the known 3-D to 2-D correspondence of these landmark

points to calculate the camera parameters. Self-Calibration can calibrate the camera

without any calibration landmark points [21]. Self-Calibration captures the static

scene and generates image sequence by moving the camera. This technology

estimates the calibration parameters from image sequence which captured by the same

camera. The former is more accurate and more efficient then letter. But the former is

also much more expensive. However the interaction interface between human and

machine needs more reliable information especially for the motion of hand. There are

also other approaches for specialized environment. We give an overview of another

algorithm of photogrammetric calibration.

The camera calibration technology developed by Z. Zhang is also well-known

[20]. This algorithm provides a flexible calibration process without specialized 3-D

geometry. The camera only captures the planar pattern from anywhere. However some

parameters such as lens distortion should be modeled. This calibration technology

adopts a nonlinear approach based on the maximum likelihood criterion to solve the

matrix derived from homograph between pattern and image. Even though technology

of Z. Zhang is flexible and accurate, the calculation is too complex for embedded

systems to do nonlinear optimization. Therefore, we adopts the camera calibration

 12

algorithm by Tsai [15], which only use linear equations and general least square

optimization which can easily be implement for embedded systems. The details of this

algorithm will be presented in chapter 5.

 13

Chapter 3. Overview of Java Processor

3.1. Overview

The dual-core Java application processor in this thesis is based on the

architecture described in [2][4], which is a double-issue four-stage pipeline stack

processor. The stages are Translate, Fetch, Decode, and Execute as shown in Fig. 7.

The Java core also contains a method area and a cache management unit. Furthermore,

Java core also supports three communication interfaces. One is the internal processor

communication (IPC: interrupt) interface between RISC core and Java core. Java core

request RISC for services through IPC interface. Another interface is bus master

interface of Processor Local Bus (PLB v4.6). Java core can access other devices such

as DDR memory through master bus interface. The third interface is a set of data

registers. These data registers are used for information exchange with RISC processor.

There is a thin kernel running on RISC processor and this kernel provides several

services such as I/O, dynamic class loading or native function invocations. The IPC

transmit function parameters to the RISC core through data registers and an interrupt

service ID register. The system bus protocol is based on the Processor Local Bus

(PLB) bus of the IBM CoreConnect bus [24]. The remaining sections of this chapter

describe some details of the previous architecture. Some controller design and

implementation flaws that lead to stable issues of existing Java core will also be

discussed. The design and integration of dynamic class loading mechanism into

existing architecture will be described in next chapter.

 14

Fig. 7. Overall architecture of Java core.

3.2. Bytecode Execution Core

Fig. 7 shows the overall architecture of previous Java core. This Java core has a

dynamic resolution controller unit which controls the status of Java core. Java core

executes bytecode in normal mode. If a bytecode invokes dynamic resolution for data

access in class runtime information image, the Java core will leave the normal mode

and enters simple dynamic data resolution mode. The following sections describe the

details for each component of Java core.

3.2.1. Translate Stage

This section describes the first stage of proposed pipeline architecture. Because

the Java bytecode adopt variable code lengths and some bytecode behaviors are too

complex to execute in one cycle, the proposed design achieves the same behavior of

complex bytecode with simple instructions sequence. System separates the bytecode

into two types in this stage. One type is one-to-one mapping type which the simple

task can be done in one cycle. The other type is one-to-many mapping which complex

task can only be done with a sequence of simple instructions. Simple type bytecode

Translate Stage Fetch Stage Decode Stage Execution Stage

Method Area

One2many ROM

Dynamic Resolution

Controller

Master Controller

JPC controller

JPC

Cache Management

Controller

Ram select

Interrupt

Interleaved Stack

Data Reg

Data Reg

Data Reg

PLB IPIF Bus Interface

 15

will directly be translated into one simple instruction for Java core. Then complex

type bytecode will be translated into an ROM address mapping to an instruction

sequence at Fetch stage.

This stage also determinates whether the bytecode are operands or not. If the

bytecode are operands, these bytecode should not be translated and will be pushed

into operands buffer at next stage. In order to follows double-issue, system fetch two

bytecode at a time. Then system need to exactly know which one of the two bytecode

should be executed, especially after jump, branch, and a data resolution for JPC

variation. More details are described in [2].

Fig. 8. Architecture of translate stage.

CTRL State

Stjpc_flag

branch

Destination LSB

Translate ROM

Bytecode 1

Bytecode 2

Translated micro code or ROM address of Fetch

Operand number of instruction 1

Operand number of instruction 2
Operand control

Opd 1

Opd 2
&

&

Translated

Non-translated

Pass restore JPC

Control signals for operand status

 16

3.2.2. Fetch Stage

Fig. 9. Architecture of fetch stage

The Fetch stage is a most complex module as shown in Fig. 9. This stage has

many important tasks such as Java core program counter (JPC) control, operands

buffer control, and mode control (Complex bytecode execution mode/Simple

bytecode execution mode), etc. Main purpose of Fetch stage is to generate correct

instructions package for decode stage.

There are two cases of the instruction packages which transferred to Decode

stage. First case, the bytecode of Translate stage is simple and the simple instructions

package is obtained directly from former stage. Second case, the bytecode of

Translate stage is complex bytecode and the instructions package is fetched from the

one-to-many ROM by translated ROM address. Unfortunately, the former statge

sometimes put the ROM address and the simple bytecode into the same package.

Then the mode translation between passing simple bytecode or fetching bytecode

from one-to-many ROM becomes a difficult problem as shown in Fig. 10.

Translated

Non-translated

CTRL State

Stjpc_flag

branch

stall

One2Many ROMROM_PC

control

JPC control

Operand buffer

Control

JPC

destination

Invoke Data

Mode and

Control signal

Opd 1

Opd 2

One2Many

END ROM

NXT

NXT

Mode/jpc_anchor/jpc_offset

Mode/jpc_anchor/jpc_offset

Operand Value

Mod

e

Instruction

package

JPC

Pass restore JPC

 17

Fig. 10. Some special conditions for instruction packages.

As Fig. 10 shows, this stage holds JPC in order to fetch instructions from

One2Many ROM. At the same time, system also stalls the Translate stage for complex

bytecode execution. System packages the instructions from ROM or directly from last

stage at complex bytecode execution mode. Moreover, the packages from last stage

also can be one or more operands. Finally, this stage should package instructions and

operands correctly no matter for any combinations. This stage handles more JPC

operations from above reasons, so we directly put JPC control module into Fetch

stage.

3.2.3. Decode Stage

Decode stage generate control signals from instruction packages from Fetch

stage. And the Fetch stage ensures all packages transferred to Decode stage which

must be composed of only simple instructions. This stage would focus on generating

appropriate data paths for different behaviors of instructions packages. In the

beginning, system classes the data paths with instruction package types. The details

and data paths of instructions pair types can be found in [2]. This stage not only

generates the data path control signals but also picks correct value from immROM or

FetchTranslate Decode

Instr1, ROM address Instr1, -----------

ROM address ROM

Set Jpc_offset to

hold JPC

Instr1, ---------R1, R2RN, RN-1

ROM address , Instr2

Instr1, -----------

ROM address ROM R1, R2RN, RN-1

Instr Buffer

Instr3, Instr4

Instr3Instr4

Instr2, Instr3

ROM address , Instr2

ROM address , Instr4
??? R1, R2RN, RN-1Instr2, FFR1, R2RN, RN-1Instr4, FF

Case 1

Case 2

Case 3

 18

operands buffer for operations or stack access. The interrupt control module and bus

data master access control module are also included in the stage. Some instructions

like “new” or method invocation will invoke the interrupt signal at this stage. And the

bus master access modules only control the target address and R/W request signal.

The data transferred from the bus will handle at Execute stage.

Fig. 11. Architecture of decode stage.

3.2.4. Execute Stage

Fig. 12 shows the execute stage of the Java core. This stage is for the execution

of ALU operations, stack operations, and external data accesses. The control signals

of data paths control data sources, operations, multiplexers, and interleaved stack

operations. The control signals of decode stage handle stack operation and stack

pointers, where the interleaving stack structure makes things very complex for

operations. The stack structure will be described in next section. Execute stage

executes operations indicated by the control signal. Moreover, this stage has the

critical path here from many levels of multiplexers and the multiply operations.

Special Flag /

Control signals /

Master /

Interrupt /

control

Operand Value

Instruction

package

JPC

imm ROM
imm ROM

Bytecodes

Instr1 , Instr2 , instruction

type

Instr1 ,

Instr2
ImmValue

VP

SP

Val 1

Val 2

val : address or immediate

value or

Operation value

Data path CTRL

Read CTRL

Interrupt ID

Master Rd / Wr request

Field access flag

Return flag

Invoke method flag

 19

Fig. 12. Architecture of execute stage.

3.2.5. Stack Structure.

In this section, the interleaved stacks structure is resented, as shown in Fig. 13. In

order to support double-issue, the stack memory is composed of two SRAM banks.

And the two SRAM banks are interleaved together to enable simultaneous access of

consecutive words of memory cells. All operations express with three top registers A,

B, and C. The stack status can be expressed by two register SP and VP. The register

SP is the stack pointer that points to the top of stack. The register VP points to the

base address of local variables and arguments of current stack frame of the invoked

method. The initial SP of each class should be placed after all local variables and

method arguments from VP as shown in Fig. 13. The push and pop stack operations

are described as follows.

 Push Operation: Load type instruction pushes data into top stack register

and the original data of bottom register C will be pushed back into the stack

base on SP pointer.

 Pop Operation: Store type instruction or ALU operations pop data from

Stack 1

Stack 2

Rd_ address

Wr_address

Wr_Data

Rd_data

WE
Rd_data Load_val

1
Load_val

2

ALUopd1
A

load_val1

B

ALUopd2
B

C

A

AorC

ALU_result

C

load_val2

ALU result

A

load_val1

load_val2

ALUopd2
C

load_val1

ALU result

BAorC

Data Path ControlData path

CTRL
Read CTRL

 20

stack and store data back to the locals or still store to top registers.

The concepts of the push and store operations are illustrated in Fig. 13 as well.

The ALU operation is shown as Two loads and an ALU operation. If the numbers of

top stack register are reduced, system needs pop data for SP pointer. We can just take

the gray part as operand stack and the stack space between SP pointers and VP pointer

stand for local variables or arguments.

Fig. 13. Basic operations of interleaving stack memory.

Fig. 14. Two loads and an ALU operation.

Stack 1 Stack 2

VP : 0

SP : 2

Local 1 Local 2

A : 123

B : 222

C : 333

Push : load 1 Pop : Store 1

0 1

2 3

4 5

Stack 1 Stack 2

VP : 0

SP : 3

333

Local 1 Local 2

A : Local 1

B : 111

C : 222

0 1

2 3

4 5

Stack 1 Stack 2

VP : 0

SP : 2

Local 1 Local 2

A : 123

B : 222

C : 333

0 1

2 3

4 5

Stack 1 Stack 2

VP : 0

SP : 2

Local 1 Local 2

A : 123

B : 222

C : 333

Push : load 1 , load2 Pop : Result = A + B

0 1

2 3

4 5

Stack 1 Stack 2

VP : 0

SP : 4

333 222

Local 1 Local 2

A : Local 1

B : Local 2

C : 111

0 1

2 3

4 5

Stack 1 Stack 2

VP : 0

SP : 3

333

Local 1 Local 2

A : Result

B : 111

C : 222

0 1

2 3

4 5

 21

3.3. Cache Management Unit

In this section, I will introduce the cache mechanism for existing Java core. As

Fig. 7 shows, Java core fetch bytecode directly from method area. Previous method

area has 32 2KBytes cache blocks. And the average size of standard Java system

library is about 8 Kbytes, the method area is enough for usage. Then Java core

manages the cache mechanism with a cache management unit. The cache

management table contains the information of class runtime image such as the image

size, the start address of external memory, etc. An entry of the table is shown in Table

1. This table is included in the cache management unit.

Table 1. Management Table of Cache Management Unit

When the Java core performs method invocation, it can query this table using the

class global index. If the referenced class has been loaded into the method area, the

Java core can adjust the JPC to the target method area from the start block index. This

method area start index indicates the first cache block index of referenced class. On

the other hand cache management mechanism loads referenced class from external

memory by external memory start address field. Then the cache mechanism enters a

loading loop for the referenced class image until data counter over the image size.

This cache mechanism for class image loading is often invoked by method invocation

which will be introduced in section 4.5.

Cache Manage Table

Global Index Tag Image Size 1st Cache Block

Start Index

2st External Memory

Start Address

 22

Chapter 4. Design of Java Dynamic Class

Loading Mechanism

This chapter presents the proposed dynamic class loading mechanism. We

implement the proposed dynamic class loading mechanism with hardware-software

codesigned method. This proposed mechanism is composed of two steps. We use

software (executed by the RISC core) to parse the class files and collect runtime

information. This software will generate a bytecode image with reference pointers

and a cross reference table. The pointers in this image point to this table directly. The

table contains all runtime information which collected from the original class file.

This first step only executed by a new class loading event. After the system collect

essential information, we can just apply second step to load the same class.

Moreover, the second step is executed completely by hardware. Java core can

resolve all runtime information with the reference pointer in bytecode image. This

mechanism only has one-time class loader software execution overhead for each

class throughout the life cycle of the JRE. When the same class is referenced for the

second time, the Java core will simply transfer the previously created class runtime

image from the external DDR SDRAM to the on-chip method area without any

runtime class loading software overhead. An overview of the proposed dynamic

class loading mechanism and the software class loader analysis will be presented in

later sections. Details of dynamic resolution for method invocation and field data

accesses will also be described in details. The detail descriptions of these

mechanisms are also presented in later sections.

4.1. Overview of Proposed Dynamic Class Loading

 23

Mechanism

When a Java method invokes methods which belong to other class files, the

referenced classes have to be loaded into the method area. Traditional JVM‟s have

software dynamic class loaders to perform the class loading process triggered by

method invocations. The dynamic class loaders perform complex dynamic data

resolution identified by bytecode operands at first. The dynamic data resolution

mechanism gets the class and method information by referencing the const pool data

in class files. Then dynamic class loader must check the class method area to make

sure whether the referenced class is in the method area or not. If the class is not in the

method area, the dynamic class loader loads the class with a series of verification

processes as Fig. 1 shows.

It is obvious that the traditional JVM‟s have high overhead for dynamic class

loading. Even though the class is in the class method area, the JVM still have high

overhead to do dynamic data resolution for runtime class information. Hence we

propose a hardware-software co-designed dynamic class loading mechanism to

deduce the overhead at runtime.

Fig. 15. Runtime dynamic class loading mechanism.

Jar File System

2.Target Class

DDR – Image Space

3. Runtime Image ,

Image Information
5.Load target image

with cache management

Cross Reference

Table
Image

Hardware

Java CoreRISC Core
IPC

Java program

execution

Class Profiling Process

(Class Loader)

4.Return information

1.Load Class Events

 24

Our proposed hardware-software co-designed dynamic class loading mechanism

has two steps. As Fig. 15 shows, when the Java program is executing at runtime and

the program wants to do a method invocation from a different class. If the referenced

class is invoked first time, Java core generates a “Load Class” event interrupt. Java

core asks the RISC core to serve the “Load Class” request through IPC interface.

RISC core will perform the first step of proposed dynamic class loading

mechanism in the proposed class loader. The detail analysis of class loader is in next

section. This class loader will resolved the class path and class name of target class by

querying the cross reference table with information from interrupt service. Then this

class loader loads the target class from a Jar file system as the Fig. 15 shown.

This class loader continues to parse the referenced class file and generate the

bytecode image and update our proposed cross reference table. Then cross reference

table contains new information of referenced class. And the bytecode image also

contains the reference pointers which point to these information fields of cross

reference table. After the class loader collects essential runtime information of

referenced class, RISC core responds to this “Class Load” interrupt service request

with method invocation information. Java core enable our cache mechanism after the

service returned. Then Java core follows cache mechanism and query cache

management table by the returned method invocation. Finally, Java core can load

referenced class from cache mechanism and the returned information.

When Java program wants to do method invocation and the referenced class has

been loaded before, the Java core can access the cross reference table directly by the

reference pointer in the bytecode image. Java core can get the same method

invocation information as the information returned in the first step by accessing the

cross reference table. If the class has been loaded before, but not in the method area,

 25

then Java core must enables cache mechanism to load the referenced class into the

method area. The Java core can execute the method code directly if the referenced

class is already in method area. The second step of the class loading mechanism only

requires very simple hardware logic to implement. And it only requires one data bus

transaction to retrieve the method invocation information. The overhead of repeated

invocations of the same method is very small during runtime execution.

4.2. RISC-software of the Proposed Dynamic Class Loader

We introduce the software class loader which only executed in first step of

proposed dynamic class loading mechanism. Proposed dynamic class loading

mechanism construct the cross reference table by this class loader. This cross

reference table provides all runtime information not only for method invocation but

also other runtime data resolution. As the cross reference table has enough

information for runtime execution, the Java core can reduce most overhead from the

assistance of this table.

 26

Fig. 16. Overview for the flow of class loader

In this section, we introduce this class loader process and the software overhead

analysis. The Fig. 16 describes the general flow of proposed class loader process. The

Java core invokes the RISC core service with referenced class global index. The

global index of referenced class is allocated at the loading time of the running class.

We can make sure the referenced class has registered in advance. The cross reference

table already has registered the name of referenced class, but without other details

information. Then RISC core get the referenced class name and class path by

querying cross reference table with global index.

The function “Jar file system open “will find the referenced class file through the

class path in Jar file system at first. Then this process also invokes the class loader

process to generate the bytecode image and update the cross reference table. As the

Fig. 16 shows, class loader first resolve the const pool of class file and get the

information of method reference and field reference in this referenced class. The

information will be referenced, when the referenced class is running and references to

RISC service – Class Loading Mechanism

Class Loader

Jar file system open()

Query the cross reference

table by global index and

get load class name
Parse Const Pool

Management of Referenced

Information , resolution

of referenced pointer

Resolution of field data

Information and update the

cross reference table

Resolution of method data

Information and update the

cross reference table

Service Return

 27

another class. Then we also get reference pointer for this class to reference other

classes. Then class loader continues to resolve method data and field data of this

loading class. Finally the cross reference table gets the method information from

loading class (referenced class by running class). Then the service returns this

information to the Java core and completes the onetime cost class loader process.

We can find pseudo-code and total operations count in Appendix section. The

operations count depends on the total registered classes‟ number, method count of

each registered class and field count of each registered class. If the complexity of

method or field reference increases, the cost of software also increases. There are still

a lot of acceleration issues for software class loader optimization.

4.3. Cross Reference Table with Memory Management

The cross reference table plays an important role of the dynamic class loading

form section 4.1. Our proposed Java Runtime Environment registers information such

as class or method or field data information to this cross reference table by profiling

class file as shown in section 4.2. The cross reference table not only helps runtime

resolution to the dynamic class loading mechanism, but also gives helps to method

invocation and field data access and memory management. A typical cross reference

table with all features is shown in Table 2.

Table 2. Cross Reference Table with Data Field Features

Table 2 shows all information registered on the table fields for one class. When

class loader parses a new class, the loader allocates a new global index and creates a

Cross reference table

Class [x]

Attributes Class name, global index, image address, parent class index

Method[i] Name Global index & method1 offset

Field Data[i] Name Indirectly pointer

 28

table space for new class. Basic table field includes class name, class path name,

image start address of external memory, and image size. If the class is load yet, the

cross reference table still has registered from other class would reference to it. When

the class loader gets a loading class event with global index; the loader can query the

table by global index to get the non-load class name. And class loader can find load

correct class file from correct Jar file path [8].

The method invocation is the only behavior would invoke the “Load class event.”

Java core will invoke the interrupt service when the method invocation references to a

new class. When the class has been loaded, Java core can directly accesses expected

information for usage. And the field data access mechanism also can be a fast

hardware mechanism. The sections 4.5 and 4.6 describe how Java core use the

information of cross reference table to do method invocation and field data access.

Section 4.4 shows current runtime image and how to do the dynamic resolution to

their information.

 29

4.4. Runtime Image Format and Resolution

Fig. 17. Image format and memory allocation.

Fig. 17 shows the runtime memory allocation for Java environment and the gray

region is the runtime image and its format. This image format can be divided into five

parts. The first part contains the image header and numbers of information data and

reference information. The second part is TOC offset table, and every entry of this

table is two bytes. The TOC offset entries indicate the byte length from image‟s head

to the resolution information data. The Java Core can directly jump to correct address

for data resolution by TOC offset entries in this table. The third part is purely char

arrays. The fourth part describes all reference resolution information and address links

to the cross reference table of section 4.3. For example, method reference information

field contains the method owner class‟s global index. And fields of name index and

(8 bytes) --- MMES , Const Pool Numbers

TOC Offset

(2 Bytes offsets each entry)

Char array

(2 Bytes Length , Length * Bytes)

Field / Method Reference information

(2 bytes , 2bytes , 2 bytes , 4 bytes)

Global index Name index1 descriptor Cross addressGlobal index Name index1 descriptor Cross address

Method Code Data

(2 bytes , 2bytes , 2 bytes , 2 bytes, N-Bytes Code)

Global index # of Argument Max stack Max local

Method Code

Global index # of Argument Max stack Max local

Method Code

Char Length Chars …..Char Length Chars …..

OffsetOffset

DDR Memory

Cross Reference

Table

L2 Method Area

Heap memory

 30

descriptor both are TOC index for their char arrays. The cross address fields are most

important of all information. This field points to the cross reference table field address

with method offset for method invocation or physical field data address. The method

offset mean the byte length from image head to method bytecode section. The last part

is method code data. The bytecode, arguments numbers, local variable numbers, and

max stack numbers all have stored in this part for Java core execution.

4.5. Method Invocation Mechanism

This section introduces the method invocation mechanism of the Java core.

There are two types of Java method invocations. One is static class method invocation

and the other one is dynamic instance method invocation. Static method invocation

such as invokestatic references to class method directly. Dynamic method invocation

such as invokevirtual and invokespecial depend on their object references.

Nevertheless, the proposed Java core executes them with the same procedure. The

proposed class loader recognizes these method invocation types and inserts special

parameters to indicate the object reference at parsing time. Moreover the

invokespecial can be used under three conditions. First, the method is used for

instance initialization. Second, the method is a private method. Third, the method is

invoked from a “Super” keyword. Current version can support bytecode such as

invokestatic, invokespecial, and invokevirtual. The complete method invocation

procedure can be described by the state machine in Fig. 18. In a normal class file, a

method invocation bytecode is followed by the class and method reference ID‟s of the

class name string and method name string that are used for computing the target

address of the method. With the proposed dynamic resolution mechanism, the

invocation bytecode in the class runtime image (translated by the class loader) is

followed by a index operand. The operand simplifies the dynamic resolution process.

 31

Fig. 19 illustrates how the operand can be used to access the target method address

through indirect references. There is no need to perform any string comparisons as in

traditional JVM dynamic resolution process..

Fig. 18. State machine of method invocation mechanism.

Fig. 19. Method invocation resolution steps.

 Fig. 18 describes the state machine of method invocation mechanism. The state

Normal

Rst

Invoke_flag

Get entry

(1)

(2) Up

address

stall

(2) Low

address

(3)Offset

access

Bad(4)

Index

(5)Enable

Method

manager

Arg_size Max_stack Max_local MD_reset
Master

trigger

(6)

MD_entry

Type 1,2

Type 3

stall

Type 1 : The class which contains this class

had been parsed and place in the external DDR

Memory

Type 2 : The class had been parsed and place in

the Internal Method Area Cache

Type 3 : Need interrupt to load and parse class

from jar file store at CF Card

Image File Start

TOC

Const Pool Data

Method Code Space

(1)Method information , cross table field address

Offset to const pool data

(2)

(3)

(4) : No

Image File Start

TOC

Const Pool Data

Method Code Space

(6)

Cross Reference Table Access

Hardware Java Core

Invoke + operand

(Toc index mapping)

Class manage Logic Circuit

Decision Logic : Class had

been loaded or not ?

Interrupt Class (4)

Loading service

DDR External Memory

Cross Reference Table

(5)

(5):Loaded

(4):New class

 32

machine is controlled by dynamic resolution controller of Java core. The method

invocation mechanism can be divided into four stages roughly. Java core can find

referenced class and referenced method bytecode information by following this state

machine.

Fig. 20. Reference pointer and method information access

 The first stage of method invocation state machine is to find the reference pointer

in bytecode image. The first 4 states of state machine are the first stage. Java core will

exchange the program counter to obtain the reference pointer from these four stages.

 The second stage will access the cross reference table by reference pointer from

first stage. And the method invocation state machine performs this behavior at “Offset

access” state. As the Fig. 20 shown, the field of cross reference table referenced is a

32-bits data field. The up 16-bits of this field indicate the referenced class‟s global

index. The low 16-bits of this field indicate the method offset of referenced method.

The method offset stands for the method bytecode address offset of its bytecode

image. In this stage we can judge whether this referenced class has ever loaded or not

by the method offset. If the referenced method has correct method offset, we can

realize that referenced class has loaded before. When Java core finds out the

Image File Start

TOC

Const Pool Data

Method Code Space

Method [i] information , Reference Pointer

Offset to const pool data

Access Cross

Reference Table

Cross reference table

Class [x]

Attributes Class name, global index, image address, etc

Method[i] Name Global index & method1 offset

Field Data[i] Name Indirectly pointer

 33

referenced class which not loaded before, Java core enters the bad index and waits for

the RISC core service as above sections. The Java core enters the third stage until the

RISC service finish. If the referenced class has loaded before, the Java core enters

third stage directly.

Fig. 21. The cache mechanism of third stage

 Java core will get sufficient method information from RISC core service or cross

reference table. The third stage enables our bytecode cache mechanism. Java core can

query the cache table by the global index which is upper bits of method information

field. The Java core follows the cache mechanism and checks method area cache

block index at first. If the referenced class has allocated to method area, the cache

table will register the start block index. If the referenced class has not allocated to

method area, Java core can load its bytecode image with other information such as

start address in external memory and the image size.

Cache Management Table In Java Core

Global Index Tag Image Size 1st Cache Block

Start Index

2st External Memory

Start Address

Wait

enable

enable

= 0

enable = 1

Check

block

index

Ready

Image

loading

Update

block

index

Counter > Image Size

 34

Fig. 22. Adjust Java core to access referenced method bytecode

After the referenced class has loaded into method area, Java core adjust its stack

frame and program counter as the Fig. 22 shown. The method offset from cross

reference table helps the Java core to update program counter. Then Java core

continues to execute new method as usual.

Then this final section continuously describes the stack status during method

invocation mechanism. The Fig. 23 describes the stack status of method invocation

which the method invoked has two local variables and no argument. The Fig. 24 is

also the method invocation with one argument and two local variables. The Fig. 25

and Fig. 26 are then method return which one is “Void return” and another is “Integer

return.”

Block 1

Block 2

Block 3

Block 4

Block 32

Image 1

Image 2

Empty

Block index & Method Offset

Java Program Counter

Bytecode start address of referenced methodMethod

Bytecode

 35

Fig. 23. Method invocation stack variation – no arguments, 2 local variables.

Fig. 24. Method invocation stack variation – 1 argument, 2 locals.

Stack 1 Stack 2

VP

SP

Local 1 Local 2

A : 123

B : 222

C : 333

Load reserved , JPC , VP

Stack 1 Stack 2

A : VP (0)

B : JPC

C : Reserved

Update VP ,SP ,next class with 2 locals

Stack 1 Stack 2

111VP

SP

333 222

Local 1 Local 2

A : VP (0)

B : JPC

C : Reserved

111 Nlocal 2New VP

New SP

333 222

Local 1 Local 2

NLocal 1

Stack 1 Stack 2

VP

SP

333

Local 1 Local 2

A : arg1

B : 123

C : 222

Load reserved , JPC , VP

Stack 1 Stack 2

A : VP (0)

B : JPC

C : Reserved

Update VP ,SP ,next class with 2 locals

Stack 1 Stack 2

111 arg1VP

SP

333 222

Local 1 Local 2

A : VP (0)

B : JPC

C : Reserved

111 arg1VP

SP

333 222

Local 1 Local 2

Nlocal 2

 36

Fig. 25. Method invocation stack variation – Method Return without value

(void).

Fig. 26. Method Invocation Stack Variation – Method Return with value

“ireturn.”

Stack 1 Stack 2

A : VP (0)

B : JPC

C : Reserved

111 arg1VP

SP

333 222

Local 1 Local 2

Nlocal 2

Restored VP , SP = VP -1 Restored JPC to Last Method , 1 POP

Stack 1 Stack 2

A : JPC

B : Reserved

C : 111

VP

SP

333 222

Local 1 Local 2

Stack 1 Stack 2

A : 111

B : 222

C : 333

VP

SP

Local 1 Local 2

Local1 Local2

Stack 1 Stack 2

VP

SP

LLast JPC LLast VP

Reserved ……

A : Last VP

B : Last JPC

C : Reserved

Load return value

Local1 Local2

Stack 1 Stack 2

VP

SP

LLast JPC LLast VP

Reserved ……

A : Return value

B : Last VP

C : Last JPC

Reserved

0x73 : store_return

Local1 Local2

Stack 1 Stack 2

VP

SP

LLast JPC LLast VP

Reserved ……

A : Last VP

B : Last JPC

C : Return value

Reserved

 37

4.6. Field Data Access Mechanism

Fig. 27. Dynamic resolution state for field access mechanism.

The field access mechanism is somewhat like the method invocation mechanism.

The state machine is also controlled by dynamic resolution controller. The Fig. 27 is

the dynamic resolution state transaction flow for field data access, and the first three

states are also for the reference pointer mapping. After Java core get the reference

pointer, this field of table should contain a pointer of physical memory address for

static field data or a variable order index for non-static variable. In the case of

non-static variable, the Java core will calculate correct memory address of heap

memory by object reference address of heap memory and the order index. The Fig. 28

describes a complete flow for non-static variable access.

Normal

Rst

field_flag

(1)

FD_start

(2)Up

address

(2)Low

address

Offset

access

Field access

(Read)

Master

trigger
FD_exit

Field access

(Write)

stall

stall
stall

 38

Fig. 28. Step flow for field data access mechanism.

 Static field access mechanism has only one thing different form non-static. The

cross reference table field has different meaning between static and non-static. In the

static case, this field describes a physical memory address for static value which

follows the image space, but order index for non-static field access.

Image File Start

TOC

Const Pool Data

Method Code Space

(1)

Method information , cross table field address

Offset to const pool data (3)

(4) : No

Cross Reference Table Access

Hardware Java Core

Field access + operand

(Toc index mapping)

Access field data(5)

Get non-static information or

Static address

DDR External Memory

Cross Reference Table

(2)

Field Data Space
Calculation of correct field

data address (4)

 39

Chapter 5. Camera Calibration

We presented basic concepts and some technologies of camera calibration process

in Chapter 2. Then we chose calibration algorithm of Roger Tsai which is suitable for

our proposed embedded Java platform. We continue to describe the details of our

implementation of Roger Tsai‟s algorithm in this chapter. We verify our

implementation with a virtual simulation environment. The virtual simulation

environment is set by Blender Tool 2.49. This chapter describes the usage of Blender

Tool at first. Then following section describes the image process for abstracting the

orientation of landmark points from image. The final section describes the

implementation of calibration process.

5.1. Camera Calibration Algorithm

In this section, we will describe the camera calibration algorithm by Tsai [15].

5.1.1. Calibration Algorithm

Fig. 29. Perspective Projection Model with Lens Distortion

This section introduces the motivation and basic concept of Roger Tsai‟s camera

calibration algorithm. Main concept of this algorithm is to calibrate the camera by

linear equation derived from the physical property of optics. And this algorithm can

O
X

Y

PZ

Pu

Pd

Oi

Poz

 40

be divided into two parts. All calculation of this algorithm do not involved non-linear

optimization, there is only linear problem need be solved. The one is to compute 3-D

orientation position parameters. Another is to compute effective focal length,

distortion coefficients, z-position and scale factor which more camera intrinsic

parameters. The following sections describe the detail of two parts individually.

5.1.2. Computation of 3-D Orientation Position Parameters

We introduce first step in this section. We observe the Fig. 29 at first. The line

segments OiPd, PozP, OiPu is parallel each other because of the Radial Alignment

Constraint (RAC). Then we can find the vector (X d, Y d) of Pd and the vector (X, Y)

of P are also parallel each other. And we also conclude the outer product of these two

vectors is zero. Then we can derive an equation from (1).

𝑋𝑑𝑌𝑐𝑐𝑠 − 𝑌𝑑𝑋𝑐𝑐𝑠 = 0 (5)

𝑋𝑑 𝑟4𝑋𝑤 + 𝑟5𝑌𝑤 + 𝑟6𝑍𝑤 + 𝑇𝑦 − 𝑌𝑑 𝑟1𝑋𝑤 + 𝑟2𝑌𝑤 + 𝑟3𝑍𝑤 + 𝑇𝑥 = 0 (6)

Finally we derive (5) from (1) and (2). Then we can rearrange the variables to

five unknowns because of Zw to be zero for coplanar calibration system or

non-coplanar calibration system. Moreover the Xd, Yd variables are available from (3).

The model of coplanar or non-coplanar are introduced at next section. Then we can

conclude two linear systems for different calibration landmark point models. We can

get parameters of rotation and translation matrices from these linear systems with

known position of landmark points. Equation (7) is for non-coplanar model and

Equation (8) is for co-planar model.

 41

 𝑌𝑑𝑖𝑥𝑤𝑖 𝑌𝑑𝑖𝑦𝑤𝑖 𝑌𝑑𝑖𝑧𝑤𝑖 𝑌𝑑𝑖 − 𝑋𝑑𝑖𝑥𝑤𝑖 − 𝑋𝑑𝑖𝑦𝑤𝑖 − 𝑌𝑑𝑖𝑧𝑤𝑖

𝑇𝑦
−1𝑧𝑥𝑟1

𝑇𝑦
−1𝑧𝑥𝑟2

𝑇𝑦
−1𝑧𝑥𝑟3

𝑇𝑦
−1𝑧𝑥𝑇𝑥

𝑇𝑦
−1𝑟4

𝑇𝑦
−1𝑟5

𝑇𝑦
−1𝑟6

= 𝑋𝑑𝑖 (7)

 𝑌𝑑𝑖𝑥𝑤𝑖 𝑌𝑑𝑖𝑦𝑤𝑖 𝑌𝑑𝑖 − 𝑋𝑑𝑖𝑥𝑤𝑖 − 𝑋𝑑𝑖𝑦𝑤𝑖

𝑇𝑦
−1𝑟1

𝑇𝑦
−1𝑟2

𝑇𝑦
−1𝑇𝑥

𝑇𝑦
−1𝑟4

𝑇𝑦
−1𝑟5

= 𝑋𝑑𝑖 (8)

5.1.3. Computation of Effective Focal Length, Len Distortion,

Z-Position

After first stage computation we can estimate three rotation angles parameters,

translation of x-axle and y-axle and scale factor in this stage. The second stage

computes remain parameters as the title 2.4.1. From relating (3), (4), and (5) we can

estimate the z-axle of translation matrix and the effective focal length by (9).

𝑑𝑦 ∗ (𝑌𝑓 − 𝐶𝑦) = 𝑓
𝑟4𝑋𝑤 + 𝑟5𝑌𝑤 + 𝑇𝑦

𝑟7𝑋𝑤 + 𝑟8𝑌𝑤 + 𝑇𝑧
 (9)

Then we get approximations of focal length and z-axle by ignoring lens distortion

from (9). This over-determined system of linear equation can be solved easily from

least square method. Finally we compute exact values of focal length, z-axle and lens

distortion and use the result of last computation as initial guess for standard

optimization of(9). The (10) is also derived from (3), (4), and (5). And we can select

some standard schemes such as Steepest descent, Newton method or Powell method

for standard optimization. After this calibration algorithm we can get all essential

parameters for computing the coordinates of 3-D object.

 42

𝑑𝑦𝑌 + 𝑑𝑦𝑌𝜅𝑟
2 = 𝑓

𝑟4𝑋𝑤 + 𝑟5𝑌𝑤 + 𝑇𝑦
𝑟7𝑋𝑤 + 𝑟8𝑌𝑤 + 𝑇𝑧
 (10)

5.1.4. Basic Concepts of Landmark Points Arrangement for

Calibration

Fig. 30. Calibration Cube for Different Models

The Fig. 30 describes the difference between coplanar and non-coplanar

calibration models. The coplanar model means that the landmark points for calibration

are all on the same plane. On the other hand the non-coplanar model has landmark

points on different plane non-parallel. The landmark points are attached on the face of

Cube. The following section of implementation details describes the experiment

environment with a simulation platform produced by Blender Tool-2.49.

5.2. Simulation Environment Setup with Blender Tool

I introduce the virtual simulation environment setup by Blender Tool 2.49 in this

section. Before the implementation of camera calibration process we need to construct

a stable environment for verification at first. The Blender Tool is convenient to

construct a virtual 3-D space environment and we use this virtual environment to

(A) Coplanar (A) Non-Coplanar

Calibration Cube Calibration Cubes

 43

verify our implementation flow. More learning information can be found at its official

web site [25].

Fig. 31. Virtual Cube with Landmark Points for Calibration

 We adopt a static feature points as calibration landmark points such as center of

circle or corner of rectangle. Then we use this tool to add a virtual cube attached

twenty-five landmark points each face as shown in Fig. 33 . Then we can add virtual

camera into the 3-D virtual scene to generate the render image. We can download a

template camera script which can be used to adjust camera options manually, and then

we can adjust the camera intrinsic parameters for verification. Then we can configure

the Field-of-View (FOV) of this camera through the options of script. The Fig. 32

describes the camera field view model and the script options of camera.

x

y

z

 44

Fig. 32. Cameral FOV Model and the Options of Camera

Finally we configure the calibration objects and the camera parameters to a

noiseless verification environment. After we arrange appropriate positions of

calibration cube and the camera, we can verify the calibration implementation by

render image captured from this virtual camera.

 45

5.3. Landmark Points Image Process

Fig. 33. Render Image of Captured Cube from Camera of Blender Tool

Fig. 33 is the render image captured from the virtual camera. In this thesis, we

implement the Roger Tsai‟s camera calibration algorithm. In order to fit the linear

function, we obtain the solutions by substituting the landmark point position of world

coordinate system and the ellipse center position of image plane into the linear

function. In this section, we describe how to obtain there essential information. We

can easily get accurate position of word coordinate system by the Blender tool.

Moreover we need get the correct position of ellipse center of landmark points from

render image. In this section, I will introduce the basic image processing flow to get

the ellipse center position.

The Fig. 34 describes the image processing flow to obtain the 2-D position of

landmark points on image plane. The first step translates the color image into

gray-level and grouping the histogram. Then we can choose an appropriate value for

threshold to delete most other parts. However there are no efficient to reserve helpful

parts from a complicated image. Hence I keep the view of calibration as clean as

possible. After adopt an appropriate threshold value we can get a binary graph as

shown in Fig. 33. Then we apply an edge filter from Laplacian Filter to get the edge

pixels and group edge pixels into connected components as shown in Fig. 35.

 46

𝑎𝑋2 + 𝑏𝑋𝑌 + 𝑐𝑌2 + 𝑑𝑋 + 𝑒𝑌 + 𝑓 = 0 (11)

The Fig. 35 shows edge pixels of one component. Then we approximate the

ellipse equation (11) by substituting these edge points and normalize with f = 1.

Finally, we can obtain the ellipse center from ellipse function approximated. All

prepared data are ready for calibration process from this step.

Fig. 34. Image Processing Flow for Landmark Points Center

Get Gray Level

Histogram

Captured Image

Group Histogram

& Select Threshold

Edge Detection

& Grouping

Ellipse Detection

& Get Center

 47

Fig. 35. The Edge Pixels Component for Ellipse Detection

5.4. Implementation Flow for Calibration Process from

Roger Tsai’s Calibration Algorithm

Proposed implementation of camera calibration process is based on the Roger

Tsai‟s calibration algorithm of section 2.3. The calibration process can divide into two

parts. As the section 2.3 shown, first part calculates the 3-D orientation and position.

System uses (14) as the calculation function of this step. Then we rearrange the

variables of (7) and (8) and obtain (14) from all landmark points. We substitute the

known information of world coordinates of landmark points (center of landmark

circle) and position of image plane (ellipse center) into this linear over-determined

equation (13). The (14) is the partial differentiation of over-determined equation (13).

𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 = 𝑉6

𝑉1 = 𝑌𝑑𝑖𝑋𝑤𝑖 ,𝑉2 = 𝑌𝑑𝑖 ,𝑉3 = 𝑌𝑑𝑖 ,𝑉4 = −𝑋𝑑𝑖𝑋𝑤𝑖 ,𝑉5 = −𝑋𝑑𝑖𝑌𝑤𝑖 ,𝑉6 = 𝑋𝑑𝑖 (12)

𝑆 = (𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6)2 (13)

𝜕𝑆

𝜕𝑎
= 2 ∗ 𝑉1 (𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0

𝜕𝑆

𝜕𝑏
= 2 ∗ 𝑉2 (𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0

𝜕𝑆

𝜕𝑐
= 2 ∗ 𝑉3 (𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0 (14)

𝜕𝑆

𝜕𝑑
= 2 ∗ 𝑉4 (𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0

𝜕𝑆

𝜕𝑒
= 2 ∗ 𝑉5 (𝑉1𝑎 + 𝑉2𝑏 + 𝑉3𝑐 + 𝑉4𝑑 + 𝑉5𝑒 − 𝑉6) = 0

We can obtain most calibration parameters of 3-D orientation and position from

the solution of above calculation. The rotation matrix, scale factor, x-axle translation

and y-axle translation cab be obtained from this step. And the sign of parameters

decided by set one of this parameter to be „1‟ positive, and the other parameters

 48

decided by the mutually orthogonal of any two rows or columns. Certainly we should

be sure to the consistency of coordinate direction.

The second step computes focal length, distortion coefficients and z-axle position.

We assume the distortion to be zero to get the initial value for next step at first. And

we can derive a linear function by below functions with distortion is zero. Then the

summery linear function is also an over-determined system and we estimate effective

focal length by least square method.

𝑆 = 𝑦𝑖𝑓 − 𝑌𝑑𝑖𝑇𝑧 − 𝑤𝑖𝑌𝑑𝑖
2

𝛥𝑆

𝛥𝑓
= 2𝑦𝑖 𝑦𝑖𝑓 − 𝑌𝑑𝑖𝑇𝑧 − 𝑤𝑖𝑌𝑑𝑖

𝛥𝑆

𝛥𝑇𝑧
= 2𝑌𝑑𝑖 𝑦𝑖𝑓 − 𝑌𝑑𝑖𝑇𝑧 − 𝑤𝑖𝑌𝑑𝑖 (15)

 Then we compute more accurate focal length, distortion coefficients and z-axle

position parameters in this section. The equation (15) is the summery and partial

differentiation of (10). We continue use (15) and assume f, Tz and K as unknowns.

And estimate the solution by standard optimization process as Powell‟s Method with

initial guess from last round solutions. Finally we can obtain the intrinsic parameters

of camera and extrinsic parameters of 3-D orientation rotation matrix and translation

matrix parameter.

 49

Chapter 6. Experimental Results

6.1. Performance Analysis of Java Core Platform

6.1.1. Development Platform and Tools

We have implemented the proposed Java platform on the Xilinx Virtex5 ML507

development board. The FPGA XC5VFX70T contains hardcore PowerPC 440, 44800

slices, 128 DSP8E functional units and 5328 Kbits BRAM with 256 MB DDR2

memory. We use Xilinx Embedded Development Kit 10.1(EDK) as the development

tool and Xilinx
®
 Synthesis Technology (XST) as the FPGA synthesis tool. The design

suite also provides full system simulation verification for EDK development platform

and ISE.

We create an implementation platform from Base System Builder (BSP) wizard

of Xilinx Platform Studio (EDK XPS) as shown in Fig. 36. We also add Java core IP

into this implementation platform.

Fig. 36. Architecture diagram of implementation platform.

Fig. 37 describes the runtime emulation platform. The system bus (PLB) clock

rate is running at 100 MHz. Table 1 shows the resource utilization of the FPGA device

PPC 440

Java BEE

Memory

Controller

CoreConnect PLB Bus

IPC

External Memory

Access Unit

Method Area

DDR Memory

I/O controllers

Peripheral I/O: UART, VGA DAC, SYS_ACE

VGA …
interrupt

 50

and the estimated working clock frequency. Although the estimated working

frequency is a little bit lower than the actual bus frequency, the system seems quite

stable when running benchmark programs. It is possible to lower the system bus

frequency on ML-507 if necessary.

Fig. 37. Emulation platform of the proposed Java system.

Table 3. Synthesis report of the design on an XC5VF70T device.

6.1.2. Benchmark of Java Core

This section compares the performance between the CVM running on the RISC

core alone and our proposed Java core. We use the benchmark of Embedded Caffeine

Mark (ECM) 3.0. The benchmark result is shown in Table 4. The CVM Java VM

interpreter is running on the PowerPC 440 CPU under MontaVista Linux. The CVM

platform has 32KB instruction cache and 32 KB data cache in the PowerPC core.

Jar File System of

CF Card

Hardware of FPGA

Java CoreRISC Core
Interrupt

Communication

Java program

execution

Class Profiling Process

(Class Loader)
DDR – Image Space

Runtime Image ,

Image Information

Cross Reference

Table

Load Target

Image

Target Class

Selected Device : 5vfx70tff1136-1

Number of Slices: 9252(3528) out of 44800 20(7)%

Number of Slice 6 input LUTs: 8755(4044) out of 44800 19(9)%

Number used as logic: 8390(4404)

Number of IOs: 212(0)

Number of bonded IOBs: 120 (0) out of 640 18%

Number of Block RAM/FIFO 35 (19) out of 148 23(12)%

Number using Block RAM only 35(19)

Number of PPC440: 1 out of 1 100%

Minimum period: 10.681ns Maximum Frequency: 93.624MHz

The value of parentheses is only Java execution engine

 51

However, current Java core does not have any data cache, which affects the

performance significantly for the proposed Java processor. However, the performance

of the proposed Java core is still much faster than that of CVM as shown in Table 4.

And the score of performance is defined by Caffeine Mark, which is calculated based

on the execution iterations of certain code in 1 ms and the scale factor of each

benchmark. In short, the higher the score, the better the performance.

Table 4. Benchmark between CVM and the proposed platform

 As the Table 4 shows, we can notice that the performances for different

benchmarks are quite different. For example, the performance of executing Method on

the proposed Java core is only 2.88 (about 3) times faster than that on the CVM.

However the performance of Logic is 9.60 times faster. There is more details analysis

for each benchmark later.

 Fig. 388, Fig. 39, Fig. 40, and Fig. 41 show the distributions of bytecode

instructions of these benchmark programs. Note that in the proposed design

(described in chapter 4), both method invocation and field data access need at least

Items

Bus100MHZ

Test Programs

Proposed JRE
@100 MHz without data cache

CVM @PowerPC

100MHZ with data cache

Once [#K

cycle]

Once [ms] Score Score Improvement

SieveAtom 320 82 3.82 faster

Sieve(Load class from DDR) 868098 8.68

Sieve(non-load) 866073 8.66

LoopAtom 262 56 4.68faster

Loop(Load class from DDR) 1038833 10.38

Loop(non-load) 1037778 10.37

MethodAtom 228 79 2.88 faster

Method(Load class from

DDR)
1343344 13.43

Method(non-load) 1340759 13.40

Logic 711 74 9.60 faster

Logic(Load class from DDR) 545558 5.45

Logic(non-load) 535828 5.35

 52

two external memory accesses. Access to an array in heap memory takes one external

memory access. However current Java core does not have any data cache, external

memory costs a lot of cycles for PLB bus transaction.

 Sieve compute prime number below “512”. Logic changes the Boolean logic

state 2400 times. Method calls recursive method invocation for a total of 10060 times.

Loop counts the Fibonacci sequence below 64 for a total of 4036 iterations. As Fig. 39

shows, Logic is composed mostly of simple instructions (90%). The proposed Java

core can execute two simple instructions per clock cycle. Therefore, the performance

on Logic is much faster than others.

 On the other hand, although the percentage of simple instructions of Loop is

much more than that of Sieve, the performance on Loop is less than that on Sieve. The

main reason for this issue is the number of external memory accesses. External

memory accesses on PLB bus take about 15~20 cycles for one data transaction on

average. The Sieve benchmark has about 17000 (18%) instructions for external

memory data accesses. Moreover, the field accesses and method reference instructions

requires two external memory accesses for each instruction. The Loop benchmark has

about 16500 (16%) array access and 8317(8%) field access. We compare the

percentages of external memory accesses between Sieve and Loop, and Loop has

much more portion of programs to do external memory accesses. Finally, Method

benchmark has very high percentages to do method reference and external memory

data accesses and complex bytecode “ireturn.” Hence Method need more amount of

time to do bus transaction and the performance improvement is less than others

benchmark cases.

 53

Fig. 38. Sieve benchmark analysis

Fig. 39. Logic benchmark analysis

Fig. 40. Method benchmark analysis

Simple

26%

newarray

0%array

access(16265)

17%

field access

(512)

1%

go to

6%
iinc

6%

if-else

34%

irem

5%
idiv

5%

Sieve

Simple

90%

field access

(2400)

2%

go to

3%

iinc

1%

if-else

4%

Logic

Simple

47%

field access

(5130)

6%

go to

12%

iinc

0%

if-else

12%

method

reference

(10060)
11%

ireturn (10060)

12%

Method

 54

Fig. 41. Loop benchmark analysis

6.2. Experimental Results on Camera Calibration

We use a simulated virtual 3-D world created by Blender Tool 2.49 to verify the

implementation of camera calibration process. Blender is used to create calibration

cube, landmark points, and virtual camera in the virtual 3-D space. We can control

accurate 3-D position of calibration objects and camera through the tool. Blender also

provides more detail options such as real light render, text control, camera intrinsic

parameters, etc. We can compare the result calculated by our calibration process from

render image with the parameter configured by Blender for verification.

Fig. 42 describes the simulation model constructed by blender. There are two

calibration cubes with landmark points on different faces in this virtual model. Fig. 42

also describes 3-D position of objects and the position and focal length of camera.

Then the calibration process do the image process from render image captured by

virtual camera at first and obtain the orientation information of image plane as shown

in Fig. 43.

After system has the orientation information of image plane and the known 3-D

position of landmark points, the camera calibration process calculates all parameters

as described in chapter 5. Table 5 is the comparison between results of camera

Simple

56%

field access

(8317)

8%

go to

8%

iinc

4%

if-else

8%

array access

(16264)

16%

Loop

 55

calibration implementation and configuration setting from simulation environment.

Fig. 42. Virtual configurations of experiment environment.

Fig. 43. Render image and result of image process.

Camera

(250,600,470)

Focus length : 30

Cube 1(500,702,162)

Coordinate(mm)

Objects

Camera

Coordinate System

Proposed World

Coordinate System

Camera center

(Rot x -35 , Rot y -55, Rot z

70)

(0,0,0) (250,600,470)

Proposed world

coordinate center
(110.7,-740,-289) (0,0,0)

Cube 2

(500,902,362)

x

y

z

 56

Table 5. Comparison between configuration and calibration parameters.

Calibration Parameters Configure Value Calibration Value

Focal length 30 27.4

Scale factor -- 1.3

Distortion 0 0

Rotation x -35 -35.3

Rotation y -55 -54.9

Rotation z 70 70.3

Translation x 757.43 758.19

Translation y 120.75 127.54

Translation z 231.91 233.69

 57

Chapter 7. Conclusions and Discussions

In this thesis, we have presented the design of a dynamic class loading

mechanism for Java processors using hardware-software co-design approach. For

each class loading operation, the proposed system divides it into two different steps.

The first step includes operations like locating the Java class files, parsing the class

files, generating a runtime class image and cross-reference tables. This step is a

one-time only process for the entire life cycle of the Java system and it greatly

reduces the complexity of dynamic resolution and loading of a class image into

method area. The first step in dynamic class loading is implemented in software and is

executed by the RISC core.

The second step of dynamic class loading involves dynamic resolution of

symbols in the class (symbols are turned into unique IDs during the first steps) and

management of class images in the method area. The second step is implemented by

hardwired logic for performance reason. The second step will be executed

over-and-over every time a class is referenced in the Java application program.

There are some operations that are not completely supported in current design of

dynamic class loading mechanism such as complex inheritance and interface

invocation. Although the class parser only parses each class once during the life cycle

of a Java system, the performance of the class parser is also important to reduce the

overhead of dynamic class loading for Java processors.

Finally, for long-term goals, there are many issues such as sophisticated garbage

collection, exception handling, and multi-threading for complete support of JVM for

embedded systems, etc.

Another topics investigated in this thesis is the camera calibration process for 3-D

 58

MMI. We have implemented a camera calibration algorithm and verified the

implementation using simulated environment. The simulation result shows that the

camera parameters are estimated quite accurately. For future work, we will construct a

real environment for testing the camera calibration process. Then we can apply the

triangulation method to capture real 3-D position of any object. Eventually, these

technologies can be integrated together to construct a smart embedded Java platform

with 3-D human interaction interface.

 59

Appendix: Pseudo-code of Class Loader on

RISC-side

total_file_of_FAT_entries ; Total number of files of FAT file system

totol_registered_class ; Total number of registered class

nConstPool ; Total number of const pool items

attribute_count ; Total number of attribute in a class

mehthod_numberofclass[x] ; Number of methods of the x th class

field_numberofclass[x] ; Number of fields of the x th class

nByteCode ; Number of bytecodes in current method

string_operation ; String comparison

directly_access_operation ; String comparison

Open Class File of Jar file system (Jar file name, Class path/class name)

{

 Open Jar file with Xilinx Fat16 filesystem

 while (1)

 {

 if (Correct file header) comment: Check the header of Jar file system ; 1 string_operation

 {

 Resolution of class files information of Jar format

 if (Temp class name equal class path/class name) ; 1 string_operation

{

Initialization of target class name of table ; 20 directly_access_operations

For (i = 0; i < totol_registerd_class; i++)

 {

 if (class name = cross_reference_table[i].class_name) ;1 string_operation

 {

 Start the class loader process for a registered class

 ; 3 directly_access_operations

}

}

 60

 jf (flag = 0) comment: new class register at first

 {

 Start the class loader process for a non-registered class

 ; 6 directly_access_operations

}

}

 }

}

}

total_file_of_FAT_entries*(1/2)*(26+ totol_registerd_class) directly_access_operations

total_file_of_FAT_entries*(1/2)*(2+ totol_registerd_class) string_operations

ClassLoader (image baseaddress, &classfile , i(Class global index))

{

 Resolution of class header

 Resolution the number of referenced method and field

 ;3* nConstPool directly_access_operations

 Retreat information for cross reference table ; 2 directly_access_operations

 for (i = 0; i < Method_ref_count ; i++)

 {

 Resolution of referenced method information ; 10 directly_access_operations

for (j=0 ; j < totol_registerd_class ; j++)

{

if (referenced Class not registered)

 {

 Table initialization process

Register method field both in this class and referenced class

; 26 directly_access_operations

; 1 string_operations

}

else {

 if (referenced class is this class)

{

 Register the method information and get reference pointer

 ; 14 directly_access_operations

}

Else

 61

{

1. The Referenced Class has registered the method information

;Mehthod_numberofclass[x] + 2 directly_access_operations

; Mehthod_numberofclass[x]/2 string_operations

2. The Referenced Class also has not register this method information

;Mehthod_numberofclass[x] + 7 directly_access_operations

; Mehthod_numberofclass[x]/2 string_operations

Update image reference pointer

; 11directly_access_operations

}

}

 }

}

Retreat field information for cross reference table

 for (i = 0; i < field_ref_count ; i++)

 {

 Resolution of referenced field information

 ; 10 directly_access_operations

 for (j=0 ; j < totol_registerd_class ; j++)

{

if (referenced Class not registered)

 {

 Table initialization process

Register method field both in this class and referenced class

; 26 directly_access_operations

; 1 string_operations

}

else {

 if (referenced class is this class)

{

 Register the field information and get reference pointer

 ; 14 directly_access_operations

}

Else

{

1. The Referenced Class has registered the field information

Mehthod_numberofclass[x]*2 operations

;Mehthod_numberofclass[x] + 2 directly_access_operations

 62

; Mehthod_numberofclass[x]/2 string_operations

2. The Referenced Class also has not register this field information

;Mehthod_numberofclass[x] + 7 directly_access_operations

; Mehthod_numberofclass[x]/2 string_operations

Update image reference pointer

; 11directly_access_operations

}

}

 }

}

Resolution parent class index information

;2 directly_access_operations

Get the global index of parent index

; totol_registerd_class/2 string_operations

;1 directly_access_operations

Resolution of field data of this class

 ; 1 directly_access_operations

for (i = 0 ;i < total field data; i++)

{

 Parse field data information (Access flag) and resolve the field data name

 Register the field information to the cross reference table of this class

; 5 directly_access_operations

Update field information of other class who will access this field data

; totol_registerd_class*Field_numberofclass[x]/2 string_operations

; 2 directly_access_operations

}

Resolution of method this class

; 1 directly_access_operations

for (i = 0 ; i < method count of this class ; i++)

{

 Resolution of method access flag

 Resolution of method information

 ; 6 directly_access_operations

 Check the method whether has been registered or not 4 operations

; Mehthod_numberofclass[x]/2 string_operations

; 2 directly_access_operations

if (Method has not been registered)

{

 63

 Register the method field – 5 operations

 ; 4 directly_access_operations

}

Resolution of descriptor

; 4 directly_access_operations

Descriptor checking for argument numbers

; 2 directly_access_operations

; 5 string_operations

“Main” function checking – 5 operations

; 1 string_operations

; 1 directly_access_operations

for (j = 0 ; j <attribute_count ; j++)

{

 Resolution of attribute name and size

 ; 4 directly_access_operations

if (attribute name is “Code”)

 {

; 1 string_operations

 Resolution of Max_Local ,Max_Stack

 ; 5 directly_access_operations

Update current method field offset 2*method count operations

 ; method count operations directly_access_operations

 ; method count operations/2 string_operations

Update method field offset of other class

2*totol_registerd_class*Mehthod_numberofclass[x] operations

; (totol_registerd_class/2)*(1 +Mehthod_numberofclass[x]) directly_access_operations

 ;(totol_registerd_class/2)*(Mehthod_numberofclass[x]/2) string_operations

 Update the operand index of method code – nByteCode*4 operations

; nByteCode*5 directly_access_operations

}

 else

 {

 Skip other attribute

}

}

}

Return Image Size;

}

 64

Reference

[1] H.-J. Ko and C.-J. Tsai, “A Double-issue Java Processor Design for Embedded

Application,” Proc. of IEEE Int. Symp. on Circuits and Systems(ISCAS’08),

Seattle, May. 2007.

[2] H.-J. Ko, A Double-issue Java Processor Design for Embedded Application,

Mater thesis, NCTU, 2007.

[3] K.-N. Su and C.-J. Tsai, “Fast Host Service Interface Design for Embedded Java

Application Processors,” Proc. of IEEE Int. Symp. on Circuits and Systems

(ISCAS’09) ,Taipei, May, 2009.

[4] K.-N. Su, Design of Heterogeneous Dual-Core Java Application Processor for

Embedded Applications, Mater thesis, NCTU, 2009.

[5] Sun Microsystems, J2ME Technology, Sun Developer Network URL:

http://java.sun.com/javame/technology/, 1994-2009.

[6] Sun Microsystems, Connected, Limited Device Configuration Specification, ver.

1.0a, Sun Microsystems White Paper, May 2000.

[7] Sun Microsystems, the Java Community Process Program, JSR 36: Connected

Device Configuration, ver. 1.0b, Dec 20, 2005.

[8] Sun Microsystems, Jar File Specification URL: http://java.sun.com 1995

[9] PKWARE®, Zip File Specification ver.6.3.2, September 28, 2007. URL:

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

[10] T. Lindholm and F. Yellin, The Java Virtual Machine Specification, 2
nd

 Ed.,

Addison-Wesley, 1999.

[11] C. Porthouse, High performance Java on embedded devices, Jazelle DBX

technology: ARM acceleration technology for the Java Platform, White paper of

ARM Ltd., Oct. 2005.

[12] Z. Qian, A. Goldberg, and A.Coglio, “A Formal Specification of Java
TM

 Class

Loading,” Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304 July 21,

2000

http://java.sun.com/javame/technology/
http://java.sun.com/

 65

[13] S. Liang and G. Bracha, “Dynamic Class Loading in the Java
TM

 Virtual

Machine,” Sun Microsystem Inc. 901 San Antonio Road, CUP02-302 Palo Alto,

CA 94303

[14] P. S. Corporation, Embedded Caffeine Mark 3.0, URL:

http://www.benchmarkhq.ru/cm30/info.html, 1997.

[15] R. Y. Tsai,” A Versatile Camera Calibration Technique for High-Accuracy 3D

Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses,” IEEE

Journal of Robotics and Autimation, vol. RA-3, NO. 4, Aug. 1987

[16] N. GUIL and E. L. ZAPATA, “Lower Order Circle and Ellipse Hough Transform,”

1997 Pattern Recognition Society. Published by Elsevier Science Ltd

[17] P. L. Rosin, “A note on the least squares fitting of ellipses,” Pattern Recognition

Letters 14 Elsevier Science Publishers (1993) 799-808

[18] M. Tapper, P. McKerrow, J. Abrantes, " Problems Encountered in the

Implementation of Tsai's Algorithm for camera calibration," Proc. 2002

Australasian Conference on Robotics and Automation Auckland, 27 - 29, Nov.

2002

[19] J. Heikkilä, “Geometric camera calibration using circular control points,” IEEE

transactions on pattern analysis and machine intelligence [0162-8828] Heikkila

yr:2000 vol:22 iss:10 pg:1066

[20] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE

Transactions on Pattern Analysis and Machine Intelligence [0162-8828] Zhang

yr:2000 vol:22 iss:11 pg:1330

[21] O.D. Faugeras, Q.-T. Luong and S.J. Maybark, Camera Self-Calibration: Theory

and Experiments, Institut National de Recherche en Informatique et Automatique

(INRIA), 2004 Routs des Lucioles, 06560 Valbonne, France

[22] L. Edwards, “Active Shutter 3D Technology for HDTV,” PhysOrg, Sept. 25, 2009

http://www.benchmarkhq.ru/cm30/info.html

 66

URL: http://www.physorg.com

[23] Xilinx LogiCore, PLB IPIF (v2.02a), Xilinx Production Specification DS448,

April, 2005.

[24] Xilinx LogiCore, Processor Local Bus (PLB) v4.6, Xilinx Production

Specification DS531, Aug, 2007.

[25] Blender Home, Blender Tool 2.49, URL: http://www.blender.org/

[26] K. G. Nyman, “Real-World Camera Andscene Matching In Blender,”

http://home.metrocast.net/~chipartist/BlensesSite/index.html, 2007.

[27] Security Engineering Research Group, ,Analysis of Dalvik Virtual Machine and

Class Path Library , Institute of Management Sciences Peshawar, Pakistan

Technical Report URL: http://serg.imsciences.edu.pk , Nov., 2009.

http://www.blender.org/
http://home.metrocast.net/~chipartist/BlensesSite/index.html

