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非同步雙道超大指令字組處理器之指令壓縮設計 

 

研究生：張瑞宏                      指導教授：陳昌居 教授 

 

國立交通大學資訊科學與工程研究所 

 

摘  要 

超大指令字組（VLIW）的概念是一次固定發出多道指令讓處理器同時執行，本論

文採用雙道指令，並且以非同步電路方式針對指令壓縮做設計。目前嵌入式系統中常

使用 VLIW，這種方法主要是利用編譯器做運算單元的分配，以簡化電路。另外，以非

同步電路方式設計的主要目的是降低功耗。其實，在 VLIW 架構下常因為指令無法平行

執行，導致指令記憶體空間的浪費，因此將指令壓縮成為常見的作法。 

    非同步處理器與一般的處理器不同，它會佔用較大的電路面積，因此不適合複雜

的壓縮機制。因此，本論文針對非同步電路特性，提出一個適合的指令壓縮設計。另

外，為配合特殊的指令設計，本論文亦精簡部分所需電路。此外還針對處理器的一半

管線利用率，設計出簡單且有效率的跳躍指令處理方式。最後我們的實驗結果顯示，

依據程式平行度的不同，有 60%左右的壓縮比，而處理解壓縮部份的面積僅佔整個處

理器的 2.8%。 
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Asynchronous two-way VLIW Processor 

 

Student：Jui-Hung Chang              Advisor：Dr. Chang-Jiu Chen 

 

Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

 

Abstract 

The concept of VLIW is multiple instruction issue. The compiler is responsible for 

distribution of function unit. Thus VLIW suits embedded system because of the simple circuit. 

In this thesis, we design instruction compression for asynchronous two-way VLIW processor. 

We use asynchronous design style to lower power consumption. Unfortunately, there is a 

problem about VLIW architecture. It wastes instruction memory while the instruction packet 

cannot be parallelly executed. So it is common view to compress instruction packet. 

Asynchronous processor occupies bigger circuit area compared to general processor. It 

does not suit complex compression mechanism. We adopted suitable instruction compression 

way for asynchronous processor with novel implementation. We also design special 

instruction set to simplify the circuit. Moreover we design simple and efficient branch 

handling based on 50% pipeline utilization. In our implementation, we get approximately 

60% compression ratio with 2.8% area overhead.  
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Chapter 1 Introduction 

1.1 Overview 

Most popular processors are designed in synchronous methodology which is triggered 

by clock. There are various benefits of the design style. The most one is easy to develop 

products with plentiful CAD tools. However, clock brings some difficult problems 

especially in complex circuits. First, clock distribution causes high power consumption. 

Seconds, the pipeline stages must be balanced since the cycle time is decided by the longest 

stage time. Moreover, clock rate cannot increase all the time. 

Compare with synchronous processor, asynchronous processor has another advantage. 

Because there is no clock to control pipeline, each stage has its own delay (cycle) time. It 

means delay time is not decided by the worst case delay. Clockless (also called 

asynchronous or self-timed) design methodology also has other advantages such as low 

power, better EM emissions, robustness for both variable temperature and voltage, etc. 

To improve efficiency, multi-core is the main processor developed idea since clock 

rate becomes bottleneck. Usually, each core is simple for the main purpose of parallel 

program efficiency. However it is not suitable to design complex circuit in asynchronous 

methodology. We build an asynchronous 2-way VLIW (very long instruction word) 

processor as predecessor of multi-core processor.  

In this thesis, we present a simple way to deal with instruction compression including 

the novel branch handling method. They are applied to this 2-way VLIW asynchronous 

processor. We implemented it with Verilog, hardware description language. We developed, 

verified it in ModelSim, and synthesized by Design Compiler. We also analyzed the area 

and performance. 
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1.2 Motivations 

 To build VLIW processor, instruction compression is crucial issue to improve 

instruction memory utilization and reduce communication times between memory and CPU. 

Instruction compression mechanism can gain these benefits obviously. But it is hard to get 

relative topic which is applied to asynchronous VLIW processors. Thus we survey general 

synchronous VLIW processors in the beginning. We find out the different points between 

academic processor and commercial processor. However, the problem is how to implement 

it in self-timed dual-rail processor and which method is better to asynchronous processor. In 

synchronous processor, we may put the decompressed circuits into one stage. But if we do 

that in dual-rail pipeline which is 50% pipelined utilization, it may not work correct. So we 

start to develop our special design including pc (program counter) relative handling such as 

branch instructions. 

 

1.2 Organization of This Thesis 

 We give overview and motivations in the beginning of chapter 1. In chapter 2, we 

show the background of some asynchronous circuits concepts. In chapter 3, we introduce 

some common way to handle instruction compression. We propose the index buffer 

approach in chapter 4. The simulation results are shown in chapter 5. Finally we have some 

discussion about conclusion and future work in chapter 6. 
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Chapter 2 Background 

We build a 2-way VLIW asynchronous processor, and the thesis is talking about the 

portion of the processor. So we will introduce the asynchronous circuits or clockless circuits 

in this chapter. Without clock, the asynchronous circuits communicate each module by 

handshaking protocol, so we will also introduce it in the following. 

 

2.1 Asynchronous Circuits 

As implied by the name, asynchronous circuits (clockless circuits) eliminates clock. It 

uses handshaking protocol to complete the mission of communication with each component. 

The asynchronous design style can gain some benefits [1] like:  

(1) Average case performance: In general, we take the worst delay time as cycle 

time in synchronous pipeline architecture. However, asynchronous design style 

has no global clock so that it does not have the constraint. Moreover, it may 

take different time in the same stage since it does not pass the same path. For 

example in asynchronous processor, the NOP instruction just passes each stage 

quickly without calculation but it shares the same cycle time in synchronous 

processor. 

(2) Low power requirement: Not all the components should be activated all the 

time. Only the necessary portion will be fired in asynchronous circuits. For 

example in processor, the function units would handle different instructions. 

Energy will be consumed in every portion in synchronous circuits but not in 

asynchronous one. 

(3) No clock skew: Because the asynchronous components are not triggered by 

clock. Additionally, there is no clock distribution problem. 

Of course, we just introduce some main advantages about processor design. Less EMI 
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is also the one of advantages and there is some comparison experiment in [2]. There is still 

another type of benefit [3] so that it is become popular recently. In [4], it is talking about the 

future processor design style. It also analyzes the advantages/challenges about 

asynchronous design style. However, our processor is fully asynchronous design. 

 

2.1.1 Four-Phase Handshaking Protocols 

The key point of asynchronous circuits is handshaking protocols. It is responsible to 

communicates different modules. The most popular protocols are two-phase/four-phase 

with bundled-data/dual-rail. Our processor is based on four-phase dual-rail protocol which 

is illustrated in figure 2.1. Four-phase protocol is the common design style due to the simple 

characteristic. Many asynchronous processors take this design methodology such as CAP 

(Caltech Asynchronous Processor), FAM (Fully Asynchronous Microprocessor), Strip (A 

Self-Timed RISC Processor), etc [5]. The company, ARM also developed some commercial 

products such as ARM996HS [6] and it is based on four-phase protocol. 

Dual-rail is one of the data representations, which encodes 1-bit data into 2 wires as 

shown in table 2.1. For example, if two-wire (Data.t, Data.f) = (0/1, 1/0), it means valid data 

0/1. (Data.t, Data.f) = (0, 0) is not a value, and it means empty. Because there is no request 

signal in dual-rail we use empty to do the action of returning to zero. Although dual-rail 

increases the cost, it is more robust then single-rail. Most importantly, if we use single-rail, 

we need to give proper delay everywhere, and it is hard to know it. 

Table 2.1 : 1-bit dual-rail encoding 

Data.t Data.f Value 

0 0 Empty 

0 1 Valid 0 

1 0 Valid 1 

1 1 Not used 
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Figure 2.1 shows the handshake protocol between two modules. We show the detail 

about data (from sender) and ack (from receiver) relationship in above. Value empty plays 

the role of returning to zero as difference of continuous valid data. 

 

Figure 2.1：Four-phase dual-rail protocol 

 

2.1.2 Muller C-element 

The Muller C-element is a basic element in asynchronous circuits. Table 2.2 shows the 

truth table of C-element. The symbol of C-element is shown as figure 2.2. 

 

Figure 2.2：The symbol of C-element 

 

Table 2.2 : 2-input C-element 

Input1 Input2 Output 

0 0 0 

0 1 No change 

1 0 No change 

1 1 1 

2n 

Ack 

Data 

EMPTY VALID EMPTY VALID EMPTY VALID 
Encoding 

Data 

Ack 

 

Receiver 

 

Sender 
 Push 

channel 

Input 1 

Input 2 
Output C 
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2.1.3 Dual-Rail Registers 

 All the registers in our processor are made with dual-rail form. Figure 2.3 shows 1-bit 

dual-rail register like TITAC’s [7]. The blue portion (thick line) stores data from input data 

(din.t, din.f). Value (0, 0) does not affect the stored value in blue portion. Therefore, the red 

portion (solid line) controls writing input data or not. Usually, the wt signal comes from the 

previous stage. The green portion (dotted line) checks the input data and stored data equal 

or not, if data is already stored then output ack_out. However, there is no read control in this 

figure. It is similar to red portion, controlled by AND-gate. 

 

Figure 2.3：1-bit dual-rail register 

 

2.1.4 Muller Pipeline 

 Muller pipeline is based on four-phase dual-rail protocol. In figure 2.4, we can see that 

the pipeline latch is built of C-element. In the case of many bits, completion detection unit 

costs a lot by multi-input C-element. So we use alternative one to reduce cost as shown in 

figure 2.5. Because we put empty token between adjacent valid tokens, the pipeline 

utilization is 50%, and we already explained it in chapter 2.1.1. In general, completion 

detector is made by C-element. Due to the expensive cost of multi-input C-element, the 

 

 

 
din.t 

din.f 

ack_in (wt) 

 

ack_out 

dout.t 

dout.f 
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alterative completion detector is widely used as shown in figure 2.5. 

 

Figure 2.4：1-bit Muller pipeline with two stages 

 

Figure 2.5：Alternative completion detector 

 

2.1.5 Memory Interface 

We use synchronous memory as instruction memory due to the expensive cost of 

asynchronous memory. Thus we need the memory interface between synchronous and 

asynchronous circuits as shown in figure 2.6. The multi-input C-element is also replaced by 

alternative one as figure 2.5 actually. 
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…
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Figure 2.6：Instruction memory interface 

 

2.1.5 Bypass Data Path 

 In asynchronous design style, the one of advantages is low power requirement. We 

gave the example before and the following figure 2.7 shows how it really happened. In this 

figure, we let data pass through just one function block every time. To the other function 

blocks, they just pass empty (all data bits are 0) token. The irrelative portions do not waste 

power obviously. Moreover, if we receive NOP instruction we will just pass it to the next 

stage without unnecessary calculation. It will be fast and consume less power. It is a 

practical application about asynchronous design concept. 

Instruction memory 

addr[0] …… addr[12] val[0] …… val[63] 

Prefetch stage 

C 

addr’[0] …… addr’[12] val’[0] …… 

a’[0].t a’[0].f a’[12].t a’[12].f 
…

 
v’[0].t v’[0].f 

val’[63] 

…… 

delay 
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Figure 2.7：Bypass Data Path 
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Chapter 3 Related Works 

Since RISC VLIW processor has fixed instruction length. In most time, instruction 

packet is not full utilization. It means that there are many useless NOP instructions occupy 

the space in instruction packet. But it still needs to be put into instruction memory which 

causes waste. Moreover, to cut down the program code size implicitly can reduce the 

communication times between instruction memory and CPU. Thus we can complete a 

program much quickly. For these reasons, there are numerous studies to deal with the 

problem what we called instruction compression. We will introduce some general methods 

briefly in the following. 

 

3.1 Common Instruction Compression 

 Although instruction compression can reduce wasting memory, it increase hardware 

cost. Therefore, it is a trade off between memory space and hardware cost. In academic 

research, they even employ data compression technology with expensive cost. However, 

commercial processors usually take easy ways. 

 

3.1.1 Data Encoding Scheme 

 Because the program is also composed of binary code (machine code), some people 

apply data encoding scheme to instruction compression. The basic idea is to replace original 

code with fewer bits. The compression ratio is decided by code repeating times. Obviously, 

it needs to create table which stores the corresponding relation. LZW [8] and Huffman 

coding are two common data compression methods. In many related papers, instruction 

compression is based on them [9]. 
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Figure 3.1：(a) LZW compressed algorithm 

 

Figure 3.1：(b) LZW decompressed algorithm 

STRING = get input character 

WHILE there are still input characters DO 

 CHARACTER = get input character 

 IF STRING + CHARACTER is in the string table then 

  STRING = STRING + CHARACTER 

 ELSE 

  Output the code for STRING  

  Add STRING + CHARACTER to the string table 

  STRING = CHARACTER 

 END of IF 

END of WHILE 

Output the code for STRING 

Read OLD_CODE 

Output OLD_CODE 

WHILE there are still input characters DO 

 Read NEW_CODE 

 IF NEW_CODE is not in the translation table THEN 

  STRING = get translation of OLD_CODE 

  STRING = STRING + CHARACTER 

 ELSE 

  STRING = get translation of NEW_CODE 

 END of IF 

 Output STRING 

 CHARACTER = first character in STRING 

 add OLD_CODE + CHARACTER to the translation table 

 OLD_CODE = NEW_CODE 

END of WHILE 
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LZW: 

 Lempel Ziv proposed a data compression approach in 1977. Terry Welch refined it 

later in 1984. The LZW algorithm is shown as following figure 3.1 (a)(b). Like many data 

compression methods, LZW algorithm looks up translation table as dictionary. But both 

compression and decompression create translation table respectively. It means that doing 

decompression just need encoding data without table information, the table will be created 

automatically. Thus the translation table has dynamic contents and the contents are added 

step by step. That is why the LZW algorithm suits instruction compression. 

Huffman: 

 We can also apply Huffman scheme to instruction format. The main idea is to analyze 

the instruction components of some specific application program by benchmark. For 

example, if we want to compress op code we give the often used instruction type fewer bits 

and give the seldom used instruction type more bits. 

 Most data compression methods will let instruction length be variable. In general, these 

methods are trade-off between compression ratio and area overhead. Besides the expensive 

cost of data compression methods, commercial products focus on balance. The following 

approach is another idea with fixed instruction length. The idea is basic on characteristic of 

VLIW architecture. 

 

3.1.1 Commercial Products 

 The VelociTI architecture is very long instruction word (VLIW) architecture [10] 

which is developed by the company of Texas Instruments. Unlike academic research, 

commercial processor focus on both code size and hardware area cost. 

 The main idea of instruction compression is to eliminate NOP. The mechanism needs 

to coordinate instruction format. They use last 1-bit of instruction which is called p-bit to 



 13 
 

indicate that the instruction is the end of instruction packet whether or not. Therefore it will 

reduce instruction maximal count. Figure 3.2 (a) shows how it works efficiently in best case. 

In this case, VLIW architecture is 0% utilization because each instruction packet can only 

use one function unit. The VLIW processor works like general processor. We can see that 

useless NOP is 7 times versus valid instruction in each instruction packet. These NOP will 

not be stored in VelociTI instruction packet so that we compress a great deal of code size. 

Figure 3.3 (b) shows the worst case and there is nothing happened. The new instruction 

packet format is same as original one. In general program, the code is impossible to be the 

form of fully parallel fetch packet. Basically, this mechanism saves plenty space decided by 

NOP amount. 

 

Figure 3.2：(a) VelociTI instruction packet (best case) 

 

Ins.1 nop nop nop nop nop nop nop 

nop nop Ins.2 nop nop nop nop nop 

nop Ins.3 nop nop nop nop nop nop 

nop Ins.4 nop nop nop nop nop nop 

nop nop nop Ins.5 nop nop nop nop 

nop nop nop nop Ins.6 nop nop nop 

nop nop nop nop nop nop Ins.7 nop 

nop nop nop nop nop Ins.8 nop nop 

Ins.1 Ins.2 Ins.3 Ins.4 Ins.5 Ins.6 Ins.7 Ins.8 

0 0 0 0 0 0 0 0 

Instruction 

P-bit 
8-instruction length 

64-instruction length 

Total: 8 instruction packets 

Fully serial fetch packet 

Ins1, Ins2, Ins3, Ins4, Ins5, Ins6, Ins7, Ins8  

 

 

Ins.1, Ins2,  
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Figure 3.2：(b) VelociTI instruction packet (worst case) 

This method has 50% compression ratio for two-way VLIW architecture under ideal 

condition. The range of compression ratio between 50% and 60% is great for general 

processor which is not VLIW architecture. We can see some experimental results on [11] 

for ARM series architecture. 

 For ARM, they have a simple way to get compression effect which is called Thumb. 

This way does not really compress instruction. The original instructions are all in 32-bits 

length. They expand several 16-bits instructions into original instruction set. These 

instructions are the copies of original instructions but with shorter instruction formats. Thus 

it can use these instructions to instead original one when the original instructions do not 

really need 32-bit length to represent operations. For MIPS, it has the similar way called 

MIPS16. The way of shorter instruction format will let processor waste time to change 

mode. For ARC, they have the similar way with mix instruction set. The processors do not 

need to change mode since the instruction set are variable length. 

There are still many special ways to deal with VLIW compression [12]. The instruction 

with variable length is popular in these years. In [13], it discusses about tradeoffs between 

decompression overhead and compression ratio. We can see that using more bits only 

improves compression ratio a little bit. However, we do not take complex method by the 

reason of double cost (dual-rail encoding scheme) for our asynchronous processor. 

Ins.1 Ins.2 Ins.3 Ins.4 Ins.5 Ins.6 Ins.7 Ins.8 

1 1 1 1 1 1 1 0 

Instruction 

P-bit 
8-instruction length 

8-instruction length Ins.1 Ins.2 Ins.3 Ins.4 Ins.5 Ins.6 Ins.7 Ins.8 

Fully parallel fetch packet 

Ins1 || Ins2 || Ins3 || Ins4 || Ins5 || Ins6 || Ins7 || Ins8  

 

 

Ins.1, Ins2,  

 

Total: 1 instruction packet 
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Chapter 4 Design for Asynchronous VLIW 

processor 

 In this chapter, we will introduce our asynchronous VLIW processor in the beginning. 

Then we will show how we implement instruction compression mechanism into this 

processor in first two stages. We also give instruction set some simple rules to reduce cost. 

Furthermore, we design a special approach to deal with pc relative instructions. This branch 

handling method can improve efficient about 50% compared with inserting NOP. 

 

4.1 Processor Architecture 

 This asynchronous processor is a two-way VLIW architecture. The handshaking 

protocol is four-phase signaling with dual-rail encoding. So we adopt Muller pipeline as we 

expounded in chapter 2. There are 6 pipeline stages as shown in figure 4.1. 

 

Figure 4.1：Asynchronous two-way VLIW architecture 

Prefetch 

Dispatch 

MAC decode 

MAC Exe1 

WriteBack 

Instruction Memory 

Interface  

Sync <-> Async 

MEM decode 

MEM Exe1 

MAC Exe2 MEM Exe2 

 

Data 

Memory 

In
terface 

Syn
c <-> A

syn
c 

 

 

 

Register 

Bank 



 16 
 

4.2 Compression implementation 

  Since we design the asynchronous VLIW processor, we also need to consider saving 

instruction memory. In chapter3, we already introduced some methods about instruction 

memory. However, we adopt the VelociTI approach for three reasons. 

First, it is simple than the others especially in asynchronous circuits. We know that it is 

hard to design complexity asynchronous circuits with acceptable cost. It is caused by 

handshaking protocol especially in four-phase dual-rail protocol. Moreover, if we adopt 

the complex data compression, it is really hard to design the correct asynchronous circuits 

without timing constraints. Second, we can take the disadvantage of losing one bit in an 

instruction format. Finally, simple way gives the processor operates efficiently and the 

complex one is not worth to do it. 

 Our processor is a 32-bit RISC processor. Each instruction keeps last one bit for 

parallel bit. The parallel bit = 1 means it can be parallelly executed with next instruction in 

two function units. Otherwise, it can only be executed in just one function unit. Although 

we eliminate the NOP instruction, NOP instruction is still allowed in instruction packet. For 

example, we can assign a NOP instruction packet like 0x0000000100000000 or 

0x00000000. There is no difference between them. 

 

4.2.1 Stage Timing Issues on Asynchronous Circuits 

 Because there is no clock signal to cooperate with each stage, the time to pass stage is 

not constant. The adjacent instructions may not be located on corresponding stages. Figure 

4.2 shows all possible situations. In this example, the instruction sequence is SLL, ADD and 

SUB. Case (a) is ideal status with interlaced format that instructions are divided by exactly 

one bubble; Case (b) and (c) are another situation that add instruction runs fast. In the other 

hands, we have no idea to know or even predict every stage’s status. It must be take care 
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when we deal with signal across multiple stages. 

 

Figure 4.2：Unpredictable instruction executing time 
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4.2.3 FIFO Approach 

 In synchronous processor, it is familiar to use FIFO storing tag and buffer as shown in 

figure 4.3. This mechanism needs at least three steps: load memory, move FIFO and send 

output. Figure 4.3 is the example of 2-way VLIW and use 4 buffer slots to store instructions. 

Buf1 and buf2 load from memory and move left to buf3 and buf4. The buf3 and buf4 are 

waiting for executing. There are two cases: if the instruction packet in buf3 and buf4 can be 

parallelly executed then send it into dispatch unit and move buf1 and buf2 into buf3 and 

buf4; if the instruction packet in buf3 and buf4 should be executed along then send one 

instruction into dispatch unit and rearrange buffer FIFO. 

 

Figure 4.3： FIFO approach 
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Figure 4.4：Pipeline Stall - 1 

 

Figure 4.5：Pipeline Stall - 2 
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 The 3 steps are necessary and whatever you changed the sequence, the stalled situation 

is still happened. The reason is that the FIFO is not depth enough. However, to increase 

FIFO depth means increasing overhead. Furthermore, you can notice that it is not really 

simple for such FIFO mechanism. Actually, it still has another stalled situation. It can move 

one or more slots to solve the problem [14]. In [14], we can see the FIFO approach has lots 

overhead with MUX everywhere. However, we proposed the index buffer approach to 

reduce cost and make it fast. 

 

4.2.4 Index Buffer Approach 

Beside the FIFO approach, we use 3 buffer slots to store instructions and we use two 

stages to implement instruction decompression. The main idea is that if we can choice the 

source of output instructions, we do not need to move buffers. Thus we reduce the area cost 

and moving overhead. In figure 4.6, there are 2 stages before the decode stage. In the 

following, when we indicate something is x bits length, it means x data bits with 2x wires 

due to the dual-rail implementation. 

The first stage (called PF stage) gets instructions (64bits) from instruction memory and 

puts it into proper buffer according to valid bits (3bits). Valid bits are used to indicate each 

buffer is empty or not. The second stage (called DP stage) dispatches instructions into the 

expected sequence.  

We load instructions from memory into corresponding buffer with sequence: 

buf0->buf1->buf2->buf0…. , we use index 2bits to indicate the positions. In fact, to put 

instructions into proper buffer does not reference index. We can make determination only 

by valid bits. We just read index in the first stage and pass to the next stage by latch. Index 

bits are reference by DP stage.  
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Figure 4.6：Index buffer approach 

 

Figure 4.7：Initial status 
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the other can not. What we do is to dispatch the expected instruction sequence before 

decode stage. The buffer is written by PF stage and is read by PF stage. The tag bits are 

written by DP stage and are read by PF stage. We assume the valid token and empty token 

are interlaced between stages in the following figure 4.8(a). To illustrate the instance, we 

named each token handling step. 

 

Figure 4.8：(a) Continuous single-handled instruction – part I 
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Figure 4.8：(b) Continuous single-handled instruction – part II 
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and write into index register. Since the original valid value is 3’b000, we know we would 

load new one in the previous step and change it into 3’b011 (v2v1v0). Furthermore, we load 

one instruction from buffer in this step, change it into 3’b010 and write back to the valid 

register. In step 4, there are only one empty buffer slot after taking one instruction. So the 

pc value will not be changed. It cause the buffer content will not be changed in the next 

step. 

 

Figure 4.8：(c) Continuous instruction 
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In figure 4.8 (b), the step 5 does not load data from instruction memory either put into 

the buffer since the buffer has no enough space. Therefore, this step is fast to pass than step 

1 or step 3. 

In figure 4.8 (c), the difference is in step 12. Instruction 6 and instruction 7 can be 

parallelly executed. Because the parallel bit of instruction 6 is 1, we also load the next 

instruction ( (index + 1) % 3 = 2’b00 ). To reduce unnecessary overhead, instruction 6 and 

instruction 7 only can be placed in sequence as figure. The result is not different between 

Ins.6 | Ins.7 or Ins.7 | Ins.6. In the example, the single-handed instruction is always placed in 

the left side. However, no matter the instructions are single-handed or not, 3 buffer slots is 

enough to store them without 2 times memory access. 

As we mentioned before, the dispatch stage writes new valid bits and index bits into 

registers, and the value is referenced by next step. We renew the registers in two steps. 

Table 4.1 shows the valid bits changing rule. For example, if the current instruction is 

single-handed (p-bit = 0) and the valid bit (from PF-latch) is 3’b100 the new valid bits will 

be 3’b011. Because we know we would load instructions into 2 buffers in the previous step 

and we will take one instruction from buffer. However, v2v1v0 will not be 3’b111 due to 

the dispatch will consume one instruction at least. By the way, to reference index bits here 

is unnecessary. Table 4.2 shows the index bits changing rule. Index = (index + 1 + p)%3. 

However, when tag = 3’b000 it will be reset to 2’b00. The purpose of reset is to maintain 

the same rule especially the branch happened, we let the mechanism starts from buf0 when 

the slot are all empty. Furthermore, L-bits is modified by exe1 stage. 
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Table 4.1 : Valid bits changing rule 

p-bit 

v2v1v0 

1 0 

000 000 010 

001 100 110 

010 001 101 

011 000 010 

100 010 011 

101 000 001 

110 000 100 

111 111 111 

 

Table 4.2 : Index bits changing rule 

       P 

index 

1 0 

0 2 1 

1 0 2 

2 1 0 

 

4.2.5 Instruction Rules 

In fact, we have the instruction rules to decide the function unit in compile time. Not 

all the instructions can be executed in each function unit but almost. We can see the op code 

in table 4.3, the memory related instructions can only be executed in MEM function unit. 

Since if these instructions can be parallelly executed, the memory read/write port will 

increase and we need to handle the extra dependency problem. This rule makes the circuit 

much simple. 

When the instruction is single-handed, we only compare the first bit and second bit so 

that we can select the entry of function units. When the bits = 2’b11, the instruction will be 

put in the right side for MEM function unit. The others are put in the left side for MAC 

function unit even it also can be executed in the right side. Besides, there is another benefit. 

For the single-handed instructions, they can be executed in each MAC or MEM function 
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unit. Most of them run fast in the MAC function unit by the lower gate delay of data path. 

Furthermore we show the possible instruction input types in table 4.4.  

 

Table 4.3 : The op code of 2-way VLIW asynchronous processor 

   29-27 

31-30 
000 001 010 011 100 101 110 111 

00 NOP R type ADDI ADDIU SUBI XORI WAIT INTERRUPT 

01 J SLTI RETURN CALL BEQ BNEQ  REPB 

10 ANDI ORI ACCLDH ACCLDL     

11 LW LH LL LDW SW SH SL SDW 

 

Table 4.4 : Possible instruction inputs combination 

Input from buffers Dispatch output (MAC/MEM) 

Fn1 Fn1 | NOP 

Fn1 | Fn1’ Fn1 | Fn1’ 

Fn1’ | Fn1 Fn1’ | Fn1 

Fn1 | Fn2 Fn1 | Fn2 

Fn2 NOP | Fn2 

In table 4.4, fn1 means the instruction can be executed in function unit 1 or both two 

function units. Fn2 means it only can be executed in function unit 2. To simply circuits, we 

fix Fn1 | Fn1’ in Fn1 | Fn1’. There is no reason to be Fn1’ | Fn1 though it also works. In the 

other words, we do not have FN (function unit) bit on instruction format to indicate function 

units. 

 

4.3 Advanced Branch Handling 

 The general control hazard handling grouped into two types, software solution and 

hardware solution. The software solution is simple way that inserts enough NOP 

instructions after branch instruction in compile time. Stalling pipeline is the hardware 
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solution. As we mentioned before, Muller pipeline is 50% utilization. However, we need to 

pass one instruction in our processor architecture. To insert NOP or stall pipeline will take 2 

steps to pass a useless instruction. We design an efficient method that takes characteristic of 

50% utilization.  

 

4.3.1 Flush and Stall Methods 

In figure 4.9, we assumed that instruction sequence is BEQ, ADDI, SUB……. In flush 

method, the ADDI instruction will be flushed as NOP instruction. It takes 2 steps (NOP + 

bubble) to flush it. The improved method changed the original ADDI instruction into bubble, 

thus finished the action of return to zero. Since we do not have another instruction between 

BEQ and SUB, there is no more bubble. We save the original bubble, so we make it 

efficiently. 

 

Figure 4.9：Branch handling methods 
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value represents the current program counter. We need to calculate the corresponding 

address therefore and pass to the next stage. To avoid potential problem, we do not process 

the branch instruction in decode stage but in the next stage, exe1. If we process branch 

instruction in decode stage, the core may process another instruction in prefetch stage. That 

means we read/write pc register in the same time. It violated the principle that we said 

before. Another problem is that the dispatch stage is definitely bubble token when the 

decode stage is valid token. So we can only flush instruction in prefetch stage. It makes the 

branch handling much harder. 

 

Figure 4.10：PC selection architecture 
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from dispatch stage. 

 

4.3.2 Special Case 

 For example, our BEQ instruction format is BEQ, rd1, rd2, address, L-bit, P-bit. P-bit 

is always 0 for branch relative instructions. If rd1 = rd2 then change pc into pc + address. 

Since 2-way VLIW architecture, each pc address points to 2 instructions. L-bit (1-bit) is 

used to indicate position. The normal case is L-bit = 1. When L-bit = 0, we select second 

instruction of target instruction packet, and we should abandon first one. So we actually 

write the valid bits into 3’b000 (the target instruction is single-handed in this case, so the 

buffer will all be empty). When L-bit is 0, the compiler should avoid the situation that the 

target instruction can be parallelly executed. If not, then it needs 2 times of memory access 

to load these instructions. Therefore, it loses the benefits of parallel executing. In our 

approach, we assumed that compiler will not let L-bit = 0 and P-bit = 1 in the same time. 

There are two solutions for compiler. We can force the P-bit of target instruction be 0. Or 

we can insert NOP to the original target address. However, the problem results from VLIW 

architecture. The special case needs 2 times memory access basically. So it is unnecessary 

to handle it by hardware if the compiler can solve the problem. 

 

4.3.3 Different Timing Cases 

 No matter the branch handling method is, there is a critical issue must be guaranteed, 

the timing issue. Because of the branch handling is certain to communicate between 

different stages in pipeline architecture. For our branch handling method, the possible 

combination of valid token and empty token are shown as figure 4.11. We send branch 

address and stall control signal in exe1 stage so the exe1 is valid token.There are 3 possible 

conditions. 
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Figure 4.11：Three possible valid token conditions 

 

Case (a) is an ideal condition and we explained it already. (b) is the case that the 
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4.4 Interrupt Handling 

 As we referred before, this processor will be one core of future multiprocessor. To 

communicate with another core (or peripherals), we need interrupt handling at least. It is 

also shown in figure 4.10. Interrupt table is made by registers. It saves the corresponding 

memory address of interrupt number. When it receives interrupt number from outside 

pc_mux2 will select the address from interrupt table. After pc changes into interrupt service 

routine, the routine will save pc and another registers first by push them into memory. After 

finishing routine, pop them from memory and write back pc. 

 

4.5 Data Flow Chart 

 

Figure 4.12：PC selection flow chart 
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these flow charts, we also mark PF and DP stage and it is helpful to reference figure 4.10. 

However, the branch target address is from exe1 stage. It is much clearer that we read/write 

registers in adjacent stages so that there is no register consistent problem. In other words, 

the stages have one valid token at most in the same time. The empty token let the stage do 

nothing actually. 

 

Figure 4.13：Instruction selection flow chart 
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Sometimes, the source of PC may come from branch or interrupt. We can notice that 

the interrupt request has higher priority than the others in figure 4.12. Although we use 

same name like L bit in two stages, but they are actually different. The value comes from 

register or latch. 

 

4.6 Timing Constraints 

 Although our design principle is to separate read/write registers into adjacent register. 

The branch handling is across two or more stages. The L bit is read by Prefetch stage and 

written by exe1 stage. In the timing model of figure 4.11(b), we do the read/write actions at 

the same time. But we can change the read/write stage into dispatch/ID stages to solve the 

problem. There is another essential problem about branch instructions. The value of PC 

register has two sources from different stages. It may not work correctly. 

We assume the time stamp of the instruction which is after branch instruction sending 

new pc address from dispatch stage is Td. The time stamp of branch instruction sending new 

target address from exe1 stage is Tb. It must be guaranteed that Tb > Td in the normal case of 

figure 4.11(a). The case (b) and case (c) will not be troubled. One of the possible solution is 

to handle the branch instruction form exe1 stage to dispatch stage. And use merge to select 

pc source from adjacent stage due to there is one valid token at most. However, it will make 

read/write pc register in the same time and cause another timing problem. 

 Anyway we still can solve the problem by extra circuit. We regard it as future work 

and we have some discussion in the last chapter.  
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Chapter 5 Simulation Result 

5.1 Simulation Environment 

 In this chapter, we show the working situation by waveform first. Than we give some 

data analysis about compression ratio and area cost. We use ModelSim to generate 

waveform and use design compiler to synthesize circuits. 

To the waveform, we set each stage has similar delay time to observe stage translation. 

In general, every signal has interlaced empty token and present data in double line. 

However the relative signals of synchronous memory have no empty token as shown in 

figure 5.1. In this figure below, we circled the BEQ instructions with its “long” empty token 

compared with others.  

 

Figure 5.1：Processor simulation 

  



 36 
 

5.2 Compression Ratio Analysis 

In table 5.1, we show the compression ratio (compressed code size / original code size) 

with different program. We write some assembly code with compressed/uncompressed 

version for our processor as benchmark. We translate two programs to test. FFT is one of 

general testing program since it is widely used for DSP. The other one is bubble sort which 

instructions are almost serial executed. Thus it is better case for this compression way.  

Besides, our processor needs to insert a NOP when data dependency happened. The 

compression way will cut half length of NOP instruction from 64bits to 32bits. So the data 

dependency will be a major effect about compression ratio. To show the impact, we also 

calculate code size without NOP instructions to observe. 

We can see the code size of original assembly code and compressed one in table 5.1. 

Theoretically, the best compression ratio is decided by the count of VLIW fields. N-way 

VLIW architecture has 
N

1
 compression ratio when all instructions can not be parallelly 

executed. To our test, the FFT is 1032bytes versus 632bytes and the bubble sort is 200bytes 

versus 112bytes. Since the bubble sort has lower program parallelism, it compressed more 

than the other one. In this program, we just count main loops without initial part. 

However, we did not use loop unrolling or another special compiler technique to both 

versions. These techniques will raise executed parallelism but also lower compression ratio. 

Obviously, programs with NOP have better compression ratio as a result of worse ILP 

(Instruction Level Parallelism). 

 

Table 5.2 : Compression ratio comparison  

 

 

2-point FFT 

 

2-point FFT 

(without NOP) 

Bubble sort Bubble sort 

(without NOP) 

Original 1032 680 200 128 

Compressed 632 448 112 80 

Compression ratio 61.2% 65.8% 56% 62.5% 
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Figure 5.2：Compression ratio diagram 

 

5.3 Area Report 

We use Design Compiler to synthesis circuits under 0.13μm process. The total area 

consists of cell area and net area. The cell area of decompression portion is only 2.8% of 

entire processor as shown in table 5.2. The decompression overhead is as small as we 

expected. We have approximately 200 bits to store data for decompression part. The size of 

register bank is 32×32×2 bits on the processor. The store unit has 9.8% area ratio. On the 

other hand, function block size is the great impact on area ratio for our processor. 

 

Table 5.2 : The overhead of decompression area 

 cell area Total area(μm
2
) 

Decompression 26012 (2.8%) 693536 (3.6%) 

Processor  

(with decompression) 

898090(100%) 18025786(100%) 
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Chapter 6 Conclusion and Future Work 

In this thesis, we proposed a novel implementation method about VLIW compression 

for asynchronous processor. The basic concept is to separate data read/write into adjacent 

stages that can avoid conflict problem. Furthermore, the idea of index buffer can reduce 

area overhead. We also improved control hazard by hiding branch penalty under Muller 

pipeline characteristic. 

The general VLIW architecture takes logN bits on instruction format to indicate N-way 

function units. In chapter 4.2.5, we explained how we save function unit bit. In other words, 

we do not loss one bit (P-bit) for instruction compression. The overhead about instruction 

compression is only area cost. As simulation result appears, the overhead of cell area is 

2.8% of entire processor. The simple way also has satisfied compression ratio about 60%. 

However we can further improve this compression mechanism. We notice that we 

cannot eliminate all NOP instructions since these instructions must exist as a result of data 

dependency. But these NOP instructions appear in a program very often. We use 32bits 

NOP to deal with data dependency by original compression method. Thus NOP instruction 

has 50% compression ratio in this situation. We can further improve it if we change 

instruction packet from fixed length into variable length. The idea is to use op-code (5bits) 

instead of full NOP instruction. We fix it into full instruction by hardware. The circuits in 

the front to detect/fix NOP instructions will not be complex. It just reconstruct instructions 

after instruction fetch. Thus it has 
64

5
 compression ratio about NOP instruction for data 

dependency. The entire improvement is decided by the frequency of data dependency. In 

this way, the NOP has no end-bit since it must be a complete instruction packet so we can 

fix it. It is also implicit another compressed chance. Some instruction cannot be parallelly 

executed with another instruction like BEQ, BNEQ, LW/SW ……etc. However we can also 

mix both 16-bit and 32-bit instructions into our instruction set. 
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In the previous section, we discussed the timing constraints for the reason of different 

pc sources. Thus the key to solve the problem is to let pc sources from same stage. The 

suitable stage is Dispatch in our processor. If we handle branch in Dispatch stage the timing 

problem will be solved. Of course, Dispatch is the previous stage of Decode. The practice 

way is to pre-decode branch in particular. It needs to store branch target address in Dispatch 

stage and determine to branch or not in next stage (Decode stage). Thus it will finish branch 

instructions in adjacent stages. This way will solve the problem effective even this solution 

will cause extra overhead. However, control hazard still can be solved by compiler with 

penalty. Compiler could insert NOP after branch instruction. 
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