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摘要 
     本論文提出了以軟體控制之鎖相迴路平台。此平台透過 Advanced Microcontroller 

Bus Architecture (AMBA) 整合 AndesCore CPU 及誤差偵測器 (Error Detector)、數位控

制振盪器 (Digital Controlled Oscillator, DCO)等矽智產 (IP)。使用 C/C++等高階語言實

作「鎖相迴路演算法」，利用 CPU 的運算能力執行此演算法控制其他 IP。所有的 IP 皆

以標準元件數位電路方式實作，並透過修改演算法之方式來更動平台之規格，以降低

設計成本。 
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Abstract 

This thesis is proposed to the ARM-based platform of software-defined phase-locked 

loop. This platform is combined of AndesCore CPU and silicon intellectual property (IP) such 

as Error Detector and Digital Controlled Oscillator (DCO), all IPs and CPU are integrated 

with Advanced Microcontroller Bus Architecture (AMBA). The proposed「phase-locked loop 

algorithm」is implemented by high level language such as C/C++ and executed by CPU to 

control the IPs, all IPs are implemented by standard-cell-based design. The specification of 

the platform can be changed by modifying the algorithm to reduce design cost. 
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Chapter 1  

Introduction 
 

 

1.1. Thesis Motivation 

In modern communication systems, the phase-locked loop (PLL) is widely used in 

synchronization applications, such as clock generator, frequency synthesizer, and clock 

recovery circuit. There are several categories of PLLs such as analog PLL (APLL), digital 

PLL (DPLL), All-digital PLL (ADPLL) [1]. Because of the process migration, portability, and 

design cycle issues, ADPLL is suitable for SoC implementation. However, it still spends 

much time to redesign a circuit with standard-cell-based IC design flow when the ADPLL 

control strategy is changed. Therefore, a novel type of ADPLL with silicon IPs which is 

flexible and reusable called software-defined phase-locked loop (SDPLL) platform is 

proposed. [2][3]  

The SDPLL platform in [2][3] is composed of OpenRISC CPU and ADPLL related IPs, 

all of these components are integrated by WISHBONE bus. Since the CPU has powerful 

computing capability, the control strategy of ADPLL which called SDPLL algorithm that can 

be implemented with high level language such as C and C++. It is easier and faster than 

modify hardware circuit. The SDPLL algorithm defines the phase tracking and frequency 

search mechanism which are performed by CPU, the lock time of SDPLL is depends on the 

computing power of CPU. In OpenRISC-based SDPLL platform, it spends a long time to 

reach frequency maintain stage. It is not efficiency for stable clock generation. Thus, a more 

powerful architecture based on AndesCore CPU and AMBA bus system called ARM-based 

SDPLL platform is proposed in this thesis. 
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1.2. Thesis Contribution 

     The proposed ARM-based SDPLL platform can provide wide bandwidth and high 

resolution clock frequency. When the specification of system is changed, the designer can just 

modifies the software rather than redesign hardware to meet system specification. It can 

reduce design costs. 

 

 

1.3. Thesis Organization 

    The organization of this thesis is as following. Chapter 1 introduces the phase-locked 

loop and the idea of flexibility of a system. Chapter 2 illustrates the basic concept of SDPLL. 

Chapter 3 shows the detail of the proposed SDPLL platform. Chapter 4 presents the 

implementation and simulation result. Chapter 5 is conclusion and future work. 
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Chapter 2  

Overview of SDPLL 

 

 

2.1.  Introduction to ADPLL 

There are three type of PLL. For hardware implement issue, all-digital approach is 

suitable and easier in this work. So ADPLL is chosen as basic PLL IPs. The function of the 

ADPLL is to generate frequency-locked and phase-locked clock. In order to reach the 

objective, there are several component included in the conventional ADPLL, such as phase 

frequency detector (PFD), time-to-digital converter (TDC), frequency divider, and digital 

controlled oscillator (DCO). PFD detects frequency or phase error between reference clock 

and divided-by-N clock. TDC converter error pulse received from PFD into digital data. If 

TDC output and DCO control tuning word is equal then digital date sends to DCO directly. 

But in practical, digital data output from TDC often need digital processing to calculate CTW. 

DCO generates clock signal depends on received CTW. Frequency divider divides the clock 

signal by user-defined number.  

The basic ADPLL block diagram is shown in Fig. 2.1. The ADPLL working flow is as 

the following. First, PFD compares the incoming reference clock and feedback clock, and 

generates error pulse when frequency or phase error detected. Second, TDC receives the error 

pulse from PFD and converts it to digital values and output the values to the digital processing 

controller. Third, digital processing controller transforms the error value to DCO CTW and 

output the CTW to DCO. Fourth, DCO generates proper clock frequency with CTW. Fifth, 

Frequency divider divides the DCO output clock and feedbacks the divided clock to PFD. 

Repeat 1~5 until the reference and feedback clock are phase and frequency matched and DCO 

can output frequency-locked and phase-locked clock. 
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Fig. 2.1 Basic block diagram of ADPLL 

 

However, it is not flexible for change transformation of CTW, tracking algorithm or 

control strategy in this conventional ADPLL architecture. For example, if the specification of 

the communication system is changed, the ADPLL control strategy must be modify for 

different application. Because of the hardware implementation issues, it means the designer 

must spend time to do RTL-simulation, logic synthesis, gate-level simulation, layout and 

verification to redesign circuit. It is time-consuming and hard work. Therefore, a SoC 

platform with software-controlled feature called SDPLL platform is proposed in this thesis.  

 

 

2.2. Basic concept of SDPLL 

The proposed SDPLL architecture has feature of software controllability and 

programmability by integrating CPU and ADPLL related IPs, it is flexible to the hardware 

architecture and the software operation. The basic SDPLL block diagram is shown in Fig. 2.2. 

The digital processing and controller part in Fig. 2.1 are replaced by CPU. It is more flexible 

and powerful than original processing. At the hardware level, SDPLL integrates the 
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ALL-Digital Phase-locked Loop with CPU. Therefore, the core of SDPLL is CPU. The core 

of proposed SDPLL is AndesCore which will be described in section 2.2.1. At the software 

level, SDPLL only needs to modify the instructions which will be described in section 2.2.2, 

so as to supply different functions.  

 

 

 

Fig. 2.2 SDPLL architecture 

 

 

2.2.1. CPU 

The selection of CPU is AndesCore N903-S provided by Andes Technology Corporation. 

The N903-S is a high performance, general purpose 32-bit RISC embedded processor 

designed for SoC applications. It is suitable for cost and power sensitive application which 

requires small footprint and manageable power consumption. The core is designed to allow 

customers to rapidly integrate their own IPs with a high performance RISC processor. 
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2.2.2. Software 

The proposed SDPLL controls IP cores with software. In common, software can be 

developed with almost high level languages if there are corresponding compilers. In this work 

choose C/C++ as development language because C/C++ is one of the most popular 

programming languages. It is widely used on many different software platforms include 

AndesCore N-series CPU. Toolchain is part of AndeSight™, which is an integrated 

development environment for software development. Toolchain is mainly for compiling, 

assembling, and linking users’ C/C++ and assembly programs and generating executable 

image. In Fig. 2.3 exhibit software flow of MIMO-SDPLL, it is common and used for a long 

while.  

 

 

Fig. 2.3 Software flow of SDPLL 
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Chapter 3  

ARM- based SDPLL Platform 

 

 

3.1. System Overview 

The proposed SDPLL architecture is shown in Fig. 3.1. CPU, PFD, TDC, frequency 

divider, DCO and other IP cores are connected by system bus. The memory stores the 

program of tracking algorithm and controlling strategy. Since the frequency of reference clock 

is too slow to be system clock, the semi-asynchronous clock generator (SACA) can provide 

faster system clock of SDPLL. The SACA output clock synchronous to the rising edge of 

reference clock and maintains low after the output clock count reaches the user-defined 

number. This can provide fast enough clock cycle for CPU computing. In Fig. 3.1, PFD, TDC 

and frequency divider generate digital data to digital processing. These three components are 

combined as error detector IP core. Note that these new IP cores need bus interface in order to 

connect to system bus. Since AMBA is selected as system bus architecture in this work, this 

SoC platform is called ARM-based SDPLL platform. The ARM-based SDPLL platform 

working flow is as the following. First, after system reset, CPU executes instructions from 

memory and initials all IP cores. Second, CPU start polling error detector until error detector 

detects error. Third, if the error detector detects error, it will convert the error pulse between 

reference clock and divided clock to error value and send the value to CPU. Fourth, When 

CPU receives the error value, it will calculate corresponding CTW and sends it to DCO. Fifth, 

DCO generates proper clock signal depends on received CTW and sends the clock signal to 

frequency divider. Sixth, Frequency divider divides the clock signal by user-defined number 

and feedbacks the divided clock to error detector. Repeat step 2~6 until reference and 

feedback clock are phase and frequency matched. The details of these IP cores will be 
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illustrated in next section. 

  

 

Fig. 3.1 ARM-based SDPLL platform architecture 

 

 

3.2. System IP Core 

3.2.1 N903-S 

    The selection of CPU in this work is AndesCore N903-S provided by Andes 

Technology Corporation [4] [5] [6]. N903-S which is a 32-bit RISC-based CPU with 

5-stage pipeline provides AMBA AHB, AHB-Lite and APB interface for system bus. 

The N903-S block diagram is shown in Fig. 3.2. External Bus Interface is responsible for 

off-CPU memory access which includes system memory access and memory-mapped 

register access in devices. The N903-S supports AHB, AHB-lite, APB and AMI bus 
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protocols. There is no constraint on the bus clock ratio between CPU core and AMBA 

bus clock. The local memory is to store those data and instructions that might be 

accessed frequently in a system such as service routine, system call, application data, etc. 

N903-S’s local memory only can be configured as external since it target on a cost 

sensitive system. It provides external local memory interface to allow N903-S 

communicate with external memory. N903-S supports both instruction local memory and 

data local memory. The embedded debug module allows programmers perform 

debugging activities through a standard JTAG interface. It provides hardware breakpoint 

functionality, a dedicated interface to the target system bus, and the Debug Instruction 

Memory (DIM) to help the user debug the target software on the target hardware system.  

 

 

Fig. 3.2 Block diagram of N903-S 
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3.2.2 AMBA Bus 

    The AMBA specification defines an on-chip communications standard for the 

infrastructure of high-performance embedded systems [7]. There are three buses defined 

within the AMBA specification, one is the advanced high performance bus (AHB), another is 

the advanced system bus (ASB), and the other is the advanced peripheral bus (APB). Since 

the AHB provides a higher performance and is popular bus architecture for SoC design, it is 

used in this work. The typical AMBA AHB-based system is shown in Fig. 3.3. AHB supports 

the efficient connection of processor, on-chip memory and other IPs which has the 

requirement of high bandwidth transfer. 

 

 

Fig. 3.3 AHB-based system 

 

 

3.2.3 Error Detector  

    The error detector consists of three parts, the first part is PFD, the second par is TDC, 

and the third part is frequency divider. Fig. 3.4 shows the block diagram of error detector. 

TDC can not only measure the clock period of reference clock but also the phase error 

between reference clock and divided clock depending on detect mode. The basic concept of 

TDC is counting the pulse which is generated by the internal delay chain. Frequency divider 

divides the frequency of DCO clock. When the rising edge of DCO clock comes, the internal 

counter in frequency divider will increase one until the counter value equals the user-defined 
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divided value. The phase frequency detector converts the timing difference between the rising 

edge of reference clock and divided clock to the pulse and to determine which clock signal is 

lead to another. 

 

 

Fig. 3.4 Error detector block diagram 

 

 

3.2.4 DCO 

    The DCO is high-resolution and wide frequency range is proposed at [8]. It can generate 

clock frequency by the control of digital signal. The range of frequency is from 0.66MHz to 

460MHz. 

 

 

3.2.5 SACA 

    Since there are several IPs driven by system clock and the reference clock is too slow in 

this work, the SACA clock generator module is proposed. SACA is a clock generator which 

synchronous to the rising edge of reference clock. And start trigger fixed number of cycles 

with specific period asynchronous to reference clock. The fixed number of cycles and clock 

period are defined by user. Fig. 3.5 shows the example of SACA with eight cycle count. The 

output frequency range of SACA is from 103MHz to 1231MHz. 
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Fig. 3.5 The example of SACA 

 

3.3. Tracking Algorithm 

The SDPLL tracking algorithm is composed of three parts: frequency search, coarse 

tracking and fine tracking. In frequency search stage, the period of reference clock will be 

estimated by TDC and transfer into CTW to set DCO output clock frequency. After frequency 

search, the tracking algorithm does coarse tracking to fixing frequency and phase error until 

the phase error between reference clock and divided clock is small than TDC’s minimum 

detectable range, and the track algorithm enter the fine tracking stage. Since DCO has high 

resolution feature, more accurate tracking can do by DCO and PFD in fine tracking stage. 
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Chapter 4   

Implementation and Simulation Result  

 

 

In this section, the implementation of ARM-based SDPLL platform will be discussed in 

two parts, system integration and software programming. In system integration section, the 

implementation details of ARM-based SDPLL architecture are presented. In software 

programming section, the method of hardware control via software and software 

programming are presented. The hardware and software co-simulation result is showed at the 

end of this section. 

 

 

4.1. System Integration 

The system architecture of ARM-based SDPLL platform is shown in Fig. 4.1. All system 

IP cores such as CPU, SACA, memory, error detector, DCO are connected by AMBA AHB 

bus. The AHB interface is used for transformation of the signals between AHB bus and these 

IP cores. CPU executes instructions in memory which are compiled from C source code to 

controls other IP cores such as error detector and DCO. The SDPLL tracking algorithm is 

implemented by C source code and loaded to memory before system reset signal asserted. 

After system reset, CPU starts polling error detectors alternative. When reference clock and 

divided clock have phase error, the error detector will raise error flag signal. CPU then does 

tracking algorithm for the correspond device. 
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         Fig. 4.1 ARM-based SDPLL architecture 

 

 

4.1.1. Memory Mapping 

In ARM-based SDPLL platform, the CPU needs to communicate with other IP cores. 

The popular way to do this job is memory-mapped I/O. With this method, each IP core is 

considered as an I/O peripheral and occupies specific address in the existing address space. 

CPU can access these IP cores by sending the specific address to memory location or registers 

in these IP cores. Since the software programmer can use pointer and data structure to 

communicate with hardware and reduce the complexity of hardware implementation, this 

method is helpful for hardware and software co-design. 
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4.1.2. N903-S Model 

The selection of CPU is AndesCore N903-S. For HDL IP protection issue, it uses a 

behavior model for RTL simulation called AMP model. The N903-S AMP model is a binary 

model of released firmcore produced by Cadence IP Model Packager. AMP model 

communicates with simulators through the IEEE Std 1499 Open Model Interface (OMI) 

protocol or PLI through the OMI Adaptor. In this work we use OMI protocol for CPU model. 

 

 

4.1.3. AHB Bus Protocol 

For CPU compatibility and IP cores connection, the AMBA AHB bus is chosen for 

system bus. A typical AMBA AHB system design contains the following components, AHB 

master, AHB slave, AHB arbiter, and AHB decoder, these components are connected by a 

central multiplexer. 

The AHB master sends address and control signals to slave to perform read and write 

operations. Only one master is allowed to use the bus at any one time. The maximum number 

of master in AHB bus is 16. The AHB slave receives address and control signals from AHB 

master and responds to a read or write operation. The AHB arbiter judges which master can 

use the bus and ensures that only one bus master at a time is allowed to initiate data transfers. 

The AHB decoder is used to decode the address of each transfer and provide a select signal 

for the slave that is involved in the transfer.  

ALL bus masters send the address and control signals to indicate the transfer they wish 

to perform and the arbiter determines which master has its address and control signals routed 

to all of the slaves. After slave receives the address and control signals sent from master, the 

decoder is also required to control the read data and response signal multiplexor to select the 
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appropriate signals from the slave. The central multiplexor interconnection scheme is shown 

in Fig. 4.2. 

 
 

Fig. 4.2 AMBA central multiplexor interconnection 

 

 

The AHB master must send HBUSREQ signal to AHB arbiter to grant the bus before 

performing a bus transfer. Then the arbiter will judge that which AHB master has higher 

priority to access the bus. Then the granted master sends the address and control signals to 

access the slaves. Each slave on the bus will receive the address signal and control signals but 

only the specific slave can be access and response to the master. The AHB simple transfer is 

shown in Fig 4.3. The AHB transfer consists of two parts, one is the address phase and the 

other is the data phase. The master send address and control signals to slave in address phase, 

and the slave response to master in data phase. Note that the data phase may be extended 

since the slave is not ready. The data phase can be extended by sending HREADY signal from 

slave. 
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Fig. 4.3 AHB simple transfer 

 

 

4.1.4. AHB Interface 

To integrate DCO and error detector into the AMBA-based system, we need a bus 

interface to deal with the signal transformation between DCO/error detector and AHB bus. 

Fig. 4.4 shows the block diagram of bus interface. Depend on the proposed SDPLL algorithm, 

CPU sets the control signal to DCO and receives the error value from. The DCO write control 

part passes the DCO_CTW signal to DCO to generate proper frequency and determines the 

mode of DCO (frequency search stage / phase tracking stage). The error detector read control 

part passes the divide value to the frequency divider of error detector and the mode of error 

detector (frequency search stage / phase tracking stage). The error value which estimated by 

TDC and phase lead / lag signal also passed to bus through error detector read control. All of 

these read and write operations can be done in one cycle. Table 1 is the comparison of this 

work and OpenRISC-based bus interface. The increase of area is 13% since the complexity of 

AMBA protocol and the cycle of operation is equal to OpenRISC-based bus interface. By 
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implementation of AHB interface, the DCO and error detector can be integrated into 

AMBA-based system easily. 
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Fig. 4.4 Block diagram of AHB interface 

 

 

 Set control word 

to DCO 

Read from 

error detector 

Bus protocol Area* Process 

This work 1 cycle 1 cycle AMBA2.0 2194um^2 90nm CMOS 

OpenRISC-based 1 cycle 1 cycle WISHBONE 1935um^2 90nm CMOS 

 

Table 1 Comparison of the bus interface 
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4.1.5. AHB Interconnection 

In this work, the bus interconnection is based on Example AMBA System (EASY) 

architecture. The EASY architecture provides a typical AMBA platform for SoC design. 

Since the EASY platform is integrated with ARM7 and ARM9 series CPU and several default 

IPs, it must be modified to meet the system requirement of SDPLL platform. Fig. 4.5 shows 

the bus interconnection of ARM-based SDPLL platform. 

 

Slave select

AndesCore CPU

Arbiter

MUXM2S Decoder

DCO
Error 

Detector
Memory 
model

MUXS2M
Slave response

Bus request

Bus grant

Slave address

Slave control

Slave control

Slave response

 

Fig. 4.5 Bus interconnection of ARM-based SDPLL platform 
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4.2. Software Programming 

4.2.1. Software development flow and hardware simulation environment 

For software development, software programmer needs toolchain to transform the source 

code into an executable program. Andes toolchain is built from GNU, thus the options of gcc, 

as, and ld are inherited [9] [10]. The cross-compiler compiles the C program, and the 

assembler and linker converts the assembly programs to a.out file. By default, N903-S starts 

fetching instructions from memory address 0x0, therefore the –Ttext=0 linker switch asks the 

linker to arrange the starting address of the final executable image to be at pc=0x0. For 

hardware / software co-simulation, it is necessary to build a development flow. The C 

program can be compiled to assembly program by nds32le-elf-gcc cross compiler. However, 

for hardware simulation the assembly program needs to be converted to a binary code which 

can be loaded into memory model. This conversion is performed through 

nds32-elf-aout2mem. Fig. 4.6 shows the conversion flow.  

    @000006ec 0dee7fff 51fe0000 05ce0002 51ff801c

 @000006f0 4a007820 51fffe2c 3bfffead 51ffffec

        @000006f4 51cf8018 46095000 140e0002 46095000

         @000006f8 58000014 140e0004 46095000 58000024

        @000006fc 140e0003 46095000 58000b84 140e0006

1bc4:     51 ff fe 2c addi $sp,$sp,#-468

...
1bd0:     51 cf 80 18 addi $fp,$sp,#24

1bcc:     51 ff ff ec addi $sp,$sp,#-20

1bc8:     3b ff fe ad smwa.bdm $sp,[$sp],$sp,#0xa

00001bc4 <main>:

...

binary code
assembly program

C program

PREFIX=../..
CROSS=nds32le-elf-
CC = $(PREFIX)/bin/$(CROSS)gcc
AS = $(PREFIX)/bin/$(CROSS)as

…
rom_c:
@rm -f NDSROM.dat NDSROM.list
$(CC) $(CFLAGS) $(LDFLAGS) $(FILES) -o rom_c.exe
[ -f rom_c.exe ] && nds32-elf-aout2mem rom_c.exe 
NDSROM.dat
cp -f NDSROM.dat

makefile

NDSROM.dat

       

Fig. 4.6 C to binary code flow 
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The binary called NDSROM.dat can be loaded to memory model by Verilog 

$readmemh() system task. CPU fetches instruction from memory address 0x0 and jump to 

<c_star> routine and do SDPLL algorithm when simulation start. Fig. 4.7 shows the hardware 

simulation flow. 

 

Script for amp model simulation

NDSROM.dat

BUS

Memory model CPU

amp:
@rm -f flist
sed -e "s,\$$NDS_HOME,$$NDS_HOME," < ../flist.amp | grep -v "#" > flist
@[ -f NDSROM.dat ] || (echo ERROR: NDSROM.dat does not exist; exit 1)
LD_LIBRARY_PATH=$(AMP_LIB_PATH):$(LD_LIBRARY_PATH) 
$(VERILOG)
...

$readmemh()
Simulation start

other hardware modules

 

Fig. 4.7 Hardware simulation flow 

 

4.2.2. Hardware Access 

Since SDPLL tracking algorithm need access error detector and DCO by setting value to 

control registers, the memory-mapped I/O mechanism is used in this work. The 

memory-mapped I/O control is as the following. First, define the device base address. Second, 

declare a pointer variable with the volatile keyword and assign base address value to the 

variable. Note that volatile qualifier must be used when reading the contents of a memory 

location whose value can change unknown to the current program. Third, this pointer can read 

or write IP cores register by software. 
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4.3. Simulation Result 

    In this section, the simulation result of SACA, error detector, DCO is presented as 

following. These IP are implemented with UMC 90nm standard cell library. Fig. 4.x is 

simulation waveform of SACA module. The user-defined divided value is 8. That means there 

are eight clock cycles which synchronous to the rising edge of reference clock will be 

generated in one reference clock period. The SACA can generate clock frequency with 

unbalanced duty cycle of the reference clock. Fig. 4.8 shows the SACA module works with 

40% / 60% duty cycle of reference clock. 

 

 

Fig. 4.8 Simulation of SACA with 10MHz reference clock and 83.87MHz output clock 

 

    The simulation result of error detector is shown in Fig. 4.9. After divided clock 

feedbacks to the error detector, the error detector generates a digital value for CTW mapping, 

and judges if the divided clock leads the reference clock. Part (a) of Fig. 4.9 shows that the 

TDC receives the phase error between reference clock and divided clock and outputs error 

value. 

 

 

 

 

 

Fig. 4.9 Error detector simulation result 

(a) 
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Fig. 4.10 shows the simulation result of DCO control. The DCO output clock period is 

changed by CTW which is sent from CPU. In part (b) of Fig. 4.10, HCLK, HADDR, 

HWDATA and HWRITE are come from AMBA AHB bus. The CPU sends CTW 0x8ff80000 

to address 0x95000014, which means set CTW to DCO control register. Note that the address 

is point to DCO control register. After CPU send these control signals, the DCO control bit 

C1 will be set to 0x000001ff and the DCO output clock period will be changed. 

 

 

 

 

Fig. 4.10 DCO control simulation result 

 

 

 

 

 

 

 

 

 

 

 

(b) 
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Chapter 5  

Conclusion and Future Work 
 

 

We have introduced basic SDPLL concept and the proposed ARM-based SDPLL 

platform in this thesis. The proposed SDPLL architecture has feature of software 

controllability and programmability by integrating CPU and silicon IPs. It is flexible for the 

hardware architecture and the software operation. 

The following topics to extend the work can be proposed. The CPU and memory is 

behavior model. It must be implemented with gate-level logic to do system verification with 

precise timing information. And then we can do silicon implementation to verify this SoC 

system with real chip design. 
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