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Abstract

This thesis is proposed to the ARM-based platform of software-defined phase-locked
loop. This platform is combined of AndesCore CPU and silicon intellectual property (IP) such
as Error Detector and Digital Controlled Oscillator (DCO), all IPs and CPU are integrated
with Advanced Microcontroller Bus Architecture (AMBA). The proposed " phase-locked loop
algorithm ; is implemented by high level language such as C/C++ and executed by CPU to
control the IPs, all IPs are implemented by standard-cell-based design. The specification of

the platform can be changed by modifying the algorithm to reduce design cost.
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Chapter 1
Introduction

1.1. Thesis Motivation

In modern communication systems, the phase-locked loop (PLL) is widely used in
synchronization applications, such as clock generator, frequency synthesizer, and clock
recovery circuit. There are several categories of PLLs such as analog PLL (APLL), digital
PLL (DPLL), All-digital PLL (ADPLL) [1]. Because of the process migration, portability, and
design cycle issues, ADPLL is suitable for SoC implementation. However, it still spends
much time to redesign a circuit with standard-cell-based IC design flow when the ADPLL
control strategy is changed. Therefore, a novel type of ADPLL with silicon IPs which is
flexible and reusable called software-defined phase-locked loop (SDPLL) platform is
proposed. [2][3]

The SDPLL platform in [2][3] is composed of OpenRISC CPU and ADPLL related IPs,
all of these components are integrated by WISHBONE bus. Since the CPU has powerful
computing capability, the control strategy of ADPLL which called SDPLL algorithm that can
be implemented with high level language such as C and C++. It is easier and faster than
modify hardware circuit. The SDPLL algorithm defines the phase tracking and frequency
search mechanism which are performed by CPU, the lock time of SDPLL is depends on the
computing power of CPU. In OpenRISC-based SDPLL platform, it spends a long time to
reach frequency maintain stage. It is not efficiency for stable clock generation. Thus, a more
powerful architecture based on AndesCore CPU and AMBA bus system called ARM-based

SDPLL platform is proposed in this thesis.



1.2. Thesis Contribution

The proposed ARM-based SDPLL platform can provide wide bandwidth and high
resolution clock frequency. When the specification of system is changed, the designer can just
modifies the software rather than redesign hardware to meet system specification. It can

reduce design costs.

1.3. Thesis Organization

The organization of this thesis is as following. Chapter 1 introduces the phase-locked
loop and the idea of flexibility of a system. Chapter 2 illustrates the basic concept of SDPLL.
Chapter 3 shows the detail of the proposed SDPLL platform. Chapter 4 presents the

implementation and simulation result. Chapter 5 is conclusion and future work.



Chapter 2
Overview of SDPLL

2.1. Introduction to ADPLL

There are three type of PLL. For hardware implement issue, all-digital approach is
suitable and easier in this work. So ADPLL is chosen as basic PLL IPs. The function of the
ADPLL is to generate frequency-locked and phase-locked clock. In order to reach the
objective, there are several component included in the conventional ADPLL, such as phase
frequency detector (PFD), time-to-digital converter (TDC), frequency divider, and digital
controlled oscillator (DCO). PFD detects frequency or phase error between reference clock
and divided-by-N clock. TDC converter error pulse received from PFD into digital data. If
TDC output and DCO control tuning word is equal then digital date sends to DCO directly.
But in practical, digital data output from TDC often need digital processing to calculate CTW.
DCO generates clock signal depends on received CTW. Frequency divider divides the clock
signal by user-defined number.

The basic ADPLL block diagram is shown in Fig. 2.1. The ADPLL working flow is as
the following. First, PFD compares the incoming reference clock and feedback clock, and
generates error pulse when frequency or phase error detected. Second, TDC receives the error
pulse from PFD and converts it to digital values and output the values to the digital processing
controller. Third, digital processing controller transforms the error value to DCO CTW and
output the CTW to DCO. Fourth, DCO generates proper clock frequency with CTW. Fifth,
Frequency divider divides the DCO output clock and feedbacks the divided clock to PFD.
Repeat 1~5 until the reference and feedback clock are phase and frequency matched and DCO

can output frequency-locked and phase-locked clock.
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Fig. 2.1 Basic block diagram of ADPLL

However, it is not flexible for change transformation of CTW, tracking algorithm or
control strategy in this conventional ADPLL architecture. For example, if the specification of
the communication system is changed, the ADPLL control strategy must be modify for
different application. Because of the hardware implementation issues, it means the designer
must spend time to do RTL-simulation, logic synthesis, gate-level simulation, layout and
verification to redesign circuit. It is time-consuming and hard work. Therefore, a SoC

platform with software-controlled feature called SDPLL platform is proposed in this thesis.

2.2. Basic concept of SDPLL

The proposed SDPLL architecture has feature of software controllability and
programmability by integrating CPU and ADPLL related IPs, it is flexible to the hardware
architecture and the software operation. The basic SDPLL block diagram is shown in Fig. 2.2.
The digital processing and controller part in Fig. 2.1 are replaced by CPU. It is more flexible

and powerful than original processing. At the hardware level, SDPLL integrates the



ALL-Digital Phase-locked Loop with CPU. Therefore, the core of SDPLL is CPU. The core
of proposed SDPLL is AndesCore which will be described in section 2.2.1. At the software
level, SDPLL only needs to modify the instructions which will be described in section 2.2.2,

so as to supply different functions.

PFD === | TpC

error pulse Control |:> | _—
|

divided strategy

Fig. 2.2 SDPLL architecture

2.2.1. CPU

The selection of CPU is AndesCore N903-S provided by Andes Technology Corporation.
The N903-S is a high performance, general purpose 32-bit RISC embedded processor
designed for SoC applications. It is suitable for cost and power sensitive application which
requires small footprint and manageable power consumption. The core is designed to allow

customers to rapidly integrate their own IPs with a high performance RISC processor.



2.2.2. Software

The proposed SDPLL controls IP cores with software. In common, software can be
developed with almost high level languages if there are corresponding compilers. In this work
choose C/C++ as development language because C/C++ is one of the most popular
programming languages. It is widely used on many different software platforms include
AndesCore N-series CPU. Toolchain is part of AndeSight™, which is an integrated
development environment for software development. Toolchain is mainly for compiling,
assembling, and linking users’ C/C++ and assembly programs and generating executable
image. In Fig. 2.3 exhibit software flow of MIMO-SDPLL, it is common and used for a long

while.

compile clock

Machine
C/C++ |:lI> code E:> SDPLL |:> _m-l_n_

Fig. 2.3 Software flow of SDPLL



Chapter 3
ARM- based SDPLL Platform

3.1. System Overview

The proposed SDPLL architecture is shown in Fig. 3.1. CPU, PFD, TDC, frequency
divider, DCO and other IP cores are connected by system bus. The memory stores the
program of tracking algorithm and controlling strategy. Since the frequency of reference clock
is too slow to be system clock, the semi-asynchronous clock generator (SACA) can provide
faster system clock of SDPLL. The SACA output clock synchronous to the rising edge of
reference clock and maintains low after the output clock count reaches the user-defined
number. This can provide fast enough clock cycle for CPU computing. In Fig. 3.1, PFD, TDC
and frequency divider generate digital data to digital processing. These three components are
combined as error detector IP core. Note that these new IP cores need bus interface in order to
connect to system bus. Since AMBA is selected as system bus architecture in this work, this
SoC platform is called ARM-based SDPLL platform. The ARM-based SDPLL platform
working flow is as the following. First, after system reset, CPU executes instructions from
memory and initials all IP cores. Second, CPU start polling error detector until error detector
detects error. Third, if the error detector detects error, it will convert the error pulse between
reference clock and divided clock to error value and send the value to CPU. Fourth, When
CPU receives the error value, it will calculate corresponding CTW and sends it to DCO. Fifth,
DCO generates proper clock signal depends on received CTW and sends the clock signal to
frequency divider. Sixth, Frequency divider divides the clock signal by user-defined number
and feedbacks the divided clock to error detector. Repeat step 2~6 until reference and

feedback clock are phase and frequency matched. The details of these IP cores will be



illustrated in next section.
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Fig. 3.1 ARM-based SDPLL platform architecture

3.2. System IP Core
3.2.1 N903-S

The selection of CPU in this work is AndesCore N903-S provided by Andes
Technology Corporation [4] [5] [6]. N903-S which is a 32-bit RISC-based CPU with
5-stage pipeline provides AMBA AHB, AHB-Lite and APB interface for system bus.
The N903-S block diagram is shown in Fig. 3.2. External Bus Interface is responsible for
off-CPU memory access which includes system memory access and memory-mapped

register access in devices. The N903-S supports AHB, AHB-lite, APB and AMI bus



protocols. There is no constraint on the bus clock ratio between CPU core and AMBA
bus clock. The local memory is to store those data and instructions that might be
accessed frequently in a system such as service routine, system call, application data, etc.
N903-S’s local memory only can be configured as external since it target on a cost
sensitive system. It provides external local memory interface to allow N903-S
communicate with external memory. N903-S supports both instruction local memory and
data local memory. The embedded debug module allows programmers perform
debugging activities through a standard JTAG interface. It provides hardware breakpoint
functionality, a dedicated interface to the target system bus, and the Debug Instruction

Memory (DIM) to help the user debug the target software on the target hardware system.

JTAG/ EDM Ij

G

N9 Core

Instruction <:>
<::> Data IF/LM o

External Bus Interface

AHB

Fig. 3.2 Block diagram of N903-S



3.2.2 AMBA Bus

The AMBA specification defines an on-chip communications standard for the
infrastructure of high-performance embedded systems [7]. There are three buses defined
within the AMBA specification, one is the advanced high performance bus (AHB), another is
the advanced system bus (ASB), and the other is the advanced peripheral bus (APB). Since
the AHB provides a higher performance and is popular bus architecture for SoC design, it is
used in this work. The typical AMBA AHB-based system is shown in Fig. 3.3. AHB supports
the efficient connection of processor, on-chip memory and other IPs which has the

requirement of high bandwidth transfer.

On-chip
| ‘. RAM ‘ Keyboard UART
AHB ( Bridge [ | APB

Fig. 3.3 AHB-based system

‘ Processor

3.2.3 Error Detector

The error detector consists of three parts, the first part is PFD, the second par is TDC,
and the third part is frequency divider. Fig. 3.4 shows the block diagram of error detector.
TDC can not only measure the clock period of reference clock but also the phase error
between reference clock and divided clock depending on detect mode. The basic concept of
TDC is counting the pulse which is generated by the internal delay chain. Frequency divider
divides the frequency of DCO clock. When the rising edge of DCO clock comes, the internal

counter in frequency divider will increase one until the counter value equals the user-defined

10



divided value. The phase frequency detector converts the timing difference between the rising
edge of reference clock and divided clock to the pulse and to determine which clock signal is

lead to another.

Ref CLK Ref pulse
| Clock re-gen.

digital
pulse value

MUX weml  1pc | S—)p

Div value Div CLK Phase error

Frequency —

Divider

— PFD
'y f

lead lag detectmode

Fig. 3.4 Error detector block diagram

3.2.4 DCO

The DCO is high-resolution and wide frequency range is proposed at [8]. It can generate
clock frequency by the control of digital signal. The range of frequency is from 0.66MHz to
460MHz.

3.2.5 SACA

Since there are several IPs driven by system clock and the reference clock is too slow in
this work, the SACA clock generator module is proposed. SACA is a clock generator which
synchronous to the rising edge of reference clock. And start trigger fixed number of cycles
with specific period asynchronous to reference clock. The fixed number of cycles and clock
period are defined by user. Fig. 3.5 shows the example of SACA with eight cycle count. The

output frequency range of SACA is from 103MHz to 1231MHz.

11



reference CLK —I I I_

synchronous to the rising edge

sacack — LI LT LI LML

8 cycles

Fig. 3.5 The example of SACA

3.3. Tracking Algorithm

The SDPLL tracking algorithm is composed of three parts: frequency search, coarse
tracking and fine tracking. In frequency search stage, the period of reference clock will be
estimated by TDC and transfer into CTW to set DCO output clock frequency. After frequency
search, the tracking algorithm does coarse tracking to fixing frequency and phase error until
the phase error between reference clock and divided clock is small than TDC’s minimum
detectable range, and the track algorithm enter the fine tracking stage. Since DCO has high

resolution feature, more accurate tracking can do by DCO and PFD in fine tracking stage.
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Chapter 4
Implementation and Simulation Result

In this section, the implementation of ARM-based SDPLL platform will be discussed in
two parts, system integration and software programming. In system integration section, the
implementation details of ARM-based SDPLL architecture are presented. In software
programming section, the method of hardware control via software and software
programming are presented. The hardware and software co-simulation result is showed at the

end of this section.

4.1. System Integration

The system architecture of ARM-based SDPLL platform is shown in Fig. 4.1. All system
IP cores such as CPU, SACA, memory, error detector, DCO are connected by AMBA AHB
bus. The AHB interface is used for transformation of the signals between AHB bus and these
IP cores. CPU executes instructions in memory which are compiled from C source code to
controls other IP cores such as error detector and DCO. The SDPLL tracking algorithm is
implemented by C source code and loaded to memory before system reset signal asserted.
After system reset, CPU starts polling error detectors alternative. When reference clock and
divided clock have phase error, the error detector will raise error flag signal. CPU then does

tracking algorithm for the correspond device.

13
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Fig. 4.1 ARM-based SDPLL architecture

4.1.1. Memory Mapping

In ARM-based SDPLL platform, the CPU needs to communicate with other IP cores.
The popular way to do this job is memory-mapped 1/0. With this method, each IP core is
considered as an 1/O peripheral and occupies specific address in the existing address space.
CPU can access these IP cores by sending the specific address to memory location or registers
in these IP cores. Since the software programmer can use pointer and data structure to
communicate with hardware and reduce the complexity of hardware implementation, this

method is helpful for hardware and software co-design.
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4.1.2. N903-S Model

The selection of CPU is AndesCore N903-S. For HDL IP protection issue, it uses a
behavior model for RTL simulation called AMP model. The N903-S AMP model is a binary
model of released firmcore produced by Cadence IP Model Packager. AMP model
communicates with simulators through the IEEE Std 1499 Open Model Interface (OMI)

protocol or PLI through the OMI Adaptor. In this work we use OMI protocol for CPU model.

4.1.3. AHB Bus Protocol

For CPU compatibility and IP cores connection, the AMBA AHB bus is chosen for
system bus. A typical AMBA AHB system design contains the following components, AHB
master, AHB slave, AHB arbiter, and AHB decoder, these components are connected by a

central multiplexer.

The AHB master sends address and control signals to slave to perform read and write
operations. Only one master is allowed to use the bus at any one time. The maximum number
of master in AHB bus is 16. The AHB slave receives address and control signals from AHB
master and responds to a read or write operation. The AHB arbiter judges which master can
use the bus and ensures that only one bus master at a time is allowed to initiate data transfers.
The AHB decoder is used to decode the address of each transfer and provide a select signal

for the slave that is involved in the transfer.

ALL bus masters send the address and control signals to indicate the transfer they wish
to perform and the arbiter determines which master has its address and control signals routed
to all of the slaves. After slave receives the address and control signals sent from master, the

decoder is also required to control the read data and response signal multiplexor to select the

15



appropriate signals from the slave. The central multiplexor interconnection scheme is shown

in Fig. 4.2.

Arbiter
Address & I
HADDR  controlmux HADDR
>
HWDATA l HWDATA
Masterl HRDATA’ Slavel
LRDATA o >
HADDR
lﬁ
HADDR HWDATA
T HWDATA | HROATAT| Ve
Master2 >
¢ HRDATA Write data mux
<49 HADDR
< -MP Slave3
HRDATA

Read data mux I L

Decoder

Fig. 4.2 AMBA central multiplexor interconnection

The AHB master must send HBUSREQ signal to AHB arbiter to grant the bus before
performing a bus transfer. Then the arbiter will judge that which AHB master has higher
priority to access the bus. Then the granted master sends the address and control signals to
access the slaves. Each slave on the bus will receive the address signal and control signals but
only the specific slave can be access and response to the master. The AHB simple transfer is
shown in Fig 4.3. The AHB transfer consists of two parts, one is the address phase and the
other is the data phase. The master send address and control signals to slave in address phase,
and the slave response to master in data phase. Note that the data phase may be extended
since the slave is not ready. The data phase can be extended by sending HREADY signal from

slave.

16
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Fig. 4.3 AHB simple transfer

4.1.4. AHB Interface

To integrate DCO and error detector into the AMBA-based system, we need a bus
interface to deal with the signal transformation between DCO/error detector and AHB bus.
Fig. 4.4 shows the block diagram of bus interface. Depend on the proposed SDPLL algorithm,
CPU sets the control signal to DCO and receives the error value from. The DCO write control
part passes the DCO_CTW signal to DCO to generate proper frequency and determines the
mode of DCO (frequency search stage / phase tracking stage). The error detector read control
part passes the divide value to the frequency divider of error detector and the mode of error
detector (frequency search stage / phase tracking stage). The error value which estimated by
TDC and phase lead / lag signal also passed to bus through error detector read control. All of
these read and write operations can be done in one cycle. Table 1 is the comparison of this
work and OpenRISC-based bus interface. The increase of area is 13% since the complexity of

AMBA protocol and the cycle of operation is equal to OpenRISC-based bus interface. By



implementation of AHB interface, the DCO and error detector can be integrated into

AMBA-based system easily.

AHB Interface
DCO_CTW [27:0] . HCLK
DCO_mode HADDR [31:0]
DCO Latch_signal " HWDATA [31:0]
DCO_ready . DCO HWRITE [31:0]
» Write Control
DCO_clk
HRESP [1:0]
BUS
) detect_ mode [1:0]
) div_value [15:0] PP
¢ error_set HRDATA [31:0]
Error Error Detector H ™y pro;
error_value [28:0] Read ContrOI
Detector —
error_valid R g 2 error_det_resp
lead v g = [31:0] ;
) a > HRESP [1:0]
? B 14
lag 1Y [5
¢ Ref_clk
————— — ——————— — — >
1 cycle
Fig. 4.4 Block diagram of AHB interface
Set control word| Read from Bus protocol Area* Process
to DCO error detector
This work 1 cycle 1 cycle AMBA2.0 2194um”2|90nm CMOS
OpenRISC-based 1 cycle 1 cycle WISHBONE [1935um”2|90nm CMOS

Table 1 Comparison of the bus interface
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4.1.5. AHB Interconnection

In this work, the bus interconnection is based on Example AMBA System (EASY)
architecture. The EASY architecture provides a typical AMBA platform for SoC design.
Since the EASY platform is integrated with ARM7 and ARMO series CPU and several default
IPs, it must be modified to meet the system requirement of SDPLL platform. Fig. 4.5 shows

the bus interconnection of ARM-based SDPLL platform.

_ Bus grant
Arbiter

I Bus request

Slave contro Slave address
_k MUXM2S | e——)  Dccoder

AndesCore CPU Slave control
Memory Error
model DCO Detector
MUXS2M
Slave response Slave select

Fig. 4.5 Bus interconnection of ARM-based SDPLL platform
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4.2. Software Programming

4.2.1. Software development flow and hardware simulation environment

For software development, software programmer needs toolchain to transform the source
code into an executable program. Andes toolchain is built from GNU, thus the options of gcc,
as, and Id are inherited [9] [10]. The cross-compiler compiles the C program, and the
assembler and linker converts the assembly programs to a.out file. By default, N903-S starts
fetching instructions from memory address 0x0, therefore the —Ttext=0 linker switch asks the
linker to arrange the starting address of the final executable image to be at pc=0x0. For
hardware / software co-simulation, it is necessary to build a development flow. The C
program can be compiled to assembly program by nds32le-elf-gcc cross compiler. However,
for hardware simulation the assembly program needs to be converted to a binary code which
can be loaded into memory model. This conversion is performed through

nds32-elf-aout2mem. Fig. 4.6 shows the conversion flow.

NDSROM.dat
@000006ec Odee7Hf 51£20000 05ce0002 S1f801c
00001bc4 <main>;
lbed: S1fffe2c addi$sp,$spi-468 @00000650 42007820 S1fffe2c 3bfffead S1ffffec
1bc8: 3bfffead smwa.bdm $sp,[$spl,$sp,#0xa
C Iboc:  51fffec  addiSsp.Sspd20 @000006£4 51cf8018 46095000 1400002 46095000
program : HE
1bd0:  51cf8018 addi $fp,Ssp,#24 @000006E8 58000014 14060004 46095000 58000024
S @000006fc 14060003 46095000 58000684 14060006
S~ assembly program _ =
~. binary code s
PREFIX=...
CROSS=nds32le-€lf-

CC = $(PREFIX)/bin/$(CROSS)gce
AS = $(PREFIX)/bin/$(CROSS)as

rom_c:

@rm -f NDSROM.dat NDSROM.1ist

$(CC) $(CFLAGS) $LDFLAGS) $(FILES) -0 rom_c.exe
[ -f rom_c.exe ] && nds32-elf-aout2mem rom_c.exe
NDSROM.dat

cp -f NDSROM.dat

makefile

Fig. 4.6 C to binary code flow
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The binary called NDSROM.dat can be loaded to memory model by Verilog
$readmemh() system task. CPU fetches instruction from memory address 0x0 and jump to
<c_star> routine and do SDPLL algorithm when simulation start. Fig. 4.7 shows the hardware

simulation flow.

Script for amp model simulation

amp:

@rm -f flist

sed -e "s,\$$NDS_HOME,$$NDS_HOME," < ../flist.amp | grep -v "#" > flist
@[ -f NDSROM.dat ] Il (eccho ERROR: NDSROM.dat does not exist; exit 1)
LD_LIBRARY_PATH=$(AMP_LIB_PATH):$(LD_LIBRARY_PATH)
$(VERILOG)

ﬂ Simulation start
$readmemh()

NDSROM.dat |::> Memory model CPU

BUS H

a

other hardware modules

Fig. 4.7 Hardware simulation flow

4.2.2. Hardware Access

Since SDPLL tracking algorithm need access error detector and DCO by setting value to
control registers, the memory-mapped 1/0O mechanism is used in this work. The
memory-mapped 1/O control is as the following. First, define the device base address. Second,
declare a pointer variable with the volatile keyword and assign base address value to the
variable. Note that volatile qualifier must be used when reading the contents of a memory
location whose value can change unknown to the current program. Third, this pointer can read

or write IP cores register by software.
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4.3. Simulation Result

In this section, the simulation result of SACA, error detector, DCO is presented as
following. These IP are implemented with UMC 90nm standard cell library. Fig. 4.x is
simulation waveform of SACA module. The user-defined divided value is 8. That means there
are eight clock cycles which synchronous to the rising edge of reference clock will be
generated in one reference clock period. The SACA can generate clock frequency with
unbalanced duty cycle of the reference clock. Fig. 4.8 shows the SACA module works with

40% / 60% duty cycle of reference clock.

8 SACA < >€ >
reference_clk 0 L,—l—J—|—
Div N 8
output_clk 0 | | I I I
window ol ] L] L] L

Fig. 4.8 Simulation of SACA with 10MHz reference clock and 83.87MHz output clock

The simulation result of error detector is shown in Fig. 4.9. After divided clock
feedbacks to the error detector, the error detector generates a digital value for CTW mapping,
and judges if the divided clock leads the reference clock. Part (a) of Fig. 4.9 shows that the

TDC receives the phase error between reference clock and divided clock and outputs error

value.

eCector
Div_clk bd
Ref_clk 1 [
phase error x [ |
TOC_error_value | |¥_3GHX [ i ] 100 THNET 150 X
TOC_error_valid = [ |
Lead =
Lag X
~ o~ -— -
-~ -
— -
—~ -
~ —
—y —
-~ -
~ - -
- -
tector
Div_clk x | |
Ref_clk x | [
phase error x
TOC_error_value | |E_300O 0 0 0
TOC_error_wvalid x
Lead x
Lag X

Fig. 4.9 Error detector simulation result
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Fig. 4.10 shows the simulation result of DCO control. The DCO output clock period is
changed by CTW which is sent from CPU. In part (b) of Fig. 4.10, HCLK, HADDR,
HWDATA and HWRITE are come from AMBA AHB bus. The CPU sends CTW 0x8ff80000
to address 0x95000014, which means set CTW to DCO control register. Note that the address
is point to DCO control register. After CPU send these control signals, the DCO control bit
C1 will be set to 0x000001ff and the DCO output clock period will be changed.

[=RilHi]
HCLE
HADDR[Z1:0] She 9500_0014 Y e 10_0248 5+ @ 10_0218 ) 5d0 10_0218 0_02+ E5dB Sdc

i
i
HVTIATA (31 0] 0 0§ Gefe 0000 i 2000_0026 T 2000_0000 1
HYRITE i ] | I | I

c1[8.0] i T TFE
c0[5:0] =0 1
F1[6:0] o 0
#2(30.0) | | oo oom 0
F3[2:0] i i
F4[6:0] . i
DCO_CLE o | UL

-~ — - -—

-~ — - -
— —

8 Dca
HCLE 1
HADDR[31:01 | | 9500_0014 | ()
HVDRT&[31:0] | | ef£e_o000| L]] Of (K71 J[@6]gEs
HWRITE 1 N -H I
c1[8:0] :
£0[5:0]
F1[6:0]
F2[30:0]
Fa[2:0]
F4[6:0]
DCO_CLE

==}
=]
HE=

[ ARRADARA ALY AR RNV TN AN
T -

0 por] 0 B* i ]

LML L mmn gy M mm

| 0

coooooo

[ ] L 7 L 7 L |

Fig. 4.10 DCO control simulation result
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Chapter 5
Conclusion and Future Work

We have introduced basic SDPLL concept and the proposed ARM-based SDPLL
platform in this thesis. The proposed SDPLL architecture has feature of software
controllability and programmability by integrating CPU and silicon IPs. It is flexible for the
hardware architecture and the software operation.

The following topics to extend the work can be proposed. The CPU and memory is
behavior model. It must be implemented with gate-level logic to do system verification with
precise timing information. And then we can do silicon implementation to verify this SoC

system with real chip design.
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