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The Study of Variable and Overlapped
Cluster-based MIMO Detection

by
Po-Cheng Chen
Department of Computer Science
National Chiao Tung University
Advisor : Terng-Yin Hsu

Abstract

Recently, multiple-input multiple-output (MIMO) architecture has been applied
widely in many wireless communication systems because of its high spectrum
efficiency. Various approaches are explored for the MIMO detection, the ZFD, the
MMSED, V-BLAST, the maximum likelihood detection (MLD) as well as the Sphere
Decode detection (SD).

We propose the Variable and Overlapped Cluster-based MIMO Detection
algorithm by partitioning the transmitted MIMO signal vectors into vary clusters with
estimated symbol in each dimensionin.64-QAM/256-QAM and finding out the result
signal by comparing the received-signal with all the candidates above. And the
proposed method, step A) as well as B), are demonstrating in the following.

In A), we demonstrate overlap clustering algorithm that the estimated signal got
by linear detectors, as ZFD or MMSED, and then pick out the possible constellation
points falling on each antenna according to the range which the estimated signal is in.

After overlap clustering algorithm in step A, we enlarge/narrow the possible
constellations points according to the column norm of H included channel gain
information.

Moving on B), we have all the candidates signals compare with the received
signal, and then apply BFS with best K candidates in the searching space of MMSE
SQRD. Eventually, the detection signal with the least accumulative square Euclidean
distance is delivered.

Through simulation in IEEE 802.11n platform with TGN channel E, it indicates
the complexity of proposed algorithm is less than the K-best SD with the same
performance. Hence, the proposed algorithm provides a near-optimal solution with
low computation complexity design for wireless MIMO system.
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Chapter 1

Introduction

Recently, orthogonal frequency division multiplexing (OFDM), which
simplifies the receiver design, has become a widely used technique for broadband
wireless systems. Multiple-input multiple-output (MIMO) channels offer improved
capacity and potential for improved reliability compared to single input single-output
(SI1SO) channels. The MIMO technique in combination with OFDM (MIMO-OFDM)
has been identified as a promising approach for high spectral efficiency in wideband
systems. For high data rate is the tendency of the wireless communication system, the
MIMO-OFDM technique has been. a spotlight for its ability to increase data rate.
Many new systems such as 802.1dn,-TGac;: 3GPP LTE and WiMax adopt the
technique to increase data throughput and system performance.

To exploit the spectrum efficiency, large number of antennas and high order
QAM constellations are often employed, which leads a challenge to design the MIMO
detection with acceptable complexity and sub-optimal performance.

There are several conventional signal detection approaches for MIMO-OFDM
SDM system [1]. The linear detections, such as the ZFD and the MMSED, uses the
inverse of estimated channel response to extract the desired signals. Both of these two
approaches are easy to implementation, but enlarge performance degradation with the
enhancing channel noise. Another category is the nonlinear approaches such as
V-BLAST and the maximum likelihood detection (MLD). The V-BLAST algorithm
uses ordered successive interference cancellation with QR decomposition [2]. The

MLD algorithm reaches the optimal performance mathematically with the



unacceptable computation complexity [3][4].

Sphere decoding (SD) [5] algorithm can reduce the unacceptable computation
complexity by confining the number of constellation points to be searched,
Fincke-Pohst [6] and Schnorr-Euchner [7] are two of the most common
computationally efficient search strategies for realizing the ML detection.

Some methods [8]-[10] reduce the search set by employing the multilevel
structure of the N-QAM constellations. The multilevel structure decomposes N-QAM
demodulation into a sequence of sub-demodulations with a hierarchical order, which
has been widely investigated for complexity reduction purpose [11]. Also, the original
K-best sphere decoder (K-best SD) [12], whose complexity is proportional to the
number of transmit antennas, gives us the basis of our proposal algorithm.

In this paper, we propose the Variable and Overlapped Cluster-based (VACO)
MIMO Detection by partitioning..the transmitted MIMO signal vectors into vary
clusters with estimated symbol-in each-dimension in N-QAM and finding out the
result signal by comparing the received.signal: The overlap clustering algorithm pick
out the possible constellation points according to the estimated signal got by linear
detectors, as ZFD or MMSED. And then we enlarge/narrow the set of the possible
constellations points according to the channel gain information. Hence, we have all
the candidates signals compare with the received signal, and then apply breadth-first
searching with best K candidates in the searching space of SQRD. Eventually, the
detection signal with the least accumulative square Euclidean distance is delivered.

The remainder of this paper is organized as follows. The system assumptions
with problem statement are addressed in Chapter 2. The proposed Variable and
Overlapped Cluster-based MIMO Detection algorithm is described on example in
Chapter 3. Performance and complexity are evaluated and compared with different

approaches in Chapter 4. Finally, Chapter 5 gives conclusions.
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Chapter 2

System Assumptions

2.1 MIMO System Description

MIMO system consists of multiple transmitter antennas and receiver antennas.
Signals are mixed from each transmitter antenna and received by multiply receiver
antennas. In this section, the system architecture used in this thesis will be described.
The research is designed for a coded MIMO system. The MIMO system has N;
transmitter antennas and N, receiver antennas and is denoted as NN, The MIMO
technique is spatial multiplexing,. which: means. independent data streams are
transmitted from each transmitter antenna, and a MIMO detector is in the receiver and

decodes the mixed signal. The data bit.symbols are modulated to N-dimensional data
symbol vector x =[x1, Xeens Xy, JT ([*]T means transpose), whose entries x, is

mapped in the complex constellation. Each data symbol is transmitted by one of the
N transmitter antennas, respectively. The rich-scattering environment additive white
Gaussian noise (AWGN) is assumed here. Assuming perfect timing and frequency
synchronization, the received baseband signal for NtxNg MIMO system is modeled

as following:

y=Hx+n (2.1)

where X =[ X, %,,..., Xy, ]T, x, is the transmitted signal modulated with N-QAM

constellation in the i-th transmitted antenna in the transmitted signal space;



y:[yl, Yasees Yn, ]T denote the received symbol vector in the received signal space,

and n:[nl,nz,...,nNR]T indicates an independent identical distributed (i.i.d.)

complex zero-mean Gaussian noise vector with variance o’ per dimension.
Moreover, the frequency selective fading [13] is represented by the NgxN+t channel
matrix H, which can be express as:

h, ... hy

H= (2.2)

h

Nre T thNt
where h; represents the complex transfer function and the channel state information

(CSI) from j th transmitter antenna to i th receiver antenna. The mathematical
equation shows that the received signals-are linear combination of transmitter signal.
We assume that the receiver knows the channel. matrix perfectly, and that Ng=Nr in

this paper. Fig. 2.1 illustrates an'example diagram of 2 x 2 MIMO system.

>
; QAM - MIMO QAM
: Modulation Detection Demodulation

Figure 2.1 2 x 2 MIMO system
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2.2 Motivation and Problem Statement

While employing large number of antennas and high order QAM constellations
in MIMO-OFDM systems, it leads a challenge to design the MIMO detection with
acceptable complexity and sub-optimal performance. Especially occurred in the
maximume-likelihood detector (MLD) [3], it requires unacceptable computation to
exhausted search the all combinations of each likelihood symbols.

To overcome the complexity problem, the Variable and Overlapped
Cluster-based MIMO algorithm tries to restrict the extending constellation points
according to the pre-estimated signal of the N-QAM constellations, and then keeps
the shorted K paths of the likelihood candidates which can reduce the search space
and computation complexity significantly.

In this thesis, we make a comparison in complexity and performance between
our proposal algorithm and the well-known K-best SD. The K-best SD is the most
attractive one of the MIMO Detéection algorithms in recently researches, because of its
optimal performance as well as its complexity which is proportional to the number of
transmit antennas and is lower than the optimal maximum-likelihood detector.

The aim of the Variable and Overlapped Cluster-based method is to design an
MIMO Detection algorithm with nearly ML performance and low complexity cost in

large number of antennas and high order QAM constellations.



Chapter 3

Variable and Overlapped

Cluster-based MIMO Detection

3.1 Introduction

In the beginning, we describe the basic idea of cluster-based MIMO Detection
algorithm, which employed standard detectors, ZFD or MMSED, to estimate the N
transmitted symbol, and then pick out possible constellation points falling on each
antenna. After pruning the search space, we only need to detect correct transmitted
signal vector by computing the candidates left in the corresponding clusters.

One of the cluster-based methods is"called multilevel cluster-based MIMO
detection algorithm by partitioning the transmitted MIMO signal vectors into clusters

with the multilevel N-QAM structures in each dimension.

Figure 3.1 The multilevel cluster-based MIMO detection algorithm



Cluster
matching

Figure 3.2 (a) Example of multilevel partitions with mean symbols in 64-QAM constellation. (b)

Example of multilevel cluster tree in 64-QAM constellation.

The non-repeated candidates picked between each clusters and the fixed size of
candidate number in each clusters'make SNR loss significant in some environment,
such as low channel gain, which should need more: candidates. Also, the algorithm
persists in square type cluster -and hierarchical clustering that aren’t a clever way
because it increases the possibility choosing. the wrong cluster while the pre-estimate
I/Q falls on the boundary of two nearby clusters.

To overcome this problem, we draft a flexible clustering method by removing the
unitary of clusters by allowing that more than one clusters possess the same candidate
constellation points. The simplest example is shown in the Fig. 3.3(a) & (b), we
increase the cluster diversity by adding one more cluster in the center of the original 4
clusters.

In this thesis, we break the square type of cluster and increase the cluster
diversity substantially. It’s given an introduction to our Variable and Overlapped

Cluster-based MIMO Detection algorithm.



3 . . 3 . . . ] . . . . . . ] .

(@) (b)
Figure 3.3 (a) Example of 4 clusters in 16-QAM constellation. (b) Example of 5 overlapped clusters in
16-QAM constellation.

3.2 Variable and Overlapped Cluster-based MIMO Detection

3.2.1 Steps of the Variable and Overlapped Cluster-based MIMO Detection

We propose the Variable and Overlapped Cluster-based MIMO Detection
algorithm by partitioning the transmitted MIMO signal vectors into vary clusters with
estimated symbol in each dimension in 64-QAM/256-QAM and finding out the result
signal by comparing the received signal with all the candidates above. And the
proposed method, step A), B) as well as C), are demonstrating in the following.

Above all in step A), we have two pre-processing blocks for our proposal
algorithm. One is Sorted QR decomposition for computing the unitary matrix Q and
the upper-triangular matrix R for the latter use of SD algorithm. And the other one is
linear detectors, such as ZFD or MMSED, to get pre-estimating signals.

In B) stepl, we demonstrate Overlap Clustering Algorithm that the estimated
signal got by linear detectors, as ZFD or MMSED, and then pick out the possible
constellation points falling on each antenna according to the range which the

estimated signal is in.



After Overlap Clustering Algorithm in B) step 1, we enlarge/narrow the possible
constellations points according to the column norm of H included channel gain
information which is called Dynamic Cluster Algorithm.

Moving on C), we have all the candidates signals compare with the received
signal, and then apply breadth-first Sphere Decoder with best K candidates in the
searching space of MMSE SQRD. Eventually, the detection signal with the least

accumulative square Euclidean distance is delivered.

y
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l l Blocks
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Pre-estimate -¢ (ZF inverse matrix) Sorted-QRD
E Z(Receive Signal )
(Estimated Signal) R(Diagonal Matrix)
A 4
Overlap & Dynamic .
> Clustering - . ,G .
Algorithms (Channel Gain Information)
* Variable Cluster
Calculate the left Z _ _ Oveﬂapped MIMO
with the survivor path Detail Matching ]
N Detection
A
U

Sort the PEDs
& Pick the
smallest K

paths

(Detection Signal)

Reach the end
node ?

U

Output
Detection Signals



Figure 3.4 The workflow of the Variable and Overlapped Cluster-based MIMO Detection

Steps of Proposed Method

S |:|—> —_
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SQRD Pre-estimate ' Clustering K Best SD

Figure 3.5 The graphic representation,of the Variable and Overlapped Cluster-based MIMO Detection

3.2.2 Sorted QR Decomposition

The QR decomposition “for computing the unitary matrix Q and the
upper-triangular matrix R is often called preprocess in the SD algorithm.

In order to reduce the complexity in the SD algorithm, a common preprocessing
approach to prune of the search tree is obtained by performing sorting such that
stronger streams in terms of effective SNR correspond to levels closer to the root.
This will be known as sorted QR decomposition algorithm (SQRD) in the following
that is basically an extension to the modified Gram-Schmidt procedure by reordering
the column norm of the channel matrix H iteratively into ascending order prior to each
orthogonalization step. That is, SQRD let the diagonal elements R, as greater as
possible at higher level and therefore reduces visited nodes in tree traversal.

In the sequel, we used an adapted version of this heuristic algorithm for MMSE

detection (MMSE-SQRD) in both K-best algorithm and proposal algorithm.
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3.2.3 Pre-estimating

A Pre-estimating method is also a preprocessing block which is needed to
estimate the transmitted signal vector, the calculation of Pre-estimating is much less
complex than the calculation of the squared Euclidean distance. The transmitted

signal vector ( X, ) can be estimated through minimum mean-squared error (MMSE)
approach (Xyuee =(H"H+c’1)*H"y), where & is a noise variance and | is

an identity matrix), which needs very little computation complexity.

3.2.4 Overlap Clustering Algorithm
The Overlap Clustering Algorithm employs the standard detectors, ZFD or

MMSED, to estimate the N transmitted symbol, and.then pick out possible
constellation points {C',C’,... C} falling.on each antenna.

To increase the cluster diversity, we take the real/imaginary part of pre-estimate

I/Q as reference value x , and then confine range of the spanning candidates

{C!,C?,... C} according to the boundary values X, <X <X, given in following (3.1)

and Fig. 3.5. That’s said, we first separate the 1/Q to real and imaginary parts and then

compute the distance individually with the confine range of the spanning candidates.

o={C},C%,...Cl|x <X <X}

I
\_'_I

(3.1)

Total N, candidates
X is the estimated signal and x,...x, are boundary values

The more obviously the characteristic is, the more the candidate size is.

Therefore, the feature of Overlap Clustering Algorithm owning vary clusters with

11



flexible size of spanning candidates is reasonable to deploy in practical
communication environment.

For example, the candidate 1/Qs are (+5,+5), (+5,+7), (+7,+5) and (+7,+7) while
the real and imaginary values of estimated 1/Q are both larger than 6.5. The candidate
I/Qs are(+5,-3) ,(+5,-1), (+5,+1), (+5,+3),(+5,+5),(+5,-3) ,(+7,-1), (+7,+1), (+7,+3)
and (+7,+5) while the real value is greater than 6.5 as well as the imaginary one is

between 0 and 3.5.

Overlap Clustering

>

N

— =
«—> Applied in the first quadrant
T o . . . . . . . I n = +5,+7|6.5<x'}
S o o |e e e o |e ]| o ={+3+5+7|5<x'<6.5}
3 e s e efe o el o ={+1+3+5+7|3.5<x'< 5}
—_ %
1 o oo ol e o |o|o @=q—-3,-1+1,+3.+5|0 < x'< 3.5}
1 L] L] L] L] L] L] . . 3 -
-3 e . . . . . . . ¥

A . . . .

75 3113 5 7

Figure 3.6 (a) llustration of Overlap Clustering Algorithm applying in first quadrant in 64QAM

Overlap Clustering

€—> €

<<—) > €<—> Applied in the first quadrant
7 o o e ope o of ®={+5+7]6.5<x"}
5 oo oo ofe o el I 1 o=345475<x<6.5)
3 ¢ e fe oo o et ® = {+1+3,+5+7|3.5< x'< 5}
Too e ] =] o ={-3-1+1+3+5]0< x'<3.5)
1 e o o o] ¢ o |o o - -
3le o o o/ o o |o $

5| . . . . . . .
v I Applied in all for quadrants
¢ Total = (4+4)"2 = 64 ways

7 -5 -3-1 13 5 7
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Figure 3.6 (b) Illustration of Overlap Clustering Algorithm in 64QAM

In the Fig. 3.5, it just represents the Overlap clustering Algorithm applying in
first quadrant where the reference values are positive. While joining with the left ones,
we will have a complete Overlap clustering Algorithm and the whole picture is shown
in Fig. 3.6.
3.2.5 Dynamic Clustering Algorithm

To perform efficiently in the changing wireless environment, we deliver
Dynamic Clustering Algorithm to enhance our Overlap Clustering Algorithm

described previously. While employing Overlap Clustering Algorithm, we
enlarge/narrow the possible constellations points {C',C?,... C/} according to the

column norm h'of H which is included channel gain information at the same time.

w={C},C?,..C |0<h <h} (3.2)
w={C},C?,...C*"|h <h <h,}

h" is the column norm of H and h,...h " are boundary valus

For instance, the original candidate 1/Qs are (+7,+7), (+7,+5), (+7,+3), (+7,+1),
(+5,+7), (+5,+5), (+5,+3), (+5,+1), (+3,+7), (+3,+5), (+3,+3), (+3,+1), (+1,+7),
(+1,+5), (+1,+3) and (+1,+1) will be narrow down to (+3,+3), (+3,+5), (+5,+3) and

(+5,+5) while the column norm h' is greater than 25.
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Figure 3.7 Illustration of Dynamic Clustering Algorithm in 64QAM

3.2.6 Detail Matching

The technique Detail Matching. used here is one of the well-known SD
algorithms named K-best algorithm. It is ‘a breadth-first algorithm based on a tree
decoding structure only searching ‘in the forward direction, but the best K candidates
are kept at each level. We make a distinct chahge in the origin K-best algorithm by

eliminating the search space of the“extending child nodes remarkably, and the

principle of Detail Matching is outlined as below.

1) At the root node, initialize all paths with PED (Partial Euclidean Distance) zero.
2) Apply Variable and Overlapped Cluster-based Algorithm to prune the search space
of the extending child nodes.

3) Extend each survivor path, retained from the previous node, to contender paths,

and then update the accumulated PEDs for each path.

4) Sort the contender paths according to their accumulated PEDs, and select the

shortest K-best paths.

5) Update the path history for each retained path, and discard the other paths.

6) If the iteration arrives at the end node, stop the algorithm. Otherwise, go to 2).

14



The best path at the final iteration is the hard decision output of the decoder. The
advantage of the K-best algorithm over the sequential algorithm is its fixed decoding
throughput, since it is easily implemented in a parallel and a pipelined fashion.

Meanwhile, a strict K-best algorithm should keep as large as possible without
compromising on the optimality, compared with the exhaustive-search ML algorithm.
However, limitation can reduce the complexity of the breadth-first algorithm.
Therefore, there is a tradeoff between complexity and performance in to select a

proper K value.

Detail matching

Compare the received signal with all the candidates.

argmin|ly — Hx||, Q is the set of constellation points in w in
x€Q each antenna.

I\

7N

Pickup K candidates ® in each level.

Figure 3.8 Illustration of Detail Matching in 64QAM
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Chapter 4

Simulation Results

This section compares performance and complexity between K-best SD and the
Variable and Overlapped Cluster-based Algorithm in MIMO detection. Note that the
performance comparison is considered under packet error rate (PER) 0.08 and
normalizes to the ML detection methods.

A typical MIMO-OFDM system is based on IEEE 802.11n Wireless LANs, TGn
Sync Proposal Technical Specification [10] which is used as the reference design
platform. The simulation model is .mainly-based on TGn multipath specification of
mode E, which is the multipath fast-fading channel model of 15-taps and 100ns Root

Mean Square (RMS) delay. The:major simulation parameters are shown in Table 4.1.

Environment Description

Parameter Value
Simulation Platform IEEE 802.11n
Signal Bandwidth 40 MHz
Number of subcarries 108 subcarriers
FFT size 128 points
Number of antenna 4Tx4Rx/8Tx8Rx

Convolution and Viterbi

Forward Error Correction .
(Coding Rate 2/3)

Packet size 1024 Bytes per Tx antenna
Channel Model TGN-E with AWGN
RMS delay spread 100 ns
Subcarrier modulation 64QAM/256QAM
Preprocessing Block SQRD -~ ZFD

K-best SD Algorithm

Signal Detection .
Variable and Overlapped Cluster-based

Table 4.1 Simulation parameters
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4.1 Performance Evaluation

Since K-best sphere decoder was accepted in practical implementation, the goal
of our Variable and Overlapped Cluster-based algorithm is complexity reduction and
remains performance at the same time. To compare with the K-best sphere decoder,
we tune K-best parameter: k and cluster parameter: Spanning Cluster Candidate &
Boundary to have nearly the same performance in different methods.

For the purpose of performance comparison, Fig. 4.1 and Fig. 4.2 present the
PER with ML, the Variable and Overlapped Cluster-based algorithm as well as K-best
sphere decoders for 4 x 4 and 8 x 8 MIMO-OFDM systems. The methods such as the
proposed Variable and Overlapped Cluster-based method and K-best sphere decoder
maintain SNR degradation within.0.57dB in the Fig. 4.2 and 0.58dB to 1.02dB in the
Fig. 4.3.

The table 4.2 summarizes the performance of Fig. 4.1 normalized to ML
detection method and the complexity.compared with the K-best SD algorithm. The
proposed Variable and Overlapped Cluster-based algorithm can maintain performance
within 0.57dB such that the method is suitable for practical system. And the algorithm
complexity can reduce to 27.29% ~ 56.25% in average case and 39.06% ~ 57.25% in
worst case which means the hardware cost in practical implementation.

For 8 x 8 MIMO-OFDM systems in the table 4.3, the proposed method maintains
performance within 1.02dB. Still, the algorithm complexity can reduce to 35% ~
56.25% in average case and 57.25% in worst case .

It’s clear to see that, there is better performance in 4 x 4 MIMO-OFDM system
rather than 8 x 8 one. However, while it comes to higher antenna number, it becomes
a critical issue that the complexity grows remarkably. Hence, Variable and Overlapped

Cluster-based method will be acceptable in practical.
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Figure 4.1 Performance in the VACO, 4T4R 64QAM
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Figure 4.2 Performance in the VACO, 8T8R 256QAM
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4 x 4 MIMO-OFDM system 64 QAM

K-best SD i
ML Variable and Overlapped Cluster-based
Method MMSE-SQRD
X K=12 K=12
Spanning
Cluster 8 8 6 6,4 6,4,2 5,4,3,2
Candidate
Boundary X X 0 0,35 |0,456.5|0,3.55.5,7.5
SNR in PER
0.08 28.55 28.62 28.74 | 28.70 28.77 29.13
SNR-Loss 0 0.07 0.19 0.15 0.22 0.57
Average Case
Candidate
Number 100% 56.25% | 38.25% | 38.17% 27.29%
Reduction
Multiplication | X 36864 20736. | 14100 | 14071 10059
Addition X 35008 19692 |.13390 | 13362 9553
Worst Case
Candidate
Number X 100% 56.25% | 56.25% | 56.25% 39.06%
Reduction
Multiplication | X 36864 20736 | 20736 | 20736 14400
Addition X 35008 19692 | 19692 | 19692 13675
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8 x 8 MIMO-OFDM system 256 QAM

K-best SD i
ML Variable and Overlapped Cluster-based
Method MMSE-SQRD
X K=12 K=12
Spanning
Cluster 16 16 12 12,10,8 12,10,8,6
Candidate
Boundary X X 0 0,7,10 0,5,10,14
SNR in PER
0.08 35.23 35.81 36.25 36.15 36.15
SNR-Loss 0 0.58 1.02 0.92 0.92
Average Case
Candidate
Number 100% 56.25% 39.94% 35%
Reduction
Multiplication | X 294,912 165,888 117,798 102,407
Addition X 289,536 162,864 115,651 100,540
Worst Case
Candidate
Number X 100% 56.25% 56.25% 56.25%
Reduction
Multiplication | X 36,864 165,888 165,888 165,888
Addition X 35,008 162,864 162,864 162,864

Table 4.3 Performance & complexity reduction table, 8T8R 256QAM
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4.2 Complexity Evaluation

Discussed in the section 4.1 previously, we compare the complexity between the
Variable and Overlapped Cluster-based algorithm and K-best SD with nearly the same
performance. Differently in this section, we do a comparison of the performance
between them with nearly the same complexity.

By observing the Fig. 4.3, it’s very clearly to see that the Variable and
Overlapped Cluster-based algorithm has better performance than K-best SD.
Meanwhile, it also maintains performance within 0.5dB that the method is suitable for
practical system.

While it comes to the same complexity in both methods above, detail statistics

are shown in table 4.4. Our proposal method is 0.25dB better compared to K-best SD.

Variable Cluster Qverlapped MIMO Detection in 802.11n with TGN-E

I
Kbest K = 4 MMSE SQRD

----- Variable Cluster Overlapped K = 8 (6 4 boundary 0 3.5)
----- Variable Cluster Overlapped K =8 (6 4 2 boundary 0 4.5 6.5)
— ML

Packet Error Rate

27.5 28 285 29 29.5
SNR
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Figure 4.3 Performance in the VACO with the same complexity, 4T4R 64QAM

4 x 4 MIMO-OFDM system 64 QAM

K-best SD i
ML Variable and Overlapped Cluster-based
Method MMSE-SQRD
X K=4 K=8
Spanning
Cluster 8 8 6,4 6,4,2
Candidate
Boundary X X 0,3.5 0,4.5,6.5
SNR in PER
0.08 28.55 29.08 28.78 28.79
SNR-Loss 0 0.53 0.23 0.24
Average Case
Candidate
Number X 38.25% 38.17%
Reduction
Multiplication | X 24,576 18,800 18,761
Addition X 24,768 18,580 18,541
Worst Case
Candidate
Number X X 56.25% 56.25%
Reduction
Multiplication | X 24,576 27,648 27,648
Addition X 24,768 27,324 27,324

Table 4.4 Performance & complexity table, 4T4R 64QAM
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Chapter 5

Hardware Implementation and

Measurement

5.1 Introduction

The Variable and Overlapped Cluster-based algorithm is a modified method of
K-best SD, thus it inherits the K-best SD advantage so that it is very suitable to
parallel and design in pipeline. In tt]is;&k'ﬁtég%r proposed hardware architecture is

‘.'2‘;7 y

Py

(52 LA P
~ FHAISCR %
presented. ?7' [,Q&’ Q%

Figure 5.1 The design flow

In the Fig. 5.1 shows the design flow of the hardware architecture for the
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Variable and Overlapped Cluster-based algorithm. In the step of algorithm design,
Matlab is used to build up and experiment the detecting algorithm. After the algorithm
model is determined, the measurement of the bit length and accuracy is applied so that
we need to convert the variable from float point to fixed point. Meanwhile, the
performance loss is taken carefully and the golden pattern is generated for logic
design. After the algorithm simulations, the hardware design is implemented by
Register Transfer Level (RTL) with the Verilog. The Verilog tool helps us code in
behavior language and confirm the correctness of hardware design. Then, the RTL
code will be synthesized by Design Compiler to gate-level netlist. Finally, the
gate-level simulation helps us to verify whether the behavior of gate-level is fit in

with our requirements.

5.3 Proposed Architecture

Table 5.1 gives the detail specification of the Variable and Overlapped
Cluster-based algorithm, where achieving GigaLLAN is our goal here.

The Fig. 5.2 illustrates overviews of the VACO. In the top architecture diagram,
there is a preprocessing block including common sorted QR decomposition (SQRD).
And the MIMO Detection is implemented with the Variable and Overlapped
Cluster-based algorithm.

The Fig. 5.3 shows the parallel architecture of the proposed architecture. Due to
the reason that there’s not enough time to process the input I/Qs while using only one
set of MIMO Detector. (Roughly 4 clock cycle time to process one level 1/Qs which is
absolutely impossible). With 14 sets of MIMO detector in parallel architecture, there’s
is enough time to finish this work. (Up to 56 clock cycle time)

As shown in block diagram of Fig. 5.2, the architecture consists of twelve

pipeline stages. Each stage has a processing element (PE), which implements the
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operations corresponding to step 2)-step 5) of Detail Matching in section 3.2.6. Stage
1 to stage 12 corresponds to the twelfth to the first level of computation in the
algorithm. The buffers R, Z, D, U and E between adjacent PEs are correspond to the

upper triangular matrix, updated received signal, K-best PEDs, K-best paths and

estimated signal in the algorithm, respectively.

Design Specification

Parameter Value
Simulation Platform IEEE 802.11n
Signal Bandwidth 50 MHz
Number of subcarriers 108 subcarriers
FFT size 128 points
Number of antenna 6 TX 6 RX

Forward Error Correction

Convolution and Viterbi
(Coding Rate 3/4)

Packet size 1024 Bytes per Tx antenna
Subcarrier modulation 256QAM
Preprocessing Block ZFD

Signal Detection

Variable and Overlapped Cluster-based

Table 5.1 The proposed design specification
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5.3.1 Word-Length Determination

In the mathematical model, all the variable and computations use the floating
point number. On the other hand, the practical hardware computations use the fixed
point number. To translate the float point'-model to fixed point model, the simulations
of measurement are required. The measurement includes the length (width) and depth
(accuracy). The longer word length 1t has,-the-higher performance it has. Hence, the
tradeoff between the hardware cost and performance is needed. Fig. 5.4 illustrates the
signal distribution of variable R, and the word length and the depth of variable R are
roughly 15 and 27°. The value is a rough estimate, and the detail simulations will be
taken to get the proper parameter.

Table 5.2 a) gives the number of all buffer needed while table 5.2 b) collates
the word-length information of all buffer. In the end, the performance comparison
between floating point and fixed point is showed in Fig. 5.5 with 256-QAM 6 x 6
MIMO system. The SNR degradation in word-length determination is less than 0.2

dB.
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Signal distribution of R

probability (%)

power of 2

Figure 5.4 The signal distribution of variable R.

Stage
Buffer

1 2 3 4 5 6 7 8 9 10 11 12
R 1x12 | 1x11|1x10| 1x9 | 1x8 | Ix7 | 1x6 | I1x5 | 1x4 | 1x3 | 1x2 | 1x1
D 8 8 8 8 8 8 8 8 8 8 8 1
Z 8 8 8 8 8 8 8 8 8 8 8 1
U 8x1 | 8x2 | 8x3 | 8x4 | 8x5 | 8x6 | 8x7 | 8x8 | 8x9 |8x10|8x11|8x12
E 1 1 1 1 1 1 1 1 1 1 1 1

Table 5.2 (a) Buffer number needed in each stage

Word-Length

15

20

15

3

m C|N|O|

15

Table 5.2 (b) Word-length needed in each buffers
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8X8 256 QAM TGM-E PER vs SNR
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Figure 5.5 Performance comparisons between float point and fixed point

5.3.2 Sorting Design

In each PEs, there are 16 PEDs to.sort.or 96 PEDs at most. Sorting PEDs is the
most time-cost part in the MIMO Detection. This is a critical issue in our VSLI
implementation. To overcome the problem of sorting, we deliver 3 sorting designs,
which are combined with different number of sorting unit.

The sorting unit shown in Fig. 5.4 employ insertion sort algorithm so that it is
able to sort one input data in one cycle time. The first design with one sorting unit in
Fig. 5.5 (a), it costs 16 to 96 clock cycles to finish the ordering procedure. And the
second one with three sorting units in Fig 5.5 (b), it costs 24 to 64 clock cycles. For
the last updated design with two sorting units Fig 5.5 (c), it costs 16 to 56 clock

cycles.
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Figure 5.7 (b) The alternative sorting design
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Figure 5.7 (c) The updated sorting design

5.4 Complexity Analysis

In this section, the proposed design is written in Verilog code and sythesised with
the library (TSMC 65 nm).

Due to the reason that we want to deliver a RF receiver in 802.11n with
GigaLAN spec, there are several critical-issues-we must face to. The most critical one
is that in worst case the tatal cycles taken by.a MIMO detection set is 56 cycles
(roughly 140 ns), and the Processing Data Rate we have is only 10 ns. To archieve the
goal, we have 12 parallel MIMO Detection sets to slow the Processing Data Rate
down to 120 ns. Meanwhile with some tricky techniques, | steal some cycles (about
20 ns) in the first and last stages to fit the requirement. On the other hand, the bit
length of sorting block is also a key point to reduce the cell area. We remove the LSB
of the sorting bit length from 24 bit to 16 bit.

Finally, we deliver a ASIC with roughly 4M gate counts in 6x6 MIMO Detection

in 802.11n with GigaLAN criteria.
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GigaL AN Spec.

Signal Bandwidth 50 MHz(256QAM)
Processing Data Rate (1) 20 ns /per 1Q
Processing Data Rate (1I) 10 ns

Implementation Issue
Sorting Type 2 sets
Sorting Bit Length 16 bits

Clock Frequency
400 MHz (600MHz)
('tcbn65gpluswcl*)

Cycle Period 2.5ns

Cycles Taken

56 cycles
(Worst case) y

Processing Data Period
(Worst case)

~140 ns

Parallel MIMO Detection Sets Needed

12 sets (120 ns)
(Worst case)

Gate Counts.of 6x6 256 QAM MIMO Detection

Technology 65 nm
Max. feq 400 Mhz
Parallel MIMO Detection Sets Needed 12
(Worst case)
Cell Area 4,303 k
Total Gate Counts (k) 3,984 k

Table 5.3 The summary of systhesis results.

32




Chapter 6 Future Works and

Conclusion

The Variable and Overlapped Cluster-based algorithm presents a near ML
performance, low-complexity MIMO detection design, which uses a pre-estimate
signal and channel gain information to reduce hardware cost of MIMO-OFDM
wireless system. Simulations and measurements indicate that the proposed method
can reduce complexity to 27.29% ~56.25% (where the K-best SD is regard as 100%)
while still achieving 8% PER with 0.57 dB (4T4R) and 1.02 dB (8T8R) SNR loss
compared with MLD in frequency-selective fading.of TGN-E channel [10].

Without any specific preamble, pilot format and STBC coding skills, the Variable
and Overlapped Cluster-based detection-algorithm can provide near ML performance
with relatively low complexity especially.in higher antenna scheme.

This study is now working in both 802.11n and TGac MIMO-OFDM systems.
Nevertheless, this study does not only deliver an efficient solution for OFDM-based
MIMO receivers, but is also well-suited method for next-generation wireless LAN

discussed in IEEE 802.11 VHT study group.
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