Bz i A RS T A 1 AR e

4 h

Graduate Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

Doctoral Dissertation

F AT B SERTARENT SER feakan B iF 1 B

Optimizing Routability and Performance of Placement and

Routing Flow for Nanometer Designs

F] = a6
Wen-Hao Liu

%Pﬁ ey e S L Y
Advisor: Yih-Lang Li, Ph.D.

PEAR-FFE- &£

January, 2013

i &

FEXRGFZAFAEINEN > H 57 AR BARRAR S RS
BB AXKARF o & P h7 %42 (Routability) & 2 % & Lt 4T o &
T 0 23 88 (Global Routing) 3 FFE£&ehd ¢ - ATRIHK
3+ (Physical Design) &g ? » >3 8M F R~ 2 e c(Placement) > T
Fc s 3R e (Detailed Routing) o — B -3f en > 3 8650 B 3t BB
(Congestion) ehF A SHE T E > HIE W BHENRE 2 BRPF B o Lo
FRERRF NG OTARASERBIRR K A 0 wITHRNE BT g
BETUAEEMR - F 28R BIRBL (e 2B R Firr i
REBEOTFRFRIALAERTE - RPELoraig - ¥- 35 » §
PR FR TR F o R F 40P 28805 % mr‘%?ﬁ‘u&?
PR GER - FRINHAT RGBS OB AR R T
B R Y WA DR 0 T A RE IR T o B
WEHRNTABPLBIEAT: Grace L BER 2B RAE F LI TR
FRIE T E; NCTU-GR 2,05 A 2 3 5 Findest e & kdp $minsea
RERLERT FHFE § REDME o %5 37 BGraceB* 2 ER
FAPH AT FF S N Grace? Rk LFE R HF Ko Ao B
B A PSE T HREFfr2FERT RN - BEERRELE
(Routability Optimizer) o FTHA - BHFHES FHBECEFT UEATHR K

Ee 22y BEFTAHA{ZIAER 2R FD{FdREF -5 ¥
(TmIRMES T > APRED T - B BERTL F 0 M2 RS

Ve

Rt ek d o BT U - e K INER B T e

Bt
i
L #

o

S

Abstract

Routability has become one of most critical issues to successfully achieve design closure.
To address this issue, global routing plays an important role in the placement and routing
flow. During the placement stage, a fast global router can serve as a routing congestion
estimator to guide that placers improve the routability of placement solutions; however,
traditional global routers are too slow to offer quick but accurate congestion estimation. In
the routing stage, the duty of a global router is to identify a global routing result to guide
downstream detailed routers. The runtime of the detailed router can significantly reduce if
the global routing result has well optimized congestion and wirelength.

In this dissertation, two global routing engines are proposed, Grace and NCTU-GR 2.0.
Grace is a fast global router to serve as a fast routing congestion estimator, adopts the
proposed unilateral monotonic routing and hybrid unilateral monotonic routing to replace
time-consuming maze routing in its routing flow, and invokes a congestion-aware bounding
box expansion scheme to avoid over-expanding the searching regions to achieve high
speedup. Moreover, in order to use Grace in the industrial flow, Grace have been enhanced
to tackle the layer directive and scenic constraints for considering the timing issue.

Another proposed global router NCTU-GR 2.0 can generate high-quality global routing
results to guide the downstream detailed router. The proposed bounded-length maze
routing avoids producing redundant detours to save routing resource; rectilinear Steiner
minimum tree aware routing scheme can guide NCTU-GR 2.0 to build a routing tree for
each multi-pin net with shorter wirelength; a dynamically adjusted history cost function
highlights for NCTU-GR 2.0 which grid edges are critical routing resource that can be more
carefully allocated to the nets that really desire. Based on the proposed innovations to
carefully utilize routing resource, NCTU-GR 2.0 obtains shorter total wirelength and lower

congestion than the other state-of-the-art academic global routers.

ii

In addition, between the placement and routing stages, this dissertation presents an
incremental place-and-route tool called Ropt to optimize the routability of a given
placement solution. Rather than minimizing HPWL, Ropt directly improves routability by
minimizing the routing cost of nets, as the routing cost is defined in terms of global
congestion, local congestion and wirelength. In addition to using NCTU-GR 2.0 to evaluate
the routability of the placement solutions, this work also uses Wroute to obtain detailed
routing results of the optimized placement solutions for the evaluation of real routability.

Finally, the proposed post-3D-global-router called Post3DGR further refines the
wirelength, congestion, and via count of a given 3D global routing result. Post3DGR consists
of the 3D post routing stage and negotiation-based layer assignment stage. The 3D post
routing stage adopts an inherited history cost function to guide the routing, which can
greedily reduce total wirelength and vias. The negotiation-based layer assignment stage
re-assigns the routing layer for each wire to reduce via count. The negotiation-based layer
assignment can be extended to consider via overflow and antenna effect. Considering these
issues before detailed routing can ease the effort and runtime of subsequent detailed

routing.

ii

ﬁ%ﬂﬁ%ééaﬁv’ﬂﬁii'ﬁﬁ%ﬁﬁw4—@@ﬁii#
FEELL BBt EAL RSB L T HRGFEY o
iRl i R ERARNEH R AR L E kA R F] o HHHEP o
REYREPEH T PREABRE DR R

AAE LA EY HBIRNEFOme Ao ARES
FoFIZRFST 0 AT HMMEREARF L B OE L R
TR o E £ AR RET O AEFA LIS 2 G G L g
FU B ER I d o r EH o Nidi— S LAENE ;n:,u«igvs,‘ﬁi,u 4
R RAFR® 2 P& SE TN tgiid o o U AH o BRI

SR PR TR ek EA IR Bk o FliinhkE > SEE LD
2 A E A

##Cheng-Kok Koh# 2 £ A 3] X & + 5 g BEBE ALY
AL BT R S BBl o N E) T RAN S (e 4 5% o
& A frs;ﬁﬁxzﬂz“s;&)ﬁfﬁ » BESER A L AhEFE 2 X P 3 il A
EF o AEGLIER IV HAUATFYE X LR APRE
BoAPEREIIRAFRIDNT - § A% R F - SCIIff
Szef? 4 3 3 3|IBM Austin Labig (7428 7 3 {8 € - IBM Austin Lab-

ERAV - AT AR ARBRFAIFE S b
FLIHFEF AAIBMAPE - £ FRRAFEND 2> X2 g
thif v el in 4 4 F &

- BA K SRR HFHDAR AL 5T HHB] etk X o

PP BFeskg cXfF > 37 B Bk EF o 2 EEF - GPALA

AT 3A NI A AAIZY ,,Lﬂéigj;}]ﬁq;\. SHLR A o ,;»}; i i
PR JRiLF 4P A o AARBE LT - B3 R KRl
TREFHADBEITERLSS c AREHEHIERAKER AAFAT L
P FIEEE > TERARFPETHEHAN DL o AR L BB g dp-Flio
BAL HBHAORETE R LA PSR ERY PHRF AL
Bindd o R ARRE BN LRI E o BT P AEF AT
RF LR BT AR R RERR A AR o Hp R
ko BAGEFEIERIARSBIHRT RN DF LIRS 13F S
FHv R - ;ﬁﬁﬁﬁr ’ ,ﬂ?-k,f o

Table of Contents

Chapter 1 INtroduction.......cccciiiiieeiiiiiiieciiiiiieeeeesrreeeseetrenesssenneensssssssenssssssssnnssnes 1
1.1 Overveiw Of this DiSSErtationccceiiiiiiiiiiiiiieee e s e e e e 1
0 - F- T ¢ 01U [o o FR PO UPPPRt 4

1.2.1 Building Grid Graph and the Objectives of Global ROUtINg.......cccccevvvvviriiiciiieeeeninnnns 5
300 2 N\ 1= o B L= ol] o Yo 1Y 1 [0 o 1R 6
1.2.3 Pattern Routing and Monotonic ROUTINGcuvvuiiiieeeiiieeiiiiceeeeeeeeeeeereee e eeeens 7
1.2.4 Negotiation-based Rip-up and Rerouting (NRR).....ccceeeeiiirmiiiiiiiiieeeeeeeeeiceeeeeeeeeeeens 7
R I YL XY =4 1= o | RN 8
1.2.6 Comparison of Recent GIobal ROULEIS........ccovveiiiiiiiieeeiieeeeccceeeeeeeeeeeree e eeeens 9

Chapter 2 Grace: A Fast Global-routng-based Routing Congestion Estimator 10
2.1 INtroduction.............. s s St el I SRl 1« eeeeieeeennnnnnrneeeeteenennnnnnrees 10
D A o] o] (= o g T B =T ol] o) f o o Fo P s PO UURPRt 11
2.3 The Proposed Algorithms for Accelerating ROULING.........cccoeoctuuiiiiiiiieeeeiieeiiiceeeeee e, 12

2.3.1 Unilateral MoNotonNIiC-ROULINGui. it ittt eeeeeeeeerreeeeeeeeeeeesannans 13
2.3.2 Hybrid Unilateral Monotonic ROULING.......cccccciieeeeesiiieiisiiie e eeeeeveeeeeeeeeeeeeenaaens 17
2.3.3 Congestion-aware Bounding BoX EXPanSioNccceeiieeeiuinieieeeeeeeeeeiiiiiieeeeeeeeeensnnnnns 20
2.4 DeSiZN FIOW OF GIACE.........ceiiiriuiiiieeeiiieeeaiinnaaeeeeeeeeeerstuatsseessaessEassaeeeeeseressrsnnnaseeeesesnees 22
2.5 EXPErimeEntali RESUILS.coceivriiien e eiteeeerusnnnnseeeesstaersnnnnaeeeetsasessnnnnnteeeessessssssnniaeeeeeseennes 23
2.5.1 Comparison between NCTU-GR 2.0 and Grace.........cccoviieeeeeeeeeeeeerrrniiieeeeeseeeesnnnnns 24
2.5.2 Effectiveness of the Proposed Algorithmsccieiiiii e, 27
B ST 012 4] 0 = s U 28

Chapter 3 E-Grace: Enhancing Grace for Practically Industrial Designs 29
70 R [0 o o [U T AT Yo FR s TSP P PPPPP PP 29
3.2 PreliMINAIi®S . ceeieeeie ettt e e e e e et e e e e e e e e e e e e e e e e e s aaareaees 32

I T o] o [T o W D LTy ol o o oL o FPS PP UUURR 32
3.2.2 Congestion Evaluation MEtriCSuuuceiieeiiiieeiiiiiie ettt e e eees s 33
3.2.3 PreVioUS WOTKSeeiiiiiieiiee ettt e e e e e e e e e e s e 33
3.3 DeSiZN FIOW OF E-GIaCe......ccvvvvuuiiieeeeiieeeiiiiiiieeeeeeeeeeeteee e e e e e eeeeesbeaeeeeeeseeesstanaaeeeeeseeeees 34
3.3.1 Relaxation-Legalization Scenic Controlling Methodcccoeeeiivvviiiiiiiieeeiiieeinnene, 36
3.3.2 TCR-driven R&R SChEME ... e 40
3.3.3 Throughput CoNtrolliNG.....cceeiveeiiiiiie e et e e e e e eeeesaaaans 42
3.4 EXPErimental RESUILS........ooviiiiiiiiiie et e ettt e e e e e e e e e et e e e e e e s eeessbaaaeeeeeseeenns 43
3.4.1 Compare E-Grace with other industrial RCE t0Ols.........ccceeiveeeiiiieiiiiiiiieee e, 43
3.4.2 Effectiveness of each Innovation in E-Gracecccuuveeieeiiiiiiiiiiiiieceeee e 45
I T 012 4 0. = VSN 50

Chapter 4 Ropt: Optimization of Placement Solutions for Routability 51

o R 1o {4 oo [ot o o P PSSP U PPP PP 51
N A M (o) o111 0 s WD It ol T o] 1o] o HP PP 53
4.3 Case Study for Placement Solutions in DAC CoNtestuuueeeiieeeeiiieeiiiiiiieeeeeeeeeerieeeeen 54
4.3.1 Framework for Performing Detailed ROULINGovveeiiieiiiiieiiiiiiieeeeeeeeer e, 55
4.3.2 Mismatch between Global and Detailed Routability..........cccccvvveiieeeeiiieeiiiieennn.n. 56
4.3.3 What Causes Routing Violationsccuuvueiiieiiiiieeiiiiieeeeeeeeeetee e 58
4.4 Proposed Routability OPtmMIzeruueiiieiiiieeecccee e 60
4.4.1 Local-Routability-Aware Global Routing Modelccooeeeeiiveeiiiiiiiiieeeeieeeeieeeee, 60
4.4.2 Routing-cost-driven Global Re-Placementccouvveiiiieiiiieeeiiiiiieeeeeeeeeereeeeen 63
4.4.3 Legalization with Global Routing Preserved.........ccovveeeiveeiiieeeeiiiiiieeeeeeeeeeerieeeeen 66
4.4.4 Local Detailed PIacemMeNt......ccooiiiiiiiiiiieeee ettt 67
4.5 EXPerimental RESUIS......uu.iiie it ie et e et i e e e e eeeetre e e e e eeeeeeearaa e eeeeeseeassaanneeeeas 68
4.5.1 Global Routability: Evaluation by NCTU=GR 2.0 i....c.vuuiiieeiiiieeeiiccieeeeeeeeeeereee e 69
4.5.2 Effective Routability: Evaluation by Wroute......cc.cciiveieieee e 71
4.5.3 Comparison between-Abacus and OQur Legalizer.......cc.ciiieevvveeiiniiieeeeeieeeeiieeeeeen, 75
4.6 Summary "W | e—— R R N M P e ere e eneeeea 76

Chapter 5 NCTU-GR 2.0: Global Routing with Bounded-Length Maze Routing78

5.1 IntroductionBl.......... . v(\. BB ... 78
5.2 Problem DESCLIPLIONcovvvuiiiieeeiitiee e ttnaeeeeeeeeeeesbnnnaeeeeeeseessas taianeseessesssssnnnnseeeessesssssnnnns 80
5.3 Proposed Approaches to Improve Routing Quality scctvvieeiiiieeeiiieeiiiiceieee e, 81
5.3.1 BLMR..... % ... 0 NOF N B = B b B e 81
5.3.2 RSMT-Aware ROULING SCREMEuuuiiieiiiieeeiceiie ittt et e e eeeaa s 88
5.3.3 Dynamically Adjusted History Cost FUNCLION ..ciiciiciiiiiiiiiiieee e, 90

5.4 Design FIOW Of NCTU-GR 2.0iiiiiummsssmiieeeesesernmnnneeeeeeeeesmmiiieeeeessesssrmnmmneeeessssssssmnnns 91
5.5 EXPerimental RESUILS......covuuuiiiieeeeeiie ettt eeeessanans 94
5.5.1 Comparing Traditional Maze Routings With BLMRcccooveeiiiiiiiiiiiiiiieeeeeeeeeevnenn, 94
5.5.2 The Effectiveness of RSMT-aware ROULINGcieeeeiiiieiiiiiiieeeeeeeeeertceeeee e e eeeeesnnaen 96
5.5.3 Comparison of Optimal-BLMR and Heuristic-BLMRcccoeeeviivveiiiiiiieeeeeeeeeennenn, 96
5.5.4 Routing Result Comparison of Sequential ROULErs........cccevveeeiiiieeiiiiiiieeeeeeeeeerieen, 97

o ST U T o120 = 1 Y 100
Chapter 6 Post3DGR: Post Optimization of 3D Global Routing Results 101
ST R [0 o o [V A To Yo FA TP PPPPPPPPPPPN 101
T A o] o] (= o o W D =T ol [o) f (o o FER PO UUPPPRt 104
6.3 Design FIOW OF POST3DGR ...covviuiiiiiieiiiieeitiiiiee e e e e eeeetiiiee e e e e e e eeeebteaeeeeeseeeessananeeeeeseennns 104
6.4 Negotiation-based Layer Assignment (NLA).........oouuiiiiiieeeiiieeeiiiieieeeeeeeeeevreeeeeeeeeeeens 107
6.4.1 Algorithm FIOW Of NLA ...t e e e e e e eeeer e e e eeeeeeeens 108

6.4.2 MCSNLA: Minimum-cost Single Net Layer Assignment......cccoeeeeevveevviiciieeeeeeeennns 109

6.4.3 Congestion Cost FOrMUIGTIONS.......uuiiieeeeiieeiiiciie et eeeeeer e e e e e eeeens 115

6.5 EXPErimeENntal RESUILS.......coveiiiiiiiie et e e e e e e et s e e e e e e e eeeabaaneeeeeeeeenns 117
6.5.1 Effectiven@ss Of NLA.... ..o e 118

6.5.2 Effctiveness Of POSEIDGRcceeiiiiiieiececcccce s 119

6.5.3 Consideration of Antenna Effect......ccccoeeeeeeeeiiiiiiiieceeeeceecccceeeee e 121

N ST 010 0 0. = VN 122
Chapter 7 Conclusions and Future WOrKsc.ccccceeireeeeciiiineencccninennnsesinennsecsnennes 123
2% S o o Yo (1 o TPt 123
7.2 FULUIE WOTKS .eeeiitiiiiteiittittiitetteeeeeet ettt a et aaesaasaassts s sss s ssassssssssssnsnnnsnnnsnnnnnnnnns 124
BibliOBraphyciceeeeiiiiiicicitreccinirreerccrreeeecerreeneceetrrennseessennsssessennsssssssannnssnnnes 125

viii

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Fig

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

1.1

1.2
1.3

1.4.
L.5.
2.1.

2.2.
2.3.
2.4.
2.5.
2.6.

2.7.
2.8.
2.9.
. 2.10.
3.1.
3.2.
3.3.

3.4.

3.5.
3.6.
3.7.

List of Figures

(a) A placement solution; (b) a global routing result; (c) a detailed routing result of

I (5153 T 1 U U PP PPPRPN 1
Routability-driven placement and routing (P&R) flow..........cooeevviiiiiiiiiiiiiiiiiieeee, 2
(a) partition a placement into a 3D array of G-cells; (b) model the 3D array of

G-cells into a grid graph; (c¢) typical global routing flow...........cccceeveevriiiiiiiiieeeeees 5
modern 3D global routing floW.........cooeiiiiiiiiiiiie e 6
Four-pin net deCOMPOSIEIONuviiiiieeeieiiiiiiiieeeeeeeeeieee e e e e e e st eeeeeeeeeennnaraeeeeeeaeens 7

(a) Vertically monotonic routing path; (b) horizontally monotonic routing path; (c)

routing path combining vertically and horizontally monotonic routing.c............ 12
ExXample 0f VIM TOULINE, . ittt eiaeeiee s i e et e s eiiiiaeeeeeeeeeeearreeeeeeeeeeennnnannneeeeeaeens 14
The proposed vertically monotonic routing algorithm..................ccccoooiiiiiiiniineennn, 15
The pseudo code of hybrid unilateral monotonic routing algorithm 17
Four path types in B with CONZESted TEZIONSvvueeeeihiiiiieiiiieeeeeiieeeeeieeeeeeireeee e 18

(a) Routing result of 3-bend routing with two overflows; (b) routing result of

escaping routing with an overflow; (¢) routing result of the proposed HUM

routing WithoUt OVETTIOWS. cooeee it it e Bt e e e e e aaaeeeeeee e 19
Example of congestion-aware bounding boX eXpansion.......cueu..eeeeecvveeeeriirieeeerinereeennns 20
Design flow Oldliftce A9 S M= lo B F8 Y 22
Overflow converge curves of Grace and NCTU-GR 2.0ccccceeeevviiiiiiiiieeeeeee, 25
Congestion maps of s4 Ripple generated by (a) NCTU-GR 2.0 and (b) Grace............. 27
Congestion maps obtained by different RCES................cccoooviiiiiiiiiiiiii e, 30
Design flow Of E-GTacCe........uuuiiiiiiiieiiiiiiiiiiiee ettt e e e e e e eee e e 34

(a) the initial routing result of a net; (b) a segment exhausts all detour quotas,
resulting another segment has no detour quotas to bypass congestion regions; (c)
the routing result of the proposed R&R stage; (d) the routing result after the
SCENIC 1e@AlIZAtION SEAZEuvvveiieeeeeiiiiiiieeeee e e et e e e e e et e e e e e e e e snaabreaeeeeeeennnnens 36

The routing result obtained by (a) the R&R stage; (b) the first iteration of the soft

legalization phase; (c) the second iteration of the soft legalization phase 39
Curve of co(€) N EQ. (3.5) wuuiiiiiiie ettt e e e et re e e e e e e e 41
Congestions maps of Ind4 obtained by (a) CAing, (b) EGai, (€) GRind.eooovvvvvveeeeeeennnnns 45

Routing results of Ind11. (a) Minimizing overflows; (b) minimizing congestion

ratio to approach 80%:; (c) color SCheme...........ccooiiiiiiiiiiiiiiin 48
ix

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig. 6.11.
Fig. 6.12

3.8.

4.1.

4.2.

4.3.
4.4.
4.5.
4.6.
5.1.
5.2.

5.3.
54.
5.5.
6.1.

6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
Fig. 6.10.

Routing results of Ind11 (a) without extra blockages; (b) with 2% extra blockages;

(c) With 5% extra bIOCKAZESeeeeeeeiiiiiiiiiieee et e e e e e e e e e 50
Placement solutions of s19 obtained by (a) Ripple; (b) mPL; (c) SimPLR; (d)

INTUPIACE. ..ttt ettt e e e e e e ettt e e e e e e e s s sabaaaeeeeeeeeennssnneees 58
The local views of the most congested region in the placement solution of (a)

MPL; (b) Ripple; (€) NTUPIACE ..cceeeeeeeiiiiiiiieeee ettt e e 59
Design flow of the proposed routability optimizer Ropt..........ccccvvvviiiiiiieiniiiiiiieeeenn. 60
Pseudo code of the algorithm for FOPG problemcccccovviiiiiiiiiiiiiieiieeeee, 64
An example of the proposed heuristic algorithm for FOPG problem...........ccc...ccccc..... 65
Pseudo code of local detailed placement.............cooocuuiiiiiiiieeeiniiiiee e 67
(a) Maze routing within a bounding box; (b) maze routing without bounding box. 80

(a) The search region of the net while L is set to 9; (b) two path candidates P; and

P, from s to v; (¢) ewi(v, £) denotes estimating wirelength from v to ¢ in iteration & 83
Relationship between the routing iteration number and the scaling factor.................... 87
Example of RSMT-awar€ touting SChemC.co.huuiiieieiiteiee i 89
Design flow of NCTU=GR 2.0.......cccoiiiiii i iiiiieeiiiiiit e et eeeeiveeeeesrreeeeeneneeeeeenes 92
Gap of the recognition of good results between 2D routing with layer assignment

and 3D rougEl.............. T " SRR, W& 102
MGR flow ¥ AW U A ... e 103
(a) Design flow of Post3DGR. (b) Design flow of NLAcccoviiiiiiiiiieiieeee 104
Example of the quality improvement in Post3DGRcc..oooiviiiiiiiiiiiieeeeee e 105
The comparison between existing layer assignments and NLAcccceeeveiiieeennnn. 107
An example of single net layer asSigNMENt..........c.eeeeieiiiiiieeriiiiee e e 109
The pseudo code Of MUCSNLAot e e e e e e e e e e 111
Procedure InitSOL 0f MCSNLA ...t 112
Procedure EnumSol of MCSNLAot 112
An example for constructing @ 3D trE€ £ 3..uuvvveeeeeeeiiiiiiiiieee e 113
An example of ENUMSOLooviiiiiiii e 113

The overflow reduction stage of NLA resolves overflow (OF) of adaptec2 at the
COSt OF INCTEASINZ VIAS ...uuvvviveeieeeeeeeiiiiiiteeeeeeeeessienrareeeeeeeasansnssereeeeeseessssssssreeeeeesesnnnnes 116

Table 1.1
Table 1.2
Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 3.1
Table 3.2

Table 3.3
Table 3.4
Table 3.5

Table 3.6
Table 3.7

Table 3.8
Table 4.1

Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6

Table 4.7
Table 4.8

List of Tables

Recent global routing re€Searchescoeeeevviiiiiiieeeieiciieee e 9
The issues disccused in recent global routing researches..........ccccvveeeeeeeiiiiiniieeennnnnn. 9

Comparison total overflows between NCTU-GR 2.0 and Grace in a given time
DUAGEL. ...t e e e et e e e e e e et e e e e e e e e raaaeeeeeeannanaaees 24

Comparison the routing results between NCTU-GR 2.0 and Grace without time
TIMIEALION. Lttt 26

The usage of the proposed unilateral monotonic routing and HUM routing

ALGOTTERIMS ..t e e e e e e e e e e e e aeeeeeeas 27
Comparison between congestion-aware box expansion scheme and tradtional

scheme......cccccceeeee. g YA DA Tl B . &ccoooiiiiiiiiee et e 28
Design INfOrmMation .. .uii . eeeeeeiiiiiiiee e i ase e sttt eeeeeeeeeenabrareeeeeeeensnsanaaees 43

Routing results comparison between E-Grace, industrial congestion analyzer

and real roliiel#..... N0 B il M. o " ... OB ..., 44
Design Infainiation S==————ij [N, SEEY ... BBl ..., 45
Different Versions Of B-GIaCE.........ccimm it e e e e eeeeeeeeeaans 46

Effectiveness of using relaxation-legalization method to handle the Scenic

Constrainjgi R 0 A 46
Route Ind11 with different ObDJECHIVES «.uuvierisiivrieeeeneiie e ettt e e eeciieee e e e eireeee e 47
Effectiveness of using throughput controlling method to trade off runtime and

routing quality ... 4 . P s eI R T........ooeieeeiiienniiiinneeeeeeeeenneraaneees 49
Route Ind11 with extra BlOCKAZEScoiiuei i 49
Comparing the placement solutions in DACI2 contest based on the DACI12

metric, violations and TLIMWt 57
Benchmarks' iInformation............c.eoiiiiiiiiii e 68
Ropt with different featuresoeiveeiiiiiiiiiiiieeeeeee e 69
Global routing result comparison between NTUplace, Ropt;, Ropt; and Ropts 70
Detailed routing results of NTUPIACEcevvviiiiiiiieeiiiieeeeeeeeeee e 71
Detailed routing result comparison between NTUplace, Ropts, Ropts, Ropts and

0] o 1 PP PPPPPPPPPRPRRRt 72
Comparing Detailed routing results of mPL and Ropte.........ccocvvvviieiieieniiiiiiiiieenen. 74
Comparing Detailed routing results of Ripple and Ropts........cccvvvvveeeeeeeiiiiiiiiiennnnnn. 74

X1

Table 4.9
Table 4.10

Table 4.11
Table 5.1
Table 5.2
Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 6.1

Table 6.2

Table 6.3
Table 6.4
Table 6.5

Comparing Detailed routing results of SImPLR and Ropts.........ccoovuveeeiniiiiiinnnnieeen.

Comparison between the detailed routing results of the placement solutions in
DACT2 CONLESL....ceiiniiiiiiiiiitiee ettt e et e e e e e e e s

Comparison between Abacus and our legalizer............ccccceevveiiiiiiiiieeieeiiieeeeee,
Main features of modern global TOULETsSceviieeiiiiiiiiiiiiieee e,
Net ordering methods COMPATISIONeiiiieeiieiiiiiiiieee e e et e e e e e eiiireeeeeeeeeeeees

Routing result comparison between maze routing w/ and w/o bounding box and

bounded-length Maze TOUtINGceiviiiiiiiiiiiiiiee e e e

Comparison of the routing result of H-BLMR-GR with and without
RSMT-aware routing SChEemEccceeiviiiiiiiiiieiee e

Comparision of the routing result of global routers with heuristic-BLMR,
Optimal-BLMR and [27] ... oot ottt e e et e e e e e e e e ievaraeeeeeeeas

Comparison between NCTU-GR 2.0 and the other routers on overflow-free

Comparison between NCTU-GR 2.0 and the other routers on hard-to-route
benchmagksH Q. Eeeeill NN Wl ORI AW ...,

Comparing NLA with previous layer assignment works on via count

MINTMIZALION PIODICIN ...eeieiii ittt e a2 e e e et e e e e e e e e e eneeaeneeas

The quality variations of NLA and [17] with different assignment ordering

sequences W AN AP U Bedelol . FEN ..o
The wirelength improvement and runtime of Post3DGRcccccooeviiiiiennnnnn.
Comparing NCTU-3D-GR 2.0 with other 3D routers.............cccvvvvveeeeeeeriiiiiiieeeeen,

Comparing antenna-aware NLA with other layer assignment algorithms

Xii

Chapter 1 Introduction

1.1 Overveiw of this Dissertation

With ceaseless advances in semiconductor technology shrinkage, the main contributing factors to the
increasingly more challenging routing problem include the high number of metal layers, wide range of
metal thickness, and complex design rules, thus routability has become a critical issue in VLSI physical
design flow. To address the routability issue, global routing plays an important role since global routing
bridges the gap between placement and detailed routing. In traditional physical design flow, the global
routing stage follows the placement stage to yield a rough routing result for most nets, and then the
detailed routing stage based on the rough routing result completes physical routes for every net and
finally realizes a detailed routing result. For example, Figs. 1.1(a), (b) and (c) respectively show a
placement solution, a global routing result-and a detailed routing result for-a design, in which the gray
rectangles denote macros, the small rectangles denote cells, and red circles denote pins of a net. Figure
1.1 illustrates that global routing identifies a set of routing regions that the net should pass through, and

detailed routing finds a physical routing path in these regions.

S 1 1
(2) (b)

Fig. 1.1 (a) A placement solution; (b) a global routing result; (c) a detailed routing result of a design.

In this dissertation, a routability-driven placement and routing (P&R) flow (Fig. 1.2) is presented
based on the proposed global routing engines and post-placement routability optimizer. The proposed

global routing engines can not only cooperate with placers to obtain better routability placement

solutions, but can also yield high-quality global routing results so that detailed routers can apply the
global routing results to generate good detailed routing results. Compared to the traditional placement
and routing flow, the flow shown in Fig. 1.2 pays more attention to the interaction between placement
and routing and optimizes the main factors to influence routability such like global congestion, local
congestion, wirelength and via count, which can detect and fix the congestion problems in the early
stages and thus contributes to faster design closure. The red boxes in Fig. 1.2 highlight the contributions

of this dissertation to deal with routability issue, introduced in the following four paragraphs.

Placement Stage

C Design B

Y Routing Stage
Placer > Global Router
$ 7
Congestion Estimator IPost 3D Global Router

!
Detailed Router

}
Routability Optimizer <__Routingresult _>

Fig. 1.2 Routability-driven placement and routing (P&R) flow.

To avoid wasting time on routing unroutable designs, a routing congestion estimator (RCE) can help
designers to fast judge whether a design is routable in the early stages to speed up the design closure.
Also, a RCE can cooperate with placers to optimize routability. Thus, this dissertation presents a
global-routing-based RCE cooperating with placers to improve routability., The proposed
global-routing-based RCE can offer more accurate routing congestion estimation than
probabilistic-based RCE [35, 36] since global-routing-based RCE can better capture the actual routing
behaviors. However, global-routing-based RCE is typically slower than probabilistic-based RCEs.
Because a RCE may be frequently launched in the placement stage, the placement stage would slow
down if the launched RCE is not fast enough. Accordingly, the objective of a global-routing-based RCE
is to identify an accurate congestion map as fast as possible. This dissertation presents an accurate and

fast global-routing-based RCE called Grace. In addition to testing Grace on academic benchmarks, we

2

also enhance Grace to fulfill industrial requirements and then apply the enhanced Grace in the industrial
design flow.

In the flow of Fig.1.2, RCE reports the congestion information of a placement solution to placers,
and then placers can move cells based on the congestion map to improve the placement solution's
routability. However, as cells move, the congestion map also changes, thereby degrading the
effectiveness to improve the routability of a placement. To resolve this problem, we develop a
routability optimizer Ropt that takes a placement solution and optimizes its routability by incremental
place-and-route. Ropt always maintains a global routing instance based on the current placement
solution. The global routing instance is built-on a local-routability-aware model. Therefore, the global
routing instance provides both global and local congestion information to guide the placement
algorithms. Also, the placement algorithms in Ropt invoke a global routing engine to decide the placed
locations for movable cells.

After a placement solution is optimized by Ropt, the proposed global router NCTU-GR 2.0 is used
to identify a high-quality global routing result of the placement solution to provide a good blueprint for
detailed routing. Generally, the runtime of the detailed routing stage is hundred or thousand times of
that of the global routing stage. Good global routing results can diminish the time of detailed routing
and promote the final interconnection quality significantly. Because the routing quality of a global
routing result can be measured by the total overflow and total wirelength, minimizing overflows and
wirelength is the major task for global routing researches [3-21], where overflow means that a region's
routing demand exceeds its routing capacity. Compared to other state-of-the-art global routers [6, 11, 16,
17], the proposed NCTU-GR 2.0 can get global routing results with fewer overflows and shorter
wirelength. Note that, although Grace can be treated as a light global router, the algorithms used in
Grace and NCTU-GR 2.0 are largely different since their purposes are different. Chapter 5 will detail
the algorithmic differences between designing a global-routing-based RCE and a global router.

With semiconductor technology shrinkage, the number of metal layers ceaselessly increases. Thus,

the problem of planning routing wires on which metal layers becomes more challenging. The layer

3

planning for routing wires impacts the amount of vias, timing, and many manufacturing issues such like
antenna effect and double-vias. However, the typical global routing stage ignores these issues and
leaves these issues to detailed routing, which may make detailed routers struggle for these issues.
Accordingly, we develop a post-3D-global-routing tool Post3DGR between global routing and detailed
routing to refine a given 3D global routing result, which can ease the effort of detailed routers to speed
up the design closure. The proposed Post3DGR can reduce the vias, congestion, and wirelength of a
given 3D global routing result by re-routing nets and re-planning wires' layers. With some modifications,
Post3DGR also can take antenna effect into account.

The rest of this dissertation is organized as follows. Chapter 1 introduces the problem formulation
and background of global routing. Chapter 2 presents a fast global-routing-based RCE called Grace
whose goal is to identify a satisfactory global routing result to predict routing congestion as fast as
possible. Chapter 3 presents an enhanced Grace applied in the industrial flow to consider timing and
local congestion, and target congestion ratio. Chapters 4 introduces the proposed incremental
place-and-route tool Ropt that can optimize the routability of a given placement solution. Chapter 5
presents a global router called NCTU-GR 2.0 whose objective is to obtain high-quality global routing
results in a reasonable runtime to guide detailed routers. A post-3D-global-routing tool Post3DGR is

detailed in Chapter 5. Finally, Chapter 7 draws conclusions.

1.2 Background

In global routing problem, typically the given placement solution is partitioned into a 3-dimension
(3D) array of global cells (Fig. 1.3(a)), and then the array of global cells is modeled to a 3D grid graph
(Fig. 1.3(b)). Generally, there are two strategies to deal with global routing problem on the 3D grid
graph. One directly performs global routing on a 3D grid graph [3-6]. Although directly performing
global routing on a 3D grid graph may achieve a better result, it is time-consuming. Thus, the
mainstream approach is to condense 3D grid graph into 2D grid graph first, and then peform 2D global

routing to obtain a 2D routing result. Finally, layer assignment algorithms [17, 27-33] assign each

routing wire to the corresponding metal layers to obtain a 3D global routing result [7-21]. Figure 1.3(c)
shows the general flow adopted in most global routers to tackle 3D global routing porblem, the

functions of each stage are detailed in the follows.

@Iacement SolutioD
]

Building Grid Graph
¥

Grid node Grid edge

Global cell \ Net Decomposition
¥
é /g Initial Routing
¥
é/ Negotiation-based
§/ Rip-up and Rerouting
¥

Layer Assignment

¥
@obal Routing Res@
(a) (b) (c)
Fig. 1.3 (a) partition a placement into-a 3D array of G-cells; (b) model the 3D array of G-cells into a

grid graph; (c) typical global routing flow.

1.2.1 Building Grid Graph and the Objectives of Global Routing

In the grid graph, each grid node refers to a global cell (G-cell), and each grid edge corresponds to a
boundary between two abutting global cells in the same layer. Meanwhile, each via edge connects two
abutting G-cells in two adjacent layers. The number of routing tracks that can be accommodated across
the abutting boundary is defined as the capacity c(e) of a grid edge e, and the number of wires that pass
through grid edge e is called grid edge’s demand d(e). The overflow of a grid edge e is defined
max(d(e)-c(e), 0), the total overflow is the sum of overflows on all grid edges, and the maximum
overflow is the maximum overflow among all edges. For simplicity, the capacity of each via edge is not
limited, which is also adopted in most of global routing researches [3-21]. Given the pins' locations of
each net distributed on the grid graph, the objective of global routing problem is to identify a highly
routable global path to connect the pins of each net. The quality of a global routing result is generally
measured by the total overflow and wirelength.

Figure 1.4 shows how to compute the capacity of 2D grid edges in the mainstream flow of 2D global

5

routing with layer assignment, in which the numbers next to 3D grid edges denote the capacity of the
3D edges. After the 3D grid graph is compacted to a 2D graph, the capacity of a 2D grid edge is

obtained by adding up the capacities of its corresponding 3D grid edges.

R T b i _
¢ ;.,_' 10. ¢ == 10, ?@ Graph Q- Q-
i

b---4-;?————1ljﬁ' Compaction : : |

$10 €30 |

Y S - G 15 IL

Fs LTV " O
2D Global
Routing ‘

e o (e O

ATy Assignment | !

, h l l

Fig. 1.4. modern 3D global routing flow.

1.2.2 Net Decomposition

Most global routers decompose each multi-pin net into two-pin subnets, because net decomposition
can simplify a multi-terminal routing problem to a two-terminal routing problem. Before routing stages,
the rectilinear Steiner minimal tree (RSMT) or rectilinear minimum spanning tree (RMST) construction
algorithms are commonly used to generate the initial topology for each multi-pin net and then each
multi-pin net is decomposed into two-pin subnets based on its topology. For example, Figs. 1.5(a) and
1.5(b) show the initial topologies of a four-pin net generated by RSMT and RMST, respectively, in
which the green rectangle denotes a Steiner point, and the topologies of the four-pin net in Figs. 1.5(a)
and 1.5(b) can be decomposed to 4 and 3 two-pin subnets, respectively. Because a RSMT has shorter
wire length than a RMST has, net decomposition by RSMT is popular in many literature. FLUTE [23]
is a very fast and accurate RSMT construction tool, which is widely used by many modern global
routers. FLUTE not only quickly constructs a good RSMT for a multi-pin net, but also obtains optimal
RSMTs for nets with nine or fewer pins. However, FGR [3] indicates that the RSMT has less routing

6

flexibility than the RMST as it owns Steiner points and generates more flat segments than the RMST,
and the used data structure of RSMTs is more complex than that of RMSTs. On the contrary, the RMST
can simply complete each subnet’s routing with pattern routing or monotonic routing to avoid
congestion regions. Consider wirelength and routing flexibility, in which a RMST that encourages
multiple two-pin routings to merge together with multiple paths that pass through the same grid edges
(Fig. 1.5(c)). This ideal solution avoids passing through congested regions by using a shorter total wire
length than that of a RMST that does not encourage finding joint wires. However, how to identify a

RMST with joint wires is a challenge.

® O joint wire

w

T3

No

v

O @0 LI O
(a) (b) (c)
Fig. 1.5. Four-pin net decomposition by (a) RSMT; (b) RMST; (c) RMST with a joint wire, subnets

n; and n; share a joint wire.

1.2.3 Pattern Routing and Monotonic Routing

Pattern routing adopts specific routing patterns to connect two pins. The most common patterns are
L-shaped or Z-shaped. The main advantage of pattern routing is that it can complete the path searching
in a very short time, but its solution space is very tiny. To mitigate the huge performance gap between
pattern routing and maze routing, Pan et al. [14] present monotonic routing to enrich the solution space.
Monotonic routing uses the dynamic-programming technique to identify a routing path from the source
to the target without any detour. The time complexity of monotonic routing in a m x n grid graph is

O(mn), which is the same as that of the Z-shaped pattern routing.

1.2.4 Negotiation-based Rip-up and Rerouting (NRR)

Rip-up and re-routing technique is widely used in global and detailed routing. Given an illegal

7

routing solution, rip-up and rerouting technique iteratively removes the nets with violations and reroutes
them sequentially to expel violations. In global routing problem, a violation occurs when an overflow is
produced. Widely, the negotiation technique, as proposed in PathFinder [22], is associated with rip-up
and re-routing technique (NRR) in modern global routers to improve the ability of overflow removal.
The main idea of NRR is to increase the penalty of a grid edge at current iteration that overflowed at the
previous iteration. Thus, path searching intends to avoid passing previously overflowed grid edges. [22]
formulates the negotiation-based routing cost of grid edges e as follows,
¢, =(b,+h)xp,, (L.1)

where ¢, represents the routing cost of e; b. .denotes the base cost; /4. denotes the history cost, and p.
denotes the congestion penalty. The history cost /. increases as overflow occurs. The value of 4, in the

(k+1)-th iteration is given by:

hk+1 [

e

k : |
{he + hjeif eis overﬂowed’ (12)

hf otherwise

where A =1, hin is a constant, and & is updated in every iteration. In addition, FGR [3] presents
another formula to preserve the base cost as follows.
c,=b,+h xp,. (1.3)

Several variations of negotiation-based cost functions-have been discussed in [10-12, 16-17].

1.2.5 Layer Assignment

The goal of layer assignment in global routing is to translate a 2D global routing result into a 3D
result on minimizing the number of vias while not changing routing topology or increasing any
overflows, which is called the congestion-constraint layer assignment problem. Congestion-constrained
layer assignment problem for via minimization has been proven to be NP-complete [34] and extensively
studied. BoxRouter2.0 [9] adopted integer linear programming to minimize via count minimization.
FGR [3] greedily assigned net edges to the corresponding metal layers by heuristics. Lee ef al. proposed
an efficient sequence layer assignment algorithm called COLA [27], which determined net assignment

8

order at first and then assigning each net to the appropriate layer by a dynamic-programming technique.
FastRoute 4.0 [16] decomposes multi-pin nets to two-pin net, then using the dynamic-programming
algorithm to assign each two-pin net one bye one. Dai et al. [17] presented a congestion-relaxed layer
assignment with a layer shifting algorithm, followed by net rip-up and re-assigning to further reduce the
number of vias. In addition, some researchers extended the layer assignment problem to consider via

overflow [28-29], double patterning [30], timing [31], and antenna effect [32-33].

1.2.6 Comparison of Recent Global Routers

Table 1.1 lists the well-know global routers developed in recent six years. Although most global
routers in Table 1.1 are based on the global routing flow shown in Fig. 1.3(c), they have different
opinions on several issues. Table 1.2 shows the issues that are widely discussed in recent global routing
researches. For instance, the routers in-[3,-7, 71] use RMST to be the initial tree topology for each net,
while the routers in [16, 71] use RSMT; NTHU-Route [11] reroutes the nets in the un-congested region
earlier, while the routers in [3, 12, 17] reroutes the nets in the congested region earlier; Box-Router [9,
70] rips-up a set of nets and then reroutes these nets one by one, while the routers in [4, 7, 11, 17] rip-up
a net and then reroute it immediately. On the parallel routing issues, GRIP [4, 5] parallelize global
routing on a cluster computing environment, NCTU-GR [18, 71] performs on a many-core server, the

router in [19] performs on a GPU-CPU hybrid platform.

TABLE 1.1 RECENT GLOBAL ROUTING RESEARCHES

NTHU-Route [69, 11] FastRoute [13-16] FGR [3, 7] MGR [6]
NTUgr [12] Box-Router 2.0 [70,9] | NCTU-GR [17, 18, 71] Archer [10]
GRIP [4, 5] HybridGR [19] Maize-Router [8]

TABLE 1.2 THE ISSUES DISCCUSED IN RECENT GLOBAL ROUTING RESEARCHES

Net decomposition [3,7 11,16, 71] Routing algorithms [6, 8,10, 12, 14, 16, 71]
Routing nets ordering [3, 11, 12, 17] | Layer assignment approaches [3,9, 16, 17]
Rip-up and rerouting [4,7,9.11, 17, Routing cost formulation [3,7,10, 11, 12, 13, 16,

scheme 70] 17, 69, 71]
Multi-threaded routing [4, 5,19, 71]

Chapter 2 Grace: A Fast Global-routng-based
Routing Congestion Estimator

2.1 Introduction

Routability is of primary concern in nanometer-scale design. Considering the routability issue in
placement stage can avoid generating an unroutable design. Two strategies are generally adopted by
routability-driven placement to estimate the congested regions (hot spots). First, the probabilistic
method estimates the routing congestion of a region by using the pin density and the nets’ bounding box
or Steiner tree [35, 36]. Although fast, this method typically fails to eapture actual routing behavior, and
therefore has low estimation accuracy. The second congestion estimation strategy performs global
routing to analyze routing congestion [37]. The latter method can identify more precisely the congestion
information. However, such an approach is markedly slower than the former one. Among the modern
routability-driven placers, Ripple [38], NTUplace [39] and the placers in [40, 41] used the former
strategy, whereas SImPLR [42], IPR [43], CRISP [44] and GRplacer [45] adopted the latter one. Clearly,
it is inevitable to trade-off routing quality for better run-time performance when these built-in global
routers are concerned.

Maze routing with A* search scheme is the indispensable kernel algorithm of state-of-the-art global
routers [3-19]. For hard-to-route benchmarks, these routers attempt to eliminate overflows by iteratively
ripping up and rerouting overflowed nets by using maze routing. However, maze routing is slower than
other routing algorithms, such as pattern routing and monotonic routing algorithms. Several works have
attempted to reduce runtime by developing alternative routing algorithms in order to lower the
frequency of invoking maze routing. For instance, Archer [10] developed the U-shaped pattern routing
algorithm; NTUgr [12] presented the escaping routing algorithm; and FastRoute 4.0 [16] developed the
3-bend routing algorithm. These routing algorithms run faster than maze routing within a quite limited
solution space. Thus, in these global routers, maze routing continues to be the last-gasp approach to

10

identify better routes. Consequently, maze routing still consumes the majority of the runtime in the

entire routing flow.

This work presents an extremely fast global router called Grace, which does not include maze
routing to achieve high speedup as an ideal built-in routing congestion estimator for placers.

(a) This work presents two efficient routing algorithms, called unilateral monotonic routing and
hybrid unilateral monotonic (HUM) routing. HUM routing can identify a better routing path than
U-shaped pattern routing, 3-bend routing, and escaping routing. Moreover, the time complexity of
HUM routing is the same as those of these three approaches, linear in terms of the size of the
routing region.

(b) Many routers adopt bounding boxes to limit the searching region of routing. Consequently, the
bounding box size affects the routing quality and runtime. This work presents an efficient
congestion-aware bounding box expansion.scheme. With this scheme, the proposed router can
improve runtime by-50% than without this scheme.

(c) The proposed router relies on HUM routing to eliminate overflows without invoking maze routing.
Experimental results indicate that the proposed router achieves a routing quality similar to that of
the proposed maze-routing-based router NCTU-GR 2.0 [18]. Moreover, the run-times of the
proposed router are up to 26 times faster than those of [18] on large benchmarks.

The rest of this chapter is organized as follows. Section 2 introduces the global routing problem and
the research objective. Section 3 then presents the proposed unilateral monotonic routing, HUM routing
algorithms and a congestion-aware bounding box expansion scheme. Section 4 displays the design flow
of the proposed global router. Section 5 summarizes the experimental results. Conclusions are finally

drawn in Section 6.

2.2 Problem Description

Global routing is formulated as the routing problem on a grid graph G(V, E) , where V denotes the set

of grid cells, and E refers to the set of grid edges. Each grid edge is termed by the proximity of the

11

related G-cells to its two end nodes. The capacity c(e) of a grid edge e indicates the number of routing
tracks that can legally cross the abutting boundary. The number of wires that pass through grid edge e is
called the demand of the grid edge d(e). The overflow of a grid edge e is defined as follows. The total

overflow is the sum of overflows on all edges of E.

verflon(e) {(d(@ — (@) (wirs,).if d(€) > <(©) on

0 ,otherwise

where w; and s; respectively denote the minimum wire width and wire spacing at layer L where e
belongs. In modern designs, higher layers have larger wire width and wire spacing.

Conventionally, overflow and wirelength minimizations have a higher priority than runtime
improvement for global routing that offers a global path to guide the detailed routing of each net.
However, when global router plays the role as a congestion estimator, the runtime issue become more
critical because the estimator have to report the congestion information to placers in a limited time
budget (e.g. around 1~5 min). Accordingly, this work focuses on comply with the limited time budget to

complete global routing.

t @
L

6,
T
] 5
-]
©)

o I

(2) (b) (©)

Fig. 2.1. (a) Vertically monotonic routing path; (b) horizontally monotonic routing path; (c) routing

path combining vertically and horizontally monotonic routing.

2.3 The Proposed Algorithms for Accelerating Routing
Although capable of identifying a detour-free path efficiently, monotonic routing fails to replace
maze routing when a detoured path is required to avoid obstacles or congested regions. A detour is

viewed as a move away from the target. To approach the behavior of maze routing, we develop an

12

extremely fast routing algorithm, called unilateral monotonic routing, capable of seeking a detoured
path and running in the same time complexity as that of monotonic routing. Unilateral monotonic
routing identifies a least-cost routing path within a limited region using minimal horizontal or vertical
distance. Two unilateral monotonic routing types are defined as follows.
Definition. Horizontally/Vertically monotonic (HM/VM) routing identifies the least-cost routing path
from the source to the target using minimal horizontal/vertical distance.

For a HM/VM routing path, a detour occurs only in vertical/horizontal move. Figures 2.1(a) and
2.1(b) illustrate a VM routing path and a HM routing path, respectively, in which the gray rectangles
represent congested regions. Although the solution space of HM or VM routing is less than that of maze
routing, alternatively invoking HM and VM routings together can increase the solution space
significantly. Figure 2.1(c) depicts an example of invoking successive HM and VM routings, the path in

Fig. 2.1(c) consists of a HM routing path from s to.an internal node # and a VM routing path from 7 to u.

2.3.1 Unilateral Monotonic Routing

Without a loss of generality, the proposed unilateral monotonic routing is introduced by using an
example of VM routing shown in Fig. 2.2. At the beginning of VM routing, the congestion map (Fig.
2.2(a)) is formulated into the global routing model (Fig. 2.2(b)), and the congestions is formulated into
the routing cost on each grid edge, then a window is given to enclose the source and target with the
height of vertical distance between the source and target and the width of horizontal distance larger than
that between the source and target (Fig. 2.2(b)). The window size determines the runtime and the
routing quality of the unilateral monotonic routing. Section 3.3 in this chapter will introduce how to
determine the window size. Figure 2.3 shows the pseudo code of the VM routing algorithm, in which
source s and target ¢ are located at (x;, y;) and (x, ;) respectively; B./ and B.r represent the left and
right borders of windows B, respectively; cost(v, u) denotes the routing cost of grid edge e(v, u); d(u)
refers to the least cost of the VM routing path within B from s to u; and 7(u) 1s the predecessor of u. The

algorithm in Fig. 2.3 consists of two stages. The first stage calculates the d(«) value of each node of the

13

O O ¢ O O O O

b o L b B

PO I O 0 DO O

W T

=4 é: e der e .5. I P
(b)

() (d)
® o—pro—pd ®>¢i E-l-—o =g
3 | pyeredd [foe | ¢ |}
o1 [Bpepopipretet
| pperoso | opopoty | pperoso | bty
me&-mpm@w meg-mpm@mm

(e) 6]
Fig. 2.2. Example of VM routing. (a) a congestion map; (b) the routing model of (a), the dotted lines
denote the grid edges; (c) The predecessor of each node u in the row of y-coordinate y; after d(u) is
obtained, the arrow of each node denotes its predecessor; (d) the predecessor of each node u in the
row of y-coordinate y,+1 after /c;(u) is obtained; (e) the predecessor of each node u in the row of

y-coordinate y,+1 after d(u) is obtained; (f) the routing result of VM routing.
bottom row, i.e. the row where the start node belongs. The second stage computes the d(u) values of
nodes in all rows, except for the bottom row, from the row above the bottom row to the top one. The
first stage is a simple sequential examination initiating from the start node towards the left and right
boundaries of B, and then the second stage processes all rows except for the bottom one sequentially
and upwards. In the second stage, based on the dynamic programming algorithm, a two-phase flow is
developed and the d(u) value of each node is computed row by row. The first phase determines the

14

least-cost VM path to connect every node from the start node at the left or bottom side, while the second
phase determines the least-cost VM path to connect every node from the start node at the right side. By
the two-phase operation, the least-cost VM path to reach every node within B from the start node is then

identified.

Algorithm Vertically monotonic routing

Input: source s(x;, y;), target #(x>, y,), bounding box B, cost array d
1. d(s)=0, n(s)= null;

2. forx=x;-1to B.l

3 u=(x, y1), v=(x+1, y1);

4 d(u)=d(v)+ cost(v, u), n(u)= v,
5. end for

6. for x=x,+1to B.r

7 u=(x, y1), v=(x-1, y1);

8 d(u)= d(v)+ cost(v, u), n(u)= v;
9. end for

10. for y=y;+1 to y;

11. u=(B.l,y), v=(B.L, y-1)

12. le(u)= d(v)+ cost(v, u), w(u)=v

13. for x=B.1l+1 to B.r

14. u=(x, y), vi=(x-1, y), vo=(x, y-1);
15. if lep(vy) + cost(vy, u) < d(vz) + cost(va, u)
16. lew(u)= len(vi)+ cost(vy, u), m(u)=v;
17. else

18. le(u)= d(vo)+ cost(va, u), ©(u)=v;

19. end for

20. u=(B.r,y), d(u) = lcp(u)

21. for x=B.r -1 to B./

22. u=(x, y), vi=(x+1, y), d(u) = lcip(u)
23. if d(v;) + cost(vz, u) < d(u)

24. d(u) = d(vs3) + cost(vs, u), m(u)= v;

25. end for

26. end for

Fig. 2.3. The proposed vertically monotonic routing algorithm.

Upon commencement of the second stage, the d(v) value of each node v&(i,y;) for B.[<i<B.r is

identified. By assuming that node u is located at (i, y;+1), lcip(u) is the least of all costs of the VM

15

routing paths from s to # when the predecessor of u is at its left or bottom side, and can be obtained via

the following equation in the first phase,

d(v2)+cost(va,u), if u is on the left boundary of B

min(lei (V) + cost(v, u), d(v2) + cost(va, u)), otherwise (2-2)

lczb(u)={

where v; and v; represent the left and bottom adjacent nodes of u, respectively. During the second phase,
the least cost of VM paths to reach node u from the start node at the right side (denoted by /c,(1)) and
then the least-cost VM path to reach node u from the start node are determined sequentially by the

following equation.

le(u), if wis on the right boundary of B

min(e (u), lep (1) = d(v3) +eost(v3, 1)), otherwise (2.3)

d(u)={

where v; represents the right adjacent node of u. If u is on the right boundary of B, the predecessor of u
must be on the left side or on the bottom side .of u; thus d(u) equals lcy(1). While each node u is
examined sequentially from right to left in the second phase, the least-cost VM path to reach each node
from the start node is then'determined by Eq. (2.3).

In Fig. 2.3, lines 1 to 9 calculate the lcast cost of the VM paths from s to each node ve(i,y;) for
B.I<i<B.r (Fig. 2.2(c)). Next, based on the dynamic programming method, the least-cost VM path from
s to each node of each row within B is identified from the row of y-coordinate y;+1 to the row of
y-coordinate y,, (lines 10 to 26), where lines 11 to 19 identify the values of lc;(u) by Eq. (2.2) and lines
20 to 25 identify the values of d(u) by Eq. (2.3). Figure 2.2(d) shows the predecessor of each node u in
the s-to-u path of lc;(u) in the row of y-coordinate y,+1. Meanwhile, Fig. 2.2(e) shows the predecessor
of each node u in the s-to-u path of d(u) in the row of y-coordinate y,+1. Upon completion of the VM
routing, each node within B has a least-cost VM path to reach s along its predecessor (Fig. 2.2(f)).
Therefore, the least-cost VM path from s to ¢ is also identified. Obviously, the time complexity of

unilateral monotonic routing algorithm is O(|B|) where |B| represents the area size of B.

16

Algorithm Hybrid Unilateral Monotonic Routing
Input: source node s, target node ¢, bounding box B
Initialize cost array Arys, Aryvs, Arvis, Aryu

//Find the paths from each node in B to s

Vertically Monotonic_Routing(s, B.bl, B, Ary,)

Vertically Monotonic_Routing(s, B.tr, B, Ary,s)
Horizontally Monotonic_Routing(s, B.bl, B, Aryns)
Horizontally Monotonic_Routing(s, B.tr, B, Aryps)

//Find the paths from each node in B to ¢

Vertically Monotonic_Routing(z, B.bl, B, Ary.,)

A S B i e

Vertically Monotonic_Routing(z, B.tr, B, Ary.)

—
o)

. Horizontally Monotonic_Routing(z, B.bl, B, Aryy,)

—
—

. Horizontally Monotonic_Routing(#, B.tr, B, Aryi,)

—_—
\S)

. foreach node u in B

mrc(u)=min(Ary,s(w), Ary,s(u))+min(Aryy(u), Aryw(u))
. end foreach

—_—
wm B~ W

. Select the node « in B with-the least mre(u), and then trace back from this node to s and z.

Fig. 2.4. The pseudo code of hybrid unilateral monotonic routing algorithm.

2.3.2 Hybrid Unilateral Monotonic Routing

Compared to maze routing, unilateral monotonic routing still offers a limited solution space to solve
overflows. This section introduces a hybrid unilateral monotonic (HUM) routing algorithm to search for
larger solution space than unilateral monotonic routing offers. The HUM routing concept assumes that
each node within B can be an intermediate point connecting the start and target nodes. The HUM path
consists of two paths, i.e. the path linking the start node with an intermediate point and the path linking
the intermediate point with the target node. Each path can be formed by unilateral monotonic routing.

Since a path can be formed by VM or HM routing, four combinations are available to form a HUM
routing path. By assuming that bounding box B encloses nodes u and v, VMPp,,, and HMPp,y)
represent a VM routing path and a HM routing path connecting # with v within B, respectively. A HUM
routing path connecting s with ¢ belongs to one of the following four path types: (VMPp(su), VMPpu,»),
(VMPg(suy, HMPp, 1), (HMPp.u), VMPpuy) and (HMPpu), HMPgq,)) for each node u within B.

Whereas (VMPgs,u), VMP3u,)) denotes a path concatenation operation that combines two unilateral
17

monotonic paths of one or two type to form a HUM path linking start and end nodes. Figure 2.4 shows
the proposed HUM routing algorithm. The least costs of VMPps), VMPp(u), HMPp(s,,) and HMPp; ., of
each node are stored in the arrays Ary,,, Ary., Aryss and Aryy, respectively, while B.bl and B.tr
represent the nodes at the bottom-left and top-right corners of B, respectively. Lines 3 — 6 regard s as the
start node, and B.b/ and B.tr as pseudo targets. Then, lines 3 and 4 invoking VM routing from s to the
pseudo targets obtain VM routing paths from s to every node within B; lines 5 and 6 invoking HM
routing from s to the pseudo targets obtain HM routing paths from s to every node within B. Similarly,
lines 8 — 11 regard ¢ as the start node and B.b/ and B.tr as the pseudo targets, and then obtain VM
routing paths and HM routing paths from z te every node within B. Accordingly, lines 2 — 11 identify
the value of each element in Axy.g, Aryw, Aryss and Aryy. Thereafter, the least costs of VMPp(),
VMP3(:), HMPp(s,) and HMPpy) for each node u within B are obtained (Fig. 2.5(a)-(d)). The algorithm

then selects the least-cost HUM routing path among the candidates of four path types (lines 12 — 15).

£

(2) (b)

J
(c) (d)

Fig. 2.5. Four path types in B with congested regions (gray rectangles). (a) VMPp(su), (b) VMPp(),

(C) HMPB(S,M), and (d) HMPB(W).

18

The time complexities of three parts, lines 2-11, lines 12-14 and line 15 are all O(|B)).
Correspondingly, the time complexity of HUM routing algorithm is still O(|B|), which is faster than that
of maze routing with A* search scheme (O(|B|log|B|)). Figure 2.6 compares the proposed HUM routing
with 3-bend routing and escaping routing, indicating that the time complexities of 3-bend routing and
escaping routing are also O(|B|). Figures 2.6(a) and 2.6(b) summarize the routing results of 3-bend
routing and escaping routing with two overflows and with an overflow, respectively. In contrast, the
proposed HUM routing algorithm can identify an overflow-free path (Fig. 2.6(c)) with the pattern
(HMPgs,), HMPpg,). Notably, even if HUM routing cannot identify an overflow-free path, it can
always identify a least-cost HUM path which-must cost less than or equal to that of 3-bend routing and
escaping routing. Because, the solution space of HUM routing totally covers and is much larger than

that of 3-bend routing and escaping routing.

i i]

(2) (b) (©)

Fig. 2.6. (a) Routing result of 3-bend routing with two overflows; (b) routing result of escaping

routing with an overflow; (c) routing result of the proposed HUM routing without overflows.

Assume that most of overflowed grid edges within B are aligned in a row similar to the congestion
map in Fig. 2.1(a), the least costs of HMPp(,) and HMPp, s are likely larger than the least costs of
VMPp(s,w) and VMPp, ;. Therefore, the operations of exploring HMPp(s,,) and HMPp,,; can be regarded
as redundant and are thus omitted. Based on this observation, four HUM routing types are explored only
once for every net at the first time when it is routed by HUM routing. If a net is rerouted by HUM

routing in the later routing stage, only the HUM routing type that initially identified the least-cost path

19

is invoked. By this scheme, experimental results indicate that similar routing quality and an

approximately 23% decrease in runtime of HUM routing can be achieved.

2
bt | 10 R g
-
[Ve
-

i i
(b)
|
gl lllll |-||-E I I I I
;.". G] I.@ Tt ®
sy > ;
. o- s
s alun S PR o @
© (d)

Fig. 2.7. Example of congestion-aware bounding box expansion. (a) Routing path with an vertical
overflow; (b) the overflow map of the benchmark superbluel after the initial routing; (c) currently
identified path Py, and path L;, that is expected to be across the left side of the bounding box; (d)
the estimated lower bound cost of Lg, 1s the sum of the costs of P, , and P, , plus manh(v, u)* a.

2.3.3 Congestion-aware Bounding Box Expansion

Bounding box is widely adopted to limit the searching region of routing. In conventional global
routers, the initial bounding box is slightly larger than the minimum rectangle enclosing the terminals of
the routed net. The inability to identify an overflow-free path within the bounding box causes the
bounding box to expand and, then, the overflowed net is rerouted again. The box expansion policy
based on current congestion information has seldom been discussed in the literature. The traditional box
expansion scheme tends to over-expand, subsequently increasing the runtime. For instance, Fig. 2.7(a)
shows a routing path with a vertical overflowed edge. Traditional box expansion chooses to expand the

bounding box along both x and y coordinates to resolve the overflow. However, the bounding box only

20

needs to expand horizontally in Fig. 2.7(a) while the vertical expansion is unnecessary. Figure 2.7(b)
displays the congestion map of the benchmark superbluel after the initial routing. The red regions
represent the overflowed grid edges, which normally range horizontally or vertically, implying that the
situation in Fig. 2.7(a) occurs frequently during routing. Based on this observation, this work presents a
novel congestion-aware bounding box expansion scheme to avoid over expanding.

Before rerouting a net, this work analyzes the amount of horizontal overflowed grid edges (HOEs)
and vertical overflowed grid edges (VOEs) by tracing the routing path of the rerouted net. If the number
of HOEs is more than that of VOEs, the bounding box expands vertically by ¢ units; on the contrary, the
bounding box expands horizontally. If a tie occurs, the bounding box randomly chooses to expand
horizontally or vertically. Single-direction expansion can restrict the sizes of bounding boxes to reduce
the runtime. In our implement, the initial bounding box is set as the minimum rectangle enclosing two
terminals to be routed, and 0 is set to-5+30/r;, where r; denotes the rip-up and rerouting times of the
rerouted net. Moreover, based on the assumption that two opposite sides have different congestion
states, extending the side near the congested region may be unnecessary, implying that the extension of
each boundary of B should be discussed separately. The algorithm examines each boundary side of B to
determine the necessity of box boundary expansion at the end of HUM routing. Without a loss of
generality, the left boundary of B is used. to illustrate the concept. Left boundary expansion can be
regarded to have the intention to find a path Ly, on the left side of B; in addition, L, has a lower routing
cost than that of the currently identified path P, (Fig. 2.7(c)). Namely, a situation in which the routing
cost of Py, is lower than the least cost of L, implies that the left boundary expansion is unnecessary.
However, the least cost of Ly, is unknown because the region on the left side of B has not been explored
yet. Thus, the estimated lower-bound cost of Ly, ecy, is defined by the following equation to evaluate
the necessity of boundary expansion. If the currently identified path Ps; costs less than ec;, the left

boundary remains unchanged at the next expansion of B.

ecr, = minyey, vev, (d(s,v) + d(t,u) + manh(v,u) x a) (2.4)

21

where V; denotes the set of grid nodes on the left boundary of B; d(s,v) and d(¢,u) represent the least
cost of the unilateral monotonic routing paths from s to v and from ¢ to u, respectively; manh(v,u) refers
to the Manhattan distance between v and u; and a is the lower-bound routing cost of a grid edge. In this
work, o is set to 1. Notably, d(s,v) and d(z,u) are known values that have been computed by the HUM
routing (Fig. 2.7(d)). With this, before a net #n; is rerouted, the path of »; is first traced to obtain HOEs
and VOEs. If the number of VOEs is more than that of HOESs, extending the left and right boundaries of
the bounding box B of »; is considered. If »; is not routed by HUM routing in previous routing, the left
and right boundaries of B extend immediately. Otherwise, the decision of boundary expansion is made

according to the previous discussion.

@EEID-| Project 3D to 2D [*| RMST Decomposition || Initial Routing

e Fry

. Negotiation-based !
' Rip-up & Reroute

Rip-up Nets w/ Overflows
¥

Congestion-aware Bounding Box Expansion
1

¥ ¥ ¥
VM HUM HM

Routing Routing Routing
I]]

Yes

Fig. 2.8. Design flow of Grace

2.4 Design Flow of Grace

Figure 2.8 shows the design flow of the proposed routing congestion estimator Grace. First, the
multi-layer routing region is projected on a 2D plan and each net is decomposed into two-pin nets based
on the topology of the RMST because the works in [1, 7, 18] indicate that RMST offers better flexibility
than Steiner tree to avoid blockages or congestion. An initial congestion graph is then generated by
pattern routing and monotonic routing. Next, the rip-up and rerouting stage iteratively reroutes the
overflowed net until an overflow-free routing result is obtained or the runtime exceeds the given time

budget. In the rip-up and rerouting stage, before net »; is rerouted, the bounding box of n; is expanded
22

according to the proposed congestion-aware expansion scheme. For a situation in which the width of the
bounding box is equal to the x-distance between the source and the target of n;, n; is rerouted using HM
routing. Moreover, if the height of the bounding box is equal to the y-distance between the source and

the target of n;, n; is rerouted using VM routing. Otherwise, #; is rerouted by HUM routing.

2.5 Experimental Results

The proposed algorithms are implemented in C/C++ language on a quad-core 2.4 GHz Intel
Xeon-based linux server with a 50GB memory (only a single core is used). By hosting a
routability-driven placement contest, ISPD11 has motivated many researchers to develop effective
modern placers [38, 39, 42]. Ripple [38] and mPL11 placed first in the contest; their contest placement
results are adopted here as the input benchmarks in our experiments. We compare Grace with
NCTU-GR 2.0 [18] which is one of the-fastest global routers. The experiments in [18] indicate that
NCTU-GR 2.0 runs 1.90X, 1.77X and 18.66X faster than NTHU-Route 2.0 [11], FastRoute 4.1 [16],
and NTUgr [12], respectively. In addition, in the old benchmarks [1, 2], the minimum wire spacing and
width are uniform and all pins locate at the lowest layer. In contrast, in new benchmarks [46] used in
this work, the minimum wire spacing and width of different layers are different and pins may locate at
high layers. Because most of traditional routers do not consider these new features, we cannot directly
adopt them to route the new benchmarks. However, recent routers NCTU-GR 2.0, BFG-R [7] and
CGRIP [35] can handle these new features, but the runtime of BFG-R and CGRIP is much larger than
NCTU-GR 2.0. Owing to its robustness and efficiency, the routability-driven placement contest in
DACI12 [47] and ICCADI12 [48] selects NCTU-GR 2.0 to be the evaluation tool. In the following
experiments, NCTU-GR 2.0 and Grace perform on the same machine. Notably, NCTU-GR 2.0 has the
parameters of via cost, wirelength optimization level, pattern routing iteration, monotonic routing
iteration and post routing iteration, which are set to 1, 50, 2, 2 and 0, respectively. The setting of the

rip-up and rerouting stage will be detailed in following sections.

23

TABLE 2.1 COMPARISON TOTAL OVERFLOWS BETWEEN NCTU-GR 2.0
AND GRACE IN A GIVEN TIME BUDGET.
Benchmarks 30 seconds 60 seconds 120 seconds 240 seconds
NCTU Grace NCTU Grace NCTU Grace NCTU Grace
sl_Ripple 14 0 0 0 0 0 0 0
s2_Ripple 724796 | 130866 | 626050 28556 472104 3798 323878 1410
s4 Ripple 66690 236 45100 222 12130 212 698 214
s5 Ripple 107896 4790 73360 404 28354 0 9030 0
s10_Ripple | 597656 | 216364 | 548004 | 114176 | 491294 69646 409308 53502
s12 Ripple | 315122 | 174162 | 265444 | 107274 | 180118 42604 105984 8600
s15 Ripple 92574 2664 72012 16 21048 0 5096 0
s18 Ripple | 356348 | 175542 | 313146 | 145808 | 272598 | 130446 | 188594 | 118630
sl mPLI11 62368 0 8780 0 0 0 0 0
s2 mPLI1 | 1152682 | 486966 | 997796 | 226470 | 857516 67202 739474 24396
s4 mPLI11 112856 11010 78640 900 19334 46 4444 42
s5 mPLI11 354374 71632 294312 42916 230216 27378 126398 20842
s10 mPL11 | 733948 | 271370 | 655464 86286 578376 29116 484624 15314
s12 mPL11 | 1589998 | 1563470 | 1549036 | 1412980 | 1627508 | 1292848 | 1377296 | 1219146
s15 mPL11 | 126138 0 67846 0 11410 0 0 0
s18 mPL11 66710 0 27126 0 0 0 0 0

2.5.1 Comparison between NCTU-GR 2.0 and Grace

Table 2.1 compares NCTU-GR 2.0 and Grace in terms of the ability to eliminate overflows in a
given time budget. The frameworks of NCTU-GR 2.0 and Grace are nearly same; the only difference is
NCTU-GR 2.0 adopts bounded-length maze routing [18] while Grace adopts unilateral monotonic
routing and HUM routing in the rip-up and rerouting stage. Each major column in Table 2.1 lists the
total overflows of the routing results generated by NCTU-GR 2.0 and Grace within a specified time
budget for the rip-up and rerouting stage. Notably, for every benchmark, the runtime excluding the
rip-up and rerouting stage is always less than 40 seconds. Table 2.1 reveals that Grace can eliminate
overflows more efficiently than NCTU-GR 2.0. Given a 30 second time constraint, Grace identifies 4
overflow-free routing results while NCTU-GR 2.0 identifies none. Given a 240 second time constraint,

Grace can identify 8 routing results with overflows less than a thousand, whereas NCTU-GR 2.0

24

identifies only 5 routing results for less than a thousand overflows. Figure 2.9 compares overflow
converge curves of Grace and NCTU-GR 2.0 on benchmarks s2 mPL11, s10 mPL11, s12 Ripple and
s18 Ripple, in which red curve represents NCTU-GR 2.0 while blue curve represents Grace. These

figures demonstrate again that Grace can achieve fewer overflows in short runtime.

1800000 1200000
1600000 - Sz_m P L 1 1 1000000 S 1 O_m P L 1 1
1400000
1200000 - 800000
1000000 -+ 00000
800000
600000 400000
400000 - 200000
200000
0 0
0 30s 60s 120s 240s 0s 30s 60s 120s 240s
450000 700000 -
400000 S12_R|pple 600000 s18_Ripple
350000 500000
300000
250000 400000
200000 300000
150000 200000
100000 -
50000 100000
0 T 0
0Os 30s 60s 120s 240s 0Os 30s 60s 120s 240s

Fig. 2.9. Overflow converge curves of Grace and NCTU-GR 2.0. X-axis and y-axis denote runtime
(sec) and total overflow, respectively. Red curve represents NCTU-GR 2.0 while blue curve

represents Grace.

Table 2.2 compares the routing results of NCTU-GR 2.0 and Grace without a runtime limitation.
Both NCTU-GR 2.0 and Grace iteratively rip-up and reroute the overflowed nets until either all
overflows are eliminated or overflows cannot be reduced by more than 3% in 5 consecutive iterations.
In Table 2.2, MO, TOF, WL and RCPU represent the maximum overflow, total overflows, total global
routing wirelength (including wires and vias) and the runtime (seconds) of the rip-up and rerouting
stage, respectively. Table 2.2 treats NCTU-GR 2.0 as a base line; Ratiojg denotes the average of the
ratio of individual entries in the same column, while Ratiog,n denotes the ratio of the sum of each
column. To reduce the runtime, NCTU-GR 2.0 and Grace both adopt the greedy layer assignment
method, explaining why the via count is not optimized. According to our experiments, the total
wirelength can be further reduced by 7%~15% if the layer assignment algorithms [27] or [28] are

adopted. Table 2.2 indicates that, although the wirelength and overflows of Grace are slightly worse
25

than that of NCTU-GR 2.0, Grace can achieve a 2.75X to 26.83X higher speedup than that of
NCTU-GR 2.0. Moreover, if NCTU-GR 2.0 obtains an overflow-free result for a benchmark, Grace also
can achieve an overflow-free result for the same benchmark. Therefore, Table 2.2 reveals that Grace can
quickly determine a placement solution whether is routable, thus making is suitable as a fast congestion
estimator embedded into routability-driven placers. Figure 2.10 compares the congestion map obtained

by NCTU-GR 2.0 and Grace, in which the brown regions denote the congestion regions. The congestion

maps obtained by NCTU-GR 2.0 and Grace look similar.

TABLE 2.2 COMPARISON THE ROUTING RESULTS BETWEEN NCTU-GR 2.0
AND GRACE WITHOUT TIME LIMITATION.

NCTU-GR:2.0 Grace
Benchmarks MOF | TOF WI; RCPU MOF | TOF WI; RCPU speedup
(10°) (s) 10) |)

sl Ripple | 0 0 160.84 31 0 0 161.63 4 7.61
s2 Ripple 10 1442 350.75 3623 8 1430 358.04 203 17.81
s4 Ripple | 8 224 [122.80 536 6 236 | 124.67 | 30 17.75
sS Ripple | 0 0 198.44 573 0 0 202.02 | 86 6.67
s10_Ripple 8 39222 | 321.59 26509 8 40300 | 336.61 1227 21.61
s12 Ripple| 0 0 260.86 | 1333 0 0 279.49 | 484 2.75
s15 Ripple| O 0 205.07 651 0 0 208.81 60 10.80
s18 Ripple| 20 109514 | 159.10 5174 22 125988 | 162.25 550 9.40
sl mPLI11 0 0 168.81 79 0 0 169.02 9 8.66
s2 mPLI11 8 3884 362.96 51356 8 4566 363.57 1914 26.83
s4 mPL11 2 42 123.89 922 2 42 126.52 94 9.76
s5 mPLI11 14 11210 219.77 6114 18 15474 | 221.02 739 8.27
s10 mPL11| 6 9678 315.31 29158 8 9370 331.49 1159 25.16
s12 mPL11| 64 |1041384 | 272.34 11221 70 1094646 | 259.25 1145 9.8
s15 mPLI1| O 0 193.71 192 0 0 196.6 22 8.62
s18 mPLI1| O 0 108.55 95 0 0 110.72 18 5.15

Ratiojng 1 1 1 1 1.040 1.089 1.018 0.114 -

Ratiogym 1 1 1 1 1.071 1.062 1.019 0.056 -

MOF = maximum overflow; TOF = total overflows; WL = total wirelength; RCPU = runtime of the
rip-up and rerouting stage (sec)

26

" (bj =
Fig. 2.10. Congestion maps of s4 Ripple generated by (a) NCTU-GR 2.0 and (b) Grace.

TABLE 2.3 THE USAGE OF THE PROPOSED UNILATER AL MONOTONIC ROUTING
AND HUM ROUTING ALGORITHMS

Unila. HUM Unila. HUM
s1_Ripple 15519 110 sl mPLI1 73803 3429
s2 Ripple 127654 43237 s2 mPL11 227191 286871
s4 Ripple 71128 13438 s4 mPL11 95966 86565
s5_Ripple 72995 25694 5 mPLI1 64080 178135
s10_Ripple 107671 89837 s10 mPL11 261525 104806
s12 Ripple 375051 369483 s12 mPL11 54984 1103318
s15 Ripple 79893 32905 s15 mPLI11 167487 17001
s18 Ripple 62168 175323 s18 mPLI1 101220 7846

2.5.2 Effectiveness of the Proposed Algorithms

Table 2.3 details the amount of usages of unilateral monotonic routing and HUM routing in Table 2.2.
The column “Unila.” denotes the number of two-pin nets having been routed only by unilateral
monotonic routing in the rip-up and rerouting stage. The column “HUM” denotes the number of two-pin
nets having been routed by HUM routing. Table 2.3 reveals that most overflows in each benchmark can
be solved by unilateral monotonic routing. Because overflows in each benchmark normally range
horizontally or vertically, the proposed unilateral monotonic routing can remove them efficiently. This
table also indicates that most nets do not need complicated detours, so maze routing is unnecessary for

these nets.
27

TABLE 2.4 COMPARISON BETWEEN CONGESTION-AWARE BOX EXPANSION SCHEME

AND TRADTIONAL SCHEME

Grace using traditional bounding box expansion scheme

Benchmarks g g P

WL RCPU WL imp.% RCPU ratio

sl _Ripple 161.62 9 0.00% 1.11
s5_Ripple 201.42 234 0.29% 1.72
s12 Ripple 277.67 1890 0.65% 2.9
s15 Ripple 208.6 173 0.10% 1.87
sl mPLI11 168.84 27 0.11% 2.92
s15 mPLI11 196.40 68 0.10% 2.05
s18 mPLI11 110.16 46 0.51% 1.49
Average 0.25% 2.01

Table 2.4 shows the overflow-free routing results of Grace using traditional bounding box expansion
scheme that is adopted by the global router in [13]. Compared to the results in Table 2.2, Grace using
the traditional scheme causes roughly twice-the runtime than that using the congestion-aware bounding
box expansion scheme. ‘This difference is owing to that the traditional scheme may over expand
bounding boxes. However, Grace using traditional scheme can obtain the results with a slightly lower

wirelength because large bounding boxes can reduce redundant detours, as demonstrated in [18].

2.6 Summary

This work presents two efficient routing algorithms, unilateral monotonic routing and HUM
routing. Unilateral monotonic routing can horizontally or vertically detour around the congestion
regions with the same time complexity of monotonic routing. HUM routing can identify an
overflow-free path on a challenged congestion map, thus making it significantly faster than maze
routing with A* search scheme. Moreover, a congestion-aware bounding box expansion scheme is
developed to avoid over expanding bounding boxes. Based on these contributions, a maze-free router is
developed, capable of achieving 2.75X to 26.83X speedup than NCTU-GR 2.0. We believe that Grace is
highly promising for use as a fast routing congestion estimator embedded into routability-driven

placers.

28

Chapter 3 E-Grace: Enhancing Grace for
Practically Industrial Designs

3.1 Introduction

In advanced technology nodes, routability has become a critical issue since considerable blockages,
interconnects and complex designs rules worsen the routing congestion. To avoid wasting time on
routing unroutable designs, a routing congestion estimator (RCE) can help designers to judge a design
whether is routable in the early stages to speed up the design closure. Moreover, a RCE can cooperate
with placers or optimizers to do optimization with consideration of routability. Therefore, the demand of
a fast and accurate RCE is stringent in_industry. In this dissertation, Chapter 2 presents a fast
global-routing-based RCE:Grace which 1s more ‘accurate than probabilistic-based RCEs on estimating
routing congestion, but Grace is still not accurate enough since timing and local congestion issues are
ignored. The goal of this work is to enhance Grace to take timing and local congestion issues into
account. Then enhanced Grace is named E-Grace.

To be aware of timing issue, the author of [49] suggests that designers formulate scenic and layer
directive constraints for the timing-critical nets before feeding these nets into a router or RCE. For a net,
the scenic constraint restricts its maximum routing wirelength, and the layer directive constraint
specifies a range of metal layers that the net can legally route on. A net obeying the scenic constraint
can avoid detouring too much and thus causing the timing violations. The layer directive constraint
forces the timing-critical nets route on the higher metal layers since the wires on the higher layers have
smaller delay in advanced technology nodes. Some papers [50-52] address the global routing problem
with the layer directive constraint. However, how to handle the scenic constraint is seldom discussed.
Figures 3.1(a) and 3.1(b) show the congestion map of E-Grace without and with consideration of the
scenic constraint, and Fig. 3.1(c) shows the congestion map obtained by a congestion estimator from a
full-blown industrial router which is very accurate but is much slower than E-Grace. Figure 3.1 reveals

29

that E-Grace ignoring the scenic constraint cannot correctly estimate the congestion hot spots in the
top-right corner, because the nets in Fig. 3.1(a) detour too much to dissolve the congestion. However,
when the timing issue is considered, the net cannot detour so much to dissolve the congestion in the

top-right corner.

':wmi?

LIUM ﬂ!L b

i
ﬂi

,u-u-—-
)

(b)
Fig. 3.1. Congestion maps obtained by different RCEs: (a) E-Grace ignoring the scenic constraint;
(b) E-Grace considering the scenic constraint; (c) a RCE from a full-blown industrial router.

In traditional global routing problem, overflow happens when a region's routing demand exceeds its
routing capacity, and global routers focus on minimizing overflows. Notably, a region in global routing
model usually means a G-cell. However, the duty of a RCE is more than that. For example, even given
two overflow-free designs, a RCE should evaluate which design is easier to route. Accordingly, a better
objective for RCE is to reduce congestion to approach a target congestion ratio (TCR). The
congestion ratio of a region is the ratio of the region's routing demand to the region's routing capacity.
To an industrial router, a region is easy to route if the region's maximal congestion ratio is lower than
TCR, while a region's routing difficulty increases beyond linearly as the region's congestion ratio
increases over TCR. Compared to minimizing overflows, we find that the routing problem becomes
more complicated with the objective to minimize congestion ratio. For example, given two overflowed
nets in a region with limited routing resource; we can get an overflow-free routing result when our

objective is to minimize overflows. However, when the objective is to reduce congestion to approach

30

TCR (typically smaller than 1), the first routed net may use too many routing resource in order to meet
TCR, resulting in the second routed net has no routing resource to solve its overflow, not to mention
approaching TCR.

The authors of [53] indicate that local congestion causes a big mismatch between global routing and
detailed routing but most global routing research [3-21] ignore the effect of local congestion. Namely, a
good routing result obtained by [3-21] may not imply that a feasible detailed routing solution exists.
Therefore, this work formulates the local congestion issue into E-Grace's routing model to obtain more
accurate routability estimation in terms of detailed routing.

A control utility to trade off runtime and quality is important to industrial RCE tools, also users
require a control utility to limit the runtime of RCEs not being crazy for over-congested designs, i.e.,
users hope the runtime for the same scale designs even with different congestion conditions to be
similar and stable. However, the existing-academic RCE tools hardly satisfy this requirement. CGRIP
[37] uses a timeout constraint to be the termination condition. Since different machines have different
performance, CGRIP may get nondeterministic results when it runs-on different machines. BFG-R [7]
and NCTU-GR 2.0 [18] set a maximum routing iteration to be the termination condition. However, the
routing efforts in each iteration for designs with different congestion levels are quite different, so it is
difficult to find a unique number of maximum routing iteration that works for all the designs, in order to
control the runtime well.

This work presents a RCE tool E-Grace applied for industrial design flow, which includes a unified
routing flow considering all the following factors: local congestion, TCR, scenic and layer directive
constraints, and runtime control. This work has following contributions:

(a) A relaxation-legalization method is presented to handle the scenic constraint; it can escape from
the local optimum to obtain better solution quality.

(b) This work presents a TCR-driven rip-up and rerouting (R&R) scheme, E-Grace with this scheme
would solve peak congestion first in a limited runtime budget. If the runtime budget is sufficient,

E-Grace would gradually reduce congestion to approach TCR.

31

(c) By the proposed throughput controlling method, users can trade off runtime and quality to get
deterministic routing results. The runtime would linearly increase and the routing quality is
monotonically improved as users increase the value of a tunable parameter

The rest of this chapter is organized as follows. Section 2 introduces the requirements and objective
of a industrial RCE tool and previous works. Section 3 presents the design flow of E-Grace and the
innovations in E-Grace to fulfill industrial demands. Section 4 summarizes the experimental results.

Conclusions are finally drawn in Section 5.

3.2 Preliminaries

3.2.1 Problem Description

E-Grace can be treated as a very fast-global router. In global routing problem, the placement is
typically partitioned into an array of G-cells to form a 3- dimension (3D) grid graph G(V, E), where V'
denotes the set of G-cells, and E refers to the set of grid edges. Each grid edge is termed by the
proximity of the related G-cells to its two end nodes. The capacity c(e) indicates the number of routing
tracks on grid edge e. The blocked capacity b(e) refers.to the number of routing tracks blocked by
blockages on e. The routing demand d(e) indicates the number of global routing paths passing through e.
The overflow of e is defined as max(0, b(e)+d(e)-c(e)); and most global routers focus on minimizing
overflows. In this work, we redefine overflow of e ‘as max(0, b(e)+d(e)+w(e)-c(e)) where w(e) is the
estimated number of routing tracks on e that may be used for local routes, and w(e) is obtained by the
method in [53].

Rather than minimizing overflows, the objective of this work is to efficiently minimize congestion to
approach TCR as close as possible. This work sets TCR to 80% because, in the industrial environment
where we test E-Grace, 20% of the routing capacity is reserved to route non-signal nets such as clock
nets later in the design flow. Moreover, each net in the routing result has to obey the scenic and layer
directive constraints. The scenic constraint restricts that the wirelength of each net n cannot exceed an

upper bound B(n), and the layer directive constraint restricts that » only can route on the layers between

32

tl(n) and bl(n) where t/(n) and bl(n) can be any layer among all layers, but #/(n)>bl(n). In addition, to
satisfy the industrial demands, a control utility to trade off the runtime and routing quality of E-Grace is

required.

3.2.2 Congestion Evaluation Metrics

This work adopts a net-based metric and a grid-edge-based metric to evaluate the routing congestion.
Given a routing result, we first calculate the congestion ratio g(e) for each grid edge e by the following

equation,

g(e) =[d(e)+b(e) +w(e)l/c(e) 3.1)

After that, net-based congestion metric WClI(x) is defined as the number of nets whose congestion is
greater or equal to x%, the congestion of a net is the maximum congestion ratio among all grid edges
traversed by the net. Moreover, grid-edge-based congestion metric ACE(y) is computed by averaging
the congestion ratio of the top y% congested grid edges. In our experiments, we set y< {0.5, 1, 2, 5, 10,
20}. ACE(0.5) provides a local view for the peak congestion, while 4 CE(20) provides a global view for

the average congestion.

3.2.3 Previous Works

Grace is a fast global-routing-based RCE tool, which relies on two efficient routing algorithms called
unilateral monotonic routing and HUM routing, and invokes a congestion-aware bounding box
expansion scheme to avoid over-expansion. The routing kernel of E-Grace is similar to Grace. However,
Grace cannot handle scenic and layer directive constraints, and does not consider the issues of local
congestion and TCR.

Grace adopts a 2D routing with layer assignment framework to solve 3D global routing problem.
However, this framework may struggle for the layer directive constraint because it has no precise layer
information during 2D routing. For example, a design has 9 layers and a region has congestion between

layers 5 and 9. A net with layer directive constraint {1, 9} can legally pass through this region, but a net

33

with layer directive constraint {7, 8} would suffer congestion when it passes through this region.
However, the 2D routing stage in Grace cannot distinguish these two cases.

The layer-directive-aware global router GLADE [50, 51] maintains a virtual demand data structure
during 2D routing to query the estimated 3D congestion between two specified layers. In contrast, the
work in [52] adopts a grouping method to handle the layer directive constraint, which classifies the nets
with the same layer directive constraint into a group, and then sorts each group in increasing order
according to the range of each group’s layer directive. Next, each group is sequentially processed during
2D routing. For each group, only one layer directive constraint needs to be addressed, which simplifies
the problem. Although GLADE [50, 51] can explore larger solution space to get better results, [52] is

faster. Due to the runtime consideration, the grouping method [52] is adopted in this work.

< Placement Solution > | Group 1 [bh,]| Group 2]
¥

— Compact 3D Graph to 2D
Rule Generator - v =

: E i \ MST Decomposition \
Build 3D Grid Graph with ¥
Local Congestion Model
¥

Initial Routing ‘
¥

Net Grouping and Ordering |—, L_Ripping-up and Rerouting
No 20 to next group Scenic Legalization
— 0u¢e All Nets? Post Optimization
es ¥
< RoutingResult > = Layer Assignment

Fig. 3.2. Design flow of E-Grace

3.3 Design Flow of E-Grace

Figure 3.2 shows the design flow of E-Grace, in which the red boxes highlight the stages including
the innovations in this work. At first, given a placement solution and a netlist, a rule generator is
invoked to generate the layer directive and scenic constraints for each net. The rule generator uses an
industrial timer to analyze the timing slack for each net, and then the method in [54] is used to assign
layer directive constraints for the timing-critical nets. Moreover, for each net n, the scenic constraint

B(n) 1s identified by each net's RMST length multiplying a variable p, that is between 1.05 and 1.4.
34

Typically, p, of most nets (>90%) is around 1.15 in the industrial environment used in this work and
some timing-critical nets have smaller p,. Because the rule generator is not the focus in this work, the
details of the rule generator are skipped. After that, a 3D grid graph is built and the
local-congestion-aware factor w(e) in Eq. (3.1) is calculated by the pin-density method in [53].

Before performing routing, the grouping method [52] is used to classify nets into several groups and
then sorts groups. Subsequently, E-Grace routes nets group by group. At the beginning of processing a
group with layer directive {bl;, t/;}, the partial 3D grid graph from layer b/; to #/; is projected on the 2D
grid graph and each net in this group is decomposed into two-pin subnets based on the topology of the
RMST. Note that, we call a two-pin subnet as a segment in this work. If a segment s belongs to a net n,
n is the parent net of s. In this work, we use RMST instead of RSMT to decompose the nets, because
the works in [1, 7, 18] indicate that RMST offers better flexibility than RSMT to avoid blockages or
congestion. Also, we found that the runtime and wirelength-of FLUTE [23] (a well-known RSMT
generator) are worse than RMST for some modern industrial designs, because these designs contain
considerable high fan-out nets and RMST runs faster and produce shorter wirelength for very high
fan-out nets than FLUTE. Accordingly, E-Grace adopts the algorithm in [55] to efficiently build RMST.
After that, the initial routing stage generates an initial routing result by pattern routing and monotonic
routing. Because pattern routing and monotonic routing do not make detours, every net in the initial
routing result must obey the scenic constraint. Next, the ripping-up and rerouting (R&R) stage
iteratively reroutes the congested segments until either the congestion of any net is not greater than TCR
or the termination condition is satisfied. The definition of congested segments and the termination
condition will be introduced later.

In the R&R stage, the scenic constraint is relaxed as a soft constraint, namely the routing solutions in
this stage can violate the scenic constraint. Then, the scenic legalization stage reroutes the nets with the
scenic violation to force them to satisfy the scenic constraint, but this stage may increase congestion. In
the post optimization stage, the congested segments are rerouted under the hard scenic constraint to

reduce the congestion worsened by the scenic legalization stage. Using this relaxation-legalization

35

method to handle the scenic constraint can get better results than always treating the scenic constraint as
a hard constraint. Finally, we adopt a fast heuristic layer assignment algorithm presented in [17] to map
the 2D routing result to the 3D grid graph. E-Grace sequentially processes each group until the routing

solutions of all nets are obtained.

(2) (b)

(©) (d)

Fig. 3.3. (a) the initial routing result of a net; (b) a segment exhausts all detour quotas, resulting
another segment has no detour quotas to bypass congestion regions; (¢) the routing result of the

proposed R&R stage; (d) the routing result after the scenic legalization stage.

3.3.1 Relaxation-Legalization Scenic Controlling Method

Most global routers decompose multi-pin nets into several segments and then route each segment
individually, since it can reduce the multi-terminal routing problem to a two-point routing problem.
However, the scenic constraint is not easy to meet when using this method. For instance, Fig. 3.3(a)
shows an initial routing result of a three-pin net n with two segments s; and s;, in which the light and
dark gray rectangles respectively denote the light congestion and very congestion regions. The
wirelength of n is 8 and the scenic constraint restricts that the wirelength of n cannot exceed 14, namely
n has 6 detour quotas. If s; is routed earlier than s, and is allowed to use all detour quotas, we will get a

routing result shown in Fig. 3.3(b), in which s, cannot bypass the congestion regions because the detour
36

quotas have run out. Suppose we averagely allocate the detour quotas to s; and s, to avoid s; exhausting
all detour quotas, both s, and s, cannot bypass the congestion regions because they both have no enough
detour quotas.

This work presents a relaxation-legalization method to handle the scenic constraint. At first, we allow
the routing solutions with scenic violations for reducing congestion. Then, we dynamically adjust the
routing cost function to encourage the routing solutions gradually fitting the scenic constraint. In this
work, 7.(e,s) denotes the routing cost of grid edge e for segment s, which consists of congestion cost
c.(e) and wirelength cost w.(s). Assuming the initial routing solution of s passes through e and a
least-cost routing algorithm is adopted to reroute s. If ¢.(e) dominates r.(e,s), the algorithm may identify
a detoured path to bypass the congestion on e. If w.(s) dominates 7.(e,s), the algorithm may identify a
path passing through e to save wirelength. Accordingly, we can adjust the ratio between c.(e) and w,(s)
to indirectly control the routing wirelength of 5. Notably, the lcast-cost routing algorithm here can be
any shortest path finding algorithm such like A* search or Dijkstra's algorithm, while this work uses
unilateral monotonic and'HUM routing.

For the case in Fig. 3.3(a), E-Grace first generates a routing solution with the scenic violation for
reducing congestion (Fig. 3.3(¢)). Next, E-Grace iteratively reroutes s and s,, and gradually increases
w.(s1) and w.(s;) to drive them to route shorter until net n satisfies its scenic constraint. In our example,
because s; faces a lighter congestion region than s,, driving s; to take the shorter path is easier than

driving s,. Thus, we can get the routing result in Fig. 3.3(d).

3.3.1.1 Ripping-up and Rerouting Stage

This stage treats the scenic constraint as a soft constraint; each net can violate its scenic constraint to
solve congestion. However, too many nets with scenic violations would make the subsequent scenic
legalization stage sacrifice congestion a lot to satisfy the scenic constraint. Accordingly, if the parent net
n of segment s has scenic violations, this stage increases w.(s) before rerouting s to prevent the new

routing solution violating the scenic constraint again. This stage formulates w.(s) as follows:

37

WC(S):a+,BX(VS)2+7X(Vn)2, (3.2)

where a, f and y are user defined constants, we set them to be 500, 20 and 50 in our implementation,
respectively. Notations v, and vy initially are zero. Once the wirelength of n exceeds B(n) after rerouting
s, v, increases by one. Once the wirelength of s exceeds b(s) after rerouting s, v, increases by one, where
b(s) is the suggested wirelength for s, that is linearly proportional to the ratio of initial wirelength of s
and n, where the initial wirelength means the wirelength of a net or a segment at the beginning of the
R&R stage. For example, B(n) is 30 and n consists of three segments s;, s, and s3 whose initial
wirelength are 6, 10 and 4, respectively. The b(s;), b(s2) and b(s3) are 9 (=6*(30)/(6+10+4)), 15
(=10*3/2) and 6 (=4*3/2), respectively.

In this stage, c.(e) also increases if e frequently becomes congested, which makes the least-cost
routing algorithms more actively bypass e to reduce congestion. So, we cannot guarantee that the
routing wirelength of s always becomes" shorter when we(s) and c.(e) both are increased. The

formulation of c.(e) will be introduced in section 3.2.

3.3.1.2 Scenic Legalization Stage

This stage consists of the soft and hard legalization phases. At the beginning of the soft legalization,
an array is built to contain all segments whose parent net violates the scenic constraint. Then, the array
is iteratively scanned to check each segment s in the array. If the parent net of s has the scenic violation
and the wirelength of s is longer than the Manhattan distance between its two terminals, we increase
wc(s) and then reroute s. In this stage, c.(e¢) would not continually increase even e frequently becomes
congested, so we can guarantee that the routing wirelength of s monotonically decreases as s is rerouted
and w.(s) 1s increased.

The goal of the soft legalization is to reduce the number of nets with scenic violations in a few
iterations but does not sacrifice congestion too much. How to properly increase w.(s) is challenging.
Increasing w.(s) too much would worsen congestion a lot. If the increment of w.(s) compared to c.(e) is
slight, the reduction of the scenic violations is also slight in each iteration.

38

The soft legalization uses a cost accumulation method to update w.(s) properly. Before rerouting s,
we trace the path of s and compute the path cost of s, pathCost(s), which is the sum of the routing cost

of each grid edge passed by the path of s, and then w.(s) is updated by the following equation.
we (s) = [pathCost(s)/manh(s)] (3.3)

where manh(s) denotes the Manhattan distance between the two terminals of s. Fig. 3.4 shows an
example to illustrate how Eq. (3.3) works. Figure 3.4(a) shows a routing solution of s with the scenic
violation at the beginning of the soft legalization, in which w.(s) is 1. Assume c.(e) is 4 for edge e which
is light congested (light grey edges in the figure); if e is very congested (dark grey edges), c.(e) is 10;
otherwise (white edges), c.(e) is 0. Before rerouting s, we trace the path of s in Fig. 3.4(a) to obtain
pathCost(s) that is 10. Based on Eq. (3.3), w.(s) is updated to 2.5 (=10/4) and then rerouting s with new
w(s) obtains the routing solution in Fig. 3.4(b). If the routing solution in Fig. 3.4(b) still violates the
scenic constraint, w.(s) is updated to 6 (=(8*2.5+4)/4) and then s is rerouted again in the next iteration.
After that, the routing solution in Fig. 3.4(c) is obtained. The example in Fig. 3.4 reveals that the

wirelength of s monotonically decreases as the routing iterations increases.

O @ @

@ @ @

(a) (b) (c)
Fig. 3.4. The routing result obtained by (a) the R&R stage; (b) the first iteration of the soft

legalization phase; (c¢) the second iteration of the soft legalization phase.

In our implementation, the soft legalization performs three iterations, which can eliminate most
scenic violations. However, there are few remained scenic violations that need to be solved by the hard
legalization. In the hard legalization phase, we adopt the monotonic routing to reroute the segments

whose parent net has the scenic violation. Because monotonic routing makes no detour, a net must

39

conform to its scenic constraint when all segments of the net are routed by monotonic routing. After the

hard legalization phase, all nets must obey the scenic constraints.

3.3.1.3 Post Refinement Stage

The goal of the post refinement stage is to reroute the congested segments to reduce the congestion
worsened by the scenic legalization stage. For example, after the R&R stage, two neighboring segments
s1 and s, both have congestion-free routing paths but the parent net of s; violates the scenic constraint.
After the scenic legalization stage, s; is rerouted to be shorter, in which causes s; now to compete the
routing resource with s, and thus causes the congestion. In this case, rerouting s, may dissolve the
congestion.

In the post refinement stage, the routing path of each segment is traced once. A segment is rerouted if
the segment passes through a congestion region-and -has not been rerouted in the scenic legalization
stage. To ensure that the routing solutions in this stage always obey the scenic constraint, if the new
routing solution obtained by rerouting violates the scenic constraint, we discard the new routing solution

and restore the segment to the old routing solution.

3.3.2 TCR-driven R&R Scheme

The problem of minimizing congestion to approach TCR (80% in this work) is more complicated
than minimizing overflows. For example, given a limited runtime budget, a RCE may spend most time
on rerouting the nets whose congestion is between 80% and 100% to meet TCR, finally has no time to
reroute the nets whose congestion is over 100%. In another case, given a region with limited routing
resources, the early routed nets may consume too many routing resources when they target to meet TCR,
causing the later routed nets have no routing resources to reduce congestion. Based on above cases, we
can summarize two requirements for TCR-driven RCE: (1) route the nets with peak congestion first in
the limited runtime budget; (2) reduce congestion averagely. For example, two nets with 90%
congestion are better than one with 80% and another with 100%.

The R&R stage adopts a TCR-driven R&R scheme to satisfy abovementioned two requirements. In
40

the R&R stage, if a segment passes through a grid edge e satisfying the following inequation, the

segment is treated as a congested segment. The congested segment will be rip-upped and rerouted.
g(e)>max(l-px1,TCR), (3.4)

where p is an iteration count and initially is zero, p increases by one as iteration increases; A is a user
defined constant, we set A to 0.02. According to Eq. (3.4), the first iteration of the R&R stage would
reroute the nets whose congestion is greater than 100%, the second iteration would reroute the nets
whose congestion is greater than 98%, and so on. The R&R stage iteratively reroutes the congested
segments until either no net has congestion greater than TCR or termination condition meets. This R&R
scheme can solve the peak congestion first to meet requirement (1).

To meet requirement (2), we formulate the congestion cost ¢.(e) as follows:

(@)= e O O (o) Ix 14 ()]
1+C2™°
o(e) = max(0,d(e) + w(e)+b(e) -c(e)) ’ (3.5)

to(e) = d(e)+w(e)-max(0,c(e)x TCR -b(e))
where Cj, C,, C; and Cqare user defined constants, we set them to 200, 2.72, -0.3 and 5, respectively.
History cost 4, is initialized to zero for each grid edge e at the beginning of the R&R stage. If the
routing solution of's passes through e after rerouting s and fo(e)>0, &, increases by one. Notably, fo(e)>0
means that the congestion ratio of e is greater than TCR. Figure 3.5 shows that the curve of c.(e) when
c(e), m(e), b(e), TCR and k. are 50, 0, 0, 80% and 0, in which x-axis and y-axis respectively denotes d(e)
and c.(e). Using Eq. (3.5) to formulate c.(e) encourages that routing algorithms avoid overflows but do
not use too much routing resource for pushing congestion down to TCR. However, if the congestion of e

is continuously over TCR in the R&R stage, c.(e) gradually increases since 4, increases. This makes the

400]
- c(¢)XTCR de) 4
200

100

OZAOIMMMAIZBI‘ * ‘ASAO':I”'I l35l o I4d T |45| T ISOI o ISSI |

Fig. 3.5. Curve of c.(e) in Eq. (3.5).

41

routing algorithms become more active to push congestion down to TCR when the routing iteration

increases. Notably, 4. would not increase in the scenic legalization and post refinement stages.

3.3.3 Throughput Controlling

A control utility to trade off runtime and quality is essential to an industrial RCE tool. Based on the
feedback from users, we summarize three features that an industrial RCE tool requires: (1) when users
increase the value of a tunable parameter #,, the congestion in the routing result should monotonically
improve and the runtime of the RCE tool linearly increases; (2) with the same value of 7,, the RCE tool
can automatically give a design more runtime budget to route if the design is larger (with more nets or
larger routing grid size); (3) with the same value of 7, the runtime of a RCE tool can be stable for any
congestion circumstance. Because, a RCE tool may cooperate with other tools to optimize a design, but
other tools may worsen congestion when they address other issues. Feature (3) ensures that the runtime
of the optimization flow can be stable and predictable.

The R&R stage mainly influences the runtime and the routing quality in E-Grace; hence this work
presents a throughput controlling method to set a termination condition for the R&R stage. In E-Grace,

the R&R stage for group R terminates if the following condition holds.
tvg >ty X X Z . numGcell(s) (3.6)
SEDR

where ¢, is the tunable parameter to control the tradeoff between runtime and quality, Sk denotes the set
of all segments in group R, and u is a user defined constant. In our implementation, u is set to 0.5.
Moreover, numGcell(s) denotes the number of G-cells within the initial bounding box of s which is the
minimum rectangle enclosing the terminals of s. The right term in Eq. (3.6) can be initialized in the
RMST decomposition stage. Notation fvg denotes the number of visited G-cells in the R&R stage.
Initially, the value of tvg is zero. During the R&R stage, when the path of a segment is traced, tvg
increases by the length of the traced path. If the segment is a congested segment, the bounding box of
the segment will be expanded and then the segment will be rerouted by the unilateral monotonic and
HUM routing algorithms within the bounding box. Because the time complexity of unilateral monotonic

42

and HUM routing is linear to the number of G-cells in the bounding box, fvg increases by the number of
G-cells in the bounding box after a segment is rerouted. We can treat tvg as an indicator for the
computation throughput, and we can adjust ¢, to control the upper bound of the computation throughput

and easily satisfy the abovementioned three features.

TABLE 3.1 DESIGN INFORMATION

Grid size | #Nets(10”) Grid size | #Nets(10”) Grid size | #Nets(10°)
Ind1 357%535%9 13.3 Ind3 | 1068%x710x10 41.7 Ind5 | 444x518%10 16.6
Ind2 | 1068%x710%x10 40.5 Ind4 | 227x740x11 16.7 Ind6 | 534%407%x10 9.2

3.4 Experimental Results

The proposed algorithms are implemented in C/C++ on a linux server with four 2.27 GHz Xeon
E7-8860 CPUs. This work compares E-Grace (EGy;) with a fast industrial congestion estimator (CAing)
and a full-blown congestion estimator (GRing) from an industrial router. Table 3.1 shows the grid size
and net number of the industrial designs used in the following experiments, in which Ind2 and Ind3 are

from the same design but their placements are totally different.

3.4.1 Compare E-Grace with other industrial RCE tools

In Table 3.2, EGyj includes all innovations presented in this work; we set parameter ¢, in Eq. (3.6) to
5 to strike a good balance between the routing quality and runtime. The effectiveness of individual
innovations in this work will be detailed later. CAjq4, similar to that in [53], is a fast
global-routing-based RCE based on the edge-shifting algorithm [8] to avoid invoking time-consuming
maze routing algorithms. The edge-shifting method is fast but may struggle for the very congested
situations because the solution space of the edge-shifting method is restricted. GRi,g, with a complex
local congestion model to consider the local routability, runs most accurate and will be used to judge the
quality of all results but is much slower than EG,; and CAj,g. Notably, CAj,q and GRj,q both can handle

layer directive and scenic constraints, and take the local congestion and TCR issues into account. In

terms of the scenic constraint, CAj,q always treats the scenic constraint as a hard constraint, and the

43

situation where a segment may exhaust all detour quotas like the example in Fig. 3.3(b) may happen. In
contrast, GRinq gradually relaxes the scenic constraint for the rerouted nets, so the routing results of

GRin¢ may violate the scenic constraint.

TABLE 3.2 ROUTING RESULTS COMPARISON BETWEEN E-GRACE, INDUSTRIAL CONGESTION
ANALYZER AND REAL ROUTER

Wall
WCI(100) | WCI(90) | ACE(0.5) | ACE(1) | ACE(5) | ACE(10) | ACE(20) | WL (107
time(s)
EGua 188 2021 18781 92.93 88.88 82.18 80.84 79.47 27.03
Indl| CAjnq 368 13736 46925 98.30 93.49 85.05 82.41 80.17 26.94

GRing | 21222 1047 14335 88.66 86.27 82.85 81.64 80.32 27.05

EGan 436 767 52226 92.70 90.90 83.72 80.83 76.92 16.01
Ind2 | CAjq | 1987 6845 42893 94.24 91.54 83.99 80.86 78.47 16.30
GRing | 14649 41 10514 87.66 86.34 82.98 80.83 76.08 16.08

EGan 422 4257 166705 95.98 94.34 88.62 84.69 80.90 18.27
Ind3| CAjpq | 1697 16055 157971 97.34 95.37 89.09 85.38 81.40 17.90

GRing | 10376 895 29303 89.96 87.92 84.20 82.48 79.21 17.93
EGan 101 27 44100 92.68 90.95 84.27 81.46 74.48 8.14
Ind4 | CAing 162 22747 78090 101.57 98.62 88.20 83.70 76.12 7.99
GRing | 11064 104 9543 87.93 86.05 81.24 78.01 69.22 8.42
EGan 140 149 130556 93.80 92.58 89.07 86.85 83.83 11.82

Ind5| CAing 216 4123 277376 95.03 93.77 90.59 87.91 84.32 12.05
GRing | 47261 1141 89904 94.62 93.48 90.91 88.82 85.66 11.39

EGan 51 1 1598 88.47 85.32 80.63 78.08 71.46 4.69
Ind6| CAjq | 108 1478 3309 92.38 87.44 80.24 78.11 72.11 4.54

GRinq | 1672 19 2788 86.33 84.77 80.63 76.61 67.44 4.56

EGay 1 1 1 1 1 1 1 1 1
Ratio| CAjq | 2.633 | 394.608 | 1.706 1.040 1.032 1.017 1.011 1.012 0.994

GRjyq |108.476| 5.215 0.632 0.962 0.967 0.989 0.991 0.979 0.993

Table 3.2 adopts a net-based metric WCI and a grid-edge-based metric ACE to evaluate the routing
results of EGan, CAing and GRjpg, in which the unit of ACE is %. Table 3.2 shows that EG,y respectively
runs 2.6% and 108.5% faster than CAj,q and GRi,q on average. (EG,; and CAjng use one thread, while
GRing uses four threads). In addition, the routing results obtained by EG,; have better congestion than

that obtained by CA,g, and the congestion analysis of the routing results obtained by EGyy is similar to

44

that of GRjng. Table 3.2 reveals that EG,y can achieve fast and accurate congestion estimation. Fig. 3.6

shows the congestion maps obtained by EG,y, CAjng and GRiyg for design Ind4.

(b)
Fig. 3.6. Congestions maps of Ind4 obtained by (a) CAing, (b) EGai, (¢) GRing.

3.4.2 Effectiveness of each Innovation in E-Grace

To evaluate individual-innovations in this work, we run more detailed experiments in this section.
However, due to the licensing issue, the following experiments cannot adopt the designs shown in Table
3.1. Therefore, the following experiments adopt another suit of industrial designs shown in Table 3.3

and perform on a 2.4 GHz Xeon-based linux server with E5620 CPU.

TABLE 3.3 DESIGN INFORMATION

Grid size | #Nets(10”) Grid size | #Nets(10°) Grid size | #Nets(10°)
Ind7 | 800x415%10 9.0 Ind9 | 704x413x10 10.6 Ind11 | 444%x518%10 16.6
Ind8 | 774x570%x10 8.0 Ind10 | 357x535%9 13.3 Ind12 | 425%516x10 13.9

3.4.2.1 Effectiveness of Relaxation-Legalization

To evaluate the effectiveness of each stage in relaxation-legalization method, we built several
versions of E-Grace to handle the scenic constraint. Table 3.4 lists the differences between each version,
in which EG; does not have scenic legalization and post refinement stages, and set f and y in Eq. (3.2)
to zero to totally ignore the scenic constraint in its entire flow. In contrast, EG,, EGs and EGy use the
different levels of the relaxation-legalization method to handle the scenic constraint. Notably, #, in Eq.
(3.6) is set to 5 for each version.

45

TABLE 3.4 DIFFERENT VERSIONS OF E-GRACE

EG; without consideration of the scenic constraint
EG; EG; + Scenic legalization
EGs; EG; + Default Eq. (3.2)
EGu EGs; + Post Refinement
TABLE 3.5 EFFECTIVENESS OF USING RELAXATION-LEGALIZATION METHOD
TO HANDLE THE SCENIC CONSTRAINT
CPU(s) | WCI(100) | WCI(90) | ACE(0.5) | ACE(1)| ACE(2) | ACE(5)| ACE(10) | ACE(20) |WL(107)| SV
EG; | 40.42 1182 26950 95.50 92.92 [90.36 | 85.51 82.60 79.71 11.18 [4102
EG, | 46.29 4307 25206 97.63 9445 | 91.03 | 85.46 [82.51 79.40 11.06 0
Ind7 EG; | 42.46 3554 25367 97.19 94.09 | 90.82 | 85.40 | 82.49 79.41 11.06 0
EG .| 45.63 3257 24216 96.61 93.52 | 90.25 | 85.03 82.30 79.29 11.06 0
EG, | 43.19 2660 22103 98.25 9458 1-91.14 | 85.27 82.02 76.85 10.94 | 4368
EG, | 44.12 5889 21407 99.08 95.88 | 91.63 | 85.13 81.72 76.34 10.83 0
Inds EG; | 43.86 5556 21580 98.77 95.65 | 91.55 | 85.14 | 81.74 76.38 10.84 0
EG.l| 44.54 5000 18985 97.93 9475 90.69.| 84.61 81.42 76.14 10.83 0
EG, | 30.61 752 9401 103.36 | 97.01 | 91.23 | 84.76 | 81.74 77.31 10.73 | 1909
EG, | 36.16 2305 10494 98.85 94.36 | 89.37 | 83.89 [81.21 76.79 10.66 0
nd? EG; | 31.13 2106 10488 98.89 94.34 [89.35 | 83.89 [81.20 76.78 10.66 0
EG .| 32.29 1098 9383 97.31 93.76 | 89.24 | 83.87 | 81.22 76.87 10.67 0
EG, | 84.31 1343 13384 92.22 89.31 | 86.70 | 83.31 81.47 79.58 24.15 | 3883
EG, | 86.50 1788 16781 92.75 89.63 | 86.80 | 83.30 | 81.45 79.52 24.09 0
IndI0 EG; | 85.89 1491 16683 92.61 89.53 | 86.75 | 83.29 81.44 79.52 24.10 0
EG .| 85.04 1681 13589 91.88 88.60.[-85.80 | 82.66 81.10 79.34 24.13 0
EG; | 43.24 157 86159 94.23 92.65 | 91.49 | 89.63 87.15 83.81 15.14 10955
EG, | 4533 123 77926 94.6 92.84 | 91.58 | 89.42 | 86.67 83.35 14.78 0
Ind 1 EG; | 44.08 123 77921 94.59 92.84 | 91.58 | 89.42 | 86.67 83.35 14.78 0
EG .| 45.55 77 77080 93.82 92.41 | 91.32 | 89.23 86.56 83.29 14.78 0
EG, | 27.07 4359 52158 103.23 | 99.35 | 95.89 | 91.18 87.48 83.58 12.75 | 5286
EG, | 28.81 5353 51490 99.82 97.93 | 95.40 | 91.03 87.29 83.42 12.58 0
Indl2 EG3 | 28.36 5162 51690 99.83 97.90 [95.33 | 90.99 87.26 83.41 12.58 0
EG .| 30.49 4480 50166 99.74 97.84 | 95.26 | 90.83 86.99 83.24 12.59 0
EG, 1 1 1 1 1 1 1 1 1 1
. | EG, | 1.081 2.044 1.028 0.994 0.999 | 0.998 | 0.997 | 0.997 0.996 0.989
Ratio EG; | 1.028 1.829 1.029 0.992 0.998 | 0.997 | 0.997 | 0.997 0.996 0.989
EG .| 1.067 1.478 0.938 0.985 0.992 | 0.992 | 0.993 | 0.994 0.994 0.989

46

Table 3.5 shows the routing results obtained by each version, in which SV denotes the number of
nets with the scenic violation. The scenic legalization stage in EG; can eliminate all scenic violations
but worsens the congestion. Averagely, EG, gets better ACE values but worse WCI(100) than EG;.
Although EG; for design Ind11 obtains the results with better WCI(100) than EG;, EG, has worse
ACE(0.5) than that of EG;. This phenomenon implies that only relying on either net-based metric or
grid-edge-based metric to evaluate the congestion may get a biased view, while using both metrics
provides a more comprehensive view.

EGs; has the consideration of the scenic constraint in the R&R stage, which reduces the number of
nets that need to be legalized in the scenic legalization stage. Hence, the runtime and overhead of
congestion degradation in the scenic legalization diminish. Compared to EG,, EG; spends shorter
runtime to obtain better congestion results. Finally, EGyy includes the post optimization stage to further

improve routing results, so EG,j obtains better results than EG3.

TABLE 3.6 ROUTE INDI11 WITH DIFFERENT OBJECTIVES
WCI (10%) ACE

100% | 90% | 0.5% | 1% | 2% | 5% | 10% | 20%
OV | 0.5 |148.5]99.9 [99.6|99.2|98.2]96.3|90.5
CO| 45 | 50.2 | 99.7 |97.8|953|90.8|87.0|83.2

3.4.2.2 Minimizing Overflow v.s. Minimizing Congestion

Compared to minimizing overflows, minimizing congestion ratio to approach TCR, say 80%, ofters
more useful congestion information to help designers to identify the hotspots' locations. Figures 3.7(a)
and (b) show the congestion maps of design Indl1 obtained by EG,; addressing on overflow
minimization and congestion ratio minimization, respectively. Obviously, Fig. 3.7(b) is more helpful to
distinguish the hotspots’ locations than Fig. 3.7(a). In Table 3.6, rows OV and CO list the congestion
analysis for Figs. 3.7(a) and (b), respectively. Notably, EG, both executes around 45 seconds to get the
results in rows OV and CO, but OV has lower WCI(100) than CO because OV focuses on eliminating

overflows.

47

0-697 M95-99% ®
70-742 W[100-104% =
75-79% W|105-109% ®
80-842 ©[110-114%Z @
85-892 [1152+ =
90-942

(c)
Fig. 3.7. Routing results of Ind11. (a) Minimizing overflows; (b) minimizing congestion ratio to
approach 80%; (c) color scheme

3.4.2.3 Effectiveness of Throughput Controlling

Table 3.7 shows EG, with different values of #, to trade off routing quality and runtime. Table 3.7
shows that the ACE metric monotonically improves and the runtime of EG,; almost linearly increases
when ¢, increases. Also, WCI metric of the routing results except for design Ind9 monotonically
improves when ¢, increases. Table 3.7 reveals that the throughput controlling method can practically
trade off the runtime and quality:.

To demonstrate that EG,y with the same value of ¢, offers the stable runtime for any congestion
circumstance, we add extra blockages to each g-cell'in Ind11 and then use EG,, with 7,=5 to route Ind11
with extra blockages. In Table 3.8, rows Ex0, Ex2 and Ex5 respectively show the congestion analyses
for the routing results of Ind11 with 0%, 2% and 5% extra blockages, in which the runtimes of Ex0. Ex2
and Ex5 are respectively 45.6, 44.2 and 47.4 seconds. Table 3.8 indicates that the runtime of EGy is
stable for different congestion circumstances, which can avoid the runtime of EGy being crazy when
other tools that cooperate with EG,; worsen the congestion largely. Figure 3.8 shows the congestion

maps of Ind11 with 0%, 2% and 5% extra blockages.

48

TABLE 3.7 EFFECTIVENESS OF USING THROUGHPUT CONTROLLING METHOD
TO TRADE OFF RUNTIME AND ROUTING QUALITY

EGan | CPU(s) | WCI(100) | WCI(90) | ACE(0.5) | ACE(1) | ACE(2) | ACE(5) | ACE(10) | ACE(20) | WL(10")
t, =31 39.56 4209 29202 97.54 | 94.84 | 91.76 | 86.25 | 82.93 79.64 11.00
t,=5]| 45.63 3257 24216 96.61 93.52 | 90.25 | 85.03 | 82.30 79.29 11.06
nd7 t,=7T| 52.88 2941 18437 96.02 | 92.68 | 89.25 | 84.18 | 81.84 79.00 11.11
t,=9| 60.42 2751 14633 95.58 | 92.08 | 88.44 | 83.69 | 81.58 78.84 11.15
t,=3]| 3931 5807 23629 98.59 | 95.94 | 92.04 | 85.42 | 81.85 76.32 10.79
t,=5| 44.54 5000 18985 97.93 | 94.75 | 90.69 | 84.61 | 81.42 76.14 10.83
Inds t,=7T| 5139 4834 16185 97.71 94.32 | 89.89 | 84.13 | 81.14 75.99 10.87
t,=9| 58.68 4705 14280 97.63 | 94.09 | 89.32 | 83.83 | 80.94 75.88 10.90
t,=3]| 3143 1142 12121 97.48 | 94.46 | 90.60 | 84.60 | 81.61 77.07 10.65
| t,=5] 32.29 1098 9383 97.31 93.76 | 89.24 | 83.87 | 81.22 76.87 10.67
nd? t,=7| 33.08 1004 6774 97.01 92.89 | 88.12 | 83.35 | 80.92 76.71 10.69
t,=9| 33.65 1021 4227 96.63 | 91.96 | 87.04 | 82.86 | 80.62 76.55 10.71
t,=3]| 70.38 2608 36888 9531 | 9230 | 88.84 | 84.30 | 81.95 79.72 | 24.01
Ind t,=5| 85.04 1681 13589 91.88 | 88.60 | 85.80 | 82.66 | 81.10 79.34 | 24.13
nd10 t,=17/(100.08 | 1411 10996 | 90.21 | 86.54 | 83.98 | 81.60 | 80.51 79.09 | 24.26
t,=9(107.93 | 1395 10130 89.70 | 86.06 | 83.40 | 81.33 | 80.36 79.03 24.30
t,=3| 4130 84 80837 94.68 | 93.31 | 91.92 | 89.90 | 86.95 83.48 14.72
1 t,=5]| 45.55 77 77080 93.82 | 92.41 | 91.32 | 89.23 | 86.56 83.29 14.78
tndl t,=7T| 50.36 72 67575 93.32 | 92.07 | 91.06 | 88.69 | 86.18 83.09 14.82
t,=9]| 5595 72 59844 92.64 | 91.54 | 90.71 | 88.19 | 85.85 82.93 14.89
t,=3]| 29.83 5260 52432 99.81 98.21| 95.76 | 91.29 | 87.47 83.52 12.56
t,=5] 30.49 4480 50166 99.74" | ' 97.84 | 95.26 | 90.83 | 86.99 83.24 12.59
Ind12 t,=7| 33.63 2716 47227 99.45 | 97.32 | 94.59 | 90.28 | 86.61 83.04 12.62
t,=9| 36.48 2388 43859 99.38 | 97.11 | 94.16 | 89.85 | 86.27 82.86 12.64
t,=3| 1 1 1 1 1 1 1 1 1 1
ot t,=5| 1.108 | 0.835 0.781 0.989 | 0.985 | 0.985 | 0.989 | 0.994 0.997 1.004
atio t,=7| 1244 | 0.721 0.652 0.983 | 0976 | 0.974 | 0.982 | 0.989 0.994 1.007
t,=9| 1.367 | 0.701 0.551 0.979 | 0971 | 0.967 | 0.977 | 0.986 0.992 1.010
TABLE 3.8 ROUTE IND11 WITH EXTRA BLOCKAGES
WCI (10%) ACE
100% | 90% | 0.5% | 1% | 2% | 5% | 10% | 20%
Ex0 | 0.08 77.0 93.8 [924 | 91.3 | 89.2 | 86.6 | 83.3
Ex2 | 0.13 87.1 058 [942 | 93.2 | 91.1 | 88.3 | 85.2
Ex5 2.5 137.7 | 984 | 97.2 | 96.1 | 94.0 | 91.3 | 87.6

49

Fig. 3.8. Routing results of Ind11 (a) without extra blockages; (b) with 2% extra blockages; (c) with
5% extra blockages.

3.5 Summary

This work enhances Grace to fulfill the industrial requirements to develop a industrial RCE tool
called E-Grace that takes TCR, local congestion, scenic and layer directive constraints into account. The
goal of E-Grace is to minimize congestion ratio rather than overflows, the proposed TCR-driven R&R
scheme can offer a satisfactory routing quality in a limited runtime budget. Further, a
relaxation-legalization method is presented to handle the scenic constraint, which can escape from the
local optimum to get better solution quality. Finally, by the proposed throughput controlling method,
users can trade off the runtime and quality of E-Grace to get deterministic routing results. Experiments

reveal that E-Grace is faster and more accurate than another industrial global-routing-based RCE.

50

Chapter 4 Ropt: Optimization of Placement
Solutions for Routability

4.1 Introduction

To address the routability issue, the importance of the cooperation between placers and routing
congestion estimators (RCE) is highlighted in this dissertation. Practically, the proposed RCE tool
E-Grace has been adopted in industrial flow to cooperate with industrial placers for refining the
placement solution's routability. Also, the academic routability-driven placers in [42-45] adopt
global-routing-based RCEs to obtain a routing congestion map, and then move cells to optimize the
congestion based on the map as well as routability. However, as cells move, the congestion map also
changes, thereby affecting the effectiveness to improve routability.

To maintain the accuracy of the congestion map, IPR in [43] adopts global router FastRoute 2.0,
developed in [14], to obtain a congestion map at the beginning of the detailed placement stage, and then
incrementally updates the congestion map as cells move. For each cell ¢;, IPR identifies the optimal
region of ¢; that minimizes the half-perimeter wirelength (HPWL) associated with ¢; and swaps ¢; with a
cell in the optimal region. The cell chosen for swapping is the one that minimizes the congestion the
most. After that, IPR reroutes the nets connected to the swapped cells. This method always maintains a
global routing instance based on the current placement to offer accurate congestion information.
However, IPR decides the cell locations according to its HPWL optimal region. If the optimal region is
in a congested area, the congestion is hardly reduced.

To further compound the problem, most global routers [3-21] ignore the local congestion. As a
consequence, placers that are guided by these routers may produce hard-to-route placement solutions in
terms of detailed routing. In most global routing models, the placement is typically partitioned into an
array of uniform G-cells, and global routers identify the G-cell-to-G-cell routes for each global net, a
net whose terminals reside in different G-cells. However, the effects of the local nets, each of which has

51

terminals residing within a G-cell, are typically ignored. To minimize local congestion, an estimation
metric for local-routability was used by the detailed placer in [56] to guide the iterative movements of
cells from high-cost G-cells to low-cost G-cells. A G-cell with a lower cost means that the routing
within this G-cell is easier. However, the experiment in [56] reveals that this method may increase
global congestion. To simultaneously consider global and local congestions, the authors of [53] took
local pin density into account during global routing. If a G-cell has high pin density, the routing
capacities from the G-cell to its neighboring G-cells are reduced, in order to avoid routing too many
global paths through these G-cells. The remaining routing resources in the G-cell can be used for local
routing.

ISPD 2011 and DAC 2012 routability-driven placement contests [46, 47] adopt NCTU-GR 2.0 [18]
and BFG-R [7] to evaluate the routability of the contestants' placement solutions. However, the
evaluation may be biased because NCTU-GR 2.0.and BFG-R 'do not consider local congestions. Thus,
this work develops a translator to transform the placement solutions of the top four placers [38, 39, 42,
57] in DAC 2012 contest to the format that can be read in by commercial router Wroute [23] (version
3.0.61) to yield detailed routing results, and then analyzes how to optimize placement solutions that can
reduce the routing violations in the detailed routing results.

Based on the observation for the detailed routing results of the placement solutions of [38, 39, 42,
57], this work develops a routability optimizer Ropt that takes a placement solution and optimizes its
routability. Ropt combines both placement and global routing, and always maintains a global routing
instance based on the current placement solution. The global routing instance is built on a
local-routability-aware model. Therefore, the global routing instance provides both global and local
congestion information to guide the placement algorithms. In contrast to CRISP [44] and CROP [58],
which locally spread and shift cells, Ropt globally re-places cells to significantly improve the routability.
Ropt has following innovations:

(a) We propose new capacity and demand estimations in the global routing model to account for both

global and local congestion levels simultaneously, and generates a global routing instance based

52

on the proposed model. Similar to [53], the proposed model also considers pin density. However,
in contrast to [53], our model also places emphasis on the effect of blockages on routability.

(b) Rather than minimizing HPWL, the proposed routing-cost-driven global re-placement directly
improves routability by minimizing the routing cost of nets, as the routing cost is defined in terms
of congestion and wirelength. The estimation of routing cost is based on the global routing
instance, which is updated after every cell movement.

(c) This work presents a legalization scheme to preserve the global routing instance after legalization.
After that, the proposed local detailed placement further minimizes the local congestion and
wirelength without increasing global congestion.

(d) In addition to using NCTU-GR 2.0 to evaluate the routability of the placement solutions, this work
also uses Wroute [59] to obtain detailed routing results of the optimized placement solutions for
the evaluation of routability.

The rest of this chapter is organized as follows. Section 2 introduces the problem of
routability-driven placement. The case study for the placement solutions of [38, 39, 42, 57] is discussed
in section 3. Section 4 presents the design flow of Ropt. Section 5 summarizes the experimental results.

Conclusions are finally drawn.in Section 6.

4.2 Problem Description

A circuit can be defined as a set of nets, where each net comprises a set of pins, each of which can be
located on a cell, a macro, or a pad. The placement problem deals with the determination of the
positions of cells and macros, with the goal of minimizing the (routed) wirelength used to connects all
the nets, subject to the constraints that there are no overlaps between cells and macros. The placement
area is partitioned into rows, the cells and macros must be aligned with the rows.

For the ISPD11 and DAC12 benchmark circuits [46, 47] used in this work, the positions of macros
are fixed. Therefore, the objective of this work is to re-place movable cells to improve routability,

subject to the constraints that the cells are aligned with the rows and that there are no overlaps in the

53

final placement solutions. This work uses NCTU-GR 2.0 and Wroute to evaluate the routability of the
placement solutions produced by the proposed optimizer Ropt on the circuits in [46, 47]. Global router
NCTU-GR 2.0 is selected to evaluate the routability of placement solutions in the DACI12 and
ICCADI12 placement contest. However, NCTU-GR 2.0 does not route local nets. Therefore, the impact
of local congestion on the real routability cannot be evaluated properly. Indeed, a good global routing
solution does not imply that a feasible detailed routing solution exists. For a thorough evaluation of the
real routability of the placement solutions produced by Ropt, we also feed the placement solutions to

Wroute to obtain the detailed routing results.

4.3 Case Study for Placement Solutions in DAC Contest

By holding ISPD 2011, DAC 2012 and ICCAD 2012 routability-driven placement contests, many
researchers were attracted to develop—effective routability-driven placers. The top four placers in
DACI12 placement contests are, in alphabetical order, mPL [57], NTUplace [39], Ripple [38], and
SimPLR [42], this work adopts the their placement solutions in DACI12 contest to perform detailed
routing by Wroute and then do case study on their detailed routing results.

DACI12 contest adopts ‘a global-routing-based metric to evaluate the routability of contestants'
placement solutions, thus the placers in [57, 38, 39, 42] treat this metric as the objective. In DAC12
contest, each placement solution P is global routed by BFG-R and NCTU-GR 2.0. For each global
routing solution Gp, a global congestion metric PWC(Gp) 1s computed by calculating the congestion
cost of each grid edge e in Gp, and then adding up the average congestion costs of the top 0.5%, 1%, 2%,
and 5% congested grid edges. The score of a placement solution, denoted as S(P), in the DAC12 contest
is then computed as follows:

S(P)= HPWL(P)x(1+0.03x PWC (Gp)), 4.1

where HPWL(P) denotes the total half-perimeter wirelength of P A lower S(P) implies better

routability. Although this global-routing-based metric take total wirelength, average congestion, and

peak congestion into account, but no experiment can show how accurately this metric can estimate real

54

routability of detailed routing. The next subsection introduces how to read in the placement solutions in

DAC 2012 and then to evaluate their real routability.

43.1 Framework for Performing Detailed Routing

The benchmark suite used in DAC 2012 placement contest [47] omits many physical design rules.
Thus, it is not suited to be the benchmarks of detailed routing. In this work, we develop a translator
based on the 28nm technology node to translate the placement solutions of [47] to LEF/DEF files and
then run commercial router Wroute [59] on these circuits to obtain detailed routing results. Because the
details of the design rules of the 28nm technology node are not readily available, we consult with
several senior engineers from various companies (vendors, design companies, and manufacturers) to set
reasonable routing parameters in the translator, in which the minimum wire width and via size are set to
42 nm and 56x56 nm’, respectively. The minimum spacing rule is set to 42 nm. Based on the default
setting in the benchmark ‘suites [47], metal layers 1-4, 5-7, and 8-9 have 1X, 2X, and 4X the minimum
wire width, via size, and spacing, respectively.

In the benchmark suites of [47], some pins are not accessible because they are blocked by macros.
Thus, the translator moves these pins to the top layer of the macros to make these pins accessible. In
addition, some pads are located at the same positions, which would cause routing violations. Therefore,
the translator only reserves the pad that'appears first in the benchmark files and removes the others that
are located at the same position. As only few pads are removed, the effect of such removals should be
negligible. In practice, many small obstacles and cell routings occupy the bottom layer and they
consume most of the routing resources there, leaving very little routing resource available for the
detailed routing of other components in the circuit. As [47] does not provide such information in the
bottom layer, the translator conservatively assumes that the bottom layer is not available for the detailed
routing of the placement solutions. However, vias are allowed to connect to pins at the bottom layer if
the routing resource is enough to insert vias.

After obtaining the translated LEF/DEF files, Wroute is invoked to perform (global and detailed)

55

routing in two iterations. The first iteration is the default routing mode and the second iteration is the
post routing mode. In the default mode, Wroute reports the number of unroutable nets after the global
routing stage and the unroutable nets are not routed in the detailed routing stage of the first iteration. In
the post routing mode, Wroute routes every net in detail and further minimizes the number of violations,
the total wirelength, and the number of vias of the routing result generated in previous iteration. The
runtime limitation for each iteration is 24 hours. We have tried to run Wroute for more iterations to
further optimize the detailed routing results. However, we typically observe only slight improvement
over the solutions obtained using only two iterations. We conclude that for the purpose of evaluating the
routability of placement solutions, running two iterations of Wroute strikes a good balance between

routing quality and runtime.

4.3.2 Mismatch between Global and Detailed Routability

Table 4.1 compares the placement solutions of mPL, NTUplace, Ripple, and SimPLR based on the
DACI12 metric, number of violations in detailed routing results, and TLMW, respectively. The definition
of TLMW will be introduced later. In DAC12 contest, global routers BEG-R and NCTU-GR 2.0 are
used to evaluate placement solutions. Thus, we use BEG-R and NCTU-GR 2.0 to get two global routing
results G; and G for each placement solution, and then compute congestion penalty PWC(Gp) by
averaging PWC(G;) and PWC(G,). Finally, the routability score for each placement solution is obtained
via Eq. (4.1), which is shown in the first major column in Table 4.1. To evaluate which placer’s
solutions have better routability, we follow the convention used in the DACI12 contest and rank the
placement solutions of each benchmark from 1 (best) to 4 (worst). After that, we average the rankings of
the solutions in each column to get the average ranking (AR) for each placer. In DACI2 contest, a
placer with smaller average ranking implies that this placer produces better routability placement
solutions.

In Table 4.1, NTUplace has a much lower AR than other placers based on the DAC12 metric, which

implies that NTUplace reduces both HPWL and global congestion well to obtain better routability

56

scores S(P) (Eq. (4.1)). However, based on the number of routing violations, NTUplace has a similar
AR compared to other placers. We suspect that local congestion is the main cause of such behavior. To
estimate the local congestion for each placement solution, we decompose every net into two-pin nets
based on the topology of a RMST and then add up the Manhattan distance between the terminals of
each local two-pin net to get the total local Manhattan wirelength (TLMW). If both terminals of a
two-pin net are within a G-cell, the two-pin net is regarded as a local two-pin net. The right major
column in Table 4.1 shows the TMLW of each placement solution, as well as the AR for each placer
based on TMLW; a solution with shorter TMLW gets a better ranking. Table 4.1 reveals that the orders
of AR based on the DACI12 metric and TLMW are reversed. This implies that a placement solution that
has a better routability score evaluated by the DAC12 metric has longer TLMW. However, a longer
TLMD may lead to local congestion and higher number of violations, which would cancel the benefit of
performing well on the DAC12 metric. Thus, the four placers have similar ARs based on the number of

violations.

TABLE 4.1 COMPARING THE PLACEMENT SOLUTIONS IN DAC12 CONTEST
BASED ON THE DAC12 METRIC, VIOLATIONS AND TLMW
DAC]12 metric (107 Violations TLMW (10°)
Ripple| mPL |SimPLR|NTUplace|Ripple] mPL |SimPLR|NTUplace|Ripple| mPL |SimPLR|NTUplace
s2 [78.21(115.5| 87.67 | 64.30 |81227(113991| 876 | 725813 (97.14|79.33| 98.99 | 99.48
s3 (44.28(46.08| 40.75 | 37.60 | 243 | 231 194 988 1103.83|84.29 | 98.65 | 100.52
s6 (36.93(41.12] 36.94 | 36.68 | 232 | 231 361 637 |118.60/93.39|115.40| 117.11
87 (47.00(51.86[131.04| 40.52 | 300 | 170 | 5402 168 |171.10[144.15/168.27 | 175.28
s9 (30.00(33.80[28.93 | 26.70 |8136| 68 22 89 1102.69|84.97|103.12| 103.18
s11|36.27(44.66(38.51 | 34.73 | 433 [11009 | 1840 697 1100.53|79.92{102.66| 102.69
s12(37.38(53.03| 37.69 | 31.68 | 155 |343637| 241 94 |178.82]160.60| 87.70 | 177.62
s14(23.89(27.45| 25.68 | 22.96 |19086[271799|224239| 18446 |[65.39|51.01 | 63.25 | 66.86
s16(27.23(30.7| 35.81 | 28.27 | 38 36 135 24 87.70 | 70.53 | 87.70 | 88.83
s19(16.95(22.78| 16.63 | 15.33 | 110 | 276 | 72777 | 15114 |[56.64|47.30| 56.58 | 58.96
AR| 2.2 | 3.8 | 29 1.1 23 | 2.6 2.7 2.4 3 1.1 2.2 3.7

Figure 4.1 shows the placement solutions of s19 obtained by each placer. In these figures, the

white crosses and green rectangles denote the routing violations and big macros, respectively. Recall

57

that the big macros are treated as routing blockages in the routing stage. We can see that most routing
violations occur near blockages. Accordingly, we recognize some patterns that easily cause violations
between blockages and cells. The placement solutions obtained by Ripple in DACI12 contest contain
fewer such patterns, and therefore have fewer violations. These patterns will be presented in the next

sub-section.

(a) (b) (c) " _ (d)
Fig. 4.1. Placement solutions 0f s19 obtained by (a) Ripple; (b) mPL; (¢) SimPLR; (d) NTUplace.

4.3.3 What Causes Routing Violations

As placers are now getting better in resolving global congestion issue, it is more critical than ever
that they consider local congestion in the optimization process. Otherwise, the placers may further
accentuate the local congestion problem by turning global nets into local nets. To consider local
congestion in the early stage, the works in [50, 56] developed local congestion estimation metrics based
on the pin density; however, they did not consider the effect of blockages. Figure 4.1 shows that most
violations occur near blockages. This implies that incorporating the effect of blockages into local
congestion estimation metrics may improve the accuracy of the metrics in predicting local congestion.

We list some reasons why most violations near blockages based on our observations. (1) The global
placement stage in placers would place cells on blockages. After legalization, these cells are pushed to
the fringe of blockages, resulting in high congestion around the fringe of these blockages. (2) Routing
wires cannot access pins that are too close to blockages because of spacing rules. (3) Although routing
wires can stride over blockages via the high routing layers, the routing wires hardly use the high layers

in the congested regions. (4) Routing wire bypassing blockages would increase the via count, which
58

may make designs harder to route. However, the placement and global routing stages usually ignore the

routing overhead incurred by vias.

(b) (©)
Fig. 4.2. The local views of the most congested region in-(a) the placement solution of mPL; (b) the

placement solution of Ripple; (c) the placement solution of NTUplace for s19.

To take a deeper look why blockages cause violations, Fig. 4.2 provides the local views of the most
congested regions in some placement solutions. In Fig. 4.2(a), many cells are placed in a narrow
channel between blockages. In Fig. 4.2(b), many cells are placed into a narrow channel between a
blockage and the design’s boundary. In Fig. 4.2(c), many cells are adjacent to a big blockage. Note that
we do not show the violations in Fig. 4.2 because doing so would make it impossible to view the cells
and blockages, as the number of violations are just too high. Such patterns in Fig. 4.2, which cause
violations, are commonly found in the placement solutions in DACI12 contests. Even if a placement

solution can be easily globally routed, routing violations still exist in the placement solution if the

59

patterns shown in Fig. 4.2 exist. We believe that violations can be reduced if placers avoid placing too

many cells into narrow channels and preserve a small space between cells and big blockages.

4.4 Proposed Routability Optmizer

Figure 4.3 shows the design flow of Ropt. Given a set of nets and an initial placement, Ropt first
constructs a global routing model with local routability taken into consideration. Next, each net is
decomposed into two-pin nets based on the topology of a RMST, and then an initial global routing
instance is generated by pattern routing and monotonic routing. Thereafter, routing-cost-driven global
re-placement stage re-places each cell and immediately updates the global routing instance after each
cell moves. Legalization stage aligns the cells on the row-and removes overlaps; the goal of this stage is
to preserve the global routing instance after| legalization. Finally, local detailed placement further
minimizes the local congestion and wirelength. Ropt iteratively refines the placement until a user
defined terminating condition is met. In our implementation, we iterate the process up to two times (see

Table 4.3 in Section 5 on.the experimental setup).

< Initial Placement . Routing-cost-driven
¥ Global Re-Placement
Build Local-Routability-Aware |
Global ROLiting Model Legalization with Global
RMST Decomposition oung Plreserved
¥
Initial Routing - Local Detailed Placement
No F =

inal Iteration? -~

es
(New Placement result)
Fig. 4.3. Design flow of the proposed routability optimizer Ropt

4.4.1 Local-Routability-Aware Global Routing Model

Two global routing approaches are generally used in multi-layer global routing problem. The first
one performs global routing on a three-dimensional (3D) grid graph to get a 3D routing result. The

second approach first projects a 3D grid graph into a two-dimensional (2D) grid graph. Then, a 2D

60

global router is used to obtain a 2D routing result. Finally, a layer assignment step transforms the 2D
routing result to a 3D routing result. The former has a larger solution space than the latter has, but the
latter is much faster than the former. In order to quickly extract the congestion information to guide the
placement process, this work builds the global routing instance based on a 2D routing approach.

In the 2D global routing model, the given placement is modeled to a 2D grid graph G(V, E), where V'
denotes the set of G-cells, and E refers to the set of grid edges. Each grid edge connects two adjacent
G-cells. The capacity c(e) of grid edge e is the number of routing tracks that can legally cross the
abutting boundary, and the demand d(e) of e is the number of global routing path passing through e. If
d(e) exceeds c(e), too many global routing paths are passing through e, which implies global congestion.
Thus, global congestion can be measured in terms of d(e) and ¢(e). Note that, two terms G-cell and cell
are used in this chapter; a G-cell means a bin in the global routing model, while a cell means a primitive
instance to be placed in the placement problem.

This work accounts for local-routability in the estimations of capacities and demands of grid edges.
Therefore, when the global router in the proposed flow finds the least-cost routing paths whose cost
formulation is based on the new capacity and demand estimations, the global and local congestion can
be simultaneously considered and reduced. The following equation has been used in many 2D global

routers to estimate grid edge capacity [7-21]:
c(e)=Y. (Ti(h,b2)~BTi (b, b)), (4.2)

where b; and b, are the adjacent G-cells of grid edge e, L is the set of layers, and T(b,, b,) and BT(b,,
b,) represent the number of routing tracks and the number of routing tracks blocked by big macros at
layer / between b; and b;, respectively. This capacity estimation disregards the vias and local routes in
the adjacent G-cells. However, the presence of vias and local routes can make it hard for a design to be
detailed routed. Based on the case study in previous section, we observed that the vias and local routes
in b; and b, increase as the number of blocked tracks between b; and b, increases. The increased vias
and local routes would further block the tracks between b; and b,, and more blocked tracks necessitate

more detour and vias for a path to cross the boundary between b; and b,. As the number of blocked

61

tracks increases, the edge capacity decreases more than linearly. To capture this effect, this work

estimates the capacity of a grid edge with the following equation:

3., BTithi,b)
IEICES

c'(e)=|(1-)" x> Ti(bi,b) |, (4.3)

where a is a user defined constant; we set a to be 2.5 in this work. (In this work, there are many
parameters that can be tuned. We select these parameters based on empirical results. However, once set,
these parameters stay the same throughout the experiment. We do not change the parameters according
to the benchmark circuits, although it may be wise to do so to obtain better results.) Moreover, it has
been demonstrated in [50] that the pin densities in b; and b, also affect the routability between b; and b..

Thus, we estimate the demand placed on e as follows:

pb) . plba)
A Y ()

d'(e)=d(e)+ ,3><(Z)| (4.4)

where d'(e) denotes the number of routing tracks used by global and local paths between b; and b,, in
which d(e) is the number of routing tracks used by global paths, and the second term denotes the
number of estimated routing tracks used by local paths. Since detailed routing is yet to be performed to
realize local paths, we simply use pin density to estimate the number of local paths, the concept is
similar to [50]. In Eq. (4.4), p(b/) and p(b3) denote the number of pins in b; and b,, respectively. A/(b;)
and A4(b,) denote the areas which are not covered by macros in b; and b; at layer /, respectively. £ is a
user defined constant, and we set it to be 1500.

Many global routing papers [7, 14, 11, 17] discuss how to formulate the routing cost in terms of the
global congestion based on c(e) and d(e) (and possibly other relevant metrics) and then find the
least-cost routing path for each net to minimize the global congestion. This work adopts the routing cost
formulation presented in [17], but replaces c(e) and d(e) by c'(e) and d'(e), respectively, in order to
consider local-routability. This local-routability—aware routing cost function is used in the initial routing

and global re-placement stages.

62

4.4.2 Routing-cost-driven Global Re-Placement

As minimizing the total routing cost can directly improve the congestion, we formulate such a
routing cost minimization problem as that of finding the optimal placement G-cell b,, for a movable cell
¢; in the global re-placement stage to minimize the routing cost. Also, to avoid placing too many cells
into a G-cell, each G-cell has to satisfy a bin density constraint. The problem of Finding Optimal
Placement G-cell (FOPG) for ¢; is concisely formulated by the following equations (for ease of

explanation, if ¢; is placed into b,,, we assume all pins of ¢; are inside b,,):

min > D" routC(e) 4.5)
n(pi,pj)eN(ci) eer(bm,b(p)))

routC(e): G +C2/(1+C3C4><(c'(e)-d'(e))) (46)

st. D(by)<D, 4.7)

Equation (4.5) is the objective equation of FOPG problem, R is the set of candidate G-cells for placing
¢i, N(c;) denotes the set of two-pin nets connecting to ¢;, and n(p;, p;) represents a two-pin net whose
terminals are pins p; and'p;. Pin p; is on ¢; and p; is on the other cell, macro or pad. When ¢; is placed
into by, p; is in b,; b(p;) denotes the G-cell containing p;. #(b,, b(p;)) denotes the least-cost global
routing path from b,, to b(p)), e is a grid edge passed by 7(b,, b(p;)), and routC(e) denotes the routing
cost of e. The formulation of routC(e) in Eq. (4.6) is inspired by [17], in which C;, C,, Cs; and Cy4 are
user defined constants; we set them to 25,20, 2.72 and 0.3, respectively. Moreover, Eq. (4.7) is the bin
density constraint; D(b,,) denotes the bin density of b,,, which is the total area of cells in b,, divided by
the area of b,,. If D(b,,) exceeds D, it is called bin overflow. In this work, we set D, to 0.9.

The proposed routing-cost-driven global re-placement stage uses a heuristic method to solve the
FOPG problem. This method first identifies a set of candidate G-cells for placing ¢; and then evaluates
the cost of placing ¢; in each candidate G-cell. Finally, ¢; is placed into the G-cell with minimal placing

cost. The cost of placing ¢; in b,, is calculated as follows:

p(bu,ci)=desC(bu)<h(bn)+ Y > routC(e), (4.8)

n(pi,pj)eN(ci) eemr(bm ,b(p;))

63

desC(by) kxD(by) it D(b,)<D, 4.9)
es m)= N .
kxD, + ux(D(b,)—D,) otherwise

where p(b., c¢;) denotes the cost of placing ¢; in b, desC(b,) denotes the penalty because of the bin
density of b,, and mr(b,, b(p;)) denotes the least-cost monotonic routing path from b, to b(p)).
Moreover, h(by,) is the history cost of b,; it has an initial cost of 1 and it increases by 1 when the
placement of a cell in b, causes bin overflow. Incrementally increasing history cost can gradually
decrease bin overflows. In Eq. (4.9), x and u are user defined constants. In this work, we set x and x to 1

and 1000, respectively. Accordingly, if D(b,,) exceeds D;, the bin density cost becomes very large.

Algorithm Solving FOPG problem

Input: a movable cell ¢; global routing instant O
1. R<«identifyPlacingRegion(c;)

2. Rip_up(e; N(e)), O)

3. Te<—getBinDesityCost(R)

4 foreach two-pin net n(p;, p;) € N(c;)

5. Tr<—getRoutingCost(b(p)), R, O)

6 Ic=Tc+ Tr

7 end foreach

8. Place ¢; into the G-¢ell with the minimal placing cost
9. Monotonic Routing(N(c;) ,0)

Fig. 4.4. Pseudo code of the algorithm for FOPG problem.

Figure 4.4 shows the algorithm to solve the FOPG problem. Line 1 first identifies a minimum
bounding box enclosing ¢; and the pins with connection to ¢;, and then extends the boundaries of the box
by y units of G-cells. The G-cells within the box are regarded as the candidate G-cells for placing c;. For
example, in Fig. 4.5(a), the G-cells in the red box are the candidate G-cells for placing ¢; when y is one.
A larger y offers a bigger solution space but longer runtime; y is set to 5 in this work. In line 2, ¢; is
ripped-up from the placement and the two-pin nets in N(c;) are also ripped-up from the global routing
instance O (Fig. 4.5(b)).

Line 3 computes the bin density and the associated penalty (via Eq. (4.9)) of each G-cell in R and
stores the penalties in matrix 7c. In Line 5, monotonic routings from b(p)) to four corner G-cells in R are

performed. Monotonic routing can obtain a least-cost monotonic path from the source to each G-cell in

64

the minimum bounding box enclosing the source and target. So, the monotonic routings from b(p;) to
four corner G-cells in R can obtain the least-cost of the monotonic path from b(p)) to every G-cell in R.
After that, the routing costs are stored in matrix 7. In Fig. 4.5(c), the gray rectangles represent
congested regions, the arrows depict the directions of monotonic routings, and the number in each

G-cell denotes the least-cost of the monotonic path from b(p;) to each G-cell. For simplicity, we assume

Do £ Do pv‘
()

(b)

(d)
Fig. 4.5. (a) the G-cells in the red box are the placing candidates for ¢; (b) rip-up ¢; and the two-pin
nets in N(c¢;); (¢) the number in each G-cell denotes the least-cost of monotonic path from b(p;) to

each G-cell; (d) place ¢; into the G-cell with minimal placing cost and reroute the two-pin nets in
N(C,').

in this example that routC(e) is 10 if e crosses a congested region, and 1 otherwise. When the iterations
from lines 4 to 7 in Fig. 4.4 terminate, 7¢ contains for each G-cell in R, the cost of placing ¢; in that
G-cell. Finally, line 8 places ¢; into the G-cell with minimal cost and line 9 routes the monotonic paths
of every two-pin net in N(¢;) and updates O (Fig. 4.5(d)). The time complexity of this algorithm is
O(|R[*|N(c;)|) where |R| and |N(c¢;)| denote the number of G-cells in R and the number of two-pin nets

connected to ¢;, respectively.

65

The global re-placement stage performs the algorithm in Fig. 4.4 for every cell in each round. In our
implementation, this stage runs for four rounds. Notably, this stage simply places cells at the center of
the assigned G-cells. The definite locations of cells are decided in the following stages: legalization and

local detailed placement.

4.4.3 Legalization with Global Routing Preserved

After global re-placement, many cells have overlaps and are not aligned with the rows. The duty of
legalization is to align cells on the rows and remove overlaps. Most legalizers [60, 61] minimize the
total displacement of cells as the main objective is to ensure consistency between the global placement
solution and the legalized solution. Instead, the objective of our legalizer is to preserve the global
routing instance after legalization. In order to minimize the change to the global routing instance, if the
global re-placement stage places a cell in G-cell b, our legalizer attempts to keep this cell in b,,.

Our legalizer is similar to Abacus [60], but with a different objective. First, every cell is sorted in
increasing ordering according to its x-coordinate. Next, for each cell ¢;, our legalizer tentatively moves
¢; to its neighboring rows 7 and calculates the cost of moving ¢; to 4. Then, ¢; is moved to the best row
with the lowest cost. In Abacus, the cost formulation is based on the displacement of ¢;. Instead, this

work calculates the cost as follows,

mc(ci abm > Tk): ,thao(ci abm 5 rk) r] O-XZpEP(Ci) d(bm ab(pk))

+m(ci,n)+cu(n)

. (4.10)

where ¢; 1s placed into G-cell b,, in the global re-placement stage, mc(c;, by, rr) denotes the cost of
moving ¢; to row 7k, ao(c;, by, rr) denotes the area of ¢; out of b,, when ¢; is moved to r, P(c;) denotes
the set of pins belonged to c;, b(px) denotes the G-cell containing p when ¢; is moved to 7k, and d(b,
b(pr)) denotes the index distance between b(px) and b,,. For example, if the indexes of b,, and b(py) in
the grid graph are (x, y) and (x', y"), respectively, d(bn, b(pr)) 1s |x-x'|+|y-y'|. Moreover, m(c;, i) is the
displacement of ¢; when ¢; is moved to rx, cu(ry) is the capacity utilization of , which is between zero

and one. u and o are user defined constants. In our implementation, 4 and ¢ are set to 1000 and 100,

66

respectively. Since the global routing instance would change if ¢; moves out of b,,, Eq. (4.10) gives the

high penalty of mc(c;, by, %) if ¢; moves out of b,,.

Algorithm Local Detailed Placement
Input: Grid Graph G(V, E)

1. forit=1tou

2 foreach bin b, € V

3 foreach cell ¢; = C(b,)

4 Cell_Swapping(c;, C(bn))

5. foreach segment s; within b,,

6 Sliding Window(s;, C(bwm))

7 foreach cell ¢; & C(b,)

8 Moving_to Empty Spot(ci, C(bu), bm)
9 end foreach

10. end for

Fig. 4.6. Pseudo code of local detailed placement

4.4.4 Local Detailed Placement

This stage addresses the problem of minimizing the local wirelength im each G-cell to reduce local
congestion. To avoid degrading the global routability, this stage does not move a cell from its original
G-cell to another G-cell so as to ensure that the global routing instance remains the same. Performing
detailed routing in each G-cell can get accurate local wirelength and congestion information but is
time-consuming. Thus, this stage simply uses Manhattan distance to measure the local wirelength in
each G-cell. If the terminals of a two-pin net n are both in G-cell b,, the local wirelength of n is
measured by the Manhattan distance between its two terminals. If a terminal of # is outside b, the
terminal is projected on the boundary of b, and the local wirelength of n in b, is measured by the
Manhattan distance between the projected terminal and inside terminal.

Figure 4.6 shows the pseudo code of local detailed placement, in which C(b,,) denotes the set of cells
that are entirely in b, 1.e. the cells in C(b,,) do not cross the boundaries of b,,; s; denotes a segment of

rows within b,, u is a user defined terminating condition, we set it to be 5. Local detailed placement

67

adopts cell swapping, sliding window and moving cells to empty spots methods to greedy improve local
wirelength. In Fig. 4.6, line 4 tentatively swaps ¢; with other cells in C(b,,). If there exists at least a legal
swap that can reduce the local wirelength, line 4 picks the legal tentative swap with the best
improvement to perform an actual swap. A legal swap means that the swapped cells are entirely in b,
and they do not cause cell overlap. Line 6 adopts the sliding windows method [62] to re-order the cells
in s; for minimizing the local wirelength. We use a window size of 5 cells in this work. Line 8
tentatively moves ¢; to an empty spot in b,,. If there exists at least a legal move that can reduce the local
wirelength, line 8 picks the legal tentative move with the best improvement to perform a real move.
Again, a legal move is one that does not cause cell overlap.

TABLE 4.2 BENCHMARKS"INFORMATION

Total | Movable | Fixed | Fixed | Total total Design | Design

Bench-mark | Nodes Cells |- Macros | Pads Nets Pins Util.(%) | Den.(%)
s2 1014029 | 921273 [-59312 | 33444 | 990899 | 3228345 76 28
s3 919911 | 833370 | 55033 | 31508 | 898001 | 3110509 73 42
s6 1014209 | 919093 | 65316 | 29800 | 1006629 | 3401199 73 43
s7 1364958 | 1271887 | 66995 | 26076 | 1340418 | 4935083 76 58
s9 846678 | 789064 | 37574120040 | 833808 | 2898853 73 47
sl 954686 | 859771 | 67303 | 27612 | 935731 | 3071940 79 40
s12 1293433 | 1278084 | 8953 | 6396 | 1293436 | 4774069 56 44
s14 634555 | 567840 | 44743 | 21972 | 619815 [2049691 72 50
sl6 698741 | 680450 419 17872 | 697458 | 2280931 69 46
s19 522775 | 506097 286 16392 511685 | 1714351 78 49

4.5 Experimental Results

The proposed algorithms are implemented in C/C++ on a quad-core 2.4 GHz Xeon-based linux
server with a 50GB memory (only a single core is used). This work uses the placement solutions of
NTUplace to be the input placement for Ropt. NTUplace won the DACI12 routability-driven placement
contest [47], and the placement solutions of NTUplace in the contest are downloaded from [63]. Table
4.2 shows the design information in the benchmark suit used in the DAC12 placement contest, in which

"Total Nodes" denote the total number of movable cells, fixed macros and fixed pads, "Design Util."

68

denotes the ratio of the total area of the movable cells and fixed macros to the area of the placement
region, and "Design Den." denotes the ratio of the total area of the movable cells to the free-space in the
design. The free-space is the area of the placement region minus the total area of the fixed macros.

This work proposes four features: local-routability-aware global routing model (LGM) with new
resource and demand estimates, routing-cost-driven global re-placement (RGP), legalization with global
routing preserved (LRP) and local detailed placement (LDP). To show the effectiveness of each feature,
several versions of Ropt are built to evaluate the effects of these features. Table 4.3 lists the features of
each version, in which the column “iteration” is the terminal condition in Fig. 4.3. Notably, the versions
without LGM adopt c(e) and d(e) rather than c/(e) and d'(e) to formulate the routing cost in Eq. (4.6),

and the Ropt;, which does not use LRP, uses Abacus [60] instead of the proposed legalizer.

TABLE 4.3 ROPT WITH DIFFERENT FEATURES
Features

LRP LDP iteration
1

Versions
LGM

Ropt;
Ropt,

Ropt;
Ropty v
Ropts
Ropts v

\‘\\‘\‘\\Eg

SN SN NS
N[N [N || —

4.5.1 Global Routability: Evaluation by NCTU-GR 2.0

For the evaluation of the effect of the proposed algorithm on global routability, we use Ropt;, Ropt,
and Ropts to optimize the placement solutions of NTUplace, and then use NCTU-GR 2.0 to generate the
global routing result of each placement solution. Because LGM and LDP address the issues of local
wirelength and congestion, the effectiveness of Ropts, Ropts and Ropts cannot be evaluated by global
routers. Therefore, Ropts, Ropts and Ropts are evaluated by Wroute in the next sub-section. Notably,
NCTU-GR 2.0 is a public global routing tool with several tunable parameters. We set the parameters of
via cost, wirelength optimization level, pattern routing iteration, monotonic routing iteration and post

routing iteration in NCTU-GR 2.0 to 1, 50, 2, 2 and 1, respectively. The rip-up and rerouting stage in
69

NCTU-GR 2.0 iterates until either an overflow-free result is obtained or the iteration number is more

than 25.

TABLE 4.4 GLOBAL ROUTING RESULT COMPARISON BETWEEN
NTUPLACE, ROPT;, ROPT, AND ROPT;

NTUplace NTUplace+Ropt, NTUplace+Ropt, NTUplace+Ropt;
WL, [Viag| Repy | WL [Viag| Repu | Pepu | WL | Viag| Repu | Pepu | WL | Viag| Repu | Pepu
s2 |178.43(55.37(471.62|179.51(62.81|325.89| 611.98 |173.75]49.00({236.08| 594.14 |173.07(48.22(234.00{1143.15
s3 [109.15[50.75(270.28(109.99(57.45|283.69| 483.58 [104.44|46.37(204.97| 479.23 |103.61(45.62|184.03| 908.00

s6 [104.37|51.64(169.73|107.09|61.26/175.29| 445.01 {100.67|47.11{120.18| 445.15 |100.09|46.34|115.86| 829.15

s7 [127.57|75.00{128.12|129.39|85.02|118.74| 746.92 {122.02|69.24(100.28| 739.33 |121.11(68.27| 94.44 {1409.29
s9 77.08 |41.15] 88.69 | 78.99 149.06| 78.65 | 638.75 | 73.89 |137.59| 62.85 | 643.26 | 73.37 {36.97]| 60.62 (1152.00
sI1 |103.38(45.77|109.75|105.69(53.35/102.85(322.33 |100.38(41.86] 90.86 | 322.34 | 99.82 |41.33| 83.11 | 615.59
s12 [109.52|70.80(111.74|113.16/83.85|108.24{1002.11|104.22]64.02| 82.20 |1048.66|103.20(62.97| 81.92 |1821.92
sl4 |69.19(33.95| 87.11 | 70.85 |38.72| 90.25 | 307.41 | 67.63 |31.20(72.07 | 320.11 | 67.31 [{30.82| 66.02 | 576.04
sl6 | 79.1333.06(154.94| 81.84 |41.34|1250.24| 261.45 | 76.77 |129.69| 91.18 | 263.02 | 76.42 (29.12] 81.75 | 500.49
s19 [46.79|25.19(41.3848.02 |30.40/39:03' 608.24 | 44.68 |22.46|.32.30 | 612.08 | 44.42 |22.11| 31.33 |1101.72
Ratiojg| 1 1 1 11.022 |1.173| 1.009 0.964 (0.908| 0.722 0.958 (0.894] 0.681
Ratiogym| 1 1 1. [1.020 |1.167| 0.963 0.964 (0.909| 0.669 0.958 ({0.895] 0.632

Table 4.4 shows the routing results of each placement solution, in which WL,, Via,, Repu and Pep,
denote the total global routing wirelength (10°), global routing via count (10°), NCTU-GR 2.0’s runtime
(sec) and Ropt’s runtime (sec), respectively. The routing results of NTUplace are treated as the baseline;
Ratiojng is the average of the ratio of individual entries in the same column, while Ratiog,, denotes the
ratio of the sum of each column. The routing overflows are not listed in Table 4.4 since every routing
result is overflow-free. Table 4.4 reveals that Ropt; has worse WL,, Via, and R, than NTUplace. This
implies that even though the global re-placement may optimize a global routing instance, the
legalization stage can worsen the global routing result when the legalizer is oblivious to the global
routing instance. On the other hand, Ropt,, which uses the proposed legalizer to preserve the global
routing instance, can on the average improve WL, Via, and Rep by 3.6%, 9.2% and 27.8%,
respectively, when compared to NTUplace. In addition, the overflow issue in the Ropt,’s solutions can

be easily resolved by the pattern and monotonic routing stages in NCTU-GR 2.0. Consequently,

70

NCTU-GR 2.0 does not have to invoke the more time-consuming maze routing stage as frequently.
Therefore, the runtime of NCTU-GR 2.0 decreases. For example, in case s16, after the monotonic
routing stage in NCTU-GR 2.0, 105430 and 14363 overflows remain in the placement solutions of
NTUplace and Ropt,, respectively. Also, Ropt, allows many nets to have simple routing solution,
thereby reducing via count. Moreover, Ropt; can on the average reduce WL, Via, and Ry, respectively,
by 4.2%, 10.6% and 31.9%, when compared to NTUplace. Table 4.4 shows that the placement solutions

can be further improved as the Ropt runs more iterations, but the improvement gradually diminishes.

TABLE4.5 DETAILED ROUTING RESULTS OF NTUPLACE

Bench NTUplace

marks NUN Vio WL, (107 Viag (10%) Repu
52 2169 725813 67.80 12.28 48:33:08
s3 1450 988 39.99 11.05 13:06:50
s6 921 637 39.17 11.49 11:02:01
s7 419 168 4831 16.93 13:17:31
s9 1112 89 29.19 9.62 08:49:18
sl1 313 697 38.63 10.19 11:52:41
s12 120 94 42.73 17.01 11:26:41
s14 2352 18446 26.81 7.46 21:57:51
s16 78 24 29.19 7.72 06:59:38
s19 414 15114 18.11 5.99 16:42:50

4.5.2 Effective Routability: Evaluation by Wroute

Because global routers ignore the local nets within G-cells, using global routers to evaluate
placement solutions may encourage placers to push many nets into a G-cell to improve global routing
results. However, the local congestion would make it harder to route such designs in the detailed routing
stage. To examine that Ropt can really improve routability, we via the proposed translator feed the
placement solutions to Wroute, and then evaluate the routability based on their detailed routing results.
Table 4.5 shows the detailed routing results of the placement solutions obtained by NTUplace, in which

NUN is an indicator in Wroute to estimate the global routability (lower NUM means better global

71

routability), Vio denotes the routing violations that are caused by opens, shorts or spacing errors, and

Repu (hh:mm:ss) denotes the runtime of Wroute.

TABLE 4.6 DETAILED ROUTING RESULT COMPARISON BETWEEN NTUPLACE,
RopPT3, ROPT4, ROPT5s AND ROPTg

NTUplace+Ropt; NTUplace+Ropt,

NUN| Vio [WL4(107)|Viag(10%)| Rep P,u [NUN| Vio |[WL4(107)|Viag(10°| Repy Pepu

s2 [1003| 800 | 67.25 12.30 |14:03:40{00:18:45[552 | 693 | 67.27 | 12.27 |13:55:41{00:24:13

s3 728 | 369 | 39.62 11.40 |11:34:13|00:14:58| 270 | 205 | 39.57 | 11.37 |10:31:41|00:17:28

s6 243 | 267 | 39.46 12.03 |11:27:09(00:14:14| 113 | 217 | 39.36 | 12.00 |10:38:46(00:16:27

s7 192 | 152 | 48.11 17.34 |12:44:58(00:24:46(110 | 132 | 48.06 | 17.33 |12:05:44(00:27:17

s9 394 | 875 | 29.44 9.97 |10:11:47/00:20:38| 51 | 37 | 29.42 9.95 |07:24:35]00:22:59

sl | 258 | 464 | 38.80 10.50. |11:30:38(00:11:17(119 | 421 | 38.85 | 10.50 |10:22:15(00:12:52

s12 | 119 [1226 | 43.20 18.17 116:14:58(00:33:23| 65 | 431 | 42.94 | 18.07 |14:41:42|00:35:32

sl4 2007 (15736| 27.18 7.78 |23:19:04/00:10:40| 1482 (22656 27.09 7.72 (19:27:56{00:11:46

sl6 65 | 26 | 29.70 8.22 -106:45:03100:08:40 O 22 | 29.66 8.23 06:38:53|00:10:13

s19 | 386 | 6814 | 1830 6.31 ~116:10:48/00:19:23| 287 [2411 | 18:20 6.29 (11:49:00(00:21:31

Ratio;,q |0.648(2.763| 1.005 1.040 | 0.971 0.312/0.924| 1.003 | 1.037 | 0.851
Ratiog,m[0.577{0.035| 1.003 1.039 | 0.818 0.326/0.036| 1.001 | 1.036 | 0.718
NTUplace+Ropt;s NTUplace+Ropts

NUN| Vio [WL4(107)|Viag(10%)| Rep Peu [NUN| Vio |[WLg(107)|Viag(10°| Repy P

s2 989 | 693 | 66.55 11.96 " |14:26:49100:23:58| 538 | 664 | 66.59 | 11.94 |12:49:11(00:27:01

s3 7711 312 | 39.00 11.00-.]10:41:40|00:19:37| 279 | 201 | 38.95 | 10.95 |09:10:16(00:20:01

s6 267 | 283 | 38.79 11.60 109:59:04|00:18:55| 108 | 218 | 38.71 | 11.56 |09:38:43(00:19:37

s7 191 | 174 | 47.42 16.94 |11:46:12(00:29:23| 113 | 136 | 47.38 | 16.92 |12:20:41(00:31:32

s9 357 69 28.91 9.67 |07:40:39(00:25:57| 58 | 24 | 28091 9.65 [07:48:57]00:26:16

sll | 234 | 441 | 38.27 10.23 |10:35:36(00:14:30(147 | 422 | 38.32 | 10.22 |10:53:57(00:15:07

s12 103 | 259 | 42.11 17.41 |12:11:41({00:42:11 72 | 96 | 41.83 | 17.32 |10:54:10({00:42:57

sl4 |1998(14913| 26.82 7.54 |22:40:07(00:12:35|1457(10374| 26.74 7.48 (17:22:44(00:13:53

sl6 62 [26 | 29.15 7.84 |06:15:12(00:11:25(0O 24 | 29.13 7.86 (06:10:00{00:13:03

s19 | 367 (2745 17.93 6.07 (10:01:30{00:23:06| 268 | 265 | 17.83 6.05 [06:40:36(00:23:51

Ratio;,q|0.619/0.803| 0.988 | 1.005 | 0.826 0.322|0.483| 0.987 | 1.002 | 0.759

Ratiogm(0.571{0.026 0.987 | 1.005 | 0.710 0.325/0.016| 0.985 | 1.002 | 0.634

Table 4.6 compares the detailed routing results of Ropts, Ropts, Ropts and Ropts with NTUplace.

Because Ropt; improves the global routing results, NUN is reduced by 35.2% on the average. However,

72

Ropts does not consider the local wirelength and congestion, resulting in increases in violations,
wirelength and vias. Furthermore, Ropts uses LGM to consider global and local congestions
simultaneously. Therefore, Ropt,s yields fewer NUN and violations than Ropts. Because Ropts does not
minimize the local wirelength, local routing can still cause violations, see s14 for example. To minimize
the local wirelength and congestion, Ropts uses LDP to get fewer violations, shorter wirelength, and
fewer vias than Ropt;. Notably, since the only difference between Ropts and Ropts is LDP, the global
routing results of Ropts and Ropts are similar. Thus, Ropts and Ropts yield similar NUN. Finally, Ropts
involves all features proposed in this work, it can minimize NUN, violations, wirelength and runtime. In
particular, compared to the results for NTUplace in/ Table 4.5, the runtime for s2 is reduced from 48
hours to 13 hours; the number of violations in s19 is reduced from 15114 to 265.

By comparing Table 4.4 and Table 4.6, a big gap between global and detailed routing results can be
found. Ropt; seems to get better results than NTUplace in Table 4.4, but it increases violations,
wirelength and vias in its detailed routing results. In addition, the via improvement of Ropts in Table 4.4
and Table 4.6 has a big mismatch because global routing model does not consider the vias generated by
local routes. However, the vias generated by local routes are considerable. These imply that optimizing
a placement for improving quality of its global routing result may not help in improving its effective
routability in the detailed routing stage.

The top four placers in DAC12 placement contest, in alphabetical order, are mPL, NTUplace, Ripple,
and SimPLR. To further evaluate the effectiveness of Ropt, we perform Ropts to optimize the placement
solutions of mPL, Ripple, and SImPLR in DACI12 contest. Tables 4.7, 4.8 and 4.9 reveal that Ropts can
reduce NUN, violations, total wirelength, via count and routing runtime in most placement solutions.
Finally, Table 4.10 treats the detailed routing results of NTUplace as the baseline to compare the

detailed routing results of mPL, NTUplace, Ripple, SimPLR and Ropts.

73

TABLE 4.7 COMPARING DETAILED ROUTING RESULTS OF MPL AND ROPTg

mPL mPL+Ropt
NUN | Vio |WL4(10")|Viag(10°| Repu | NUN| Vio |WL4(10")|Viag(10%)| Repu | Pepu
s2 2068 [113991| 80.08 13.40 |40:44:26| 520 | 3033 | 76.79 12.65 |18:00:13|00:25:15
s3 649 | 231 44.93 11.56 |10:32:16| 83 175 42.85 11.25 |09:13:55/00:22:15
s6 892 | 231 45.42 12.22 |10:13:03| 125 | 243 43.92 12.00 |09:36:14/00:20:49
s7 1525 | 170 55.55 18.44 |14:13:09| 153 | 144 53.13 17.93 |12:28:56/00:29:16
s9 573 68 34.22 1032 |08:34:57 42 55 33.08 10.14 |07:19:49|00:27:09
sl 531 | 11009 | 47.48 11.31 |22:16:53] 218 | 527 45.93 10.97 |11:17:07|00:14:50
s12 994 [343637| 47.58 19.18 |48:49:04| 537 | 23309 | 44.69 18.71 |20:16:41|00:39:59
sl4 1717 (271799 31.10 7.96 [36:07:43| 709 | 75677 | 30.17 772 |15:47:54(00:13:43
sl6 127 36 31.90 8.00 |07:11:05| 1 36 31.27 7.88 |06:25:10[00:10:49
s19 811 276 20.74 643 [05:57:55| 164 | 358 19.89 6.27 |05:51:20(00:25:31
Ratiojq| 1 1 1 1 1 0.227 | 0.618 | 0.962 0.973 | 0.722
Ratiogym| 1 1 1 1 1 0.258 | 0.140 [0.961 0.972 | 0.568
TABLE 4.8 (COMPARING DETAILED ROUTING RESULTS OF RIPPLE AND ROPT
Ripple Ripple +Ropts
NUN | Vio o |WL4(10")|Viag(10°)| Repu |NUN| Vio |WLg(10)|Viag(10°)| Repu | Pepu
s2 1743 | 81227 | 72.77 12.67 [32:26:26] 802 | 5928 | 70.18 12.26 |23:01:26/00:25:32
s3 566 | 243 43.55 11.58 {10:47:19] 323 | 180 41.53 11.45]09:50:43|00:19:45
s6 267 | 232 40.96 11.77 |10:35:16| 146 | 235 40.07 11.83 |09:34:46|00:18:26
s7 703 | 300 53.83 17.77 |13:28:38| 383 | 128 51.90 17.58 |13:23:08|00:28:40
s9 125 | 8136 | 32.46 10.03 |09:21:58| 31 32 31.49 10.01 |07:52:09|00:27:18
sl 115 | 433 40.22 10.48 |11:14:55| .. 89 428 38.70 10.42 |10:50:42|00:13:37
s12 167 155 47.13 17.91 |12:05:03] 56 113 44.87 17.96 |11:23:14/00:39:18
sl4 1220 | 19086 | 27.79 7.59 [11:16:24| 961 | 10559 | 27.41 7.64 (09:49:46(00:13:05
sl6 129 38 29.17 7.92 (06:13:12 41 50 29.11 8.04 |06:16:49/00:10:51
s19 518 110 19.35 6.21 |05:37:44| 76 111 18.83 6.20 [05:02:08[00:22:00
Ratioj,g| 1 1 1 1 1 0.473 | 0.685 | 0.970 0.996 | 0.904
Ratiogym| 1 1 1 1 1 0.524 | 0.162 | 0.968 0.995 | 0.870

74

TABLE4.9 COMPARING DETAILED ROUTING RESULTS OF SIMPLR AND ROPTg

SimPLR SimPLR+Ropt;

NUN | Vio |WL4(10")|Viag(10®)| Repu | NUN | Vio |WL4(10")|Viag(10°)| Repu | Pepu
s2 553 | 876 | 69.67 | 1247 |14:37:14| 170 | 686 67.65 11.99 [13:37:42{00:23:23
s3 487 | 194 | 4559 | 11.71 [10:26:24| 226 | 206 | 43.21 1121 [09:30:40[00:20:03
s6 443 | 361 4154 | 11.80 [10:26:33| 71 236 | 40.56 1163 [09:26:07(00:17:41
s7 518 | 5402 | 55.44 | 18.15 [15:40:00| 302 | 170 | 50.91 17.46 [12:08:27/00:29:15
s9 786 22 31.09 9.94 |08:53:54| 51 32 30.35 9.81 |08:04:55/00:24:18
sl1 979 | 1840 | 39.27 | 1049 |15:41:12] 504 | 913 38.70 10.40 [11:56:58]00:13:31
s12 715 | 241 46.98 | 17.80 |12:04:46| 277 | 117 44.89 17.76 [11:06:29|00:37:47
sl4 1459 |224239| 28.65 771 |24:24:14| 823 | 50725 | 28.05 7.53 |12:51:33/00:12:23
s16 434 | 135 | 30.31 7.97 |06:42:16| 126 39 29.95 7.99 |06:03:54/00:10:35
s19 510 | 72777 | 18.72 612 |17:55:16| 226 | 388 18.38 6.08 |05:56:17/00:21:53

Ratiojq| 1 1 1 1 1 0.378 |.0.549 | 0.968 0.982 | 0.787
Ratiogm| 1 1 1 1 1 0.403 | 0.175.| 0.964 0.980 | 0.736

TABLE 4.10 COMPARISON BETWEEN THE DETAILED ROUTING RESULTS OF THE PLACEMENT

SOLUTIONS IN DAC12 CONTEST.

Ratio;4 Ratiog,,
NUN [Vio . [WLg4(10)[Viag(10°)| Repu | NUN | Vio [WL4(10")|Viag(10%)| Repu
NTUplace 1 1 1 1 1 1 1 1 1
NTUplace+Ropts | 0.322 | 0.483 0.987 1.002 |0.759| 0.325 [0.016| 0.985 1.002 |0.634
Ripple 0.846 | 9.882 1.068 1.036 [0.827] 0.594 | 0.144| 1.072 1.038 |0.752
Ripplet+Ropts 0.356 | 0.616 1.036 1.032° [0.755| 0.311 |0.023| 1.037 1.033 |0.654
SimPLR 1.952 | 6.097 1.070 1.037 |0.975| 0.736 |0.402 | 1.072 1.040 |0.836
SimPLR+Roptg 0.751 | 0.891 1.035 1.018 |0.748| 0.297 [0.070 | 1.033 1.019 |0.615
mPL 2.082 | 369.029 | 1.153 1.078 [1.378| 1.058 {0.973 | 1.155 1.083 | 1.249
mPL+Ropt, 0.672 | 25.639 | 1.109 1.048 [0.842| 0.273 | 0.136| 1.110 1.053 |0.710

4.5.3 Comparison between Abacus and OQur Legalizer

Table 4.11 shows the detailed comparison between Abacus used in Ropt; and our legalizer used in

Ropt,, in which D,ax, Davg, BDmax and BD,,, denote the maximum displacement, average displacement,

maximum bin displacement and average bin displacement of cells after legalization, respectively.

Notably, if the center of a cell before and after legalization is respectively located at G-cells b; and b,

75

the bin displacement of this cell is the index distance between b; and b;. Table 4.11 reveals that our
legalizer obtains longer D,,, but shorter BD,,, than Abacus.

Traditional legalizers usually focus on minimizing D,,, to ensure consistency between the global
placement solution and the legalized solution. Instead, our legalizer attempts to keep cells in the G-cells
assigned by the global re-placement stage in order to preserve the global routing instance. Therefore, the
average bin displacement is reduced. Tables 4.4 and 4.11 reveal that a legalizer minimizing average bin
displacement may identify better placement solutions than minimizing average displacement in the

routability-driven placement problem.

TABLE 4.11 COMPARISON BETWEEN ABACUS AND OUR LEGALIZER

Abacus used in Ropt; Our legalizer used in Ropt,
Duax | Davg | BDmax | BDavg | Time(sec) | Diyax | Davg - | BDpax | BDaye | Time(sec)
s2 306 | 11.025 10 | 0.742 2.98 333 | 17.738 11 0.138 4.08
s3 945 | 12.867-| 24 | 0.728 2.76 913 *| 19.612 | .27 0.174 3.82
s6 840 | 13.830 | 24| 0.749 2.82 836 | 20.649 | 24 0.168 4.14
s7 1391 | 13.944 [@ 43 0.721 3.6 1391 | 20.363 | 43 0.207 5.04
s9 691 | 12.680 | 22 0.754 221 691 | 19.604 | 22 0.190 2.87
sl 3089 | 13.594| 83 0.771 2.09 3083 | 20.170 | 83 0.199 2.99
s12 595 | 12.285 17 0.791 4.5 595 | 19.935 17 0.159 7.53
sl4 1292 | 14.770 | <38 0.718 1.43 1305 | 21122 | 37 0.198 33
s16 872 | 13.421 22 0.738 1.86 872 {20210 | 22 0.139 2.86
s19 165 | 12.582 4 0.746 1.1 142 | 19.443 4 0.151 1.8
Ratiojng | 1 1 1 1 1 1.088 | 1.609 | 1.100 | 0.185 1.369
Ratiogym | 1 1 1 1 1 0.998 | 1.518 | 1.010 | 0.231 2.688

4.6 Summary

In this work, we first study the detailed routability of the placement solutions obtained by
state-of-the-art routability-driven placers [57, 38, 39, 42]. Based on the observation of case study, we
develop a routability optimizer Ropt that takes a placement solution and then optimizes its routability
for both global routing and detailed routing. Ropt combines both placement and global routing. A global

routing instance is built to provide the congestion information for placement algorithms. This work

76

presents local-routability-aware global routing model, routing-cost-driven global re-placement,
legalization with global routing preserved, and local detailed placement to optimize the routability.
Finally, NCTU-GR 2.0 and Wroute are both adopted to evaluate the routability of Ropt’s placement

solutions. The experiment results obtained by both routers reveal that Ropt can improve routing

congestion, wirelength and runtime of a given placement.

77

Chapter 5 NCTU-GR 2.0: Global Routing
with Bounded-Length Maze Routing

5.1 Introduction

By holding global routing contests, ISPD07 and ISPD08 have attracted many researchers to develop
robust and effective modern global routers. Table 5.1 shows the main features of each global router.
Most of these routers apply the negotiation-based rip-up and rerouting, which is first introduced in
PathFinder [22]. All of them focus on minimizing overflow first, and then wirelength and computation
time. To lower computation time, most of modern global routers develop several efficient routing
algorithms or acceleration approaches. Archer [10] proposed U-shaped pattern routing; NTUgr [12]
presented escaping routing.and FastRoute4.0 [16] developed 3-bend routing. Although many newly
proposed routing algorithms can efficiently speed up path searching, maze routing is still the most
important algorithm to seek a feasible or better connection after other routing algorithms fail in each
global router even if it is relatively slow to explore the routing region as compared to other routing
algorithms, such as pattern routing and monotonic routing algorithms. Most of modern global routers
design various types of routing cost functions to balance total wirelength and total overflows. FGR [3]
uses Lagrange multipliers and the negotiation technique to identify a routing cost function.
NTHU-Route2.0 [8] dynamically adjusts the base cost to balance the used wirelength and remaining
overflows. NCTU-GR [17] applies two-stage cost functions to accelerate early-stage routing and to
enrich the capability of tackling hard-to-route nets. Although formally proposed routing cost functions
avoid producing too much wirelength to eliminate overflows, they have no specific way to control the
increase in wirelength. In this work, an optimal but slow bounded-length maze routing (BLMR)
algorithm is proposed to identify the minimum-cost point-to-point path with wirelength below a length
constraint. Besides, a heuristic BLMR algorithm is proposed to tackle the runtime issue of optimal
BLMR algorithm.

78

TABLE 5.1 MAIN FEATURES OF MODERN GLOBAL ROUTERS

Global routers Main features

FGR [3, 7] Discrete-Largrange based routing cost, branch-free net topology

Maize-Router [8] Extreme fast edge shifting
Box-Router 2.0 [9] ILP-based box expansion

Archer [10] U-shaped pattern routing
NTHU-Route 2.0 [11] | New history based cost function
NTUgr [12] Multiple forbidden-region expansion, escaping routing
FastRoute [13-16] Virtual capacity, 3-bend routing
NCTU-GR [17] Pseudo Random Ordering, dual cost functions
GRIP [4, 5] 3D ILP-based global router performing on cluster-computing platform
MGR [6] Multi-level 3D global routing

The RCE tool Grace presented in Chapter 2 can obtain a satisfactory global routing result in a short
runtime budget. However, Grace cannot always continue to improve routing quality as the given
runtime budget increases since Grace-would spend too much routing resource at the beginning of
routing stages such that Grace has no routing resource to refine the routing quality in the later routing
stage. Accordingly, how to carefully use routing resource at the beginning of routing stages is a critical
issue for global routers but not for RCE tools. In order to carefully use routing resource and thus yield
better global routing results, we make the following contributions to global routing research in this
work:

(a) This work addresses the BLMR problem, which involves identifying a minimal-cost path from a
two-pin net’s source to target with a specified length constraint. In the global routing problem,
BLMR not only restricts the searching region by constraining every net’s wirelength to speed up
maze routing, but also avoids producing an overly long wirelength, conserving routing resources.

(b) To deal with a multi-terminal net routing, most global routers decompose each multi-pin net into
several two-pin subnets, and then route each two-pin net individually, potentially diminishing the
global view of optimizing a Steiner tree. The proposed RSMT-aware routing scheme can provide a

global view to two-pin net routings, shortening the wirelength of multi-pin nets.

79

(c) The routing cost function is the common key for global routers to impact the routing quality. This
work presents a dynamically adjusted history cost function to quickly learn which grid edges are
critical. The routing resources on critical edges can be more carefully allocated to the nets that
really demand these routing resources.

(d) The proposed NCTU-GR 2.0 invokes the abovementioned techniques and adopts different net
ordering methods in different internal routing stages, with a single set of control parameters for
all benchmarks to run faster and obtain shorter connections than the other state-of-the-art
academic global routers.

The rest of this chapter is organized as follows. Section 2 reviews global routing problem. Section 3
presents BLMR algorithms, RSMT-aware routing scheme and dynamically adjusted history cost
function. Section 4 presents NCTU-GR 2.0 based the proposed approaches. Section 5 summarizes the

experimental results. Finally, Section 6 draws conclusions.

(2) (b)

Fig. 5.1. (a) Maze routing within a bounding box; (b) maze routing without bounding box.

5.2 Problem Description

The global routing is formulated as the routing problem on a grid graph G(V, E) , where V' denotes
the set of G-cells, and E denotes the set of grid edges. Each grid edge is termed by the adjacency of the
related G-cells to its two end nodes. The capacity c(e) of a grid edge e indicates the number of routing
tracks that cross the abutting boundary. The number of wires that pass through grid edge e is called the
demand of the grid edge d(e). The overflow of a grid edge e is defined as the amount of demand in

excess of capacity. Moreover, the total overflow is the sum of overflows on all grid edges of E, and the
80

maximum overflow is the maximum overflow among all edges. Given a set of nets, each of which is a
set of pins. The objective of global routing problem is to find routing paths to connect each net, and

minimize the maximum overflow, total overflow, total wirelength, and finally runtime.

5.3 Proposed Approaches to Improve Routing Quality
This section introduces three kernel techniques used in NCTU-GR 2.0, 1.e., BLMR, RSMT-aware

routing scheme, and dynamically adjusted history cost function.

5.3.1 BLMR

Maze routing is the most time-consuming process in modern global routers. Many global routers
adopt a bounding box to limit the searching region of maze routing for acceleration. The initial
bounding box is set to be slightly larger-than the minimum rectangle that encloses all terminals of a net
and, then, is gradually relaxed-if the routing cannot be completed. However, maze routing within a
bounding box may produce redundant wirelength and wastes routing resources. For instance, in Fig. 5.1,
there are two overflow regions (dark regions). Maze routing within a bounding box is employed to
connect source s to target 7 in Fig. 5.1(a), and maze routing without boundary constraint is employed in
Fig. 5.1(b). The latter routing path is much shorter than the former. In this case, maze routing within a
bounding box produces redundant wirelength and occupies extra routing resources, increasing the
difficulty of identifying overflow-free routing paths in subsequent routings. Note that, because the
proposed unilateral monotonic routing and HUM routing in Chapter 2 apply a bounding box for
accelerating routing, their routing solutions may also have redundant wirelength. Accordingly, in
NCTU-GR 2.0, we develop BLMR to speed up maze routing by limiting the routing length rather than
the searching region while routing each two-pin subnet. Limiting the routing length not only can limit
the searching region, but also can improve routing resource utilization by lessening redundant
wirelength. The BLMR problem is formulated as follows. In a 4-tuple (s, ¢z, G, L), s and ¢ denote a

source and a target, respectively; G represents the congestion graph; the grid edge in G has specified

81

congestion cost; and L represents the bounded-length constraint (BLC) (L is not less than the Manhattan

distance between s and #). The objective of the BLMR problem is to identify a minimal-cost path from s

to ¢ on graph G, and the wirelength of the path cannot exceed L. If the wirelength of the path is longer

than L, a bounded-length violation is generated.

BLMR problem can be regarded as a restricted version of constrained shortest path (CSP) problem.
In general CSP problem, a delay and a cost for every edge in a graph are specified. The delay of an edge
may be the length of the edge or the signal latency from a terminal of the edge to another terminal. CSP
algorithm attempts to identify a minimal-cost path from s to ¢, ensuring that the total delay of the
identified path does not exceed an upper bound. The general version of CSP problem is NP-complete
when the delay of each routing edge is a real number [24]. However, this problem can be solved in
polynomial time if the delay of the each routing edge is an integer [25, 26]. Several studies [24-26] have
addressed this problem for its applications-in Quality of Service area.

Compared to CSP problem, BLMR problem owns some particular properties that are not in the
general CSP problem. For instance, while CSP algorithm works on-a general graph, BLMR algorithm
works on a grid graph of specific 2D array structure with each vertex having at most four neighbors,
which makes BLMR algorithm may be faster than CSP algorithm on solving global routing problem.
Also, global routing problem owns the following particular propertics:

1. The graph in global routing is a grid graph, and the distance from any node to the target can be
estimated by simply Manhattan distance. Thus, a path possibly violating length constraint can be
detected in the constant time.

2. The region to explore in a grid graph during routing can be restricted within a specified area;
however, the studies [25, 26] scan entire routing graph, and thus consume much time.

3. In global routing, a net may be ripped up and re-routed several times to identify its final path. The
paths of a net identified in two successive rerouting iterations make use of most routing edges in

common. The proposed history-based estimated wirelength scheme utilizes this property.

82

Before detailing the proposed BLMR algorithms, the definitions of used notations are listed as
follows. L denotes the bounded length, P,(s, v) denotes a path from source s to node v, wi(P;) denotes the
wirelength of P;, p.(P;) is the path cost of P, and Manh(v, u) is the Manhattan distance from v to u.
Notably, the proposed BLMR algorithm adopts A* search scheme for acceleration of path search.
Therefore, p.(P;) comprises the routed cost from s to the current node and the estimated lower bound

cost from the current node to ¢.

ev (v, 1)

TR G

|
Foauy

=

anmp
* Ty
B

(b) (c)
Fig. 5.2. (a) The search region of the net while L is set to 9; (b) two path candidates P; and P;
from s to v; (c) eww(v, f) represents estimating wirclength from v to 7 in iteration k&

5.3.1.1 Optimal-BLMR

Optimal-BLMR algorithm adopts two different policies than traditional maze routing to obtain a
minimum-cost routing solution under BLC. First, we define the potential wirelength (pw/) for each
incomplete routing path P(s,v) as the sum of wi(P(s,v)) and Manh(v,t) where v is an currently explored
grid node, and a path with pw/ exceeding L is regarded as a path violating BLC. Optimal-BLMR
discards the paths violating BLC, and then restricts the searching region. Figure 5.2(a) shows the
searching region of a net on the graph while L is set to 9. Second, assuming that there are two or more
paths from s to v, traditional maze routing only preserves the minimum-cost path and discards others.
However, in optimal-BLMR, this scheme does not guarantee to identify a feasible solution because the
length slack of the minimum-cost path may be less than the wirelength required to detour around
congested regions, where the length slack of P(s,v) is L minus wi(P(s,v)). For instance, Fig. 5.2(b)
shows two path candidates P; and P, from s to v: the gray regions are congested regions, the

&3

bounded-length is 16, and p.(P;), p(P2), wi(P;) and w(P;) are 80, 90, 11 and 5, respectively. If
optimal-BLMR only preserves the minimum-cost path P;, the length slack of P, is 5, which is too small
to detour around congested regions to reach z. Because the wirelength from v to ¢ is uncertain before the
end of routing, optimal-BLMR must preserve both paths. However, if the following inequalities hold,
P; is considered to be inferior to P, and can be discarded.
w,(P)2w,(P) and p.(P)p,(P,). (5.1)

S(v) 1s a list of node v to store the paths from the source s to node v, any two of which do not conform to
Eq. (5.1). For each veV, S(v) is initially set as empty. While storing all currently explored paths, a
Fibonacci heap H is initialized to have only s. At the beginning of each routing iteration, the
minimum-cost path is selected from H for further routing. The optimal-BLMR algorithm is designed as
follows.
1. Extract the minimum-cost path P(s,v) from H. If v is 7, return P(s,¢) as the solution and exit;
2. Explore each neighboring node of v, say node u. If the newly explored path P(s,u) does not conform

to BLC, discard P(s,u); otherwise perform Step 3. Go back to Step 1 after exploring each neighbor of

V.

3. Scan every path candidate in S(#) and remove the mferior paths to P(s,u) from S(u) and H. If P(s,u) is

not inferior to any path in S(u), P(s,u) isinserted into S(«) and H.

Notably, if a net lacks adequate length slack to detour around all congestions to reach the target,
optimal-BLMR would identify a routing path passing through congestions. A net passing through
overflowed grid edges is called overflowed net, which will be rerouted in the next iteration.

The step 3 of optimal-BLMR takes the time complexity of O(|S(u)|) to scan every path in S(u), where
|IS(u)| denotes the number of path candidates in S(u). The maximum size of S(u) is derived as follows.
Lemma 1. For an optimal-BLMR subject to the constraint Manh(s,u)+Manh(u,t)< L, where s, t, and u
are respectively the source, the target and an intermediate node, the maximum size of S(u) is

[(L—Manh(s,u) ~Manh(u,t)+1)/2 .

84

Proof. The shortest path candidate in S(u) is the path of wirelength Manh(s,u), and the longest path
candidate in S(#) must not exceed L-Manh(u,t) due to BLC. Thus, the paths in S(#) have at most
((L—-Manh(u,t))-Manh(s,u)+1) possible wirelength levels. Moreover, because a detour increases the
wirelength by two in unit of grid edge, the number of possible wirelength levels becomes
r(L—Manh(u,t)—Manh(s,u)+1)/2—|. When Eq. (5.1) is adopted to prune the inferior paths, S(z) only
reserves the lowest cost path in each wirelength level. Hence, the maximum size of S(u) is

[(L—Manh(u,t)-Manh(s,u)+1)/2 .

5.3.1.2 Heuristic-cBLMR

Although the proposed heuristic-BLMR approach cannot guarantee the optimal solution, it is much
faster than optimal-BLMR. The difference between optimal-BLMR and heuristic-BLMR is that
heuristic-BLMR preserves only one path from the source to the current node, and the other paths are
discarded. Accordingly, the major issue of heuristic-BLMR is to determine which path candidate should
be preserved.

Path selection involves examining each path to determine whether or not the required wirelength to
bypass the congested regions from the current node v to target ¢ does not exceed the length slack, then
heuristic-BLMR preserves the minimal-cost path with enough length slack. If no path candidates have
enough length slack, the shortest path candidate is preserved because the shortest path has a greater
chance to bypass the congested regions. However, the congestion information from v to ¢ is not explored

yet, hence the history-based estimated wirelength of the path from v to ¢ is estimated as follows:

Manh(v,t)

ew, (v,t)=HL,_ (s,t) %
(v, 1) x-1(8,7) Manh(s.0)

(5.2)

where ewi(v,¢) 1s the history-based estimated wirelength from v to ¢ in iteration k£ (Fig. 5.2(c)), k denotes
the iteration number of the NRR stage, and HL; ;(s,?) is the history length, i.e., actual routed wirelength
from s to ¢ in iteration k—1. The concept behind Eq. (5.2) is that the length from v to ¢ is proportional to
the length from s to ¢ at previous iteration. Based on Eq. (5.2), heuristic-BLMR predicts that P(s,v) has
sufficient length slack to bypass the congested regions from v to ¢ if the following equation holds,

85

wi(P(s,v))+ew(v,t) < L. (5.3)

If multiple paths conform to Eq. (5.3), the minimum-cost path is preserved. If no path conforms to Eq.
(5.3), the shortest path is preserved. This policy ensures that a path is only preserved to greatly reduce
the number of explored routing paths during heuristic-BLMR. If Eq. (5.2) overestimates the wirelength
from v to ¢ in the previous iteration, the long path candidates tend to be discarded by Eq. (5.3), which
selects the short path candidates as the final routing path. Hence the estimated wirelength from v to ¢
using Eq. (5.2) at current iteration decreases. Similarly, if Eq. (5.2) underestimates the wirelength in the
previous iteration, the estimated wirelength will increase in the current iteration. As a result, as the
iteration number increases, Eq. (5.2) gradually becomes more accurate in estimating the actual
wirelength from v to .

This work evaluates the aceuracy of Eq. (5.2) by the following experiment. As heuristic-BLMR
identifies a routing path at iteration &, an-internal node v is selected randomly in the identified path and,
then, the difference between HLi(vf) and ewy(v,f) is computed. According to the experiment on
benchmark adaptecl, theraverage difference of all nets is 54% at the first iteration of the NRR stage; the
average difference then gradually decreases to 30%at iteration five. Following iteration five, the
average difference swings between 25% and 30%. However, if only the average difference of the first
20% long nets is calculated, the average difference ranges from 10% to 20% after iteration five,
implying that Eq. (5.2) more accurately estimates long nets than short nets.

While closely resembling each other, the heuristic-BLMR algorithm and optimal-BLMR differ only
in that the former always preserves at most one path in S(v), ve V. When S(v) already contains a path
and a new path P(s,v) is explored, the path selection scheme proposed in this sub-section chooses the
proper path to be preserved in S(v) and H. Inaccurate estimation by Eq. (5.2) in heuristic-BLMR may

yield unnecessary overflows, increasing the required iterations to remove unnecessary overflows.

86

arctan(k-9)+2.5

—

-
Iteration &

OIII

o M laiile 18 2% 25 08 31 34 #4348 48

Fig. 5.3. Relationship between the routing iteration number and the scaling factor.

b P Ln

5.3.1.3 Bounded-Length Relaxation

In the NRR stage of this work, BLCis designed to control the routing resource utilization. Initially,
the routed wirelength is strictly limited since overusing routing resources in the early stage likely
inhibits subsequent routings from finding overflow-free paths, and increases runtime as well. While a
routing cannot avoid congested regions under the strict BLC, BLC is gradually relaxed to encourage
heuristic-BLMR to yield fewer overflows at the expense of a longer wirelength as the process iteration
proceeds. However, overly relaxing BLC in a later stage only gives rise -to a large increase in the
wirelength, yet cannot help to resolve overflows. A “bounded-length relaxation scheme is thus

formulated as follows:
L' = Manh(s, ,t,)x (1 +arctan(k —a)+ B), (5.4)

where % 1s the bounded-length of two-pin net n in the k-th routing iteration. The first term is the
Manhattan distance between two terminals of n, and the second term is the scaling factor of the
bounded-length; a and g are user-defined positive constants. Figure 5.3 displays the relation between
the routing iteration number and the scaling factor as a and g are set to 9 and 1.5, respectively.
According to Fig. 5.3, the NRR stage can be roughly divided into three phases. The first phase is from
iteration 1 to 8, in which the scaling factor increases roughly linearly. In phase 1, most overflows are
removed and total wirelength increases slightly. The experiments on benchmarks [2] show that about

99.9% of total overflows are removed using only few seconds in this phase, and total wirelength only

87

increases by 2.3%. In the second phase, the scaling factor increases rapidly from iteration 9 to 15.
Although the searching region of each net is expanded by enlarged L, only a small number of nets
must be rerouted. Accordingly, this phase also takes only little time. Most benchmarks of [2] are
finished in this phase. In the final phase (iteration>16), the scaling factor grows very slowly to avoid
producing an overly long wirelength and enlarging the search region too much.

The runtime and routing quality of the proposed router are impacted by the values of @ and f. The
value of a refers to the number of iterations in phase 1, while the value of S refers to the search region
of each net. Increasing a encourages the proposed router using shorter wirelength to eliminate
overflows, thus the proposed router can yield the final result with less wirelength at the cost of longer
convergence period. Increasing f encourages an increase in the wirelength of the routing result with the
number of routing iterations to be decreased. For the hard-to-route cases, large o and small f§ are
effective for the proposed router to avoid producing too much wirelength and consuming additional
routing resources at early stage, which increases the difficulty of eliminating overflows. For the
easy-to-route cases, small & and large £ are effective for the proposed router to complete the routings. In

this work, o and f are set to 9 and 1.5, respectively.

5.3.2 RSMT-Aware Routing Scheme

Regarding the ability of the proposed scheme to decompose a net into multiple two-pin subnets, the
proposed RSMT-aware routing scheme is characterized by RSMT and RMST. In the RMST
decomposition stage, each net is first decomposed into several two-pin nets by RMST. Thereafter, the
RSMT-aware routing scheme first constructs one RSMT for reference and then encourages the routing
of each subnet to pass through the regions passed by RSMT. The terminals of a RSMT consist of pins
and Steiner points. Two connected terminals are linked with a straight path or an L-shape path. For a
RSMT of net N, a grid edge e is a skeleton edge associated with N if e is passed by a straight path of the
RSMT. SE(N) denotes the set of skeleton edges associated with N.

Figures 5.4(a)-5.4(d) illustrate the three steps to build RSMT-aware routing scheme for a four-pin

88

net N. Three steps are performed at the stages of RMST decomposition and RSMT-aware scheme

construction. Then, during the monotonic routing stage, the NRR stage and the post refinement stage,

BLMR and monotonic routings use this scheme to evaluate the routing cost of grid edges. The details

are listed as follows:

1. FLUTE and Kruskal’s algorithm are first employed to yield a RSMT as the ideal routing tree and a
RMST to decompose net N into several two-pin nets (Fig. 5.4(a)).

2. Identify skeleton edge set SE(N) (shadow regions in Fig. 5.4(b)) using the identified RSMT in the
first step .

3. Each two-pin net of RMST is associated: with SE(N) to form the RSMT-aware scheme. This
association is used as follows. In Fig. 5.4(c). Net N's RMST is split into three two-pin nets, n;, n,,
and n;. The edges in SE(N) will be assigned with less costs to encourage the routing wires of net N
to pass through the edges in SE(N) (Fig. 5.4(d)) when the router performs monotonic or BLMR

routing of n;, n,, and ng3.

® | RMSTI | @
NPl :
HNETE®
Pk
I ||)

"0’ l ‘5’3. P .0.
@ [RSWIT- | ‘@@ ®
(a) (b)

h N N4 Ny
n.]'f \ K} Ij
y]
! BE g
O o @ ©
(c) (d)

Fig. 5.4. (a) FLUTE and Kruskal algorithm are employed to yield one RSMT and one RMST; (b) the
grid edges in the shadow regions are the skeleton edges of this net; (c) RMST is combined with SE;
(d) the RSMT-aware routing result.

89

The proposed RSMT-aware routing scheme differs from other routers mainly in that, in the proposed
scheme, a paragon RSMT is used for reference; the routing tree can then be easily amended to approach
the paragon one as nearby regions become un-congested. Other routers normally refine the cost function
to enable the subsequent routing to share the grid edges used in previous routing. However, for instance,
if the path of n; in Fig. 5.4(d) is an upper L-shaped path, the next routing, e.g., n,, cannot reuse the grid
edges in the path of ;. In addition, RSMT-aware routing scheme can restore the routing of a net to its
RSMT at the post-refinement stage as congestions are eliminated. For instance, if the overflows
(congested regions in gray color) in Fig. 5.4(d) are eliminated and subnets n; and 7, are rerouted with
RSMT-aware routing scheme, the routing path will pass through the Steiner point in Fig. 5.4(a) and look

very similar to the RSMT in Fig. 5.4(a).

5.3.3 Dynamically Adjusted History Cost Function

With RSMT-aware cost function, a grid edge is assigned with different cost values to different nets
to encourage a net to pass the grid edges in its skeleton edge set. For the routings of two nets, say N;
and N,, if grid edge e is in the skeleton edge set of V; but not in that of N», the proposed cost function
assigns the cost of edge e for net NV; as a value less than that for net /V,, which can better routing
resource utilization by supporting each net to use the edges in its skeleton edge set. In the NRR stage,

the concept of routing cost of grid edge e for net N is based on that in [11] and re-formulated as follows:

0 if ee GE (N)
cost(e) =1 (1+dah(e,k))x p, +b, —w elseif e SE(N), (5.5)
(1+dah(e,k))x p, +b, otherwise

where cost(e), b., and p. are respectively routing cost of e, base cost of e and congestion penalty of e;
dah(e k) denotes the dynamically adjusted history cost function (further discussed in Eq. (5.6)), GE(N)
denotes the set of grid edges that are passed by N, and w is a weighted constant that is set to 1 in this
work. Equation (5.5) encourages a route to pass through the grid edges in either GE(N) or SE(N).
Traditionally, the history cost of a grid edge in negotiation-based cost function scheme (Eq. (1.2))

continues to increase if the grid edge keeps congested. The history cost remains unchanged even after
90

the grid edge becomes un-congested, which results in overestimated routing cost for the routing passing
the grid edge and then generates unnecessary detours. Hence, we have to lower the history cost if the

grid edge becomes un-congested. The dah(e, k) is proposed as follows:
h’
C] + C2 X \/;

where hé and of respectively denote the history cost and overflow frequency of e at iteration £.

dah (e, k) = where At =hl +of (5.6)

hi=1,and hé is updated at the end of every iteration. C| and C; are user-defined constants and set to
7 and 4, respectively. If edge e keeps un-congested during subsequent iterations, by Eq. (5.6), dah(e,k)
will decrease as iteration number k increases while A& remains unchanged. In addition, the proposed
history cost is updated with overflow frequency instead of a constant value in traditional scheme (Eq.
(1.2)). The overflow frequency ofé of grid edge e is set to zero at the beginning of each iteration k.
Once an overflowed net is rerouted, 0fe* increases one if e overflows and e is passed by the rerouted
net. A larger of! implies a greater number of nets demanding the routing resource of e in iteration £,
further implying that e is eritical. The idea behind Eq. (5:6) is that critical routing resources should have
large overflow frequency. Thus, a grid edge with high overflow frequency is assigned with large history
cost. As compared to traditional history cost updating scheme, the proposed one requires less iterations
to distinguish which grid edges are critical. In this work, p. and b, are formulated as follows, which are
inspired by [13] and [11], respectively.

+ G
[+ exp(Ca(c(e) ~d(e))

pe =1 and b, = Cs +Cs /2% (5.7)

where Cs, C4, Cs and Cg are set to 150, 0.3, 30 and 200 in our implementation, respectively. The
constant value setting is determined by closely examining how their variations impact routing results in

the experiments.

5.4 Design Flow of NCTU-GR 2.0

Figure 5.5 shows the design flow of NCTU-GR 2.0. At first, the 3D routing problem is compacted

into a 2D routing problem. Then, each net is decomposed to two-pin nets based on the topology of

91

RMST, and skeleton edge sets are built for each multi-pin net to set up RSMT-aware routing scheme.
Moreover, an initial congestion graph is generated via monotonic routing that routes all two-pin nets.

In each iteration of the NRR stage, all two-pin nets are first sorted in an array, and then the two-pin
nets are examined sequentially to determine whether pass through overflowed grid edges. For the
overflowed net e.g. N, BLC of N is relaxed by Eq. (5.4) ,and then is ripped up and rerouted by
heuristic-BLMR with the routing cost function in Eq. (5.5), which requires testing if a grid edge belongs
to GE(N) or SE(N). GE(N) and SE(N) are stored using hash table, specifically, unordered hash in C++
STL. SE(N) is constructed in the RMST decomposition stage while GE(N) is dynamically updated
during rip-up and rerouting to record the grid edges in the routing path of net N. As NRR enters a new
iteration, the history cost is updated by Eq. (5.6). the NRR stage iteratively reroutes the overflowed nets

until an overflow-free routing result is obtained.

QD grid graph, a set of netD
¥

‘ Compact 3D graph into 2D graph ‘
¥

Negotiation-based Ripup & Rerouting

] RMST Decomposition & Sort two-pin nets by Eq, (5.9)

Skeleton Edge Set Building l
¥

]
1
i
]
i ‘ Monotonic Routing %
]
]
1
1
]
1
1

Bounded Length Relaxed
using Eq. (5.4)

| Guide

RSMT-aware
Routing Scheme
'} Guide No w Yes | Update history
‘ Post Refinement }‘ cost by Eq. (5.6)
[}
‘ Layer Assignment ‘ﬁ > 3D Global Routing Result>

Fig. 5.5. Design flow of NCTU-GR 2.0.

Guide _|Heuristic-BLMR using routing
——me= cost formulation in Eq. (5.5)

The wirelength of each net is then greedily minimized in the post refinement stage by ripping up and
rerouting each two-pin net once with the proposed RSMT-aware routing scheme. The overtflow-free
two-pin routings without a detour are rerouted by monotonic routing; meanwhile, the other two-pin
routings are rerouted by heuristic-BLMR with the original path length as BLC. Rerouting overflow-free
nets can reduce their wirelength and can vacate the routing resource to other overflowed nets as well.

Because most nets are routed by monotonic routing or heuristic-BLMR with small BLC, this stage is

92

very efficient. In this stage, the routing cost of a grid edge, say e, is formulated as follows:

d(e)

cost(e) =1+ 1<(1)

). (5.8)

If c(e)<d(e), « is set to 10° to avoid increasing overflows; otherwise, is set to 0.1. Finally, the layer

assignment in [17] is employed to transform the 2D routing result to the 3D result.

TABLE 5.2 . NET ORDERING METHODS COMPARISION

adaptecl adaptec3 adaptec5 Average

Order WL | CPU | WL | CPU WL CPU WL CPU
(10>) | (min) | (10°) | (min) (10%) (min) (10%) (min)

LenD 3642 | 2.17 | 96.00 | 1.93 105.18 4.65 70.97 2.18
Lenl 36.65 | 2.26 | 9628 | 1.85 106.73 5.37 71.53 2.31
OFD 36.39 | 2.13 | 96.02 | 1.86 105.39 4.46 70.99 2.10
OFI 36.74 | 2.51 | 9642 | 1.98 107.02 5.63 71.69 2.46
Eq.(5.9) | 3631 | 1.78 | 9597 | 1.77 105.14 4.06 70.88 1.90

The routing ordering of two-pin nets-impacts the routing quality and runtime. We introduce the net
routing ordering adopted in each routing stage as follows. In the monotonic routing stage, the proposed
router sorts the two-pin nets in the increasing order according to its bounding box size. Smaller
bounding box for a net implies less solution space for monotonic routing of the net. Routing a net with
less solution space earlier can improve the possibility to complete its monotonic routing due to fewer
previously routed wires. In the NRR stage, wirelength and congestion control and overflow reduction
are main objectives. We evaluate four net ordering methods in terms of wirelength and overflow in the
NRR stage. Table 5.2 displays the global routing wirelength (WL) and runtime (CPU) of benchmarks
adaptecl, adaptec3, adaptec5 and average of all overflow-free cases when the NRR stage adopts four
different net ordering in decreasing wirelength (LenD), increasing wirelength (Lenl), decreasing
overflows (OFD) and increasing overflows (OFI). Notably, WL here does not include vias because
layer assignment has not yet been performed. Table 5.2 reveals that routing the long two-pin nets with
more overflows earlier can identify the results with shorter wirelength and runtime. Based on this
observation, all two-pin nets are sorted at the beginning of each iteration in the NRR stage, based on

nets’ score (Eq. (5.9)) in decreasing order.

93

scorey(n) = C; x oex_1(n) + Cs xleny_(n) , (5.9
where scorei(n) denotes the score of two-pin net # in iteration k, oex.;(n) and leny_;(n) denote the number
of overflowed grid edges passed by n and the length of # in iteration A—1, respectively. Notably, oey(n)
and leny(n) depend on the routing outcome of the monotonic routing stage. Additionally, C; and Cg are
user defined constants and set as 30 and 1 in this work. The bottom row in Table 5.2 displays the
routing results as the NRR stage adopts Eq. (5.9) to sort two-pin nets, which obtains a shorter
wirelength and runtime than other ordering methods. Finally, the post refinement stage adopt

wirelength-decreasing net ordering since most overflows have been removed.

5.5 Experimental Results

The proposed algorithms were implemented in C/C++ language on an 8-core 3.0 GHz Intel
Xeon-based server with 32GB memory. ISPD08 global routing benchmark circuits [2] were used in our
experiments. We classify the benchmarks into two types, i.e., overflow-free cases and hard-to-route
cases. All state-of-the-art global routers cannot identify an overflow-free routing result for each
hard-to-route case. As for overflow-free cases, most state-of-the-art routers can identify an
overflow-free routing result for each one. To overflow-free cases, the routers in the following
experiments perform until an overflow-free outcome is achieved; to hard-to-route cases, the routers stop

when overflows are not improved in five successive iterations.

5.5.1 Comparing Traditional Maze Routings with BLMR

To compare traditional maze routings with and without bounding box and BLMR, we implement
three global routers with different maze routing approaches in the NRR stage. MR-GR, MRB-GR and
H-BLMR-GR denote three different global routers, where MR-GR employs maze routing without using
bounding box; MRB-GR employs bounding box to limit the search region, and H-BLMR-GR adopts the
proposed heuristic-BLMR and bounded-length relaxation scheme in the NRR stage. The initial

bounding box used by MRB-GR extends by 10 units of grid edges four boundaries of the minimum

94

rectangle enclosing all terminals of the routed net. If an overflow-free path cannot be obtained within
the bounding box, each boundary of the bounding box is extended by 10 units of grid edges again in the
next iteration. This bounding box expansion scheme is also used in [14]. Notably these routers adopt the
same routing cost function and the proposed RSMT-aware routing scheme is not used by these routers.
Table 5.3 shows the routing results of these routers, where WL and CPU are total wirelength and CPU
time, respectively. Table 5.3 indicates that MRB-GR is faster than MR-GR, but MRB-GR produces
more wirelength than MR-GR because MRB-GR may detour often to avoid congested regions.
H-BLMR-GR produces less wirelength than MR-GR and MRB-GR because it has less detours than
MR-GR and MRB-GR. The BLC of H-BLMR-GR . restricts the searching region such that
H-BLMR-GR is faster than MR-GR and MRB-GR. Furthermore, the proposed bounded-length
relaxation scheme offers more efficient routing resource utilization than the other two routers. As a

result, H-BLMR-GR can eliminate all overflows of newbluel but MR-GR and MRB-GR cannot.

TABLE 5.3 ROUTING RESULT COMPARISON BETWEEN MAZE ROUTING W/ AND W/O BOUNDING BOX
AND BOUNDED-LENGTH MAZE ROUTING

ISPD’08 MR-GR MRBB-GR H-BLMR-GR

benchmark WL CPU(min) WL CPU(min) WL CPU(min)
adaptecl 53.86 5.90 54.29 3.85 53.55 2.65
adaptec2 52.14 3.36 52.49 0.96 51.97 0.79
adaptec3 131.16 4.47 131.85 3.72 129.88 3.50
adaptec4 120.88 1.32 120.98 1.25 120.76 1.20
adaptec5 155.76 14.66 157.63 9.20 155.52 9.16
newbluel X X X X 46.26 2.80
newblue2 74.74 0.70 74.77 0.67 74.63 0.63
newblue5 231.33 53.94 233.45 18.73 230.45 7.22
newblue6 178.71 17.66 179.69 6.23 177.23 5.46
bigbluel 57.17 10.69 59.02 6.13 57.61 8.49
bigblue2 90.05 48.40 89.90 29.01 89.42 7.73
bigblue3 129.95 15.79 130.15 2.44 129.68 2.19

Ratio 1 1 1.007 0.575 0.997 0.494

95

5.5.2 The Effectiveness of RSMT-aware Routing

Table 5.4 shows the effectiveness of RSMT-aware routing scheme, in which the second, third and
fourth (fifth, sixth and seventh) columns show the wirelength, routing iterations and runtime of
H-BLMR-GR without (with) RSMT-aware routing scheme,
RSMT-aware routing scheme reduces 0.825% wirelength than that without the scheme. Although
RSMT-aware routing scheme spends additional effort to identify RSMT, less wirelength usage makes
H-BLMR-GR demand less iterations and then converge faster. The iteration number and runtime of

H-BLMR-GR with RSMT-aware routing scheme are reduced by 18.32% and 19.58%, respectively, than

that without the scheme.

respectively.

H-BLMR-GR with

TABLE 5.4 COMPARISON OF THE ROUTING RESULT OF H-BLMR-GR WITH AND WITHOUT
RSMT-AWARE ROUTING SCHEME

ISPD’08 H-BLMR-GR(w/o RSMT) H-BLMR-GR(w/ RSMT)
benchmark WL Rounds |- CPU (m) WL Rounds CPU (m)
adaptecl 53.55 11 2.65 53.04 10 2.52
adaptec2 51.97 12 0.79 51.51 10 0.65
adaptec3 129.88 3.50 129.24 9 3.40
adaptec4 120.76 1.20 120.53 1.23
adaptec5 155.52 16 9.16 154.01 11 6.03
newbluel 46.26 83 2.80 45.76 67 2.37
newblue2 74.63 3 0.63 74.51 5 0.64
newblue5 230.45 21 Y B/ 228.68 15 5.26
newblue6 177.23 14 5.46 175.49 11 4.44
bigbluel 57.61 18 8.49 56.29 9 4.09
bigblue2 89.42 86 7.73 88.66 48 4.21
bigblue3 129.68 22 2.19 129.35 19 1.91
Improve 0.825% 18.3% 19.58%

5.5.3 Comparison of Optimal-BLMR and Heuristic-BLMR

Table 5.5 compares the routing results of optimal-BLMR, heuristic-BLMR and CSP algorithm in
[25]. The BLMR problem is a restricted version of CSP, so the algorithm of [25] can be adopted to solve

BLMR problem. The algorithm of [26] can identify the optimal solution of BLMR problem via

96

dynamic-programming technique. The time complexity of the CSP algorithm in [25] is O(|E|L) where
|E| is the number of grid edges in the routing graph and L is BLC. O-BLMR-GR and CSP-GR adopts
the optimal-BLMR and the CSP algorithm [25] in the NRR stage, respectively. Note that the routers in
Table 5.5 all employ RSMT-aware routing scheme. Table 5.5 shows that H-BLMR-GR runs averagely
269.21 times faster than O-BLMR-GR, and only increases 0.1% total wirelength. The experiments
indicate that heuristic-BLMR can take much less runtime to yield similar routing results with
optimal-BLMR. On the other hand, the routing results of CSP-GR and O-BLMR-GR are same but the
runtime of CSP-GR is much larger than that of O-BLMR-GR since CSP algorithm [25] does not take
three properties of global routing into account; as described in section 3.

TABLE 5.5 COMPARISION OF THE ROUTING RESULT OF GLOBAL ROUTERS WITH HEURISTIC-BLMR,
OPTIMAL-BLMR AND [27]

ISPD’08 H-BLMR-GR O-BLMR-GR CSP-GR
(w/ RSMT) (w/ RSMT) (w/ RSMT)
benchmark
WL CPU (m) WL CPU (m) WL CPU (m)
adaptecl 53.04 2.52 52.93 615.21 52.93 3586.67
adaptec2 51.51 0.65 51.49 18.75 51.49 61.31
adaptec3 129.24 34 129.09 777.14 129.09 7406.14
adaptec4 120.53 1.23 120:52 30.48 120.52 159.11
adaptec5 154.01 6.03 153.66 1607.43 153.66 10126.81
newbluel 45.76 v. i 45.68 1044.53 45.68 7551.95
newblue2 74.51 0.64 74.50 5.68 74.5 33.63
newblue5 228.68 5.26 228.55 1766.12 228.55 12009.62
newblue6 175.49 4.44 175.44 664.18 175.44 5074.34
bigbluel 56.29 4.09 56.04 2537.78 56.04 11952.94
bigblue2 88.66 4.21 88.56 2576.10 88.56 13447.24
bigblue3 129.35 1.91 129.29 516.24 129.29 4315.77
ratio 1 1 0.999 269.21 0.999 1705.67

5.5.4 Routing Result Comparison of Sequential Routers
H-BLMR-GR with RSMT-aware routing scheme includes all innovation presented in this work, so
we re-name H-BLMR-GR with RSMT-aware routing scheme to NCTU-GR 2.0. Tables 5.6 and 5.7

compare the routing results of NCTU-GR 2.0 with four state-of-the-art global routers. NTHU-Route2.0
97

[11], FastRoute 4.1 [16] and NCTU-GR [17] are 2D router with layer assignment. MGR 1s a multi-level
3D router which runs much faster than traditional 3D routers [3-5]. The results of MGR are quoted from
[6] because the binary of MGR is unavailable. MGR performs on a 2.6GHz Intel CPU with 16G
memory while the other routers are all performed on our platform, so the runtime of MGR is normalized
by the clock rate ratio 1.154. Notably, various control parameters in routers affect the routing quality
and performance. NCTU-GR 2.0 and FastRoute4.1 adopt a single set of control parameters to solve
all benchmarks while NCTU-GR, NTHU-Route2.0 use different control parameters to identify
their best routing result for each benchmark. MGR automatically adapts parameters based on the
characteristics of each benchmark. For comparison, we also adopt different sets of control parameters to
yield the best routing result for each benchmark, listed at column NCTU-GRg 2.0 of Tables 5.6 and 5.7.

Table 5.6 compares each router by overflow-free cases, in which the wirelength and runtime are the
primary items for comparison because all routers produce overflow-free routing results. In Table 5.6,
NCTU-GR 2.0 identifies-1.1%, 1.1% and 0.6% less wirelength and averagely runs 1.90x, 1.77x and
1.92x faster than NTHU-Route2.0, FastRoute4.1 and NCTU-GR, respectively. Compared to MGR,
NCTU-GR 2.0 identify 0.3% longer wirelength; but NCTU-GRp 2.0 can achieve shorter wirelength
than MGR.

For hard-to-route cases, the routers in-[6, 11, 16] focus on minimizing total overflows, since total
overflow provides a more global perspective on congestion information than the maximum overflow.
However, the inability to address the maximum overflow may lead to very congested hot spots, possibly
becoming unroutable for detailed routing. Therefore, this work considers both total overflow and
maximum overflow. NCTU-GR 2.0 regards maximum overflow (MO) as the first minimization
objective, and total overflow (TO) as the second objective. Table 5.7 reveals that NCTU-GR 2.0
achieves good performance for maximum overflow, wirelength and runtime, but the total overflow still
has room for improvement. As for the best routing result for each benchmark (NCTU-GRg 2.0), the
proposed router performs very well in the total overflow and runtime. Notably, the MO information of

MGR is unavailable, so we do not list MO of MGR in Table 5.7.

98

TABLE 5.6 COMPARISON BETWEEN NCTU-GR 2.0 AND THE OTHER ROUTERS
ON OVERFLOW-FREE CASES.
Benchmark NCTU-GR 2.0 | NCTU-GRg 2.0 | NTHU-Route2.0 | FastRoute4.1 NCTU-GR MGR
WL CPU(m) WL CPU(m) WL CPU(m) WL CPU(m) WL CPU(m) WL CPU(m)
adaptecl | 53.04 | 2.52 | 5235 | 230 | 5349 | 486 | 53.73 | 331 | 53.50 | 3.90 | 52.82 | 4.39
adaptec2 | 51.51 | 0.65 | 51.30 | 0.64 | 5231 | 142 | 52.17 | 095 | 51.69 | 1.45 | 51.46 | 1.04
adaptec3 | 129.24 | 3.40 | 128.34 | 296 | 131.11 | 6.16 | 130.82 | 3.69 | 130.35| 4.88 | 128.92 | 4.83
adaptec4 | 120.53 | 1.23 | 120.17 | 1.18 | 121.73 | 2.08 | 121.24 | 125 |[120.67 | 2.28 | 119.96 | 1.41
adaptec5 | 154.01 | 6.03 | 151.85| 4.97 | 15555 | 11.95 | 15581 | 6.70 | 154.70 | 9.07 | 153.23 | 7.95
newbluel | 45.76 | 237 | 4562 | 1.93 | 4653 | 4.07 | 46.33 | 12.01 | 4599 | 3.63 | 45.58 | 4.51
newblue2 | 74.51 | 0.64 | 7451 | 0.63 | 7585 | 1.17 | 75.12 | 085 | 74.88 | 0.90 | 74.46 | 0.80
newblue5 | 228.68 | 5.26 | 22594 | 4.62 | 231.73 | 10.88 | 230.94 | 9.82 |230.31 | 15.03 | 228.00 | 6.54
newblue6 | 17549 | 4.44 | 171.10 | 4.02_|177.01 | 10.34 [177.87 | 8.78 | 176.87 | 9.67 | 174.86 | 7.04
bigbluel | 56.29 | 4.09 | 55.33 | 3.44 | 5635 | 6.93 | 56,64 | 422 | 5656 | 635 | 55.82 | 5.04
bigblue2 | 88.66 | 4.21 | 86.71 .| 345 | 90.59 | 6.47 | 91.18.| 12.12 | 89.40 | 11.18 | 88.92 | 6.00
bigblue3 | 129.35| 1.91 | 127.67 | 1,78 1-130.76 | 3.91 | 130.04 | 2.06 | 129.66 | 4.38 | 128.75| 2.89
Ratio 1 1 0.989 | 0.894 | 1.012 | 1.900 | 1.012 | 1.768 | 1.006 | 1.920 | 0.997 | 1.45
TABLE 5.7" COMPARISON BETWEEN NCTU-GR 2.0 AND THE OTHER ROUTERS
ON HARD-TO-ROUTE BENCHMARKS.
NCTU-GR 2.0 NCTU-GRg 2.0 NTHU-Route 2.0
MO | TO WL |[CPUm)| - MO | TO WL |CPU(m)| MO TO WL |CPU(m)
newblue3 | 194 | 31710 |105.36|143.34| 194 |31526 |106.80| 63.34 | 204 |31454(106.49| 64.97
newblued4 | 2 144 |127.27| 17.33 132 |129.27| 17.48 4 138 |130.46| 52.01
newblue7 | 2 58 | 342.9 | 85.67 54 1341.90| 74.53 2 62 |353.35| 50.28
bigblue4 | 2 194 | 225 |60.23 132" |227.10| 63.55 2 162 |231.04| 52.63
ratio 1 1 1 1 1.00 | 0.88 | 1.01 | 0.84 | 1.263 | 0.964 | 1.023 | 1.229
FastRoute 4.1 NCTU-GR MGR
MO | TO WL |[CPUm)| MO | TO WL |CPUm)| MO | TO WL |CPU(m)
newblue3 | 736 | 31276 | 108.4 | 15.99 | 198 |31808 |104.28|131.43| X |31026|107.22| 19.99
newblued | 2 136 |130.46| 65.23 2 134 |126.79| 40.92 X 136 |128.54| 15.64
newblue7 | 4 54 |353.38|868.74| 2 114 |338.63| 71.52 X 56 349.02|110.12
bigblue4 | 2 130 |230.24| 93.25 2 164 |223.99| 65.37 X 134 |225.73| 21.31
ratio |1.948] 0.882 | 1.027 | 3.891 | 1.005 | 1.186 | 0.992 | 1.3 X 0.90 | 1.01 | 0.67

99

5.6 Summary

This chapter at first discusses the algorithmic differences between designing a global-routing-based
RCE and a global router, and then points out that a global router should carefully use routing resource
for obtaining high-quality routing results. Accordingly, this work proposes bounded-length maze routing
algorithms, RSMT-aware routing scheme, and dynamically adjusted history cost function to better the
usage of routing resource. Moreover, a global router NCTU-GR 2.0, characterized by abovementioned
approaches, is presented. Excellent performance of NCTU-GR 2.0 on ISPD benchmarks with a single
set of parameters is owing to systematic and effective wirelength control, flexible tree structure change,

and valid update of edge congestion status with overflow frequency.

100

Chapter 6 Post3DGR: Post Optimization of
3D Global Routing Results

6.1 Introduction

In advanced technology nodes, designs contain considerable metal layers. To our knowledge, a
design in 28nm technology node may have up to 15 layers. As the number of metal layers increases, the
limitations of traditional global routing flows emerge. Generally, two routing flows are adopted to
resolve the global routing problem. The first one directly performs global routing on a 3D grid graph to
generate a 3D routing result [3-6]. The other condenses the 3D grid graph into the 2D grid graph and,
then, adopts a 2D global router to obtain a 2D routing result; the layer assignment finally assigns each
net edge in the 2D routing result to a layer-in the 3D grid graph. The limitation of the first flow is too
slow, while the limitation of the second flow is the lack of layer and via information in its 2D routing
stage.

Most global routers [7-21] adopt the flow of 2D routing with layer assignment due to the runtime
concern. However, the lack of layer and via information in the 2D routing stage would jeopardize the
results' quality. For example, Figs. 6.1(a) and 6.1(b) show two path candidates of a net of two pins
highlighted by red vertices, while Figs. 6.1(c) and 6.1(d) depict the layer assignment results of Figs.
6.1(a) and 6.1(b), respectively, in which the preferred routing direction of layers 2 and 4 is horizontal
while others are vertical. Since grid edges e, >, €54, and e. 4 have no routing resource due to blockages or
congestion, the routing path in Fig. 6.1(c) needs to a z-axis detour to bypass e, 2, €54, and e, In this
example, the better path in the 2D grid graph (Fig. 6.1(a)) appears to yield a worse path in the 3D grid
graph (Fig. 6.1(c)). This example shows that directly exploring the 3D grid graph has potential to
identify a better global routing result than 2D grid routing with layer assignment, and thus warrants the

algorithm development that optimizes 3D global routing results on the 3D grid graph.

101

Fig. 6.1. Gap of the recognition of good results between 2D routing with layer assignment and 3D
routing. (a) a good 2D routing result; (b) a bad 2D routing result; (c) a bad 3D routing result; (d) a
good 3D routing result.

GRIP [4] is an ILP-based 3D parallel global router.performing on a cluster computing environment.
To our knowledge, despite obtaining the routing results of the best wirelength in the literature, GRIP
consumes a considerably higher runtime than other global routers, GRIP [4] is about 270X slower than
NCTU-GR 2.0. Although the work in [5] better exploits the computation power of cluster computing
environment to speed up GRIP, the runtime of GRIP is still 42X slower than NCTU-GR 2.0. To reduce
the runtime of routing on 3D grid graph, a 3D global router MGR is based on a multi-level framework.
However, the coarsening stage in the multi-level framework more or less hides some information in the
original grid graph, possibly degrading the solution quality. For example, a net of two pins (red vertices)
is routed on a 4x4 grid graph with three obstacles (gray rectangles) in Fig. 6.2(a). In Fig. 6.2(b), the
coarsening stage of MGR merges four neighboring grid nodes into a super node to shrink the 4x4 graph
to a 2x2 graph; a routing path passing thorough node v; is then identified because the congestion in v; is
lower than that in v,. The un-coarsening stage maps the routing path shown in Fig. 6.2(b) back to the
original 4x4 grid graph to obtain the routing result shown in Fig. 6.2(c), which is a suboptimal result as

compared to the shortest path in Fig. 6.2(d), due to some information hidden at the coarsest level.

102

(9—0) (
P
C —@)
C D
1
(a) (b) () (d)

Fig. 6.2. MGR flow. (a) a two-pin net routes on a 4x4 graph; (b) the coarsening stage routes the net
on a coarsened 2x2 graph; (c¢) the un-coarsening stage maps the routing path in (b) back to the

original graph; (d) the shortest path of (a).

Current research addresses the global routing problem from three aspects, 2D global routing, 3D
global routing, and layer assignment. Most relevant research examines these aspects individually
without discussing the necessity to coordinate 2D routing, 3D routing, and layer assignment in a unified
flow. This work presents a unified global routing framework to efficiently generate a 3D global routing
result by 2D global routing with layer assignment, and then adopts the proposed post-3D-global-routing
tool Post3DGR to reduce the congestion, wirelength and via count of the 3D global routing result.
Post3DGR combines 3D routing and layer assignment to iteratively refine the 3D global routing result.
The proposed unified global routing framework can-diminish the large gap in runtime and quality
between 2D and 3D routings. This framework can yield a slightly better quality than that of GRIP of the
best quality so far, but consumes markedly less runtime than GRIP.

In addition to reduce vias, wirelength and congestion, Post3DGR can be extended to address some
manufacturing issues that are hard considered in 2D global routing stage due the lack of layer and via
information. Well addressing the manufacturing issues before detailed routing simplifies the subsequent
detailed routing. The work in [30] takes the double patterning issue into account; the works in [32, 33]
consider antenna effect to improve yield, and the works in [28, 29] focus on minimizing via overflows.
In section 5 of this chapter, we will illustrate the efficiency of extending Post3DGR to consider antenna
effect.

The rest of this chapter is organized as follows. Section 2 formulates the problem of optimizing a 3D

global routing result. Section 3 describes the framework of Post3DGR. Section 4 presents the proposed
103

negotiation-based layer assignment that is the kernel algorithm in Post3DGR. Section 5 summarizes the

experimental results. Conclusions are finally drawn in Section 6.

6.2 Problem Description

Given a 3D global routing result which consists of a k-layer 3D grid graph G*(V*, E*) and a set of
routing solutions of nets, the objective of Post3DGR is to refine the 3D global routing result to further
minimize overflows, wirelength and vias. In 3D grid graph G*(V¥, EY), V* denotes the set of 3D grid
nodes; each grid node refers to a G-cell; and E* refers to the set of 3D grid edges, each of which is
termed by the adjacency of the related G-cells of its two end nodes. Capacity c(e) of grid edge e refers
to the number of routing tracks that are allowed to legally cross the abutting boundary of two adjacent
G-cells. The number of wires that pass through grid edge e is called the demand d(e) of the grid edge.

The overflow of a grid edge e is defined-as-the amount of demand in excess of capacity.

| ; NCTU-GR 2.0 y | < 3D Global Routing Result
|
@Global Routing Res@ @istory cost informatioD v
I I

‘ Initial Layer Assignment ‘

' v
3D Post Routing adopts maze routing to reroute ‘

every net using routing cost formulation in Eq. (6.1)
]

Negotiation-based Layer Assignment Algorithm

No e ‘ Post Optimization ‘
New 3D result and hy,4(e; ,)

Overflow Reduction

Yes No
(Better 3D Global Routing Result) @ter 3D Global Routing ResuE
(a) (b)

Fig. 6.3. (a) Design flow of Post3DGR. (b) Design flow of NLA

6.3 Design Flow of Post3DGR

Post3DGR performs the 3D post routing and negotiation-based layer assignment (NLA) iteratively
on a given 3D global routing result to further minimize the result's wirelength, via count and overflows.
Post3DGR can attach to the end of any global router to do optimization, this work performs Post3DGR

following NCTU-GR 2.0.
104

Figure 6.3(a) shows the design flow of using Post3DGR to optimize the global routing result
obtained by NCTU-GR 2.0, Post3DGR iterates until reaching a user defined iteration limitation R. The
3D post routing stage reroutes nets on 3D graph to reduce its wirelength and congestion, and then NLA
re-arranges the routing layer for each wire to reduce vias. If it is necessary, NLA also can be extended to
consider the issues such as antenna effect, timing, and double patterning. The details of NLA will be
introduced in the next section.

Both 3D post routing and NLA can refine 3D global routing results. However, when 3D post routing
and NLA are used individually to optimize the routing result, the improved quality is inclined to fast fall
into sub-optimality. Although capable of altering routing topology, 3D post routing need to avoid
passing through the grid edges whose d(e)>c(e) to prevent overflows increasing. In contrast, although a
net can negotiate with other nets to acquire the routing resource on other routing layers, each net cannot

change its routing topology during NLA.

AR

(2) (b)

p p)

(c) (d)
Fig. 6.4. Example of the quality improvement in Post3DGR. (a) A 2D routing result obtained by the
2D routing in NCTU-GR 2.0; (b) a 3D result obtained by the layer assignment in NCTU-GR 2.0; (¢)
the 3D result obtained by 3D post routing in Post3DGR; (d) the 3D result obtained by NLA in
Post3DGR.

Through iterative topology change by 3D post routing and re-arranging routing layers by NLA,
Post3DGR can refine a 3D routing results well. For example, a 2D routing result in Fig. 6.4(a) is

obtained by the 2D routing stage of NCTU-GR 2.0, and then the layer assignment stage of NCTU-GR
105

2.0 map the 2D result to a 4-layer 3D grid graph to obtain a 3D routing result in Fig. 6.4(b). Since grid
edges e; and e; cross obstacles, net n; needs a z-axis detour (via) to bypass obstacles. By assuming the
length of a routing edge and a via both are one unit wirelength, and the capacity of each grid edge is one;
the total wirelength of two paths in Fig. 6.4(b) is 15. To further optimize the 3D routing result, we feed
the result in Fig. 6.4(b) into Post3DGR. The 3D post routing finds a shorter path for n; (Fig. 6.5(c)) with
the reduced total wirelength to be 13. NLA then relaxes the resource at layer 3 used by n, for n; to
further reduce the total wirelength to be 11 (Fig. 6.4(d)).

During the 3D post routing stage, every net is ripped-up and re-routed once by 3D maze routing. The
3D post routing stage adopts an inherited history cost function to guide the routing of each net, which
can greedily reduce total wirelength. In NLA and the 2D routing stage of NCTU-GR 2.0, a grid edge
with a high history cost implies that this grid edge frequently overflows and many nets desire to pass
through this grid edge, so.the routing resource of this grid edge is critical. The history cost information
acquired by 2D routing and NLA is delivered to the 3D post routing in order to broaden the view of the
routed nets in terms of knowing which grid edge is critical. The inherited history cost formulation is

defined as follows:

Cix[d(eiz)—c(eiz)] if d(eiz)=c(eiz)
2
t [,z)= i
cost (¢i2) 1+Cax _dleiz). + C3xhisCj (ei,z), otherwise (6.1)
I+c(eiz)

where hisCi(e;;) denotes the inherited history cost of the 3D grid edge e;.; Ci, C; and Cs are user
defined constants and set as 10°, 0.1 and 0.05 in this work, respectively. The great value of C; can

reduce overflows or avoid overflow increasing. The hisCi(e;) is formulated as follows:
hisCr(eiz) = NORM(hap(ei)+ NORM (hnra(eiz)) , (6.2)

where ¢; is a 2D grid edge that is projected from e;.; hnra(e;) denotes the history cost of e;., as
computed in previous NLA of the 3D post routing, and /,p(e;) is the history cost from 2D routing of
NCTU-GR 2.0. Since Post3DGR is designed to follow the execution of a 2D global router, /:p(e;) is the

final history cost of e;, such as that defined in Eq. (5.6) as NRR of 2D routing ends. Because NLA

106

follows the 3D post routing, the first round of the 3D post routing has no Ayz4(e;;) information. Thus,
NORM(hnia(eiz)) 1s ignored in the first round of the 3D post routing. Function NORM normalizes h2p(e;)
and Ayz4(e;;) between zero to one. Function NORM(h;p(e;)) derives the normalized values as follows:
The grid edges in the 2D grid graph with non-zero history costs are sorted in a non-decreasing order of
their history costs. By assuming that the length of the ordering sequence is L;p, /2p(e;) 1s normalized to
alL;p as e; is the a-th element in this sorting sequence. Similarly, NORM(hnr4(e;.)) is computed in the

same manner.

Fig. 6.5. The comparison between existing layer assignments and NLA. (a) Given a 2D routing, net 4
connects pins p2 and p4, net B connects pins p/ and p3; (b) assignment result of net A4; (c) and (d)
existing layer assignment results; (¢) NLA result after the first iteration; (f) NLA result after the

second iteration.

6.4 Negotiation-based Layer Assignment (NLA)

NLA is the kernel stage of Post3DGR, which focuses on minimizing vias without increasing
overflows and without changing routing topology. Previous layer assignment works [16, 17, 27]
addressing the via count minimization problem determined the assignment order of each net first and,
then, adopted the dynamic-program-based layer assignment to assign each net sequentially. In order to
avoid increasing overflows, the nets in the later assigning order have less available layer resources than

those in the early assigning order. In this sorting-and-then-assigning method, the net ordering strongly

107

impacts the result's quality. NLA can overcome the available resource problem for the nets in the later
assigning ordering. In NLA, the later assigned nets can legally use their desired grid edges even whose
routing resources are exhausted by the early assigned nets. NLA would iteratively rip-up and re-assign
the overflowed nets and gradually increase the penalty of the overflowed grid edges. Because each net
is assigned by a minimum-cost single net layer assignment (MCSNLA) algorithm, a net would
gradually abandon their desired grid edges when the grid edge has high penalty. By adopting this
negotiation scheme, the routing resource of a grid edge would be used by the nets who most need. NLA
can reduce the impact of net ordering, and thus get a result with fewer vias than the work in [17, 27].
Figure 6.5 compares the layer assignment results with and without the proposed negotiation-based
scheme. Figure 6.5(a) shows a 2D routing graph with two nets: net 4 connects pins p2 and p4 and net B
connects pins p/ and p3. By assuming that the capacity of each 3D grid edge is only one and the routing
order of 4 is earlier than B, Fig. 6.5(b) shows the results of assigning net 4 on a 2-layer 3D graph. This
example ignores the preferred routing direction rule for simplicity. Figures 6.5(c) and (d) show
traditionally optimal results of assigning net B, each of which contain three vias. In contrast, NLA can
first produce an overflowed result (Fig. 6.5(e)). Then, the penalty of the grid edge between p2 and p3

increases, and nets 4 and B are re-assigned sequentially to obtain the solution with only one via (Fig.

6.5()).

6.4.1 Algorithm Flow of NLA

Figure 6.3(b) shows the algorithm flow of NLA that comprises three stages. The initial layer
assignment stage first rips-up every net from the 3D grid graph and then identifies a minimal via
assignment solution for each net without addressing the congestion issue. Next, overflows produced in
the initial layer assignment are minimized by the overflow reduction stage, in which the overflowed
nets are iteratively re-assigned. If the layer assignment result has overflows, the congestion cost of the
overflowed grid edges increases, and the overflowed nets are re-assigned until either a overflow-free

result is obtained or overflows cannot be reduced anymore. Finally, the post optimization stage rips-up

108

and re-assigns each net once to greedily further reduce via count but avoid increasing overflows.
MCSNLA is adopted in all of initial layer assignment, overflow reduction, and post optimization stages
to identify a minimum-cost layer assignment solution for a single net. The objective cost of MCSNLA
consists of congestion cost and via cost, but the formulations of the congestion cost in different stages
are different. The following subsections would introduce the algorithm of MCSNLA and the congestion

cost formulations in each stage.

(a)
Fig. 6.6. An example of single net layer assignment. (a) a 2D routing topology of a net N(V.p, E2p);

(b) a set of N's pin locations in G*; (¢)-a layer assignment solution.

6.4.2 MCSNLA: Minimum-cost Single Net Layer Assignment

Figure 6.6 illustrates the single-net layer assignment problem. Given a 2D routing topology of a net
N(Vap, E>p) where Vop and Ezp denote the sets of 2D G-cells and 2D grid edges passed by N,
respectively; and given a set of pin locations of N in G*, which is denoted by Psp. The single-net layer
assignment problem for net N is to identify a 3D tree connecting all pins in P3p, which consists of a set
of 3D grid edges denoted E;p, the edges of E;p are the corresponding edges of E,p. For instance, Given
a 2D routing topology of N(V.p, Ezp) in Fig. 6.6(a) and given P;p in Fig. 6.6(b), where Vop={vy, v;, v,
V3, V4, Vs}, Eap={eyj, e, e3 e4, es} and P:p={vy2, V21, V3.1, Vs.3}, the single net layer assignment identifies
a 3D tree as shown in Fig. 6.6(¢c), Esp={e;., €21, €31, €42 €53}, this result contains three vias.

The algorithm flow of MCSNLA is similar to the single net layer assignment algorithm in [27],
MCSNLA and the algorithm in [27] both adopt a dynamic programming technique. However, previous
works is for via count minimization while this work addresses on minimizing the sum of the congestion

cost and via cost. Before detail the algorithm of MCSNLA, we first introduce some notations.

109

1. k: the number of layers in the 3D grid graph.

2. ch(v;): the set of child nodes of v;. In Fig. 6.6(a), ch(v,)={v3, v4}.

3. ch_e(v)): the set of grid edges connecting v; to its child nodes. In Fig. 6.6(a), ch_e(v2)={es, e4}.

4. pinL(v;, P3p): the layer of the pin at v;. In Fig. 6.6(b), pinL(vs)=3.

5. T(vj): a 2D tree rooted at v;.

6. t;.: a 3D tree rooted at v;.. The ¢ is an assignment solution of 7(v;). A 3D tree consists of a set of 3D
grid edges and a set of required vias for connecting those grid edges and pins. Figure 6.6(c) shows a
3D tree #)..

7. S(vi): the set of 3D trees rooted at v; ..

8. S(v;): the set of assignment solutions of 7(v;).

9. numVia(#;;): the total via mamber of ¢, .. In Fig. 6.6(c), numVia(Z,;) is three.

10. wvia(A): A is a set of layers, via(A) denotes a set of required vias connecting the layers of A.

The objective cost function of MCSNLA is formulated as follows, MCSNLA can always identify the

minimum-cost assignment solution .

cost(t;.) = viaCostx numVia(t;.) + Ze 3 congCost(e), (6.3)

where 7;; is a 3D tree identified by MCSNLA, congCost(e) denotes the congestion cost of grid edge e,
and viaCost is an user defined constant for the cost of a single via. The formulation of congCost(e) will
be detailed in the next subsection and viaCost is set to /00 in our implement. MCSNLA is a 2-phase
algorithm based on dynamic-programming technique. During the first phase, the net N(V.p, Ezp) is
regarded as a 2D tree T(vy), vy is the root, the root and the leaves of 7(vy) must contain a pin. Next,
MCSNLA enumerates all possible 3D trees starting at leaf nodes in a bottom-up manner until reaching
the root, MCSNLA would dynamically discard inferior tree (discarded later) to keep the size of solution
space reasonable. In the second phase, the minimum-cost assignment solution for the entire tree is
extracted from the set of possible 3D trees, then each net edge is assigned to the corresponding layer
based on the minimum-cost assignment solution in a top-down manner. Figure 6.7 shows the pseudo

code of MCSNLA. Lines 2-13 are the bottom-up phase, the procedure InitSol initializes a 3D tree
110

rooted at the leaf node. The procedure EnumsSol enumerates all possible 3D tree rooted at the internal
node v;.. The procedure PruneSol discards the redundant trees from S(v;.) that the size of S(v;.) is
limited in a reasonable range. Line 15 to line 18 is the top-down phase. Line 16 enumerates all possible
assignment solutions for entire 3D tree into S(vy,). Line 17 extracts the minimum-cost one from S(vy).
Finally, each net edge of N is assigned to a corresponding layer of G* according to the minimum-cost

assignment solution.

Algorithm MCSNLA
Input: net N(Vp, E-p), pin locations Psp, 3D grid graph G*;
1. //Bottom-Up phase

2. foreach node v; in the order given by a postorder traversal of V,p, v; is not the root.

3. foreach layer z from 1 to &

4 set S(v;;) to @

5. if wv;isaleafnode

6. S(v; .)«—InitSol(v; ., Psp)

7 else

8 S(v;.)«—EnumSol(v;., ch(v;), ch_e(v)), Psp)
9 end if

10. PruneSol(S(viz))

11. end foreach

12. Sv)=S(vip)US: U ... US(vir)

13. end foreach

14. //[Top-Down phase

15. x=pinL(vy, P3p)

16. S(vo.x)<—EnumSol(vy,, ch(vy), ch_e(vy), P3p)
17. tyx—Select_solution(S(vy,))

18. TopDown_Assignment(N, G, 5)

19. end

Fig. 6.7. The pseudo code of MCSNLA

Figure 6.8 shows the pseudo code of InitSol. At line 3, |/| represents the number of required vias
connecting the pin's layer to layer z. Because #;. only includes vias, the cost of #;, is only contains the
via cost. Figure 6.9 shows the pseudo code of EnumSol. Without the loss of generality, we suppose that

v; has three child nodes in the pseudo code. At line 3, an 3D tree #;; is constructed by composing ¢, 4, .1

111

Leles €alas €bibs €cic and 1. The 1,4, tp1» and ¢, are the sub-trees of #;., the e, ., ey and e ;. are the 3D
grid edges connecting the roots of 7,1, ¢ and ;. to the 3D nodes v; s, vin and v;y., respectively. The
vias in I connect v; 4, Vin, Viie and v;.. If a pin is located at a layer of v;, vias also need to connect to this
pin. Figure 6.10 shows an example for constructing a 3D tree #; ; that consists of ¢, 2, 5.3, tc4, €42, €53, €c.4,
and /. At line 4, the cost of ¢, is identified by adding up the cost of #, 1, ., ¢, the congestion cost of
€alas €b.Ibs €clc» and the via cost of 1. The loop of lines 1-6 enumerates all possible 3D trees rooted at v; .
and calculates the cost of each possible 3D tree. For instance, as the enumeration of all possible 3D
trees rooted at v, for the net in Fig. 6.6, by assuming that S(v3)={¢; ., 3.2, 133}, S(Vo)={t41, t42, t43} and
viaCost is set to 1, Fig. 6.11(a) shows the costs of sub-trees and the congestion costs of the 3D grid
edges connecting the roots of sub-trees to v, ,. Figure 6.11(b) shows all enumerated 3D trees rooted at

V2.2, and lists the cost of each enumerated 3D tree.

Procedure InitSol

Input: node v;., 3D pins location P;p
1. I=via(pinL(v;, P3p), 2)

2. ti~=l

3. cost(t;.)=|1] *viaCost

4. ‘inset ;. into S(v;)

5. return S(v;;)

Fig. 6.8. Procedure InitSol of MCSNLA

Procedure EnumSol

Input: node v;., ch(vi))={v,, v, v.}, ch_e(v;)={e., ep, €.}, pins location P;p
1. foreach solutions #,,, # 1 and f. ;. of S(v,), S(v») and S(v.), respectively.

2 I=wvia(la, Ib, lc, pinL(vi, P;3p), z)

3. 1177 Latat ot Lejcteaiatenmt ecictl

4 cost(;.)=cost(ty,1a)cost(¢y) tcost(z..)+congCost(e, 1) +congCost(ep, i)+

congCost(e i)+ |I|*viaCost

5. inset 7;. into S(v;.)
6. end foreach
7. return S(v;.)

Fig. 6.9. Procedure EnumSol of MCSNLA

112

W cost(f33)=2 congCost(es3)=3
: t3.3 | cost(ts2)=1 congCost(es2)=3
W cost(t31)=0 congCost(es 1)=2

, ts2 1 cost(t43)=2 congCost(es3)=4
i 3 a1 cost(t42)=8 congCost(e42)=1
cost(t41)=4 congCost(e41)=4

4 cost(3,)=12 cost(13,)=13
(a) (b)
Fig. 6.11. An example of EnumSol. (a) The costs of 3D sub-trees and the congestion costs of the grid

edges connecting to the root of each sub-tree to v, ; (b) all possible combinations to build tree 7, ».

In order to limit the size of S(v;.) in a reasonable range, PruneSol discards the inferior trees from

S(viz). An inferior tree is defined as follows:

Definition 1. inferior tree: An 3D tree 1% is regarded as an inferior tree if another 3D tree ;. exists
such that the cost(#%) is greater than cost(Z;-).

If there are more than one 3D trees in S(v;.), after pruning inferior trees, only the minimum-cost tree
will be reserved in S(v;:), the other 3D trees will be discarded. For example, there are nine 3D trees

enumerated by EnumSol in Fig. 6.11. After pruning inferior trees, only 13, will be reserved in Sviz).

113

Applying this scheme to pruning solutions can make MCSNLA obtain the minimum-cost assignment
solution in a polynomial time. The time complexity of MCSNLA and the size of solution set are

analyzed as follows.

Lemma 1. For each node v;, i =0, the size of S(v;) is k.
Proof: According to line 12 in Fig. 6.7, the size of S(v;) is the sum of the size of S(v;.), 1<z<k. Because

only the minimum-cost tree is reserved in S(v;;), the size of S(v;.) is one. Thus, the size of S(v;) is &.

Lemma 2. The time complexity of InitSol is O(1). Moreover, as the child number of v; is q, the time
complexities of EnumSol and PruneSol for v;., 1<z<k, are both O(k?).

Proof: There are no loops in ImitSel and all operations in InitSol are constant time, so the time
complexity of InitSol is obviously O(l).-In- EnumSel, the loop from line 1 to line 6 of Fig. 6.9
enumerates all combinations of the child node's solutions. With lemma 1, the solution set size of each
child node is k that there are k7 combinations of the child node's solutions. Therefore, the loop of lines
1-6 runs k7 iterations, so the time complexity of EnumSel is O(k?). Moreover, PruneSol scans all
solutions in S(v;.) to reserve the minimum-cost one. Because S(v;.) contains most k7 solutions

enumerated by EnumSol, the time complexity of scanning &7 solutions in PruneSol is also O(k?).

Theorem 1. The worst time complexity of MCSNLA is O(|Vap|*k*), |Vap| represents the number of
G-cells in 2D grid graph passed by N.

Proof: In the bottom-up phase of Fig. 6.7, an inner loop is from line 3 to line 11 and an outer loop is
from line 2 to line 13. EnumSol and PruneSol are the most time consuming parts of the inner loop,
according to lemma 2, the time complexities of EnumSol and PruneSol are both O(k?), and the inner
loop runs k iterations, so the time complexity of the inner loop is O(k*(k?+k?))=0(k*""). Moreover, the
outer loop runs |Vp|-1 iterations, thus the time complexity of the outer loop 1is
O((|Vap|-1) *k7 ™ y=0(| V2p| *k7™"). Because the child number ¢ of each node except the root must be less

or equal to three, the worst time complexity of the outer loop is O(|Vap|*k*) as ¢ is three. In the

114

top-down phase, the worst time complexities of EnumSol and Select_solution are both O(k*) since the
child number of the root is four at most, and TopDown_Assignment takes the time of |Vp|-1 to assign
each net edge to the corresponding layer. Thus, the worst time complexity of whole MCSNLA is

O(|V2p| *ky+O(k*y+ O(| V2p|-1)=O(|V2p| k).

Theorem 2. MCSNLA can always identify the minimum-cost assignment solution.
Proof: We prove this theorem by the contradiction method. By assuming that 7, is the minimum-cost
solution for a net but MCSNLA identifies a suboptimal solution ¢#').. Because the cost of ¢/ is greater

than 7, ., following equation holds,

3t';, and 3t;,, t',ct’y. and i, ty., 1Sr<k.

such that cost(#’;») > cost(¢;,) ’ (6.4)

where ¢';, and ¢;, are the sub-trees of #'y>-and #y ., respectively. The cost of ¢, is greater than ¢;,. However,
according to Definition 1, ¢, is-an inferior tree that will be discarded from the solution set. Because ¢';,
is not reserved in the solution set, ¢, i1s impossibly constructed by its sub-tree ¢;,. This implies that
MCSNLA never identifies a suboptimal solution #.. Namely, MCSNLA can always identify the

minimum-cost assignment solution.

6.4.3 Congestion Cost Formulations

NLA involves three stages: initial layer assignment, overflow reduction and post optimization
stages. MCSNLA adopts different congestion cost formulae in different stages for different objectives.
In the initial layer assignment stage, a minimal via count solution is first identified without considering
congestions for every net by fixing congestion cost as zero in Eq. 6.3. In the overflow reduction stage, if
a grid edge frequently overflows, its congestion cost continually increases. The formulation of

congestion cost is defined as follows:

congCost(e) = p. *(1+(h.)?), (6.5)

115

where e denotes a 3D grid edge, p. denotes congestion penalty, and 4, represents the history cost. The

congestion penalty is defined as follows:

[4

=]+
pe=1 [+exp? " (cap(e-den(e))

(6.6)

where o and £ are user defined constants, o is set to 10 and S is set to 0.3 in this work. The history cost
h. increases by one as grid edge e overflows, and /. keeps unchanged if e does not overflow. The value

of 4. in the k-th iteration can be expressed as,

kI hé“r], if e overflows
.)

(6.7)
hf , otherwise

Figure 6.12 displays the changes of wire overflow and via count in the overflow reduction stage. As the
process iteration proceeds, the overflow decreases since the increasing congestion cost encourages
MCSNLA to obtain the solution with less overflows at the cost of increasing via counts. In the post
optimization stage, each net is re-assigned to greedily reduce vias but without increasing overflows.
Equation (6.8) shows the congestion cost formula used in the post optimization stage, where o refers to
an extremely large constant.

conaA) ={g*(l+d(e)—c(e))y if -d(e)=c(e) (6.8)

, otherwise
Equation (6.8) enlarges the < penalty. of an overflow assignment that MCSNLA identify
minimum-overflow assignment solution. If at least an overflow-free assignment exists, MCSNLA based

on Eq. (6.8) would identify the minimum via count assignment among the overflow-free assignments.

25 19

o
20 H —~ 17
Tl C at
SHA S -
O . \¥ > //

o e e L S
el e L [r 3 5 7 2 11 13 15

[teration [teration
Fig. 6.12 The overflow reduction stage of NLA resolves overflow (OF) of adaptec2 at the cost of

increasing vias.

116

6.5 Experimental Results

The proposed algorithms were implemented in C/C++ on a quad-core 2.4 GHz Intel Xeon-based
linux server with 32GB memory. ISPDO8 [2] benchmark circuits are used in the experiments. Each
benchmark has either six or eight routing layers. The preferred direction of even layers is horizontal,
while that of odd layers is vertical. This section consists of three parts. First, to compare NLA with other
layer assignment works [17, 27] on via count minimization problem, each algorithm reads the same
global routing results of ISPD08 benchmark, which are produced by the NTHU-Route 2.0 [11].
Different layer assignment algorithms then transform 2D routing results to 3D. Next, the effectiveness
of Post3DGR including NLA is demonstrated. Finally, we extend NLA to consider antenna effect.

TABLE 6.1 COMPARING NLA WITH PREVIOUS LAYER ASSIGNMENT WORKS
ON VIA COUNT MINIMIZATION PROBLEM.

Benchmark Via Count(10°) Runtime
[27] [17] NLA [27]* [17] NLA
adaptecl 17.69 17.03 16.69 27.5 20.73 48.1
adaptec2 19.3 18.57 18.31 25.67 21.21 42.16
adaptec3 | 34.91 33.56 32.9 82.5 F] » 126.81
adaptecd | 32.15 31.21 30.82 75.17 51.14 105.54
adaptec5 52.4 50.35 49.3 99 87.82 136.74
newbluel | 22.22 21.76 21.42 22.92 22.45 35
newblue2 | 29.46 28.61 28.14 39.42 34.46 56.1
newblue3 | 30.23 29.37 29 59.58 41.23 94.55
newblued | 47.05 45.89 44.73 79.75 55.92 100.68
newblue5 | 84.51 81.51 80.16 134.75 99.67 211.22
newblue6 | 74.66 72.64 71.01 105.42 84.42 143.53
newblue7 | 166.01 161.52 157.21 306.17 240.83 388.03
bigbluel 18.73 18.03 17.6 38.5 31.98 55.71
bigblue2 | 42.11 40.75 40.32 52.25 36.77 74.28
bigblue3 | 52.43 51.47 50.55 90.75 75.72 149.2
bigblue4 | 109.14 107.1 104.69 166.83 123.46 259.29
Ratio;,g 1.051 1.019 1 0.678 0.531 1
Ratiogm 1.051 1.021 1 0.694 0.536 1

* AMD Dual Core Opteron Processor 2.2-GHz CPU

117

6.5.1 Effectiveness of NLA

Table 6.1 compares the proposed NLA with previous layer assignment works [17, 27] for via count
minimization. The overflows are not listed in Table 6.1 since the results of each layer assignment
algorithm have the same overflows. The first major column lists the total via count of the results of [27],
[17] and NLA, in which NLA assigns nets in an increasing order of net IDs. This work using casual net
ordering still can get the results with lower via count that [17, 27]. The second major column in Table
6.1 compares the runtimes of [27], [17] and NLA. Since the algorithm in [27] runs on a different
platform from others, the runtime of [27] is normalized with the clock rate ratio. NLA consumes more

runtime than [27, 17] because NLA iteratively re-assigns overflowed nets to explore a better solution.

TABLE 6.2 THE QUALITY VARIATIONS OF NLA AND [17] WITH
DIFFERENT ASSIGNMENT ORDERING SEQUENCES.
Total Via-Count (10°)
Bench- [17] NLA

mark DW W DP IP Vari DW IW DP 1P Vari
adaptecl | 27.53 | 18.96 | 22.81 | 22.26 8.56 16.69 16.7 16.68 | 16.71 0.02
adaptec2 | 29.52 | 2057 | 24.53 | 24.16 8.95 18.31 18.33 18.3 18.33 0.03
adaptec3 | 55.26 37.3 4529 | 4395 | 17.96 32.9 3292 | 32.89 | 32.93 0.05
adaptec4 | 50.65 | 34.75 | 41.61 | 40.78 15.9 30.82 | 30.85 30.8 30.86 0.05
adaptec5 | 81.02 | 5581 |766.51 | 66.51 | 25.21 49.3 4935 | 49.27 | 49.37 0.09
newbluel | 3326 | 23.41 | 2794 | 26.97 9.86 2142 [2143 | 2141 | 21.44 0.03
newblue2| 48.74 | 31.37 | 38.66 | 3885 | 17.37 | 28.13 | 28.17 | 28.12 | 28.17 0.05
newblue3| 4935 | 32.41 | 38.61 | 40.11 16.94 | 2898 | 29.01 | 2897 | 29.02 0.05
newblue4| 73.16 | 50.78 | 60.61 | 59.67 | 22.39 | 44.74 | 4476 | 4471 | 44.77 0.06
newblue5| 136.5 | 98.18 107 103.86 | 3832 | 80.16 | 8035 | 80.12 | 80.27 0.23
newblue6| 116.76 | 79.52 96 93.95 | 37.24 | 71.02 | 71.06 | 7095 | 71.08 0.13
newblue7| 267.23 | 176.88 | 213 | 210.02 | 90.35 | 157.21 | 157.31 | 157.15 | 157.38 | 0.23
bigbluel | 28.2 19.53 | 2325 | 23.62 8.67 17.6 17.61 17.59 | 17.61 0.02
bigblue2 | 64.46 | 46.19 | 5241 | 52.14 | 1827 | 4031 | 40.36 40.3 40.36 0.06
bigblue3 | 80.25 | 56.78 | 69.36 | 66.28 | 23.48 | 50.54 | 50.58 | 50.51 | 50.61 0.09
bigblued | 17539 | 118.04 | 143.29 | 14442 | 57.35 | 104.69 | 104.8 | 104.57 | 104.78 | 0.23

Ratio 1.65 1.13 1.35 1.33 | 322.86 | 1.00 1.00 1.00 1.00 1.00

118

Table 6.2 shows the quality variations (Vari) of the work in [17] and NLA with different assignment
ordering sequences. The comparison does not include the work in [27] since its source code and binary
are unavailable. Four ordering sequences are adopted — decreasing wirelength (DW), increasing
wirelength (IW), decreasing pin’s number (DP) and increasing pin’s number (IP). Table 6.2 reveals that
the net ordering sequence easily impacts the quality of [17], and the proposed NLA yields lower
variation in the total via count as different net assignment ordering sequences are applied.

TABLE 6.3 THE WIRELENGTH IMPROVEMENT AND RUNTIME OF POST3DGR.

ISPD’08 Post3DGR ISPD’08 Post3DGR
benchmark WL(%) CPU(m) benchmark WL(%) CPU(m)
adaptecl 2.66 8.82 newblue4 2.62 14.70
adaptec2 3.03 7.84 newblue5 2.96 28.42
adaptec3 2.47 36.26 newblue6 2.23 10.78
adaptec4 2.98 20.58 newblue7 2.89 41.16
adaptec5 2.44 18.62 bigbluel 2.31 6.86
newbluel 2.99 7.84 bigblue2 2.59 7.84
newblue2 3.49 9.80 bigblue3 3.01 21.56
newblue3 3.04 B bigblue4 2.89 30.38

6.5.2 Effctiveness of Post3DGR

Table 6.3 shows the global routing wirelength improvement (WL%) and the runtime of using the
proposed Post3DGR to further refine the 3D global routing results produced by NCTU-GR 2.0 (Tables
5.6 and 5.7). Post3DGR, which performs the 3D post routing and NLA twice, can achieve an improved
wirelength of 2.79% on average. Compared to the runtime of NCTU-GR 2.0 in Table 5.6, the runtime of
Post3DGR is enormous due to large 3D searching space. However, compared to the pure 3D global
routers [3-5], the runtime of Post3DGR is negligible.

We name the flow of NCTU-GR 2.0 followed by Post3DGR to NCTU-3D-GR. Table 6.4 compares
the routing results of NCTU-3D-GR with MGR [6] and GRIP [4]. MGR is a multi-level 3D router.
GRIP [4] is a parallel ILP-based 3D router, which obtains the best wirelength in all open literature.

Although PGRIP [5] enhances the parallelism degree of GRIP to improve the runtime, the wirelength

119

reported in PGRIP is worse than that in GRIP. Given its objective to yield high-quality results, this work
compares NCTU-3D-GR with GRIP rather than with PGRIP. In Table 6.4, TOF and WL denote total
overflow and total global routing wirelength (including vias and edges), respectively. Table 6.4 shows
that NCTU-3D-GR identifies 0.2% and 2.9% less wirelength than GRIP and MGR, respectively.

In Table 6.4, NCTU-3D-GR and MGR is performed on a single core. In contrast, GRIP was run on a
heterogeneous grid of CPUs, shared by many users, and controlled by the Condor grid computing
toolkit. In the major column of GRIP, the wall time (Wall) is the real time from GRIP launched to
termination, while the total time (CPU) is the summation of the runtimes spent by all CPUs. Table 6.4
reveals that NCTU-3D-GR consumes a significantly lower runtime and computation power than those
of GRIP, but the routing results of NCTU-3D-GR beat GRIP.

TABLE 6.4 COMPARING NCTU-3D-GR 2.0 WITH OTHER 3D ROUTERS.

NCTU-3D-GR GRIP [15] MGR [17]
TOF [=WL.| CPU | TOF | wrL |walllcPu| TOF | wL | cpU

adaptecl 0 51.63 | 11.34 0 51.33 | 388 | 2101 0 52.82 | 4.39
adaptec2 0 49.95 8.49 0 49.93 | 455 2704 0 51.46 1.04
adaptec3 0 126.05 | 39.66 0 126.8 1478 | 6319 0 12892 | 4.83
adaptec4 0 116.94 | 21.81 0 118.43 {509 | 5221 0 119.96 | 1.41
adaptec5 0 150:25 | 24.65 0 149.5 | 584 | 3175 0 153.23 | 7.95
newbluel 0 44.39 | 10.21 0 44.57 {483 | 2306 0 45.58 | 4.51

newblue2 0 71.91 | 10.44 0 7247 | 467 | 4192 0 74.46 | 0.80
newblue3 | 31934 | 102.16 | 720.56 | 45960 |102.83 |1430(14590| 31026 | 107.22 | 19.99
newblue4 142 | 123.94 | 32.03 136 124.4 | 529 12944 | 136 | 128.54 | 15.64
newblue5 0 221.91 | 33.68 0 222.8 | 821 | 4593 0 228 6.54
newblue6 0 171.58 | 15.22 0 170.5 | 448 | 2219 0 174.86 | 7.04
newblue7 54 332.99 | 126.83 54 335.8 | 985 | 4788 56 349.02 | 110.12
bigbluel 0 54.99 | 10.95 0 53.7 |339 | 956 0 55.82 | 5.04
bigblue2 0 86.36 | 12.05 0 86 690 | 3411 0 88.92 | 6.00
bigblue3 0 125.46 | 23.47 0 126.2 | 731 | 2690 0 128.75 | 2.89
bigblue4 152 | 218.50 | 90.61 180 220.7 | 726 | 3096 | 134 |225.73 | 21.31
Ratio 1 1.002 1.029

120

6.5.3 Consideration of Antenna Effect

Generally speaking, the goal of NLA is to minimize the cost of an objective function. This work formulates
congestion cost and via cost into the objective function (Eq. 6.3), so NLA can minimize via count and
congestion. If we formulate manufacturing issues into the objective function of NLA, NLA also can be aware
of these issues. Moreover, Post3DGR including NLA can consider these manufacturing issues too. We have
extended NLA to consider antenna effect to develop an antenna-aware NLA [33] to. Please refer to our paper

[33] to know the details of antenna-aware NLA [33].

TABLE 6.5 COMPARING ANTENNA-AWARE NLA WITH OTHER LAYER ASSIGNMENT ALGORITHMS.

Bench COLA [2] NLA LAVA [4] Antenna-ware NLA
mark | #vn Vlass Cp'u* B Vlass CPu e Vlass Cp'u* son Vlass CPu
(10%) | (mun) (107)_| (min) (107) | (min) (10”) | (min)

adaptecl | 911 17.69 | 0.46 709 16.69 | 0.80 602 1751 | 0.73 4 16.72 | 14.82
adaptec2 | 879 19.30 |- 0.43 712 18.31 |0.70 568 19.07" | 0.64 0 18.33 | 12.86
adaptec3 | 2959 | 34.91 1.38 2919 | 32.90 | 2.11 2194 | 34.58 | 1.94 5 33.00 | 60.03
adaptec4 | 2009 | 32.15 1:25 1925 | 30.82 | 1.76 1931 | 31.93 1.61 4 30.90 | 41.11
adaptec5 | 4166 | 52.40°| 1.65 3744 | 49.30 | 2.28 2465 51.9 2.09 0 49.43 | 53.53
newbluel | 328 22.22 |-0.38 460 | 21.42 [0.58 273 2495 | 1 0.53 6 2143 | 4.93
newblue2| 681 29.46 | 0.66 534 | 28.14 | 0.94 444 1 29.15 | 0.86 1 28.18 | 11.79
newblue3| 466 30.23 | 0:99 429 29.00 | 1.58 251 2942 | 1.44 1 29.08 | 29.48
newblued| 874 | 47.05 1.33 849 |.44.73 1.68 617 | 46.59 | 1.54 0 44.77 | 20.23
newblue5| 3009 | 84.51 | 2.25 2766 | 80.16 |3:52 2137 ["83.79 | 3.23 0 80.30 | 77.93
newblue6| 3453 | 74.66 | 1.76 3280 | 71.01 | 2.39 2736 | 73.83 | 2.19 0 71.12 | 33.27
newblue7| 10286 | 166.01 | 5.10 8628 | 157.21 | 6.47 5844 | 164.52| 5.93 0 157.50 | 354.41
bigbluel | 1841 | 18.73 | 0.64 1459 | 17.60 | 0.93 1423 [18.57 | 0.85 0 17.65 | 19.71
bigblue2 | 392 42.11 0.87 389 4032 | 1.24 264 | 41.72 | 1.13 0 40.34 | 16.25
bigblue3 | 3576 | 52.43 1.51 3631 | 50.55 | 2.49 2692 | 51.99 | 2.28 0 50.66 | 233.01
bigblue4 | 7676 | 109.14 | 2.78 8627 | 104.69 | 4.32 5230 | 108.28 | 3.96 0 104.93 | 301.91

Sum 43506 41261 29671 21

Ratio 1.049 | 0.036 0.998 | 0.053 1.046 | 0.123 1 1

* AMD Dual Core Opteron Processor 2.2-GHz CPU

Table 6.5 compares the proposed antenna-aware NLA with the other layer assignment works, in which

COLA [27] and NLA focus on the via count minimization but does not consider the antenna effect, and LAVA

121

[32] is an antenna avoidance layer assignment. Each algorithm reads the global routing results produced by
NTHU-Route 2.0, and then re-assigns the layers to every net edge. NLA and antenna-aware NLA perform on
our machine. The routing results of COLA and LAVA are quoted from [32]. Because the performing machines
of COLA and LAVA are different than NLA and antenna-aware NLA, the runtimes of COLA and LAVA are
normalized by the clock rate. The number of overflows is not listed in Table 6.5 since the results of all layer
assignment algorithms have the same number of overflows. Table 6.5 reveals that antenna-aware NLA can
effectively reduce the number of nets with antenna violations (#vn). In 16 benchmarks, antenna-aware NLA
can yield 10 antenna-violation-free results while the other works yield no antenna-violation-free result. As for
the total number of antenna violations in all benchmarks, antenna-aware NLA, COLA, NLA and LAVA yield
21, 43506, 41261 and 29671 antenna violations, respectively. In.addition, the via count of antenna-aware NLA

is less than COLA and LAVA by 4.9% and 4.6%, respectively.

6.6 Summary

The proposed Post3DGR consists of NLA stage and the post 3D routing stage. Given a 3D global
routing result, Post3DGR coordinates these two stage to-reduce the wvia count, wirelength and
congestion of the 3D result. Particularly, NLA can overcome the available resource problem, and the
later assigned nets can legally compete with the early assigned nets for their desired routing resource to
obtain better results. Experiments show that NCTU-GR 2.0 with Post3DGR identifies the best routing

results on ISPD benchmarks with much less time than GRIP.

122

Chapter 7 Conclusions and Future Works

7.1 Conclusions

This dissertation presents a routability-driven placement and routing (P&R) flow based on the
proposed global routing engines. In the different stages of P&R flow, global routing engines play
different roles to guide the flow. At first, we develop a fast global-routing-based RCE tool called Grace
that can cooperates with placers to improve the routability of placement solutions. Grace invokes
unilateral monotonic routing and HUM routing to replace time-consuming maze routing, and adopts a
congestion-aware bounding box expansion method to-efficiently get a global routing result. Moreover,
to fulfill industrial demands, we enhance Grace to consider local congestion, scenic controlling, layer
directive constraint and target congestion ratio. The enhanced Grace is practically used in the industrial
flow.

Grace can generate a congestion map and then guide placers to improve the routability of placement
solutions, but the congestion map changes as cells are moved by subsequent placement operations,
lowering the accuracy of congestion estimation and then the routability of a placement. To eliminate this
mismatch, we develop a routability optimizer Ropt that takes a placement solution and optimizes its
routability by incremental place-and-route. The innovations of Ropt include local-routability-aware
global routing model, routing-cost-driven global re-placement, legalization with global routing
preserved, and local detailed placement.

Given a placement solution, NCTU-GR 2.0 adopts the proposed bounded-length maze routing
algorithms, RSMT-aware routing scheme, and dynamically adjusted history cost function to better the
usage of routing resource and thus obtain a high-quality 3D global routing result. Then, Post3DGR
further optimizes the 3D global routing result to reduce its wirelength, via count and congestion. Also,
Post3DGR can be extended to consider the manufacturing issues such as antenna effect, which can ease

the runtime and efforts of downstream detailed routers.

123

7.2 Future Works

As the design complexity continues to increase, the demands to bridge the gap between placement
and routing grow rapidly. To complete the routability- and performance-aware placement and routing
flow presented in this dissertation (Fig. 1.2), a routability-aware placer based on the proposed global
routing engine is compulsory. Also, I want to learn more about detailed routing in industry, and then try
to make contributions to the development of next-generation detailed routers. Although it is very
difficult, my ultimate target is to develop a commercial router and then present a highly-unified
place-and-route tool.

In Chapter 3, even when pin density and blockage effect are formulated into global routing model,
global-routing-based RCE is still not accurate enough in predicting detailed routability. To more
precisely estimate detailed routability, the development of a track-routing-based RCE to cooperate with
global-routing-based RCE becomes compulsory. Using global-routing-based and track-routing-based
RCE:s together can get both global and local congestion information for estimating detailed routability.
Moreover, I plan to embed the utility of track routing into NCTU-GR 2.0 such that NCTU-GR 2.0 can

plan global routing path and routing tracks for each net simultaneously.

124

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Bibliography

ISPDO7 contest: http://archive.sigda.org/ispd2007/contest.html

ISPDOS8 contest: http://archive.sigda.org/ispd2008/contests/ispd08rc.html

J. A. Roy and 1. L. Markov, “High-performance routing at the nanometer scale,” IEEE TCAD,
27(6), pp- 1066-1077, 2008.

T.-H. Wu et al, “GRIP: scalable 3-D global routing using integer programming,” /IEEE TCAD,
30(1), pp. 72-84, 2011.

T.-H. Wu et al, “A parallel integer programming approach to global routing,” in Proc. DAC,
pp- 194-199, 2010.

Y. Xu and C. Chu, “MGR: multi-level global router,” in Proc. ICCAD, 2011.
J. Hu et al, “Completing high-quality global routes,” in Proc. ISPD, 2010.

M. Moftitt, “MAIZEROUTER: engineering an effective global router,” IEEE TCAD, 27(11),
pp. 2017-2026,2008.

M. Cho et al, “BoxRouter 2.0: architecture and implementation of a hybrid and robust global
router,” in Proc. ICCAD, 2007.

M. M. Ozdal and M. D.E. Wong, “ARCHER:-a history-driven global routing algorithm,” in
Proc. ICCAD, 2007.

Y.-J. Chang et al, “NTHU-Route 2.0: a roubust global router for modern design,” IEEE TCAD,
29(12), pp. 1931-1944, 2010.

H.-Y. Chen et al. “High-performance global routing with fast overflow reduction.” in Proc.
ASP-DAC, 20009.

M. Pan and C. Chu, “FastRoute : a step to integrate global routing into placement,” in Proc.
ICCAD, 2006.

M. Pan and C. Chu, “FastRoute 2.0: a high-quality and efficient global router,” in Proc.
ASP-DAC, 2007.

125

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Y. Zhang et al, “FastRoute3.0: a fast and high quality global router based on virtual capacity,”
in Proc. ICCAD, 2008.

Y. Xu et al, “FastRoute 4.0: global router with efficient via minimization,” in Proc. ASP-DAC,
2009.

K.-R. Dai et al, “NCTU-GR: efficient simulated evolution-based rerouting and
congestion-relaxed layer assignment on 3-D global routing,” /IEEE TVLSI, 20(3), pp. 459-472,
2012.

W.-H. Liu et al, “Multi-threaded collision-aware global routing with bounded-length maze
routing,” in Proc. DAC, 2010.

Y. Han et al, “Exploring high throughput.-computing paradigm for global routing,” in Proc.
ICCAD, 2011.

W.-H. Liu et al, “High-quality global routing for multiple dynamic supply voltage designs,” in
Proc. ICCAD, 2011.

W.-H. Liu et al, “A fast maze-free routing congestion estimator with hybrid unilateral

monotonic routing,” in Proc. ICCAD, 2012.

L. McMurchie and C. Ebeling, “Pathfinder : a negotiation-based performance-driven router for

FPGAs,” in Proc. ACM Int’l Symp on Field-Programmable Gate Arrays, 1995.

C. Chu and Y.-C. Wong, “FLUTE.: fast lookup table based rectilinear steiner minimal tree
algorithm for VLSI design,” /IEEE TCAD, 27(1), pp. 70-83, 2008.

M. Garey and D. Johnson, “Computers and intractability: a guide to the theory of
NP-completeness,” New York: W.H. Freeman and Co., 1979.

H. C. Joksch, “The shortest route problem with constraints,” Journal of Mathematical Analysis

and Applications, vol. 14, pp. 191-197, 1966.

S. Chen et al, “Two techniques for fast computation of constrained shortest paths,” IEEE/ACM
Trans. on Networking, 16(1), 2008.

T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment for via minimization in
global routing,” IEEE TCAD, 27(9), pp. 1643-1656, 2008.

126

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

W.-H. Liu, and Y.-L. Li, “Negotiation-based layer assignment for via count and via overflow

minimization,” in Proc. ASP-DAC, 2011.

T.-H. Lee and T.-C. Wang, “Robust layer assignment for via optimization in multi-layer global

routing,” in Proc. ISPD, 2009.
J. Sun et al, “Post-routing layer assignment for double patterning,” in Proc. ASP-DAC, 2013.
Z. Liet al, “Fast interconnect synthesis with layer assignment”, in Proc. ISPD, 2008.

T.-H. Lee and T.-C. Wang, “Simultaneous antenna avoidance and via optimization in layer

assignment of multi-layer global routing,” in Proc. ICCAD, 2010.

W.-H. Liu and Y.-L. Li, “Optimizing antenna area and separators in layer assignment of

multi-layer global routing,” in Proc. ISPD, 2012.

N. J. Naclerio et al, “The via minimization problem is NP-complete,” IEEE Trans. Computers,
38(1), pp. 16041608, 1989.

J. Lou et al, “Estimating routing congestion using probabilistic analysis,” IEEE TCAD, 21(1),
pp. 32-41, 2002.

J. Westra et al, “Probabilistic congestion prediction,” in Proc. ISPD, 2004.

H. Shojaei et al, “Congestion analysis for global routing via integer programming,” in Proc.
ICCAD, 2011.

X. He et al, “Ripple: an effective routability-driven placer by iterative cell movement,” in Proc.
ICCAD, 2011.

M.-K. Hsu et al, “Routability-driven analytical placement for mixed-size circuit designs,” in
Proc. ICCAD, 2011.

K. Tsota et al, “Guiding global placement with wire density,” in Proc. [CCAD, 2008.

J. A. Roy et al, “Seeing the forest and the trees: Steiner wirelength optimization in placement,”
IEEE TCAD, 26(4), pp. 632—644, 2007.

M.-C. Kim et al, “A SimPLR method for routability-driven placement,” in Proc. ICCAD,
2011.

127

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

M. Pan and C. Chu, “IPR: an integrated placement and routing algorithm,” in Proc. DAC,
2007.

J. Roy et al, “CRISP: congestion reduction by iterated spreading during placement,” in Proc.
ICCAD, 2009.

K.-R. Dai et al, “GRPlacer: improving routability and wire-length of global routing with
circuit replacement,” in Proc. ICCAD, 2009.

N. Viswanathan et al, “The ISPD-2011 routability-driven placement contest and benchmark
Suite,” in Proc. ISPD, 2011.

N. Viswanathan et al, “The DAC 2012 routability-driven placement contest and benchmark
suite,” in Proc. DAC, 2012.

N. Viswanathan et al, “ICCAD-2012 CAD contest in design hierarchy aware
routability-driven placement and benchmark suite,” in Proc. ICCAD, 2012.

M. D. Moffitt, “Global routing revisited,” in Proc. ICCAD, 2009.

Y.-J. Chang et al, “GLADE: a modern global router considering layer directives,” in Proc.
ICCAD, 2010.

T.-H. Lee et al, “An enhanced global router with consideration of general layer directives,” in

Proc. ISPD, 2011.

M. D. Moffitt and C. N. Sze, ‘““Wire synthesizable global routing for timing closure,” in Proc.
ASP-DAC, 2011.

Y. Wei et al, “GLARE: global and local wiring aware routability evaluation,” in Proc. DAC,
2012.

Y. Wei et al, “CATALYST: planning layer directives for effective design closure,” in Proc.
DATE, 2013.

Hai Zhou et al, “Efficient minimum spanning tree construction without Delaunay

triangulation,” Information Processing Letter, 2002.

T. Taghavi et al, “New placement prediction and mitigation techniques for local routing
congestion,” in Proc. ICCAD, 2010.

128

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

J. Cong et al, “Optimizing routability in large-scale mixed-size placement,” in Proc. ASP-DAC,

2013.

Y. Zhang and C. Chu, “Fast and effective congestion refinement of placement,” in Proc.
ICCAD, 2009.

http://www.cadence.com/products/di/soc_encounter/

P. Spindler et al, “Abacus: fast legalization of standard cell circuits with minimal movement,”
in Proc. ISPD, 2008.

Y.-M. Lee et al, “A hierarchical bin-based legalizer for standard-cell designs with minimal
disturbance,” in Proc. ASP-DAC, 2010.

A. Agnihotri et al, “Fractional cut: improved recusive bisecction placement,” in Proc. ICCAD,

2003.

http://archive.sigda.org/dac2012/contest/dac2012 contest.html

W.-H. Liu et al, “Case study for placement solutions in ISPD11 and DACI12 routablity-driven
placement contests,” in Proc. ISPD, 2013.

W.-H. Liu et al, “Globally routing multiple dynamic supply voltage designs,” in Proc. VLSI
Design/CAD Symposium, 2011.

Y.-H. Lin et al, “Topology-aware buffer insertion and GPU-based massively parallel rerouting
for ECO timing optimization,” in Proc. ASP-DAC, 2012.

W.-H. Liu et al, “Minimizing clock latency range in robust clock tree synthesis,” in Proc.
ASP-DAC, 2010.

L.-C. Chou et al, “ECO timing optimization with elmore delay model,” in Proc. ITC-CSCC,
2011.

J.-R. Gao et al, “A new global router for modern designs,” in Proc. ASP-DAC, 2008.

M. Cho and D. Z. Pan, “Boxrouter: A new global router based on box expansion and
progressive ILP,” IEEE TCAD, 26(12), pp. 2130-2143, 2007.

W.-H. Liu et al, “NCTU-GR 2.0: Multi-Threaded Collision-Aware Global Routing with

Bounded-Length Maze Routing,” IEEE TCAD, accept.
129

