

國立交通大學資訊學院資訊科學與工程研究所

博士論文

Graduate Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

Doctoral Dissertation

用於擺置繞線流程的可繞度和效能最佳化技術

Optimizing Routability and Performance of Placement and

Routing Flow for Nanometer Designs

劉文皓

Wen-Hao Liu

指導教授:李毅郎 博士

Advisor: Yih-Lang Li, Ph.D.

中華民國一百零二年一月

January, 2013

i

摘要

近年來，隨著奈米技術的進步，晶片中的元件越來越多，同時繞線的

難度也越來越高。晶片的可繞性(Routability)成為眾人所觀注的議題。在

該議題上，全域繞線(Global Routing)扮演著重要的角色。在電路實體設

計(Physical Design)的流程中，全域繞線上承元件擺放(Placement)，下

啟細部繞線(Detailed Routing)。一個快速的全域繞線器能提供擁擠度

(Congestion)的資訊給擺放器，讓擺放器擺出較容易繞線的布局。此外，

若全域繞線器能有效的解決繞線擁擠度的問題，細部繞線的負擔和所需

時間可以大幅降低。當全域繞線器和擺放器合作時，全域繞線器如何快

速且準確的回報擁擠度資訊給擺放器是一個重要的議題。另一方面，當

全域繞線器扮演細部繞線器的指導者角色時，全域繞線結果的品質就顯

的格外重要。若細部繞線器能根據一個高品質的全域繞線結果進行細部

繞線，將會提升細部繞線結果的品質，並大縮短細部繞線的時間。這篇

論文提出了兩個全域繞線器: Grace是個快速的全域繞線器，適合擔任擁

擠度預估器; NCTU-GR 2.0能產生高品質的繞線結果來指導細部繞線，

其繞線結果較不擁擠且有較短的線長。此外，為了將Grace應用於業界，

我們增加了許多功能於Grace中來滿足業界的需求。在擺放和繞線的中間

階段，我們結合了擺放器和全域繞線器，提出了一個可繞性優化器

(Routability Optimizer)。若給予一個布局結果，該優化器可以重新擺放

其中的元件，讓該布局更容易被繞線，進而得到更好的繞線結果。最終，

在進行細部繞線前，我們還提出了一個三維繞線改善器，將全域繞線的

結果在做進一步的改善，此舉可以更進一步的降低細部繞線器的時間和

負擔。

ii

Abstract
Routability has become one of most critical issues to successfully achieve design closure.

To address this issue, global routing plays an important role in the placement and routing

flow. During the placement stage, a fast global router can serve as a routing congestion

estimator to guide that placers improve the routability of placement solutions; however,

traditional global routers are too slow to offer quick but accurate congestion estimation. In

the routing stage, the duty of a global router is to identify a global routing result to guide

downstream detailed routers. The runtime of the detailed router can significantly reduce if

the global routing result has well optimized congestion and wirelength.

In this dissertation, two global routing engines are proposed, Grace and NCTU-GR 2.0.

Grace is a fast global router to serve as a fast routing congestion estimator, adopts the

proposed unilateral monotonic routing and hybrid unilateral monotonic routing to replace

time-consuming maze routing in its routing flow, and invokes a congestion-aware bounding

box expansion scheme to avoid over-expanding the searching regions to achieve high

speedup. Moreover, in order to use Grace in the industrial flow, Grace have been enhanced

to tackle the layer directive and scenic constraints for considering the timing issue.

Another proposed global router NCTU-GR 2.0 can generate high-quality global routing

results to guide the downstream detailed router. The proposed bounded-length maze

routing avoids producing redundant detours to save routing resource; rectilinear Steiner

minimum tree aware routing scheme can guide NCTU-GR 2.0 to build a routing tree for

each multi-pin net with shorter wirelength; a dynamically adjusted history cost function

highlights for NCTU-GR 2.0 which grid edges are critical routing resource that can be more

carefully allocated to the nets that really desire. Based on the proposed innovations to

carefully utilize routing resource, NCTU-GR 2.0 obtains shorter total wirelength and lower

congestion than the other state-of-the-art academic global routers.

iii

In addition, between the placement and routing stages, this dissertation presents an

incremental place-and-route tool called Ropt to optimize the routability of a given

placement solution. Rather than minimizing HPWL, Ropt directly improves routability by

minimizing the routing cost of nets, as the routing cost is defined in terms of global

congestion, local congestion and wirelength. In addition to using NCTU-GR 2.0 to evaluate

the routability of the placement solutions, this work also uses Wroute to obtain detailed

routing results of the optimized placement solutions for the evaluation of real routability.

Finally, the proposed post-3D-global-router called Post3DGR further refines the

wirelength, congestion, and via count of a given 3D global routing result. Post3DGR consists

of the 3D post routing stage and negotiation-based layer assignment stage. The 3D post

routing stage adopts an inherited history cost function to guide the routing, which can

greedily reduce total wirelength and vias. The negotiation-based layer assignment stage

re-assigns the routing layer for each wire to reduce via count. The negotiation-based layer

assignment can be extended to consider via overflow and antenna effect. Considering these

issues before detailed routing can ease the effort and runtime of subsequent detailed

routing.

iv

誌謝

能順利的完成這份論文，我最先要感謝的是我的父母-劉修添先生和

蘇素華女士。謝謝你們的支持，讓我能無後顧之憂的做自己喜歡的研究。

你們的身教和言教，是我能順利完成博士學位的最大原因。謝謝你們。

我希望將這份論文獻給我最親愛的父親和母親。

在我博士生涯中，謝謝李毅郎老師的細心且耐心的指導。我何等幸

運，因為經師多有，人師難得。謝謝你教導我做研究的方法和待人處事

的道理。這四年在你的教導下，我覺得我在很多方面都有大幅的進步，

特別是論文撰寫方面。四年前，我連一句文法正確的英文句子都寫不出

現。往往整篇論文都要經過你的大幅翻修，才能讓人讀懂。謝謝你花許

多精力批改我的論文和教導我如何寫論文。因為你的教導，這篇博士論

文才能順利完成。

謝謝Cheng-Kok Koh教授給我到普渡大學進行千里馬的機會。我在普

渡大學的這段時間，謝謝你關心我的生活，並跟我分享你的人生經驗。

在我們討論研究進度時，謝謝你能忍受我的破爛英文，並且不時的幫我

正音。我從你身上學到了有別以往的研究方法，並且更開擴了我的國際

觀。我相當感激並且慶幸能受到你的指導。當我在美國的期間，謝謝Cliff

Sze博士給我到IBM Austin Lab進行短期研究的機會。IBM Austin Lab一

直是我心中所響往的一流研究機構，在這裡，我很慶幸能和許多知名的

研究者共事。我在IBM的期間，學到了業界解決問題的方法，並且讓我

的英文的溝通能力大有進步。

一路走來，我要感謝的人實在是太多了。謝謝國小時的林蘭春老師，

國中時的張澄仁老師，高中時的徐英珠老師和黃玉慧老師。你們總是在

v

我做錯事時包容我、糾正我;在我意志消沉時鼓勵我、鞭策我。沒有你們

的教誨，就沒有今日的我。在我就讀博士期間，謝謝王廷基教授和張耀

文教授對我的照顧和經驗分享。我要特別感謝王廷基教授，我在研究上

遇到困難時，王廷基教授經常對我伸出援手。我還要感謝我的姑姑-劉虹

君女士，謝謝妳對我的照顧和愛護，妳在我的成長過程中扮演著十分重

要的角色。最後我要感謝我的女朋友-林珈竹，謝謝妳陪伴我走過研究所

的求學生涯，謝謝妳在我研究受挫時鼓勵我、聽我訴苦。有妳相伴的時

光，讓我的生活不再只是程式碼和論文，妳讓我的研究所生涯多了許多

美好的回憶。謝謝妳，我愛妳。

vi

Table of Contents

Chapter 1 Introduction..1
1.1 Overveiw of this Dissertation ..1
1.2 Background...4

1.2.1 Building Grid Graph and the Objectives of Global Routing......................................5
1.2.2 Net Decomposition ..6
1.2.3 Pattern Routing and Monotonic Routing ..7
1.2.4 Negotiation-based Rip-up and Rerouting (NRR)..7
1.2.5 Layer Assignment...8
1.2.6 Comparison of Recent Global Routers ..9

Chapter 2 Grace: A Fast Global-routng-based Routing Congestion Estimator10
2.1 Introduction..10
2.2 Problem Description ...11
2.3 The Proposed Algorithms for Accelerating Routing..12

2.3.1 Unilateral Monotonic Routing ..13
2.3.2 Hybrid Unilateral Monotonic Routing...17
2.3.3 Congestion-aware Bounding Box Expansion...20

2.4 Design Flow of Grace...22
2.5 Experimental Results...23

2.5.1 Comparison between NCTU-GR 2.0 and Grace...24
2.5.2 Effectiveness of the Proposed Algorithms ..27

2.6 Summary ..28

Chapter 3 E-Grace: Enhancing Grace for Practically Industrial Designs29
3.1 Introduction..29
3.2 Preliminaries ...32

3.2.1 Problem Description ..32
3.2.2 Congestion Evaluation Metrics ...33
3.2.3 Previous Works ..33

3.3 Design Flow of E-Grace..34
3.3.1 Relaxation-Legalization Scenic Controlling Method ..36
3.3.2 TCR-driven R&R Scheme ..40
3.3.3 Throughput Controlling..42

3.4 Experimental Results...43
3.4.1 Compare E-Grace with other industrial RCE tools...43
3.4.2 Effectiveness of each Innovation in E-Grace ...45

3.5 Summary ..50

vii

Chapter 4 Ropt: Optimization of Placement Solutions for Routability51
4.1 Introduction..51
4.2 Problem Description ...53
4.3 Case Study for Placement Solutions in DAC Contest ..54

4.3.1 Framework for Performing Detailed Routing ..55
4.3.2 Mismatch between Global and Detailed Routability...56
4.3.3 What Causes Routing Violations ..58

4.4 Proposed Routability Optmizer ...60
4.4.1 Local-Routability-Aware Global Routing Model ..60
4.4.2 Routing-cost-driven Global Re-Placement ..63
4.4.3 Legalization with Global Routing Preserved..66
4.4.4 Local Detailed Placement...67

4.5 Experimental Results...68
4.5.1 Global Routability: Evaluation by NCTU-GR 2.0 ..69
4.5.2 Effective Routability: Evaluation by Wroute..71
4.5.3 Comparison between Abacus and Our Legalizer...75

4.6 Summary ..76

Chapter 5 NCTU-GR 2.0: Global Routing with Bounded-Length Maze Routing78
5.1 Introduction..78
5.2 Problem Description ...80
5.3 Proposed Approaches to Improve Routing Quality ..81

5.3.1 BLMR ...81
5.3.2 RSMT-Aware Routing Scheme ..88
5.3.3 Dynamically Adjusted History Cost Function ..90

5.4 Design Flow of NCTU-GR 2.0 ...91
5.5 Experimental Results...94

5.5.1 Comparing Traditional Maze Routings with BLMR ..94
5.5.2 The Effectiveness of RSMT-aware Routing ..96
5.5.3 Comparison of Optimal-BLMR and Heuristic-BLMR ..96
5.5.4 Routing Result Comparison of Sequential Routers..97

5.6 Summary ..100

Chapter 6 Post3DGR: Post Optimization of 3D Global Routing Results101
6.1 Introduction..101
6.2 Problem Description ...104
6.3 Design Flow of Post3DGR ..104
6.4 Negotiation-based Layer Assignment (NLA)...107

6.4.1 Algorithm Flow of NLA...108

viii

6.4.2 MCSNLA: Minimum-cost Single Net Layer Assignment.......................................109
6.4.3 Congestion Cost Formulations..115

6.5 Experimental Results...117
6.5.1 Effectiveness of NLA...118
6.5.2 Effctiveness of Post3DGR ...119
6.5.3 Consideration of Antenna Effect...121

6.6 Summary ..122

Chapter 7 Conclusions and Future Works ...123
7.1 Conclusions...123
7.2 Future Works ..124

Bibliography ..125

ix

List of Figures
Fig. 1.1 (a) A placement solution; (b) a global routing result; (c) a detailed routing result of

a design. .. 1

Fig. 1.2 Routability-driven placement and routing (P&R) flow... 2

Fig. 1.3 (a) partition a placement into a 3D array of G-cells; (b) model the 3D array of
G-cells into a grid graph; (c) typical global routing flow.. 5

Fig. 1.4. modern 3D global routing flow.. 6

Fig. 1.5. Four-pin net decomposition... 7

Fig. 2.1. (a) Vertically monotonic routing path; (b) horizontally monotonic routing path; (c)
routing path combining vertically and horizontally monotonic routing. 12

Fig. 2.2. Example of VM routing... 14

Fig. 2.3. The proposed vertically monotonic routing algorithm.. 15

Fig. 2.4. The pseudo code of hybrid unilateral monotonic routing algorithm 17

Fig. 2.5. Four path types in B with congested regions .. 18

Fig. 2.6. (a) Routing result of 3-bend routing with two overflows; (b) routing result of
escaping routing with an overflow; (c) routing result of the proposed HUM
routing without overflows. .. 19

Fig. 2.7. Example of congestion-aware bounding box expansion... 20

Fig. 2.8. Design flow of Grace .. 22

Fig. 2.9. Overflow converge curves of Grace and NCTU-GR 2.0 .. 25

Fig. 2.10. Congestion maps of s4_Ripple generated by (a) NCTU-GR 2.0 and (b) Grace 27

Fig. 3.1. Congestion maps obtained by different RCEs.. 30

Fig. 3.2. Design flow of E-Grace... 34

Fig. 3.3. (a) the initial routing result of a net; (b) a segment exhausts all detour quotas,
resulting another segment has no detour quotas to bypass congestion regions; (c)
the routing result of the proposed R&R stage; (d) the routing result after the
scenic legalization stage .. 36

Fig. 3.4. The routing result obtained by (a) the R&R stage; (b) the first iteration of the soft
legalization phase; (c) the second iteration of the soft legalization phase 39

Fig. 3.5. Curve of cc(e) in Eq. (3.5) ... 41

Fig. 3.6. Congestions maps of Ind4 obtained by (a) CAind, (b) EGall, (c) GRind........................... 45

Fig. 3.7. Routing results of Ind11. (a) Minimizing overflows; (b) minimizing congestion
ratio to approach 80%; (c) color scheme.. 48

x

Fig. 3.8. Routing results of Ind11 (a) without extra blockages; (b) with 2% extra blockages;
(c) with 5% extra blockages .. 50

Fig. 4.1. Placement solutions of s19 obtained by (a) Ripple; (b) mPL; (c) SimPLR; (d)
NTUplace.. 58

Fig. 4.2. The local views of the most congested region in the placement solution of (a)
mPL; (b) Ripple; (c) NTUplace ... 59

Fig. 4.3. Design flow of the proposed routability optimizer Ropt... 60

Fig. 4.4. Pseudo code of the algorithm for FOPG problem .. 64

Fig. 4.5. An example of the proposed heuristic algorithm for FOPG problem............................ 65

Fig. 4.6. Pseudo code of local detailed placement.. 67

Fig. 5.1. (a) Maze routing within a bounding box; (b) maze routing without bounding box. 80

Fig. 5.2. (a) The search region of the net while L is set to 9; (b) two path candidates P1 and
P2 from s to v; (c) ewk(v, t) denotes estimating wirelength from v to t in iteration k 83

Fig. 5.3. Relationship between the routing iteration number and the scaling factor 87

Fig. 5.4. Example of RSMT-aware routing scheme.. 89

Fig. 5.5. Design flow of NCTU-GR 2.0... 92

Fig. 6.1. Gap of the recognition of good results between 2D routing with layer assignment
and 3D routing .. 102

Fig. 6.2. MGR flow... 103

Fig. 6.3. (a) Design flow of Post3DGR. (b) Design flow of NLA .. 104

Fig. 6.4. Example of the quality improvement in Post3DGR ... 105

Fig. 6.5. The comparison between existing layer assignments and NLA.................................... 107

Fig. 6.6. An example of single net layer assignment .. 109

Fig. 6.7. The pseudo code of MCSNLA .. 111

Fig. 6.8. Procedure InitSol of MCSNLA ... 112

Fig. 6.9. Procedure EnumSol of MCSNLA.. 112

Fig. 6.10. An example for constructing a 3D tree ti,3.. 113

Fig. 6.11. An example of EnumSol ... 113

Fig. 6.12 The overflow reduction stage of NLA resolves overflow (OF) of adaptec2 at the
cost of increasing vias ... 116

xi

List of Tables
Table 1.1 Recent global routing researches .. 9

Table 1.2 The issues disccused in recent global routing researches... 9

Table 2.1 Comparison total overflows between NCTU-GR 2.0 and Grace in a given time
budget. ... 24

Table 2.2 Comparison the routing results between NCTU-GR 2.0 and Grace without time
limitation.. 26

Table 2.3 The usage of the proposed unilateral monotonic routing and HUM routing
algorithms .. 27

Table 2.4 Comparison between congestion-aware box expansion scheme and tradtional
scheme ... 28

Table 3.1 Design Information .. 43

Table 3.2 Routing results comparison between E-Grace, industrial congestion analyzer
and real router .. 44

Table 3.3 Design Information .. 45

Table 3.4 Different versions of E-Grace... 46

Table 3.5 Effectiveness of using relaxation-legalization method to handle the Scenic
Constraint... 46

Table 3.6 Route Ind11 with different objectives ... 47

Table 3.7 Effectiveness of using throughput controlling method to trade off runtime and
routing quality.. 49

Table 3.8 Route Ind11 with extra blockages... 49

Table 4.1 Comparing the placement solutions in DAC12 contest based on the DAC12
metric, violations and TLMW... 57

Table 4.2 Benchmarks' information.. 68

Table 4.3 Ropt with different features .. 69

Table 4.4 Global routing result comparison between NTUplace, Ropt1, Ropt2 and Ropt3 70

Table 4.5 Detailed routing results of NTUplace ... 71

Table 4.6 Detailed routing result comparison between NTUplace, Ropt3, Ropt4, Ropt5 and
Ropt6.. 72

Table 4.7 Comparing Detailed routing results of mPL and Ropt6.. 74

Table 4.8 Comparing Detailed routing results of Ripple and Ropt6... 74

xii

Table 4.9 Comparing Detailed routing results of SimPLR and Ropt6.. 75

Table 4.10 Comparison between the detailed routing results of the placement solutions in
DAC12 contest... 75

Table 4.11 Comparison between Abacus and our legalizer ... 76

Table 5.1 Main features of modern global routers .. 79

Table 5.2 Net ordering methods comparision ... 93

Table 5.3 Routing result comparison between maze routing w/ and w/o bounding box and
bounded-length maze routing ... 95

Table 5.4 Comparison of the routing result of H-BLMR-GR with and without
RSMT-aware routing scheme ... 96

Table 5.5 Comparision of the routing result of global routers with heuristic-BLMR,
Optimal-BLMR and [27] .. 97

Table 5.6 Comparison between NCTU-GR 2.0 and the other routers on overflow-free
cases... 99

Table 5.7 Comparison between NCTU-GR 2.0 and the other routers on hard-to-route
benchmarks .. 99

Table 6.1 Comparing NLA with previous layer assignment works on via count
minimization problem .. 117

Table 6.2 The quality variations of NLA and [17] with different assignment ordering
sequences ... 118

Table 6.3 The wirelength improvement and runtime of Post3DGR .. 119

Table 6.4 Comparing NCTU-3D-GR 2.0 with other 3D routers.. 120

Table 6.5 Comparing antenna-aware NLA with other layer assignment algorithms 121

1

Chapter 1 Introduction

1.1 Overveiw of this Dissertation
With ceaseless advances in semiconductor technology shrinkage, the main contributing factors to the

increasingly more challenging routing problem include the high number of metal layers, wide range of

metal thickness, and complex design rules, thus routability has become a critical issue in VLSI physical

design flow. To address the routability issue, global routing plays an important role since global routing

bridges the gap between placement and detailed routing. In traditional physical design flow, the global

routing stage follows the placement stage to yield a rough routing result for most nets, and then the

detailed routing stage based on the rough routing result completes physical routes for every net and

finally realizes a detailed routing result. For example, Figs. 1.1(a), (b) and (c) respectively show a

placement solution, a global routing result and a detailed routing result for a design, in which the gray

rectangles denote macros, the small rectangles denote cells, and red circles denote pins of a net. Figure

1.1 illustrates that global routing identifies a set of routing regions that the net should pass through, and

detailed routing finds a physical routing path in these regions.

In this dissertation, a routability-driven placement and routing (P&R) flow (Fig. 1.2) is presented

based on the proposed global routing engines and post-placement routability optimizer. The proposed

global routing engines can not only cooperate with placers to obtain better routability placement

Fig. 1.1 (a) A placement solution; (b) a global routing result; (c) a detailed routing result of a design.
(a) (b) (c)

2

solutions, but can also yield high-quality global routing results so that detailed routers can apply the

global routing results to generate good detailed routing results. Compared to the traditional placement

and routing flow, the flow shown in Fig. 1.2 pays more attention to the interaction between placement

and routing and optimizes the main factors to influence routability such like global congestion, local

congestion, wirelength and via count, which can detect and fix the congestion problems in the early

stages and thus contributes to faster design closure. The red boxes in Fig. 1.2 highlight the contributions

of this dissertation to deal with routability issue, introduced in the following four paragraphs.

To avoid wasting time on routing unroutable designs, a routing congestion estimator (RCE) can help

designers to fast judge whether a design is routable in the early stages to speed up the design closure.

Also, a RCE can cooperate with placers to optimize routability. Thus, this dissertation presents a

global-routing-based RCE cooperating with placers to improve routability. The proposed

global-routing-based RCE can offer more accurate routing congestion estimation than

probabilistic-based RCE [35, 36] since global-routing-based RCE can better capture the actual routing

behaviors. However, global-routing-based RCE is typically slower than probabilistic-based RCEs.

Because a RCE may be frequently launched in the placement stage, the placement stage would slow

down if the launched RCE is not fast enough. Accordingly, the objective of a global-routing-based RCE

is to identify an accurate congestion map as fast as possible. This dissertation presents an accurate and

fast global-routing-based RCE called Grace. In addition to testing Grace on academic benchmarks, we

Fig. 1.2 Routability-driven placement and routing (P&R) flow.

3

also enhance Grace to fulfill industrial requirements and then apply the enhanced Grace in the industrial

design flow.

In the flow of Fig.1.2, RCE reports the congestion information of a placement solution to placers,

and then placers can move cells based on the congestion map to improve the placement solution's

routability. However, as cells move, the congestion map also changes, thereby degrading the

effectiveness to improve the routability of a placement. To resolve this problem, we develop a

routability optimizer Ropt that takes a placement solution and optimizes its routability by incremental

place-and-route. Ropt always maintains a global routing instance based on the current placement

solution. The global routing instance is built on a local-routability-aware model. Therefore, the global

routing instance provides both global and local congestion information to guide the placement

algorithms. Also, the placement algorithms in Ropt invoke a global routing engine to decide the placed

locations for movable cells.

After a placement solution is optimized by Ropt, the proposed global router NCTU-GR 2.0 is used

to identify a high-quality global routing result of the placement solution to provide a good blueprint for

detailed routing. Generally, the runtime of the detailed routing stage is hundred or thousand times of

that of the global routing stage. Good global routing results can diminish the time of detailed routing

and promote the final interconnection quality significantly. Because the routing quality of a global

routing result can be measured by the total overflow and total wirelength, minimizing overflows and

wirelength is the major task for global routing researches [3-21], where overflow means that a region's

routing demand exceeds its routing capacity. Compared to other state-of-the-art global routers [6, 11, 16,

17], the proposed NCTU-GR 2.0 can get global routing results with fewer overflows and shorter

wirelength. Note that, although Grace can be treated as a light global router, the algorithms used in

Grace and NCTU-GR 2.0 are largely different since their purposes are different. Chapter 5 will detail

the algorithmic differences between designing a global-routing-based RCE and a global router.

With semiconductor technology shrinkage, the number of metal layers ceaselessly increases. Thus,

the problem of planning routing wires on which metal layers becomes more challenging. The layer

4

planning for routing wires impacts the amount of vias, timing, and many manufacturing issues such like

antenna effect and double-vias. However, the typical global routing stage ignores these issues and

leaves these issues to detailed routing, which may make detailed routers struggle for these issues.

Accordingly, we develop a post-3D-global-routing tool Post3DGR between global routing and detailed

routing to refine a given 3D global routing result, which can ease the effort of detailed routers to speed

up the design closure. The proposed Post3DGR can reduce the vias, congestion, and wirelength of a

given 3D global routing result by re-routing nets and re-planning wires' layers. With some modifications,

Post3DGR also can take antenna effect into account.

The rest of this dissertation is organized as follows. Chapter 1 introduces the problem formulation

and background of global routing. Chapter 2 presents a fast global-routing-based RCE called Grace

whose goal is to identify a satisfactory global routing result to predict routing congestion as fast as

possible. Chapter 3 presents an enhanced Grace applied in the industrial flow to consider timing and

local congestion, and target congestion ratio. Chapters 4 introduces the proposed incremental

place-and-route tool Ropt that can optimize the routability of a given placement solution. Chapter 5

presents a global router called NCTU-GR 2.0 whose objective is to obtain high-quality global routing

results in a reasonable runtime to guide detailed routers. A post-3D-global-routing tool Post3DGR is

detailed in Chapter 5. Finally, Chapter 7 draws conclusions.

1.2 Background
In global routing problem, typically the given placement solution is partitioned into a 3-dimension

(3D) array of global cells (Fig. 1.3(a)), and then the array of global cells is modeled to a 3D grid graph

(Fig. 1.3(b)). Generally, there are two strategies to deal with global routing problem on the 3D grid

graph. One directly performs global routing on a 3D grid graph [3-6]. Although directly performing

global routing on a 3D grid graph may achieve a better result, it is time-consuming. Thus, the

mainstream approach is to condense 3D grid graph into 2D grid graph first, and then peform 2D global

routing to obtain a 2D routing result. Finally, layer assignment algorithms [17, 27-33] assign each

5

routing wire to the corresponding metal layers to obtain a 3D global routing result [7-21]. Figure 1.3(c)

shows the general flow adopted in most global routers to tackle 3D global routing porblem, the

functions of each stage are detailed in the follows.

1.2.1 Building Grid Graph and the Objectives of Global Routing
In the grid graph, each grid node refers to a global cell (G-cell), and each grid edge corresponds to a

boundary between two abutting global cells in the same layer. Meanwhile, each via edge connects two

abutting G-cells in two adjacent layers. The number of routing tracks that can be accommodated across

the abutting boundary is defined as the capacity c(e) of a grid edge e, and the number of wires that pass

through grid edge e is called grid edge’s demand d(e). The overflow of a grid edge e is defined

max(d(e)-c(e), 0), the total overflow is the sum of overflows on all grid edges, and the maximum

overflow is the maximum overflow among all edges. For simplicity, the capacity of each via edge is not

limited, which is also adopted in most of global routing researches [3-21]. Given the pins' locations of

each net distributed on the grid graph, the objective of global routing problem is to identify a highly

routable global path to connect the pins of each net. The quality of a global routing result is generally

measured by the total overflow and wirelength.

Figure 1.4 shows how to compute the capacity of 2D grid edges in the mainstream flow of 2D global

Fig. 1.3 (a) partition a placement into a 3D array of G-cells; (b) model the 3D array of G-cells into a
grid graph; (c) typical global routing flow.

(a) (b) (c)

6

routing with layer assignment, in which the numbers next to 3D grid edges denote the capacity of the

3D edges. After the 3D grid graph is compacted to a 2D graph, the capacity of a 2D grid edge is

obtained by adding up the capacities of its corresponding 3D grid edges.

1.2.2 Net Decomposition
Most global routers decompose each multi-pin net into two-pin subnets, because net decomposition

can simplify a multi-terminal routing problem to a two-terminal routing problem. Before routing stages,

the rectilinear Steiner minimal tree (RSMT) or rectilinear minimum spanning tree (RMST) construction

algorithms are commonly used to generate the initial topology for each multi-pin net and then each

multi-pin net is decomposed into two-pin subnets based on its topology. For example, Figs. 1.5(a) and

1.5(b) show the initial topologies of a four-pin net generated by RSMT and RMST, respectively, in

which the green rectangle denotes a Steiner point, and the topologies of the four-pin net in Figs. 1.5(a)

and 1.5(b) can be decomposed to 4 and 3 two-pin subnets, respectively. Because a RSMT has shorter

wire length than a RMST has, net decomposition by RSMT is popular in many literature. FLUTE [23]

is a very fast and accurate RSMT construction tool, which is widely used by many modern global

routers. FLUTE not only quickly constructs a good RSMT for a multi-pin net, but also obtains optimal

RSMTs for nets with nine or fewer pins. However, FGR [3] indicates that the RSMT has less routing

10

0

5 1

0

10

15 11

Fig. 1.4. modern 3D global routing flow.

7

flexibility than the RMST as it owns Steiner points and generates more flat segments than the RMST,

and the used data structure of RSMTs is more complex than that of RMSTs. On the contrary, the RMST

can simply complete each subnet’s routing with pattern routing or monotonic routing to avoid

congestion regions. Consider wirelength and routing flexibility, in which a RMST that encourages

multiple two-pin routings to merge together with multiple paths that pass through the same grid edges

(Fig. 1.5(c)). This ideal solution avoids passing through congested regions by using a shorter total wire

length than that of a RMST that does not encourage finding joint wires. However, how to identify a

RMST with joint wires is a challenge.

1.2.3 Pattern Routing and Monotonic Routing
Pattern routing adopts specific routing patterns to connect two pins. The most common patterns are

L-shaped or Z-shaped. The main advantage of pattern routing is that it can complete the path searching

in a very short time, but its solution space is very tiny. To mitigate the huge performance gap between

pattern routing and maze routing, Pan et al. [14] present monotonic routing to enrich the solution space.

Monotonic routing uses the dynamic-programming technique to identify a routing path from the source

to the target without any detour. The time complexity of monotonic routing in a m  n grid graph is

O(mn), which is the same as that of the Z-shaped pattern routing.

1.2.4 Negotiation-based Rip-up and Rerouting (NRR)
Rip-up and re-routing technique is widely used in global and detailed routing. Given an illegal

Fig. 1.5. Four-pin net decomposition by (a) RSMT; (b) RMST; (c) RMST with a joint wire, subnets
n1 and n2 share a joint wire.

(a) (b) (c)

8

routing solution, rip-up and rerouting technique iteratively removes the nets with violations and reroutes

them sequentially to expel violations. In global routing problem, a violation occurs when an overflow is

produced. Widely, the negotiation technique, as proposed in PathFinder [22], is associated with rip-up

and re-routing technique (NRR) in modern global routers to improve the ability of overflow removal.

The main idea of NRR is to increase the penalty of a grid edge at current iteration that overflowed at the

previous iteration. Thus, path searching intends to avoid passing previously overflowed grid edges. [22]

formulates the negotiation-based routing cost of grid edges e as follows,

 eeee phbc )(, (1.1)

where ce represents the routing cost of e; be denotes the base cost; he denotes the history cost, and pe

denotes the congestion penalty. The history cost he increases as overflow occurs. The value of he in the

(k+1)-th iteration is given by:





 



otherwise

overflowed is if 1
k
e

inc
k
ek

e
h

ehh
h , (1.2)

where 11 eh , hinc is a constant, and k
eh is updated in every iteration. In addition, FGR [3] presents

another formula to preserve the base cost as follows.

 eeee phbc  . (1.3)

Several variations of negotiation-based cost functions have been discussed in [10-12, 16-17].

1.2.5 Layer Assignment
The goal of layer assignment in global routing is to translate a 2D global routing result into a 3D

result on minimizing the number of vias while not changing routing topology or increasing any

overflows, which is called the congestion-constraint layer assignment problem. Congestion-constrained

layer assignment problem for via minimization has been proven to be NP-complete [34] and extensively

studied. BoxRouter2.0 [9] adopted integer linear programming to minimize via count minimization.

FGR [3] greedily assigned net edges to the corresponding metal layers by heuristics. Lee et al. proposed

an efficient sequence layer assignment algorithm called COLA [27], which determined net assignment

9

order at first and then assigning each net to the appropriate layer by a dynamic-programming technique.

FastRoute 4.0 [16] decomposes multi-pin nets to two-pin net, then using the dynamic-programming

algorithm to assign each two-pin net one bye one. Dai et al. [17] presented a congestion-relaxed layer

assignment with a layer shifting algorithm, followed by net rip-up and re-assigning to further reduce the

number of vias. In addition, some researchers extended the layer assignment problem to consider via

overflow [28-29], double patterning [30], timing [31], and antenna effect [32-33].

1.2.6 Comparison of Recent Global Routers
Table 1.1 lists the well-know global routers developed in recent six years. Although most global

routers in Table 1.1 are based on the global routing flow shown in Fig. 1.3(c), they have different

opinions on several issues. Table 1.2 shows the issues that are widely discussed in recent global routing

researches. For instance, the routers in [3, 7, 71] use RMST to be the initial tree topology for each net,

while the routers in [16, 71] use RSMT; NTHU-Route [11] reroutes the nets in the un-congested region

earlier, while the routers in [3, 12, 17] reroutes the nets in the congested region earlier; Box-Router [9,

70] rips-up a set of nets and then reroutes these nets one by one, while the routers in [4, 7, 11, 17] rip-up

a net and then reroute it immediately. On the parallel routing issues, GRIP [4, 5] parallelize global

routing on a cluster computing environment, NCTU-GR [18, 71] performs on a many-core server, the

router in [19] performs on a GPU-CPU hybrid platform.

Net decomposition [3, 7 11, 16, 71] Routing algorithms [6, 8, 10, 12, 14, 16, 71]
Routing nets ordering [3, 11, 12, 17] Layer assignment approaches [3, 9, 16, 17]
Rip-up and rerouting

scheme
[4, 7, 9. 11, 17,

70]
Routing cost formulation [3, 7, 10, 11, 12, 13, 16,

17, 69, 71]
Multi-threaded routing [4, 5, 19, 71]

TABLE 1.2 THE ISSUES DISCCUSED IN RECENT GLOBAL ROUTING RESEARCHES

NTHU-Route [69, 11] FastRoute [13-16] FGR [3, 7] MGR [6]
NTUgr [12] Box-Router 2.0 [70, 9] NCTU-GR [17, 18, 71] Archer [10]

GRIP [4, 5] HybridGR [19] Maize-Router [8]

TABLE 1.1 RECENT GLOBAL ROUTING RESEARCHES

10

Chapter 2 Grace: A Fast Global-routng-based
Routing Congestion Estimator

2.1 Introduction
Routability is of primary concern in nanometer-scale design. Considering the routability issue in

placement stage can avoid generating an unroutable design. Two strategies are generally adopted by

routability-driven placement to estimate the congested regions (hot spots). First, the probabilistic

method estimates the routing congestion of a region by using the pin density and the nets’ bounding box

or Steiner tree [35, 36]. Although fast, this method typically fails to capture actual routing behavior, and

therefore has low estimation accuracy. The second congestion estimation strategy performs global

routing to analyze routing congestion [37]. The latter method can identify more precisely the congestion

information. However, such an approach is markedly slower than the former one. Among the modern

routability-driven placers, Ripple [38], NTUplace [39] and the placers in [40, 41] used the former

strategy, whereas SimPLR [42], IPR [43], CRISP [44] and GRplacer [45] adopted the latter one. Clearly,

it is inevitable to trade-off routing quality for better run-time performance when these built-in global

routers are concerned.

Maze routing with A* search scheme is the indispensable kernel algorithm of state-of-the-art global

routers [3-19]. For hard-to-route benchmarks, these routers attempt to eliminate overflows by iteratively

ripping up and rerouting overflowed nets by using maze routing. However, maze routing is slower than

other routing algorithms, such as pattern routing and monotonic routing algorithms. Several works have

attempted to reduce runtime by developing alternative routing algorithms in order to lower the

frequency of invoking maze routing. For instance, Archer [10] developed the U-shaped pattern routing

algorithm; NTUgr [12] presented the escaping routing algorithm; and FastRoute 4.0 [16] developed the

3-bend routing algorithm. These routing algorithms run faster than maze routing within a quite limited

solution space. Thus, in these global routers, maze routing continues to be the last-gasp approach to

11

identify better routes. Consequently, maze routing still consumes the majority of the runtime in the

entire routing flow.

This work presents an extremely fast global router called Grace, which does not include maze

routing to achieve high speedup as an ideal built-in routing congestion estimator for placers.

(a) This work presents two efficient routing algorithms, called unilateral monotonic routing and

hybrid unilateral monotonic (HUM) routing. HUM routing can identify a better routing path than

U-shaped pattern routing, 3-bend routing, and escaping routing. Moreover, the time complexity of

HUM routing is the same as those of these three approaches, linear in terms of the size of the

routing region.

(b) Many routers adopt bounding boxes to limit the searching region of routing. Consequently, the

bounding box size affects the routing quality and runtime. This work presents an efficient

congestion-aware bounding box expansion scheme. With this scheme, the proposed router can

improve runtime by 50% than without this scheme.

(c) The proposed router relies on HUM routing to eliminate overflows without invoking maze routing.

Experimental results indicate that the proposed router achieves a routing quality similar to that of

the proposed maze-routing-based router NCTU-GR 2.0 [18]. Moreover, the run-times of the

proposed router are up to 26 times faster than those of [18] on large benchmarks.

The rest of this chapter is organized as follows. Section 2 introduces the global routing problem and

the research objective. Section 3 then presents the proposed unilateral monotonic routing, HUM routing

algorithms and a congestion-aware bounding box expansion scheme. Section 4 displays the design flow

of the proposed global router. Section 5 summarizes the experimental results. Conclusions are finally

drawn in Section 6.

2.2 Problem Description
Global routing is formulated as the routing problem on a grid graph G(V, E) , where V denotes the set

of grid cells, and E refers to the set of grid edges. Each grid edge is termed by the proximity of the

12

related G-cells to its two end nodes. The capacity c(e) of a grid edge e indicates the number of routing

tracks that can legally cross the abutting boundary. The number of wires that pass through grid edge e is

called the demand of the grid edge d(e). The overflow of a grid edge e is defined as follows. The total

overflow is the sum of overflows on all edges of E.

otherwise

ecedifsweced
eoverflow LL

,
)()(,

0
)(*))()((

)(




 

 (2.1)

where wL and sL respectively denote the minimum wire width and wire spacing at layer L where e

belongs. In modern designs, higher layers have larger wire width and wire spacing.

Conventionally, overflow and wirelength minimizations have a higher priority than runtime

improvement for global routing that offers a global path to guide the detailed routing of each net.

However, when global router plays the role as a congestion estimator, the runtime issue become more

critical because the estimator have to report the congestion information to placers in a limited time

budget (e.g. around 1~5 min). Accordingly, this work focuses on comply with the limited time budget to

complete global routing.

2.3 The Proposed Algorithms for Accelerating Routing
Although capable of identifying a detour-free path efficiently, monotonic routing fails to replace

maze routing when a detoured path is required to avoid obstacles or congested regions. A detour is

viewed as a move away from the target. To approach the behavior of maze routing, we develop an

Fig. 2.1. (a) Vertically monotonic routing path; (b) horizontally monotonic routing path; (c) routing
path combining vertically and horizontally monotonic routing.

 (a) (b) (c)

13

extremely fast routing algorithm, called unilateral monotonic routing, capable of seeking a detoured

path and running in the same time complexity as that of monotonic routing. Unilateral monotonic

routing identifies a least-cost routing path within a limited region using minimal horizontal or vertical

distance. Two unilateral monotonic routing types are defined as follows.

Definition. Horizontally/Vertically monotonic (HM/VM) routing identifies the least-cost routing path

from the source to the target using minimal horizontal/vertical distance.

For a HM/VM routing path, a detour occurs only in vertical/horizontal move. Figures 2.1(a) and

2.1(b) illustrate a VM routing path and a HM routing path, respectively, in which the gray rectangles

represent congested regions. Although the solution space of HM or VM routing is less than that of maze

routing, alternatively invoking HM and VM routings together can increase the solution space

significantly. Figure 2.1(c) depicts an example of invoking successive HM and VM routings, the path in

Fig. 2.1(c) consists of a HM routing path from s to an internal node u and a VM routing path from t to u.

2.3.1 Unilateral Monotonic Routing
Without a loss of generality, the proposed unilateral monotonic routing is introduced by using an

example of VM routing shown in Fig. 2.2. At the beginning of VM routing, the congestion map (Fig.

2.2(a)) is formulated into the global routing model (Fig. 2.2(b)), and the congestions is formulated into

the routing cost on each grid edge, then a window is given to enclose the source and target with the

height of vertical distance between the source and target and the width of horizontal distance larger than

that between the source and target (Fig. 2.2(b)). The window size determines the runtime and the

routing quality of the unilateral monotonic routing. Section 3.3 in this chapter will introduce how to

determine the window size. Figure 2.3 shows the pseudo code of the VM routing algorithm, in which

source s and target t are located at (x1, y1) and (x2, y2) respectively; B.l and B.r represent the left and

right borders of windows B, respectively; cost(v, u) denotes the routing cost of grid edge e(v, u); d(u)

refers to the least cost of the VM routing path within B from s to u; and π(u) is the predecessor of u. The

algorithm in Fig. 2.3 consists of two stages. The first stage calculates the d(u) value of each node of the

14

bottom row, i.e. the row where the start node belongs. The second stage computes the d(u) values of

nodes in all rows, except for the bottom row, from the row above the bottom row to the top one. The

first stage is a simple sequential examination initiating from the start node towards the left and right

boundaries of B, and then the second stage processes all rows except for the bottom one sequentially

and upwards. In the second stage, based on the dynamic programming algorithm, a two-phase flow is

developed and the d(u) value of each node is computed row by row. The first phase determines the

Fig. 2.2. Example of VM routing. (a) a congestion map; (b) the routing model of (a), the dotted lines
denote the grid edges; (c) The predecessor of each node u in the row of y-coordinate y1 after d(u) is
obtained, the arrow of each node denotes its predecessor; (d) the predecessor of each node u in the
row of y-coordinate y1+1 after lclb(u) is obtained; (e) the predecessor of each node u in the row of
y-coordinate y1+1 after d(u) is obtained; (f) the routing result of VM routing.

 (c) (d)

 (e) (f)
 (a)

 (a) (b)

15

least-cost VM path to connect every node from the start node at the left or bottom side, while the second

phase determines the least-cost VM path to connect every node from the start node at the right side. By

the two-phase operation, the least-cost VM path to reach every node within B from the start node is then

identified.

Upon commencement of the second stage, the d(v) value of each node v∈(i,y1) for B.liB.r is

identified. By assuming that node u is located at (i, y1+1), lclb(u) is the least of all costs of the VM

Algorithm Vertically monotonic routing
Input: source s(x1, y1), target t(x2, y2), bounding box B, cost array d
1. d(s)= 0, π(s)= null;
2. for x= x1-1 to B.l
3. u=(x, y1), v=(x+1, y1);
4. d(u)= d(v)+ cost(v, u), π(u)= v;
5. end for
6. for x= x1+1 to B.r
7. u=(x, y1), v=(x-1, y1);
8. d(u)= d(v)+ cost(v, u), π(u)= v;
9. end for
10. for y= y1+1 to y2
11. u=(B.l , y), v=(B.l, y-1)
12. lclb(u)= d(v)+ cost(v, u), π(u)= v
13. for x= B.l +1 to B.r
14. u=(x, y), v1=(x-1, y), v2=(x, y-1);
15. if lclb(v1) + cost(v1, u) < d(v2) + cost(v2, u)
16. lclb(u)= lclb(v1)+ cost(v1, u), π(u)= v1
17. else
18. lclb(u)= d(v2)+ cost(v2, u), π(u)= v2
19. end for
20. u=(B.r , y), d(u) = lclb(u)
21. for x= B.r -1 to B.l
22. u=(x, y), v3=(x+1, y), d(u) = lclb(u)
23. if d(v3) + cost(v3, u) < d(u)
24. d(u) = d(v3) + cost(v3, u), π(u)= v3
25. end for
26. end for

Fig. 2.3. The proposed vertically monotonic routing algorithm.

16

routing paths from s to u when the predecessor of u is at its left or bottom side, and can be obtained via

the following equation in the first phase,






 otherwise)), ,()(), ,()(min(

 ofboundary left on the is if), ,()(
2211

22
uvcostvduvcostvlc

Buuvcostvd)u(lc
lb

lb (2.2)

where v1 and v2 represent the left and bottom adjacent nodes of u, respectively. During the second phase,

the least cost of VM paths to reach node u from the start node at the right side (denoted by lcr(u)) and

then the least-cost VM path to reach node u from the start node are determined sequentially by the

following equation.






 otherwise)), ,()(, min(

 ofboundary right on the is if
33 uvcostvd)u(lc)u(lc

Bu),u(lc)u(d
rlb

lb
 (2.3)

where v3 represents the right adjacent node of u. If u is on the right boundary of B, the predecessor of u

must be on the left side or on the bottom side of u; thus d(u) equals lclb(u). While each node u is

examined sequentially from right to left in the second phase, the least-cost VM path to reach each node

from the start node is then determined by Eq. (2.3).

In Fig. 2.3, lines 1 to 9 calculate the least cost of the VM paths from s to each node v(i,y1) for

B.liB.r (Fig. 2.2(c)). Next, based on the dynamic programming method, the least-cost VM path from

s to each node of each row within B is identified from the row of y-coordinate y1+1 to the row of

y-coordinate y2, (lines 10 to 26), where lines 11 to 19 identify the values of lclb(u) by Eq. (2.2) and lines

20 to 25 identify the values of d(u) by Eq. (2.3). Figure 2.2(d) shows the predecessor of each node u in

the s-to-u path of lclb(u) in the row of y-coordinate y1+1. Meanwhile, Fig. 2.2(e) shows the predecessor

of each node u in the s-to-u path of d(u) in the row of y-coordinate y1+1. Upon completion of the VM

routing, each node within B has a least-cost VM path to reach s along its predecessor (Fig. 2.2(f)).

Therefore, the least-cost VM path from s to t is also identified. Obviously, the time complexity of

unilateral monotonic routing algorithm is O(|B|) where |B| represents the area size of B.

17

2.3.2 Hybrid Unilateral Monotonic Routing
Compared to maze routing, unilateral monotonic routing still offers a limited solution space to solve

overflows. This section introduces a hybrid unilateral monotonic (HUM) routing algorithm to search for

larger solution space than unilateral monotonic routing offers. The HUM routing concept assumes that

each node within B can be an intermediate point connecting the start and target nodes. The HUM path

consists of two paths, i.e. the path linking the start node with an intermediate point and the path linking

the intermediate point with the target node. Each path can be formed by unilateral monotonic routing.

Since a path can be formed by VM or HM routing, four combinations are available to form a HUM

routing path. By assuming that bounding box B encloses nodes u and v, VMPB(u,v) and HMPB(u,v)

represent a VM routing path and a HM routing path connecting u with v within B, respectively. A HUM

routing path connecting s with t belongs to one of the following four path types: (VMPB(s,u), VMPB(u,t)),

(VMPB(s,u), HMPB(u,t)), (HMPB(s,u), VMPB(u,t)) and (HMPB(s,u), HMPB(u,t)) for each node u within B.

Whereas (VMPB(s,u), VMPB(u,t)) denotes a path concatenation operation that combines two unilateral

Fig. 2.4. The pseudo code of hybrid unilateral monotonic routing algorithm.

Algorithm Hybrid Unilateral Monotonic Routing
Input: source node s, target node t, bounding box B
1. Initialize cost array Aryvs, Aryvs, Aryhs, Aryht
2. //Find the paths from each node in B to s
3. Vertically_Monotonic_Routing(s, B.bl, B, Aryvs)
4. Vertically_Monotonic_Routing(s, B.tr, B, Aryvs)
5. Horizontally_ Monotonic_Routing(s, B.bl, B, Aryhs)
6. Horizontally_Monotonic_Routing(s, B.tr, B, Aryhs)
7. //Find the paths from each node in B to t
8. Vertically_Monotonic_Routing(t, B.bl, B, Aryvt)
9. Vertically_Monotonic_Routing(t, B.tr, B, Aryvt)
10. Horizontally_ Monotonic_Routing(t, B.bl, B, Aryht)
11. Horizontally_ Monotonic_Routing(t, B.tr, B, Aryht)
12. foreach node u in B
13. mrc(u)=min(Aryhs(u), Aryvs(u))+min(Aryht(u), Aryvt(u))
14. end foreach
15. Select the node u in B with the least mrc(u), and then trace back from this node to s and t.

18

monotonic paths of one or two type to form a HUM path linking start and end nodes. Figure 2.4 shows

the proposed HUM routing algorithm. The least costs of VMPB(s,u), VMPB(t,u), HMPB(s,u) and HMPB(t,u) of

each node are stored in the arrays Aryvs, Aryvt, Aryhs and Aryht, respectively, while B.bl and B.tr

represent the nodes at the bottom-left and top-right corners of B, respectively. Lines 3 – 6 regard s as the

start node, and B.bl and B.tr as pseudo targets. Then, lines 3 and 4 invoking VM routing from s to the

pseudo targets obtain VM routing paths from s to every node within B; lines 5 and 6 invoking HM

routing from s to the pseudo targets obtain HM routing paths from s to every node within B. Similarly,

lines 8 – 11 regard t as the start node and B.bl and B.tr as the pseudo targets, and then obtain VM

routing paths and HM routing paths from t to every node within B. Accordingly, lines 2 – 11 identify

the value of each element in Aryvs, Aryvt, Aryhs and Aryht. Thereafter, the least costs of VMPB(s,u),

VMPB(t,u), HMPB(s,u) and HMPB(t,u) for each node u within B are obtained (Fig. 2.5(a)-(d)). The algorithm

then selects the least-cost HUM routing path among the candidates of four path types (lines 12 – 15).

Fig. 2.5. Four path types in B with congested regions (gray rectangles). (a) VMPB(s,u), (b) VMPB(t,u),
(c) HMPB(s,u), and (d) HMPB(t,u).

 (a) (b)

 (c) (d)

19

The time complexities of three parts, lines 2-11, lines 12-14 and line 15 are all O(|B|).

Correspondingly, the time complexity of HUM routing algorithm is still O(|B|), which is faster than that

of maze routing with A* search scheme (O(|B|log|B|)). Figure 2.6 compares the proposed HUM routing

with 3-bend routing and escaping routing, indicating that the time complexities of 3-bend routing and

escaping routing are also O(|B|). Figures 2.6(a) and 2.6(b) summarize the routing results of 3-bend

routing and escaping routing with two overflows and with an overflow, respectively. In contrast, the

proposed HUM routing algorithm can identify an overflow-free path (Fig. 2.6(c)) with the pattern

(HMPB(s,u), HMPB(u,t)). Notably, even if HUM routing cannot identify an overflow-free path, it can

always identify a least-cost HUM path which must cost less than or equal to that of 3-bend routing and

escaping routing. Because, the solution space of HUM routing totally covers and is much larger than

that of 3-bend routing and escaping routing.

Assume that most of overflowed grid edges within B are aligned in a row similar to the congestion

map in Fig. 2.1(a), the least costs of HMPB(s,u) and HMPB(u,t) are likely larger than the least costs of

VMPB(s,u) and VMPB(u,t). Therefore, the operations of exploring HMPB(s,u) and HMPB(u,t) can be regarded

as redundant and are thus omitted. Based on this observation, four HUM routing types are explored only

once for every net at the first time when it is routed by HUM routing. If a net is rerouted by HUM

routing in the later routing stage, only the HUM routing type that initially identified the least-cost path

 (a) (b) (c)

Fig. 2.6. (a) Routing result of 3-bend routing with two overflows; (b) routing result of escaping
routing with an overflow; (c) routing result of the proposed HUM routing without overflows.

20

is invoked. By this scheme, experimental results indicate that similar routing quality and an

approximately 23% decrease in runtime of HUM routing can be achieved.

2.3.3 Congestion-aware Bounding Box Expansion
Bounding box is widely adopted to limit the searching region of routing. In conventional global

routers, the initial bounding box is slightly larger than the minimum rectangle enclosing the terminals of

the routed net. The inability to identify an overflow-free path within the bounding box causes the

bounding box to expand and, then, the overflowed net is rerouted again. The box expansion policy

based on current congestion information has seldom been discussed in the literature. The traditional box

expansion scheme tends to over-expand, subsequently increasing the runtime. For instance, Fig. 2.7(a)

shows a routing path with a vertical overflowed edge. Traditional box expansion chooses to expand the

bounding box along both x and y coordinates to resolve the overflow. However, the bounding box only

Fig. 2.7. Example of congestion-aware bounding box expansion. (a) Routing path with an vertical
overflow; (b) the overflow map of the benchmark superblue1 after the initial routing; (c) currently
identified path Ps,t and path Ls,t that is expected to be across the left side of the bounding box; (d)
the estimated lower bound cost of Ls,t is the sum of the costs of Ps,v and Pt,u plus manh(v, u)* α.

 (a) (b)

 (c) (d)

21

needs to expand horizontally in Fig. 2.7(a) while the vertical expansion is unnecessary. Figure 2.7(b)

displays the congestion map of the benchmark superblue1 after the initial routing. The red regions

represent the overflowed grid edges, which normally range horizontally or vertically, implying that the

situation in Fig. 2.7(a) occurs frequently during routing. Based on this observation, this work presents a

novel congestion-aware bounding box expansion scheme to avoid over expanding.

Before rerouting a net, this work analyzes the amount of horizontal overflowed grid edges (HOEs)

and vertical overflowed grid edges (VOEs) by tracing the routing path of the rerouted net. If the number

of HOEs is more than that of VOEs, the bounding box expands vertically by δ units; on the contrary, the

bounding box expands horizontally. If a tie occurs, the bounding box randomly chooses to expand

horizontally or vertically. Single-direction expansion can restrict the sizes of bounding boxes to reduce

the runtime. In our implement, the initial bounding box is set as the minimum rectangle enclosing two

terminals to be routed, and δ is set to 5+30/ri, where ri denotes the rip-up and rerouting times of the

rerouted net. Moreover, based on the assumption that two opposite sides have different congestion

states, extending the side near the congested region may be unnecessary, implying that the extension of

each boundary of B should be discussed separately. The algorithm examines each boundary side of B to

determine the necessity of box boundary expansion at the end of HUM routing. Without a loss of

generality, the left boundary of B is used to illustrate the concept. Left boundary expansion can be

regarded to have the intention to find a path Ls,t on the left side of B; in addition, Ls,t has a lower routing

cost than that of the currently identified path Ps,t (Fig. 2.7(c)). Namely, a situation in which the routing

cost of Ps,t is lower than the least cost of Ls,t implies that the left boundary expansion is unnecessary.

However, the least cost of Ls,t is unknown because the region on the left side of B has not been explored

yet. Thus, the estimated lower-bound cost of Ls,t, ecL, is defined by the following equation to evaluate

the necessity of boundary expansion. If the currently identified path Ps,t costs less than ecL, the left

boundary remains unchanged at the next expansion of B.

))()()((  u,vmanhu,tds,vdminec LL Vv,VuL (2.4)

22

where VL denotes the set of grid nodes on the left boundary of B; d(s,v) and d(t,u) represent the least

cost of the unilateral monotonic routing paths from s to v and from t to u, respectively; manh(v,u) refers

to the Manhattan distance between v and u; and α is the lower-bound routing cost of a grid edge. In this

work, α is set to 1. Notably, d(s,v) and d(t,u) are known values that have been computed by the HUM

routing (Fig. 2.7(d)). With this, before a net ni is rerouted, the path of ni is first traced to obtain HOEs

and VOEs. If the number of VOEs is more than that of HOEs, extending the left and right boundaries of

the bounding box B of ni is considered. If ni is not routed by HUM routing in previous routing, the left

and right boundaries of B extend immediately. Otherwise, the decision of boundary expansion is made

according to the previous discussion.

2.4 Design Flow of Grace
Figure 2.8 shows the design flow of the proposed routing congestion estimator Grace. First, the

multi-layer routing region is projected on a 2D plan and each net is decomposed into two-pin nets based

on the topology of the RMST because the works in [1, 7, 18] indicate that RMST offers better flexibility

than Steiner tree to avoid blockages or congestion. An initial congestion graph is then generated by

pattern routing and monotonic routing. Next, the rip-up and rerouting stage iteratively reroutes the

overflowed net until an overflow-free routing result is obtained or the runtime exceeds the given time

budget. In the rip-up and rerouting stage, before net ni is rerouted, the bounding box of ni is expanded

Fig. 2.8. Design flow of Grace

23

according to the proposed congestion-aware expansion scheme. For a situation in which the width of the

bounding box is equal to the x-distance between the source and the target of ni, ni is rerouted using HM

routing. Moreover, if the height of the bounding box is equal to the y-distance between the source and

the target of ni, ni is rerouted using VM routing. Otherwise, ni is rerouted by HUM routing.

2.5 Experimental Results
The proposed algorithms are implemented in C/C++ language on a quad-core 2.4 GHz Intel

Xeon-based linux server with a 50GB memory (only a single core is used). By hosting a

routability-driven placement contest, ISPD11 has motivated many researchers to develop effective

modern placers [38, 39, 42]. Ripple [38] and mPL11 placed first in the contest; their contest placement

results are adopted here as the input benchmarks in our experiments. We compare Grace with

NCTU-GR 2.0 [18] which is one of the fastest global routers. The experiments in [18] indicate that

NCTU-GR 2.0 runs 1.90X, 1.77X and 18.66X faster than NTHU-Route 2.0 [11], FastRoute 4.1 [16],

and NTUgr [12], respectively. In addition, in the old benchmarks [1, 2], the minimum wire spacing and

width are uniform and all pins locate at the lowest layer. In contrast, in new benchmarks [46] used in

this work, the minimum wire spacing and width of different layers are different and pins may locate at

high layers. Because most of traditional routers do not consider these new features, we cannot directly

adopt them to route the new benchmarks. However, recent routers NCTU-GR 2.0, BFG-R [7] and

CGRIP [35] can handle these new features, but the runtime of BFG-R and CGRIP is much larger than

NCTU-GR 2.0. Owing to its robustness and efficiency, the routability-driven placement contest in

DAC12 [47] and ICCAD12 [48] selects NCTU-GR 2.0 to be the evaluation tool. In the following

experiments, NCTU-GR 2.0 and Grace perform on the same machine. Notably, NCTU-GR 2.0 has the

parameters of via cost, wirelength optimization level, pattern routing iteration, monotonic routing

iteration and post routing iteration, which are set to 1, 50, 2, 2 and 0, respectively. The setting of the

rip-up and rerouting stage will be detailed in following sections.

24

2.5.1 Comparison between NCTU-GR 2.0 and Grace
Table 2.1 compares NCTU-GR 2.0 and Grace in terms of the ability to eliminate overflows in a

given time budget. The frameworks of NCTU-GR 2.0 and Grace are nearly same; the only difference is

NCTU-GR 2.0 adopts bounded-length maze routing [18] while Grace adopts unilateral monotonic

routing and HUM routing in the rip-up and rerouting stage. Each major column in Table 2.1 lists the

total overflows of the routing results generated by NCTU-GR 2.0 and Grace within a specified time

budget for the rip-up and rerouting stage. Notably, for every benchmark, the runtime excluding the

rip-up and rerouting stage is always less than 40 seconds. Table 2.1 reveals that Grace can eliminate

overflows more efficiently than NCTU-GR 2.0. Given a 30 second time constraint, Grace identifies 4

overflow-free routing results while NCTU-GR 2.0 identifies none. Given a 240 second time constraint,

Grace can identify 8 routing results with overflows less than a thousand, whereas NCTU-GR 2.0

30 seconds 60 seconds 120 seconds 240 seconds
Benchmarks

NCTU Grace NCTU Grace NCTU Grace NCTU Grace

s1_Ripple 14 0 0 0 0 0 0 0

s2_Ripple 724796 130866 626050 28556 472104 3798 323878 1410

s4_Ripple 66690 236 45100 222 12130 212 698 214

s5_Ripple 107896 4790 73360 404 28354 0 9030 0

s10_Ripple 597656 216364 548004 114176 491294 69646 409308 53502

s12_Ripple 315122 174162 265444 107274 180118 42604 105984 8600

s15_Ripple 92574 2664 72012 16 21048 0 5096 0

s18_Ripple 356348 175542 313146 145808 272598 130446 188594 118630

s1_mPL11 62368 0 8780 0 0 0 0 0

s2_mPL11 1152682 486966 997796 226470 857516 67202 739474 24396

s4_mPL11 112856 11010 78640 900 19334 46 4444 42

s5_mPL11 354374 71632 294312 42916 230216 27378 126398 20842

s10_mPL11 733948 271370 655464 86286 578376 29116 484624 15314

s12_mPL11 1589998 1563470 1549036 1412980 1627508 1292848 1377296 1219146

s15_mPL11 126138 0 67846 0 11410 0 0 0

s18_mPL11 66710 0 27126 0 0 0 0 0

TABLE 2.1 COMPARISON TOTAL OVERFLOWS BETWEEN NCTU-GR 2.0
AND GRACE IN A GIVEN TIME BUDGET.

25

identifies only 5 routing results for less than a thousand overflows. Figure 2.9 compares overflow

converge curves of Grace and NCTU-GR 2.0 on benchmarks s2_mPL11, s10_mPL11, s12_Ripple and

s18_Ripple, in which red curve represents NCTU-GR 2.0 while blue curve represents Grace. These

figures demonstrate again that Grace can achieve fewer overflows in short runtime.

Table 2.2 compares the routing results of NCTU-GR 2.0 and Grace without a runtime limitation.

Both NCTU-GR 2.0 and Grace iteratively rip-up and reroute the overflowed nets until either all

overflows are eliminated or overflows cannot be reduced by more than 3% in 5 consecutive iterations.

In Table 2.2, MO, TOF, WL and RCPU represent the maximum overflow, total overflows, total global

routing wirelength (including wires and vias) and the runtime (seconds) of the rip-up and rerouting

stage, respectively. Table 2.2 treats NCTU-GR 2.0 as a base line; Ratioind denotes the average of the

ratio of individual entries in the same column, while Ratiosum denotes the ratio of the sum of each

column. To reduce the runtime, NCTU-GR 2.0 and Grace both adopt the greedy layer assignment

method, explaining why the via count is not optimized. According to our experiments, the total

wirelength can be further reduced by 7%~15% if the layer assignment algorithms [27] or [28] are

adopted. Table 2.2 indicates that, although the wirelength and overflows of Grace are slightly worse

Fig. 2.9. Overflow converge curves of Grace and NCTU-GR 2.0. X-axis and y-axis denote runtime
(sec) and total overflow, respectively. Red curve represents NCTU-GR 2.0 while blue curve
represents Grace.

26

than that of NCTU-GR 2.0, Grace can achieve a 2.75X to 26.83X higher speedup than that of

NCTU-GR 2.0. Moreover, if NCTU-GR 2.0 obtains an overflow-free result for a benchmark, Grace also

can achieve an overflow-free result for the same benchmark. Therefore, Table 2.2 reveals that Grace can

quickly determine a placement solution whether is routable, thus making is suitable as a fast congestion

estimator embedded into routability-driven placers. Figure 2.10 compares the congestion map obtained

by NCTU-GR 2.0 and Grace, in which the brown regions denote the congestion regions. The congestion

maps obtained by NCTU-GR 2.0 and Grace look similar.

TABLE 2.2 COMPARISON THE ROUTING RESULTS BETWEEN NCTU-GR 2.0
AND GRACE WITHOUT TIME LIMITATION.

NCTU-GR 2.0 Grace
Benchmarks

MOF TOF WL
(105)

RCPU
(s) MOF TOF WL

(105)
RCPU

(s) speedup

s1_Ripple 0 0 160.84 31 0 0 161.63 4 7.61
s2_Ripple 10 1442 350.75 3623 8 1430 358.04 203 17.81
s4_Ripple 8 224 122.80 536 6 236 124.67 30 17.75
s5_Ripple 0 0 198.44 573 0 0 202.02 86 6.67

s10_Ripple 8 39222 321.59 26509 8 40300 336.61 1227 21.61
s12_Ripple 0 0 260.86 1333 0 0 279.49 484 2.75
s15_Ripple 0 0 205.07 651 0 0 208.81 60 10.80
s18_Ripple 20 109514 159.10 5174 22 125988 162.25 550 9.40
s1_mPL11 0 0 168.81 79 0 0 169.02 9 8.66
s2_mPL11 8 3884 362.96 51356 8 4566 363.57 1914 26.83
s4_mPL11 2 42 123.89 922 2 42 126.52 94 9.76
s5_mPL11 14 11210 219.77 6114 18 15474 221.02 739 8.27

s10_mPL11 6 9678 315.31 29158 8 9370 331.49 1159 25.16
s12_mPL11 64 1041384 272.34 11221 70 1094646 259.25 1145 9.8
s15_mPL11 0 0 193.71 192 0 0 196.6 22 8.62
s18_mPL11 0 0 108.55 95 0 0 110.72 18 5.15

Ratioind 1 1 1 1 1.040 1.089 1.018 0.114 -
Ratiosum 1 1 1 1 1.071 1.062 1.019 0.056 -

MOF = maximum overflow; TOF = total overflows; WL = total wirelength; RCPU = runtime of the
rip-up and rerouting stage (sec)

27

2.5.2 Effectiveness of the Proposed Algorithms
Table 2.3 details the amount of usages of unilateral monotonic routing and HUM routing in Table 2.2.

The column “Unila.” denotes the number of two-pin nets having been routed only by unilateral

monotonic routing in the rip-up and rerouting stage. The column “HUM” denotes the number of two-pin

nets having been routed by HUM routing. Table 2.3 reveals that most overflows in each benchmark can

be solved by unilateral monotonic routing. Because overflows in each benchmark normally range

horizontally or vertically, the proposed unilateral monotonic routing can remove them efficiently. This

table also indicates that most nets do not need complicated detours, so maze routing is unnecessary for

these nets.

 Unila. HUM Unila. HUM
s1_Ripple 15519 110 s1_mPL11 73803 3429
s2_Ripple 127654 43237 s2_mPL11 227191 286871
s4_Ripple 71128 13438 s4_mPL11 95966 86565
s5_Ripple 72995 25694 s5_mPL11 64080 178135
s10_Ripple 107671 89837 s10_mPL11 261525 104806
s12_Ripple 375051 369483 s12_mPL11 54984 1103318
s15_Ripple 79893 32905 s15_mPL11 167487 17001
s18_Ripple 62168 175323 s18_mPL11 101220 7846

TABLE 2.3 THE USAGE OF THE PROPOSED UNILATERAL MONOTONIC ROUTING
AND HUM ROUTING ALGORITHMS

Fig. 2.10. Congestion maps of s4_Ripple generated by (a) NCTU-GR 2.0 and (b) Grace.
 (a) (b)

28

Table 2.4 shows the overflow-free routing results of Grace using traditional bounding box expansion

scheme that is adopted by the global router in [13]. Compared to the results in Table 2.2, Grace using

the traditional scheme causes roughly twice the runtime than that using the congestion-aware bounding

box expansion scheme. This difference is owing to that the traditional scheme may over expand

bounding boxes. However, Grace using traditional scheme can obtain the results with a slightly lower

wirelength because large bounding boxes can reduce redundant detours, as demonstrated in [18].

2.6 Summary
 This work presents two efficient routing algorithms, unilateral monotonic routing and HUM

routing. Unilateral monotonic routing can horizontally or vertically detour around the congestion

regions with the same time complexity of monotonic routing. HUM routing can identify an

overflow-free path on a challenged congestion map, thus making it significantly faster than maze

routing with A* search scheme. Moreover, a congestion-aware bounding box expansion scheme is

developed to avoid over expanding bounding boxes. Based on these contributions, a maze-free router is

developed, capable of achieving 2.75X to 26.83X speedup than NCTU-GR 2.0. We believe that Grace is

highly promising for use as a fast routing congestion estimator embedded into routability-driven

placers.

Grace using traditional bounding box expansion scheme Benchmarks
WL RCPU WL imp.% RCPU ratio

s1_Ripple 161.62 9 0.00% 1.11
s5_Ripple 201.42 234 0.29% 1.72

s12_Ripple 277.67 1890 0.65% 2.9
s15_Ripple 208.6 173 0.10% 1.87
s1_mPL11 168.84 27 0.11% 2.92

s15_mPL11 196.40 68 0.10% 2.05
s18_mPL11 110.16 46 0.51% 1.49

Average 0.25% 2.01

TABLE 2.4 COMPARISON BETWEEN CONGESTION-AWARE BOX EXPANSION SCHEME
AND TRADTIONAL SCHEME

29

Chapter 3 E-Grace: Enhancing Grace for
Practically Industrial Designs

3.1 Introduction
In advanced technology nodes, routability has become a critical issue since considerable blockages,

interconnects and complex designs rules worsen the routing congestion. To avoid wasting time on

routing unroutable designs, a routing congestion estimator (RCE) can help designers to judge a design

whether is routable in the early stages to speed up the design closure. Moreover, a RCE can cooperate

with placers or optimizers to do optimization with consideration of routability. Therefore, the demand of

a fast and accurate RCE is stringent in industry. In this dissertation, Chapter 2 presents a fast

global-routing-based RCE Grace which is more accurate than probabilistic-based RCEs on estimating

routing congestion, but Grace is still not accurate enough since timing and local congestion issues are

ignored. The goal of this work is to enhance Grace to take timing and local congestion issues into

account. Then enhanced Grace is named E-Grace.

To be aware of timing issue, the author of [49] suggests that designers formulate scenic and layer

directive constraints for the timing-critical nets before feeding these nets into a router or RCE. For a net,

the scenic constraint restricts its maximum routing wirelength, and the layer directive constraint

specifies a range of metal layers that the net can legally route on. A net obeying the scenic constraint

can avoid detouring too much and thus causing the timing violations. The layer directive constraint

forces the timing-critical nets route on the higher metal layers since the wires on the higher layers have

smaller delay in advanced technology nodes. Some papers [50-52] address the global routing problem

with the layer directive constraint. However, how to handle the scenic constraint is seldom discussed.

Figures 3.1(a) and 3.1(b) show the congestion map of E-Grace without and with consideration of the

scenic constraint, and Fig. 3.1(c) shows the congestion map obtained by a congestion estimator from a

full-blown industrial router which is very accurate but is much slower than E-Grace. Figure 3.1 reveals

30

that E-Grace ignoring the scenic constraint cannot correctly estimate the congestion hot spots in the

top-right corner, because the nets in Fig. 3.1(a) detour too much to dissolve the congestion. However,

when the timing issue is considered, the net cannot detour so much to dissolve the congestion in the

top-right corner.

In traditional global routing problem, overflow happens when a region's routing demand exceeds its

routing capacity, and global routers focus on minimizing overflows. Notably, a region in global routing

model usually means a G-cell. However, the duty of a RCE is more than that. For example, even given

two overflow-free designs, a RCE should evaluate which design is easier to route. Accordingly, a better

objective for RCE is to reduce congestion to approach a target congestion ratio (TCR). The

congestion ratio of a region is the ratio of the region's routing demand to the region's routing capacity.

To an industrial router, a region is easy to route if the region's maximal congestion ratio is lower than

TCR, while a region's routing difficulty increases beyond linearly as the region's congestion ratio

increases over TCR. Compared to minimizing overflows, we find that the routing problem becomes

more complicated with the objective to minimize congestion ratio. For example, given two overflowed

nets in a region with limited routing resource; we can get an overflow-free routing result when our

objective is to minimize overflows. However, when the objective is to reduce congestion to approach

Fig. 3.1. Congestion maps obtained by different RCEs: (a) E-Grace ignoring the scenic constraint;
(b) E-Grace considering the scenic constraint; (c) a RCE from a full-blown industrial router.

 (a) (b) (c)

31

TCR (typically smaller than 1), the first routed net may use too many routing resource in order to meet

TCR, resulting in the second routed net has no routing resource to solve its overflow, not to mention

approaching TCR.

The authors of [53] indicate that local congestion causes a big mismatch between global routing and

detailed routing but most global routing research [3-21] ignore the effect of local congestion. Namely, a

good routing result obtained by [3-21] may not imply that a feasible detailed routing solution exists.

Therefore, this work formulates the local congestion issue into E-Grace's routing model to obtain more

accurate routability estimation in terms of detailed routing.

A control utility to trade off runtime and quality is important to industrial RCE tools, also users

require a control utility to limit the runtime of RCEs not being crazy for over-congested designs, i.e.,

users hope the runtime for the same scale designs even with different congestion conditions to be

similar and stable. However, the existing academic RCE tools hardly satisfy this requirement. CGRIP

[37] uses a timeout constraint to be the termination condition. Since different machines have different

performance, CGRIP may get nondeterministic results when it runs on different machines. BFG-R [7]

and NCTU-GR 2.0 [18] set a maximum routing iteration to be the termination condition. However, the

routing efforts in each iteration for designs with different congestion levels are quite different, so it is

difficult to find a unique number of maximum routing iteration that works for all the designs, in order to

control the runtime well.

This work presents a RCE tool E-Grace applied for industrial design flow, which includes a unified

routing flow considering all the following factors: local congestion, TCR, scenic and layer directive

constraints, and runtime control. This work has following contributions:

(a) A relaxation-legalization method is presented to handle the scenic constraint; it can escape from

the local optimum to obtain better solution quality.

(b) This work presents a TCR-driven rip-up and rerouting (R&R) scheme, E-Grace with this scheme

would solve peak congestion first in a limited runtime budget. If the runtime budget is sufficient,

E-Grace would gradually reduce congestion to approach TCR.

32

(c) By the proposed throughput controlling method, users can trade off runtime and quality to get

deterministic routing results. The runtime would linearly increase and the routing quality is

monotonically improved as users increase the value of a tunable parameter

The rest of this chapter is organized as follows. Section 2 introduces the requirements and objective

of a industrial RCE tool and previous works. Section 3 presents the design flow of E-Grace and the

innovations in E-Grace to fulfill industrial demands. Section 4 summarizes the experimental results.

Conclusions are finally drawn in Section 5.

3.2 Preliminaries

3.2.1 Problem Description
E-Grace can be treated as a very fast global router. In global routing problem, the placement is

typically partitioned into an array of G-cells to form a 3- dimension (3D) grid graph G(V, E), where V

denotes the set of G-cells, and E refers to the set of grid edges. Each grid edge is termed by the

proximity of the related G-cells to its two end nodes. The capacity c(e) indicates the number of routing

tracks on grid edge e. The blocked capacity b(e) refers to the number of routing tracks blocked by

blockages on e. The routing demand d(e) indicates the number of global routing paths passing through e.

The overflow of e is defined as max(0, b(e)+d(e)-c(e)), and most global routers focus on minimizing

overflows. In this work, we redefine overflow of e as max(0, b(e)+d(e)+w(e)-c(e)) where w(e) is the

estimated number of routing tracks on e that may be used for local routes, and w(e) is obtained by the

method in [53].

Rather than minimizing overflows, the objective of this work is to efficiently minimize congestion to

approach TCR as close as possible. This work sets TCR to 80% because, in the industrial environment

where we test E-Grace, 20% of the routing capacity is reserved to route non-signal nets such as clock

nets later in the design flow. Moreover, each net in the routing result has to obey the scenic and layer

directive constraints. The scenic constraint restricts that the wirelength of each net n cannot exceed an

upper bound B(n), and the layer directive constraint restricts that n only can route on the layers between

33

tl(n) and bl(n) where tl(n) and bl(n) can be any layer among all layers, but tl(n)>bl(n). In addition, to

satisfy the industrial demands, a control utility to trade off the runtime and routing quality of E-Grace is

required.

3.2.2 Congestion Evaluation Metrics
This work adopts a net-based metric and a grid-edge-based metric to evaluate the routing congestion.

Given a routing result, we first calculate the congestion ratio g(e) for each grid edge e by the following

equation,

)()]()()([)(ecewebedeg  . (3.1)

After that, net-based congestion metric WCI(x) is defined as the number of nets whose congestion is

greater or equal to x%, the congestion of a net is the maximum congestion ratio among all grid edges

traversed by the net. Moreover, grid-edge-based congestion metric ACE(y) is computed by averaging

the congestion ratio of the top y% congested grid edges. In our experiments, we set y∈{0.5, 1, 2, 5, 10,

20}. ACE(0.5) provides a local view for the peak congestion, while ACE(20) provides a global view for

the average congestion.

3.2.3 Previous Works
Grace is a fast global-routing-based RCE tool, which relies on two efficient routing algorithms called

unilateral monotonic routing and HUM routing, and invokes a congestion-aware bounding box

expansion scheme to avoid over-expansion. The routing kernel of E-Grace is similar to Grace. However,

Grace cannot handle scenic and layer directive constraints, and does not consider the issues of local

congestion and TCR.

Grace adopts a 2D routing with layer assignment framework to solve 3D global routing problem.

However, this framework may struggle for the layer directive constraint because it has no precise layer

information during 2D routing. For example, a design has 9 layers and a region has congestion between

layers 5 and 9. A net with layer directive constraint {1, 9} can legally pass through this region, but a net

34

with layer directive constraint {7, 8} would suffer congestion when it passes through this region.

However, the 2D routing stage in Grace cannot distinguish these two cases.

The layer-directive-aware global router GLADE [50, 51] maintains a virtual demand data structure

during 2D routing to query the estimated 3D congestion between two specified layers. In contrast, the

work in [52] adopts a grouping method to handle the layer directive constraint, which classifies the nets

with the same layer directive constraint into a group, and then sorts each group in increasing order

according to the range of each group’s layer directive. Next, each group is sequentially processed during

2D routing. For each group, only one layer directive constraint needs to be addressed, which simplifies

the problem. Although GLADE [50, 51] can explore larger solution space to get better results, [52] is

faster. Due to the runtime consideration, the grouping method [52] is adopted in this work.

3.3 Design Flow of E-Grace
Figure 3.2 shows the design flow of E-Grace, in which the red boxes highlight the stages including

the innovations in this work. At first, given a placement solution and a netlist, a rule generator is

invoked to generate the layer directive and scenic constraints for each net. The rule generator uses an

industrial timer to analyze the timing slack for each net, and then the method in [54] is used to assign

layer directive constraints for the timing-critical nets. Moreover, for each net n, the scenic constraint

B(n) is identified by each net's RMST length multiplying a variable pn that is between 1.05 and 1.4.

Fig. 3.2. Design flow of E-Grace

35

Typically, pn of most nets (>90%) is around 1.15 in the industrial environment used in this work and

some timing-critical nets have smaller pn. Because the rule generator is not the focus in this work, the

details of the rule generator are skipped. After that, a 3D grid graph is built and the

local-congestion-aware factor w(e) in Eq. (3.1) is calculated by the pin-density method in [53].

Before performing routing, the grouping method [52] is used to classify nets into several groups and

then sorts groups. Subsequently, E-Grace routes nets group by group. At the beginning of processing a

group with layer directive {bli, tli}, the partial 3D grid graph from layer bli to tli is projected on the 2D

grid graph and each net in this group is decomposed into two-pin subnets based on the topology of the

RMST. Note that, we call a two-pin subnet as a segment in this work. If a segment s belongs to a net n,

n is the parent net of s. In this work, we use RMST instead of RSMT to decompose the nets, because

the works in [1, 7, 18] indicate that RMST offers better flexibility than RSMT to avoid blockages or

congestion. Also, we found that the runtime and wirelength of FLUTE [23] (a well-known RSMT

generator) are worse than RMST for some modern industrial designs, because these designs contain

considerable high fan-out nets and RMST runs faster and produce shorter wirelength for very high

fan-out nets than FLUTE. Accordingly, E-Grace adopts the algorithm in [55] to efficiently build RMST.

After that, the initial routing stage generates an initial routing result by pattern routing and monotonic

routing. Because pattern routing and monotonic routing do not make detours, every net in the initial

routing result must obey the scenic constraint. Next, the ripping-up and rerouting (R&R) stage

iteratively reroutes the congested segments until either the congestion of any net is not greater than TCR

or the termination condition is satisfied. The definition of congested segments and the termination

condition will be introduced later.

In the R&R stage, the scenic constraint is relaxed as a soft constraint, namely the routing solutions in

this stage can violate the scenic constraint. Then, the scenic legalization stage reroutes the nets with the

scenic violation to force them to satisfy the scenic constraint, but this stage may increase congestion. In

the post optimization stage, the congested segments are rerouted under the hard scenic constraint to

reduce the congestion worsened by the scenic legalization stage. Using this relaxation-legalization

36

method to handle the scenic constraint can get better results than always treating the scenic constraint as

a hard constraint. Finally, we adopt a fast heuristic layer assignment algorithm presented in [17] to map

the 2D routing result to the 3D grid graph. E-Grace sequentially processes each group until the routing

solutions of all nets are obtained.

3.3.1 Relaxation-Legalization Scenic Controlling Method
Most global routers decompose multi-pin nets into several segments and then route each segment

individually, since it can reduce the multi-terminal routing problem to a two-point routing problem.

However, the scenic constraint is not easy to meet when using this method. For instance, Fig. 3.3(a)

shows an initial routing result of a three-pin net n with two segments s1 and s2, in which the light and

dark gray rectangles respectively denote the light congestion and very congestion regions. The

wirelength of n is 8 and the scenic constraint restricts that the wirelength of n cannot exceed 14, namely

n has 6 detour quotas. If s1 is routed earlier than s2 and is allowed to use all detour quotas, we will get a

routing result shown in Fig. 3.3(b), in which s2 cannot bypass the congestion regions because the detour

Fig. 3.3. (a) the initial routing result of a net; (b) a segment exhausts all detour quotas, resulting
another segment has no detour quotas to bypass congestion regions; (c) the routing result of the
proposed R&R stage; (d) the routing result after the scenic legalization stage.

(a) (b)

s1 s2

(c) (d)

37

quotas have run out. Suppose we averagely allocate the detour quotas to s1 and s2 to avoid s1 exhausting

all detour quotas, both s1 and s2 cannot bypass the congestion regions because they both have no enough

detour quotas.

This work presents a relaxation-legalization method to handle the scenic constraint. At first, we allow

the routing solutions with scenic violations for reducing congestion. Then, we dynamically adjust the

routing cost function to encourage the routing solutions gradually fitting the scenic constraint. In this

work, rc(e,s) denotes the routing cost of grid edge e for segment s, which consists of congestion cost

cc(e) and wirelength cost wc(s). Assuming the initial routing solution of s passes through e and a

least-cost routing algorithm is adopted to reroute s. If cc(e) dominates rc(e,s), the algorithm may identify

a detoured path to bypass the congestion on e. If wc(s) dominates rc(e,s), the algorithm may identify a

path passing through e to save wirelength. Accordingly, we can adjust the ratio between cc(e) and wc(s)

to indirectly control the routing wirelength of s. Notably, the least-cost routing algorithm here can be

any shortest path finding algorithm such like A* search or Dijkstra's algorithm, while this work uses

unilateral monotonic and HUM routing.

For the case in Fig. 3.3(a), E-Grace first generates a routing solution with the scenic violation for

reducing congestion (Fig. 3.3(c)). Next, E-Grace iteratively reroutes s1 and s2, and gradually increases

wc(s1) and wc(s2) to drive them to route shorter until net n satisfies its scenic constraint. In our example,

because s1 faces a lighter congestion region than s2, driving s1 to take the shorter path is easier than

driving s2. Thus, we can get the routing result in Fig. 3.3(d).

3.3.1.1 Ripping-up and Rerouting Stage

This stage treats the scenic constraint as a soft constraint; each net can violate its scenic constraint to

solve congestion. However, too many nets with scenic violations would make the subsequent scenic

legalization stage sacrifice congestion a lot to satisfy the scenic constraint. Accordingly, if the parent net

n of segment s has scenic violations, this stage increases wc(s) before rerouting s to prevent the new

routing solution violating the scenic constraint again. This stage formulates wc(s) as follows:

38

22)()()(nsc vvsw   , (3.2)

where α, β and γ are user defined constants, we set them to be 500, 20 and 50 in our implementation,

respectively. Notations vn and vs initially are zero. Once the wirelength of n exceeds B(n) after rerouting

s, vn increases by one. Once the wirelength of s exceeds b(s) after rerouting s, vs increases by one, where

b(s) is the suggested wirelength for s, that is linearly proportional to the ratio of initial wirelength of s

and n, where the initial wirelength means the wirelength of a net or a segment at the beginning of the

R&R stage. For example, B(n) is 30 and n consists of three segments s1, s2 and s3 whose initial

wirelength are 6, 10 and 4, respectively. The b(s1), b(s2) and b(s3) are 9 (=6*(30)/(6+10+4)), 15

(=10*3/2) and 6 (=4*3/2), respectively.

In this stage, cc(e) also increases if e frequently becomes congested, which makes the least-cost

routing algorithms more actively bypass e to reduce congestion. So, we cannot guarantee that the

routing wirelength of s always becomes shorter when wc(s) and cc(e) both are increased. The

formulation of cc(e) will be introduced in section 3.2.

3.3.1.2 Scenic Legalization Stage

This stage consists of the soft and hard legalization phases. At the beginning of the soft legalization,

an array is built to contain all segments whose parent net violates the scenic constraint. Then, the array

is iteratively scanned to check each segment s in the array. If the parent net of s has the scenic violation

and the wirelength of s is longer than the Manhattan distance between its two terminals, we increase

wc(s) and then reroute s. In this stage, cc(e) would not continually increase even e frequently becomes

congested, so we can guarantee that the routing wirelength of s monotonically decreases as s is rerouted

and wc(s) is increased.

The goal of the soft legalization is to reduce the number of nets with scenic violations in a few

iterations but does not sacrifice congestion too much. How to properly increase wc(s) is challenging.

Increasing wc(s) too much would worsen congestion a lot. If the increment of wc(s) compared to cc(e) is

slight, the reduction of the scenic violations is also slight in each iteration.

39

The soft legalization uses a cost accumulation method to update wc(s) properly. Before rerouting s,

we trace the path of s and compute the path cost of s, pathCost(s), which is the sum of the routing cost

of each grid edge passed by the path of s, and then wc(s) is updated by the following equation.

])()([)(smanhspathCostswc  , (3.3)

where manh(s) denotes the Manhattan distance between the two terminals of s. Fig. 3.4 shows an

example to illustrate how Eq. (3.3) works. Figure 3.4(a) shows a routing solution of s with the scenic

violation at the beginning of the soft legalization, in which wc(s) is 1. Assume cc(e) is 4 for edge e which

is light congested (light grey edges in the figure); if e is very congested (dark grey edges), cc(e) is 10;

otherwise (white edges), cc(e) is 0. Before rerouting s, we trace the path of s in Fig. 3.4(a) to obtain

pathCost(s) that is 10. Based on Eq. (3.3), wc(s) is updated to 2.5 (=10/4) and then rerouting s with new

wc(s) obtains the routing solution in Fig. 3.4(b). If the routing solution in Fig. 3.4(b) still violates the

scenic constraint, wc(s) is updated to 6 (=(8*2.5+4)/4) and then s is rerouted again in the next iteration.

After that, the routing solution in Fig. 3.4(c) is obtained. The example in Fig. 3.4 reveals that the

wirelength of s monotonically decreases as the routing iterations increases.

In our implementation, the soft legalization performs three iterations, which can eliminate most

scenic violations. However, there are few remained scenic violations that need to be solved by the hard

legalization. In the hard legalization phase, we adopt the monotonic routing to reroute the segments

whose parent net has the scenic violation. Because monotonic routing makes no detour, a net must

Fig. 3.4. The routing result obtained by (a) the R&R stage; (b) the first iteration of the soft
legalization phase; (c) the second iteration of the soft legalization phase.

 (a) (b) (c)

40

conform to its scenic constraint when all segments of the net are routed by monotonic routing. After the

hard legalization phase, all nets must obey the scenic constraints.

3.3.1.3 Post Refinement Stage

The goal of the post refinement stage is to reroute the congested segments to reduce the congestion

worsened by the scenic legalization stage. For example, after the R&R stage, two neighboring segments

s1 and s2 both have congestion-free routing paths but the parent net of s1 violates the scenic constraint.

After the scenic legalization stage, s1 is rerouted to be shorter, in which causes s1 now to compete the

routing resource with s2 and thus causes the congestion. In this case, rerouting s2 may dissolve the

congestion.

In the post refinement stage, the routing path of each segment is traced once. A segment is rerouted if

the segment passes through a congestion region and has not been rerouted in the scenic legalization

stage. To ensure that the routing solutions in this stage always obey the scenic constraint, if the new

routing solution obtained by rerouting violates the scenic constraint, we discard the new routing solution

and restore the segment to the old routing solution.

3.3.2 TCR-driven R&R Scheme
The problem of minimizing congestion to approach TCR (80% in this work) is more complicated

than minimizing overflows. For example, given a limited runtime budget, a RCE may spend most time

on rerouting the nets whose congestion is between 80% and 100% to meet TCR, finally has no time to

reroute the nets whose congestion is over 100%. In another case, given a region with limited routing

resources, the early routed nets may consume too many routing resources when they target to meet TCR,

causing the later routed nets have no routing resources to reduce congestion. Based on above cases, we

can summarize two requirements for TCR-driven RCE: (1) route the nets with peak congestion first in

the limited runtime budget; (2) reduce congestion averagely. For example, two nets with 90%

congestion are better than one with 80% and another with 100%.

The R&R stage adopts a TCR-driven R&R scheme to satisfy abovementioned two requirements. In

41

the R&R stage, if a segment passes through a grid edge e satisfying the following inequation, the

segment is treated as a congested segment. The congested segment will be rip-upped and rerouted.

 TCR),-max(1)( peg , (3.4)

where p is an iteration count and initially is zero, p increases by one as iteration increases; λ is a user

defined constant, we set λ to 0.02. According to Eq. (3.4), the first iteration of the R&R stage would

reroute the nets whose congestion is greater than 100%, the second iteration would reroute the nets

whose congestion is greater than 98%, and so on. The R&R stage iteratively reroutes the congested

segments until either no net has congestion greater than TCR or termination condition meets. This R&R

scheme can solve the peak congestion first to meet requirement (1).

To meet requirement (2), we formulate the congestion cost cc(e) as follows:

))(-TCR)(max(0,-)()()(

))(-)()()(max(0,)(

])(h[1]))((
1

1[)(224)(
2

1
3

ebecewedeto
ecebewedeo

eoC
C

Cec eetoCc










, (3.5)

where C1, C2, C3 and C4 are user defined constants, we set them to 200, 2.72, -0.3 and 5, respectively.

History cost he is initialized to zero for each grid edge e at the beginning of the R&R stage. If the

routing solution of s passes through e after rerouting s and to(e)>0, he increases by one. Notably, to(e)>0

means that the congestion ratio of e is greater than TCR. Figure 3.5 shows that the curve of cc(e) when

c(e), w(e), b(e), TCR and he are 50, 0, 0, 80% and 0, in which x-axis and y-axis respectively denotes d(e)

and cc(e). Using Eq. (3.5) to formulate cc(e) encourages that routing algorithms avoid overflows but do

not use too much routing resource for pushing congestion down to TCR. However, if the congestion of e

is continuously over TCR in the R&R stage, cc(e) gradually increases since he increases. This makes the

Fig. 3.5. Curve of cc(e) in Eq. (3.5).

42

routing algorithms become more active to push congestion down to TCR when the routing iteration

increases. Notably, he would not increase in the scenic legalization and post refinement stages.

3.3.3 Throughput Controlling
A control utility to trade off runtime and quality is essential to an industrial RCE tool. Based on the

feedback from users, we summarize three features that an industrial RCE tool requires: (1) when users

increase the value of a tunable parameter tu, the congestion in the routing result should monotonically

improve and the runtime of the RCE tool linearly increases; (2) with the same value of tu, the RCE tool

can automatically give a design more runtime budget to route if the design is larger (with more nets or

larger routing grid size); (3) with the same value of tu, the runtime of a RCE tool can be stable for any

congestion circumstance. Because, a RCE tool may cooperate with other tools to optimize a design, but

other tools may worsen congestion when they address other issues. Feature (3) ensures that the runtime

of the optimization flow can be stable and predictable.

The R&R stage mainly influences the runtime and the routing quality in E-Grace; hence this work

presents a throughput controlling method to set a termination condition for the R&R stage. In E-Grace,

the R&R stage for group R terminates if the following condition holds.

  


RSsu snumGcellttvg)( , (3.6)

where tu is the tunable parameter to control the tradeoff between runtime and quality, SR denotes the set

of all segments in group R, and μ is a user defined constant. In our implementation, u is set to 0.5.

Moreover, numGcell(s) denotes the number of G-cells within the initial bounding box of s which is the

minimum rectangle enclosing the terminals of s. The right term in Eq. (3.6) can be initialized in the

RMST decomposition stage. Notation tvg denotes the number of visited G-cells in the R&R stage.

Initially, the value of tvg is zero. During the R&R stage, when the path of a segment is traced, tvg

increases by the length of the traced path. If the segment is a congested segment, the bounding box of

the segment will be expanded and then the segment will be rerouted by the unilateral monotonic and

HUM routing algorithms within the bounding box. Because the time complexity of unilateral monotonic

43

and HUM routing is linear to the number of G-cells in the bounding box, tvg increases by the number of

G-cells in the bounding box after a segment is rerouted. We can treat tvg as an indicator for the

computation throughput, and we can adjust tu to control the upper bound of the computation throughput

and easily satisfy the abovementioned three features.

3.4 Experimental Results
The proposed algorithms are implemented in C/C++ on a linux server with four 2.27 GHz Xeon

E7-8860 CPUs. This work compares E-Grace (EGall) with a fast industrial congestion estimator (CAind)

and a full-blown congestion estimator (GRind) from an industrial router. Table 3.1 shows the grid size

and net number of the industrial designs used in the following experiments, in which Ind2 and Ind3 are

from the same design but their placements are totally different.

3.4.1 Compare E-Grace with other industrial RCE tools
In Table 3.2, EGall includes all innovations presented in this work; we set parameter tu in Eq. (3.6) to

5 to strike a good balance between the routing quality and runtime. The effectiveness of individual

innovations in this work will be detailed later. CAind, similar to that in [53], is a fast

global-routing-based RCE based on the edge-shifting algorithm [8] to avoid invoking time-consuming

maze routing algorithms. The edge-shifting method is fast but may struggle for the very congested

situations because the solution space of the edge-shifting method is restricted. GRind, with a complex

local congestion model to consider the local routability, runs most accurate and will be used to judge the

quality of all results but is much slower than EGall and CAind. Notably, CAind and GRind both can handle

layer directive and scenic constraints, and take the local congestion and TCR issues into account. In

terms of the scenic constraint, CAind always treats the scenic constraint as a hard constraint, and the

TABLE 3.1 DESIGN INFORMATION
 Grid size #Nets(105) Grid size #Nets(105) Grid size #Nets(105)

Ind1 357×535×9 13.3 Ind3 1068×710×10 41.7 Ind5 444×518×10 16.6

Ind2 1068×710×10 40.5 Ind4 227×740×11 16.7 Ind6 534×407×10 9.2

44

situation where a segment may exhaust all detour quotas like the example in Fig. 3.3(b) may happen. In

contrast, GRind gradually relaxes the scenic constraint for the rerouted nets, so the routing results of

GRind may violate the scenic constraint.

Table 3.2 adopts a net-based metric WCI and a grid-edge-based metric ACE to evaluate the routing

results of EGall, CAind and GRind, in which the unit of ACE is %. Table 3.2 shows that EGall respectively

runs 2.6× and 108.5× faster than CAind and GRind on average. (EGall and CAind use one thread, while

GRind uses four threads). In addition, the routing results obtained by EGall have better congestion than

that obtained by CAind, and the congestion analysis of the routing results obtained by EGall is similar to

TABLE 3.2 ROUTING RESULTS COMPARISON BETWEEN E-GRACE, INDUSTRIAL CONGESTION

ANALYZER AND REAL ROUTER

Wall

time(s)
WCI(100) WCI(90) ACE(0.5) ACE(1) ACE(5) ACE(10) ACE(20) WL (107)

EGall 188 2021 18781 92.93 88.88 82.18 80.84 79.47 27.03

CAind 368 13736 46925 98.30 93.49 85.05 82.41 80.17 26.94 Ind1
GRind 21222 1047 14335 88.66 86.27 82.85 81.64 80.32 27.05

EGall 436 767 52226 92.70 90.90 83.72 80.83 76.92 16.01

CAind 1987 6845 42893 94.24 91.54 83.99 80.86 78.47 16.30 Ind2
GRind 14649 41 10514 87.66 86.34 82.98 80.83 76.08 16.08

EGall 422 4257 166705 95.98 94.34 88.62 84.69 80.90 18.27

CAind 1697 16055 157971 97.34 95.37 89.09 85.38 81.40 17.90 Ind3
GRind 10376 895 29303 89.96 87.92 84.20 82.48 79.21 17.93

EGall 101 27 44100 92.68 90.95 84.27 81.46 74.48 8.14

CAind 162 22747 78090 101.57 98.62 88.20 83.70 76.12 7.99 Ind4
GRind 11064 104 9543 87.93 86.05 81.24 78.01 69.22 8.42

EGall 140 149 130556 93.80 92.58 89.07 86.85 83.83 11.82

CAind 216 4123 277376 95.03 93.77 90.59 87.91 84.32 12.05 Ind5
GRind 47261 1141 89904 94.62 93.48 90.91 88.82 85.66 11.39

EGall 51 1 1598 88.47 85.32 80.63 78.08 71.46 4.69

CAind 108 1478 3309 92.38 87.44 80.24 78.11 72.11 4.54 Ind6
GRind 1672 19 2788 86.33 84.77 80.63 76.61 67.44 4.56

EGall 1 1 1 1 1 1 1 1 1

CAind 2.633 394.608 1.706 1.040 1.032 1.017 1.011 1.012 0.994 Ratio
GRind 108.476 5.215 0.632 0.962 0.967 0.989 0.991 0.979 0.993

45

that of GRind. Table 3.2 reveals that EGall can achieve fast and accurate congestion estimation. Fig. 3.6

shows the congestion maps obtained by EGall, CAind and GRind for design Ind4.

3.4.2 Effectiveness of each Innovation in E-Grace
To evaluate individual innovations in this work, we run more detailed experiments in this section.

However, due to the licensing issue, the following experiments cannot adopt the designs shown in Table

3.1. Therefore, the following experiments adopt another suit of industrial designs shown in Table 3.3

and perform on a 2.4 GHz Xeon-based linux server with E5620 CPU.

3.4.2.1 Effectiveness of Relaxation-Legalization

To evaluate the effectiveness of each stage in relaxation-legalization method, we built several

versions of E-Grace to handle the scenic constraint. Table 3.4 lists the differences between each version,

in which EG1 does not have scenic legalization and post refinement stages, and set β and γ in Eq. (3.2)

to zero to totally ignore the scenic constraint in its entire flow. In contrast, EG2, EG3 and EGall use the

different levels of the relaxation-legalization method to handle the scenic constraint. Notably, tu in Eq.

(3.6) is set to 5 for each version.

TABLE 3.3 DESIGN INFORMATION
 Grid size #Nets(105) Grid size #Nets(105) Grid size #Nets(105)

Ind7 800×415×10 9.0 Ind9 704×413×10 10.6 Ind11 444×518×10 16.6

Ind8 774×570×10 8.0 Ind10 357×535×9 13.3 Ind12 425×516×10 13.9

Fig. 3.6. Congestions maps of Ind4 obtained by (a) CAind, (b) EGall, (c) GRind.
(a) (b) (c)

46

EG1 without consideration of the scenic constraint
EG2 EG 1 + Scenic legalization
EG3 EG2 + Default Eq. (3.2)
EGall EG3 + Post Refinement

TABLE 3.4 DIFFERENT VERSIONS OF E-GRACE

TABLE 3.5 EFFECTIVENESS OF USING RELAXATION-LEGALIZATION METHOD
TO HANDLE THE SCENIC CONSTRAINT

 CPU(s) WCI(100) WCI(90) ACE(0.5) ACE(1) ACE(2) ACE(5) ACE(10) ACE(20) WL(107) SV

EG1 40.42 1182 26950 95.50 92.92 90.36 85.51 82.60 79.71 11.18 4102

EG 2 46.29 4307 25206 97.63 94.45 91.03 85.46 82.51 79.40 11.06 0

EG 3 42.46 3554 25367 97.19 94.09 90.82 85.40 82.49 79.41 11.06 0
Ind7

EG all 45.63 3257 24216 96.61 93.52 90.25 85.03 82.30 79.29 11.06 0

EG1 43.19 2660 22103 98.25 94.58 91.14 85.27 82.02 76.85 10.94 4368

EG 2 44.12 5889 21407 99.08 95.88 91.63 85.13 81.72 76.34 10.83 0

EG 3 43.86 5556 21580 98.77 95.65 91.55 85.14 81.74 76.38 10.84 0
Ind8

EG all 44.54 5000 18985 97.93 94.75 90.69 84.61 81.42 76.14 10.83 0

EG1 30.61 752 9401 103.36 97.01 91.23 84.76 81.74 77.31 10.73 1909

EG 2 36.16 2305 10494 98.85 94.36 89.37 83.89 81.21 76.79 10.66 0

EG 3 31.13 2106 10488 98.89 94.34 89.35 83.89 81.20 76.78 10.66 0
Ind9

EG all 32.29 1098 9383 97.31 93.76 89.24 83.87 81.22 76.87 10.67 0

EG1 84.31 1343 13384 92.22 89.31 86.70 83.31 81.47 79.58 24.15 3883

EG 2 86.50 1788 16781 92.75 89.63 86.80 83.30 81.45 79.52 24.09 0

EG 3 85.89 1491 16683 92.61 89.53 86.75 83.29 81.44 79.52 24.10 0
Ind10

EG all 85.04 1681 13589 91.88 88.60 85.80 82.66 81.10 79.34 24.13 0

EG1 43.24 157 86159 94.23 92.65 91.49 89.63 87.15 83.81 15.14 10955

EG 2 45.33 123 77926 94.6 92.84 91.58 89.42 86.67 83.35 14.78 0

EG 3 44.08 123 77921 94.59 92.84 91.58 89.42 86.67 83.35 14.78 0
Ind11

EG all 45.55 77 77080 93.82 92.41 91.32 89.23 86.56 83.29 14.78 0

EG1 27.07 4359 52158 103.23 99.35 95.89 91.18 87.48 83.58 12.75 5286

EG 2 28.81 5353 51490 99.82 97.93 95.40 91.03 87.29 83.42 12.58 0

EG 3 28.36 5162 51690 99.83 97.90 95.33 90.99 87.26 83.41 12.58 0
Ind12

EG all 30.49 4480 50166 99.74 97.84 95.26 90.83 86.99 83.24 12.59 0

EG1 1 1 1 1 1 1 1 1 1 1

EG 2 1.081 2.044 1.028 0.994 0.999 0.998 0.997 0.997 0.996 0.989

EG 3 1.028 1.829 1.029 0.992 0.998 0.997 0.997 0.997 0.996 0.989
Ratio

EG all 1.067 1.478 0.938 0.985 0.992 0.992 0.993 0.994 0.994 0.989

47

Table 3.5 shows the routing results obtained by each version, in which SV denotes the number of

nets with the scenic violation. The scenic legalization stage in EG2 can eliminate all scenic violations

but worsens the congestion. Averagely, EG2 gets better ACE values but worse WCI(100) than EG1.

Although EG2 for design Ind11 obtains the results with better WCI(100) than EG1, EG2 has worse

ACE(0.5) than that of EG1. This phenomenon implies that only relying on either net-based metric or

grid-edge-based metric to evaluate the congestion may get a biased view, while using both metrics

provides a more comprehensive view.

EG3 has the consideration of the scenic constraint in the R&R stage, which reduces the number of

nets that need to be legalized in the scenic legalization stage. Hence, the runtime and overhead of

congestion degradation in the scenic legalization diminish. Compared to EG2, EG3 spends shorter

runtime to obtain better congestion results. Finally, EGall includes the post optimization stage to further

improve routing results, so EGall obtains better results than EG3.

3.4.2.2 Minimizing Overflow v.s. Minimizing Congestion

Compared to minimizing overflows, minimizing congestion ratio to approach TCR, say 80%, offers

more useful congestion information to help designers to identify the hotspots' locations. Figures 3.7(a)

and (b) show the congestion maps of design Ind11 obtained by EGall addressing on overflow

minimization and congestion ratio minimization, respectively. Obviously, Fig. 3.7(b) is more helpful to

distinguish the hotspots’ locations than Fig. 3.7(a). In Table 3.6, rows OV and CO list the congestion

analysis for Figs. 3.7(a) and (b), respectively. Notably, EGall both executes around 45 seconds to get the

results in rows OV and CO, but OV has lower WCI(100) than CO because OV focuses on eliminating

overflows.

 WCI (103) ACE
 100% 90% 0.5% 1% 2% 5% 10% 20%

OV 0.5 148.5 99.9 99.6 99.2 98.2 96.3 90.5
CO 4.5 50.2 99.7 97.8 95.3 90.8 87.0 83.2

TABLE 3.6 ROUTE IND11 WITH DIFFERENT OBJECTIVES

48

3.4.2.3 Effectiveness of Throughput Controlling

Table 3.7 shows EGall with different values of tu to trade off routing quality and runtime. Table 3.7

shows that the ACE metric monotonically improves and the runtime of EGall almost linearly increases

when tu increases. Also, WCI metric of the routing results except for design Ind9 monotonically

improves when tu increases. Table 3.7 reveals that the throughput controlling method can practically

trade off the runtime and quality.

To demonstrate that EGall with the same value of tu offers the stable runtime for any congestion

circumstance, we add extra blockages to each g-cell in Ind11 and then use EGall with tu=5 to route Ind11

with extra blockages. In Table 3.8, rows Ex0, Ex2 and Ex5 respectively show the congestion analyses

for the routing results of Ind11 with 0%, 2% and 5% extra blockages, in which the runtimes of Ex0. Ex2

and Ex5 are respectively 45.6, 44.2 and 47.4 seconds. Table 3.8 indicates that the runtime of EGall is

stable for different congestion circumstances, which can avoid the runtime of EGall being crazy when

other tools that cooperate with EGall worsen the congestion largely. Figure 3.8 shows the congestion

maps of Ind11 with 0%, 2% and 5% extra blockages.

Fig. 3.7. Routing results of Ind11. (a) Minimizing overflows; (b) minimizing congestion ratio to
approach 80%; (c) color scheme

 (a) (b) (c)

49

 EGall CPU(s) WCI(100) WCI(90) ACE(0.5) ACE(1) ACE(2) ACE(5) ACE(10) ACE(20) WL(107)

tu = 3 39.56 4209 29202 97.54 94.84 91.76 86.25 82.93 79.64 11.00

tu = 5 45.63 3257 24216 96.61 93.52 90.25 85.03 82.30 79.29 11.06

tu = 7 52.88 2941 18437 96.02 92.68 89.25 84.18 81.84 79.00 11.11
Ind7

tu = 9 60.42 2751 14633 95.58 92.08 88.44 83.69 81.58 78.84 11.15

tu = 3 39.31 5807 23629 98.59 95.94 92.04 85.42 81.85 76.32 10.79

tu = 5 44.54 5000 18985 97.93 94.75 90.69 84.61 81.42 76.14 10.83

tu = 7 51.39 4834 16185 97.71 94.32 89.89 84.13 81.14 75.99 10.87
Ind8

tu = 9 58.68 4705 14280 97.63 94.09 89.32 83.83 80.94 75.88 10.90

tu = 3 31.43 1142 12121 97.48 94.46 90.60 84.60 81.61 77.07 10.65

tu = 5 32.29 1098 9383 97.31 93.76 89.24 83.87 81.22 76.87 10.67

tu = 7 33.08 1004 6774 97.01 92.89 88.12 83.35 80.92 76.71 10.69
Ind9

tu = 9 33.65 1021 4227 96.63 91.96 87.04 82.86 80.62 76.55 10.71

tu = 3 70.38 2608 36888 95.31 92.30 88.84 84.30 81.95 79.72 24.01

tu = 5 85.04 1681 13589 91.88 88.60 85.80 82.66 81.10 79.34 24.13

tu = 7 100.08 1411 10996 90.21 86.54 83.98 81.60 80.51 79.09 24.26
Ind10

tu = 9 107.93 1395 10130 89.70 86.06 83.40 81.33 80.36 79.03 24.30

tu = 3 41.30 84 80837 94.68 93.31 91.92 89.90 86.95 83.48 14.72

tu = 5 45.55 77 77080 93.82 92.41 91.32 89.23 86.56 83.29 14.78

tu = 7 50.36 72 67575 93.32 92.07 91.06 88.69 86.18 83.09 14.82
Ind11

tu = 9 55.95 72 59844 92.64 91.54 90.71 88.19 85.85 82.93 14.89

tu = 3 29.83 5260 52432 99.81 98.21 95.76 91.29 87.47 83.52 12.56

tu = 5 30.49 4480 50166 99.74 97.84 95.26 90.83 86.99 83.24 12.59

tu = 7 33.63 2716 47227 99.45 97.32 94.59 90.28 86.61 83.04 12.62
Ind12

tu = 9 36.48 2388 43859 99.38 97.11 94.16 89.85 86.27 82.86 12.64

tu = 3 1 1 1 1 1 1 1 1 1 1

tu = 5 1.108 0.835 0.781 0.989 0.985 0.985 0.989 0.994 0.997 1.004

tu = 7 1.244 0.721 0.652 0.983 0.976 0.974 0.982 0.989 0.994 1.007
Ratio

tu = 9 1.367 0.701 0.551 0.979 0.971 0.967 0.977 0.986 0.992 1.010

TABLE 3.7 EFFECTIVENESS OF USING THROUGHPUT CONTROLLING METHOD
TO TRADE OFF RUNTIME AND ROUTING QUALITY

 WCI (103) ACE
 100% 90% 0.5% 1% 2% 5% 10% 20%

Ex0 0.08 77.0 93.8 92.4 91.3 89.2 86.6 83.3
Ex2 0.13 87.1 95.8 94.2 93.2 91.1 88.3 85.2
Ex5 2.5 137.7 98.4 97.2 96.1 94.0 91.3 87.6

TABLE 3.8 ROUTE IND11 WITH EXTRA BLOCKAGES

50

3.5 Summary
 This work enhances Grace to fulfill the industrial requirements to develop a industrial RCE tool

called E-Grace that takes TCR, local congestion, scenic and layer directive constraints into account. The

goal of E-Grace is to minimize congestion ratio rather than overflows, the proposed TCR-driven R&R

scheme can offer a satisfactory routing quality in a limited runtime budget. Further, a

relaxation-legalization method is presented to handle the scenic constraint, which can escape from the

local optimum to get better solution quality. Finally, by the proposed throughput controlling method,

users can trade off the runtime and quality of E-Grace to get deterministic routing results. Experiments

reveal that E-Grace is faster and more accurate than another industrial global-routing-based RCE.

Fig. 3.8. Routing results of Ind11 (a) without extra blockages; (b) with 2% extra blockages; (c) with
5% extra blockages.

 (a) (b) (c)

51

Chapter 4 Ropt: Optimization of Placement
Solutions for Routability

4.1 Introduction
To address the routability issue, the importance of the cooperation between placers and routing

congestion estimators (RCE) is highlighted in this dissertation. Practically, the proposed RCE tool

E-Grace has been adopted in industrial flow to cooperate with industrial placers for refining the

placement solution's routability. Also, the academic routability-driven placers in [42-45] adopt

global-routing-based RCEs to obtain a routing congestion map, and then move cells to optimize the

congestion based on the map as well as routability. However, as cells move, the congestion map also

changes, thereby affecting the effectiveness to improve routability.

To maintain the accuracy of the congestion map, IPR in [43] adopts global router FastRoute 2.0,

developed in [14], to obtain a congestion map at the beginning of the detailed placement stage, and then

incrementally updates the congestion map as cells move. For each cell ci, IPR identifies the optimal

region of ci that minimizes the half-perimeter wirelength (HPWL) associated with ci and swaps ci with a

cell in the optimal region. The cell chosen for swapping is the one that minimizes the congestion the

most. After that, IPR reroutes the nets connected to the swapped cells. This method always maintains a

global routing instance based on the current placement to offer accurate congestion information.

However, IPR decides the cell locations according to its HPWL optimal region. If the optimal region is

in a congested area, the congestion is hardly reduced.

To further compound the problem, most global routers [3-21] ignore the local congestion. As a

consequence, placers that are guided by these routers may produce hard-to-route placement solutions in

terms of detailed routing. In most global routing models, the placement is typically partitioned into an

array of uniform G-cells, and global routers identify the G-cell-to-G-cell routes for each global net, a

net whose terminals reside in different G-cells. However, the effects of the local nets, each of which has

52

terminals residing within a G-cell, are typically ignored. To minimize local congestion, an estimation

metric for local-routability was used by the detailed placer in [56] to guide the iterative movements of

cells from high-cost G-cells to low-cost G-cells. A G-cell with a lower cost means that the routing

within this G-cell is easier. However, the experiment in [56] reveals that this method may increase

global congestion. To simultaneously consider global and local congestions, the authors of [53] took

local pin density into account during global routing. If a G-cell has high pin density, the routing

capacities from the G-cell to its neighboring G-cells are reduced, in order to avoid routing too many

global paths through these G-cells. The remaining routing resources in the G-cell can be used for local

routing.

ISPD 2011 and DAC 2012 routability-driven placement contests [46, 47] adopt NCTU-GR 2.0 [18]

and BFG-R [7] to evaluate the routability of the contestants' placement solutions. However, the

evaluation may be biased because NCTU-GR 2.0 and BFG-R do not consider local congestions. Thus,

this work develops a translator to transform the placement solutions of the top four placers [38, 39, 42,

57] in DAC 2012 contest to the format that can be read in by commercial router Wroute [23] (version

3.0.61) to yield detailed routing results, and then analyzes how to optimize placement solutions that can

reduce the routing violations in the detailed routing results.

Based on the observation for the detailed routing results of the placement solutions of [38, 39, 42,

57], this work develops a routability optimizer Ropt that takes a placement solution and optimizes its

routability. Ropt combines both placement and global routing, and always maintains a global routing

instance based on the current placement solution. The global routing instance is built on a

local-routability-aware model. Therefore, the global routing instance provides both global and local

congestion information to guide the placement algorithms. In contrast to CRISP [44] and CROP [58],

which locally spread and shift cells, Ropt globally re-places cells to significantly improve the routability.

Ropt has following innovations:

(a) We propose new capacity and demand estimations in the global routing model to account for both

global and local congestion levels simultaneously, and generates a global routing instance based

53

on the proposed model. Similar to [53], the proposed model also considers pin density. However,

in contrast to [53], our model also places emphasis on the effect of blockages on routability.

(b) Rather than minimizing HPWL, the proposed routing-cost-driven global re-placement directly

improves routability by minimizing the routing cost of nets, as the routing cost is defined in terms

of congestion and wirelength. The estimation of routing cost is based on the global routing

instance, which is updated after every cell movement.

(c) This work presents a legalization scheme to preserve the global routing instance after legalization.

After that, the proposed local detailed placement further minimizes the local congestion and

wirelength without increasing global congestion.

(d) In addition to using NCTU-GR 2.0 to evaluate the routability of the placement solutions, this work

also uses Wroute [59] to obtain detailed routing results of the optimized placement solutions for

the evaluation of routability.

The rest of this chapter is organized as follows. Section 2 introduces the problem of

routability-driven placement. The case study for the placement solutions of [38, 39, 42, 57] is discussed

in section 3. Section 4 presents the design flow of Ropt. Section 5 summarizes the experimental results.

Conclusions are finally drawn in Section 6.

4.2 Problem Description
A circuit can be defined as a set of nets, where each net comprises a set of pins, each of which can be

located on a cell, a macro, or a pad. The placement problem deals with the determination of the

positions of cells and macros, with the goal of minimizing the (routed) wirelength used to connects all

the nets, subject to the constraints that there are no overlaps between cells and macros. The placement

area is partitioned into rows, the cells and macros must be aligned with the rows.

For the ISPD11 and DAC12 benchmark circuits [46, 47] used in this work, the positions of macros

are fixed. Therefore, the objective of this work is to re-place movable cells to improve routability,

subject to the constraints that the cells are aligned with the rows and that there are no overlaps in the

54

final placement solutions. This work uses NCTU-GR 2.0 and Wroute to evaluate the routability of the

placement solutions produced by the proposed optimizer Ropt on the circuits in [46, 47]. Global router

NCTU-GR 2.0 is selected to evaluate the routability of placement solutions in the DAC12 and

ICCAD12 placement contest. However, NCTU-GR 2.0 does not route local nets. Therefore, the impact

of local congestion on the real routability cannot be evaluated properly. Indeed, a good global routing

solution does not imply that a feasible detailed routing solution exists. For a thorough evaluation of the

real routability of the placement solutions produced by Ropt, we also feed the placement solutions to

Wroute to obtain the detailed routing results.

4.3 Case Study for Placement Solutions in DAC Contest
By holding ISPD 2011, DAC 2012 and ICCAD 2012 routability-driven placement contests, many

researchers were attracted to develop effective routability-driven placers. The top four placers in

DAC12 placement contests are, in alphabetical order, mPL [57], NTUplace [39], Ripple [38], and

SimPLR [42], this work adopts the their placement solutions in DAC12 contest to perform detailed

routing by Wroute and then do case study on their detailed routing results.

DAC12 contest adopts a global-routing-based metric to evaluate the routability of contestants'

placement solutions, thus the placers in [57, 38, 39, 42] treat this metric as the objective. In DAC12

contest, each placement solution P is global routed by BFG-R and NCTU-GR 2.0. For each global

routing solution GP, a global congestion metric PWC(GP) is computed by calculating the congestion

cost of each grid edge e in GP, and then adding up the average congestion costs of the top 0.5%, 1%, 2%,

and 5% congested grid edges. The score of a placement solution, denoted as S(P), in the DAC12 contest

is then computed as follows:

))(03.01()()(PGPWCPHPWLPS  , (4.1)

where HPWL(P) denotes the total half-perimeter wirelength of P. A lower S(P) implies better

routability. Although this global-routing-based metric take total wirelength, average congestion, and

peak congestion into account, but no experiment can show how accurately this metric can estimate real

55

routability of detailed routing. The next subsection introduces how to read in the placement solutions in

DAC 2012 and then to evaluate their real routability.

4.3.1 Framework for Performing Detailed Routing

The benchmark suite used in DAC 2012 placement contest [47] omits many physical design rules.

Thus, it is not suited to be the benchmarks of detailed routing. In this work, we develop a translator

based on the 28nm technology node to translate the placement solutions of [47] to LEF/DEF files and

then run commercial router Wroute [59] on these circuits to obtain detailed routing results. Because the

details of the design rules of the 28nm technology node are not readily available, we consult with

several senior engineers from various companies (vendors, design companies, and manufacturers) to set

reasonable routing parameters in the translator, in which the minimum wire width and via size are set to

42 nm and 56×56 nm2, respectively. The minimum spacing rule is set to 42 nm. Based on the default

setting in the benchmark suites [47], metal layers 1-4, 5-7, and 8-9 have 1X, 2X, and 4X the minimum

wire width, via size, and spacing, respectively.

In the benchmark suites of [47], some pins are not accessible because they are blocked by macros.

Thus, the translator moves these pins to the top layer of the macros to make these pins accessible. In

addition, some pads are located at the same positions, which would cause routing violations. Therefore,

the translator only reserves the pad that appears first in the benchmark files and removes the others that

are located at the same position. As only few pads are removed, the effect of such removals should be

negligible. In practice, many small obstacles and cell routings occupy the bottom layer and they

consume most of the routing resources there, leaving very little routing resource available for the

detailed routing of other components in the circuit. As [47] does not provide such information in the

bottom layer, the translator conservatively assumes that the bottom layer is not available for the detailed

routing of the placement solutions. However, vias are allowed to connect to pins at the bottom layer if

the routing resource is enough to insert vias.

After obtaining the translated LEF/DEF files, Wroute is invoked to perform (global and detailed)

56

routing in two iterations. The first iteration is the default routing mode and the second iteration is the

post routing mode. In the default mode, Wroute reports the number of unroutable nets after the global

routing stage and the unroutable nets are not routed in the detailed routing stage of the first iteration. In

the post routing mode, Wroute routes every net in detail and further minimizes the number of violations,

the total wirelength, and the number of vias of the routing result generated in previous iteration. The

runtime limitation for each iteration is 24 hours. We have tried to run Wroute for more iterations to

further optimize the detailed routing results. However, we typically observe only slight improvement

over the solutions obtained using only two iterations. We conclude that for the purpose of evaluating the

routability of placement solutions, running two iterations of Wroute strikes a good balance between

routing quality and runtime.

4.3.2 Mismatch between Global and Detailed Routability
Table 4.1 compares the placement solutions of mPL, NTUplace, Ripple, and SimPLR based on the

DAC12 metric, number of violations in detailed routing results, and TLMW, respectively. The definition

of TLMW will be introduced later. In DAC12 contest, global routers BFG-R and NCTU-GR 2.0 are

used to evaluate placement solutions. Thus, we use BFG-R and NCTU-GR 2.0 to get two global routing

results G1 and G2 for each placement solution, and then compute congestion penalty PWC(GP) by

averaging PWC(G1) and PWC(G2). Finally, the routability score for each placement solution is obtained

via Eq. (4.1), which is shown in the first major column in Table 4.1. To evaluate which placer’s

solutions have better routability, we follow the convention used in the DAC12 contest and rank the

placement solutions of each benchmark from 1 (best) to 4 (worst). After that, we average the rankings of

the solutions in each column to get the average ranking (AR) for each placer. In DAC12 contest, a

placer with smaller average ranking implies that this placer produces better routability placement

solutions.

In Table 4.1, NTUplace has a much lower AR than other placers based on the DAC12 metric, which

implies that NTUplace reduces both HPWL and global congestion well to obtain better routability

57

scores S(P) (Eq. (4.1)). However, based on the number of routing violations, NTUplace has a similar

AR compared to other placers. We suspect that local congestion is the main cause of such behavior. To

estimate the local congestion for each placement solution, we decompose every net into two-pin nets

based on the topology of a RMST and then add up the Manhattan distance between the terminals of

each local two-pin net to get the total local Manhattan wirelength (TLMW). If both terminals of a

two-pin net are within a G-cell, the two-pin net is regarded as a local two-pin net. The right major

column in Table 4.1 shows the TMLW of each placement solution, as well as the AR for each placer

based on TMLW; a solution with shorter TMLW gets a better ranking. Table 4.1 reveals that the orders

of AR based on the DAC12 metric and TLMW are reversed. This implies that a placement solution that

has a better routability score evaluated by the DAC12 metric has longer TLMW. However, a longer

TLMD may lead to local congestion and higher number of violations, which would cancel the benefit of

performing well on the DAC12 metric. Thus, the four placers have similar ARs based on the number of

violations.

 Figure 4.1 shows the placement solutions of s19 obtained by each placer. In these figures, the

white crosses and green rectangles denote the routing violations and big macros, respectively. Recall

TABLE 4.1 COMPARING THE PLACEMENT SOLUTIONS IN DAC12 CONTEST
BASED ON THE DAC12 METRIC, VIOLATIONS AND TLMW

DAC12 metric (107) Violations TLMW (105)
 Ripple mPL SimPLR NTUplace Ripple mPL SimPLR NTUplace Ripple mPL SimPLR NTUplace

s2 78.21 115.5 87.67 64.30 81227 113991 876 725813 97.14 79.33 98.99 99.48

s3 44.28 46.08 40.75 37.60 243 231 194 988 103.83 84.29 98.65 100.52

s6 36.93 41.12 36.94 36.68 232 231 361 637 118.60 93.39 115.40 117.11

s7 47.00 51.86 131.04 40.52 300 170 5402 168 171.10 144.15 168.27 175.28

s9 30.00 33.80 28.93 26.70 8136 68 22 89 102.69 84.97 103.12 103.18

s11 36.27 44.66 38.51 34.73 433 11009 1840 697 100.53 79.92 102.66 102.69

s12 37.38 53.03 37.69 31.68 155 343637 241 94 178.82 160.60 87.70 177.62

s14 23.89 27.45 25.68 22.96 19086 271799 224239 18446 65.39 51.01 63.25 66.86

s16 27.23 30.7 35.81 28.27 38 36 135 24 87.70 70.53 87.70 88.83

s19 16.95 22.78 16.63 15.33 110 276 72777 15114 56.64 47.30 56.58 58.96

AR 2.2 3.8 2.9 1.1 2.3 2.6 2.7 2.4 3 1.1 2.2 3.7

58

that the big macros are treated as routing blockages in the routing stage. We can see that most routing

violations occur near blockages. Accordingly, we recognize some patterns that easily cause violations

between blockages and cells. The placement solutions obtained by Ripple in DAC12 contest contain

fewer such patterns, and therefore have fewer violations. These patterns will be presented in the next

sub-section.

4.3.3 What Causes Routing Violations
As placers are now getting better in resolving global congestion issue, it is more critical than ever

that they consider local congestion in the optimization process. Otherwise, the placers may further

accentuate the local congestion problem by turning global nets into local nets. To consider local

congestion in the early stage, the works in [50, 56] developed local congestion estimation metrics based

on the pin density; however, they did not consider the effect of blockages. Figure 4.1 shows that most

violations occur near blockages. This implies that incorporating the effect of blockages into local

congestion estimation metrics may improve the accuracy of the metrics in predicting local congestion.

We list some reasons why most violations near blockages based on our observations. (1) The global

placement stage in placers would place cells on blockages. After legalization, these cells are pushed to

the fringe of blockages, resulting in high congestion around the fringe of these blockages. (2) Routing

wires cannot access pins that are too close to blockages because of spacing rules. (3) Although routing

wires can stride over blockages via the high routing layers, the routing wires hardly use the high layers

in the congested regions. (4) Routing wire bypassing blockages would increase the via count, which

 (a) (b) (c) (d)
Fig. 4.1. Placement solutions of s19 obtained by (a) Ripple; (b) mPL; (c) SimPLR; (d) NTUplace.

59

may make designs harder to route. However, the placement and global routing stages usually ignore the

routing overhead incurred by vias.

To take a deeper look why blockages cause violations, Fig. 4.2 provides the local views of the most

congested regions in some placement solutions. In Fig. 4.2(a), many cells are placed in a narrow

channel between blockages. In Fig. 4.2(b), many cells are placed into a narrow channel between a

blockage and the design’s boundary. In Fig. 4.2(c), many cells are adjacent to a big blockage. Note that

we do not show the violations in Fig. 4.2 because doing so would make it impossible to view the cells

and blockages, as the number of violations are just too high. Such patterns in Fig. 4.2, which cause

violations, are commonly found in the placement solutions in DAC12 contests. Even if a placement

solution can be easily globally routed, routing violations still exist in the placement solution if the

Fig. 4.2. The local views of the most congested region in (a) the placement solution of mPL; (b) the
placement solution of Ripple; (c) the placement solution of NTUplace for s19.

(b) (c)

(a)

60

patterns shown in Fig. 4.2 exist. We believe that violations can be reduced if placers avoid placing too

many cells into narrow channels and preserve a small space between cells and big blockages.

4.4 Proposed Routability Optmizer
Figure 4.3 shows the design flow of Ropt. Given a set of nets and an initial placement, Ropt first

constructs a global routing model with local routability taken into consideration. Next, each net is

decomposed into two-pin nets based on the topology of a RMST, and then an initial global routing

instance is generated by pattern routing and monotonic routing. Thereafter, routing-cost-driven global

re-placement stage re-places each cell and immediately updates the global routing instance after each

cell moves. Legalization stage aligns the cells on the row and removes overlaps; the goal of this stage is

to preserve the global routing instance after legalization. Finally, local detailed placement further

minimizes the local congestion and wirelength. Ropt iteratively refines the placement until a user

defined terminating condition is met. In our implementation, we iterate the process up to two times (see

Table 4.3 in Section 5 on the experimental setup).

4.4.1 Local-Routability-Aware Global Routing Model
Two global routing approaches are generally used in multi-layer global routing problem. The first

one performs global routing on a three-dimensional (3D) grid graph to get a 3D routing result. The

second approach first projects a 3D grid graph into a two-dimensional (2D) grid graph. Then, a 2D

Fig. 4.3. Design flow of the proposed routability optimizer Ropt

61

global router is used to obtain a 2D routing result. Finally, a layer assignment step transforms the 2D

routing result to a 3D routing result. The former has a larger solution space than the latter has, but the

latter is much faster than the former. In order to quickly extract the congestion information to guide the

placement process, this work builds the global routing instance based on a 2D routing approach.

In the 2D global routing model, the given placement is modeled to a 2D grid graph G(V, E), where V

denotes the set of G-cells, and E refers to the set of grid edges. Each grid edge connects two adjacent

G-cells. The capacity c(e) of grid edge e is the number of routing tracks that can legally cross the

abutting boundary, and the demand d(e) of e is the number of global routing path passing through e. If

d(e) exceeds c(e), too many global routing paths are passing through e, which implies global congestion.

Thus, global congestion can be measured in terms of d(e) and c(e). Note that, two terms G-cell and cell

are used in this chapter; a G-cell means a bin in the global routing model, while a cell means a primitive

instance to be placed in the placement problem.

This work accounts for local-routability in the estimations of capacities and demands of grid edges.

Therefore, when the global router in the proposed flow finds the least-cost routing paths whose cost

formulation is based on the new capacity and demand estimations, the global and local congestion can

be simultaneously considered and reduced. The following equation has been used in many 2D global

routers to estimate grid edge capacity [7-21]:




Ll ll bbBTbbTec)),(),(()(2121 , (4.2)

where b1 and b2 are the adjacent G-cells of grid edge e, L is the set of layers, and Tl(b1, b2) and BTl(b1,

b2) represent the number of routing tracks and the number of routing tracks blocked by big macros at

layer l between b1 and b2, respectively. This capacity estimation disregards the vias and local routes in

the adjacent G-cells. However, the presence of vias and local routes can make it hard for a design to be

detailed routed. Based on the case study in previous section, we observed that the vias and local routes

in b1 and b2 increase as the number of blocked tracks between b1 and b2 increases. The increased vias

and local routes would further block the tracks between b1 and b2, and more blocked tracks necessitate

more detour and vias for a path to cross the boundary between b1 and b2. As the number of blocked

62

tracks increases, the edge capacity decreases more than linearly. To capture this effect, this work

estimates the capacity of a grid edge with the following equation:












 







Ll l

Ll l

Ll l
bbT

bbT
bbBT

ec),()
),(
),(

1()(' 21
21

21  , (4.3)

where α is a user defined constant; we set α to be 2.5 in this work. (In this work, there are many

parameters that can be tuned. We select these parameters based on empirical results. However, once set,

these parameters stay the same throughout the experiment. We do not change the parameters according

to the benchmark circuits, although it may be wise to do so to obtain better results.) Moreover, it has

been demonstrated in [50] that the pin densities in b1 and b2 also affect the routability between b1 and b2.

Thus, we estimate the demand placed on e as follows:













 

)
)(

)(
)(

)(()()('
2

2

1

1

Ll lLl l bA
bp

bA
bpeded  , (4.4)

where d'(e) denotes the number of routing tracks used by global and local paths between b1 and b2, in

which d(e) is the number of routing tracks used by global paths, and the second term denotes the

number of estimated routing tracks used by local paths. Since detailed routing is yet to be performed to

realize local paths, we simply use pin density to estimate the number of local paths, the concept is

similar to [50]. In Eq. (4.4), p(b1) and p(b2) denote the number of pins in b1 and b2, respectively. Al(b1)

and Al(b2) denote the areas which are not covered by macros in b1 and b2 at layer l, respectively. β is a

user defined constant, and we set it to be 1500.

Many global routing papers [7, 14, 11, 17] discuss how to formulate the routing cost in terms of the

global congestion based on c(e) and d(e) (and possibly other relevant metrics) and then find the

least-cost routing path for each net to minimize the global congestion. This work adopts the routing cost

formulation presented in [17], but replaces c(e) and d(e) by c'(e) and d'(e), respectively, in order to

consider local-routability. This local-routability–aware routing cost function is used in the initial routing

and global re-placement stages.

63

4.4.2 Routing-cost-driven Global Re-Placement
As minimizing the total routing cost can directly improve the congestion, we formulate such a

routing cost minimization problem as that of finding the optimal placement G-cell bm for a movable cell

ci in the global re-placement stage to minimize the routing cost. Also, to avoid placing too many cells

into a G-cell, each G-cell has to satisfy a bin density constraint. The problem of Finding Optimal

Placement G-cell (FOPG) for ci is concisely formulated by the following equations (for ease of

explanation, if ci is placed into bm, we assume all pins of ci are inside bm):

  
 

)(),())(,(

)(min
iji jm

m cNppn pbbreRb
eroutC (4.5)

)1()())('-)('(
321

4 edecCCCCeroutC  (4.6)

 tm DbD )(s.t. (4.7)

Equation (4.5) is the objective equation of FOPG problem, R is the set of candidate G-cells for placing

ci, N(ci) denotes the set of two-pin nets connecting to ci, and n(pi, pj) represents a two-pin net whose

terminals are pins pi and pj. Pin pi is on ci and pj is on the other cell, macro or pad. When ci is placed

into bm, pi is in bm; b(pj) denotes the G-cell containing pj. r(bm, b(pj)) denotes the least-cost global

routing path from bm to b(pj), e is a grid edge passed by r(bm, b(pj)), and routC(e) denotes the routing

cost of e. The formulation of routC(e) in Eq. (4.6) is inspired by [17], in which C1, C2, C3 and C4 are

user defined constants; we set them to 25, 20, 2.72 and 0.3, respectively. Moreover, Eq. (4.7) is the bin

density constraint; D(bm) denotes the bin density of bm, which is the total area of cells in bm divided by

the area of bm. If D(bm) exceeds Dt, it is called bin overflow. In this work, we set Dt to 0.9.

The proposed routing-cost-driven global re-placement stage uses a heuristic method to solve the

FOPG problem. This method first identifies a set of candidate G-cells for placing ci and then evaluates

the cost of placing ci in each candidate G-cell. Finally, ci is placed into the G-cell with minimal placing

cost. The cost of placing ci in bm is calculated as follows:

  
 


)(),())(,(

)()()(),(
iji jmcNppn pbbmre

mmim eroutCbhbdesCcbp , (4.8)

64









otherwise))((

)(if)(
)(

tmt

tmm
m

DbDD
DbDbD

bdesC



, (4.9)

where p(bm, ci) denotes the cost of placing ci in bm, desC(bm) denotes the penalty because of the bin

density of bm, and mr(bm, b(pj)) denotes the least-cost monotonic routing path from bm to b(pj).

Moreover, h(bm) is the history cost of bm; it has an initial cost of 1 and it increases by 1 when the

placement of a cell in bm causes bin overflow. Incrementally increasing history cost can gradually

decrease bin overflows. In Eq. (4.9), κ and μ are user defined constants. In this work, we set κ and μ to 1

and 1000, respectively. Accordingly, if D(bm) exceeds Dt, the bin density cost becomes very large.

Figure 4.4 shows the algorithm to solve the FOPG problem. Line 1 first identifies a minimum

bounding box enclosing ci and the pins with connection to ci, and then extends the boundaries of the box

by γ units of G-cells. The G-cells within the box are regarded as the candidate G-cells for placing ci. For

example, in Fig. 4.5(a), the G-cells in the red box are the candidate G-cells for placing ci when γ is one.

A larger γ offers a bigger solution space but longer runtime; γ is set to 5 in this work. In line 2, ci is

ripped-up from the placement and the two-pin nets in N(ci) are also ripped-up from the global routing

instance O (Fig. 4.5(b)).

Line 3 computes the bin density and the associated penalty (via Eq. (4.9)) of each G-cell in R and

stores the penalties in matrix Tc. In Line 5, monotonic routings from b(pj) to four corner G-cells in R are

performed. Monotonic routing can obtain a least-cost monotonic path from the source to each G-cell in

Algorithm Solving FOPG problem
Input: a movable cell ci, global routing instant O
1. RidentifyPlacingRegion(ci)
2. Rip_up(ci, N(ci), O)
3. TcgetBinDesityCost(R)
4. foreach two-pin net n(pi, pj)∈N(ci)
5. TrgetRoutingCost(b(pj), R, O)
6. Tc = Tc + Tr
7. end foreach
8. Place ci into the G-cell with the minimal placing cost
9. Monotonic_Routing(N(ci) ,O)

Fig. 4.4. Pseudo code of the algorithm for FOPG problem.

65

the minimum bounding box enclosing the source and target. So, the monotonic routings from b(pj) to

four corner G-cells in R can obtain the least-cost of the monotonic path from b(pj) to every G-cell in R.

After that, the routing costs are stored in matrix Tr. In Fig. 4.5(c), the gray rectangles represent

congested regions, the arrows depict the directions of monotonic routings, and the number in each

G-cell denotes the least-cost of the monotonic path from b(p1) to each G-cell. For simplicity, we assume

in this example that routC(e) is 10 if e crosses a congested region, and 1 otherwise. When the iterations

from lines 4 to 7 in Fig. 4.4 terminate, Tc contains for each G-cell in R, the cost of placing ci in that

G-cell. Finally, line 8 places ci into the G-cell with minimal cost and line 9 routes the monotonic paths

of every two-pin net in N(ci) and updates O (Fig. 4.5(d)). The time complexity of this algorithm is

O(|R|*|N(ci)|) where |R| and |N(ci)| denote the number of G-cells in R and the number of two-pin nets

connected to ci, respectively.

Fig. 4.5. (a) the G-cells in the red box are the placing candidates for ci; (b) rip-up ci and the two-pin
nets in N(ci); (c) the number in each G-cell denotes the least-cost of monotonic path from b(p1) to
each G-cell; (d) place ci into the G-cell with minimal placing cost and reroute the two-pin nets in
N(ci).

 (c) (d)

 (a) (b)

66

The global re-placement stage performs the algorithm in Fig. 4.4 for every cell in each round. In our

implementation, this stage runs for four rounds. Notably, this stage simply places cells at the center of

the assigned G-cells. The definite locations of cells are decided in the following stages: legalization and

local detailed placement.

4.4.3 Legalization with Global Routing Preserved
After global re-placement, many cells have overlaps and are not aligned with the rows. The duty of

legalization is to align cells on the rows and remove overlaps. Most legalizers [60, 61] minimize the

total displacement of cells as the main objective is to ensure consistency between the global placement

solution and the legalized solution. Instead, the objective of our legalizer is to preserve the global

routing instance after legalization. In order to minimize the change to the global routing instance, if the

global re-placement stage places a cell in G-cell bm, our legalizer attempts to keep this cell in bm.

Our legalizer is similar to Abacus [60], but with a different objective. First, every cell is sorted in

increasing ordering according to its x-coordinate. Next, for each cell ci, our legalizer tentatively moves

ci to its neighboring rows rk and calculates the cost of moving ci to rk. Then, ci is moved to the best row

with the lowest cost. In Abacus, the cost formulation is based on the displacement of ci. Instead, this

work calculates the cost as follows,

)(),(

))(,(),,(),,(
)(

kki

cPp kmkmikmi

rcurcm

pbbdrbcaorbcmc
i



  


, (4.10)

where ci is placed into G-cell bm in the global re-placement stage, mc(ci, bm, rk) denotes the cost of

moving ci to row rk, ao(ci, bm, rk) denotes the area of ci out of bm when ci is moved to rk, P(ci) denotes

the set of pins belonged to ci, b(pk) denotes the G-cell containing p when ci is moved to rk, and d(bm,

b(pk)) denotes the index distance between b(pk) and bm. For example, if the indexes of bm and b(pk) in

the grid graph are (x, y) and (x', y'), respectively, d(bm, b(pk)) is |x-x'|+|y-y'|. Moreover, m(ci, rk) is the

displacement of ci when ci is moved to rk, cu(rk) is the capacity utilization of rk which is between zero

and one. μ and σ are user defined constants. In our implementation, μ and σ are set to 1000 and 100,

67

respectively. Since the global routing instance would change if ci moves out of bm, Eq. (4.10) gives the

high penalty of mc(ci, bm, rk) if ci moves out of bm.

4.4.4 Local Detailed Placement
This stage addresses the problem of minimizing the local wirelength in each G-cell to reduce local

congestion. To avoid degrading the global routability, this stage does not move a cell from its original

G-cell to another G-cell so as to ensure that the global routing instance remains the same. Performing

detailed routing in each G-cell can get accurate local wirelength and congestion information but is

time-consuming. Thus, this stage simply uses Manhattan distance to measure the local wirelength in

each G-cell. If the terminals of a two-pin net n are both in G-cell bm, the local wirelength of n is

measured by the Manhattan distance between its two terminals. If a terminal of n is outside bm, the

terminal is projected on the boundary of bm and the local wirelength of n in bm is measured by the

Manhattan distance between the projected terminal and inside terminal.

Figure 4.6 shows the pseudo code of local detailed placement, in which C(bm) denotes the set of cells

that are entirely in bm, i.e. the cells in C(bm) do not cross the boundaries of bm; sj denotes a segment of

rows within bm, u is a user defined terminating condition, we set it to be 5. Local detailed placement

Algorithm Local Detailed Placement
Input: Grid Graph G(V, E)
1. for it =1 to u
2. foreach bin bm ∈ V
3. foreach cell ci ∈ C(bm)
4. Cell_Swapping(ci, C(bm))
5. foreach segment sj within bm
6. Sliding_Window(sj, C(bm))
7. foreach cell ci ∈ C(bm)
8. Moving_to_Empty_Spot(ci, C(bm), bm)
9. end foreach
10. end for

Fig. 4.6. Pseudo code of local detailed placement

68

adopts cell swapping, sliding window and moving cells to empty spots methods to greedy improve local

wirelength. In Fig. 4.6, line 4 tentatively swaps ci with other cells in C(bm). If there exists at least a legal

swap that can reduce the local wirelength, line 4 picks the legal tentative swap with the best

improvement to perform an actual swap. A legal swap means that the swapped cells are entirely in bm

and they do not cause cell overlap. Line 6 adopts the sliding windows method [62] to re-order the cells

in sj for minimizing the local wirelength. We use a window size of 5 cells in this work. Line 8

tentatively moves ci to an empty spot in bm. If there exists at least a legal move that can reduce the local

wirelength, line 8 picks the legal tentative move with the best improvement to perform a real move.

Again, a legal move is one that does not cause cell overlap.

4.5 Experimental Results
The proposed algorithms are implemented in C/C++ on a quad-core 2.4 GHz Xeon-based linux

server with a 50GB memory (only a single core is used). This work uses the placement solutions of

NTUplace to be the input placement for Ropt. NTUplace won the DAC12 routability-driven placement

contest [47], and the placement solutions of NTUplace in the contest are downloaded from [63]. Table

4.2 shows the design information in the benchmark suit used in the DAC12 placement contest, in which

"Total Nodes" denote the total number of movable cells, fixed macros and fixed pads, "Design Util."

Bench-mark

Total
Nodes

Movable
Cells

Fixed
Macros

Fixed
Pads

Total
Nets

total
Pins

Design
Util.(%)

Design
Den.(%)

s2 1014029 921273 59312 33444 990899 3228345 76 28

s3 919911 833370 55033 31508 898001 3110509 73 42

s6 1014209 919093 65316 29800 1006629 3401199 73 43

s7 1364958 1271887 66995 26076 1340418 4935083 76 58

s9 846678 789064 37574 20040 833808 2898853 73 47

s11 954686 859771 67303 27612 935731 3071940 79 40

s12 1293433 1278084 8953 6396 1293436 4774069 56 44

s14 634555 567840 44743 21972 619815 2049691 72 50

s16 698741 680450 419 17872 697458 2280931 69 46

s19 522775 506097 286 16392 511685 1714351 78 49

TABLE 4.2 BENCHMARKS' INFORMATION

69

denotes the ratio of the total area of the movable cells and fixed macros to the area of the placement

region, and "Design Den." denotes the ratio of the total area of the movable cells to the free-space in the

design. The free-space is the area of the placement region minus the total area of the fixed macros.

This work proposes four features: local-routability-aware global routing model (LGM) with new

resource and demand estimates, routing-cost-driven global re-placement (RGP), legalization with global

routing preserved (LRP) and local detailed placement (LDP). To show the effectiveness of each feature,

several versions of Ropt are built to evaluate the effects of these features. Table 4.3 lists the features of

each version, in which the column “iteration” is the terminal condition in Fig. 4.3. Notably, the versions

without LGM adopt c(e) and d(e) rather than c'(e) and d'(e) to formulate the routing cost in Eq. (4.6),

and the Ropt1, which does not use LRP, uses Abacus [60] instead of the proposed legalizer.

4.5.1 Global Routability: Evaluation by NCTU-GR 2.0
For the evaluation of the effect of the proposed algorithm on global routability, we use Ropt1, Ropt2

and Ropt3 to optimize the placement solutions of NTUplace, and then use NCTU-GR 2.0 to generate the

global routing result of each placement solution. Because LGM and LDP address the issues of local

wirelength and congestion, the effectiveness of Ropt4, Ropt5 and Ropt6 cannot be evaluated by global

routers. Therefore, Ropt4, Ropt5 and Ropt6 are evaluated by Wroute in the next sub-section. Notably,

NCTU-GR 2.0 is a public global routing tool with several tunable parameters. We set the parameters of

via cost, wirelength optimization level, pattern routing iteration, monotonic routing iteration and post

routing iteration in NCTU-GR 2.0 to 1, 50, 2, 2 and 1, respectively. The rip-up and rerouting stage in

Features Versions
LGM RGP LRP LDP iteration

Ropt1  1
Ropt2   1
Ropt3   2
Ropt4    2
Ropt5    2
Ropt6     2

TABLE 4.3 ROPT WITH DIFFERENT FEATURES

70

NCTU-GR 2.0 iterates until either an overflow-free result is obtained or the iteration number is more

than 25.

Table 4.4 shows the routing results of each placement solution, in which WLg, Viag, Rcpu and Pcpu

denote the total global routing wirelength (105), global routing via count (105), NCTU-GR 2.0’s runtime

(sec) and Ropt’s runtime (sec), respectively. The routing results of NTUplace are treated as the baseline;

Ratioind is the average of the ratio of individual entries in the same column, while Ratiosum denotes the

ratio of the sum of each column. The routing overflows are not listed in Table 4.4 since every routing

result is overflow-free. Table 4.4 reveals that Ropt1 has worse WLg, Viag and Rcpu than NTUplace. This

implies that even though the global re-placement may optimize a global routing instance, the

legalization stage can worsen the global routing result when the legalizer is oblivious to the global

routing instance. On the other hand, Ropt2, which uses the proposed legalizer to preserve the global

routing instance, can on the average improve WLg, Viag and Rcpu by 3.6%, 9.2% and 27.8%,

respectively, when compared to NTUplace. In addition, the overflow issue in the Ropt2’s solutions can

be easily resolved by the pattern and monotonic routing stages in NCTU-GR 2.0. Consequently,

 NTUplace NTUplace+Ropt1 NTUplace+Ropt2 NTUplace+Ropt3
 WLg Viag Rcpu WLg Viag Rcpu Pcpu WLg Viag Rcpu Pcpu WLg Viag Rcpu Pcpu

s2 178.43 55.37 471.62 179.51 62.81 325.89 611.98 173.75 49.00 236.08 594.14 173.07 48.22 234.00 1143.15

s3 109.15 50.75 270.28 109.99 57.45 283.69 483.58 104.44 46.37 204.97 479.23 103.61 45.62 184.03 908.00

s6 104.37 51.64 169.73 107.09 61.26 175.29 445.01 100.67 47.11 120.18 445.15 100.09 46.34 115.86 829.15

s7 127.57 75.00 128.12 129.39 85.02 118.74 746.92 122.02 69.24 100.28 739.33 121.11 68.27 94.44 1409.29

s9 77.08 41.15 88.69 78.99 49.06 78.65 638.75 73.89 37.59 62.85 643.26 73.37 36.97 60.62 1152.00

s11 103.38 45.77 109.75 105.69 53.35 102.85 322.33 100.38 41.86 90.86 322.34 99.82 41.33 83.11 615.59

s12 109.52 70.80 111.74 113.16 83.85 108.24 1002.11 104.22 64.02 82.20 1048.66 103.20 62.97 81.92 1821.92

s14 69.19 33.95 87.11 70.85 38.72 90.25 307.41 67.63 31.20 72.07 320.11 67.31 30.82 66.02 576.04

s16 79.13 33.06 154.94 81.84 41.34 250.24 261.45 76.77 29.69 91.18 263.02 76.42 29.12 81.75 500.49

s19 46.79 25.19 41.38 48.02 30.40 39.03 608.24 44.68 22.46 32.30 612.08 44.42 22.11 31.33 1101.72

Ratioind 1 1 1 1.022 1.173 1.009 0.964 0.908 0.722 0.958 0.894 0.681

Ratiosum 1 1 1 1.020 1.167 0.963 0.964 0.909 0.669 0.958 0.895 0.632

TABLE 4.4 GLOBAL ROUTING RESULT COMPARISON BETWEEN
NTUPLACE, ROPT1, ROPT2 AND ROPT3

71

NCTU-GR 2.0 does not have to invoke the more time-consuming maze routing stage as frequently.

Therefore, the runtime of NCTU-GR 2.0 decreases. For example, in case s16, after the monotonic

routing stage in NCTU-GR 2.0, 105430 and 14363 overflows remain in the placement solutions of

NTUplace and Ropt2, respectively. Also, Ropt2 allows many nets to have simple routing solution,

thereby reducing via count. Moreover, Ropt3 can on the average reduce WLg, Viag and Rcpu, respectively,

by 4.2%, 10.6% and 31.9%, when compared to NTUplace. Table 4.4 shows that the placement solutions

can be further improved as the Ropt runs more iterations, but the improvement gradually diminishes.

4.5.2 Effective Routability: Evaluation by Wroute
Because global routers ignore the local nets within G-cells, using global routers to evaluate

placement solutions may encourage placers to push many nets into a G-cell to improve global routing

results. However, the local congestion would make it harder to route such designs in the detailed routing

stage. To examine that Ropt can really improve routability, we via the proposed translator feed the

placement solutions to Wroute, and then evaluate the routability based on their detailed routing results.

Table 4.5 shows the detailed routing results of the placement solutions obtained by NTUplace, in which

NUN is an indicator in Wroute to estimate the global routability (lower NUM means better global

NTUplace Bench
marks NUN Vio WLd (107) Viad (106) Rcpu

s2 2169 725813 67.80 12.28 48:33:08
s3 1450 988 39.99 11.05 13:06:50
s6 921 637 39.17 11.49 11:02:01
s7 419 168 48.31 16.93 13:17:31
s9 1112 89 29.19 9.62 08:49:18
s11 313 697 38.63 10.19 11:52:41
s12 120 94 42.73 17.01 11:26:41
s14 2352 18446 26.81 7.46 21:57:51
s16 78 24 29.19 7.72 06:59:38
s19 414 15114 18.11 5.99 16:42:50

TABLE 4.5 DETAILED ROUTING RESULTS OF NTUPLACE

72

routability), Vio denotes the routing violations that are caused by opens, shorts or spacing errors, and

Rcpu (hh:mm:ss) denotes the runtime of Wroute.

Table 4.6 compares the detailed routing results of Ropt3, Ropt4, Ropt5 and Ropt6 with NTUplace.

Because Ropt3 improves the global routing results, NUN is reduced by 35.2% on the average. However,

TABLE 4.6 DETAILED ROUTING RESULT COMPARISON BETWEEN NTUPLACE,
ROPT3, ROPT4, ROPT5 AND ROPT6

 NTUplace+Ropt3 NTUplace+Ropt4
 NUN Vio WLd(107) Viad(106) Rcpu Pcpu NUN Vio WLd(107) Viad(106) Rcpu Pcpu

s2 1003 800 67.25 12.30 14:03:40 00:18:45 552 693 67.27 12.27 13:55:41 00:24:13

s3 728 369 39.62 11.40 11:34:13 00:14:58 270 205 39.57 11.37 10:31:41 00:17:28

s6 243 267 39.46 12.03 11:27:09 00:14:14 113 217 39.36 12.00 10:38:46 00:16:27

s7 192 152 48.11 17.34 12:44:58 00:24:46 110 132 48.06 17.33 12:05:44 00:27:17

s9 394 875 29.44 9.97 10:11:47 00:20:38 51 37 29.42 9.95 07:24:35 00:22:59

s11 258 464 38.80 10.50 11:30:38 00:11:17 119 421 38.85 10.50 10:22:15 00:12:52

s12 119 1226 43.20 18.17 16:14:58 00:33:23 65 431 42.94 18.07 14:41:42 00:35:32

s14 2007 15736 27.18 7.78 23:19:04 00:10:40 1482 22656 27.09 7.72 19:27:56 00:11:46

s16 65 26 29.70 8.22 06:45:03 00:08:40 0 22 29.66 8.23 06:38:53 00:10:13

s19 386 6814 18.30 6.31 16:10:48 00:19:23 287 2411 18.20 6.29 11:49:00 00:21:31

Ratioind 0.648 2.763 1.005 1.040 0.971 0.312 0.924 1.003 1.037 0.851

Ratiosum 0.577 0.035 1.003 1.039 0.818 0.326 0.036 1.001 1.036 0.718

 NTUplace+Ropt5 NTUplace+Ropt6
 NUN Vio WLd(107) Viad(106) Rcpu Pcpu NUN Vio WLd(107) Viad(106) Rcpu Pcpu

s2 989 693 66.55 11.96 14:26:49 00:23:58 538 664 66.59 11.94 12:49:11 00:27:01

s3 771 312 39.00 11.00 10:41:40 00:19:37 279 201 38.95 10.95 09:10:16 00:20:01

s6 267 283 38.79 11.60 09:59:04 00:18:55 108 218 38.71 11.56 09:38:43 00:19:37

s7 191 174 47.42 16.94 11:46:12 00:29:23 113 136 47.38 16.92 12:20:41 00:31:32

s9 357 69 28.91 9.67 07:40:39 00:25:57 58 24 28.91 9.65 07:48:57 00:26:16

s11 234 441 38.27 10.23 10:35:36 00:14:30 147 422 38.32 10.22 10:53:57 00:15:07

s12 103 259 42.11 17.41 12:11:41 00:42:11 72 96 41.83 17.32 10:54:10 00:42:57

s14 1998 14913 26.82 7.54 22:40:07 00:12:35 1457 10374 26.74 7.48 17:22:44 00:13:53

s16 62 26 29.15 7.84 06:15:12 00:11:25 0 24 29.13 7.86 06:10:00 00:13:03

s19 367 2745 17.93 6.07 10:01:30 00:23:06 268 265 17.83 6.05 06:40:36 00:23:51

Ratioind 0.619 0.803 0.988 1.005 0.826 0.322 0.483 0.987 1.002 0.759

Ratiosum 0.571 0.026 0.987 1.005 0.710 0.325 0.016 0.985 1.002 0.634

73

Ropt3 does not consider the local wirelength and congestion, resulting in increases in violations,

wirelength and vias. Furthermore, Ropt4 uses LGM to consider global and local congestions

simultaneously. Therefore, Ropt4 yields fewer NUN and violations than Ropt3. Because Ropt4 does not

minimize the local wirelength, local routing can still cause violations, see s14 for example. To minimize

the local wirelength and congestion, Ropt5 uses LDP to get fewer violations, shorter wirelength, and

fewer vias than Ropt3. Notably, since the only difference between Ropt5 and Ropt3 is LDP, the global

routing results of Ropt5 and Ropt3 are similar. Thus, Ropt5 and Ropt3 yield similar NUN. Finally, Ropt6

involves all features proposed in this work, it can minimize NUN, violations, wirelength and runtime. In

particular, compared to the results for NTUplace in Table 4.5, the runtime for s2 is reduced from 48

hours to 13 hours; the number of violations in s19 is reduced from 15114 to 265.

By comparing Table 4.4 and Table 4.6, a big gap between global and detailed routing results can be

found. Ropt3 seems to get better results than NTUplace in Table 4.4, but it increases violations,

wirelength and vias in its detailed routing results. In addition, the via improvement of Ropt3 in Table 4.4

and Table 4.6 has a big mismatch because global routing model does not consider the vias generated by

local routes. However, the vias generated by local routes are considerable. These imply that optimizing

a placement for improving quality of its global routing result may not help in improving its effective

routability in the detailed routing stage.

The top four placers in DAC12 placement contest, in alphabetical order, are mPL, NTUplace, Ripple,

and SimPLR. To further evaluate the effectiveness of Ropt, we perform Ropt6 to optimize the placement

solutions of mPL, Ripple, and SimPLR in DAC12 contest. Tables 4.7, 4.8 and 4.9 reveal that Ropt6 can

reduce NUN, violations, total wirelength, via count and routing runtime in most placement solutions.

Finally, Table 4.10 treats the detailed routing results of NTUplace as the baseline to compare the

detailed routing results of mPL, NTUplace, Ripple, SimPLR and Ropt6.

74

TABLE 4.8 COMPARING DETAILED ROUTING RESULTS OF RIPPLE AND ROPT6
 Ripple Ripple +Ropt6
 NUN Vio WLd(107) Viad(106) Rcpu NUN Vio WLd(107) Viad(106) Rcpu Pcpu

s2 1743 81227 72.77 12.67 32:26:26 802 5928 70.18 12.26 23:01:26 00:25:32

s3 566 243 43.55 11.58 10:47:19 323 180 41.53 11.45 09:50:43 00:19:45

s6 267 232 40.96 11.77 10:35:16 146 235 40.07 11.83 09:34:46 00:18:26

s7 703 300 53.83 17.77 13:28:38 383 128 51.90 17.58 13:23:08 00:28:40

s9 125 8136 32.46 10.03 09:21:58 31 32 31.49 10.01 07:52:09 00:27:18

s11 115 433 40.22 10.48 11:14:55 89 428 38.70 10.42 10:50:42 00:13:37

s12 167 155 47.13 17.91 12:05:03 56 113 44.87 17.96 11:23:14 00:39:18

s14 1220 19086 27.79 7.59 11:16:24 961 10559 27.41 7.64 09:49:46 00:13:05

s16 129 38 29.17 7.92 06:13:12 41 50 29.11 8.04 06:16:49 00:10:51

s19 518 110 19.35 6.21 05:37:44 76 111 18.83 6.20 05:02:08 00:22:00

Ratioind 1 1 1 1 1 0.473 0.685 0.970 0.996 0.904

Ratiosum 1 1 1 1 1 0.524 0.162 0.968 0.995 0.870

TABLE 4.7 COMPARING DETAILED ROUTING RESULTS OF MPL AND ROPT6
 mPL mPL+Ropt6
 NUN Vio WLd(107) Viad(106) Rcpu NUN Vio WLd(107) Viad(106) Rcpu Pcpu

s2 2068 113991 80.08 13.40 40:44:26 520 3033 76.79 12.65 18:00:13 00:25:15

s3 649 231 44.93 11.56 10:32:16 83 175 42.85 11.25 09:13:55 00:22:15

s6 892 231 45.42 12.22 10:13:03 125 243 43.92 12.00 09:36:14 00:20:49

s7 1525 170 55.55 18.44 14:13:09 153 144 53.13 17.93 12:28:56 00:29:16

s9 573 68 34.22 10.32 08:34:57 42 55 33.08 10.14 07:19:49 00:27:09

s11 531 11009 47.48 11.31 22:16:53 218 527 45.93 10.97 11:17:07 00:14:50

s12 994 343637 47.58 19.18 48:49:04 537 23309 44.69 18.71 20:16:41 00:39:59

s14 1717 271799 31.10 7.96 36:07:43 709 75677 30.17 7.72 15:47:54 00:13:43

s16 127 36 31.90 8.00 07:11:05 1 36 31.27 7.88 06:25:10 00:10:49

s19 811 276 20.74 6.43 05:57:55 164 358 19.89 6.27 05:51:20 00:25:31

Ratioind 1 1 1 1 1 0.227 0.618 0.962 0.973 0.722

Ratiosum 1 1 1 1 1 0.258 0.140 0.961 0.972 0.568

75

4.5.3 Comparison between Abacus and Our Legalizer
Table 4.11 shows the detailed comparison between Abacus used in Ropt1 and our legalizer used in

Ropt2, in which Dmax, Davg, BDmax and BDavg denote the maximum displacement, average displacement,

maximum bin displacement and average bin displacement of cells after legalization, respectively.

Notably, if the center of a cell before and after legalization is respectively located at G-cells bi and bj,

TABLE 4.9 COMPARING DETAILED ROUTING RESULTS OF SIMPLR AND ROPT6
 SimPLR SimPLR+Ropt6
 NUN Vio WLd(107) Viad(106) Rcpu NUN Vio WLd(107) Viad(106) Rcpu Pcpu

s2 553 876 69.67 12.47 14:37:14 170 686 67.65 11.99 13:37:42 00:23:23

s3 487 194 45.59 11.71 10:26:24 226 206 43.21 11.21 09:30:40 00:20:03

s6 443 361 41.54 11.80 10:26:33 71 236 40.56 11.63 09:26:07 00:17:41

s7 518 5402 55.44 18.15 15:40:00 302 170 50.91 17.46 12:08:27 00:29:15

s9 786 22 31.09 9.94 08:53:54 51 32 30.35 9.81 08:04:55 00:24:18

s11 979 1840 39.27 10.49 15:41:12 504 913 38.70 10.40 11:56:58 00:13:31

s12 715 241 46.98 17.80 12:04:46 277 117 44.89 17.76 11:06:29 00:37:47

s14 1459 224239 28.65 7.71 24:24:14 823 50725 28.05 7.53 12:51:33 00:12:23

s16 434 135 30.31 7.97 06:42:16 126 39 29.95 7.99 06:03:54 00:10:35

s19 510 72777 18.72 6.12 17:55:16 226 388 18.38 6.08 05:56:17 00:21:53

Ratioind 1 1 1 1 1 0.378 0.549 0.968 0.982 0.787

Ratiosum 1 1 1 1 1 0.403 0.175 0.964 0.980 0.736

 Ratioind Ratiosum
 NUN Vio WLd(107) Viad(106) Rcpu NUN Vio WLd(107) Viad(106) Rcpu

NTUplace 1 1 1 1 1 1 1 1 1 1

NTUplace+Ropt6 0.322 0.483 0.987 1.002 0.759 0.325 0.016 0.985 1.002 0.634

Ripple 0.846 9.882 1.068 1.036 0.827 0.594 0.144 1.072 1.038 0.752

Ripple+Ropt6 0.356 0.616 1.036 1.032 0.755 0.311 0.023 1.037 1.033 0.654

SimPLR 1.952 6.097 1.070 1.037 0.975 0.736 0.402 1.072 1.040 0.836

SimPLR+Ropt6 0.751 0.891 1.035 1.018 0.748 0.297 0.070 1.033 1.019 0.615

mPL 2.082 369.029 1.153 1.078 1.378 1.058 0.973 1.155 1.083 1.249

mPL+Ropt6 0.672 25.639 1.109 1.048 0.842 0.273 0.136 1.110 1.053 0.710

TABLE 4.10 COMPARISON BETWEEN THE DETAILED ROUTING RESULTS OF THE PLACEMENT

SOLUTIONS IN DAC12 CONTEST.

76

the bin displacement of this cell is the index distance between bi and bj. Table 4.11 reveals that our

legalizer obtains longer Davg but shorter BDavg than Abacus.

Traditional legalizers usually focus on minimizing Davg to ensure consistency between the global

placement solution and the legalized solution. Instead, our legalizer attempts to keep cells in the G-cells

assigned by the global re-placement stage in order to preserve the global routing instance. Therefore, the

average bin displacement is reduced. Tables 4.4 and 4.11 reveal that a legalizer minimizing average bin

displacement may identify better placement solutions than minimizing average displacement in the

routability-driven placement problem.

4.6 Summary
In this work, we first study the detailed routability of the placement solutions obtained by

state-of-the-art routability-driven placers [57, 38, 39, 42]. Based on the observation of case study, we

develop a routability optimizer Ropt that takes a placement solution and then optimizes its routability

for both global routing and detailed routing. Ropt combines both placement and global routing. A global

routing instance is built to provide the congestion information for placement algorithms. This work

 Abacus used in Ropt1 Our legalizer used in Ropt2
 Dmax Davg BDmax BDavg Time(sec) Dmax Davg BDmax BDavg Time(sec)

s2 306 11.025 10 0.742 2.98 333 17.738 11 0.138 4.08

s3 945 12.867 24 0.728 2.76 913 19.612 27 0.174 3.82

s6 840 13.830 24 0.749 2.82 836 20.649 24 0.168 4.14

s7 1391 13.944 43 0.721 3.6 1391 20.363 43 0.207 5.04

s9 691 12.680 22 0.754 2.21 691 19.604 22 0.190 2.87

s11 3089 13.594 83 0.771 2.09 3083 20.170 83 0.199 2.99

s12 595 12.285 17 0.791 4.5 595 19.935 17 0.159 7.53

s14 1292 14.770 38 0.718 1.43 1305 21.122 37 0.198 33

s16 872 13.421 22 0.738 1.86 872 20.210 22 0.139 2.86

s19 165 12.582 4 0.746 1.1 142 19.443 4 0.151 1.8

Ratioind 1 1 1 1 1 1.088 1.609 1.100 0.185 1.369

Ratiosum 1 1 1 1 1 0.998 1.518 1.010 0.231 2.688

TABLE 4.11 COMPARISON BETWEEN ABACUS AND OUR LEGALIZER

77

presents local-routability-aware global routing model, routing-cost-driven global re-placement,

legalization with global routing preserved, and local detailed placement to optimize the routability.

Finally, NCTU-GR 2.0 and Wroute are both adopted to evaluate the routability of Ropt’s placement

solutions. The experiment results obtained by both routers reveal that Ropt can improve routing

congestion, wirelength and runtime of a given placement.

78

Chapter 5 NCTU-GR 2.0: Global Routing
with Bounded-Length Maze Routing

5.1 Introduction
By holding global routing contests, ISPD07 and ISPD08 have attracted many researchers to develop

robust and effective modern global routers. Table 5.1 shows the main features of each global router.

Most of these routers apply the negotiation-based rip-up and rerouting, which is first introduced in

PathFinder [22]. All of them focus on minimizing overflow first, and then wirelength and computation

time. To lower computation time, most of modern global routers develop several efficient routing

algorithms or acceleration approaches. Archer [10] proposed U-shaped pattern routing; NTUgr [12]

presented escaping routing and FastRoute4.0 [16] developed 3-bend routing. Although many newly

proposed routing algorithms can efficiently speed up path searching, maze routing is still the most

important algorithm to seek a feasible or better connection after other routing algorithms fail in each

global router even if it is relatively slow to explore the routing region as compared to other routing

algorithms, such as pattern routing and monotonic routing algorithms. Most of modern global routers

design various types of routing cost functions to balance total wirelength and total overflows. FGR [3]

uses Lagrange multipliers and the negotiation technique to identify a routing cost function.

NTHU-Route2.0 [8] dynamically adjusts the base cost to balance the used wirelength and remaining

overflows. NCTU-GR [17] applies two-stage cost functions to accelerate early-stage routing and to

enrich the capability of tackling hard-to-route nets. Although formally proposed routing cost functions

avoid producing too much wirelength to eliminate overflows, they have no specific way to control the

increase in wirelength. In this work, an optimal but slow bounded-length maze routing (BLMR)

algorithm is proposed to identify the minimum-cost point-to-point path with wirelength below a length

constraint. Besides, a heuristic BLMR algorithm is proposed to tackle the runtime issue of optimal

BLMR algorithm.

79

The RCE tool Grace presented in Chapter 2 can obtain a satisfactory global routing result in a short

runtime budget. However, Grace cannot always continue to improve routing quality as the given

runtime budget increases since Grace would spend too much routing resource at the beginning of

routing stages such that Grace has no routing resource to refine the routing quality in the later routing

stage. Accordingly, how to carefully use routing resource at the beginning of routing stages is a critical

issue for global routers but not for RCE tools. In order to carefully use routing resource and thus yield

better global routing results, we make the following contributions to global routing research in this

work:

(a) This work addresses the BLMR problem, which involves identifying a minimal-cost path from a

two-pin net’s source to target with a specified length constraint. In the global routing problem,

BLMR not only restricts the searching region by constraining every net’s wirelength to speed up

maze routing, but also avoids producing an overly long wirelength, conserving routing resources.

(b) To deal with a multi-terminal net routing, most global routers decompose each multi-pin net into

several two-pin subnets, and then route each two-pin net individually, potentially diminishing the

global view of optimizing a Steiner tree. The proposed RSMT-aware routing scheme can provide a

global view to two-pin net routings, shortening the wirelength of multi-pin nets.

Global routers Main features
FGR [3, 7] Discrete-Largrange based routing cost, branch-free net topology

Maize-Router [8] Extreme fast edge shifting

Box-Router 2.0 [9] ILP-based box expansion

Archer [10] U-shaped pattern routing

NTHU-Route 2.0 [11] New history based cost function

NTUgr [12] Multiple forbidden-region expansion, escaping routing

FastRoute [13-16] Virtual capacity, 3-bend routing

NCTU-GR [17] Pseudo Random Ordering, dual cost functions

GRIP [4, 5] 3D ILP-based global router performing on cluster-computing platform

MGR [6] Multi-level 3D global routing

TABLE 5.1 MAIN FEATURES OF MODERN GLOBAL ROUTERS

80

(c) The routing cost function is the common key for global routers to impact the routing quality. This

work presents a dynamically adjusted history cost function to quickly learn which grid edges are

critical. The routing resources on critical edges can be more carefully allocated to the nets that

really demand these routing resources.

(d) The proposed NCTU-GR 2.0 invokes the abovementioned techniques and adopts different net

ordering methods in different internal routing stages, with a single set of control parameters for

all benchmarks to run faster and obtain shorter connections than the other state-of-the-art

academic global routers.

The rest of this chapter is organized as follows. Section 2 reviews global routing problem. Section 3

presents BLMR algorithms, RSMT-aware routing scheme and dynamically adjusted history cost

function. Section 4 presents NCTU-GR 2.0 based the proposed approaches. Section 5 summarizes the

experimental results. Finally, Section 6 draws conclusions.

5.2 Problem Description
The global routing is formulated as the routing problem on a grid graph G(V, E) , where V denotes

the set of G-cells, and E denotes the set of grid edges. Each grid edge is termed by the adjacency of the

related G-cells to its two end nodes. The capacity c(e) of a grid edge e indicates the number of routing

tracks that cross the abutting boundary. The number of wires that pass through grid edge e is called the

demand of the grid edge d(e). The overflow of a grid edge e is defined as the amount of demand in

excess of capacity. Moreover, the total overflow is the sum of overflows on all grid edges of E, and the

Fig. 5.1. (a) Maze routing within a bounding box; (b) maze routing without bounding box.
(a) (b)

81

maximum overflow is the maximum overflow among all edges. Given a set of nets, each of which is a

set of pins. The objective of global routing problem is to find routing paths to connect each net, and

minimize the maximum overflow, total overflow, total wirelength, and finally runtime.

5.3 Proposed Approaches to Improve Routing Quality
This section introduces three kernel techniques used in NCTU-GR 2.0, i.e., BLMR, RSMT-aware

routing scheme, and dynamically adjusted history cost function.

5.3.1 BLMR
Maze routing is the most time-consuming process in modern global routers. Many global routers

adopt a bounding box to limit the searching region of maze routing for acceleration. The initial

bounding box is set to be slightly larger than the minimum rectangle that encloses all terminals of a net

and, then, is gradually relaxed if the routing cannot be completed. However, maze routing within a

bounding box may produce redundant wirelength and wastes routing resources. For instance, in Fig. 5.1,

there are two overflow regions (dark regions). Maze routing within a bounding box is employed to

connect source s to target t in Fig. 5.1(a), and maze routing without boundary constraint is employed in

Fig. 5.1(b). The latter routing path is much shorter than the former. In this case, maze routing within a

bounding box produces redundant wirelength and occupies extra routing resources, increasing the

difficulty of identifying overflow-free routing paths in subsequent routings. Note that, because the

proposed unilateral monotonic routing and HUM routing in Chapter 2 apply a bounding box for

accelerating routing, their routing solutions may also have redundant wirelength. Accordingly, in

NCTU-GR 2.0, we develop BLMR to speed up maze routing by limiting the routing length rather than

the searching region while routing each two-pin subnet. Limiting the routing length not only can limit

the searching region, but also can improve routing resource utilization by lessening redundant

wirelength. The BLMR problem is formulated as follows. In a 4-tuple (s, t, G, L), s and t denote a

source and a target, respectively; G represents the congestion graph; the grid edge in G has specified

82

congestion cost; and L represents the bounded-length constraint (BLC) (L is not less than the Manhattan

distance between s and t). The objective of the BLMR problem is to identify a minimal-cost path from s

to t on graph G, and the wirelength of the path cannot exceed L. If the wirelength of the path is longer

than L, a bounded-length violation is generated.

BLMR problem can be regarded as a restricted version of constrained shortest path (CSP) problem.

In general CSP problem, a delay and a cost for every edge in a graph are specified. The delay of an edge

may be the length of the edge or the signal latency from a terminal of the edge to another terminal. CSP

algorithm attempts to identify a minimal-cost path from s to t, ensuring that the total delay of the

identified path does not exceed an upper bound. The general version of CSP problem is NP-complete

when the delay of each routing edge is a real number [24]. However, this problem can be solved in

polynomial time if the delay of the each routing edge is an integer [25, 26]. Several studies [24-26] have

addressed this problem for its applications in Quality of Service area.

Compared to CSP problem, BLMR problem owns some particular properties that are not in the

general CSP problem. For instance, while CSP algorithm works on a general graph, BLMR algorithm

works on a grid graph of specific 2D array structure with each vertex having at most four neighbors,

which makes BLMR algorithm may be faster than CSP algorithm on solving global routing problem.

Also, global routing problem owns the following particular properties:

1. The graph in global routing is a grid graph, and the distance from any node to the target can be

estimated by simply Manhattan distance. Thus, a path possibly violating length constraint can be

detected in the constant time.

2. The region to explore in a grid graph during routing can be restricted within a specified area;

however, the studies [25, 26] scan entire routing graph, and thus consume much time.

3. In global routing, a net may be ripped up and re-routed several times to identify its final path. The

paths of a net identified in two successive rerouting iterations make use of most routing edges in

common. The proposed history-based estimated wirelength scheme utilizes this property.

83

Before detailing the proposed BLMR algorithms, the definitions of used notations are listed as

follows. L denotes the bounded length, Pi(s, v) denotes a path from source s to node v, wl(Pi) denotes the

wirelength of Pi, pc(Pi) is the path cost of Pi, and Manh(v, u) is the Manhattan distance from v to u.

Notably, the proposed BLMR algorithm adopts A* search scheme for acceleration of path search.

Therefore, pc(Pi) comprises the routed cost from s to the current node and the estimated lower bound

cost from the current node to t.

5.3.1.1 Optimal-BLMR

Optimal-BLMR algorithm adopts two different policies than traditional maze routing to obtain a

minimum-cost routing solution under BLC. First, we define the potential wirelength (pwl) for each

incomplete routing path P(s,v) as the sum of wl(P(s,v)) and Manh(v,t) where v is an currently explored

grid node, and a path with pwl exceeding L is regarded as a path violating BLC. Optimal-BLMR

discards the paths violating BLC, and then restricts the searching region. Figure 5.2(a) shows the

searching region of a net on the graph while L is set to 9. Second, assuming that there are two or more

paths from s to v, traditional maze routing only preserves the minimum-cost path and discards others.

However, in optimal-BLMR, this scheme does not guarantee to identify a feasible solution because the

length slack of the minimum-cost path may be less than the wirelength required to detour around

congested regions, where the length slack of P(s,v) is L minus wl(P(s,v)). For instance, Fig. 5.2(b)

shows two path candidates P1 and P2 from s to v: the gray regions are congested regions, the

Fig. 5.2. (a) The search region of the net while L is set to 9; (b) two path candidates P1 and P2
from s to v; (c) ewk(v, t) represents estimating wirelength from v to t in iteration k

(a) (b) (c)

84

bounded-length is 16, and pc(P1), pc(P2), wl(P1) and wl(P2) are 80, 90, 11 and 5, respectively. If

optimal-BLMR only preserves the minimum-cost path P1, the length slack of P1 is 5, which is too small

to detour around congested regions to reach t. Because the wirelength from v to t is uncertain before the

end of routing, optimal-BLMR must preserve both paths. However, if the following inequalities hold,

P1 is considered to be inferior to P2 and can be discarded.

)()(and)()(2121 PpPpPwPw ccll  . (5.1)

S(v) is a list of node v to store the paths from the source s to node v, any two of which do not conform to

Eq. (5.1). For each vV, S(v) is initially set as empty. While storing all currently explored paths, a

Fibonacci heap H is initialized to have only s. At the beginning of each routing iteration, the

minimum-cost path is selected from H for further routing. The optimal-BLMR algorithm is designed as

follows.

1. Extract the minimum-cost path P(s,v) from H. If v is t, return P(s,t) as the solution and exit;

2. Explore each neighboring node of v, say node u. If the newly explored path P(s,u) does not conform

to BLC, discard P(s,u); otherwise perform Step 3. Go back to Step 1 after exploring each neighbor of

v.

3. Scan every path candidate in S(u) and remove the inferior paths to P(s,u) from S(u) and H. If P(s,u) is

not inferior to any path in S(u), P(s,u) is inserted into S(u) and H.

Notably, if a net lacks adequate length slack to detour around all congestions to reach the target,

optimal-BLMR would identify a routing path passing through congestions. A net passing through

overflowed grid edges is called overflowed net, which will be rerouted in the next iteration.

The step 3 of optimal-BLMR takes the time complexity of O(|S(u)|) to scan every path in S(u), where

|S(u)| denotes the number of path candidates in S(u). The maximum size of S(u) is derived as follows.

Lemma 1. For an optimal-BLMR subject to the constraint Manh(s,u)+Manh(u,t) L, where s, t, and u

are respectively the source, the target and an intermediate node, the maximum size of S(u) is

(L–Manh(s,u) –Manh(u,t)+1)/2.

85

Proof. The shortest path candidate in S(u) is the path of wirelength Manh(s,u), and the longest path

candidate in S(u) must not exceed L–Manh(u,t) due to BLC. Thus, the paths in S(u) have at most

((L–Manh(u,t))–Manh(s,u)+1) possible wirelength levels. Moreover, because a detour increases the

wirelength by two in unit of grid edge, the number of possible wirelength levels becomes

(L–Manh(u,t)–Manh(s,u)+1)/2. When Eq. (5.1) is adopted to prune the inferior paths, S(u) only

reserves the lowest cost path in each wirelength level. Hence, the maximum size of S(u) is

(L–Manh(u,t)–Manh(s,u)+1)/2.

5.3.1.2 Heuristic-BLMR

Although the proposed heuristic-BLMR approach cannot guarantee the optimal solution, it is much

faster than optimal-BLMR. The difference between optimal-BLMR and heuristic-BLMR is that

heuristic-BLMR preserves only one path from the source to the current node, and the other paths are

discarded. Accordingly, the major issue of heuristic-BLMR is to determine which path candidate should

be preserved.

Path selection involves examining each path to determine whether or not the required wirelength to

bypass the congested regions from the current node v to target t does not exceed the length slack, then

heuristic-BLMR preserves the minimal-cost path with enough length slack. If no path candidates have

enough length slack, the shortest path candidate is preserved because the shortest path has a greater

chance to bypass the congested regions. However, the congestion information from v to t is not explored

yet, hence the history-based estimated wirelength of the path from v to t is estimated as follows:

),(
),(),(),(1 tsManh

tvManhtsHLtvew kk   (5.2)

where ewk(v,t) is the history-based estimated wirelength from v to t in iteration k (Fig. 5.2(c)), k denotes

the iteration number of the NRR stage, and HLk-1(s,t) is the history length, i.e., actual routed wirelength

from s to t in iteration k–1. The concept behind Eq. (5.2) is that the length from v to t is proportional to

the length from s to t at previous iteration. Based on Eq. (5.2), heuristic-BLMR predicts that P(s,v) has

sufficient length slack to bypass the congested regions from v to t if the following equation holds,

86

 LtvewvsPw kl ),()),((. (5.3)

If multiple paths conform to Eq. (5.3), the minimum-cost path is preserved. If no path conforms to Eq.

(5.3), the shortest path is preserved. This policy ensures that a path is only preserved to greatly reduce

the number of explored routing paths during heuristic-BLMR. If Eq. (5.2) overestimates the wirelength

from v to t in the previous iteration, the long path candidates tend to be discarded by Eq. (5.3), which

selects the short path candidates as the final routing path. Hence the estimated wirelength from v to t

using Eq. (5.2) at current iteration decreases. Similarly, if Eq. (5.2) underestimates the wirelength in the

previous iteration, the estimated wirelength will increase in the current iteration. As a result, as the

iteration number increases, Eq. (5.2) gradually becomes more accurate in estimating the actual

wirelength from v to t.

This work evaluates the accuracy of Eq. (5.2) by the following experiment. As heuristic-BLMR

identifies a routing path at iteration k, an internal node v is selected randomly in the identified path and,

then, the difference between HLk(v,t) and ewk(v,t) is computed. According to the experiment on

benchmark adaptec1, the average difference of all nets is 54% at the first iteration of the NRR stage; the

average difference then gradually decreases to 30% at iteration five. Following iteration five, the

average difference swings between 25% and 30%. However, if only the average difference of the first

20% long nets is calculated, the average difference ranges from 10% to 20% after iteration five,

implying that Eq. (5.2) more accurately estimates long nets than short nets.

While closely resembling each other, the heuristic-BLMR algorithm and optimal-BLMR differ only

in that the former always preserves at most one path in S(v), vV. When S(v) already contains a path

and a new path P(s,v) is explored, the path selection scheme proposed in this sub-section chooses the

proper path to be preserved in S(v) and H. Inaccurate estimation by Eq. (5.2) in heuristic-BLMR may

yield unnecessary overflows, increasing the required iterations to remove unnecessary overflows.

87

5.3.1.3 Bounded-Length Relaxation

In the NRR stage of this work, BLC is designed to control the routing resource utilization. Initially,

the routed wirelength is strictly limited since overusing routing resources in the early stage likely

inhibits subsequent routings from finding overflow-free paths, and increases runtime as well. While a

routing cannot avoid congested regions under the strict BLC, BLC is gradually relaxed to encourage

heuristic-BLMR to yield fewer overflows at the expense of a longer wirelength as the process iteration

proceeds. However, overly relaxing BLC in a later stage only gives rise to a large increase in the

wirelength, yet cannot help to resolve overflows. A bounded-length relaxation scheme is thus

formulated as follows:

))arctan(1(),(  ktsManhL nn
k
n , (5.4)

where k
nL is the bounded-length of two-pin net n in the k-th routing iteration. The first term is the

Manhattan distance between two terminals of n, and the second term is the scaling factor of the

bounded-length; α and β are user-defined positive constants. Figure 5.3 displays the relation between

the routing iteration number and the scaling factor as α and β are set to 9 and 1.5, respectively.

According to Fig. 5.3, the NRR stage can be roughly divided into three phases. The first phase is from

iteration 1 to 8, in which the scaling factor increases roughly linearly. In phase 1, most overflows are

removed and total wirelength increases slightly. The experiments on benchmarks [2] show that about

99.9% of total overflows are removed using only few seconds in this phase, and total wirelength only

Fig. 5.3. Relationship between the routing iteration number and the scaling factor.

Iteration k

arctan(k-9)+2.5

88

increases by 2.3%. In the second phase, the scaling factor increases rapidly from iteration 9 to 15.

Although the searching region of each net is expanded by enlarged k
nL , only a small number of nets

must be rerouted. Accordingly, this phase also takes only little time. Most benchmarks of [2] are

finished in this phase. In the final phase (iteration>16), the scaling factor grows very slowly to avoid

producing an overly long wirelength and enlarging the search region too much.

The runtime and routing quality of the proposed router are impacted by the values of α and β. The

value of α refers to the number of iterations in phase 1, while the value of β refers to the search region

of each net. Increasing α encourages the proposed router using shorter wirelength to eliminate

overflows, thus the proposed router can yield the final result with less wirelength at the cost of longer

convergence period. Increasing β encourages an increase in the wirelength of the routing result with the

number of routing iterations to be decreased. For the hard-to-route cases, large α and small β are

effective for the proposed router to avoid producing too much wirelength and consuming additional

routing resources at early stage, which increases the difficulty of eliminating overflows. For the

easy-to-route cases, small α and large β are effective for the proposed router to complete the routings. In

this work, α and β are set to 9 and 1.5, respectively.

5.3.2 RSMT-Aware Routing Scheme
Regarding the ability of the proposed scheme to decompose a net into multiple two-pin subnets, the

proposed RSMT-aware routing scheme is characterized by RSMT and RMST. In the RMST

decomposition stage, each net is first decomposed into several two-pin nets by RMST. Thereafter, the

RSMT-aware routing scheme first constructs one RSMT for reference and then encourages the routing

of each subnet to pass through the regions passed by RSMT. The terminals of a RSMT consist of pins

and Steiner points. Two connected terminals are linked with a straight path or an L-shape path. For a

RSMT of net N, a grid edge e is a skeleton edge associated with N if e is passed by a straight path of the

RSMT. SE(N) denotes the set of skeleton edges associated with N.

Figures 5.4(a)–5.4(d) illustrate the three steps to build RSMT-aware routing scheme for a four-pin

89

net N. Three steps are performed at the stages of RMST decomposition and RSMT-aware scheme

construction. Then, during the monotonic routing stage, the NRR stage and the post refinement stage,

BLMR and monotonic routings use this scheme to evaluate the routing cost of grid edges. The details

are listed as follows:

1. FLUTE and Kruskal’s algorithm are first employed to yield a RSMT as the ideal routing tree and a

RMST to decompose net N into several two-pin nets (Fig. 5.4(a)).

2. Identify skeleton edge set SE(N) (shadow regions in Fig. 5.4(b)) using the identified RSMT in the

first step .

3. Each two-pin net of RMST is associated with SE(N) to form the RSMT-aware scheme. This

association is used as follows. In Fig. 5.4(c). Net N’s RMST is split into three two-pin nets, n1, n2,

and n3. The edges in SE(N) will be assigned with less costs to encourage the routing wires of net N

to pass through the edges in SE(N) (Fig. 5.4(d)) when the router performs monotonic or BLMR

routing of n1, n2, and n3.

(a) (b)

Fig. 5.4. (a) FLUTE and Kruskal algorithm are employed to yield one RSMT and one RMST; (b) the
grid edges in the shadow regions are the skeleton edges of this net; (c) RMST is combined with SE;
(d) the RSMT-aware routing result.

(c) (d)

90

The proposed RSMT-aware routing scheme differs from other routers mainly in that, in the proposed

scheme, a paragon RSMT is used for reference; the routing tree can then be easily amended to approach

the paragon one as nearby regions become un-congested. Other routers normally refine the cost function

to enable the subsequent routing to share the grid edges used in previous routing. However, for instance,

if the path of n1 in Fig. 5.4(d) is an upper L-shaped path, the next routing, e.g., n2, cannot reuse the grid

edges in the path of n1. In addition, RSMT-aware routing scheme can restore the routing of a net to its

RSMT at the post-refinement stage as congestions are eliminated. For instance, if the overflows

(congested regions in gray color) in Fig. 5.4(d) are eliminated and subnets n1 and n2 are rerouted with

RSMT-aware routing scheme, the routing path will pass through the Steiner point in Fig. 5.4(a) and look

very similar to the RSMT in Fig. 5.4(a).

5.3.3 Dynamically Adjusted History Cost Function
With RSMT-aware cost function, a grid edge is assigned with different cost values to different nets

to encourage a net to pass the grid edges in its skeleton edge set. For the routings of two nets, say N1

and N2, if grid edge e is in the skeleton edge set of N1 but not in that of N2, the proposed cost function

assigns the cost of edge e for net N1 as a value less than that for net N2, which can better routing

resource utilization by supporting each net to use the edges in its skeleton edge set. In the NRR stage,

the concept of routing cost of grid edge e for net N is based on that in [11] and re-formulated as follows:

 

 














otherwise)),(1(
 elseif)),(1(

 if 0
)(cost

ee

ee

bpkedah
NSEewbpkedah

NGEe
e , (5.5)

where cost(e), be, and pe are respectively routing cost of e, base cost of e and congestion penalty of e;

dah(e,k) denotes the dynamically adjusted history cost function (further discussed in Eq. (5.6)), GE(N)

denotes the set of grid edges that are passed by N, and w is a weighted constant that is set to 1 in this

work. Equation (5.5) encourages a route to pass through the grid edges in either GE(N) or SE(N).

Traditionally, the history cost of a grid edge in negotiation-based cost function scheme (Eq. (1.2))

continues to increase if the grid edge keeps congested. The history cost remains unchanged even after

91

the grid edge becomes un-congested, which results in overestimated routing cost for the routing passing

the grid edge and then generates unnecessary detours. Hence, we have to lower the history cost if the

grid edge becomes un-congested. The dah(e,k) is proposed as follows:

 k
e

k
e

k
e

k
e ofhh

kCC
hkedah 


 1

21
 where),(, (5.6)

where k
eh and k

eof respectively denote the history cost and overflow frequency of e at iteration k.

11 eh , and k
eh is updated at the end of every iteration. C1 and C2 are user-defined constants and set to

7 and 4, respectively. If edge e keeps un-congested during subsequent iterations, by Eq. (5.6), dah(e,k)

will decrease as iteration number k increases while k
eh remains unchanged. In addition, the proposed

history cost is updated with overflow frequency instead of a constant value in traditional scheme (Eq.

(1.2)). The overflow frequency k
eof of grid edge e is set to zero at the beginning of each iteration k.

Once an overflowed net is rerouted, k
eof increases one if e overflows and e is passed by the rerouted

net. A larger k
eof implies a greater number of nets demanding the routing resource of e in iteration k,

further implying that e is critical. The idea behind Eq. (5.6) is that critical routing resources should have

large overflow frequency. Thus, a grid edge with high overflow frequency is assigned with large history

cost. As compared to traditional history cost updating scheme, the proposed one requires less iterations

to distinguish which grid edges are critical. In this work, pe and be are formulated as follows, which are

inspired by [13] and [11], respectively.

 kee /CCb
edecC

Cp 2 and
)))()((exp(1

1 65
4

3 


 , (5.7)

where C3, C4, C5 and C6 are set to 150, 0.3, 30 and 200 in our implementation, respectively. The

constant value setting is determined by closely examining how their variations impact routing results in

the experiments.

5.4 Design Flow of NCTU-GR 2.0
Figure 5.5 shows the design flow of NCTU-GR 2.0. At first, the 3D routing problem is compacted

into a 2D routing problem. Then, each net is decomposed to two-pin nets based on the topology of

92

RMST, and skeleton edge sets are built for each multi-pin net to set up RSMT-aware routing scheme.

Moreover, an initial congestion graph is generated via monotonic routing that routes all two-pin nets.

In each iteration of the NRR stage, all two-pin nets are first sorted in an array, and then the two-pin

nets are examined sequentially to determine whether pass through overflowed grid edges. For the

overflowed net e.g. N, BLC of N is relaxed by Eq. (5.4) ,and then is ripped up and rerouted by

heuristic-BLMR with the routing cost function in Eq. (5.5), which requires testing if a grid edge belongs

to GE(N) or SE(N). GE(N) and SE(N) are stored using hash table, specifically, unordered_hash in C++

STL. SE(N) is constructed in the RMST decomposition stage while GE(N) is dynamically updated

during rip-up and rerouting to record the grid edges in the routing path of net N. As NRR enters a new

iteration, the history cost is updated by Eq. (5.6). the NRR stage iteratively reroutes the overflowed nets

until an overflow-free routing result is obtained.

The wirelength of each net is then greedily minimized in the post refinement stage by ripping up and

rerouting each two-pin net once with the proposed RSMT-aware routing scheme. The overflow-free

two-pin routings without a detour are rerouted by monotonic routing; meanwhile, the other two-pin

routings are rerouted by heuristic-BLMR with the original path length as BLC. Rerouting overflow-free

nets can reduce their wirelength and can vacate the routing resource to other overflowed nets as well.

Because most nets are routed by monotonic routing or heuristic-BLMR with small BLC, this stage is

Fig. 5.5. Design flow of NCTU-GR 2.0.

93

very efficient. In this stage, the routing cost of a grid edge, say e, is formulated as follows:

)
)(1

)((1)(cost
ec

ede


  . (5.8)

If c(e)d(e), κ is set to 105 to avoid increasing overflows; otherwise, κ is set to 0.1. Finally, the layer

assignment in [17] is employed to transform the 2D routing result to the 3D result.

The routing ordering of two-pin nets impacts the routing quality and runtime. We introduce the net

routing ordering adopted in each routing stage as follows. In the monotonic routing stage, the proposed

router sorts the two-pin nets in the increasing order according to its bounding box size. Smaller

bounding box for a net implies less solution space for monotonic routing of the net. Routing a net with

less solution space earlier can improve the possibility to complete its monotonic routing due to fewer

previously routed wires. In the NRR stage, wirelength and congestion control and overflow reduction

are main objectives. We evaluate four net ordering methods in terms of wirelength and overflow in the

NRR stage. Table 5.2 displays the global routing wirelength (WL) and runtime (CPU) of benchmarks

adaptec1, adaptec3, adaptec5 and average of all overflow-free cases when the NRR stage adopts four

different net ordering in decreasing wirelength (LenD), increasing wirelength (LenI), decreasing

overflows (OFD) and increasing overflows (OFI). Notably, WL here does not include vias because

layer assignment has not yet been performed. Table 5.2 reveals that routing the long two-pin nets with

more overflows earlier can identify the results with shorter wirelength and runtime. Based on this

observation, all two-pin nets are sorted at the beginning of each iteration in the NRR stage, based on

nets’ score (Eq. (5.9)) in decreasing order.

TABLE 5.2 . NET ORDERING METHODS COMPARISION

adaptec1 adaptec3 adaptec5 Average
Order WL

(105)
CPU
(min)

WL
(105)

CPU
(min)

WL
(105)

CPU
(min)

WL
(105)

CPU
(min)

LenD 36.42 2.17 96.00 1.93 105.18 4.65 70.97 2.18

LenI 36.65 2.26 96.28 1.85 106.73 5.37 71.53 2.31

OFD 36.39 2.13 96.02 1.86 105.39 4.46 70.99 2.10

OFI 36.74 2.51 96.42 1.98 107.02 5.63 71.69 2.46

Eq. (5.9) 36.31 1.78 95.97 1.77 105.14 4.06 70.88 1.90

94

)()()(1817 nlenCnoeCnscore kkk   , (5.9)

where scorek(n) denotes the score of two-pin net n in iteration k, oek-1(n) and lenk-1(n) denote the number

of overflowed grid edges passed by n and the length of n in iteration k–1, respectively. Notably, oe0(n)

and len0(n) depend on the routing outcome of the monotonic routing stage. Additionally, C7 and C8 are

user defined constants and set as 30 and 1 in this work. The bottom row in Table 5.2 displays the

routing results as the NRR stage adopts Eq. (5.9) to sort two-pin nets, which obtains a shorter

wirelength and runtime than other ordering methods. Finally, the post refinement stage adopt

wirelength-decreasing net ordering since most overflows have been removed.

5.5 Experimental Results
The proposed algorithms were implemented in C/C++ language on an 8-core 3.0 GHz Intel

Xeon-based server with 32GB memory. ISPD08 global routing benchmark circuits [2] were used in our

experiments. We classify the benchmarks into two types, i.e., overflow-free cases and hard-to-route

cases. All state-of-the-art global routers cannot identify an overflow-free routing result for each

hard-to-route case. As for overflow-free cases, most state-of-the-art routers can identify an

overflow-free routing result for each one. To overflow-free cases, the routers in the following

experiments perform until an overflow-free outcome is achieved; to hard-to-route cases, the routers stop

when overflows are not improved in five successive iterations.

5.5.1 Comparing Traditional Maze Routings with BLMR
To compare traditional maze routings with and without bounding box and BLMR, we implement

three global routers with different maze routing approaches in the NRR stage. MR-GR, MRB-GR and

H-BLMR-GR denote three different global routers, where MR-GR employs maze routing without using

bounding box; MRB-GR employs bounding box to limit the search region, and H-BLMR-GR adopts the

proposed heuristic-BLMR and bounded-length relaxation scheme in the NRR stage. The initial

bounding box used by MRB-GR extends by 10 units of grid edges four boundaries of the minimum

95

rectangle enclosing all terminals of the routed net. If an overflow-free path cannot be obtained within

the bounding box, each boundary of the bounding box is extended by 10 units of grid edges again in the

next iteration. This bounding box expansion scheme is also used in [14]. Notably these routers adopt the

same routing cost function and the proposed RSMT-aware routing scheme is not used by these routers.

Table 5.3 shows the routing results of these routers, where WL and CPU are total wirelength and CPU

time, respectively. Table 5.3 indicates that MRB-GR is faster than MR-GR, but MRB-GR produces

more wirelength than MR-GR because MRB-GR may detour often to avoid congested regions.

H-BLMR-GR produces less wirelength than MR-GR and MRB-GR because it has less detours than

MR-GR and MRB-GR. The BLC of H-BLMR-GR restricts the searching region such that

H-BLMR-GR is faster than MR-GR and MRB-GR. Furthermore, the proposed bounded-length

relaxation scheme offers more efficient routing resource utilization than the other two routers. As a

result, H-BLMR-GR can eliminate all overflows of newblue1 but MR-GR and MRB-GR cannot.

MR-GR MRBB-GR H-BLMR-GR ISPD’08
benchmark WL CPU(min) WL CPU(min) WL CPU(min)

adaptec1 53.86 5.90 54.29 3.85 53.55 2.65

adaptec2 52.14 3.36 52.49 0.96 51.97 0.79

adaptec3 131.16 4.47 131.85 3.72 129.88 3.50

adaptec4 120.88 1.32 120.98 1.25 120.76 1.20

adaptec5 155.76 14.66 157.63 9.20 155.52 9.16

newblue1 x x x x 46.26 2.80

newblue2 74.74 0.70 74.77 0.67 74.63 0.63

newblue5 231.33 53.94 233.45 18.73 230.45 7.22

newblue6 178.71 17.66 179.69 6.23 177.23 5.46

bigblue1 57.17 10.69 59.02 6.13 57.61 8.49

bigblue2 90.05 48.40 89.90 29.01 89.42 7.73

bigblue3 129.95 15.79 130.15 2.44 129.68 2.19

Ratio 1 1 1.007 0.575 0.997 0.494

TABLE 5.3 ROUTING RESULT COMPARISON BETWEEN MAZE ROUTING W/ AND W/O BOUNDING BOX

AND BOUNDED-LENGTH MAZE ROUTING

96

5.5.2 The Effectiveness of RSMT-aware Routing
Table 5.4 shows the effectiveness of RSMT-aware routing scheme, in which the second, third and

fourth (fifth, sixth and seventh) columns show the wirelength, routing iterations and runtime of

H-BLMR-GR without (with) RSMT-aware routing scheme, respectively. H-BLMR-GR with

RSMT-aware routing scheme reduces 0.825% wirelength than that without the scheme. Although

RSMT-aware routing scheme spends additional effort to identify RSMT, less wirelength usage makes

H-BLMR-GR demand less iterations and then converge faster. The iteration number and runtime of

H-BLMR-GR with RSMT-aware routing scheme are reduced by 18.32% and 19.58%, respectively, than

that without the scheme.

5.5.3 Comparison of Optimal-BLMR and Heuristic-BLMR
Table 5.5 compares the routing results of optimal-BLMR, heuristic-BLMR and CSP algorithm in

[25]. The BLMR problem is a restricted version of CSP, so the algorithm of [25] can be adopted to solve

BLMR problem. The algorithm of [26] can identify the optimal solution of BLMR problem via

TABLE 5.4 COMPARISON OF THE ROUTING RESULT OF H-BLMR-GR WITH AND WITHOUT

RSMT-AWARE ROUTING SCHEME
H-BLMR-GR(w/o RSMT) H-BLMR-GR(w/ RSMT) ISPD’08

benchmark WL Rounds CPU (m) WL Rounds CPU (m)
adaptec1 53.55 11 2.65 53.04 10 2.52
adaptec2 51.97 12 0.79 51.51 10 0.65
adaptec3 129.88 9 3.50 129.24 9 3.40
adaptec4 120.76 7 1.20 120.53 8 1.23
adaptec5 155.52 16 9.16 154.01 11 6.03
newblue1 46.26 83 2.80 45.76 67 2.37
newblue2 74.63 5 0.63 74.51 5 0.64
newblue5 230.45 21 7.22 228.68 15 5.26
newblue6 177.23 14 5.46 175.49 11 4.44
bigblue1 57.61 18 8.49 56.29 9 4.09
bigblue2 89.42 86 7.73 88.66 48 4.21
bigblue3 129.68 22 2.19 129.35 19 1.91
Improve 0.825% 18.3% 19.58%

97

dynamic-programming technique. The time complexity of the CSP algorithm in [25] is O(|E|L) where

|E| is the number of grid edges in the routing graph and L is BLC. O-BLMR-GR and CSP-GR adopts

the optimal-BLMR and the CSP algorithm [25] in the NRR stage, respectively. Note that the routers in

Table 5.5 all employ RSMT-aware routing scheme. Table 5.5 shows that H-BLMR-GR runs averagely

269.21 times faster than O-BLMR-GR, and only increases 0.1% total wirelength. The experiments

indicate that heuristic-BLMR can take much less runtime to yield similar routing results with

optimal-BLMR. On the other hand, the routing results of CSP-GR and O-BLMR-GR are same but the

runtime of CSP-GR is much larger than that of O-BLMR-GR since CSP algorithm [25] does not take

three properties of global routing into account, as described in section 3.

5.5.4 Routing Result Comparison of Sequential Routers
H-BLMR-GR with RSMT-aware routing scheme includes all innovation presented in this work, so

we re-name H-BLMR-GR with RSMT-aware routing scheme to NCTU-GR 2.0. Tables 5.6 and 5.7

compare the routing results of NCTU-GR 2.0 with four state-of-the-art global routers. NTHU-Route2.0

H-BLMR-GR
(w/ RSMT)

O-BLMR-GR
(w/ RSMT)

CSP-GR
(w/ RSMT)

ISPD’08
benchmark

WL CPU (m) WL CPU (m) WL CPU (m)
adaptec1 53.04 2.52 52.93 615.21 52.93 3586.67

adaptec2 51.51 0.65 51.49 18.75 51.49 61.31

adaptec3 129.24 3.4 129.09 777.14 129.09 7406.14

adaptec4 120.53 1.23 120.52 30.48 120.52 159.11

adaptec5 154.01 6.03 153.66 1607.43 153.66 10126.81

newblue1 45.76 2.37 45.68 1044.53 45.68 7551.95

newblue2 74.51 0.64 74.50 5.68 74.5 33.63

newblue5 228.68 5.26 228.55 1766.12 228.55 12009.62

newblue6 175.49 4.44 175.44 664.18 175.44 5074.34

bigblue1 56.29 4.09 56.04 2537.78 56.04 11952.94

bigblue2 88.66 4.21 88.56 2576.10 88.56 13447.24

bigblue3 129.35 1.91 129.29 516.24 129.29 4315.77

ratio 1 1 0.999 269.21 0.999 1705.67

TABLE 5.5 COMPARISION OF THE ROUTING RESULT OF GLOBAL ROUTERS WITH HEURISTIC-BLMR,
OPTIMAL-BLMR AND [27]

98

[11], FastRoute 4.1 [16] and NCTU-GR [17] are 2D router with layer assignment. MGR is a multi-level

3D router which runs much faster than traditional 3D routers [3-5]. The results of MGR are quoted from

[6] because the binary of MGR is unavailable. MGR performs on a 2.6GHz Intel CPU with 16G

memory while the other routers are all performed on our platform, so the runtime of MGR is normalized

by the clock rate ratio 1.154. Notably, various control parameters in routers affect the routing quality

and performance. NCTU-GR 2.0 and FastRoute4.1 adopt a single set of control parameters to solve

all benchmarks while NCTU-GR, NTHU-Route2.0 use different control parameters to identify

their best routing result for each benchmark. MGR automatically adapts parameters based on the

characteristics of each benchmark. For comparison, we also adopt different sets of control parameters to

yield the best routing result for each benchmark, listed at column NCTU-GRB 2.0 of Tables 5.6 and 5.7.

Table 5.6 compares each router by overflow-free cases, in which the wirelength and runtime are the

primary items for comparison because all routers produce overflow-free routing results. In Table 5.6,

NCTU-GR 2.0 identifies 1.1%, 1.1% and 0.6% less wirelength and averagely runs 1.90, 1.77 and

1.92 faster than NTHU-Route2.0, FastRoute4.1 and NCTU-GR, respectively. Compared to MGR,

NCTU-GR 2.0 identify 0.3% longer wirelength; but NCTU-GRB 2.0 can achieve shorter wirelength

than MGR.

For hard-to-route cases, the routers in [6, 11, 16] focus on minimizing total overflows, since total

overflow provides a more global perspective on congestion information than the maximum overflow.

However, the inability to address the maximum overflow may lead to very congested hot spots, possibly

becoming unroutable for detailed routing. Therefore, this work considers both total overflow and

maximum overflow. NCTU-GR 2.0 regards maximum overflow (MO) as the first minimization

objective, and total overflow (TO) as the second objective. Table 5.7 reveals that NCTU-GR 2.0

achieves good performance for maximum overflow, wirelength and runtime, but the total overflow still

has room for improvement. As for the best routing result for each benchmark (NCTU-GRB 2.0), the

proposed router performs very well in the total overflow and runtime. Notably, the MO information of

MGR is unavailable, so we do not list MO of MGR in Table 5.7.

99

TABLE 5.6 COMPARISON BETWEEN NCTU-GR 2.0 AND THE OTHER ROUTERS
ON OVERFLOW-FREE CASES.

NCTU-GR 2.0 NCTU-GRB 2.0 NTHU-Route2.0 FastRoute4.1 NCTU-GR MGR
Benchmark

WL CPU(m) WL CPU(m) WL CPU(m) WL CPU(m) WL CPU(m) WL CPU(m)

adaptec1 53.04 2.52 52.35 2.30 53.49 4.86 53.73 3.31 53.50 3.90 52.82 4.39

adaptec2 51.51 0.65 51.30 0.64 52.31 1.42 52.17 0.95 51.69 1.45 51.46 1.04

adaptec3 129.24 3.40 128.34 2.96 131.11 6.16 130.82 3.69 130.35 4.88 128.92 4.83

adaptec4 120.53 1.23 120.17 1.18 121.73 2.08 121.24 1.25 120.67 2.28 119.96 1.41

adaptec5 154.01 6.03 151.85 4.97 155.55 11.95 155.81 6.70 154.70 9.07 153.23 7.95

newblue1 45.76 2.37 45.62 1.93 46.53 4.07 46.33 12.01 45.99 3.63 45.58 4.51

newblue2 74.51 0.64 74.51 0.63 75.85 1.17 75.12 0.85 74.88 0.90 74.46 0.80

newblue5 228.68 5.26 225.94 4.62 231.73 10.88 230.94 9.82 230.31 15.03 228.00 6.54

newblue6 175.49 4.44 171.10 4.02 177.01 10.34 177.87 8.78 176.87 9.67 174.86 7.04

bigblue1 56.29 4.09 55.33 3.44 56.35 6.93 56.64 4.22 56.56 6.35 55.82 5.04

bigblue2 88.66 4.21 86.71 3.45 90.59 6.47 91.18 12.12 89.40 11.18 88.92 6.00

bigblue3 129.35 1.91 127.67 1.78 130.76 3.91 130.04 2.06 129.66 4.38 128.75 2.89

Ratio 1 1 0.989 0.894 1.012 1.900 1.012 1.768 1.006 1.920 0.997 1.45

FastRoute 4.1 NCTU-GR MGR

MO TO WL CPU(m) MO TO WL CPU(m) MO TO WL CPU(m)

newblue3 736 31276 108.4 15.99 198 31808 104.28 131.43 X 31026 107.22 19.99
newblue4 2 136 130.46 65.23 2 134 126.79 40.92 X 136 128.54 15.64
newblue7 4 54 353.38 868.74 2 114 338.63 71.52 X 56 349.02 110.12
bigblue4 2 130 230.24 93.25 2 164 223.99 65.37 X 134 225.73 21.31

ratio 1.948 0.882 1.027 3.891 1.005 1.186 0.992 1.3 X 0.90 1.01 0.67

NCTU-GR 2.0 NCTU-GRB 2.0 NTHU-Route 2.0

MO TO WL CPU(m) MO TO WL CPU(m) MO TO WL CPU(m)

newblue3 194 31710 105.36 143.34 194 31526 106.80 63.34 204 31454 106.49 64.97
newblue4 2 144 127.27 17.33 2 132 129.27 17.48 4 138 130.46 52.01
newblue7 2 58 342.9 85.67 2 54 341.90 74.53 2 62 353.35 50.28
bigblue4 2 194 225 60.23 2 132 227.10 63.55 2 162 231.04 52.63

ratio 1 1 1 1 1.00 0.88 1.01 0.84 1.263 0.964 1.023 1.229

TABLE 5.7 COMPARISON BETWEEN NCTU-GR 2.0 AND THE OTHER ROUTERS
 ON HARD-TO-ROUTE BENCHMARKS.

100

5.6 Summary
This chapter at first discusses the algorithmic differences between designing a global-routing-based

RCE and a global router, and then points out that a global router should carefully use routing resource

for obtaining high-quality routing results. Accordingly, this work proposes bounded-length maze routing

algorithms, RSMT-aware routing scheme, and dynamically adjusted history cost function to better the

usage of routing resource. Moreover, a global router NCTU-GR 2.0, characterized by abovementioned

approaches, is presented. Excellent performance of NCTU-GR 2.0 on ISPD benchmarks with a single

set of parameters is owing to systematic and effective wirelength control, flexible tree structure change,

and valid update of edge congestion status with overflow frequency.

101

Chapter 6 Post3DGR: Post Optimization of
3D Global Routing Results

6.1 Introduction
In advanced technology nodes, designs contain considerable metal layers. To our knowledge, a

design in 28nm technology node may have up to 15 layers. As the number of metal layers increases, the

limitations of traditional global routing flows emerge. Generally, two routing flows are adopted to

resolve the global routing problem. The first one directly performs global routing on a 3D grid graph to

generate a 3D routing result [3-6]. The other condenses the 3D grid graph into the 2D grid graph and,

then, adopts a 2D global router to obtain a 2D routing result; the layer assignment finally assigns each

net edge in the 2D routing result to a layer in the 3D grid graph. The limitation of the first flow is too

slow, while the limitation of the second flow is the lack of layer and via information in its 2D routing

stage.

Most global routers [7-21] adopt the flow of 2D routing with layer assignment due to the runtime

concern. However, the lack of layer and via information in the 2D routing stage would jeopardize the

results' quality. For example, Figs. 6.1(a) and 6.1(b) show two path candidates of a net of two pins

highlighted by red vertices, while Figs. 6.1(c) and 6.1(d) depict the layer assignment results of Figs.

6.1(a) and 6.1(b), respectively, in which the preferred routing direction of layers 2 and 4 is horizontal

while others are vertical. Since grid edges ea,2, eb,4, and ec,4 have no routing resource due to blockages or

congestion, the routing path in Fig. 6.1(c) needs to a z-axis detour to bypass ea,2, eb,4, and ec,4. In this

example, the better path in the 2D grid graph (Fig. 6.1(a)) appears to yield a worse path in the 3D grid

graph (Fig. 6.1(c)). This example shows that directly exploring the 3D grid graph has potential to

identify a better global routing result than 2D grid routing with layer assignment, and thus warrants the

algorithm development that optimizes 3D global routing results on the 3D grid graph.

102

GRIP [4] is an ILP-based 3D parallel global router performing on a cluster computing environment.

To our knowledge, despite obtaining the routing results of the best wirelength in the literature, GRIP

consumes a considerably higher runtime than other global routers, GRIP [4] is about 270X slower than

NCTU-GR 2.0. Although the work in [5] better exploits the computation power of cluster computing

environment to speed up GRIP, the runtime of GRIP is still 42X slower than NCTU-GR 2.0. To reduce

the runtime of routing on 3D grid graph, a 3D global router MGR is based on a multi-level framework.

However, the coarsening stage in the multi-level framework more or less hides some information in the

original grid graph, possibly degrading the solution quality. For example, a net of two pins (red vertices)

is routed on a 4x4 grid graph with three obstacles (gray rectangles) in Fig. 6.2(a). In Fig. 6.2(b), the

coarsening stage of MGR merges four neighboring grid nodes into a super node to shrink the 4x4 graph

to a 2x2 graph; a routing path passing thorough node v1 is then identified because the congestion in v1 is

lower than that in v2. The un-coarsening stage maps the routing path shown in Fig. 6.2(b) back to the

original 4x4 grid graph to obtain the routing result shown in Fig. 6.2(c), which is a suboptimal result as

compared to the shortest path in Fig. 6.2(d), due to some information hidden at the coarsest level.

Fig. 6.1. Gap of the recognition of good results between 2D routing with layer assignment and 3D
routing. (a) a good 2D routing result; (b) a bad 2D routing result; (c) a bad 3D routing result; (d) a
good 3D routing result.

(a) (b)

(c) (d)

103

Current research addresses the global routing problem from three aspects, 2D global routing, 3D

global routing, and layer assignment. Most relevant research examines these aspects individually

without discussing the necessity to coordinate 2D routing, 3D routing, and layer assignment in a unified

flow. This work presents a unified global routing framework to efficiently generate a 3D global routing

result by 2D global routing with layer assignment, and then adopts the proposed post-3D-global-routing

tool Post3DGR to reduce the congestion, wirelength and via count of the 3D global routing result.

Post3DGR combines 3D routing and layer assignment to iteratively refine the 3D global routing result.

The proposed unified global routing framework can diminish the large gap in runtime and quality

between 2D and 3D routings. This framework can yield a slightly better quality than that of GRIP of the

best quality so far, but consumes markedly less runtime than GRIP.

 In addition to reduce vias, wirelength and congestion, Post3DGR can be extended to address some

manufacturing issues that are hard considered in 2D global routing stage due the lack of layer and via

information. Well addressing the manufacturing issues before detailed routing simplifies the subsequent

detailed routing. The work in [30] takes the double patterning issue into account; the works in [32, 33]

consider antenna effect to improve yield, and the works in [28, 29] focus on minimizing via overflows.

In section 5 of this chapter, we will illustrate the efficiency of extending Post3DGR to consider antenna

effect.

The rest of this chapter is organized as follows. Section 2 formulates the problem of optimizing a 3D

global routing result. Section 3 describes the framework of Post3DGR. Section 4 presents the proposed

(a) (b) (c) (d)
Fig. 6.2. MGR flow. (a) a two-pin net routes on a 4x4 graph; (b) the coarsening stage routes the net
on a coarsened 2x2 graph; (c) the un-coarsening stage maps the routing path in (b) back to the
original graph; (d) the shortest path of (a).

104

negotiation-based layer assignment that is the kernel algorithm in Post3DGR. Section 5 summarizes the

experimental results. Conclusions are finally drawn in Section 6.

6.2 Problem Description
Given a 3D global routing result which consists of a k-layer 3D grid graph Gk(Vk, Ek) and a set of

routing solutions of nets, the objective of Post3DGR is to refine the 3D global routing result to further

minimize overflows, wirelength and vias. In 3D grid graph Gk(Vk, Ek), Vk denotes the set of 3D grid

nodes; each grid node refers to a G-cell; and Ek refers to the set of 3D grid edges, each of which is

termed by the adjacency of the related G-cells of its two end nodes. Capacity c(e) of grid edge e refers

to the number of routing tracks that are allowed to legally cross the abutting boundary of two adjacent

G-cells. The number of wires that pass through grid edge e is called the demand d(e) of the grid edge.

The overflow of a grid edge e is defined as the amount of demand in excess of capacity.

6.3 Design Flow of Post3DGR
Post3DGR performs the 3D post routing and negotiation-based layer assignment (NLA) iteratively

on a given 3D global routing result to further minimize the result's wirelength, via count and overflows.

Post3DGR can attach to the end of any global router to do optimization, this work performs Post3DGR

following NCTU-GR 2.0.

Fig. 6.3. (a) Design flow of Post3DGR. (b) Design flow of NLA
(a) (b)

105

Figure 6.3(a) shows the design flow of using Post3DGR to optimize the global routing result

obtained by NCTU-GR 2.0, Post3DGR iterates until reaching a user defined iteration limitation R. The

3D post routing stage reroutes nets on 3D graph to reduce its wirelength and congestion, and then NLA

re-arranges the routing layer for each wire to reduce vias. If it is necessary, NLA also can be extended to

consider the issues such as antenna effect, timing, and double patterning. The details of NLA will be

introduced in the next section.

Both 3D post routing and NLA can refine 3D global routing results. However, when 3D post routing

and NLA are used individually to optimize the routing result, the improved quality is inclined to fast fall

into sub-optimality. Although capable of altering routing topology, 3D post routing need to avoid

passing through the grid edges whose d(e)≥c(e) to prevent overflows increasing. In contrast, although a

net can negotiate with other nets to acquire the routing resource on other routing layers, each net cannot

change its routing topology during NLA.

Through iterative topology change by 3D post routing and re-arranging routing layers by NLA,

Post3DGR can refine a 3D routing results well. For example, a 2D routing result in Fig. 6.4(a) is

obtained by the 2D routing stage of NCTU-GR 2.0, and then the layer assignment stage of NCTU-GR

Fig. 6.4. Example of the quality improvement in Post3DGR. (a) A 2D routing result obtained by the
2D routing in NCTU-GR 2.0; (b) a 3D result obtained by the layer assignment in NCTU-GR 2.0; (c)
the 3D result obtained by 3D post routing in Post3DGR; (d) the 3D result obtained by NLA in
Post3DGR.

(c) (d)

(a) (b)

106

2.0 map the 2D result to a 4-layer 3D grid graph to obtain a 3D routing result in Fig. 6.4(b). Since grid

edges e1 and e2 cross obstacles, net n1 needs a z-axis detour (via) to bypass obstacles. By assuming the

length of a routing edge and a via both are one unit wirelength, and the capacity of each grid edge is one;

the total wirelength of two paths in Fig. 6.4(b) is 15. To further optimize the 3D routing result, we feed

the result in Fig. 6.4(b) into Post3DGR. The 3D post routing finds a shorter path for n1 (Fig. 6.5(c)) with

the reduced total wirelength to be 13. NLA then relaxes the resource at layer 3 used by n2 for n1 to

further reduce the total wirelength to be 11 (Fig. 6.4(d)).

During the 3D post routing stage, every net is ripped-up and re-routed once by 3D maze routing. The

3D post routing stage adopts an inherited history cost function to guide the routing of each net, which

can greedily reduce total wirelength. In NLA and the 2D routing stage of NCTU-GR 2.0, a grid edge

with a high history cost implies that this grid edge frequently overflows and many nets desire to pass

through this grid edge, so the routing resource of this grid edge is critical. The history cost information

acquired by 2D routing and NLA is delivered to the 3D post routing in order to broaden the view of the

routed nets in terms of knowing which grid edge is critical. The inherited history cost formulation is

defined as follows:
























 otherwise),(

)(1
)(1

 if])()([
)(cost

3

2

2

1

z,iI
z,i

z,i

z,iz,iz,iz,i

z,i ehisCC
ec

edC

)e(c)e(decedC
e (6.1)

where hisCI(ei,z) denotes the inherited history cost of the 3D grid edge ei,z; C1, C2 and C3 are user

defined constants and set as 105, 0.1 and 0.05 in this work, respectively. The great value of C1 can

reduce overflows or avoid overflow increasing. The hisCI(ei,z) is formulated as follows:

))(())(()(2 z,iNLAiDz,iI ehNORMehNORMehisC  , (6.2)

where ei is a 2D grid edge that is projected from ei,z; hNLA(ei,z) denotes the history cost of ei,z, as

computed in previous NLA of the 3D post routing, and h2D(ei) is the history cost from 2D routing of

NCTU-GR 2.0. Since Post3DGR is designed to follow the execution of a 2D global router, h2D(ei) is the

final history cost of ei, such as that defined in Eq. (5.6) as NRR of 2D routing ends. Because NLA

107

follows the 3D post routing, the first round of the 3D post routing has no hNLA(ei,z) information. Thus,

NORM(hNLA(ei,z)) is ignored in the first round of the 3D post routing. Function NORM normalizes h2D(ei)

and hNLA(ei,z) between zero to one. Function NORM(h2D(ei)) derives the normalized values as follows:

The grid edges in the 2D grid graph with non-zero history costs are sorted in a non-decreasing order of

their history costs. By assuming that the length of the ordering sequence is L2D, h2D(ei) is normalized to

a/L2D as ei is the a-th element in this sorting sequence. Similarly, NORM(hNLA(ei,z)) is computed in the

same manner.

6.4 Negotiation-based Layer Assignment (NLA)
NLA is the kernel stage of Post3DGR, which focuses on minimizing vias without increasing

overflows and without changing routing topology. Previous layer assignment works [16, 17, 27]

addressing the via count minimization problem determined the assignment order of each net first and,

then, adopted the dynamic-program-based layer assignment to assign each net sequentially. In order to

avoid increasing overflows, the nets in the later assigning order have less available layer resources than

those in the early assigning order. In this sorting-and-then-assigning method, the net ordering strongly

Fig. 6.5. The comparison between existing layer assignments and NLA. (a) Given a 2D routing, net A
connects pins p2 and p4, net B connects pins p1 and p3; (b) assignment result of net A; (c) and (d)
existing layer assignment results; (e) NLA result after the first iteration; (f) NLA result after the
second iteration.

(a) (b) (c)

(d) (e) (f)

108

impacts the result's quality. NLA can overcome the available resource problem for the nets in the later

assigning ordering. In NLA, the later assigned nets can legally use their desired grid edges even whose

routing resources are exhausted by the early assigned nets. NLA would iteratively rip-up and re-assign

the overflowed nets and gradually increase the penalty of the overflowed grid edges. Because each net

is assigned by a minimum-cost single net layer assignment (MCSNLA) algorithm, a net would

gradually abandon their desired grid edges when the grid edge has high penalty. By adopting this

negotiation scheme, the routing resource of a grid edge would be used by the nets who most need. NLA

can reduce the impact of net ordering, and thus get a result with fewer vias than the work in [17, 27].

Figure 6.5 compares the layer assignment results with and without the proposed negotiation-based

scheme. Figure 6.5(a) shows a 2D routing graph with two nets: net A connects pins p2 and p4 and net B

connects pins p1 and p3. By assuming that the capacity of each 3D grid edge is only one and the routing

order of A is earlier than B, Fig. 6.5(b) shows the results of assigning net A on a 2-layer 3D graph. This

example ignores the preferred routing direction rule for simplicity. Figures 6.5(c) and (d) show

traditionally optimal results of assigning net B, each of which contain three vias. In contrast, NLA can

first produce an overflowed result (Fig. 6.5(e)). Then, the penalty of the grid edge between p2 and p3

increases, and nets A and B are re-assigned sequentially to obtain the solution with only one via (Fig.

6.5(f)).

6.4.1 Algorithm Flow of NLA
Figure 6.3(b) shows the algorithm flow of NLA that comprises three stages. The initial layer

assignment stage first rips-up every net from the 3D grid graph and then identifies a minimal via

assignment solution for each net without addressing the congestion issue. Next, overflows produced in

the initial layer assignment are minimized by the overflow reduction stage, in which the overflowed

nets are iteratively re-assigned. If the layer assignment result has overflows, the congestion cost of the

overflowed grid edges increases, and the overflowed nets are re-assigned until either a overflow-free

result is obtained or overflows cannot be reduced anymore. Finally, the post optimization stage rips-up

109

and re-assigns each net once to greedily further reduce via count but avoid increasing overflows.

MCSNLA is adopted in all of initial layer assignment, overflow reduction, and post optimization stages

to identify a minimum-cost layer assignment solution for a single net. The objective cost of MCSNLA

consists of congestion cost and via cost, but the formulations of the congestion cost in different stages

are different. The following subsections would introduce the algorithm of MCSNLA and the congestion

cost formulations in each stage.

6.4.2 MCSNLA: Minimum-cost Single Net Layer Assignment
Figure 6.6 illustrates the single-net layer assignment problem. Given a 2D routing topology of a net

N(V2D, E2D) where V2D and E2D denote the sets of 2D G-cells and 2D grid edges passed by N,

respectively; and given a set of pin locations of N in Gk, which is denoted by P3D. The single-net layer

assignment problem for net N is to identify a 3D tree connecting all pins in P3D, which consists of a set

of 3D grid edges denoted E3D, the edges of E3D are the corresponding edges of E2D. For instance, Given

a 2D routing topology of N(V2D, E2D) in Fig. 6.6(a) and given P3D in Fig. 6.6(b), where V2D={v0, v1, v2,

v3, v4, v5}, E2D={e1, e2, e3, e4, e5} and P3D={v0,2, v2,1, v3,1, v5,3}, the single net layer assignment identifies

a 3D tree as shown in Fig. 6.6(c), E3D={e1,2, e2,1, e3,1, e4,2, e5,3}, this result contains three vias.

The algorithm flow of MCSNLA is similar to the single net layer assignment algorithm in [27],

MCSNLA and the algorithm in [27] both adopt a dynamic programming technique. However, previous

works is for via count minimization while this work addresses on minimizing the sum of the congestion

cost and via cost. Before detail the algorithm of MCSNLA, we first introduce some notations.

Fig. 6.6. An example of single net layer assignment. (a) a 2D routing topology of a net N(V2D, E2D);
(b) a set of N's pin locations in Gk; (c) a layer assignment solution.

(a) (b) (c)

110

1. k: the number of layers in the 3D grid graph.

2. ch(vi): the set of child nodes of vi. In Fig. 6.6(a), ch(v2)={v3, v4}.

3. ch_e(vi): the set of grid edges connecting vi to its child nodes. In Fig. 6.6(a), ch_e(v2)={e3, e4}.

4. pinL(vi, P3D): the layer of the pin at vi. In Fig. 6.6(b), pinL(v5)=3.

5. T(vi): a 2D tree rooted at vi.

6. ti,z: a 3D tree rooted at vi,z. The ti,z is an assignment solution of T(vi). A 3D tree consists of a set of 3D

grid edges and a set of required vias for connecting those grid edges and pins. Figure 6.6(c) shows a

3D tree t0,2.

7. S(vi,z): the set of 3D trees rooted at vi,z.

8. S(vi): the set of assignment solutions of T(vi).

9. numVia(ti,z): the total via number of ti,z. In Fig. 6.6(c), numVia(t0,2) is three.

10. via(Δ): Δ is a set of layers, via(Δ) denotes a set of required vias connecting the layers of Δ.

The objective cost function of MCSNLA is formulated as follows, MCSNLA can always identify the

minimum-cost assignment solution .

  


i,z
i,zi,z te etviaCostt)congCost()numVia()cost(, (6.3)

where ti,z is a 3D tree identified by MCSNLA, congCost(e) denotes the congestion cost of grid edge e,

and viaCost is an user defined constant for the cost of a single via. The formulation of congCost(e) will

be detailed in the next subsection and viaCost is set to 100 in our implement. MCSNLA is a 2-phase

algorithm based on dynamic-programming technique. During the first phase, the net N(V2D, E2D) is

regarded as a 2D tree T(v0), v0 is the root, the root and the leaves of T(v0) must contain a pin. Next,

MCSNLA enumerates all possible 3D trees starting at leaf nodes in a bottom-up manner until reaching

the root, MCSNLA would dynamically discard inferior tree (discarded later) to keep the size of solution

space reasonable. In the second phase, the minimum-cost assignment solution for the entire tree is

extracted from the set of possible 3D trees, then each net edge is assigned to the corresponding layer

based on the minimum-cost assignment solution in a top-down manner. Figure 6.7 shows the pseudo

code of MCSNLA. Lines 2-13 are the bottom-up phase, the procedure InitSol initializes a 3D tree

111

rooted at the leaf node. The procedure EnumSol enumerates all possible 3D tree rooted at the internal

node vi,z. The procedure PruneSol discards the redundant trees from S(vi,z) that the size of S(vi,z) is

limited in a reasonable range. Line 15 to line 18 is the top-down phase. Line 16 enumerates all possible

assignment solutions for entire 3D tree into S(v0,x). Line 17 extracts the minimum-cost one from S(v0,x).

Finally, each net edge of N is assigned to a corresponding layer of Gk according to the minimum-cost

assignment solution.

Figure 6.8 shows the pseudo code of InitSol. At line 3, |I| represents the number of required vias

connecting the pin's layer to layer z. Because ti,z only includes vias, the cost of ti,z is only contains the

via cost. Figure 6.9 shows the pseudo code of EnumSol. Without the loss of generality, we suppose that

vi has three child nodes in the pseudo code. At line 3, an 3D tree ti,z is constructed by composing ta,la, tb,lb,

Fig. 6.7. The pseudo code of MCSNLA

Algorithm MCSNLA
Input: net N(V2D, E2D), pin locations P3D, 3D grid graph Gk;
1. //Bottom-Up phase
2. foreach node vi in the order given by a postorder traversal of V2D, vi is not the root.
3. foreach layer z from 1 to k
4. set S(vi,z) to Φ
5. if vi is a leaf node
6. S(vi,z)←InitSol(vi,z, P3D)
7. else
8. S(vi,z)←EnumSol(vi.z, ch(vi), ch_e(vi) , P3D)
9. end if
10. PruneSol(S(vi,z))
11. end foreach
12. S(vi)=S(vi,0)∪S(vi,1)∪...∪S(vi,k)
13. end foreach
14. //Top-Down phase
15. x=pinL(v0, P3D)
16. S(v0,x)←EnumSol(v0.x, ch(v0), ch_e(v0), P3D)
17. t0,x←Select_solution(S(v0,x))
18. TopDown_Assignment(N, Gk, t0,x)
19. end

112

tc,lc, ea,la, eb,lb, ec,lc and I. The ta,la, tb,lb and tc,lc are the sub-trees of ti,z, the ea,la, eb,lb and ec,lc are the 3D

grid edges connecting the roots of ta,la, tb,lb and tc,lc to the 3D nodes vi,la, vi,lb and vi,lc, respectively. The

vias in I connect vi,la, vi,lb, vi,lc and vi,z. If a pin is located at a layer of vi, vias also need to connect to this

pin. Figure 6.10 shows an example for constructing a 3D tree ti,3 that consists of ta,2, tb,3, tc,4, ea,2, eb,3, ec,4,

and I. At line 4, the cost of ti,z is identified by adding up the cost of ta,la, tb,lb, tc,lc, the congestion cost of

ea,la, eb,lb, ec,lc, and the via cost of I. The loop of lines 1-6 enumerates all possible 3D trees rooted at vi,z

and calculates the cost of each possible 3D tree. For instance, as the enumeration of all possible 3D

trees rooted at v2,2 for the net in Fig. 6.6, by assuming that S(v3)={t3,1, t3,2, t3,3}, S(v4)={t4,1, t4,2, t4,3} and

viaCost is set to 1, Fig. 6.11(a) shows the costs of sub-trees and the congestion costs of the 3D grid

edges connecting the roots of sub-trees to v2,2. Figure 6.11(b) shows all enumerated 3D trees rooted at

v2,2, and lists the cost of each enumerated 3D tree.

Procedure InitSol
Input: node vi,z, 3D pins location P3D
1. I= via(pinL(vi, P3D), z)
2. ti,z=I
3. cost(ti,z)=|I| *viaCost
4. inset ti,z into S(vi,z)
5. return S(vi,z)

Fig. 6.8. Procedure InitSol of MCSNLA

Procedure EnumSol
Input: node vi,z, ch(vi)={va, vb, vc}, ch_e(vi)={ea, eb, ec}, pins location P3D
1. foreach solutions ta,la, tb,lb and tc,lc of S(va), S(vb) and S(vc), respectively.
2. I= via(la, lb, lc, pinL(vi, P3D), z)
3. ti,z= ta,la+tb,lb+ tc,lc+ea,la+eb,lb+ ec,lc+I
4. cost(ti,z)=cost(ta,la)+cost(tb,lb)+cost(tc,lc)+congCost(ea,la)+congCost(eb,lb)+

 congCost(ec,lc)+ |I|*viaCost
5. inset ti,z into S(vi,z)
6. end foreach
7. return S(vi,z)

Fig. 6.9. Procedure EnumSol of MCSNLA

113

In order to limit the size of S(vi,z) in a reasonable range, PruneSol discards the inferior trees from

S(vi,z). An inferior tree is defined as follows:

Definition 1. inferior tree: An 3D tree w
i,zt is regarded as an inferior tree if another 3D tree u

i,zt exists

such that the cost(w
i,zt) is greater than cost(u

i,zt).

If there are more than one 3D trees in S(vi,z), after pruning inferior trees, only the minimum-cost tree

will be reserved in S(vi,z), the other 3D trees will be discarded. For example, there are nine 3D trees

enumerated by EnumSol in Fig. 6.11. After pruning inferior trees, only 7
2,2t will be reserved in S(vi,z).

Fig. 6.11. An example of EnumSol. (a) The costs of 3D sub-trees and the congestion costs of the grid
edges connecting to the root of each sub-tree to v2,2; (b) all possible combinations to build tree t2.2.

(a) (b)

Fig. 6.10. An example for constructing a 3D tree ti,3 that consists of ta,2, tb,3, tc,4, ea,2, eb,3, ec,4, and I

114

Applying this scheme to pruning solutions can make MCSNLA obtain the minimum-cost assignment

solution in a polynomial time. The time complexity of MCSNLA and the size of solution set are

analyzed as follows.

Lemma 1. For each node vi, i≠0, the size of S(vi) is k.

Proof: According to line 12 in Fig. 6.7, the size of S(vi) is the sum of the size of S(vi,z), 1≤z≤k. Because

only the minimum-cost tree is reserved in S(vi,z), the size of S(vi,z) is one. Thus, the size of S(vi) is k.

Lemma 2. The time complexity of InitSol is O(1). Moreover, as the child number of vi is q, the time

complexities of EnumSol and PruneSol for vi,z, 1≤z≤k, are both O(kq).

Proof: There are no loops in InitSol and all operations in InitSol are constant time, so the time

complexity of InitSol is obviously O(1). In EnumSol, the loop from line 1 to line 6 of Fig. 6.9

enumerates all combinations of the child node's solutions. With lemma 1, the solution set size of each

child node is k that there are kq combinations of the child node's solutions. Therefore, the loop of lines

1-6 runs kq iterations, so the time complexity of EnumSol is O(kq). Moreover, PruneSol scans all

solutions in S(vi,z) to reserve the minimum-cost one. Because S(vi,z) contains most kq solutions

enumerated by EnumSol, the time complexity of scanning kq solutions in PruneSol is also O(kq).

Theorem 1. The worst time complexity of MCSNLA is O(|V2D|*k4), |V2D| represents the number of

G-cells in 2D grid graph passed by N.

Proof: In the bottom-up phase of Fig. 6.7, an inner loop is from line 3 to line 11 and an outer loop is

from line 2 to line 13. EnumSol and PruneSol are the most time consuming parts of the inner loop,

according to lemma 2, the time complexities of EnumSol and PruneSol are both O(kq), and the inner

loop runs k iterations, so the time complexity of the inner loop is O(k*(kq+kq))=O(kq+1). Moreover, the

outer loop runs |V2D|-1 iterations, thus the time complexity of the outer loop is

O((|V2D|-1)*kq+1)=O(|V2D|*kq+1). Because the child number q of each node except the root must be less

or equal to three, the worst time complexity of the outer loop is O(|V2D|*k4) as q is three. In the

115

top-down phase, the worst time complexities of EnumSol and Select_solution are both O(k4) since the

child number of the root is four at most, and TopDown_Assignment takes the time of |V2D|-1 to assign

each net edge to the corresponding layer. Thus, the worst time complexity of whole MCSNLA is

O(|V2D|*k4)+O(k4)+ O(|V2D|-1)=O(|V2D|*k4).

Theorem 2. MCSNLA can always identify the minimum-cost assignment solution.

Proof: We prove this theorem by the contradiction method. By assuming that t0,z is the minimum-cost

solution for a net but MCSNLA identifies a suboptimal solution t'0,z. Because the cost of t'0,z is greater

than t0,z, following equation holds,

)cost()cost(such that
.1 , and and

i,ri,r

0,zi,r0,zi,ri,ri,r

tt'
krttt't',tt'




, (6.4)

where t'i,r and ti,r are the sub-trees of t'0,z and t0,z, respectively. The cost of t'i,r is greater than ti,r. However,

according to Definition 1, t'i,r is an inferior tree that will be discarded from the solution set. Because t'i,r

is not reserved in the solution set, t'0,z is impossibly constructed by its sub-tree t'i,r. This implies that

MCSNLA never identifies a suboptimal solution t'0,z. Namely, MCSNLA can always identify the

minimum-cost assignment solution.

6.4.3 Congestion Cost Formulations
NLA involves three stages: initial layer assignment, overflow reduction and post optimization

stages. MCSNLA adopts different congestion cost formulae in different stages for different objectives.

In the initial layer assignment stage, a minimal via count solution is first identified without considering

congestions for every net by fixing congestion cost as zero in Eq. 6.3. In the overflow reduction stage, if

a grid edge frequently overflows, its congestion cost continually increases. The formulation of

congestion cost is defined as follows:

))(1(*)(2
ee hpecongCost  , (6.5)

116

where e denotes a 3D grid edge, pe denotes congestion penalty, and he represents the history cost. The

congestion penalty is defined as follows:

 e β * (cap(e)-dem(e))
αp =1+

1+exp
, (6.6)

where α and β are user defined constants, α is set to 10 and β is set to 0.3 in this work. The history cost

he increases by one as grid edge e overflows, and he keeps unchanged if e does not overflow. The value

of he in the k-th iteration can be expressed as,

k
ek+1

e k
e

h +1, if e overflows
h =

h , otherwise





. (6.7)

Figure 6.12 displays the changes of wire overflow and via count in the overflow reduction stage. As the

process iteration proceeds, the overflow decreases since the increasing congestion cost encourages

MCSNLA to obtain the solution with less overflows at the cost of increasing via counts. In the post

optimization stage, each net is re-assigned to greedily reduce vias but without increasing overflows.

Equation (6.8) shows the congestion cost formula used in the post optimization stage, where σ refers to

an extremely large constant.



  otherwise

ecedif,eced*σecongCost , 0
)()())()(1()((6.8)

Equation (6.8) enlarges the penalty of an overflow assignment that MCSNLA identify

minimum-overflow assignment solution. If at least an overflow-free assignment exists, MCSNLA based

on Eq. (6.8) would identify the minimum via count assignment among the overflow-free assignments.

Fig. 6.12 The overflow reduction stage of NLA resolves overflow (OF) of adaptec2 at the cost of
increasing vias.

Iteration

V
C

 (1
05)

Iteration

O
F

(1
05)

117

6.5 Experimental Results
The proposed algorithms were implemented in C/C++ on a quad-core 2.4 GHz Intel Xeon-based

linux server with 32GB memory. ISPD08 [2] benchmark circuits are used in the experiments. Each

benchmark has either six or eight routing layers. The preferred direction of even layers is horizontal,

while that of odd layers is vertical. This section consists of three parts. First, to compare NLA with other

layer assignment works [17, 27] on via count minimization problem, each algorithm reads the same

global routing results of ISPD08 benchmark, which are produced by the NTHU-Route 2.0 [11].

Different layer assignment algorithms then transform 2D routing results to 3D. Next, the effectiveness

of Post3DGR including NLA is demonstrated. Finally, we extend NLA to consider antenna effect.

Via Count (105) Runtime
Benchmark

[27] [17] NLA [27]* [17] NLA
adaptec1 17.69 17.03 16.69 27.5 20.73 48.1

adaptec2 19.3 18.57 18.31 25.67 21.21 42.16

adaptec3 34.91 33.56 32.9 82.5 57.72 126.81

adaptec4 32.15 31.21 30.82 75.17 51.14 105.54

adaptec5 52.4 50.35 49.3 99 87.82 136.74

newblue1 22.22 21.76 21.42 22.92 22.45 35

newblue2 29.46 28.61 28.14 39.42 34.46 56.1

newblue3 30.23 29.37 29 59.58 41.23 94.55

newblue4 47.05 45.89 44.73 79.75 55.92 100.68

newblue5 84.51 81.51 80.16 134.75 99.67 211.22

newblue6 74.66 72.64 71.01 105.42 84.42 143.53

newblue7 166.01 161.52 157.21 306.17 240.83 388.03

bigblue1 18.73 18.03 17.6 38.5 31.98 55.71

bigblue2 42.11 40.75 40.32 52.25 36.77 74.28

bigblue3 52.43 51.47 50.55 90.75 75.72 149.2

bigblue4 109.14 107.1 104.69 166.83 123.46 259.29

Ratioind 1.051 1.019 1 0.678 0.531 1

Ratiosum 1.051 1.021 1 0.694 0.536 1

*AMD Dual Core Opteron Processor 2.2-GHz CPU

TABLE 6.1 COMPARING NLA WITH PREVIOUS LAYER ASSIGNMENT WORKS
ON VIA COUNT MINIMIZATION PROBLEM.

118

6.5.1 Effectiveness of NLA
Table 6.1 compares the proposed NLA with previous layer assignment works [17, 27] for via count

minimization. The overflows are not listed in Table 6.1 since the results of each layer assignment

algorithm have the same overflows. The first major column lists the total via count of the results of [27],

[17] and NLA, in which NLA assigns nets in an increasing order of net IDs. This work using casual net

ordering still can get the results with lower via count that [17, 27]. The second major column in Table

6.1 compares the runtimes of [27], [17] and NLA. Since the algorithm in [27] runs on a different

platform from others, the runtime of [27] is normalized with the clock rate ratio. NLA consumes more

runtime than [27, 17] because NLA iteratively re-assigns overflowed nets to explore a better solution.

Total Via Count (105)
[17] NLA Bench-

mark DW IW DP IP Vari DW IW DP IP Vari
adaptec1 27.53 18.96 22.81 22.26 8.56 16.69 16.7 16.68 16.71 0.02

adaptec2 29.52 20.57 24.53 24.16 8.95 18.31 18.33 18.3 18.33 0.03

adaptec3 55.26 37.3 45.29 43.95 17.96 32.9 32.92 32.89 32.93 0.05

adaptec4 50.65 34.75 41.61 40.78 15.9 30.82 30.85 30.8 30.86 0.05

adaptec5 81.02 55.81 66.51 66.51 25.21 49.3 49.35 49.27 49.37 0.09

newblue1 33.26 23.41 27.94 26.97 9.86 21.42 21.43 21.41 21.44 0.03

newblue2 48.74 31.37 38.66 38.85 17.37 28.13 28.17 28.12 28.17 0.05

newblue3 49.35 32.41 38.61 40.11 16.94 28.98 29.01 28.97 29.02 0.05

newblue4 73.16 50.78 60.61 59.67 22.39 44.74 44.76 44.71 44.77 0.06

newblue5 136.5 98.18 107 103.86 38.32 80.16 80.35 80.12 80.27 0.23

newblue6 116.76 79.52 96 93.95 37.24 71.02 71.06 70.95 71.08 0.13

newblue7 267.23 176.88 213 210.02 90.35 157.21 157.31 157.15 157.38 0.23

bigblue1 28.2 19.53 23.25 23.62 8.67 17.6 17.61 17.59 17.61 0.02

bigblue2 64.46 46.19 52.41 52.14 18.27 40.31 40.36 40.3 40.36 0.06

bigblue3 80.25 56.78 69.36 66.28 23.48 50.54 50.58 50.51 50.61 0.09

bigblue4 175.39 118.04 143.29 144.42 57.35 104.69 104.8 104.57 104.78 0.23

Ratio 1.65 1.13 1.35 1.33 322.86 1.00 1.00 1.00 1.00 1.00

TABLE 6.2 THE QUALITY VARIATIONS OF NLA AND [17] WITH
 DIFFERENT ASSIGNMENT ORDERING SEQUENCES.

119

Table 6.2 shows the quality variations (Vari) of the work in [17] and NLA with different assignment

ordering sequences. The comparison does not include the work in [27] since its source code and binary

are unavailable. Four ordering sequences are adopted – decreasing wirelength (DW), increasing

wirelength (IW), decreasing pin’s number (DP) and increasing pin’s number (IP). Table 6.2 reveals that

the net ordering sequence easily impacts the quality of [17], and the proposed NLA yields lower

variation in the total via count as different net assignment ordering sequences are applied.

6.5.2 Effctiveness of Post3DGR
Table 6.3 shows the global routing wirelength improvement (WL%) and the runtime of using the

proposed Post3DGR to further refine the 3D global routing results produced by NCTU-GR 2.0 (Tables

5.6 and 5.7). Post3DGR, which performs the 3D post routing and NLA twice, can achieve an improved

wirelength of 2.79% on average. Compared to the runtime of NCTU-GR 2.0 in Table 5.6, the runtime of

Post3DGR is enormous due to large 3D searching space. However, compared to the pure 3D global

routers [3-5], the runtime of Post3DGR is negligible.

We name the flow of NCTU-GR 2.0 followed by Post3DGR to NCTU-3D-GR. Table 6.4 compares

the routing results of NCTU-3D-GR with MGR [6] and GRIP [4]. MGR is a multi-level 3D router.

GRIP [4] is a parallel ILP-based 3D router, which obtains the best wirelength in all open literature.

Although PGRIP [5] enhances the parallelism degree of GRIP to improve the runtime, the wirelength

TABLE 6.3 THE WIRELENGTH IMPROVEMENT AND RUNTIME OF POST3DGR.
 Post3DGR Post3DGR ISPD’08

benchmark WL(%) CPU(m)
ISPD’08

benchmark WL(%) CPU(m)
adaptec1 2.66 8.82 newblue4 2.62 14.70

adaptec2 3.03 7.84 newblue5 2.96 28.42

adaptec3 2.47 36.26 newblue6 2.23 10.78

adaptec4 2.98 20.58 newblue7 2.89 41.16

adaptec5 2.44 18.62 bigblue1 2.31 6.86

newblue1 2.99 7.84 bigblue2 2.59 7.84

newblue2 3.49 9.80 bigblue3 3.01 21.56

newblue3 3.04 577.22 bigblue4 2.89 30.38

120

reported in PGRIP is worse than that in GRIP. Given its objective to yield high-quality results, this work

compares NCTU-3D-GR with GRIP rather than with PGRIP. In Table 6.4, TOF and WL denote total

overflow and total global routing wirelength (including vias and edges), respectively. Table 6.4 shows

that NCTU-3D-GR identifies 0.2% and 2.9% less wirelength than GRIP and MGR, respectively.

In Table 6.4, NCTU-3D-GR and MGR is performed on a single core. In contrast, GRIP was run on a

heterogeneous grid of CPUs, shared by many users, and controlled by the Condor grid computing

toolkit. In the major column of GRIP, the wall time (Wall) is the real time from GRIP launched to

termination, while the total time (CPU) is the summation of the runtimes spent by all CPUs. Table 6.4

reveals that NCTU-3D-GR consumes a significantly lower runtime and computation power than those

of GRIP, but the routing results of NCTU-3D-GR beat GRIP.

NCTU-3D-GR GRIP [15] MGR [17]

TOF WL CPU TOF WL Wall CPU TOF WL CPU
adaptec1 0 51.63 11.34 0 51.33 388 2101 0 52.82 4.39
adaptec2 0 49.95 8.49 0 49.93 455 2704 0 51.46 1.04
adaptec3 0 126.05 39.66 0 126.8 478 6319 0 128.92 4.83
adaptec4 0 116.94 21.81 0 118.43 509 5221 0 119.96 1.41
adaptec5 0 150.25 24.65 0 149.5 584 3175 0 153.23 7.95
newblue1 0 44.39 10.21 0 44.57 483 2306 0 45.58 4.51
newblue2 0 71.91 10.44 0 72.47 467 4192 0 74.46 0.80
newblue3 31934 102.16 720.56 45960 102.83 1430 14590 31026 107.22 19.99
newblue4 142 123.94 32.03 136 124.4 529 2944 136 128.54 15.64
newblue5 0 221.91 33.68 0 222.8 821 4593 0 228 6.54
newblue6 0 171.58 15.22 0 170.5 448 2219 0 174.86 7.04
newblue7 54 332.99 126.83 54 335.8 985 4788 56 349.02 110.12
bigblue1 0 54.99 10.95 0 53.7 339 956 0 55.82 5.04
bigblue2 0 86.36 12.05 0 86 690 3411 0 88.92 6.00
bigblue3 0 125.46 23.47 0 126.2 731 2690 0 128.75 2.89
bigblue4 152 218.50 90.61 180 220.7 726 3096 134 225.73 21.31

Ratio 1 1.002 1.029

TABLE 6.4 COMPARING NCTU-3D-GR 2.0 WITH OTHER 3D ROUTERS.

121

6.5.3 Consideration of Antenna Effect
Generally speaking, the goal of NLA is to minimize the cost of an objective function. This work formulates

congestion cost and via cost into the objective function (Eq. 6.3), so NLA can minimize via count and

congestion. If we formulate manufacturing issues into the objective function of NLA, NLA also can be aware

of these issues. Moreover, Post3DGR including NLA can consider these manufacturing issues too. We have

extended NLA to consider antenna effect to develop an antenna-aware NLA [33] to. Please refer to our paper

[33] to know the details of antenna-aware NLA [33].

Table 6.5 compares the proposed antenna-aware NLA with the other layer assignment works, in which

COLA [27] and NLA focus on the via count minimization but does not consider the antenna effect, and LAVA

COLA [2] NLA LAVA [4] Antenna-ware NLA
Bench
-mark #vn

Vias
(105)

Cpu*
(min)

#vn
Vias
(105)

Cpu
(min)

#vn
Vias
(105)

Cpu*
(min)

#vn
Vias
(105)

Cpu
(min)

adaptec1 911 17.69 0.46 709 16.69 0.80 602 17.51 0.73 4 16.72 14.82

adaptec2 879 19.30 0.43 712 18.31 0.70 568 19.07 0.64 0 18.33 12.86

adaptec3 2959 34.91 1.38 2919 32.90 2.11 2194 34.58 1.94 5 33.00 60.03

adaptec4 2009 32.15 1.25 1925 30.82 1.76 1931 31.93 1.61 4 30.90 41.11

adaptec5 4166 52.40 1.65 3744 49.30 2.28 2465 51.9 2.09 0 49.43 53.53

newblue1 328 22.22 0.38 460 21.42 0.58 273 24.95 0.53 6 21.43 4.93

newblue2 681 29.46 0.66 534 28.14 0.94 444 29.15 0.86 1 28.18 11.79

newblue3 466 30.23 0.99 429 29.00 1.58 251 29.42 1.44 1 29.08 29.48

newblue4 874 47.05 1.33 849 44.73 1.68 617 46.59 1.54 0 44.77 20.23

newblue5 3009 84.51 2.25 2766 80.16 3.52 2137 83.79 3.23 0 80.30 77.93

newblue6 3453 74.66 1.76 3280 71.01 2.39 2736 73.83 2.19 0 71.12 33.27

newblue7 10286 166.01 5.10 8628 157.21 6.47 5844 164.52 5.93 0 157.50 354.41

bigblue1 1841 18.73 0.64 1459 17.60 0.93 1423 18.57 0.85 0 17.65 19.71

bigblue2 392 42.11 0.87 389 40.32 1.24 264 41.72 1.13 0 40.34 16.25

bigblue3 3576 52.43 1.51 3631 50.55 2.49 2692 51.99 2.28 0 50.66 233.01

bigblue4 7676 109.14 2.78 8627 104.69 4.32 5230 108.28 3.96 0 104.93 301.91

Sum 43506 41261 29671 21

Ratio 1.049 0.036 0.998 0.053 1.046 0.123 1 1

*AMD Dual Core Opteron Processor 2.2-GHz CPU

TABLE 6.5 COMPARING ANTENNA-AWARE NLA WITH OTHER LAYER ASSIGNMENT ALGORITHMS.

122

[32] is an antenna avoidance layer assignment. Each algorithm reads the global routing results produced by

NTHU-Route 2.0, and then re-assigns the layers to every net edge. NLA and antenna-aware NLA perform on

our machine. The routing results of COLA and LAVA are quoted from [32]. Because the performing machines

of COLA and LAVA are different than NLA and antenna-aware NLA, the runtimes of COLA and LAVA are

normalized by the clock rate. The number of overflows is not listed in Table 6.5 since the results of all layer

assignment algorithms have the same number of overflows. Table 6.5 reveals that antenna-aware NLA can

effectively reduce the number of nets with antenna violations (#vn). In 16 benchmarks, antenna-aware NLA

can yield 10 antenna-violation-free results while the other works yield no antenna-violation-free result. As for

the total number of antenna violations in all benchmarks, antenna-aware NLA, COLA, NLA and LAVA yield

21, 43506, 41261 and 29671 antenna violations, respectively. In addition, the via count of antenna-aware NLA

is less than COLA and LAVA by 4.9% and 4.6%, respectively.

6.6 Summary
 The proposed Post3DGR consists of NLA stage and the post 3D routing stage. Given a 3D global

routing result, Post3DGR coordinates these two stage to reduce the via count, wirelength and

congestion of the 3D result. Particularly, NLA can overcome the available resource problem, and the

later assigned nets can legally compete with the early assigned nets for their desired routing resource to

obtain better results. Experiments show that NCTU-GR 2.0 with Post3DGR identifies the best routing

results on ISPD benchmarks with much less time than GRIP.

123

Chapter 7 Conclusions and Future Works

7.1 Conclusions
This dissertation presents a routability-driven placement and routing (P&R) flow based on the

proposed global routing engines. In the different stages of P&R flow, global routing engines play

different roles to guide the flow. At first, we develop a fast global-routing-based RCE tool called Grace

that can cooperates with placers to improve the routability of placement solutions. Grace invokes

unilateral monotonic routing and HUM routing to replace time-consuming maze routing, and adopts a

congestion-aware bounding box expansion method to efficiently get a global routing result. Moreover,

to fulfill industrial demands, we enhance Grace to consider local congestion, scenic controlling, layer

directive constraint and target congestion ratio. The enhanced Grace is practically used in the industrial

flow.

Grace can generate a congestion map and then guide placers to improve the routability of placement

solutions, but the congestion map changes as cells are moved by subsequent placement operations,

lowering the accuracy of congestion estimation and then the routability of a placement. To eliminate this

mismatch, we develop a routability optimizer Ropt that takes a placement solution and optimizes its

routability by incremental place-and-route. The innovations of Ropt include local-routability-aware

global routing model, routing-cost-driven global re-placement, legalization with global routing

preserved, and local detailed placement.

Given a placement solution, NCTU-GR 2.0 adopts the proposed bounded-length maze routing

algorithms, RSMT-aware routing scheme, and dynamically adjusted history cost function to better the

usage of routing resource and thus obtain a high-quality 3D global routing result. Then, Post3DGR

further optimizes the 3D global routing result to reduce its wirelength, via count and congestion. Also,

Post3DGR can be extended to consider the manufacturing issues such as antenna effect, which can ease

the runtime and efforts of downstream detailed routers.

124

7.2 Future Works
As the design complexity continues to increase, the demands to bridge the gap between placement

and routing grow rapidly. To complete the routability- and performance-aware placement and routing

flow presented in this dissertation (Fig. 1.2), a routability-aware placer based on the proposed global

routing engine is compulsory. Also, I want to learn more about detailed routing in industry, and then try

to make contributions to the development of next-generation detailed routers. Although it is very

difficult, my ultimate target is to develop a commercial router and then present a highly-unified

place-and-route tool.

In Chapter 3, even when pin density and blockage effect are formulated into global routing model,

global-routing-based RCE is still not accurate enough in predicting detailed routability. To more

precisely estimate detailed routability, the development of a track-routing-based RCE to cooperate with

global-routing-based RCE becomes compulsory. Using global-routing-based and track-routing-based

RCEs together can get both global and local congestion information for estimating detailed routability.

Moreover, I plan to embed the utility of track routing into NCTU-GR 2.0 such that NCTU-GR 2.0 can

plan global routing path and routing tracks for each net simultaneously.

125

Bibliography
[1] ISPD07 contest: http://archive.sigda.org/ispd2007/contest.html

[2] ISPD08 contest: http://archive.sigda.org/ispd2008/contests/ispd08rc.html

[3] J. A. Roy and I. L. Markov, “High-performance routing at the nanometer scale,” IEEE TCAD,

27(6), pp. 1066-1077, 2008.

[4] T.-H. Wu et al, “GRIP: scalable 3-D global routing using integer programming,” IEEE TCAD,

30(1), pp. 72-84, 2011.

[5] T.-H. Wu et al, “A parallel integer programming approach to global routing,” in Proc. DAC,

pp. 194-199, 2010.

[6] Y. Xu and C. Chu, “MGR: multi-level global router,” in Proc. ICCAD, 2011.

[7] J. Hu et al, “Completing high-quality global routes,” in Proc. ISPD, 2010.

[8] M. Moffitt, “MAIZEROUTER: engineering an effective global router,” IEEE TCAD, 27(11),

pp. 2017-2026, 2008.

[9] M. Cho et al, “BoxRouter 2.0: architecture and implementation of a hybrid and robust global

router,” in Proc. ICCAD, 2007.

[10] M. M. Ozdal and M. D.F. Wong, “ARCHER: a history-driven global routing algorithm,” in

Proc. ICCAD, 2007.

[11] Y.-J. Chang et al, “NTHU-Route 2.0: a roubust global router for modern design,” IEEE TCAD,

29(12), pp. 1931-1944, 2010.

[12] H.-Y. Chen et al. “High-performance global routing with fast overflow reduction.” in Proc.

ASP-DAC, 2009.

[13] M. Pan and C. Chu, “FastRoute : a step to integrate global routing into placement,” in Proc.

ICCAD, 2006.

[14] M. Pan and C. Chu, “FastRoute 2.0: a high-quality and efficient global router,” in Proc.

ASP-DAC, 2007.

126

[15] Y. Zhang et al, “FastRoute3.0: a fast and high quality global router based on virtual capacity,”

in Proc. ICCAD, 2008.

[16] Y. Xu et al, “FastRoute 4.0: global router with efficient via minimization,” in Proc. ASP-DAC,

2009.

[17] K.-R. Dai et al, “NCTU-GR: efficient simulated evolution-based rerouting and

congestion-relaxed layer assignment on 3-D global routing,” IEEE TVLSI, 20(3), pp. 459-472,

2012.

[18] W.-H. Liu et al, “Multi-threaded collision-aware global routing with bounded-length maze

routing,” in Proc. DAC, 2010.

[19] Y. Han et al, “Exploring high throughput computing paradigm for global routing,” in Proc.

ICCAD, 2011.

[20] W.-H. Liu et al, “High-quality global routing for multiple dynamic supply voltage designs,” in

Proc. ICCAD, 2011.

[21] W.-H. Liu et al, “A fast maze-free routing congestion estimator with hybrid unilateral

monotonic routing,” in Proc. ICCAD, 2012.

[22] L. McMurchie and C. Ebeling, “Pathfinder : a negotiation-based performance-driven router for

FPGAs,” in Proc. ACM Int’l Symp on Field-Programmable Gate Arrays, 1995.

[23] C. Chu and Y.-C. Wong, “FLUTE: fast lookup table based rectilinear steiner minimal tree

algorithm for VLSI design,” IEEE TCAD, 27(1), pp. 70-83, 2008.

[24] M. Garey and D. Johnson, “Computers and intractability: a guide to the theory of

NP-completeness,” New York: W.H. Freeman and Co., 1979.

[25] H. C. Joksch, “The shortest route problem with constraints,” Journal of Mathematical Analysis

and Applications, vol. 14, pp. 191–197, 1966.

[26] S. Chen et al, “Two techniques for fast computation of constrained shortest paths,” IEEE/ACM

Trans. on Networking, 16(1), 2008.

[27] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment for via minimization in

global routing,” IEEE TCAD, 27(9), pp. 1643-1656, 2008.

127

[28] W.-H. Liu, and Y.-L. Li, “Negotiation-based layer assignment for via count and via overflow

minimization,” in Proc. ASP-DAC, 2011.

[29] T.-H. Lee and T.-C. Wang, “Robust layer assignment for via optimization in multi-layer global

routing,” in Proc. ISPD, 2009.

[30] J. Sun et al, “Post-routing layer assignment for double patterning,” in Proc. ASP-DAC, 2013.

[31] Z. Li et al, “Fast interconnect synthesis with layer assignment”, in Proc. ISPD, 2008.

[32] T.-H. Lee and T.-C. Wang, “Simultaneous antenna avoidance and via optimization in layer

assignment of multi-layer global routing,” in Proc. ICCAD, 2010.

[33] W.-H. Liu and Y.-L. Li, “Optimizing antenna area and separators in layer assignment of

multi-layer global routing,” in Proc. ISPD, 2012.

[34] N. J. Naclerio et al, “The via minimization problem is NP-complete,” IEEE Trans. Computers,

38(1), pp. 1604–1608, 1989.

[35] J. Lou et al, “Estimating routing congestion using probabilistic analysis,” IEEE TCAD, 21(1),

pp. 32–41, 2002.

[36] J. Westra et al, “Probabilistic congestion prediction,” in Proc. ISPD, 2004.

[37] H. Shojaei et al, “Congestion analysis for global routing via integer programming,” in Proc.

ICCAD, 2011.

[38] X. He et al, “Ripple: an effective routability-driven placer by iterative cell movement,” in Proc.

ICCAD, 2011.

[39] M.-K. Hsu et al, “Routability-driven analytical placement for mixed-size circuit designs,” in

Proc. ICCAD, 2011.

[40] K. Tsota et al, “Guiding global placement with wire density,” in Proc. ICCAD, 2008.

[41] J. A. Roy et al, “Seeing the forest and the trees: Steiner wirelength optimization in placement,”

IEEE TCAD, 26(4), pp. 632–644, 2007.

[42] M.-C. Kim et al, “A SimPLR method for routability-driven placement,” in Proc. ICCAD,

2011.

128

[43] M. Pan and C. Chu, “IPR: an integrated placement and routing algorithm,” in Proc. DAC,

2007.

[44] J. Roy et al, “CRISP: congestion reduction by iterated spreading during placement,” in Proc.

ICCAD, 2009.

[45] K.-R. Dai et al, “GRPlacer: improving routability and wire-length of global routing with

circuit replacement,” in Proc. ICCAD, 2009.

[46] N. Viswanathan et al, “The ISPD-2011 routability-driven placement contest and benchmark

Suite,” in Proc. ISPD, 2011.

[47] N. Viswanathan et al, “The DAC 2012 routability-driven placement contest and benchmark

suite,” in Proc. DAC, 2012.

[48] N. Viswanathan et al, “ICCAD-2012 CAD contest in design hierarchy aware

routability-driven placement and benchmark suite,” in Proc. ICCAD, 2012.

[49] M. D. Moffitt, “Global routing revisited,” in Proc. ICCAD, 2009.

[50] Y.-J. Chang et al, “GLADE: a modern global router considering layer directives,” in Proc.

ICCAD, 2010.

[51] T.-H. Lee et al, “An enhanced global router with consideration of general layer directives,” in

Proc. ISPD, 2011.

[52] M. D. Moffitt and C. N. Sze, “Wire synthesizable global routing for timing closure,” in Proc.

ASP-DAC, 2011.

[53] Y. Wei et al, “GLARE: global and local wiring aware routability evaluation,” in Proc. DAC,

2012.

[54] Y. Wei et al, “CATALYST: planning layer directives for effective design closure,” in Proc.

DATE, 2013.

[55] Hai Zhou et al, “Efficient minimum spanning tree construction without Delaunay

triangulation,” Information Processing Letter, 2002.

[56] T. Taghavi et al, “New placement prediction and mitigation techniques for local routing

congestion,” in Proc. ICCAD, 2010.

129

[57] J. Cong et al, “Optimizing routability in large-scale mixed-size placement,” in Proc. ASP-DAC,

2013.

[58] Y. Zhang and C. Chu, “Fast and effective congestion refinement of placement,” in Proc.

ICCAD, 2009.

[59] http://www.cadence.com/products/di/soc_encounter/

[60] P. Spindler et al, “Abacus: fast legalization of standard cell circuits with minimal movement,”

in Proc. ISPD, 2008.

[61] Y.-M. Lee et al, “A hierarchical bin-based legalizer for standard-cell designs with minimal

disturbance,” in Proc. ASP-DAC, 2010.

[62] A. Agnihotri et al, “Fractional cut: improved recusive bisecction placement,” in Proc. ICCAD,

2003.

[63] http://archive.sigda.org/dac2012/contest/dac2012_contest.html

[64] W.-H. Liu et al, “Case study for placement solutions in ISPD11 and DAC12 routablity-driven

placement contests,” in Proc. ISPD, 2013.

[65] W.-H. Liu et al, “Globally routing multiple dynamic supply voltage designs,” in Proc. VLSI

Design/CAD Symposium, 2011.

[66] Y.-H. Lin et al, “Topology-aware buffer insertion and GPU-based massively parallel rerouting

for ECO timing optimization,” in Proc. ASP-DAC, 2012.

[67] W.-H. Liu et al, “Minimizing clock latency range in robust clock tree synthesis,” in Proc.

ASP-DAC, 2010.

[68] L.-C. Chou et al, “ECO timing optimization with elmore delay model,” in Proc. ITC-CSCC,

2011.

[69] J.-R. Gao et al, “A new global router for modern designs,” in Proc. ASP-DAC, 2008.

[70] M. Cho and D. Z. Pan, “Boxrouter: A new global router based on box expansion and

progressive ILP,” IEEE TCAD, 26(12), pp. 2130–2143, 2007.

[71] W.-H. Liu et al, “NCTU-GR 2.0: Multi-Threaded Collision-Aware Global Routing with

Bounded-Length Maze Routing,” IEEE TCAD, accept.

