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中文論文摘要 

 

稀疏信號在選定某個恰當的訊號樣本庫之下，在使用其中的訊號元素拆解後有很大

一部分的訊號能量會集中於某幾個少數的元素，此種訊號表達方式可以使用遠低於 

Nyquist 訊號取樣限制的資料量來表達一個稀疏訊號，或擷取出其中占大部分能量的訊

號成分。稀疏信號處理是應用數學與稀疏表達法的交集結果。也是未來實現遠距醫療與

病患檢測上的一項重要技術，將會大大地降低儲存訊號所使用的資料量。 

探討如何選用一個能僅用少量元素即可拆解一訊號大部分能量的訊號樣本庫在稀

疏訊號處理上是非常重要的。在可使用時間、頻率、規模參數來控制樣本庫中訊號的波

形的完備 Gabor樣本庫已知為一種能有效率地拆解腦電圖儀（EEG）的訊號樣本庫。 

本文將著重介紹一個基於Matching Pursuit ，並配合改進後的 Grassmannian參數取

樣方式以及自然梯度設計而出的文化基因演算法。 
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Abstract 

A sparse signal has a large portion of its energy contained in a small number of 

coefficients, which can be represented with number of samples significantly beneath the 

Nyquist’s criterion. Sparse signal processing is the application of the mathematics of sparse 

representations in signal processing. This is essential for ubiquitous medicine and healthcare 

due to the immense amount of data required for each individual patient monitoring. 

A representation dictionary for the target signal space with only minimal number of 

supports is critical to the stability and consistency of the sparse signal processing schema 

when employing pursuit algorithms. The overcomplete Gabor dictionary, which can be 

parameterized into time, frequency, scale and phase, is already known to have efficient 

representation for electroencephalograms (EEGs).  

This thesis includes a Memetic Algorithm based on Matching Pursuit for EEG signal 

decompositions, and an improved parameter sampling and optimization method for the 

Gabor dictionary based on natural gradient and Grassmannian concepts.  
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Chapter 1. Introduction 

1.1. Motivation 

Electroencephalograms (EEGs) have gained its popularity in neurological research and 

clinical applications due to their mostly non-invasive recording procedures, simple and 

inexpensive operations and high time resolutions. Originally, the clinical application of EEG 

analysis is to distinguish epileptic seizures from normal brain activities such as syncope, 

sub-cortical movement disorders and migraine variants. Advanced signal processing 

techniques such as independent component analysis (ICA) [1,2] and event related spectral 

perturbation (ERSP) analysis [3,4] have also become increasingly popular in clinical brain 

research. In recent years, researchers began to view multichannel EEG recordings as 

correlated signals with quasi-sparse representations and analyze them with the powerful 

arsenal of digital signal processing techniques. 

However, due to the fact that the recording of EEG for a meaningful and accurate 

analysis is often necessarily time consuming; the relatively high time resolution and the 

characteristic of concurrent multichannel recording will produce enormous amounts of data 

needed to be stored and transported over media. Therefore, interests in searching for sparse 

and compressible representations of EEG have rose considerably during recent decades.  

1.2. Recent Difficulties and Solutions 

Unfortunately, determining whether a signal can be optimally approximated and 

decomposed with a linear expansion over a redundant (over-complete) dictionary of atomic 

waveforms is an NP-complete problem, furthermore, finding such a solution is an NP-hard 

one [5]. However, an approximate method that has already been discovered long before is 

found to be capable enough to tackle this problem. It was the Matching Pursuit algorithm [6] 
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proposed by S. Mallat and Z. Zhang in 1993, which is a simple and economical way to 

produce a sub-optimal signal expansion by iteratively choosing the atom that best matches 

the signal structure and remove the atom ingredient from the signal until certain stopping 

condition is met. This algorithm has already been well studied and improved in the most 

recent decade, such as the randomized variant – the Stochastic Matching Pursuit (SMP) – 

pioneered by Piotr J. Durka in 2001. 

Despite these efforts, sparse representation remains an impalpable objective. It’s 

well-known that the sparse decomposition result produced by SMP is possible, however 

unlikely, to be inconsistent. The dominant atoms in the decomposed sequences for one 

signal can be significantly different between multiple instances of SMP operations. 

1.3. Objectives 

The ultimate objective of this research is to identify the dictionary suitable for sparse 

representation of the EEG ERP signals and components, then design a Memetic Algorithm 

adopting the belief of Matching Pursuit, which is able to factorize a given EEG signal into a 

linear combination of only a small number of time-frequency atoms (Gabor functions, for 

instance) over a redundant dictionary, meanwhile preserving a large portion of signal energy.  

1.4. Research Approach 

The sparsity of data assumed the ability of representing signals as linear combinations 

of only a small amount of atoms in a redundant, pre-specified dictionary. This requires the 

prior knowledge on the signal characteristic and a properly chosen dictionary. 

In the aspect of prior knowledge to the signals, researchers performing brain activity 

analysis based on the equivalent electric dipole modeling [7,8] believed that the stimulus 

and response events may be well modeled as equivalent dipoles oscillating locally at certain 
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time period and frequency band. So far, on the aspect of proper selection of the dictionaries, 

Ron Rubinstein et al. indicated that there are two mainstream methods for searching for the 

proper redundant dictionary [9] currently. 

1.4.1. Dictionary Chosen According to Mathematical Model of Signals 

The build-up of dictionaries according to mathematical model is mainly functions with 

closed form mathematical expressions such as Gabor functions and wavelet atoms, which 

can be easily parameterized. 

Further, about the searching method for the representation in the various types of 

standard dictionaries, while Durka’s Stochastic MP algorithm focuses mainly on bias 

elimination and generates only sequences of atoms with integral multiplications of sampling 

steps over the time and frequency domain, a new method employing advanced optimization 

algorithms is proposed to improve the accuracy and efficiency of parameter searching in 

each MP iterative step by regarding the parameters as continuous variables and providing an 

even sparser parameterized representation. 

1.4.2. Dictionary Evolved Based on Training Data 

This type of dictionaries emerges, in Ron’s words [9], from a given set of realizations of 

the data. This set serves as the examples of the signals to be modeled; with a given initial 

dictionary, the training algorithm will evolve the dictionary atoms iteratively to make the 

resulted dictionary performs better on the training set. In such case, an initialization method 

with minimal mutual coherence based on the Grassmannian frame for the dictionary is 

proposed to enhance the learning procedures. 

1.5. Contributions 

The major contribution for the standard dictionary approach is an efficient algorithm to 
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find a decomposition sequence in the scalable Gabor dictionary, which improves the 

Matching Pursuit by extending the search space into continuous real number domain and 

with one more degree of freedom with variable scaling factors. With the behaviors of the 

parameters of the Gabor standard dictionary are well understood, the signal can therefore 

be decomposed into merely a small number of parameter sets with minimal energy losses. 

Another contribution is the successful application of the K-SVD on the EEG signal 

integrated with the concept of Grassmannian frames; the resulted dictionary contains several 

fingerprints of the event related potential of the EEG signal, which might be used further to 

identify different stimuli with the help of classification methods. 

1.6. Thesis Outline 

Along the roadmap, in Chapter 2, the fundamental tools and prior knowledge will be 

introduced. Each succeeding chapters will focus on each milestone of major discoveries. 

In Chapter 3, the identification of Gabor atoms as the most suitable type of waveform 

and an intuitive, however stable and consistent method based on Matching Pursuit to find 

the representation are described here, including some first-stage experiment results.  

In Chapter 4, a better optimization method based on Natural Gradient and a 

sub-optimal uniform sampling method over Gabor parameter space using the Grassmannian 

concept will be introduced. The experiment results will be compared with their counterpart 

mentioned in Chapter 3. The Chapter 3 and Chapter 4 will cover the approach of realizing 

sparse representation via overcomplete standard waveform dictionaries. 

Chapter 6 describes the improvements on the K-SVD algorithm via a new dictionary 

initialization method using the Grassmannian frame; the experiment result will be compared 

to the default initialization method using the normalized random Gaussian noise. 

Chapter 7 includes the achievements and the future work of this research.  
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Chapter 2. Backgrounds 

In recent years, a new signal processing paradigm called Compressive Sensing (CS) 

[10,11] promises to reduce the representation data size of a sparse signal up to two orders of 

magnitude while capturing their essential characteristics. The key to efficient compressive 

sensing and sparse signal analysis lies with successful identification of suitable signal 

dictionaries for the sparse representation of those signals. 

A preliminary study by S. Aviyente in 2007 [12] suggested that the compressive sensing 

framework might be applicative for EEG signals. In 2009, Abdulghani et al [13] demonstrated 

the apparent sparsity of EEG signals with respect to several standard dictionaries including 

the Gabor atoms, Mexican Hat and Spline-based wavelets. However, the proper 

temporal-frequency and spatial-temporal dictionaries are yet to be discovered.  

2.1. Gabor Atoms and Dictionary 

Real Gabor atoms, which are simply shifted and frequency modulated Gaussian 

functions, which can be expressed as follow: 

 𝑔𝛾  𝐾(𝛾)𝑒−𝜋(𝑡−𝑡0)
2∕𝑠2 cos(𝜔0(𝑡 − 𝑡0) + 𝜙) (1 

The set 𝛾  *𝑡0 𝜔0 𝑠 𝜙+ in the parameter space  Γ  is the parameter set of a Gabor 

function, which contains the time center 𝑡0, the frequency center 𝜔0, temporal scaling 

factor  𝑠 and the sinusoidal phase 𝜙 of the atom. The normalization factor  𝐾(𝛾) is the 

function ensuring the atom contains unit norm energy. 

Figure 1 gives an example of Gabor atom (not energy normalized) waveforms in the 

time domain as shifted and modulated Gaussian functions. 
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Figure 1 Gabor Atoms as Shifted and Modulated Gaussian Functions 

The Gaussian envelope of a Gabor atoms leads to the optimal time-frequency 

localization for the Heisenberg’s uncertainty principle in terms of energy concentration (the 

equality holds if  𝑔 is a Gaussian function): 

 𝜍𝑡
2𝜍𝜔

2  (∫ 𝑡2|𝑔(𝑡)|2𝑑𝑡
∞

−∞

)(∫ 𝜔2|�̂�(𝜔)|2𝑑𝜔
∞

−∞

) ≥
‖𝑔‖4

16𝜋2
 (2 

This property makes the Gabor atom suitable for performing local time-frequency brain 

activity observations and analyses; an explicit construction method for an overcomplete 

Grassmannian Gabor frame will be introduced later. 

2.2. Matching Pursuit 

2.2.1. S. Mallat’s Matching Pursuit (MP) 

Matching pursuit (MP) algorithm can provides a sub-optimal solution to the problem of 

acquiring an adaptive approximation of a signal in a redundant set of waveforms (dictionary). 

 The pursuit starts with a given dictionary with sufficiently abundant of unit energy 

atoms  𝒟 ≡ {𝑔𝛾𝑛 ∶ ‖𝑔𝛾𝑛‖  1}
𝑛=1

𝑁
 of size  𝑁 and a signal 𝑓(𝑡) to be analyzed; the main 

goal is to find a linear combination of atoms approximating the signal 𝑓(𝑡): 
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 𝑓(𝑡) ≈∑𝑎𝑛𝑔𝛾𝑛(𝑡)

𝑛

 (3 

In each iterative step, the algorithm chooses the atom having the largest inner product 

with the signal from  𝒟. The signal is then subtracted by the atom waveform weighted by the 

inner product value. The procedure is repeated on the subsequent residual  𝑅𝑓𝑛(𝑡) after the 

subtractions until certain stopping condition is met, such as an acceptable energy extraction 

threshold or the number of iterations limited. 

 

Algorithm  MATCHING PURSUIT 

Input: Signal 𝑓(𝑡) 

Output: List of coefficients (𝑎𝑛 𝑔𝛾𝑛) 

Initialization: 𝑅𝑓1 ← 𝑓(𝑡) 

Repeat From 𝑛  1: 

𝑔𝛾𝑛 ← argmax
𝑔𝛾𝑖∈𝒟

|〈𝑅𝑓𝑛 𝑔𝛾𝑖〉| 

𝑎𝑛 ← 〈𝑅𝑓𝑛 𝑔𝛾𝑛〉 

𝑅𝑓𝑛+1 ← 𝑅𝑓𝑛 − 𝑎𝑛𝑔𝛾𝑛 

𝑛 ← 𝑛 + 1 

Until Stopping Condition met 

Table 1 Mallat’s Matching Pursuit Algorithm  

The orthogonality of the residue 𝑅𝑓𝑛+1 and the best matched atom 𝑔𝛾𝑛  selected in 

the 𝑛Th iteration implies the signal energy conservation property: 

 ‖𝑓‖2  ∑|〈𝑅𝑓𝑛 𝑔𝛾𝑛〉|
2

𝑁

𝑛=1

+ ‖𝑅𝑁+1𝑓‖
2  ∑|𝑎𝑛|

2

𝑁

𝑛=1

+ ‖𝑅𝑁+1𝑓‖
2 (4 

This implies that if the algorithm successfully extracts the atom with the maximum 

correlation with the signal in each iteration step, the residue will consequently be minimized 

in terms of signal energy. 
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2.2.2. Stochastic Matching Pursuit 

In 2001, Piotr J. Durka has proposed the Stochastic Matching Pursuit algorithm (SMP) 

[14], which is a Monte Carlo approach aiming to find a statically unbiased linear expansion 

for quasi-sparse signals. 

 

Algorithm  STOCHASTIC MATCHING PURSUIT 

Input: Signal 𝑓(𝑡) 

Output: List of coefficients (𝑎𝑛 𝑔𝛾𝑛) 

𝑔𝛾1 ← argmax
𝑔𝛾1∈𝒟

|〈𝑓 𝑔𝛾1〉| 

Take arbitrary percentages of atoms with large correlation with 𝑓(𝑡) to form 𝒟𝛼 

𝑎1 ← 〈𝑓 𝑔𝛾1〉 

𝑅𝑓2 ← 𝑓 − 𝑎1𝑔𝛾1 

Repeat From 𝑛  2: 

Generate 𝒟𝑒 densely and exhaustively in the parameter center of atoms in 𝒟𝛼 

𝑔𝛾𝑛 ← argmax
𝑔𝛾𝑖∈𝒟𝑒

|〈𝑅𝑓𝑛 𝑔𝛾𝑖〉| 

𝑎𝑛 ← 〈𝑅𝑓𝑛 𝑔𝛾𝑛〉 

𝑅𝑓𝑛+1 ← 𝑅𝑓𝑛 − 𝑎𝑛𝑔𝛾𝑛 

𝑛 ← 𝑛 + 1 

Until Stopping Condition met 

Table 2 Durka’s Stochastic Matching Pursuit Algorithm  

First, a stochastic dictionary  𝒟 is generated according to the required signal length  𝑁 

and chosen time-frequency resolutions in time, frequency and scale (Δ𝑡 Δ𝜔 and Δ𝑠). The 

parameter space is thereby divided into total 𝜋𝑁2 Δ𝑡Δ𝜔Δ𝑠⁄  cuboids of size  Δ𝑡 × Δ𝜔 × Δ𝑠. 

In each cuboid, a Gabor atom is chosen by drawing its parameters from uniform distributions 

within the given ranges of continuous parameters.  

In the first iteration, a percentage of prominent atoms with large correlations with the 

input signal are chosen to form an adaptive dictionary  𝒟𝛼. Afterwards in each matching 
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procedure, parameters of the atoms chosen from 𝒟𝛼 are further optimized by a dense and 

exhaustive search in the designated vicinity. 

In [14], Durka stated that, instead of being driven by a quest to improve the speed or 

compression ratio, the goal of the stochastic method is attaining possible exact 

parameterization of certain signal structures freeing from bias and with a constant 

time-frequency resolution. 

2.3. Localized Optimization Methods 

The localized optimization methods are employed on the parameter sets of the 

time-frequency atoms to maximize the correlation between the atom waveform and the 

input signal or residuals. Two of which that have been employed during the research period 

are listed below. 

2.3.1. Covariance Matrix Adaptation Evolution Strategy 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic numerical 

optimization method. As the tradition of the evolution strategies, each new generation of 

candidates are sampled according to a multivariate Gaussian distribution based on the 

pairwise dependencies between the variables in the parameter sets – the dependencies in 

the distribution are described by a covariance matrix. The covariance matrix adaptation 

(CMA) is a method to update the covariance matrix of this distribution. 

2.3.2. Natural Gradient 

Generic optimization algorithm (black-box optimization) are designed for problem with 

unknown and sophisticate objective functions; one of the simplest and the most celebrious 

one is gradient based optimization, based on the fact that a minimum or a maximum of a 

function takes place at the point having zero partial derivatives in all dimensions, forming the 
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core concept of gradient descent/ascent method [15,16]. One of the most significant 

advantages of gradient descent over the other alternatives is the simplicity and efficiency; 

however, the most notable drawback is the vulnerability towards local minimum, especially 

when the objective function is mountainous, asperous or spiky. 

In 1998, S. Amari et al introduced the natural Riemannian gradient or simply, natural 

gradient [17,18] in the field of optimization. Taking the curved space into consideration and 

changes the concept of distance in ordinary Euclidean space. 

In 2008, Daan Wierstra and Tom Shaul presented the Natural Evolution Strategy (NES) 

[19,20], utilizing the canonical process of the gradient descent but replacing the standard 

gradient by empirical Natural Gradient derived using population based method to estimate 

Fisher information matrix and gradient of the objective function. 

The next year in 2009, with Yi Sun's help in advance, the Natural Evolution Strategy 

benefited from a new computational method to attain actual Fisher information matrix 

instead of performing population based estimation on the objective function in the 

parameterized searching space. This improved version of the algorithm is called Efficient 

Natural Gradient Strategies [21]. 

 In this research, the natural gradient based algorithms are employed as local 

optimization method to seek for the best atom parameter to decompose the signal. 

2.4. Grassmannian Frame 

This section includes the mathematical property of a frame, since frames with low 

mutual coherence are favored in the field of Compressive Sensing; the Grassmannian 

concept is employed to suppress the increment of mutual coherence when raising the 

redundancy of a dictionary. 



 
 

 
 
   11 

 

2.4.1. Frame and Mutual Coherence 

An 𝑁- element finite frame 𝑋𝑑
𝑁  *𝑥1 𝑥2 …  𝑥𝑁+ ⊆ ℝ𝑑   is a family of vectors that 

characterizes any signal from its inner product  *〈𝑓 𝑥𝑘〉+  and completely spans the 

𝑑 -dimensional Euclidean space, which necessitates  𝑁 ≥ 𝑑  and should hold the frame 

condition: There exists two constants 𝐴 and  𝐵 𝐴 ≤ 𝐵  for any function  𝑓 ∈ ℝ𝑑  such 

that  𝐴‖𝑓‖ ≤ ∑ |〈𝑓 𝑥𝑘〉|
2

𝑘 ≤ 𝐵‖𝑓‖.  

Of particular concern is the correlation value between the underlying atoms within 

frame, which is known as the mutual coherence of a frame. The definition is: 

 𝜇(𝑋𝑑
𝑁)  max

𝑘 𝑙∈Γ 𝑘≠𝑙

|𝑥𝑘
𝑇𝑥𝑙|

𝑥𝑘
𝑇𝑥𝑘𝑥𝑙

𝑇𝑥𝑙
 ≥ √

𝑁 − 𝑑

𝑑(𝑁 − 1)
 (5 

The maximum correlations are ideally zero for all orthonormal frames; for overcomplete 

dictionaries, those with small mutual coherence value are preferred in the case of sparse 

representation. The effect will be discussed later in 3.6.  

 

2.4.2. Definition of Grassmannian Frames 

A unit-energy (unit 𝐋2 norm) finite frame  𝑈𝑑
𝑁  *𝑢1 𝑢2 …  𝑢𝑁+ ⊆ ℝ𝑑, where  |𝑢𝑛|  1  

 ∀𝑛  1 to  𝑁, is an (𝑁 𝑑)-Grassmannian frame [22] if satisfying the minimal mutual 

coherence criterion: 

 𝜇(𝑈𝑑
𝑁)  inf{𝑋𝑑

𝑁} (6 

That is, the 𝑁 −element Grassmannian frames are frames minimizing the mutual 

coherence in ℝ𝑑. In [22], T. Strohmer et al provided a method of constructing optimal 

Grassmannian frame with Gabor atoms by positioning the time and frequency center of the 

atoms on a triangular lattice over continuous time-frequency plane. 
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2.4.3. Grassmannian Gabor Frame  

Recent attempts to represent a vector/function/operator in terms of a redundant 

spanning set of normalized elements gives rise to the concept of frames, which can be 

regarded as the generalization of orthonormal bases. The level of its over-completeness is 

measured by its redundancy 𝜌. Recently, about the acquisition of Grassmannian Gabor frame, 

T. Strohmer introduced two unitary operators of translation 𝑇𝑥 and modulation 𝑀𝜔 in [22]: 

 , 
𝑇𝑡0𝑓(𝑡)  𝑓(𝑡 − 𝑡0)

𝑀𝜔0
(𝑡)  𝑓(𝑡)𝑒𝑗𝜔0𝑡

 (7 

A two dimensional lattice Λ is a discrete subgroup of time-frequency parameter space 

with compact quotient determined by a generator matrix  𝐿 via Λ  𝐿℞2. The volume of the 

lattice Λ is vol(Λ)  det(Λ). For the Gaussian window function 𝑔 ∈ 𝐋2(ℝ) and a lattice Λ 

in the time frequency plane ℝ2, the corresponding Gabor system can be defined as: 

 𝒢(𝑔 Λ)  {𝑀𝜔0𝑇𝑡0𝑔    where (𝑡0 𝜔0) ∈ Λ} (8 

The completeness of the system is therefore determined by the redundancy 𝜌  

1 vol(Λ)⁄ . A necessary condition for a Gabor system  𝒢(𝑔 Λ) to be a frame is 𝜌 ≥ 1.  

Since a Gaussian function in time domain remains Gaussian in frequency, also, both shift 

and rotational invariant with respect to every time frequency center (𝑡0 𝜔0). The time 

frequency energy spread is an ellipse in the time frequency plane, the redundancy of the 

Gabor system can be viewed as the overlapping in time-frequency energy distribution.  

Applying the classical sphere packing theory [23], the optimal lattice for a two 

dimensional space is the solution for argmaxΛ*(volume of a sphere) × 𝜌+ , and the 

generator matrix 𝐿 of the solution lattice Λ is found in [22] to be a hexagonal lattice: 
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1

1

2

0
√3

2

  

]
 
 
 
 (9 

Such result is also applied on OFDM design for time-frequency dispersive channel, the 

Fig. 4 (b) in [24] illustrate the resulted Gabor system energy concentration of the packing: 

 

Figure 2 Supports of Energy Spreading of a Constant-Scale Gabor System Generated with 

a Hexagonal Lattice, Fig. 4 (b) of [24] 

And the dilation effect of the scaling factor would make the form become: 

 

𝐿𝑠  √
2

√3𝜌
 [  

𝑠
𝑠

2

0
√3

2𝑠

  ] (10 

The overcomplete Grassmannian Gabor frame will be applied on both the advanced 

search of the optimal standard waveform representation and the dictionary training 

approach as well; from which the Matching Pursuit based algorithm selects the most 

prominent atom then performs further optimization in the first approach, and serves as the 

initial dictionary with configurable redundancy in the second. 
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2.5. Memetic Algorithms 

The theory of “Universal Darwinism” was coined by Richard Dawkins in 1983 [25] to 

provide a unifying framework governing the evolution of any complex system. In particular, 

“Universal Darwinism” suggests that evolution is not exclusive to biological systems. The 

term “meme” was also introduced and defined by Dawkins in 1976 as “the basic unit of 

cultural transmission, or imitation”, and in the English Oxford Dictionary as “an element of 

culture that may be considered to be passed on by non-genetic means”. 

Now, Memetic Algorithm (MA) [26] is one of the recent blooming areas of research in 

evolutionary computation, which is now widely used as a synergy of population-based 

approach with separate individual local improvement procedures. And finally, use 

evolutionary strategy such as Darwinian or Lamarckian filtering to select the proper 

chromosomes to reproduce the next generation. 

The following code section shows a typical process of a canonical Memetic Algorithm: 

 

Algorithm CANONICAL MEMETIC ALGORITHM 

Initialize: Given starting point 𝑝; 

While Stopping conditions Not satisfied Do 

Evolve a new population Π using stochastic search operators. 

Evaluate all individuals in the population. 

Select the subset of individuals Ω𝑖𝑙 that should take the learning procedure. 

 For Each individual In Ω𝑖𝑙 Do 

Perform learning with meme with probability of 𝑝𝑖𝑙 

Proceed with Lamarckian or Baldwinian learning. 

 End For 

End While 

Table 3 Canonical Memetic Algorithm  

The concept of the Memetic Algorithm will be combined with the Grassmannian 
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dictionary and the natural gradient based search algorithm to assemble the ultimate 

optimization method for the search of the Gabor parameter whose corresponding waveform 

fit the given signal the most.  
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Chapter 3. CMA-ES Based Local Search 

Based on the fundamental belief of Matching Pursuit, the goal of searching for the 

parameters of atom having the highest correlation value with the signal is quite obvious. In 

the first move, the quasi sparse characteristic of the EEG signals is justified by observing the 

distribution of Gabor atom centers from the result of time frequency analyses. 

3.1. Identifying the Quasi Sparse Property of EEG Signals,  

Figure 3 is the normalized density map with top density re-scaled to 1.0 obtained by 

analyzing the time-frequency centers and scaling factors of the Gabor atoms after the 

decomposition of the 386-epoch, 145ms, 64-channel EEG signals recorded in the 

electro-magnetic isolation chamber of Brain Research Center, NCTU. 

 

Figure 3 Relative Density Map of Time-Frequency Centre of Gabor Atoms 
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Each time-frequency-scale central point is weighted by the squared correlation value 

between the atom waveform and the signal according to the energy conservation property in 

Equation (4. To emphasis the concentration, a spherical kernel density function is used, the 

mathematical formula of the kernel is: 

 { 
𝑘 ⋅ (1 − 𝑡2)2  if 𝑡 < 1
0 if 𝑡 ≥ 1

   where 𝑡 is the distance measure (11 

The concentration of time-frequency centers of Gabor dictionary atoms generated by 

decomposing the EEG signal with Durka’s stochastic matching pursuit indicates the possibility 

of representing the signal with only few time-frequency localized atoms. 

3.2. Sparse Representation over Standard Dictionaries 

This section contains the description of four types of dictionaries – Gabor Chirp 

(Chirplet), Morlet wavelet, real Mexican Hat Wavelet and Cubic Cardinal B-Spline – used to 

obtain the sparse representation of the ERP and ICA signals.  

3.2.1. Linear Gabor Chirp (Linear Chirplet) Dictionary 

A linear Gabor chirp, or a chirplet by Steve Mann [27], is a piece of a chirp derived from 

windowing a chirp function where the window provides the time localization property similar 

to their Gabor siblings.  

Most of the chirplet parameters are the same as those used in the Gabor atom, the 

additional parameter, the chirp rate, is introduced to represent the change of the oscillating 

frequency of the waveform over time.  

Given the parameter set  *𝑡0 𝜔0 𝑠 𝑐 𝜙+ as time center, frequency center, scale, chirp 

rate and phase, the mathematical formula of a chirplet atom is: 

 𝑔𝑡0 𝜔0 𝑠 𝑐 𝜙(𝑡)  𝐾 ∙ exp (−𝜋 (
𝑡 − 𝑡0
𝑠

)
2

) ⋅ cos (
𝑐(𝑡 − 𝑡0)

2

2
+ 𝜔0(𝑡 − 𝑡0) + 𝜙) (12 
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The normalizer 𝐾 is a parameter set dependent function employed here and in the 

following sections to generate unit-norm atoms. 

The following figure gives an example for a Gabor atom and a chirplet atom with the 

same time-frequency center, scale and phase. 

 

Figure 4 Gabor and Chirplet Atoms 

Brown et al [28] have conducted some experiments using the chirplet atoms to 

decompose the ERP signals, the representation result modeled the signal only with a small 

number of chirplet logons and minimal energy lost. This indicates that the chirplet analysis 

might be suitable for perform sparse signal processing on the EEG signals. 

3.2.2. Real Morlet and Mexican Hat Wavelet 

Continuous wavelet analysis is another powerful instrument in the research field of joint 

time-frequency analysis [29,30]. As the ordinary constant-scale Gabor analysis (or short-time 

Fourier analysis) emphasized the localized time and frequency activities using time shifts and 

frequency modulations; the wavelet provides an alternative for frequency modulations by 

changing the scaling factors. According to the Heisenberg’s uncertainty principle, a lower 

scaling factor will narrow the active period in time but expands the observable frequency 

band, and a larger one will do the opposite.  

The Morlet wavelet family was introduced by Jean Morlet in 1984, which is a Gaussian 
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windowed sinusoid and actually embedded in the subspace of the Gabor atoms. Given the 

sampling rate 𝑓 and the parameter set *𝑡0 𝑠+ the parameterized Morlet atom can be 

represented as: 

 𝜓𝑡0 𝑠(𝑡)  𝐾 ⋅ exp (−
1

2
(
𝑡 − 𝑡0
𝑠

)
2

) ⋅ cos(5 ⋅ 𝑓 ⋅ (
𝑡 − 𝑡0
𝑠

)
2

) (13 

The Mexican Hat wavelet is proportional to the second order derivative of the Gaussian 

function. With the parameter set  *𝑡0 𝑠+, the shifted and scaled Mexican Hat wavelet atom 

can be formulated as: 

 𝜓𝑡0 𝑠(𝑡)  𝐾 ⋅ (1 − (
𝑡 − 𝑡0
𝑠

)
2

) ⋅ exp (−
1

2
(
𝑡 − 𝑡0
𝑠

)
2

) (14 

The following figure gives an example for the two types of wavelet atoms: 

 

Figure 5 Morlet and Mexican Hat Atoms 

Both the Morlet and Mexican Hat wavelet families are both widely used in biomedical 

signal analysis [31,32] and other areas like image compression. 

3.2.3. Cubic Cardinal B-Spline 

The cubic cardinal B-spline functions are continuous piecewise-polynomial compact 

waveforms introduced recently [33,34] for sparse representations and biomedical signal 

processing; these waveforms are frequently employed to absorb pulse-shaped features of 
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the signals. Given the parameter set of time shift and scaling factor *𝑡0 𝑠+, the cubic cardinal 

B-spline atom has the following mathematical form as in Equation (15 and shape in Figure 6: 

 𝐵𝑡0 𝑠(𝑡)  𝐾 ⋅
1

4!
∑(−1)𝑖 .

4
𝑖
/max *0 ((

𝑡 − 𝑡0
4𝑠

) − 𝑖)+

34

𝑖=0

 (15 

 

Figure 6 Cubic Cardinal B-Spline Atom 

3.2.4. Mixed Dictionary 

This design focuses on finding the sparse representations based on the combination of 

all the dictionaries mentioned above; the aim is to investigate whether more efficient 

representations may be produced under such configuration. 

3.3. Signal Decomposition 

3.3.1. Decomposition Problems 

For the following sections, these variables are used for size/dimension measurements: 
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Variables Meanings 

𝑵 Number of signal trials in the training template signal set 

𝒏 Number of samples in each signal trial 

𝒌 Number of atoms in the dictionary 

𝑳 Number of non-zeros in the decomposed coefficient matrix 

Table 4 Size/Dimension Variables and Their Meanings 

Their relation should be 𝐿 ≪ 𝑛 < 𝑘 ≪ 𝑁. 

The sparse signal decomposition (factorization) problem is formally stated here: Let 

𝑘 > 𝑛 𝑏 ∈ ℝ 𝐴 ∈ ℝ𝑛×𝑘 and Rank(𝐴)  𝑛, the noiseless single-trial signal decomposition 

problem 𝑃0 is defined as: 

 𝑃0 ≡ min
𝑥
‖𝑥‖0  subject to 𝐴𝑥  𝑏 (16 

The solution for the problem  𝑃0 is definitely the sparse most representation. However, 

the case of the realistic world is not always in such an ideal situation; with the presence of 

noises, the bounded error version problem 𝑃𝑜 𝜖 with the error measured in terms of the 𝐋2 

norm is therefore defined for practice. The 𝑃0 𝜖 problem is suitable for modeling single-trial 

quasi-sparse standard waveform decomposition and recovery, which is presented in 

mathematical equation (17 and illustrated as Figure 7: 

 𝑃0 𝜖 ≡ min
𝑥
‖𝑥‖0  subject to ‖𝐴𝑥 − 𝑏‖2 < 𝜖 (17 

 

Figure 7 Illustration of Noisy Sparse Single-Trial Signal Decomposition Problem 

An  k x b'

b'
b

|| b – b' ||2 < ϵ

s.t.
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3.3.2. Decomposition Algorithm 

For the standard waveform dictionaries, the proposed method is basically based on the 

iterative procedures of Matching Pursuit.  

An improved iteration procedure can be separated into 3 stages: 

 

1. Finding candidate atoms over loosely sampled parameter set 

The candidates found in this stage are passed into the next stage as initial 

configuration of the optimization algorithm. 

 

2. Optimizing the candidates using CMA-ES 

The CMA-ES algorithm will search the vicinity of the initial point acquired from 

the previous stage and iteratively converged to a certain parameter set. The most 

prominent set maximizing the absolute inner product value of the derived atom 

will be recognized as the best matched. 

 

3. Removing the best matched waveform from the signal space 

This step is the same as the original Matching Pursuit. 

 

To identify in which type of dictionaries can the signal be well and sparsely represented, 

the Matching Pursuit algorithm is applied on several types of standard dictionary including 

the generalized Gabor dictionary (consists of Fourier atoms, impulse functions and ordinary 

Gabor functions), Mexican Hat wavelet, Morlet wavelet and Cubic Cardinal B-Spline 

dictionaries for the comparison of the performance for each type of dictionary listed above. 
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3.4. Matching Pursuit Based on CMA-ES 

Covariance matrix adaptation evolution strategy (CMA-ES) [35,36] is a stochastic 

numerical algorithm for solving non-linear non-convex optimization problems with search 

spaces of three to a hundred dimensions.  

In essence, CMA-ES performs a principal components analysis in each mutation step so 

as to provide maximum likelihood estimation for subsequent parameter adaptation. Beside 

of computing the covariance matrix of its multivariate normal distribution of mutations, it 

also records the evolution paths of the mean of mutation distribution. The information is 

used to control the step size of mutations and determine the favorable directions for 

covariance adaptation. As a result, the algorithm is capable of handling problems with 

multimodal, discontinuous, even noisy fitness functions. 

CMA-ES is a highly reliable and competitive algorithm for most local optimization and 

many global optimization problems. It is the de-factual benchmark for adaptive optimization. 

3.5. Discovery of Inconsistency 

Inconsistency described here means the decomposition sequences of the Gabor atom 

parameter sets may have significant differences in atom orders and values. 

Given the same signal, the dominant atoms of one representation can be significantly 

different from those appear in another representation produced by a different run of the 

algorithm. Two causes of inconsistency have been identified:  

 

1. The presence of redundant atoms in a dictionary 

For example, multiple atoms in a Gabor dictionary can produce similar or 

identical waveform; if the oscillating frequency of the sinusoid is too low, the 

behavior of the atom is just similar to a single envelope without oscillating. For 
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example, the two following unit-energy atoms 𝐴 and 𝐵 have almost identical 

waveform (both contain 290 sampling points at sampling rate of 200 Hz): 

 

Atom Length ( ) Normalizer Shift ( ) Freq. (Hz) Scale( ) Phase (𝝅) 

𝑨 1.45 36.486077 0.2491 0.0101 0.2533 0 

𝑩 1.45 0.538988 0.25 0.6897 0.26 0.5172 

Table 5 Atom A and B with Significant Different Parameters 

The mean square error is  ‖𝐴 − 𝐵‖2 290⁄  2 7338 × 10−7, and the following 

Figure 8 shows the waveform and frequency spectrum of the two atoms. 

(a) Atom A 
 

(b) Atom B 

Figure 8 Example of Two Almost Identical Atoms with Different Parameters 

 

2. The existence of degenerative cases in a sparse representation 

For example, as a Gabor atom increases the standard deviation of its Gaussian 

envelope, it becomes more difficult to locate the time center of this atom.  

 

In “Consistent Sparse Representations of EEG ERP and ICA Components Based on 

Chirplet and Wavelet Dictionaries” * 37 ], several constraints on value ranges of the 

parameters are proposed to ensure the consistency during the decomposition. 
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3.6. Consistency Conditions 

For signal decomposition algorithms, there are several indexes for performance 

measurements – accuracy, efficiency and consistency [37]: 

The accuracy of the decomposition is measured in the strength of the correlation 

between the found atom and the signal; the efficiency is ranked in terms of the number of 

atoms used to absorb a certain percentage of energy; the consistency is judged based on 

following two terms: 

 

1. The organization of the decomposed atoms 

The ensemble of dominant atoms should form distinct clusters in their 

parameter spaces; these clusters of atoms accumulated through repeated 

random searches may be used to classify different ERP types. 

2. The reflections of ERP signal atoms in ICA components 

The clusters of dominant atoms of ERP signals and their ICA components should 

manifest significant overlap with one another ― these overlap atom clusters 

confirm the agreement between the sparse representations of the two EEG 

signal forms. 

 

To ensure consistency, the decomposition should first have uniqueness (for exact 

reconstruction of noiseless signals), or stability (for signals with noise) through the sparsity of 

signals, which will be covered in 3.6.1; and the rule enforcing parameter consistency will be 

discussed in 3.6.2. 

3.6.1. Mathematical Uniqueness and Stability 

In 2003, Donoho and Elad [38,39] identified the harsh conditions for the existence of a 

unique and stable representation in an over-complete dictionary. Elad et al. [40] then 
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proposed a method to find a unique dictionary that can produce stable representations for a 

given set of signals and devised the K-Singular Value Decomposition (K-SVD) algorithm [41] 

to design the dictionary consisting of non-parametric atoms with tailored waveforms only if 

the existence conditions of stable representations were satisfied at the first place; the part of 

the KSVD algorithm will be stated later in Chapter 6, here, the primary focus is the 

uniqueness and consistency condition on single-trial signal decomposition. 

In [40] it describes that if the sought solution 𝑥 for 𝑃0 satisfies the sparsity condition,  

 ‖𝑥‖0 ≤
1

2
(1 +

1

𝜇(𝐴)
) (18 

the pursuit algorithms will recover the original signal exactly. This suggest that for 

representation less than 𝒪(√𝑛) non-zero terms (see equation (5 ), Matching Pursuit 

algorithm can successfully reconstruct the signal.  

3.6.2. Parameter Consistency 

The Gabor parameters of different atoms span the search space of the CMA-ES. In order 

to exclude the redundant and degenerative cases in CMA-ES mutations, the following 

pruning rules of the search space are devised to prevent such undesired occasions: 

Rule Parameters Pruning Rules (Tolerance: ± %) 

1 
Time Shifts, 𝒕  
(All Atoms) 

Discard 𝑡0 ∉ ,𝑇𝑚𝑖𝑛  𝑇𝑚𝑎𝑥-  

2 
Frequency Shifts, 𝝎  
(Gabor, Chirplets) 

Discard 𝜔0 ∉ ,𝜔𝑚𝑖𝑛  𝜔𝑚𝑎𝑥-  

3 
Scaling,   
(Gabor) 

∀𝑔𝑡0 𝜔0 𝑠 𝜙(𝑡) with 𝑠 > 100 𝑔𝑡0 𝜔0 𝑠 𝜙(𝑡)  → 𝔣𝜔0(𝑡)  cos(𝜔0𝑡)  

4 
Scaling & Chirp, (   )  
(Gabor Chirp) 

Discard 𝑔𝐾 𝑡0 𝜔0 𝑠 𝑐 𝜙(𝑡) if 𝑐 × 𝑠 > 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 

5 
Scaling,   
(All wavelets) 

Discard 𝜓𝑡0 𝑠(𝑡)  if 𝜔𝜓 𝑠⁄  ∉ ,𝜔𝑚𝑖𝑛  𝜔𝑚𝑎𝑥-  

where 𝜔𝜓    central frequency of the wavelet mother function. 

Table 6 Atom A and B with Significant Different Parameters 
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In rule 1 and 2, pruning of (𝑡0 𝜔0) is meant to ensure that the chosen atoms always 

fall within the time and frequency spans of the target signal. Applying these rules will 

eliminate most of the redundant atoms.  

In rule 3, replacing the Gabor atoms with 𝑠 > 100 by Fourier atoms of the same 

frequency is meant to remove degenerated Gabor waveforms. The replacement will only be 

carried out if the inner product 〈𝑟𝑚(𝑡) 𝑔𝛾𝑚(𝑡)〉 of the Fourier atoms is large than those of 

the Gabor atoms.  

In rule 4 and 5, discarding chirplet and wavelet atoms with large scale is meant to 

eliminate degenerated waveforms, whose spectra spread across the entire frequency band. 

3.7. Experiments 

Here, the type of dictionary that is the best choice for decomposing the EEG signal will 

be identified, and a simple method will be introduced to achieve consistent results. 

3.7.1. EEG Signal Recording and Pre-processing 

A 64-channel EEG signal recording session was conducted within an EM-insulated 

chamber in NCTU Brain Research Centre (BRC) in July 2009. During the recording session, the 

test subject was asked to listen to a randomized sequence of rising or falling tones and was 

instructed to press a button immediately after hearing the rising tone but do nothing 

otherwise. The entire session lasted 40 minutes and produced total 1600 auditory-motor ERP 

epochs. 

The signals from all 62 scalp channels were sampled into single-precision (16 bit) data at 

1 KHz sampling rate and passed through ideal 1 Hz – 75 Hz FFT filters. They were then down 

sampled to 200 samples per second and fed through the artefact removal procedures. Only 

266 epochs of the no bottom pressing event and 108 epochs of the bottom pressing ones 

remained after the procedure. Each epoch contain 290 samples that cover a period from 
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40ms before to 1405ms after each Event On-Set (EOS) moment. Independent component 

analysis was then applied to all the epochs to produce their corresponding ICA components. 

Average ERP signals of the two events were generated by removing the DC components of 

individual epochs and then averaging their signal samples. Similar process was used to 

produce the average ICA components. 

3.7.2. Experiment Configurations 

The experiment goal in this early phase of the research period is to identify correctness 

and guarantee stability of the decomposition result, and select the most promising dictionary 

that can appropriately decompose the EEG signal with the smallest amount of atoms 

required for later use. 

Let the signal elapses for 𝒯 and has the bandwidth of ℬ, the resolution in time, angular 

frequency and scale is respectively  Δ𝑡 Δ𝜔 and Δ𝑠 (scaling factors  𝑠 and Δ𝑠 have the same 

unit as time shifts 𝑡0 and  Δ𝑡, both are time units). The following algorithm is implemented to 

decompose the signal in a trivial way (the restriction of scaling factor 𝒮min and  𝒮max  is 

usually problem dependent, it’s common for EEG signal having  𝒮min  0 1𝑠 and  𝒮max  1𝑠): 
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Algorithm  EXHAUSTIVE MATCHING PURSUIT (EMP)  (USING GABOR AS EXAMPLE) 

Input: Signal 𝑓(𝑡) 

Output: A list of coefficients and waveform parameters (𝑎𝑛 𝛾𝑛) 

Initialization: 𝑅𝑓1 ← 𝑓(𝑡); 

While 𝑛  1 to Iteration Limit and Stopping Condition not met 

 𝑎max ← −∞;   𝛾max ← 𝑁𝑢𝑙𝑙 

 For 𝑡0  0 to 𝒯 step Δ𝑡 

For 𝜔0  0 to ℬ step Δ𝜔 

For 𝑠  𝒮min to  𝒮max step Δ𝑠 

𝛾 ← ,𝑡0 𝜔0 𝑠0-; 𝑎 ← 〈𝑅𝑓𝑛 𝑔𝛾〉  

If |𝑎| > 𝑎max then 

 (𝑎max 𝛾max) ← (𝑎 𝛾)  # the most correlated atom 

End If 

  End For 

 End For 

End For 

𝛾𝑚𝑎𝑥
′ ← 𝑪𝑴𝑨𝑬𝑺(𝛾max) # local optimization procedure with pruning rules 

𝑎𝑚𝑎𝑥
′ ← 〈𝑅𝑓𝑛 𝑔𝛾𝑚𝑎𝑥

′ 〉 # use the updated correlation value  

(𝑎n 𝛾n) ← (𝑎max
′  𝛾max

′ )  

𝑅𝑓𝑛+1 ← 𝑅𝑓𝑛 − 𝑎𝑛𝑔𝛾𝑛 

End While 

Table 7 Exhaustive Matching Pursuit Algorithm (Gabor example) 

The objective function is simple, given the parameter set  𝛾; the object function returns 

the value  |〈𝑅𝑓𝑛 𝑔𝛾〉|. For the wavelets, simply remove the frequency scanning loop of 𝜔0. 

3.7.3. Experiment Results 

This experiment was suggested to use the event related potential of ICA component 20 

and channel 17 as our input. (Signal elapse 𝒯  1 45, Bandwidth ℬ  75Hz). 
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Figure 9 Comparison of Convergence Rate of Different Dictionaries 

over ICA Component #20 

  

Figure 10 Gabor Energy Map (ICA #20) Figure 11 Chirplet Energy Map (ICA #20) 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Phase 

( ) 

Wgh. 

(%) 

1 0.52 1.70 0.71 1.37 30.04 

2 0.32 6.24 0.15 1.35 15.70 

3 0.50 10.69 0.08 1.09 11.95 

4 1.45 6.21 0.60 0.73 7.07 

5 0.32 14.63 0.15 0.06 4.56 

6 1.32 12.74 0.71 1.71 4.79 

7 0.16 25.89 1.51 0.07 4.02 

8 0.83 4.00 0.32 0.71 3.51 

9 1.25 2.04 0.32 0.89 1.99 

10 0.10 15.17 0.19 0.54 1.35 
 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Chirp 
Rate 

Phase 

( ) 

Wgh. 

(%) 

1 0.51 3.25 0.59 -17.91 1.31 33.63 

2 0.25 0.01 0.25 0.00 0.50 13.07 

3 0.48 12.03 0.15 -19.02 0.60 10.69 

4 1.98 5.11 1.31 -1.36 0.53 7.70 

5 1.32 12.95 0.71 1.11 1.74 4.87 

6 0.28 12.36 0.10 383.21 0.73 4.51 

7 0.75 3.96 0.32 -8.19 0.07 3.48 

8 0.15 17.37 0.14 183.46 1.90 3.03 

9 0.98 25.86 1.94 0.03 1.00 2.50 

10 1.31 0.00 0.12 -0.05 1.50 1.50 
 

Table 8 Gabor Atom List (ICA #20) Table 9 Chirplet Atom List (ICA #20) 
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Figure 12 Mex. Hat Energy Map (ICA #20) 

 

Figure 13 Morlet Energy Map (ICA #20) 

# Time Shift Scale Weight (%) 

1 0.41 0.16 25.16 

2 0.29 0.03 14.71 

3 0.49 0.02 11.31 

4 0.89 0.09 6.16 

5 1.3 0.04 5.5 

6 0.38 0.02 4.47 

7 1.4 0.02 2.54 

8 1.14 0.24 2.2 

9 0.94 0.02 1.73 

10 0.33 0.07 1.69 

Table 10 Mex. Hat Atom List (ICA #20) 

# Time Shift Scale Weight (%) 

1 0.41 0.46 27.12 

2 0.38 0.15 15.18 

3 0.46 0.06 10.01 

4 1.39 0.14 6.68 

5 0.29 0.07 6.54 

6 0.88 0.27 4.51 

7 1.33 0.06 3.12 

8 1.34 0.83 2.75 

9 0.19 0.03 1.68 

10 0.31 0.04 1.42 

Table 11 Morlet Atom List (ICA #20) 

 

 

Figure 14 CB-Spline Energy Map (ICA 

#20) 

 

 

Figure 15 Mixing Energy Map (ICA #20) 

# Time Shift Scale Weight (%) 

1 0.41 0.16 25.16 

2 0.29 0.03 14.71 

3 0.49 0.02 11.31 

4 0.89 0.09 6.16 

5 1.30 0.04 5.50 

6 0.38 0.02 4.47 

7 1.40 0.02 2.54 

8 1.14 0.24 2.20 

9 0.94 0.02 1.73 

10 0.33 0.07 1.69 
 

# Type 
Time 
Shift 

Freq. 
Shift 

Scale 
Chirp 
Rate 

Wgh. 

(%) 

1 Chirplet 0.51 3.25 0.59 -17.91 33.63 

2 Chirplet 0.34 0.50 0.30 -102.49 13.07 

3 Gabor 1.90 31.04 1.19 45.60 10.69 

4 Chirplet 0.09 0.69 0.71 42.30 7.70 

5 Chirplet 1.11 12.48 1.79 -0.69 4.87 

6 Chirplet 0.22 17.89 0.18 -97.71 4.51 

7 Chirplet 0.70 4.42 0.50 -17.91 3.48 

8 Chirplet 0.36 26.05 0.29 6.50 3.03 

9 Chirplet 1.17 7.29 0.96 3.55 2.50 

10 Chirplet 1.14 25.95 1.05 -0.64 1.50 
 

Table 12 CB-Spline Atom List (ICA #20) Table 13 Mixing Atom List (ICA #20) 
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Figure 16 Comparison of Convergence Rate of Different Dictionaries 

over Event Related Potential of Channel #17 

 

 

Figure 17 Gabor Energy Map (Ch. #17) 

 

Figure 18 Chirplet Energy Map (Ch. #17) 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Phase 

( ) 

Wgh. 

(%) 

1 0.27 0.02 0.06 0.50 47.85 

2 0.75 3.43 0.30 1.98 13.36 

3 0.45 59.97 20.55 0.24 9.20 

4 0.88 10.76 0.99 1.06 6.83 

5 0.38 7.95 0.05 1.78 2.86 

6 0.06 2.14 0.27 1.60 2.19 

7 1.02 6.48 0.14 0.07 2.19 

8 0.27 28.94 0.19 0.76 2.05 

9 1.36 1.68 0.16 1.45 1.56 

10 0.60 7.31 0.28 0.65 1.49 
 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Chirp 
Rate 

Phase 

( ) 

Wgh. 

(%) 

1 0.27 4.16 0.06 31.25 1.31 47.87 

2 0.77 2.83 0.44 -24.45 0.50 14.97 

3 0.63 60.00 1.45 0.00 0.60 8.32 

4 0.97 10.57 0.88 -1.66 0.53 7.00 

5 0.37 9.00 0.07 -276.65 1.74 2.98 

6 0.03 5.34 0.58 -46.8 0.73 2.36 

7 0.24 30.6 0.04 -138.59 0.07 2.10 

8 1.47 9.44 1.57 35.64 1.90 2.68 

9 0.83 4.34 0.98 -14.36 1.00 1.26 

10 0.11 54.17 0.12 -241.44 1.50 0.87 
 

Table 14 Gabor Atom List (Ch. #17) Table 15 Chirplet Atom List (Ch. #17) 
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Figure 19 Mex. Hat Energy Map (Ch. #17) 

 

Figure 20 Morlet Energy Map (Ch. #17) 

# Time Shift Scale Weight (%) 

1 0.30 0.04 43.20 

2 0.75 0.07 12.67 

3 1.02 0.03 5.46 

4 0.32 0.02 4.53 

5 0.25 0.01 3.33 

6 0.56 0.03 2.50 

7 0.33 0.10 2.23 

8 0.83 0.02 1.53 

9 1.21 0.03 1.25 

10 1.24 0.15 1.36 

Table 16 Gabor Atom List (Ch. #17) 

# Time Shift Scale Weight (%) 

1 0.30 0.13 27.73 

2 0.60 0.24 16.18 

3 0.29 0.06 10.85 

4 0.13 0.40 5.08 

5 1.02 0.08 5.05 

6 0.51 0.09 4.60 

7 1.21 0.74 1.94 

8 0.25 0.18 1.71 

9 1.21 0.16 1.69 

10 0.24 0.03 2.01 

Table 17 Chirplet Atom List (Ch. #17) 

 

 

Figure 21 CB-Spline Energy Map (ICA 

#20) 

 

 

Figure 22 Mixing Energy Map (ICA #20) 

# Time Shift Scale Weight (%) 

1 0.24 0.10 39.88 

2 0.64 0.20 9.43 

3 0.18 0.12 7.24 

4 0.98 0.08 4.38 

5 0.55 0.12 3.4 

6 0.34 0.09 3.28 

7 0.82 0.12 1.94 

8 -0.04 0.34 1.78 

9 0.68 0.93 1.36 

10 1.40 0.03 1.32 
 

# Type 
Time 
Shift 

Freq. 
Shift 

Scale 
Chirp 
Rate 

Wgh. 

(%) 

1 Chirplet 0.27 4.16 0.06 31.25 47.87 

2 Chirplet 0.77 2.83 0.44 -24.45 14.97 

3 Gabor 0.63 60.00 1.45 N/A 8.32 

4 Chirplet 0.97 10.57 0.88 -1.66 7.00 

5 Chirplet 0.37 9.14 0.07 -280.45 2.99 

6 Chirplet 0.00 3.93 0.48 -13.17 2.23 

7 Chirplet 0.24 31.23 0.04 -129.88 2.06 

8 Chirplet 1.49 10.11 1.57 35.60 2.63 

9 Chirplet 0.77 4.92 0.57 -22.11 1.22 

10 Chirplet 0.11 53.83 0.12 -242.38 0.88 
 

Table 18 Gabor Atom List (Ch. #17) Table 19 Chirplet Atom List (Ch. #17) 
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3.7.4. Result Analyses 

From Figure 9 and Figure 16, the result is quite apparent that the Gabor atoms 

out-perform the other dictionaries during the decomposition process. In the following stages, 

Gabor atoms will be used as the primary decomposition dictionary in the research. 

First, the decomposition sequence should be examined. The following Figure 23 shows 

the weights of the decomposed atoms and the decays of residue of ICA component #20 

during the pursuit processes, generally, the amount of energy extracted by the exhaustive 

MP is higher than Durka’s Stochastic MP. This phenomenon is expected since the CMA-ES 

optimization procedure breaks the parameter restrictions of integral resolution units, where 

atoms can be found to be generated by parameters in the field of real numbers ℝ. 

  

Figure 23 Residue and Atom Comparison between Exhaustive MP & Durka’s SMP 

# 
Tme 
Shift 

Freq. 
Shift 

Scale 
Phase 

( ) 

Wgh. 

(%) 

Residue  
(%) 

1 0.52 1.70 0.71 1.37 30.04 69.96 

2 0.32 6.24 0.15 1.35 15.70 54.26 

3 0.50 10.69 0.08 1.09 11.95 42.31 

4 1.45 6.21 0.60 0.79 7.07 35.24 

5 0.32 14.63 0.15 0.06 4.56 30.68 

6 1.32 12.74 0.71 1.70 4.79 25.89 

7 0.16 25.89 1.51 0.07 4.02 21.25 

8 0.83 4.00 0.32 0.71 3.51 18.74 

9 1.25 2.04 0.32 0.89 1.99 16.75 

10 0.10 15.17 0.19 0.54 1.35 14.40 
 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Phase 

( ) 

Wgh. 

(%) 

Residue  
(%) 

1 0.62 2.07 0.53 1.70 26.22 73.78 

2 0.27 2.76 0.05 0.57 18.85 54.93 

3 0.50 11.03 0.08 1.14 10.75 44.18 

4 1.33 4.83 0.16 1.32 6.23 37.95 

5 1.27 13.10 0.43 0.41 5.12 32.83 

6 0.62 4.83 0.49 0.64 4.50 28.33 

7 0.34 26.21 0.5 1.65 3.64 24.69 

8 0.07 0.69 0.23 1.73 3.34 21.35 

9 0.39 11.72 0.10 0.30 2.97 18.38 

10 1.10 5.52 0.19 0.47 1.43 16.95 
 

Table 20 Gabor Atom List Generated 

by Exhaustive MP (ICA #20) 

Table 21 Gabor Atom List Generated 

by Durka’s Stochastic MP (ICA #20) 
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Then, the correctness and precision of the decomposition results should be examined. 

Figure 24 and Figure 25 present the projection of the objective function on the axis of each 

parameter. For example, the “Time Shift Scanning” sub-graphs represent the changes of 

fitness values corresponding to the changes of time centers, while the other parameters are 

fixed during the scanning process. 

 

Figure 24 EMP on ICA #20 

Chirplet Atom 1 in Table 9 

(Desired Result) 

 

Figure 25 EMP on ICA #20 

Chirplet Atom 2 in Table 9 

(Typical Failure) 

In Figure 24, it shows a perfectly optimized result of CMA-ES, each variable are closely 

lying beside their optimal values, which maximize the inner product of the atom waveform 

and the signal and consequentially, position themselves on the top of concaves with 

derivatives close to zero in their vicinities.  

However Figure 25 presents another circumstances, which is a typical failure of 

insufficient sampling on large scaling, although the searched parameters are in close 
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proximity of the optimal value only with differences in only a small amount of samples (the 

resolutions are Δ𝑡  0 05 s and Δ𝜔  0 689 Hz. Therefore, the time difference in the 

number of Δ𝑡 is approximately  0 024𝑠 ≅ 0 48 Δ𝑡, and the frequency difference in the 

number of Δ𝜔  is  1 26 𝐻𝑧 ≅ 1 824 Δ𝜔). Notice that the real optimal value for scaling is 

quite large and locate on the edge of the objective curve. This is a classical degenerated case 

usually occurs when the scaling factor is too large in this case. The objective value can 

change drastically when modifying other parameters such as frequency and time centers due 

to the dilation and shrinkage of the resolution respectively. In the future design of the search 

algorithm, the dependencies of parameter should be considered in the design. 

Still, the decompositions are precise enough to achieve its goal, but the heavily reliance 

on the exhaustive sampling in the 3-dimensional parameter space is the primary drawback. 

During the exhaustive scanning process, the number of samples in the EEG signal is 290, it 

requires 290 × 145 × 290  12 194 500 iteration to acquire the densely sampled grid, and 

takes about 4 to 6 minutes for each Gabor atom in the table even on a 2.4GHz, Quad-core 

computer with 4GB RAM even written in C.  

In the following section, we’ll discover the mathematical properties of the Gabor atoms 

and used the derived result to decrease the cost of computation during the decompositions. 
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Chapter 4. Natural Gradient Search over 

Riemannian Space 

The former experiment result of atoms clustering and concentration of signal energy 

has brought one positive response for the proclaimed quasi-sparse property of the EEG 

signal, but through an instinctive and lubberly method. In this chapter, the behavior of 

scaling (scaling factor) variables will be discovered to be non-Euclidean (non-linear); 

traditional optimization method ignored the impact of scaling factors on the time and 

frequency resolution, causing excessively redundant sampling and calculation at low 

resolution but probably insufficient at high. Therefore, in this case, the performance and 

precision of traditional approaches might be doubtfully satisfactory. 

4.1. Geometry of the Gabor Parameter Space 

One of the major problems encountered when locating the candidates is to determine 

the way how algorithms take samples on the Gabor parameter space; instead of generating 

equidistance samples independently on the time, frequency and scale axes, the concept of 

Grassmannian frame is introduced to create dictionary with minimal mutual coherence. 

The search domain for the real Gabor atom parameters space is practically 

three-dimensional; the phase 𝜙 is usually optimized in each step of matching procedure 

after the remaining three parameters are determined. 

4.2. Uniform Sampling on Gabor Parameter Space 

The following figure is adopted from [42]. Case (a) is a simple example of failure that 

taking uniform samples with meridians and circles of latitude failed to achieve uniform 

sampling on a curved surface, whilst the case (b) is a more desirable case. 
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Figure 26 Uniform Sampling on Y and Z Axis (a) and a More Desirable Distribution of 

Points Approximating Uniform Sampling on a Sphere (b) 

The methods of taking samples in the Gabor parameter space can significantly affect the 

computational efficiency when performing optimizations or learning. In this section, the 

characteristic of the Gabor parameters will be discussed in details. Here, the complex Gabor 

atom (Equation (19 ) is used for calculation convenience during the analysis. 

 𝑔𝛾  𝐾(𝛾)𝑒−𝜋(𝑡−𝑡0)
2∕𝑠2𝑒𝑖𝜔0𝑡 (19 

As mentioned before in 2.4 and explained in 3.6, dictionaries with small mutual 

coherence values gain favor in the case of sparse signal processing. Since the mutual 

coherence value of a dictionary is the maximum inner product value between the atoms 

within; it is intuitive to associate them with equiangular vector sets where any biasing will 

produce a greater, however undesired inner product value in Equation (5.  

The sampling methods for time shift and frequency modulation are already described in 

[22]; followings are the derivations for how one should take samples on the Gabor 

parameters of scale factor 𝑠  and chirp rate 𝑐.  

Since the Gaussian integration and the behavior of the Heisenberg box remain 

unchanged regardless of the time and frequency center, the analyses will focus on the Gabor 

atoms centered at (𝑡0 𝜔0)  (0 0). 

In the current construction method of the Grassmannian Gabor frame, the time and 

 
(a) (b) 
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frequency lattice  Λ mentioned in 2.4 will be created first with a given redundancy 𝜌 and a 

default value of scale 𝑠0. To preserve the Grassmannian property, the value the rest of the 

parameters should be adjusted under the restriction of not to increase the mutual coherence 

of the dictionary set up by the given redundancy 𝜌. 

4.2.1. Verification of the Use of the Sphere Packing Concept 

Here, the shape of the energy distribution of a Gabor atom on the time-frequency plane 

is going to be verified. The Wigner-Ville energy density of any waveform 𝑓 can be written as: 

 𝑃𝑉𝑓(𝑡 𝜔)  ∫𝑓 .𝑡 +
𝜏

2
/ ⋅ 𝑓∗ .𝑡 −

𝜏

2
/ 𝑒−𝑗𝜔𝜏 𝑑𝜏 (20 

If the waveform 𝑓  exp ,− 𝑡2 𝜍2⁄  - is a Gaussian function, then the Wigner-Ville energy 

distribution is: 

𝑃𝑉𝑓(𝑡0 𝜔0)  ∫exp *−
.𝑡0 +

𝜏
2/

2

𝜍2
+ ⋅ exp *−

.𝑡0 −
𝜏
2/

2

𝜍2
+ 𝑒−𝑗𝜔0𝜏 𝑑𝜏

 ∫exp [−
𝑡0
2 +

𝜏2

4
𝜍2

− 𝑗𝜔0𝜏] 𝑑𝜏  2𝜍√𝜋 ⋅ exp *−
𝑡0
2

𝜍2
− 𝜍2𝜔0

2+ 

The shape of the contour of 𝑃𝑉𝑓 at any given energy level 𝑐 can be identified using: 

𝑃𝑉𝑓(𝑡0 𝜔0)  𝑐       ⇌       2𝜍√𝜋 ⋅ exp *−
𝑡0
2

𝜍2
− 𝜍2𝜔0

2+  𝑐 

⟹ exp *−
𝑡0
2

𝜍2
− 𝜍2𝜔0

2+  
𝑐

2𝜍√𝜋
 

Re-arrange the equation, and finally there’s a conic section with coordinate (𝑡0 𝜔0): 

 
𝑡0
2

𝜍2
+ 𝜍2𝜔0

2  ln(2𝜍√𝜋) − ln 𝑐 (21 

Since both 𝜍2 and  1 𝜍2⁄  are positive real numbers, the contour shape of the energy 

distribution  𝑃𝑉𝑓 is an ellipse on the time-frequency plane. Therefore, using sphere packing 

to construct a Grassmannian frame is quite logical. 
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4.2.2. Relationship between Mutual Coherence   and Redundancy   

For a Gaussian function with unit standard deviation 𝑓(𝑥)  𝑒−𝑥
2
, the Gaussian integral, 

also known as the Euler-Poisson integral, can be formulated as: 

 ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞

 ∫ 𝑒−𝑥
2
𝑑𝑥

∞

−∞

 √𝜋 (22 

The 𝐋2 energy of the unit 𝜍 and the dilated Gaussian function should be: 

 ‖𝑓(𝑥)‖2 ≜ ∫ 𝑓(𝑥) ⋅ 𝑓∗(𝑥)𝑑𝑥
∞

−∞

 ∫ 𝑒−2𝑥
2
𝑑𝑥

∞

−∞

 √
𝜋

2
 (23 

An energy-normalized Gaussian function can be written as 

 𝑓𝑛(𝑥)  √2/𝜋
4 𝑒−𝑥

2
 (24 

Based on (22, if the standard deviation 𝜍 of the Gaussian function has become 𝜍  𝑠, 

the Gaussian integral will be amplified or diminished at with the ratio of 𝑠: 

 ∫ 𝑓(𝑥 𝑠⁄ )𝑑𝑥
∞

−∞

 ∫ 𝑒−(𝑥 𝑠⁄ )2𝑑𝑥
∞

−∞

 𝑠√𝜋 (25 

Using equation (25, the 𝐋2 energy of the unit 𝜍 and the dilated Gaussian function can 

therefore be calculated, by definition: 

 ‖𝑓(𝑥 𝑠⁄ )‖2 ≜ ∫ 𝑓(𝑥 𝑠⁄ ) ⋅ 𝑓∗(𝑥 𝑠⁄ )𝑑𝑥
∞

−∞

 ∫𝑒−2(𝑥 𝑠⁄ )2𝑑𝑥  𝑠√
𝜋

2
 (26 

Notice that the Gabor atoms waveform with  𝑠  1 have the Gaussian window with 

standard deviation of √𝜋−1. 

 

{
 
 

 
 𝑔

(𝑥)  𝑒−𝜋(𝑥 𝑠⁄ )2  ⟹ Gabor Atom

∫ 𝑔 .
𝑥

𝑠
/

∞

−∞

 𝑠 ⟹ Gaussian Integral 

‖𝑔‖  𝑒−𝜋(𝑥 𝑠⁄ )2  
𝑠

√2
 ⟹ Norm

 (27 

Let 𝐾  √2
4

√𝑠⁄  be the energy normalization factor, given the generating matrix  𝐿 for 

the unit scaling Gabor atoms and redundancy 𝜌: 
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𝐿  [  
ℓ1 1 ℓ1 2
ℓ2 1 ℓ2 2

  ]  

[
 
 
 
 

  

√2

√3
4
√𝜌

1

√3
4
√2𝜌

0
√3
4

√2𝜌

  

]
 
 
 
 

 

The mutual coherence of the resulted dictionary 𝒟 will be determined by the adjacent 

atom having the Manhattan distance of 1. 

 

Figure 27 Energy Distribution of 3 Adjacent Gaussian Atoms Generated using 

Grassmannian Lattice Points 

Since the lattice is proved to generate Grassmannian Gabor dictionary, all adjacent atom 

will certainly have the same inner product value as the mutual coherence of the dictionary. 

Therefore, in this case, the mutual coherence of the entire dictionary can be calculated using 

the inner product of any pairs of adjacent atoms. 

Let 𝑔𝑛1 be the atom centered at zero time and frequency, with a unit scaling factor. And, 

𝑔𝑛2 be the atom next to 𝑔𝑛1, different by a time shift of ℓ1 1. 

The inner product of 𝑔𝑛1 and 𝑔𝑛2 is: 

〈𝑔𝑛1 𝑔𝑛2〉  ∫ 𝐾𝑒−𝜋.
𝑥
𝑠
/
2

𝐾𝑒
−𝜋(

𝑥−ℓ1 1
𝑠

)
2∞

−∞

𝑑𝑥  𝐾2∫ exp *−
𝜋(2𝑥2 − 2ℓ1 1𝑥 + ℓ1 1

2 )

𝑠2
+

∞

−∞

𝑑𝑥

 𝐾2∫ exp *−𝜋 (2 (𝑥 −
ℓ1 1
2
)
2

+
ℓ1 1
2

2
) 𝑠2⁄ +

∞

−∞

𝑑

 
𝐾2

√𝑒ℓ1 1
2
 ∫ exp *−2𝜋 (𝑥 −

ℓ1 1
2
)
2

𝑠2⁄ +
∞

−∞

𝑑𝑥  
1

𝑒𝜋∕√3𝜌
 

Therefore, the mutual coherence of the dictionary should be: 

Time
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 𝜇(𝒟)  
1

𝑒1∕√3𝜌
 (28 

The relation between redundancy  𝜌 and mutual coherence  𝜇(𝒟) can be shown as in 

Figure 28, notice that the value is independent of any scaling values. 

 

Figure 28 Relation between Dictionary Mutual Coherence and Redundancy 

This proof can be applied on the seven other equivalent lattices of 𝐿, which are  

(let  𝜅  √2 √3
4
√𝜌⁄ )  

𝐿1  𝜅 [  

𝑠
𝑠

2

0 −
√3

2𝑠

  ]  𝐿2   𝜅 [  

𝑠 −
𝑠

2

0
√3

2𝑠

  ]  𝐿3   𝜅 [  

𝑠 −
𝑠

2

0 −
√3

2𝑠

  ]   

𝐿4  𝜅 [  

−𝑠
𝑠

2

0
√3

2𝑠

  ]  𝐿5   𝜅 [  

−𝑠
𝑠

2

0 −
√3

2𝑠

  ]  𝐿6  𝜅 [  

−𝑠 −
𝑠

2

0
√3

2𝑠

  ]  𝐿7  𝜅 [  

−𝑠 −
𝑠

2

0 −
√3

2𝑠

  ] 

 

4.2.3. Behavior of Increment of the Scaling Factor (Conjecture) 

Since the atoms employed in the pursuit algorithm should be normalized in terms of 

energy. The energy-normalized Gabor functions with 𝑠  1 can be formulated as: 

 { 

𝑔𝑛(𝑥)  √2
4
𝑒−𝜋𝑥

2

𝑔𝑠𝑛(𝑥)  
√2
4

√𝑠
𝑒−𝜋(𝑥 𝑠⁄ )2

 (29 

Now, assumed that there are only two normalized atoms with different scaling 

0
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factors  𝑠1 𝑠2 ∈ ℝ in the dictionary 𝒟, assume that  𝑠2 > 𝑠1 > 0: 

 

{
 
 

 
 

 

𝑔𝑠1𝑛(𝑥)  
√2
4

√𝑠1
𝑒−𝜋(𝑥 𝑠1⁄ )2

𝑔𝑠2𝑛(𝑥)  
√2
4

√𝑠2
𝑒−𝜋(𝑥 𝑠2⁄ )2

 (30 

Their inner product 〈𝑔𝑠1𝑛(𝑥) 𝑔𝑠2𝑛(𝑥)〉 is the mutual coherence value  𝜇(𝒟).  

To observe the behavior of atom-wise correlation value when adjusting the scaling 

factor, try adding a new atom into 𝒟  with a new scaling factor  𝑠 > 𝑠2 without affecting 

the mutual coherence  𝜇(𝒟). 

To maintain the mutual coherence of the dictionary, the atom correlation value must 

follow that  |〈𝑔𝑠1𝑛(𝑥) 𝑔𝑠2𝑛(𝑥)〉| ≥ |〈𝑔𝑠2𝑛(𝑥) 𝑔𝑠𝑛(𝑥)〉|. 

 

|∫
√2
4

√𝑠1
𝑒−𝜋(𝑥 𝑠1⁄ )2 √2

4

√𝑠2
𝑒−𝜋(𝑥 𝑠2⁄ )2

∞

−∞

𝑑𝑥|

≥ |∫
√2
4

√𝑠1
𝑒−𝜋(𝑥 𝑠2⁄ )2 √2

4

√𝑠2
𝑒−𝜋(𝑥 𝑠⁄ )2

∞

−∞

𝑑𝑥| 

(31 

 ⟹ |√𝑠∫ exp *−
𝑥2(𝑠1

2 + 𝑠2
2)

𝑠1
2𝑠22

+
∞

−∞

𝑑𝑥| ≥ |√𝑠1∫ exp *−
𝑥2(𝑠2

2 + 𝑠2)

𝑠2
2𝑠2

+
∞

−∞

𝑑𝑥|  

The positivity and strictly monotonically increasing characteristic of the exponential 

function in the real number domain implies: 

 

𝑠1𝑠2√𝑠

√𝑠1
2 + 𝑠2

2
≥

𝑠 𝑠2√𝑠1

√𝑠2
2 + 𝑠2

⟹ 𝑠1(𝑠2
2 + 𝑠2) ≥ 𝑠(𝑠1

2 + 𝑠2
2) 

⟹ 𝑠 ≥
𝑠2
2

𝑠1
    (or   𝑠𝑠1 ≥ 𝑠2

2  since 𝑠1 𝑠2 𝑠 > 0) 

 

(32 

If the equality holds, the increasing sequence 𝑠1 𝑠2 𝑠 is a geometric progression, one 

can easily discover that  𝑠2  √𝑠1𝑠 . This suggests that the increment of the scaling factor 

while preserving a constant correlation value between adjacent atoms should be exponential. 

This process can be illustrated as in Figure 29; the expected result should be a vector that 

makes one of the given vectors lies on the equiangular surface defined by another given 

vector and the newly found one. 
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Figure 29 Searching for Additional Vectors without Lowering Mutual Coherence 

This method will be applied later to calculate other behaviors of the Gabor parameters 

and the theoretical result will be realized in the devising of a method to construct a 

sub-optimal Grassmannian frame. 

4.2.4. Scaling Factor and Mutual Coherence (Conjecture)  

From 4.2.3, the idea of treating the logarithm of the scaling factor 𝑠 as linear is verified; 

the impact of the adjusting the scaling factor on the time-frequency energy distribution of an 

atom can be illustrated in Figure 30. 

 

Figure 30 Dilation/Shrinking Effect of Scaling Factors 

Now it’s time to calculate the equivalence parametric distance between the time shift 

and scaling (dilation). Since the growth of scaling factor is geometric and the time shifting is 

additive, one can assume that the variation in 𝑠 is  𝑘𝑠, but the variation in 𝑥 is  (𝑥 + 𝛥𝑥).  

To maintain the mutual coherence amongst the existed atom, the following condition 

must be hold: 

Equiangular Surface

Given Vector

Coplanar Angle Bisector

Demanded Vector

, time dilating

, central scaling

, time shrinking
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 |∫
√2
4

√𝑠
𝑒−𝜋.

𝑥
𝑠
/
2

⏟      
original atom

⋅
√2
4

√𝑘𝑠
𝑒−𝜋.

𝑥
𝑘𝑠
/
2

⏟        
dilated atom A

∞

−∞

𝑑𝑥| ≥ |∫
√2
4

√𝑠
𝑒−𝜋.

𝑥
𝑠
/
2

⏟      
original atom

⋅
√2
4

√𝑠
𝑒−𝜋.

𝑥+Δ𝑥
𝑠

/
2

⏟        
time shifted atom

∞

−∞

𝑑𝑥| (33 

⟹ |∫
1

𝑠 ⋅ √𝑘
𝑒−.

𝑥
𝑠
/
2
−.

𝑥
𝑘𝑠
/
2∞

−∞

𝑑𝑥| ≥ |∫
1

𝑠
𝑒−.

𝑥
𝑠
/
2
−.
𝑥+Δ𝑥
𝑠

/
2∞

−∞

𝑑𝑥| 

 

Remove the common factor  1 𝑠⁄  and since 𝜋 > 0: 

1

√𝑘
|∫ exp *−𝜋 (

𝑘2𝑥2 + 𝑥2

𝑘2𝑠2
)+

∞

−∞

𝑑𝑥| ≥ |∫ exp *−𝜋 (
2𝑥2 + 2𝑥Δ𝑥 + Δ𝑥2

𝑠2
)+

∞

−∞

𝑑𝑥| 

 

⟹
1

√𝑘
|∫ exp *−(

1 + 𝑘2

𝑘2
)𝑥2+

⏟            
Dilated Gaussian

𝑑𝑥
∞

−∞

|

≥ |∫ exp *−2(𝑥2 + 𝑥Δ𝑥 +
Δ𝑥2

4
)+ ⋅ exp *−

Δ𝑥2

2
+

⏟        
Constant

𝑑𝑥
∞

−∞

| 

(34 

 

Move the scalars outside and simplify the Gaussian integrals, therefore: 

{
 
 
 

 
 
 

 

1

√𝑘
|∫ exp *−(

1 + 𝑘2

𝑘2
)𝑥2+

⏟            
Dilated Gaussian

𝑑𝑥
∞

−∞

|  
1

√𝑒Δ𝑥
2
|∫ exp *−2(𝑥 +

Δ𝑥

2
)
2

+ 𝑑𝑥
∞

−∞

|  √
𝑘𝜋

1 + 𝑘2

|∫ exp *−2(𝑥2 + 𝑥Δ𝑥 +
𝛥𝑥2

4
)+ ⋅ exp *−

Δ𝑥2

2
+

⏟        
Constant

𝑑𝑥
∞

−∞

|  
1

√𝑒Δ𝑥
2
|∫ 𝑒−2𝑥

2 𝑑𝑥|  √
𝜋

2𝑒Δ𝑥
2

 

Finally, according to the inequality (34: 

 
1 + 𝑘2

𝑘
≥ 2𝑒Δ𝑥

2
 ⇌ 𝑘2 − 2𝑘𝑒Δ𝑥

2
+ 1 ≥ 0 (35 

Using the solution form of quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐  0 of single variable 𝑥: 

𝑥  
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Since the polynomial is convex, the suitable range for 𝑘 should be: 
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𝑘 ≥ 𝑒Δ𝑥
2
+√𝑒2Δ𝑥

2
− 1    or    𝑘 ≤ 𝑒Δ𝑥

2
−√𝑒2Δ𝑥

2
− 1 

Notice that there are two possible ranges for 𝑘, and one can easily discover their 

product have the following property: 

 
.𝑒Δ𝑥

2
+√𝑒2Δ𝑥

2
− 1/⏟              

Expanding Factor

⋅ .𝑒Δ𝑥
2
−√𝑒2Δ𝑥

2
− 1/⏟              

Shrinking Factor

 𝑒2Δ𝑥
2
− 𝑒2Δ𝑥

2
+ 1  1 

(36 

4.2.5. Verifications of Scalable Grassmannian Dictionary 

Statement I: The mutual coherence 𝜇(𝒟) of dictionary 𝒟(g Λs ) is determined by a 

unit shifted atoms with parameter center, i.e. 

If  𝜆𝑎  𝐿 0
1
0
1   and  𝜆𝑏  𝐿 0

0
1
1   then  𝜇(𝒢)  |〈𝑔𝑂 𝑔𝜆𝑎〉|  |〈𝑔𝑂 𝑔𝜆𝑏〉|  

Proof: For any 2 atoms with parameter t0 ω0 s and t0 + Δt ω0 + Δω s, their inner 

product value is 

∫
√2

𝑠
⋅ exp(−

𝜋(𝑡 − 𝑡0)
2

𝑠2
+ 𝑗𝜔0𝑡 −

𝜋(𝑡 − 𝑡0 − Δ𝑡)2

𝑠2
− 𝑗(𝜔0 + Δ𝜔)𝑡)

∞

−∞

𝑑𝑡

 
√2

𝑠
∫ exp (−

𝜋𝑡2

𝑠2
−
𝜋(𝑡 − Δ𝑡)2

𝑠2
− 𝑗Δ𝜔𝑡)

∞

−∞

𝑑𝑡

 
√2

𝑠
∫ exp .−

𝜋

𝑠2
(2𝑡2 − 2𝑡 ⋅ Δ𝑡 + Δ𝑡2) − 𝑗Δ𝜔𝑡/

∞

−∞

𝑑𝑡

 
√2

𝑠
∫ exp (−

2𝜋

𝑠2
(𝑡 −

Δ𝑡

2
)
2

−
𝜋

2𝑠2
Δ𝑡2 − 𝑗Δ𝜔𝑡)

∞

−∞

𝑑𝑡

 
√2

𝑠
⋅ exp(−

𝜋Δ𝑡2

2𝑠2
)∫ 𝑒𝑥𝑝 (−

2𝜋

𝑠2
(𝑡 −

Δ𝑡

2
)
2

− 𝑗Δ𝜔𝑡)
∞

−∞

𝑑𝑡

 exp(−(
𝜋Δ𝑡2

2𝑠2
+ 𝑗Δ𝑡Δ𝜔 +

Δ𝜔2𝑠2

8𝜋
)) 

The magnitude is: 

ℜ[exp(−(
𝜋Δ𝑡2

2𝑠2
+ 𝑗Δ𝑡Δ𝜔 +

𝜋Δ𝜔2𝑠2

2
))]  exp(−(

𝜋Δ𝑡2

2𝑠2
+
Δ𝜔2𝑠2

8𝜋
)) 

The result is a 2D Gaussian function centered at (0 0), since 
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{
 
 
 
 

 
 
 
 
𝜆𝑎  𝜅 0

𝑠
0
1  *

√2𝑠

√3
4
√𝜌

0

+

𝜆𝑎  𝜅 [

𝑠

2

√3

2𝑠

]  

[
 
 
 
 

𝑠

√3
4
√2𝜌

√3
4

𝑠√2𝜌 ]
 
 
 
  

And using 𝜔  2𝜋𝑓 One can easily find out that 

|〈𝑔𝑂 𝑔𝜆𝑎〉|  |〈𝑔𝑂 𝑔𝜆𝑏〉|  |〈𝑔𝜆𝑎  𝑔𝜆𝑏〉|  𝑒−𝜋∕√3𝜌  𝜇(𝒟) 

And it can be applied on every equivalent lattice of L. 

 

Statement II: For a Gabor dictionary 𝒟s0  having scale s  s0 with redundancy ρ and 

the mutual coherence e−π∕√3ρ, any atoms with the expanded scaling sD 

𝑠  𝑠𝐷  𝑟𝑠0  𝑠0 ⋅ (exp(
2

√3 ⋅ 𝜌
) + √exp(

4

√3 ⋅ 𝜌
) − 1) 

Will have the inner product with any atoms in 𝒟s0   smaller or equal than μ(𝒟s0), i.e. 

∀𝑔𝑘 ∈  𝒟𝑠0   and  𝑡0 𝜔0 ∈ ℝ |〈𝑔(𝑡0 𝜔0 𝑠𝐷) 𝑔𝑘〉| ≤ 𝜇(𝒟𝑠0)  𝑒−1∕√3𝜌 

Proof: For any two atoms with parameter 𝛾1  ( 𝑡0 𝜔0 1) and 𝛾2  (𝑡0 + Δ𝑡 𝜔0 +

𝛥𝜔 𝑠𝐷), their inner product 〈𝑔𝛾1  𝑔𝛾2〉  is 

∫
√2

√𝑠𝐷
⋅ exp (−

𝜋(𝑡 − 𝑡0)
2

𝑠0
2 + 𝑗𝜔0𝑡 −

𝜋(𝑡 − 𝑡0 − Δ𝑡)2

𝑠𝐷
2 − 𝑗(𝜔0 + Δ𝜔)𝑡)

∞

−∞

𝑑𝑡

 
√2

√𝑠𝐷
∫ exp (−

𝜋𝑡2

𝑠0
2 −

𝑠0
2

𝑠𝐷
2

𝜋(𝑡 − Δ𝑡)2

𝑠0
2 − 𝑗Δ𝜔𝑡)

∞

−∞

𝑑𝑡

 
√2

√𝑟
∫ exp (−𝜋 (

𝑟2 + 1

𝑟2
)(𝑡2 +

2𝑡Δ𝑡

𝑟2 + 1
+

Δ𝑡2

𝑟2 + 1
) − 𝑗Δ𝜔𝑡)

∞

−∞

𝑑𝑡 
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√2

√𝑟
∫ exp(−𝜋 (

𝑟2 + 1

𝑟2
)((𝑡2 +

Δ𝑡

𝑟2 + 1
)
2

) +
Δ𝑡2

(𝑟2 + 1)𝑟2
−
Δ𝑡2

𝑟2
− 𝑗Δ𝜔𝑡)

∞

−∞

𝑑𝑡

 
√2

√𝑟
∫ exp(−𝜋 (

𝑟2 + 1

𝑟2
) (𝑡 +

Δ𝑡

𝑟2 + 1
)
2

+
Δ𝑡2

(𝑟2 + 1)𝑟2
−
Δ𝑡2

𝑟2
− 𝑗Δ𝜔𝑡)

∞

−∞

𝑑𝑡

 
√2

√𝑟
⋅ exp (−

𝜋Δ𝑡2

𝑟2
)∫ exp (−𝜋 (

𝑟2 + 1

𝑟2
) (𝑡 +

Δ𝑡

𝑟2 + 1
)
2

− 𝑗Δ𝜔𝑡)
∞

−∞

𝑑𝑡

 √
2𝑟

𝑟2 + 1
⋅ exp (−

𝜋Δ𝑡2

𝑟2
) ⋅ exp (−

4𝜋Δ𝜔Δ𝑡 + 𝑗Δ𝜔2𝑟2

4𝜋(𝑟2 + 1)
) 

The magnitude is 

|〈𝑔𝛾1  𝑔𝛾2〉|  √
2𝑟

𝑟2 + 1
⋅ 𝑒𝑥𝑝 (−

𝜋Δ𝑡2

𝑟2
) ⋅ 𝑒𝑥𝑝 (−ℑ(

4𝜋Δ𝜔Δ𝑡 + 𝑗Δ𝜔2𝑟2

4𝜋(𝑟2 + 1)
))

 √
2𝑟

𝑟2 + 1
⋅ 𝑒𝑥𝑝 (−

𝜋Δ𝑡2

𝑟2
) ⋅ 𝑒𝑥𝑝 (−

Δ𝜔2𝑟2

4𝜋(𝑟2 + 1)
) 

Since Δt Δω ∈ ℝ, the maximum occurs at  Δt  Δω  0, and the value is 

√
2𝑟

𝑟2 + 1
⋅ 𝑒0  

√
  
  
  
  
  
  
  

exp (
2

√3 ⋅ 𝜌
) + √exp (

4

√3 ⋅ 𝜌
) − 1

(exp (
2

√3 ⋅ 𝜌
) + √exp (

4

√3 ⋅ 𝜌
) − 1)

2

− 1

 

Let 

𝑞  exp (
2

√3 ⋅ 𝜌
) > 0 

√
  
  
  
  
  
  
  

exp (
2

√3 ⋅ 𝜌
) + √exp (

4

√3 ⋅ 𝜌
) − 1

(exp (
2

√3 ⋅ 𝜌
) + √exp (

4

√3 ⋅ 𝜌
) − 1)

2

− 1

 √
2𝑞 + 2√𝑞2 − 1

(𝑞 + √𝑞2 − 1)
2
+ 1

 

 √
2𝑞 + 2√𝑞2 − 1

𝑞2 + 2𝑞√𝑞2 − 1 + 𝑞2 − 1 + 1
 √

2𝑞 + 2√𝑞2 − 1

2𝑞2 + 2𝑞√𝑞2 − 1
 √

1

𝑞
 exp (

−1

√3 ⋅ 𝜌
)  𝜇(𝒟) 

 

Conclusion: For the Gabor dictionary  𝒟s0  having scale  s  s0 , and the Gabor 
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dictionary 𝒟sD  having scale sD and the lattice generating matrix of LsD 

𝑠  𝑠𝐷  𝑟𝑠0  exp (
2

√3 ⋅ 𝜌
) + √exp (

4

√3 ⋅ 𝜌
) − 1 

𝐿  
√2

√3
4
√𝜌

 

[
 
 
 

  

𝑠𝐷
𝑠𝐷
2

0
√3

2𝑠𝐷

  

]
 
 
 

 

The merged dictionary has the mutual coherence μ(𝒟s0 ∪ 𝒟sD)  μ(𝒟s0) 

The proof can be easily extended, if  𝒟s0  𝒟s1  𝒟s2 … are Gabor dictionaries generated 

using the hexagonal lattice with different scale s0 s1 s2…, and  s1  rs s2  r2s …  sn  

rns, where the common ratio r being 

𝑟  exp (
2

√3 ⋅ 𝜌
) + √exp (

4

√3 ⋅ 𝜌
) − 1 

Then the union dictionary 𝒟all 

𝒟all  ⋃𝒟𝑠𝑖
𝑖

 

will have the mutual coherence 𝜇(𝒟all)  𝜇(𝒟0)  𝜇(𝒟1)  𝜇(𝒟2)  ⋯ , which is a 

Grassmannian Gabor frame in ℝ2 of the time frequency plane. 

4.2.6. Behavior of the Increment of Chirp Rate Parameter (Conjecture) 

Assume the dictionary  𝒟 contains two normalized chirplet atoms 𝑔𝑐1𝑛 and 𝑔𝑐2𝑛 with 

chirp rate  𝑐1, 𝑐2 ∈ ℝ  share the same values in other parameters. Since the linear chirping 

term will not affect the energy of the atom, assume  𝑐2 > 𝑐1 > 0: 

 { 
𝑔𝑐1𝑛(𝑥)  √2

4
exp [

𝑗𝑐1 − 1

2
𝑥2]

𝑔𝑐2𝑛(𝑥)  √2
4

exp [
𝑗𝑐2 − 1

2
𝑥2]

 (37 

Now find another chirplet atom 𝑔𝑐𝑛 with chirp rate 𝑐 > 𝑐2 and share the remaining 

parameters, such that| 〈𝑔𝑐1𝑛(𝑥) 𝑔𝑐2𝑛(𝑥)〉| ≥ |〈𝑔𝑐2𝑛(𝑥) 𝑔𝑐𝑛(𝑥)〉|. That is: 
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|∫ √2
4

exp [
𝑗𝑐1 − 1

2
𝑥2] ⋅ √2

4
exp [

−𝑗𝑐2 − 1

2
𝑥2]

∞

−∞

𝑑𝑥|

≥ |∫ √2
4

exp [
𝑗𝑐2 − 1

2
𝑥2] ⋅ √2

4
exp [

−𝑗𝑐 − 1

2
𝑥2]

∞

−∞

𝑑𝑥| 

⟹ |∫ exp *
𝑗(𝑐1 − 𝑐2) − 2

2
𝑥2+

∞

−∞

𝑑𝑥| ≥ |∫ exp *
𝑗(𝑐2 − 𝑐) − 2

2
𝑥2+

∞

−∞

𝑑𝑥| 

⟹ |
1

√−2𝑗(𝑐1 − 𝑐2) + 4
| ≥ |

1

√−2𝑗(𝑐2 − 𝑐) + 4
| 

 

Finally, 

 𝑐 ≥ 2𝑐2 − 𝑐1  ⟹  
𝑐 + 𝑐1
2

≥ 𝑐2 (38 

If the equality holds, the increasing sequence 𝑐1 𝑐2 𝑐 is an arithmetic progression, one 

can easily find out that 𝑐2  (𝑐 + 𝑐1) 2⁄ . This suggests that the increment of chirp rate while 

preserving a constant mutual coherence value of the dictionary should be arithmetic. 

4.3. Summary 

In this chapter, all required knowledge to construct a Grassmannian Gabor frame has 

been attained, which includes: 

 Verify the sphere packing of time-frequency centers on the TF plane 

 Quantitate the exact relationship between the mutual coherence and the 

redundancy of a dictionary 

 Identify the growth of the scaling factor, which is geometric 

 Quantitate the exact increment ratio of the scaling factor without increasing 

the mutual coherence of a dictionary 

 Identify the growth of the chirp rate parameter, which is linear (but unused) 

These facts and discoveries will be considered and applied during the design period of 

the Memetic search algorithm in the next chapter. 
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Chapter 5. Hybrid Memetic Natural Gradient 

Algorithm (HyMN-G) 

This chapter describes the design details of the Hybrid Memetic Natural Gradient 

Algorithm for EEG signal decomposition. The main goal is to reduce the computation cost of 

searching in the Gabor parameter space by combining population based search algorithm 

and local optimization methods. 

5.1. Memetic Concept 

The broad application of Memetic Algorithms in the field of modern computation is the 

result of compensations. Ordinary local search algorithms such as Gradient descent, suffered 

heavily from the stagnation in local minimum; whilst the population based methods, which 

are generally thought not to be trapped in the well of local minimum so easily if the 

distribution of the population is proper and the size of which is large enough, might take a 

serious amount of time to discover the optimal solution. 

However, the advantages of those local search algorithms cannot be neglected. Their 

mathematical based theories, simplicity of implementation, and execution efficiency are the 

primary reason of their inveterate existence. 

5.2. Grassmannian Dictionary Initialization  

For EEG and ICA components, the signals usually have their effective bandwidth lower 

than 100 Hz and the elapsing time of normal brain activities for an odd-ball experiment is 

usually shorter than 1 second. 

The central scaling factor is set to 0 3 second in length, the reason is as followed: 

according to (1, the Gaussian window of the atom is  𝑒−𝜋(𝑡−𝑡0)
2∕𝑠2, therefore, the actual 
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standard deviation of that Gaussian window is  𝜍  0 3√𝜋−1 ≅ 0 169  (𝑠) 

According to the Three-Sigma rule, this window will have 68% of the sum of its support 

value in   𝐋1  concentrated in the range of   ±𝜍 , which is equivalent to a time period 

of 0 169 × 2 ≅ 0 339 (𝑠); 95% in the period of  0 677 (𝑠) and 99.7% in  1 015 (𝑠). 

The creation of time and frequency parameter lattice is rather simple afterwards; the 

lattice points will pad the signal space uniformly after the scaling factor is decided. 

Figure 31 is the scatter plot of the lattice points generated using the setting of 𝜌  

0 5 𝑠0  0 3 𝑠 in the 3-dimensional space (this point of view does not have any physical 

meaning in signal processing; however, one can still observe the hexagonal lattice and the 

effect of different scaling factors on the distribution of points). 

(a) 3D View 

 
(b) Time-Scale Projection View 

 
(c) Frequency-Scale Projection View 

Figure 31 Scatter Plot of the Gabor Parameter Centers (                 ) 

Although the Gabor dictionary can well cover the effective signal space, however the 

artefacts, which might have relatively significant power over the EEG signals such as eye 

0
0.5

1
1.5

0

100

200

300
0.1

0.2

0.3

0.4

0.5

0.6

Time Center

Redundancy   = 0.5

Frequency Center

S
c
a
lin

g
 F

a
c
to

r

00.20.40.60.811.21.4
0.1

0.2

0.3

0.4

0.5

0.6

Time Center

S
c
a
lin

g
 F

a
c
to

r

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

Frequency Center

S
c
a
lin

g
 F

a
c
to

r



 
 

 
 
   53 

 

movements, everlasting elapsing time and periodic such as civilian AC electricity source and 

ECG (heartbeats) or even unknown properties such as heat distortions, might significantly 

dropped the performance of the decomposition. The current solution is to use ICA to remove 

undesired component and re-project the component back to channel, even so, the small 

signal-to-noise ratio of raw EEG still poses insurmountable obstacle to accurate analysis. 

5.3. Natural Gradient Optimization 

Before the 3-dimensional time-frequency-scaling experiment, the application of 

efficient NES has brought prominent solution to the optimization problem. The following 

Figure 32 shows the convergence process of a Gabor atom with scaling factor 𝑠  0 3 𝑠 and 

having its time frequency center values (𝑡0 𝜔0)  (0 3𝑠 130 rad 𝑠⁄ ). 

 

Figure 32 Natural Gradient Search over Signal Inner Product Space (ICA #20)  

Initialization Point = (0.3s, 130rad/s), Grid Redundancy ρ = 0.5 

In the figure, colder colors represent lower objective function value (higher fitness). The 

big white ‘+’ sign indicates the global minimum position, each white ‘x’ shows the position of 

the Grassmannian lattice point, and the white round points represent the distribution of 

population. In the 3-dimensional parameter space, the Memetic Pursuit algorithm is devised 

as: 



 
 

 
 
   54 

 

Procedure MEMETIC PURSUIT 

Input: Residue Waveform 𝑥,  

Generate uniform lattice Φ  *𝜙1 𝜙2 … +  in Gabor parameter space 

For 𝑗  1 to Memetic Iteration Limit Do 

Evaluate fitness 𝑓(𝜙𝑖)  −|⟨𝑥 𝑔𝜙𝑖⟩| for all individual 𝜙𝑖 ∈ Φ 

Identify the subset  Φ′  *𝜙1
′  𝜙2

′  … + of learning candidates 

Generate Φ+  *𝜙1
+ 𝜙2

+ … + by  

 Improving 𝜙𝑘
′  with local Natural gradient optimization 

Set 𝜙∗ ← argmax𝜙∈  ∪ 𝑓(𝜙) 

If stopping conditions met Then Break 

Select Φ̂  {�̂�1 �̂�2 … }, Φ̂ ⊂ (Φ+ ∪ Φ) of  reproductive candidates 

Generate uniform proximity lattices Φ1  Φ2 …  centered at each �̂�𝑖 ∈ Φ̂ 

Set Φ ← ⋃Φ𝑖 

End For 

End Procedure, Return decomposition sequence  ∗ 

Table 22 Memetic Pursuit Procedure 

The proximity lattices are generated using Manhattan distance; Figure 33 illustrates the 

shape of a proximity lattice with Manhattan distance of 2 (each white plate represents the 

surface of equal scaling, and the effect of different scaling on the distribution of 

time-frequency lattice points is ignored in the illustration).  

 

Figure 33 Proximity Lattice of Manhattan Distance 2 

The main functionality of the Natural Gradient optimization during the search of atom 
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parameters correlated the most with the signal is to perform appropriate local search; 

therefore, the search region will be restricted to cover only few number of grid points nearby, 

and let the population based optimization to handle the rest. 

5.4. Realisation: HyMN-G 

Combining the method of lattice point generation, natural gradient optimization 

method and Memetic Algorithm, the new Hybrid Memetic Natural Gradient algorithm 

(HyMN-G) is developed to decompose the EEG signal in a more elegant way. 

Algorithm  HYBRID MEMETIC NATURAL GRADIENT 

Initialization: Atom sequence  𝐿 ← [ ] 

Input: Signal 𝑥, Energy extraction level 𝑘% 

Calculate signal energy   𝑥  ‖𝑥‖2 

Set residue  𝑟0 ← 𝑥 

For 𝑖  1 to Atom Quantity Limit Do 

Perform Memetic Pursuit to find 𝜙𝑖
∗ 𝜙𝑖

∗  𝑀𝑒𝑚𝑒𝑡𝑖𝑐𝑃𝑢𝑟𝑠𝑢𝑖𝑡(𝑟𝑖−1) 

Calculate the inner product  𝐴𝑖 ← ⟨ 𝑟𝑖−1 𝑔𝜙𝑖
∗  ⟩ 

Calculate the residue of next iteration  𝑟𝑖 ← 𝑟𝑖−1 − 𝐴 ⋅ 𝑔𝜙𝑖
∗  

Append the result to 𝐿, 𝐿 ← 𝐿 ∪ *(𝐴𝑖 𝜙𝑖
∗)+ 

If  ‖𝑟𝑖‖
2  𝑥⁄ ≤ 𝑘% Then Break 

End For 

End Procedure, Return decomposition sequence 𝑳 

Table 23 Hybrid Memetic Natural Gradient Algorithm 

Similar to the exhaustive design of the previous work, the HyMN-G algorithm extends 

the belief of the greedy Matching Pursuit with the matching part of the atoms replaced by 

Memetic Pursuit procedure, but the computation cost can be reduced with a proper 

viewpoint on the behavior of the parameters. 
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5.5. Comparisons  

5.5.1. Comparison with Previous Algorithms 

The decomposition accuracy will be compared with the previous developed algorithm of 

stochastic matching pursuit and the Exhaustive Matching Pursuit.  

First, the decomposition sequence will be verified, the decomposition of ICA component 

#20 is used to examine the correctness of the result. The five leading decomposed atom 

parameters in Table 24 found by HyMN-G seems to be very close to those found by Durka’s 

stochastic matching pursuit and the exhaustive one. 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Phase 

( ) 

Wgh. 

(%) 

Residue  
(%) 

1 0.51 1.70 0.72 1.36 30.04 69.96 

2 0.32 6.04 0.18 1.37 15.50 54.47 

3 0.48 11.19 0.09 0.97 10.60 43.87 

4 1.45 5.96 0.52 0.73 6.76 37.11 

5 1.70 12.72 1.13 1.32 5.90 31.21 

6 0.16 25.89 1.57 0.07 4.03 28.19 

7 0.69 5.10 0.45 1.34 3.86 24.32 

8 0.30 14.68 0.18 1.65 3.69 20.64 

9 1.03 2.60 0.95 1.79 2.49 18.15 

10 0.12 15.05 0.18 1.02 1.62 16.52 
 

 

Table 24 Gabor Atom List Generated 

by HyMN-G (ICA #20) 

Figure 34 Gabor Energy Map 

by HyMN-G (ICA #20) 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Phase 

( ) 

Wgh. 

(%) 

Residue  
(%) 

1 0.52 1.70 0.71 1.37 30.04 69.96 

2 0.32 6.24 0.15 1.35 15.70 54.26 

3 0.50 10.69 0.08 1.09 11.95 42.31 

4 1.45 6.21 0.60 0.79 7.07 35.24 

5 1.32 12.74 0.71 1.70 4.79 30.45 

6 0.32 14.63 0.15 0.06 4.56 25.89 

7 0.16 25.89 1.51 0.07 4.02 21.25 

8 0.83 4.00 0.32 0.71 3.51 18.74 

9 1.25 2.04 0.32 0.89 1.99 16.75 

10 0.10 15.17 0.19 0.54 1.35 14.40 

Table 20 Gabor Atom List Generated 

by Exhaustive MP (ICA #20) 

# 
Time 
Shift 

Freq. 
Shift 

Scale 
Phase 

( ) 

Wgh. 

(%) 

Residue  
(%) 

1 0.62 2.07 0.53 1.70 26.22 73.78 

2 0.27 2.76 0.05 0.57 18.85 54.93 

3 0.50 11.03 0.08 1.14 10.75 44.18 

4 1.33 4.83 0.16 1.32 6.23 37.95 

5 1.27 13.10 0.43 0.41 5.12 32.83 

6 0.62 4.83 0.49 0.64 4.50 28.33 

7 0.34 26.21 0.5 1.65 3.64 24.69 

8 0.07 0.69 0.23 1.73 3.34 21.35 

9 0.39 11.72 0.10 0.30 2.97 18.38 

10 1.10 5.52 0.19 0.47 1.43 16.95 

Table 21 Gabor Atom List Generated 

by Durka’s Stochastic MP (ICA #20) 
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The percentages of energy extracted by the algorithms are plotted as in Figure 35: 

 

Figure 35 Convergences of Algorithms (Atom Weights & Residues Energies) 

The result of exhaustive MP still generally being more precise than the others, but it 

comes with the cost of a time consuming process. On the other hand, the HyMN-G achieves 

almost similar goal with only several thousands of objective function evaluations. 

The following table shows the computational cost of attaining one Gabor atom 

parameters (the computational cost of Natural Gradients has not been listed here since there 

is no comparable procedure in the other two algorithms): 

Algorithms Population 
Objective 

Evaluations 

Others 

Evaluations 

Stochastic 

MP 

Initial Population

 100 000 

100 000 + 256⏟
Scan

 100 256 None 

Exhaustive  

MP 

290⏟
Scan t

⋅ 145⏟
Scan ω

⋅ 290⏟
Scan 𝑠

           

        12 194 500 

12 194 500 + CMAES Pop 

× Iteration 

 12 195 700 

Covariance Evaluation 

Covariance Modification 

HyMN-G 
(Lamarckian) 

Duration × Bandwidth 

× √𝜌  1 45 ⋅ 200 ⋅ √1 2

≅ 317 

317 + Candidates⏟      
10% of Pop 

 

× Iteration⏟      
 Expected

≅ 5 500  ~  15 000   

Fisher Information Matrix 

Gradient Estimation 

Table 20 Comparable Computational Cost of Three Algorithms 
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5.5.2. Comparison with Cosine Dictionary 

The following shows the decomposition result of component #20 generated using the 

HyMN-G algorithm and the discrete cosine transform. 

 

Figure 36 Discrete Cosine Spectrum 

 

 

Figure 37 Decomposition of HyMN-G & Discrete Cosine Dictionary 

Total 31 discrete cosine dictionary atoms should be used to extract the signal up to 85% 

of its energy, comparing to 11 when using HyMN-G algorithm. The scalable Gabor atoms 

have the advantages in number of atoms. 

5.6. Large Scale Analysis on Channel and ICA Signals 

After verifying the correctness and convergence properties of HyMN-G, we’ll use the 

algorithm to decompose a relatively large dataset instead of averaged ERP signal. 

The dataset used in this experiment is the same one used in [43], which is an odd-ball 
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experiment recorded with 31 sensors in 512 Hz. During the recording, the subjects are asked 

to staring at a screen showing 4 blue boxes and 1 green box. After a certain period, a black 

circle will appear randomly in one of the boxes and disappear in 117 milliseconds; if the circle 

is right in the green box, the subject should press a button with his right thumb. The process 

is repeated with inter-stimulus interval ranging from 225 to 1000 milliseconds, total 524 

epochs are extracted in the dataset. 

In our experiment, the data is firstly filtered by a 0-to-40-Hz low pass filter, 

downsampled to 128 Hz and each contains 179 samples (duration = 1.4 seconds). After 

removing the artefacts, 262 are remained in the dataset and a channel is rejected due to the 

significant presence of muscle movement, and the ICA is performed afterwards. The size of 

the channel signal is  (#Channel × #Epoch × Epoch Length)   31 × 262 × 179 , and the 

ICA component set is (#Comp × #Epoch × Epoch Length)  30 × 262 × 179. 

Finally, for all channels of raw EEG data and all ICA components, 10 epochs are selected 

and fed into the HyMN-G algorithm epoch by epoch as input; total 1393 atoms are generated 

for the channel data and 1864 for the ICA components. 

Figure 38 and Figure 39 show the parameter centers in both scatter plots and bubble 

diagrams; with 3D perspective and the projection view on the normal plane of each axis. The 

radius of bubbles in the bubble charts are proportional to the weight of the atom and 

proportional to the square of the inner product value according to the conservation of 

energy described in (4. 
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Parameter Scatter Plot 
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Figure 38 Large Scale Decomposition of 30 ICA Components (10 Epochs) 
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Figure 39 Large Scale Decomposition of 31 Channels (10 Epochs) 
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The atom centers derived from the ICA and channel decompositions seem to be 

concentrated on the same regions in the parameter space, and prove the consistency 

between the ICA decomposition result and the channel. 

The most unexpected problem encountered during the experiment is the significant 

shifts in signal DC voltage; Figure 40 gives an example of such type of signals. 

 

Figure 40 Channel #4, Epoch #155 and Linear Trendline 

Since we’ve restricted the position of the time centers inside the signal duration, 

however in this case, the pursuit is not able to find a suitable set of parameters to fit the 

changes in DC voltage potentials since the Gaussian center will be out-of-bounds, even if the 

Gaussian center is at the boundary of the signal sample space, the standard deviation of the 

Gaussian window will become too large and eventually run out-of-bound, and causing a lot 

of atom centers fall on the border conditions. 
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Chapter 6. Dictionary Evolved Based on 

Training Signal Examples 

6.1. Training Method 

In this approach, the result dictionary will not have a closed form expression. At the 

beginning, a set of training signals/models is provided and an initial dictionary are given as 

the initialization setting of the K-SVD algorithm [41], which is a generalized K-means 

clustering algorithm that iteratively alternates between sparse coding of the training set 

based on the current dictionary and an update of the dictionary atoms that makes the 

dictionary fit the training signals better; the update of the dictionary columns is combined 

with an update of the sparse representations while the sparsity level is configured as a 

parameter before executing the algorithm. 

Several standard dictionaries and random Gaussian matrices are provided as the initial 

dictionaries of the learning procedures; the result will be compared in terms of convergence 

rate, final decomposition error and the performance under different sparse levels. 

6.2. Decomposition Problems 

For the scheme of training a dictionary for signals of certain type; the training signal set, 

unlike the single-trial model, which serves as a template of the specific type of signals is 

given as a matrix, labeled as 𝐵. The problem now becomes 2 dimensional: (Equation (39 and 

Figure 41) 

 ∀1 ≤ 𝑖 ≤ 𝑁   find 𝑥𝑖 such that { 
𝑏𝑖  𝐴𝑥𝑖
      or
‖𝐴𝑥𝑖 − 𝑏𝑖‖2 < 𝜖

 (39 
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Figure 41 Illustration of Noisy Signal Factorization Problem 

6.3. Consistency Conditions 

As mentioned in 3.6, similar to the single-trial model, Donoho and Elad [40] also 

proposed the condition for the approach of training dictionary. 

The three following conditions identified by Donoho and Elad in [38-40] are considered 

when designing the size of the signal template set and the initial dictionary for training, 

notice that these following statements are sufficient conditions, so one can successfully 

compress and reconstruct the signal even if these conditions are not met: 

 

1. Boundary Support of the Coefficients  𝑿 

The 𝐋0 norm of the coefficient vector should be smaller than half of the spark 

of the dictionary  𝐴, that is: 

 ∀1 ≤ 𝑖 ≤ 𝑁 and  𝑏𝑖  𝐴𝑥𝑖  ‖𝑥𝑖‖0  𝐿 <
𝜍*𝐴+

2
 (40 

2. Richness Relation between Dictionary  𝑨 and Training Signal Set  𝑩 

The signal template set 𝐵 should be rich enough, which includes at least 𝐿 + 1 

signals for every possible combination of  𝐿  atoms from  𝐴 , so here, 

conservatively, assumed that 𝐵 contains at least (𝐿 + 1) .
𝑘
𝐿
/ signal trials. 

 

3. Non-degeneracy of 𝑩 when Representing in 𝑨 

An  k Xk  N
Bn  N εn  N
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This condition implies that the dictionary is utilized efficiently. Describe 

mathematically, for any group of  𝐿 + 1  signals  𝐵′ ⊂ 𝐵: 

 

 If 𝐵′ shares the same 𝐿 atoms in 𝐴, then Rank(𝐵′)  𝐿 

 If 𝐵′ shares different atoms in 𝐴, then Rank(𝐵′)  𝐿 + 1 

 

Under the three conditions, the factorization relation  𝐵  𝐴Π𝑋  has the unique 

properties where: 

 

 𝐴 ∈ ℝ𝑛×𝑘 𝐴  ,𝑎1  𝑎2  𝑎3  … 𝑎𝑘-  and   ∀𝑖 ≤ 1 ≤ 𝑘 ‖𝑎𝑖‖2  1 

 𝑋 ∈ ℝ𝑘×𝑁    each column contains 𝐿 non-zero terms 

 Π ∈ *−1 0 1+𝑘×𝑘  which is a signed permutation matrix 

 

For analysis convenience, the atoms in the dictionary are frequently sorted according to 

their dominant frequencies in our result visualization. 

6.4. Experiment  

The experiment use the previously described 64-Channel dataset recorded in the radio 

silent room, BRC, but the sampling rate has been lowered to 100 Hz and therefore the 

number of samples in each epoch is only 145 now, the primary goal is to successfully use the 

K-SVD algorithm to detect common “signal templates” or “fingerprints” in the ERP signal of 

Channel #17. 

6.4.1. K-SVD Initialization and Sparsity Configurations 

After the Exhaustive Matching Pursuit experiment, there’s a discovery about that most 

of the ERP (both raw channel EEG and ICA components) can be deduced to contain only 10% 
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of energy (or  20 log10 0 1  −20 𝑑𝐵) with about 10 to 15 Gabor atoms. Therefore, the 

sparsity setting, which is the restriction of the number of non-zero terms in the coefficient 

matrix, of the K-SVD algorithm is 15, which is also close to the square root of the number of 

samples in the signal referred in 3.6.1, since √145 ≅ 12. 

The redundancy 𝜌 of the Grassmannian frame is set to 1 2, which generates the 

dictionary of size 145 × 445 and has a theoretical mutual coherence of  0 6181. 

Finally, the training signal is generated by averaging of 100 over total 266 specimens 

with round robin selection method due to the shortage of epochs in the dataset, and it 

usually require 60 to 100 epoch to generate a valid ERP signal. The size of the generated 

training signal matrix is 145 × 16492. 

The result is plotted in both the time domain representation and spectrum and finally, 

ordered according to the significant frequency value, shown in Figure 1Figure 42: 

 

Figure 42 K-SVD Decomposition of Channel 17 ERP 

In the bottom of the Figure 42, there’s the summation of the  𝐿0 and 𝐿1  support of 
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each template waveforms in the dictionary, one can observed that the decomposed 

coefficient in terms of 𝐿1support is concentrated in only 14 signal templates. Furthermore, 

the 4 templates are found to be the top 4 selected atoms that are used to start a Matching 

Pursuit for the channel #17 ERP signal with the entire dictionary. 

 

Figure 43 Decomposition of Channel 17 ERP Using the Trained Dictionary 

Figure 43 shows the result of executing Matching Pursuit over channel #17 ERP signal 

using the trained dictionary, the four subfigures are detailed as follow: 

a) Represents the signal and the residue carrying only 5% of the signal energy in 

temporal domain. 

b) Shows the spectrum of the same waveforms in a). 

c) This is the first four atoms that are used during the pursuit process, are 

identified to be the same four atoms with the highest sum over 𝐿1 support. 

d) The red curve shows the decay of the residue energy in top 20 iterations. 

The residue also has the kurtosis of 3 053 and skewness of 0 0037. 
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The 1st, 3rd and the 4th atoms in the part (d) of Figure 43 are identified as the 

“fingerprint” of the ERP oscillating in different harmonic frequencies, with these four atoms, 

about 95% of the signal energy can be extracted, and therefore, the trained dictionary can be 

concluded as Ron Rubinstein said in [9+, perform well as the “realization” of the signal of the 

event related potential of channel #17 EEG signals. 
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Chapter 7. Conclusion 

7.1. Achievements 

In this research, an efficient method has been presented and verified being able to 

search for the atom parameters having the highest correlation value with the signal in the 

continuous scalable Gabor parameter space. Also, the scalable Gabor parameter space is well 

perceived by now. 

The major achievements are listed below, for the standard dictionary approach: 

 

1. Identify the generalized Gabor dictionary as the best suited standard 

dictionary for sparse ERP/ICA representation 

For various types of dictionaries composed of standard waveforms, observation 

shows that the number of atoms used for representing the signals over the 

Gabor dictionary is the smallest among all types of waveforms that have been 

tested during the experiments. 

 

2. Formulate pruning rules of illogical parameter value for consistent 

sparse representation over the generalized Gabor parameter space 

Since most of the recent decomposition algorithms focused mainly on sparsity 

efficiency and reconstruction accuracy; on the other hand, physical meaning of 

the atoms and the consistency of the decomposition are usually ignored, which 

should be carefully considered during biomedical signal analysis. To avoid 

ambiguous and illogical representations, several rules are brought up to regulate 

the decomposition procedures and eliminate the unreasonable results. 
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3. Discover the behavior of non-linear parameters of Gabor atoms, and 

4. Devise a construction method of Grassmannian lattice for Gabor atoms 

With the concept of searching for the dictionary with low mutual coherence, the 

discovery of the behavior will be a key component to construct a redundant but 

lowly correlated frame. 

 

5. Design and implement a Memetic search algorithms for consistent 

sparse representation utilizing the Natural Gradient based 

optimization and the application of Grassmannian frame 

From the perspective of waveform that consists of a sequence of samples, a 

Gabor atom can be viewed as a vector in high dimensional Euclidean space; 

however, the Gabor parameter space is not. Conventional gradient search 

algorithm or evolution strategy might fall into local minimum in this case. The 

natural gradient based algorithm is employed here to avoid pitfalls of local 

minimum and increase accuracy. 

 

And, for the methods of dictionaries that evolved based on the given signal examples: 

 

6. Improve the K-SVD method by using Grassmannian frame as initial 

dictionary, and successfully locate the fingerprints of the ERPs in the 

decomposition result 

The concept of the Grassmannian Gabor frame is applied on the initialization of 

the dictionary in this case, i.e., the development of the dictionary starts from a 

state that closes to a uniform sampling on the Gabor parameter space. 
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7.2. Future Works 

Nonetheless, this preliminary effort merely marks the beginning of our continuous 

search for better sparse representations of EEG signals and suitable dictionaries for these 

representations.  

The primary concern is about the biomedical meaning of the decomposition result, 

most of the pursuit algorithms are not designed to be applied on a specific type of signals. 

Due to the sophisticated propagation of EEG signal from their actual brain location to the 

scalp, through skin, hair and finally to the sensors, the meaningful ingredient might become 

insignificant and difficult to extract. Always searching for the best fit waveform and justifying 

the precision of the decomposition of the signals in terms of energy is not always beneficial. 

A temporarily possible solution might be the cross reference between the channel and 

ICA components, with the application of ICA components, one might be able to eliminate the 

undesired signal components and extract the de facto EEG events well represent the brain 

activities. 

Establishment of the relationship between the result and Compressive Sensing might 

become a logical next step; during the analyses process of EEG and especially the ERP data, 

with both the standard dictionary approach and the K-SVD experiments, atoms are found to 

be clustered into several region and share similar parameter values, further investigation 

might be carried out to classify the effect, if an jittering and scaling resistive decomposition 

method can be found, a large number of the single-trial decomposition results can be 

compressed in advance to save even more data storage resources. 

For the dictionary trained by the K-SVD algorithm, an intuitive thought is to discover the 

proper measurement matrix for the compressive sensing framework described in [12], but 

still, since the experiment requires an astronomical amount of data to form a proper training 

signal matrix. 
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Mathematical Notations 

Spaces 

ℝ𝑁 Real signal of size 𝑁 

ℂ𝑁 Complex signal of size 𝑁 

𝐋2(ℝ) Finite energy continuous functions: ∫ |𝑓(𝑡)|2𝑑𝑡 < ∞ 

𝐥2(℞) Finite energy discrete functions: ∑ |𝑓,𝑛-|2 < ∞∞
𝑛=−∞  

𝐇 Hilbert Space 

Operators and Operations 

𝑧∗ Complex conjugate of 𝑧 ∈ ℂ 

‖𝑓‖ 𝐋2 Norm 

|𝑓|𝑝 𝐋𝑝 Norm 

〈𝑓 𝑔〉 Inner Product (Mathematically varied in different spaces) 

𝐴𝑇 Transpose of Matrix 

inf*𝑆+ Infimum of set 𝑆 

𝜍*𝐴+ Spark of matrix 𝐴 

𝑇𝑡0  Shift  𝑡0 in time  

𝑀𝜔0
 Modulate 𝜔0 in frequency 

Transforms and Representations 

𝑓(𝜔) Fourier transform 

𝑓,𝑛- Discrete Fourier transform 

𝑆𝑓,𝑡 𝜔- Short-time Fourier transform 

𝑃𝑆𝑓(𝑡 𝜔) Spectrogram 

𝑃𝑉𝑓(𝑡 𝜔) Wigner-Ville distribution 
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